17,944 research outputs found

    Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Get PDF
    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research

    Tissue mimicking materials for imaging and therapy phantoms: a review

    Get PDF
    Tissue mimicking materials (TMMs), typically contained within phantoms, have been used for many decades in both imaging and therapeutic applications. This review investigates the specifications that are typically being used in development of the latest TMMs. The imaging modalities that have been investigated focus around CT, mammography, SPECT, PET, MRI and ultrasound. Therapeutic applications discussed within the review include radiotherapy, thermal therapy and surgical applications. A number of modalities were not reviewed including optical spectroscopy, optical imaging and planar x-rays. The emergence of image guided interventions and multimodality imaging have placed an increasing demand on the number of specifications on the latest TMMs. Material specification standards are available in some imaging areas such as ultrasound. It is recommended that this should be replicated for other imaging and therapeutic modalities. Materials used within phantoms have been reviewed for a series of imaging and therapeutic applications with the potential to become a testbed for cross-fertilization of materials across modalities. Deformation, texture, multimodality imaging and perfusion are common themes that are currently under development

    An anthropomorphic thyroid phantom for ultrasound-guided radiofrequency ablation of nodules

    Full text link
    Background: Needle-based procedures such as fine needle aspiration (FNA) and thermal ablation, are often applied for thyroid nodule diagnosis and therapeutic purposes, respectively. With blood vessels and nerves nearby, these procedures can pose risks in damaging surrounding critical structures. Purpose: The development and validation of innovative strategies to manage these risks require a test object with well-characterized physical properties. For this work, we focus on the application of ultrasound-guided thermal radio-frequency ablation (RFA). Methods: We have developed an anthropomorphic phantom mimicking the thyroid and surrounding anatomical and physiological structures that are relevant to ultrasound-guided thermal ablation. The phantom was composed of a mixture of polyacrylamide, water, and egg white extract and was cast using molds in multiple steps. The thermal, acoustical, and electrical characteristics were experimentally validated. The ablation zones were analyzed via non-destructive T2-weighted MRI scans utilizing the relaxometry changes of coagulated egg albumen, and the temperature distribution was monitored using an array of fiber Bragg sensors. Results: The physical properties of the phantom were verified both on ultrasound as well as its response to thermal ablation. The final temperature achieved (92{\deg}C), the median percentage of the nodule ablated (82.1%), the median volume ablated outside the nodule (0.8 mL), and the median number of critical structures affected (0) were quantified. Conclusion: An anthropomorphic phantom that can provide a realistic model for development and training in ultrasound-guided needle-based thermal interventions for thyroid nodules has been presented. In the future, this model can also be extended to novel needle-based diagnostic procedures.Comment: 19 pages, 10 figures, 3 table

    Ultrasound metrology and phantom materials for validation of photoacoustic thermometry

    Get PDF
    High intensity focused ultrasound is an emerging non-invasive cancer therapy during which a focused ultrasound beam is used to destroy cancer cells within a confined volume of tissue. In order to increase its successful implementation in practice, an imaging modality capable of accurately mapping the induced temperature rise in tissue is necessary. Photoacoustic thermometry, a rapidly emerging technique for non-invasive temperature monitoring, exploits the temperature dependence of the Grüneisen parameter of tissues, which leads to changes in the recorded photoacoustic signal amplitude with temperature. However, the implementation of photoacoustic thermometry approaches is hindered by a lack of rigorous validation. This includes both the equipment and methodology used. This work investigates the effect of temperature on ultrasound transducers used in photoacoustic thermometry imaging as well as characterisation of potential phantom materials for its validation. The variation in transducer sensitivity with temperature is investigated using two approaches. The first one utilises a reference transducer whose output power is known as a function of temperature to characterise the sensitivity of the hydrophone. As the knowledge of variability of transducer output with temperature is not readily available, two standard metrology techniques using radiation force balances and laser vibrometry are extended beyond room temperature to characterise the effect of temperature on the output of PZT tranducers. For the second approach to transducer sensitivity calibration, a novel method is developed utilising water as a laser-generated ultrasound source and validated using the self-reciprocity calibration method. The calibrated hydrophone is then used to characterise the relevant temperature-dependent properties of several phantom materials in a custom-built setup. The measurement results are used to determine the most suitable phantom for photoacoustic thermometry. Finally, the phantom is heated and imaged in a proof-of-concept photoacoustic thermometry setup using a linear array. These contributions are of vital importance for allowing the translation of photoacoustic thermometry into clinical practice

    Review on bibliography related to antimicrobials

    Get PDF
    In this report, a bibliographic research has been done in the field of antimicrobials.In this report, a bibliographic research has been done in the field of antimicrobials. Not all antimicrobials have been included, but those that are being subject of matter in the group GBMI in Terrassa, and others of interest. It includes chitosan and other biopolymers. The effect of nanoparticles is of great interest, and in this sense, the effect of Ag nanoparticles and antibiotic nanoparticles (nanobiotics) has been revised. The report focuses on new publications and the antimicrobial effect of peptides has been considered. In particular, the influence of antimicrobials on membranes has deserved much attention and its study using the Langmuir technique, which is of great utility on biomimetic studies. The building up of antimicrobials systems with new techniques (bottom-up approach), as the Layer-by-Layer technique, can also be found in between the bibliography. It has also been considered the antibiofilm effect, and the new ideas on quorem sensing and quorum quenching.Preprin

    Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions.

    Get PDF
    An experimental arrangement that allows in vitro exposure of cells to focused ultrasound-mediated hyperthermia (43°C-55°C) in a tissue-mimicking phantom with biological, acoustic and thermal properties comparable to those of human soft tissue is described. Cells were embedded in a compressed collagen gel, which was sandwiched between 6-mm-thick slices of biocompatible, acoustically absorbing and thermally tissue mimicking poly(vinyl alcohol) cryo-gel. To illustrate the system's potential, cells were exposed using a 1.66-MHz focused ultrasound beam (spatial-peak temporal-average intensities (ISPTA) = 900-1400 W/cm2) that traced out a circular trajectory (5-8 mm in diameter). Real-time temperature monitoring allowed cells to be exposed reproducibly to a pre-determined thermal dose. An experimental planning tool that estimates the thermal dose distribution throughout the sample and allows spatial correlation with cell position has been developed. Treatment response was evaluated qualitatively using microscopy and cell viability testing. This experimental arrangement has significant potential for future, biologically relevant, in vitro focused ultrasound-mediated hyperthermia studies

    Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization:a solution for practical application

    Get PDF
    Mechanical properties are important parameters that can be used to assess the physiologic conditions of biologic tissue. Measurements and mapping of tissue mechanical properties can aid in the diagnosis, characterisation and treatment of diseases. As a non-invasive, non-destructive and non-contact method, laser induced surface acoustic waves (SAWs) have potential to accurately characterise tissue elastic properties. However, challenge still exists when the laser is directly applied to the tissue because of potential heat generation due to laser energy deposition. This paper focuses on the thermal effect of the laser induced SAW on the tissue target and provides an alternate solution to facilitate its application in clinic environment. The solution proposed is to apply a thin agar membrane as surface shield to protect the tissue. Transient thermal analysis is developed and verified by experiments to study the effects of the high energy Nd:YAG laser pulse on the surface shield. The approach is then verified by measuring the mechanical property of skin in a Thiel mouse model. The results demonstrate a useful step toward the practical application of laser induced SAW method for measuring real elasticity of normal and diseased tissues in dermatology and other surface epithelia

    Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices

    Get PDF
    Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle

    Remodeling arteries: studying the mechanical properties of 3D-bioprinted hybrid photoresponsive materials.

    Get PDF
    3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the in vivo environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions. The artery wall components are reproduced using 3D printing of thermoresponsive polymers with inorganic nanoparticles (NPs) representing the outer tunica adventitia, smooth muscle cells embedded in extracellular matrix representing the tunica media, and finally a monolayer of endothelial cells as the tunica intima. Cyclic expansion can be induced thanks to the inclusion of photo-responsive plasmonic NPs embedded within the thermoresponsive ink composition, resulting in changes in the thermoresponsive polymer hydration state and hence volume, in a stimulated on-off manner. By changing the thermoresponsive polymer composition, the transition temperature and pulsatility can be efficiently tuned. We show the direct effect of cyclic expansion and contraction on the overlying cell layers by analyzing transcriptional changes in mechanoresponsive mesenchymal genes associated with such microenvironmental physical cues. The technique described herein involving stimuli-responsive 3D printed tissue constructs, also described as four- dimensional (4D) printing, offers a novel approach for the production of dynamic biomodels.Financial support is acknowledged from the MCIN/AEI/ 10.13039/501100011033 through grant # PID2019-108854RAI00. C. G. A. thanks to the Ministerio de Ciencia e Innovacio´n (MCIN) for a Juan de la Cierva Incorporacio´n Fellowship (IJC2019-040827-I). M. S.-A. is recipient of a Ramo´n y Cajal contract and a ‘‘Generacio´n de Conocimiento’’ grant from the Ministerio de Ciencia e Innovacio´n (RYC2020-029690-I and PID2021-128106NA-I00). MAdP is coordinator and PL of ‘‘AtheroConvergence’’ La Caixa Foundation Health Research consortium (HR20-00075). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the MCIN and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S). We acknowledge ALBA for provision of synchrotron radiation facilities. We would like to thank Dr Marc Malfois for assistance in using BL11-NCD beamline, and Unai Cossı´o and Daniel Padro for help with image analysis.S
    corecore