145,482 research outputs found

    Sinusoidal fetal heart rate pattern

    Full text link
    We describe 2 cases of term anemic fetuses with different sinusoidal pattern morphology, and possible mechanisms.nbspCasesmdashThe first patient noted sudden cessation of fetal movement on the day of presentation. She had a sinusoidal FHR pattern. The newborn had a hemoglobin of 3.7 g/dl, and umbilical artery pH was 7.10 and BE -7 mEq/l. The second patient noted decreased fetal movement for several days. She had a FHR pattern with absent FHR variability, and intermittent sinusoidal elements, with late decelerations. The newbornrsquos hemoglobin was 1.5 g/dl, umbilical artery pH was 7.07 and BE -10.2 mEq/l. Both cases had positive Kleihauer-Betke tests

    Fetal Doppler Simulator Based on Arduino

    Full text link
    Heart rate of the fetal is the main indicator of the fetal life in the womb. Monitoring fetal heart rate can't be done, so a tool is needed to monitoring fetal heart rate. Fetal heart rate can be monitored with fetal doppler. To test the accuracy of Fetal Doppler, a calibration is needed with the Fetal Doppler Simulator. This tool will simulate the fetal heart rate with a BPM value that can be adjusted according to the settings on the device. This module using Arduino as the brain system. On the module there is a selection of BPM  from 60 to 240 BPM with an increase of 30 BPM displayed on 2x16 character LCDs. Based on BPM measurement 6 times using Fetal Doppler, the measurement error in a BPM of 60 to BPM 210 is 0%, while at BPM 240 an error is 0.2%. This module has been compared with the standard devices (Fetal Simulator Brand Fluke Biomedical Ps320), the results of the comparison modules with the comparison tool  has the same error value in 240 BPM is 0.2% and in BPM 210 there is a difference in the result of module Fetal Doppler reading of 210 BPM while in the comparison tool is 209 BPM. Of the measurement data and analysis, it can be concluded that the tool can work and the tool has the same accuracy as the standard device

    Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    Get PDF
    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate

    Mathematical tools for identifying the fetal response to physical exercise during pregnancy

    Get PDF
    In the applied mathematics literature there exist a significant number of tools that can reveal the interaction between mother and fetus during rest and also during and after exercise. These tools are based on techniques from a number of areas such as signal processing, time series analysis, neural networks, heart rate variability as well as dynamical systems and chaos. We will briefly review here some of these methods, concentrating on a method of extracting the fetal heart rate from the mixed maternal-fetal heart rate signal, that is based on phase space reconstructio

    Signal processing methodologies for an acoustic fetal heart rate monitor

    Get PDF
    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use

    Passive fetal heart rate monitoring apparatus and method with enhanced fetal heart beat discrimination

    Get PDF
    An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate

    The pattern of variations in the first trimester fetal heart rate in Indian population: a pilot study

    Get PDF
    Background: Fetal heart rate is an indicator of fetal viability. During third trimester and labour the normal range of fetal heart rate is between 110-160 bpm as recommended by the international guidelines. Unlike this, the first trimester embryonic heart rate does not lie in the same range. During the first trimester the normal embryonic heart rate varies between each week of gestation, as determined by a few western studies. Indian studies on the same are not available. Objective of this study was to determine the trend of the fetal heart rate in first trimester of pregnancy in South Indian women.Methods: Transvaginal scan was done in 51 pregnant women with singleton pregnancy attending the antenatal clinic in a medical college hospital. Crown rump length and fetal heart rate were measured and plotted on a graph. Also, the fetal heart rate at different gestational age of our study was compared with the fetal heart rates at the same gestational age from the studies in the western population.Results: The range of fetal heart rate at different weeks of gestation was comparable to the heart rate variations as seen in the western population. The maximum heart rates at 9 weeks of gestation in our study was higher than the heart rate in the western population.Conclusions: Possibility of variation in the fetal heart rates in the first trimester in different populations cannot be ruled out until confirmed by studies with large sample size

    Acoustically based fetal heart rate monitor

    Get PDF
    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer

    Fetal heart rate and fetal heart rate variability in Lipizzaner broodmares

    Get PDF
    Monitoring fetal heart rate (FHR) and fetal heart rate variability (FHRV) helps to understand and evaluate normal and pathological conditions in the foal. The aim of this study was to establish normal heart rate reference values for the ongoing equine pregnancy and to perform a heart rate variability (HRV) time-domain analysis in Lipizzaner mares. Seventeen middle- and late-term (days 121–333) pregnant Lipizzaner mares were examined using fetomaternal electrocardiography (ECG). The mean FHR (P = 0.004) and the standard deviation of FHR (P = 0.012) significantly decreased during the pregnancy. FHR ± SD values decreased from 115 ± 35 to 79 ± 9 bpm between months 5 and 11. Our data showed that HRV in the foal decreased as the pregnancy progressed, which is in contrast with the findings of earlier equine studies. The standard deviation of normal-normal intervals (SDNN) was higher (70 ± 25 to 166 ± 108 msec) than described previously. The root mean square of successive differences (RMSSD) decreased from 105 ± 69 to 77 ± 37 msec between the 5th and 11th month of gestation. Using telemetric ECG equipment, we could detect equine fetal heartbeat on day 121 for the first time. In addition, the large differences observed in the HR values of four mare-fetus pairs in four consecutive months support the assumption that there might be ‘high-HR’ and ‘low-HR’ fetuses in horses. It can be concluded that the analysis of FHR and FHRV is a promising tool for the assessment of fetal well-being but the applicability of these parameters in the clinical setting and in studs requires further investigation
    corecore