1,495 research outputs found

    Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving

    Get PDF
    Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization. The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation, the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner. The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years.This work was supported in part by the ECSEL Joint Undertaking, which funded the PRYSTINE project under Grant 783190, and in part by the AUTOLIB project (ELKARTEK 2019 ref. KK-2019/00035; Gobierno Vasco Dpto. Desarrollo económico e infraestructuras)

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    Hybrid-learning-based driver steering intention prediction using neuromuscular dynamics

    Get PDF
    The emerging automated driving technology poses a new challenge on driver-automation collaboration. In this study, oriented by human-machine mutual understanding, a driver steering intention prediction method is proposed to better understand human driver's expectation during driver-vehicle interaction. The steering intention is predicted based on a novel hybrid-learning-based time-series model with deep learning networks. Two different driving modes, namely, both hands and single right-hand driving modes, are studied. Different electromyography (EMG) signals from the upper limb muscles are collected and used for the steering intention prediction. The relationship between the neuromuscular dynamics and the steering torque is analyzed first. Then, the hybrid-learning-based model is developed to predict both the continuous and discrete steering intentions. The two intention prediction networks share the same temporal pattern exaction layer, which is built with the Bi-directional Recurrent Neural Network (RNN) and Long short-term memory (LSTM) cells. The model prediction performance is evaluated with a varied history and prediction horizon to exploit the model capability further. The experimental data are collected from 21 participants of varied ages and driving experience. The results show that the proposed method can achieve a prediction accuracy of around 95% steering under the two driving modes

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Product Development within Artificial Intelligence, Ethics and Legal Risk

    Get PDF
    This open-access-book synthesizes a supportive developer checklist considering sustainable Team and agile Project Management in the challenge of Artificial Intelligence and limits of image recognition. The study bases on technical, ethical, and legal requirements with examples concerning autonomous vehicles. As the first of its kind, it analyzes all reported car accidents state wide (1.28 million) over a 10-year period. Integrating of highly sensitive international court rulings and growing consumer expectations make this book a helpful guide for product and team development from initial concept until market launch
    corecore