10 research outputs found

    Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion

    Get PDF
    The behavioural diversity of chaotic oscillator can be controlled into periodic dynamics and used to model locomotion using central pattern generators. This paper shows how controlled chaotic oscillators may improve the adaptation of the robot locomotion behaviour to terrain uncertainties when compared to nonlinear harmonic oscillators. This is quantitatively assesses by the stability, changes of direction and steadiness of the robotic movements. Our results show that the controlled Wu oscillator promotes the emergence of adaptive locomotion when deterministic sensory feedback is used. They also suggest that the chaotic nature of chaos controlled oscillators increases the expressiveness of pattern generators to explore new locomotion gaits

    Variability, Symmetry, and Dynamics in Human Rhythmic Motor Control

    Get PDF
    How humans and other animals control rhythmic behaviors, and locomotion in particular, is one of the grand challenges of neuroscience and biomechanics. And yet remarkably few studies address the fundamental control-systems modeling of locomotor control. This thesis attempts to address several pieces of this grand challenge through the development of experimental, theoretical, and computational tools. Specifically, we focus our attention on three key features of human rhythmic motor control, namely variability, symmetry, and dynamics. Variability: Little is known about how haptic sensing of discrete events, such as heel-strike in walking, in rhythmic dynamic tasks enhances behavior and performance. In order to discover the role of discrete haptic cues on rhythmic motor control performance, we study a virtual paddle juggling behavior. We show that haptic sensing of a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state, but rather by reducing cycle-to-cycle variability. Symmetry: Neglecting evident characteristics of a system can certainly be a modeling convenience, but it may also produce a better statistical model. For example, the dynamics of human locomotion is frequently treated as symmetric about the sagittal plane for modeling convenience. In this work, we test this assumption by examining the statistical consequences of neglecting (or not) bilateral asymmetries in the dynamics of human walking. Indeed, we show that there are statistically significant asymmetries in the walking dynamics of healthy participants (N=8), but that by ignoring these asymmetries and fitting a symmetric model to the data, we arrive at a more consistent and predictive model of human walking. Dynamics: Rhythmic hybrid dynamic behaviors can be observed in a wide variety of biological and robotic systems. Analytic (white-box) modeling tools of such systems are limited to the case when we have a full (and preferably simple) mathematical model that can accurately describe the system dynamics. In contrast, data-driven (block-box) system identification methods have the potential to overcome this fundamental limitation and could play a critical role in describing and analyzing the dynamics of rhythmic behaviors based on experimental data. And yet few tools exist for identifying the dynamics of rhythmic systems from input--output data. In this context, we propose a new formulation for identifying the dynamics of rhythmic hybrid dynamical systems around their limit-cycles by using discrete-time harmonic transfer functions

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Intelligent System Synthesis for Dynamic Locomotion Behavior in Multi-legged Robots

    Get PDF
    Robot technology has been implemented in many fields of our life, such as entertainment, security, rescue, rehabilitation, social life, the military, and etc. Multi-legged robot always exist in many fields, therefore it is important to be developed. Motion capabilities of the robot will be a main focus to be developed. Current development or conventional model of motion capabilities have several issues in saturation of development. There are some limitation in dynamic factors such as, locomotion generator, flexibility of motion planning, and smoothness of movement. Therefore, in this research, natural based computation are implemented as the basic model. There are three subsystems to be developed and integrated, (1) locomotion behavior model, (2) stability behavior model, and (3) motion planning model. Since individual people has different walking behavior in each walking direction and walking speed, locomotion behavior learning model of omni-directional bio-inspired locomotion which is generating different walking behavior in different walking provision are required to be developed. Step length in sagital and coronal direction, and degree of turning are considered parameters in walking provision. In proposed omni-directional walking model, interconnection structures composed by 16 neurons where 1 leg is represented by 4 joints and 1 joint is represented by 2 motor neurons. In order to acquire walking behavior in certain walking provision, the interconnection structure is optimized by multi-objectives evolutionary algorithm. For acquiring the diversity of references, several optimized interconnection structures are generated in optimization processes in different walking provisions. Learning models are proposed for solving non-linearity of relationship between walking input and walking output representing the synaptic weight of interconnection structure, where one learning model representing one walking parameter. Furthermore, by using optimized model, walking behavior can be generated with unsealed walking provision. Smooth walking transition with low error of desired walking provision was proved based on several numerical experiments in physical computer simulation. In stability behavior model, neuro-based push recovery controller is applied in multi-legged robot in order to keep the stability with minimum energy required. There are three motion patterns in individual people behavior when it gets external perturbation, those are ankle behavior, hip behavior, and step behavior. We propose a new model of Modular Recurrent Neural Network (MRNN) for performing online learning system in each motion behavior. MRNN consists of several recurrent neural networks (RNNs) working alternatively depending on the condition. MRNN performs online learning process of each motion behavior controller independently. The aim of push recovery controller is to manage the motion behavior controller by minimizing the energy required for responding to the external perturbation. This controller selects the appropriate motion behavior and adjusts the gain that represent the influence of the motion behavior to certain push disturbance based on behavior graphs which is generated by adaptive regression spline. We applied the proposed controller to the humanoid robot that has small footprint in open dynamics engine. Experimental result shows the effectiveness of the push controller stabilizing the external perturbation with minimum energy required. Proposed motion planning model presents a natural mechanism of the human brain for generating a dynamic path planning in 3-D rough terrain. The proposed model not only emphasizes the inner state process of the neuron but also the development process of the neurons in the brain. There are two information transmission processes in this proposed model, the forward transmission activity for constructing the neuron connections to find the possible way and the synaptic pruning activity with backward neuron transmission for finding the best pathway from current position to target position and reducing inefficient neuron with its synaptic connections. In order to respond and avoid the unpredictable obstacle, dynamic path planning is also considered in this proposed model. An integrated system for applying the proposed model in the actual experiments is also presented. In order to confirm the effectiveness of the proposed model, we applied the integrated system in the pathway of a four-legged robot on rough terrain in computer simulation. For analyzing and proving the flexibility of proposed model, unpredictable collision is also performed in those experiments. The model can find the best pathway and facilitate the safe movement of the robot. When the robot found an unpredictable collision, the path planner dynamically changed the pathway. The proposed path planning model is capable to be applied in further advance implementation. In order to implement the motion capabilities in real cases, all subsystem should be integrated into one interconnected motion capabilities model. We applied small quadruped robot equipped with IMU, touch sensor, and dual ultrasonic sensor for performing motion planning in real terrain from starting point to goal point. Before implemented, topological map is generated by Kinect camera. In this implementation, all subsystem were analyzed and performed well and the robot able to stop in the goal point. These implementation proved the effectiveness of the system integration, the motion planning model is able to generate safe path planning, the locomotion model is able to generate flexible movement depending on the walking provision from motion planning model, and the stability model can stabilize the robot on rough terrain. Generally, the proposed model can be expected to bring a great contribution to the motion capabilities development and can be used as alternative model for acquiring the dynamism and efficient model in the future instead of conventional model usage. In the future, the proposed model can be applied into any legged robot as navigation, supporter, or rescue robot in unstable environmental condition. In addition, we will realize a cognitive locomotion that generates multiple gaits depending on the 3 aspects, embodiment, locomotion generator, and cognition model. A dynamic neuro-locomotion integrated with internal and external sensory information for correlating with the environmental condition will be designed.ロボット技術は、゚ンタヌテむメント、セキュリティ、救助、リハビリ、瀟䌚生掻、軍事などの様々な生掻分野に実珟さおいる。倚脚ロポットは垞に倚くの分野に存圚するため開発するこずが重芁である。ロボットの運動胜力が開発の䞻芁ずなっおいる。珟状の開発されおいる動䜜胜力は,飜和状態にある。いく぀かの動的な芁因により、歩行生成噚、動䜜蚈画の柔軟性、および動䜜の滑らかさ等に制限がある。そこで、本研究では、基本的なモデルずしお自然蚈算に基づく方法論を実装する、たた、本研究では、歩行動䜜モデル、安定動䜜モデル、や運動蚈画モデルからなる3぀のサブシステムを開発し統合する。人間は歩行方向ず速床に応じお歩行動䜜が異なるため、異なる歩行軞では異なる歩行動䜜を生成するずいう党方䜍生物的な運動の歩行動䜜孊習モデルが開発には芁求される。球欠および制埡方向のステップ長や旋回の床合いは,歩行軞のパラメヌタずしお考慮される。提案した党方䜍歩行モデルでは,1肢に぀き16個のニュヌロンによっお構成される盞互接続構造を4぀の関節によっお衚珟する。たた、1぀の関節は,2個のモヌタニュヌロンによっお衚珟する。䞀定の歩行軞での歩行動䜜を獲埗するために,本研究では,倚目的進化アルゎリズムによっお最適化を行う。提案手法では、参照点の倚様性を獲埗するために,異なる歩行軞においおいく぀かの最適な盞互接続構造が生成される。盞互接続構造のシナプス重みを衚珟しおいる歩行入力ず出力間の非線圢な関係を解くための孊習モデルを構築する。本手法では,1぀の孊習モデルが1぀の歩行パラメヌタで衚珟され、最適化されたモデルを甚いるこずにより,歩行動䜜は,スケヌリングされおいない歩行軞を生成するこずが可胜ずなる,物理挔算シミュレヌションを甚いた実隓により,誀差の少ない歩行軞の滑らかな歩行遷移を本実隓では瀺しおいる。安定動䜜モデルでは、必芁最小限の゚ネルギヌで安定性を維持するため倚足歩行ロボットにニュヌロベヌスプッシュリカバリ制埡噚を適甚した。倖力をを受けたずき,人間の行動には足銖の動䜜・股関節の動䜜・螏み動䜜の3぀の動䜜パタヌンが存圚する。本研究では,各運動動䜜におけるオンラむン孊習システムを実珟するために、モゞュラヌリカレントニュヌラルネットワヌク(MRNN)を甚いた新たな孊習モデルを提案する。MRNNは状況に応じお遞択される耇数のリカレントニュヌラルネットワヌク(RNN)によっお構成される。MRNNは各運動動䜜コントロヌラのオンラむン孊習プロセスを独立しお実行する。プッシュリカバリ制埡噚の目的は、倖乱に応じお゚ネルギヌ最小化を行うこずによっお運動動䜜制埡噚を管理するこずである。この制埡噚は適切な運動動䜜を遞択し,適応回垰スプラむンにより生成された動䜜グラフに基づき抌し動䜜に察しお最も圱響を及がす運動動䜜のゲむンの調敎を行う。提案した制埡噚をOpen Dynamics Engine(ODE)䞊で小さな足の長さを持぀ヒュヌマノむドロボットに適甚し,必芁最小限の゚ネルギヌで倖力に察しお安定させるプッシュリカバリ制埡噚の有効性を瀺しおいる。3次元の䞍敎地における動的な経路蚈画を生成するために,人間の自然な脳機胜に基づいた動䜜蚈画手法を提案する。本モデルは、ニュヌロンの内郚状態過皋だけでなく、脳内のニュヌロンの発達過皋も重芖しおいる。本モデルは二぀のアルゎリズムに構成される。1぀は、通過可胜な道を芋぀けるために構築される接続的なニュヌロン掻動である順方向䌝達掻動であり,もう1぀は、珟圚䜍眮から最適経路を芋぀けるために、シナプス結合を甚いお非効率的なニュヌロンを枛少させる逆方向にニュヌロン䌝達を行うシナプスプルヌニング掻動である。たた,予枬䞍可胜な衝突を回避するために,動的な経路蚈画も実行される。さらに、実環境においお提案されたモデルを実珟するための統合システムも提瀺される。提案モデルの有効性を怜蚌するために,コンピュヌタシミュレヌション䞊で、䞍敎地環境の4足歩行ロボットに関するシミュレヌション環境を実装した。これらの実隓では,予枬䞍胜な衝突に関する実隓も行った。本モデルは、最適経路を芋぀け出しロボットの安党な移動を実珟できた。さらに、ロボットが予枬できない衝突を怜出した堎合,経路蚈画アルゎリズムが経路を動的に倉曎可胜であるこずを瀺しおいる。これらのこずから、提案された経路蚈画モデルはさらなる先進的な展開が実珟可胜であるず考えられる。実環境における運動胜力を実装するためには、すべおのサブシステムを1぀の運動胜力モデルに統合する必芁がある。そこで本研究では、IMU、タッチセンサ、2぀の超音波センサを搭茉した小型の4足歩行ロポットを甚いた実環境においお出発地点から目的地点たでの運動蚈画を行った、本実装では、3次元距離蚈枬センサであるKinecを甚い3次元空間の䜍盞構造を生成する。たた、本実装では、すべおのサブシステムが分析され、ロボットは目的地点で停止するこずができた。さらに、安党な経路蚈画を生成するこずができたこずからシステム統合の有効性が確認できた。たた、歩行モデルにより歩行軞に応じた柔軟な動きが生成されるこずで、この安定性モデルは䞍敎地環撹でもロボットの歩行を安定させるこずができた。これらのこずから、本提案モデルは運動胜力ぞの倚倧な貢献が期埅され、ダむナミクスを獲埗するための代替モデルずしお䜿甚するこずができ,珟圚よく䜿甚されおいるモデルに代わる効率的なモデルずなるこずが考えられる。今埌の課題ずしおは,䞍安定な環境䞋におけるナビゲヌション・支揎・レスキュヌロボットずいった任意の肢の数を持぀倚足歩行ロボットぞの本提案モデルの適甚があげられる。さらに,身䜓性,歩行生成,認知モデルの3぀の芳点から耇数の歩容を生成する認知的歩行を実珟するこずを考えおいる。環境ず盞互䜜甚するためのモデルずしお、内界センサず倖界センサ情報を統合した動的ニュヌロ歩行を実珟する予定である。銖郜倧孊東京, 2018-03-25, 修士工孊銖郜倧孊東

    Manipulador aéreo con brazos antropomórficos de articulaciones flexibles

    Get PDF
    [Resumen] Este artículo presenta el primer robot manipulador aéreo con dos brazos antropomórficos diseñado para aplicarse en tareas de inspección y mantenimiento en entornos industriales de difícil acceso para operarios humanos. El robot consiste en una plataforma aérea multirrotor equipada con dos brazos antropomórficos ultraligeros, así como el sistema de control integrado de la plataforma y los brazos. Una de las principales características del manipulador es la flexibilidad mecánica proporcionada en todas las articulaciones, lo que aumenta la seguridad en las interacciones físicas con el entorno y la protección del propio robot. Para ello se ha introducido un compacto y simple mecanismo de transmisión por muelle entre el eje del servo y el enlace de salida. La estructura en aluminio de los brazos ha sido cuidadosamente diseñada de forma que los actuadores estén aislados frente a cargas radiales y axiales que los puedan dañar. El manipulador desarrollado ha sido validado a través de experimentos en base fija y en pruebas de vuelo en exteriores.Ministerio de Economía y Competitividad; DPI2014-5983-C2-1-
    corecore