71 research outputs found

    Comparing the performance of FPGA-based custom computers with general-purpose computers for DSP applications

    Get PDF
    When FPGA logic circuits are incorporated within a stored-program computer, the result is a machine where the programmer can design both the software and the hardware that will execute that software. This paper first describes some of the more important custom computers, and their potential weakness as DSP implementation platforms. It then describes a new custom computing architecture which is specifically designed for efficient implementation of DSP algorithms. Finally, it presents a simple performance comparison of a number of DSP implementation alternatives, and concludes that the new custom computing architecture is worthy of further investigation, and that custom computers based only on FPGA execution units show little performance improvement over state-of-the-art workstations

    FPGA implementation of artificial neural networks

    Get PDF
    As the title suggests our project deals with a hardware implementation of artificial neural networks, specifically a FPGA implementation. During the course of this project we learnt about ANNs and the uses of such soft computing approaches, FPGAs, VHDL and use of various tools like Xilinx ISE Project Navigator and ModelSim. As numerous hardware implementations of ANNs already exist our aim was to come up with an approach that would facilitate topology evolution of the ANN as well

    Design of FPGA Based Neural Network Controller for Earth Station Power System

    Full text link

    Programmable neural logic

    Full text link

    Optimization of FPGA Based Neural Network Processor

    Get PDF
    Neural information processing is an emerging new field, providing an alternative form of computation for demanding tasks such as pattern recognition problems which are usually reserved for human attention. Neural network computation i s sought after where classification of input data is difficult to be worked out using equations or sets of rules. Technological advances in integrated circuits such as Field Programmable Gate Array (FPGA) systems have made it easier to develop and implement hardware devices based on these neural network architectures. The motivation in hardware implementation of neural networks is its fast processing speed and suitability in parallel and pipelined processing. The project revolves around the design of an optimized neural network processor. The processor design is based on the feedforward network architecture type with BackPropagation trained weights for the Exclusive-OR non-linear problem. Among the highlights of the project is the improvement in neural network architecture through reconfigurable and recursive computation of a single hidden layer for multiple layer applications. Improvements in processor organization were also made which enables the design to parallel process with similar processors. Other improvements include design considerations to reduce the amount of logic required for implementation without much sacrifice of processing speed

    Reconfigurable hardware architecture of a shape recognition system based on specialized tiny neural networks with online training.

    Get PDF
    Neural networks are widely used in pattern recognition, security applications, and robot control. We propose a hardware architecture system using tiny neural networks (TNNs)specialized in image recognition. The generic TNN architecture allows for expandability by means of mapping several basic units(layers) and dynamic reconfiguration, depending on the application specific demands. One of the most important features of TNNs is their learning ability. Weight modification and architecture reconfiguration can be carried out at run-time. Our system performs objects identification by the interpretation of characteristics elements of their shapes. This is achieved by interconnecting several specialized TNNs. The results of several tests in different conditions are reported in this paper. The system accurately detects a test shape in most of the experiments performed. This paper also contains a detailed description of the system architecture and the processing steps. In order to validate the research, the system has been implemented and configured as a perceptron network with back-propagation learning, choosing as reference application the recognition of shapes. Simulation results show that this architecture has significant performance benefits

    FPGA ACCELERATION OF A CORTICAL AND A MATCHED FILTER-BASED ALGORITHM

    Get PDF
    Digital image processing is a widely used and diverse field. It is used in a broad array of areas such as tracking and detection, object avoidance, computer vision, and numerous other applications. For many image processing tasks, the computations can become time consuming. Therefore, a means for accelerating the computations would be beneficial. Using that as motivation, this thesis examines the acceleration of two distinctly different image processing applications. The first image processing application examined is a recent neocortex inspired cognitive model geared towards pattern recognition as seen in the visual cortex. For this model, both software and reconfigurable logic based FPGA implementations of the model are examined on a Cray XD1. Results indicate that hardware-acceleration can provide average throughput gains of 75 times over software-only implementations of the networks examined when utilizing the full resources of the Cray XD1. The second image processing application examined is matched filter-based position detection. This approach is at the heart of the automatic alignment algorithm currently being tested in the National Ignition Faculty presently under construction at the Lawrence Livermore National Laboratory. To reduce the processing time of the match filtering, a reconfigurable logic architecture was developed. Results show that the reconfigurable logic architecture provides a speedup of approximately 253 times over an optimized software implementation

    Artificial Neural Network Circuit for Spectral Pattern Recognition

    Get PDF
    Artificial Neural Networks (ANNs) are a massively parallel network of a large number of interconnected neurons similar to the structure of biological neurons in the human brain. ANNs find applications in a large number of fields, from pattern classification problems in Computer Science like handwriting recognition to cancer classification problems in Biomedical Engineering. The parallelism inherent in neural networks makes hardware a good choice to implement ANNs compared to software implementations. The ANNs implemented in this thesis have feedforward architecture and are trained using backpropagation learning algorithm. Different neural network models are trained offline using software and the prediction algorithms are implemented using Verilog and compared with the software models. The circuit implementation of feedforward neural networks is found to be much faster than its software counterpart because of the parallel and pipelined structure as well as the presence of a large number of computations that makes the software simulations slower in comparison. The time taken from input to output by the circuit implementing the feedforward prediction algorithm is measured from the waveform diagram, and it is seen that the circuit implementation of the ANNs provides an increase of over 90% in processing speeds obtained via post-synthesis simulation compared to the software implementation. The ANN models developed in this thesis are plant disease classification, soil clay content classification and handwriting recognition for digits. The accuracy of the ANN model is found to be 75% to 97% for the three different problems. The results obtained from the circuit implementation show a < 1% decrease in accuracy compared with the software simulations because of the use of fixed-point representation for the real numbers. Fixed-point representation of numbers is used instead of floating-point representation for faster computational speed and better resource utilization

    Optimization of FPGA Based Neural Network Processor

    Get PDF
    Neural information processing is an emerging new field, providing an alternative form of computation for demanding tasks such as pattern recognition problems which are usually reserved for human attention. Neural network computation i s sought after where classification of input data is difficult to be worked out using equations or sets of rules. Technological advances in integrated circuits such as Field Programmable Gate Array (FPGA) systems have made it easier to develop and implement hardware devices based on these neural network architectures. The motivation in hardware implementation of neural networks is its fast processing speed and suitability in parallel and pipelined processing. The project revolves around the design of an optimized neural network processor. The processor design is based on the feedforward network architecture type with BackPropagation trained weights for the Exclusive-OR non-linear problem. Among the highlights of the project is the improvement in neural network architecture through reconfigurable and recursive computation of a single hidden layer for multiple layer applications. Improvements in processor organization were also made which enables the design to parallel process with similar processors. Other improvements include design considerations to reduce the amount of logic required for implementation without much sacrifice of processing speed
    corecore