
Reconfigurable Hardware Architecture of a Shape 
Recognition System Based on Specialized Tiny 

Neural Networks With Online Training 
Félix Moreno, Jaime Alarcón, Rubén Salvador, and Teresa Riesgo 

Abstract—Neural networks are widely used in pattern recog­
nition, security applications, and robot control. We propose a 
hardware architecture system using tiny neural networks (TNNs) 
specialized in image recognition. The generic TNN architecture 
allows for expandability by means of mapping several basic units 
(layers) and dynamic reconflguration, depending on the applica-
tion speciflc demands. One of the most important features of TNNs 
is their learning ability. Weight modiflcation and architecture re­
conflguration can be carried out at run-time. Our system performs 
objects identiflcation by the interpretation of characteristics ele-
ments of their shapes. This is achieved by interconnecting several 
specialized TNNs. The results of several tests in different condi-
tions are reported in this paper. The system accurately detects 
a test shape in most of the experiments performed. This paper 
also contains a detailed description of the system architecture 
and the processing steps. In order to valídate the research, the 
system has been implemented and conflgured as a perceptron 
network with back-propagation learning, choosing as reference 
application the recognition of shapes. Simulation results show that 
this architecture has signiflcant performance beneflts. 

Index Terms—Neural network hardware implementation, 
run-time learning, recognition. 

I. INTRODUCTION 

ONE OF THE major problems in computer visión is to 
build systems with the ability to identify shapes in real 

world scenarios [l]-[7]. The target application of this paper is 
the correct identiflcation of road trafflc signs in images taken 
by a car-mounted camera [8], [9]. The basic technique used 
for this in most applications, known as pattern matching, is to 
compare each portion of an image with a set of known models. 
The approach taken in this paper is to use specialized tiny neural 
networks (TNNs), which are explained in Section III, making 
it possible to use a massively parallel architecture efflciently. 
One of the most important features of artificial neural networks 
(ANNs) is their learning ability. Size and real-time considera-

tions show that on-chip learning is necessary for a large range 
of applications [3]. 

Neural-network-based recognition systems have several lev­
éis of inherent parallelism. Traditional software implementa-
tions cannot implement these parallel working schemes, unless 
done on multiprocessor systems. Since the system proposed in 
this paper is implemented in hardware, this inherent parallelism 
can be exploited. The general architecture of the system is 
shown in Fig. 1. 

This higher level of parallelism achieved with the hardware 
implementation, as opposed to most software attempts, allows 
making several computations concurrently. Therefore, a higher 
processing throughput is obtained [10]—[13]. In addition, the 
hardware implementation is also highly portable [14], due to 
the generic hardware description employed. 

ANN implementations can be classifled in two main cat-
egories: software running on a microprocessor, digital signal 
processors, or general-purpose processors, and hardware ar-
chitectures based on application speciflc integrated circuits or 
fleld-programmable gate arrays (FPGAs) [15]. 

The microprocessor-based implementation is more flexible 
and relatively easy to implement. However, when the network 
becomes larger, it is not the best option as regards the process­
ing time. 

The number of "synapses" and multipliers needed in a fully 
interconnected network is proportional to the squared total 
number of neurons. The speed slows down due to the increase in 
the number of multipliers, and the chip área required increases 
signiflcantly, which becomes one of the critical problems in 
ANN design. In order to solve this chip size issue, the use of 
hardware multipliers seems to be an option. In addition, neural 
networks with reusable multipliers, or even without fhem at all, 
may be designed [16], [17]. 

This paper explores multiplier reusability based on an inter-
nal bus structure. Taking into account the parallelism of the 
neural network model, it is possible to map the architecture 
on array processors, obtaining a linear growth in the number 
of multipliers. Therefore, we are before a suitable scenario for 
ANN hardware implementation in embedded systems. Fig. 2 
shows a network interconnected by means of an array processor 
model [18]—[21], where w¿ and x¿ are the inputs to each 
processor. In the case of a neural network, these are the weights 
and data inputs of each neuron, respectively. 

The main objective of this paper is the design of a recon­
figurable efflcient low-cost architecture for shape recognition. 
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Fig. 2. Array-processor-based architecture. 

Robust methods for the analysis of images, and the implementa-
tion of a system based on specialized TNN have been developed 
for shape recognition by means of the analysis of characteristics 
elements of shapes, called singularities [22], [23], and which 
will be explained later in this paper, in Section V. Trafflc signal 
and/or pedestrian recognition are two of the most relevant 
applications. These networks work cooperatively, as explained 
later in this paper, to obtain the classiflcation of the image. 

The main restriction comes with the complexity of the infor-
mation contained in the image data, very sensitive to changes in 
the environment. Therefore, it is necessary to develop a recog­
nition system that allows for dynamic reconflguration [1], [24]. 

The scarce resources provided by the hardware, imposed by 
the low-cost design basis, require an architecture developed for 
optimal use. 

The system uses a low-cost CMOS camera. The images are 
processed by an Altera Cyclone II FPGA that does median and 
Sobel flltering of the incoming frames at PAL rate [720 x 576 
size images at 25 fps (frames per second)]. The result of this 
preprocessing stage is the input to the TNNs, also implemented 
in the Altera FPGA and built up by small perceptron multilevel 
networks. 

To comply with TNN, and in general, neural network ability 
to learn, a side-by-side online learning system has been built in 
the embedded PowerPC processor in a Xilinx Virtex II device. 
To allow a faster adaptation of the system, an initial training 
was done with a simulation model implemented in Matlab that 
helped when validating the functional behavior of the system. 
After the PowerPC learning algorithm implementation was 
flnished, another training phase was done, comparing it with 

the results obtained in Matlab. These results were then used to 
configure the networks in the FPGA. 

The whole architecture of the system is shown in Fig. 3. 

II. FPGA IMPLEMENTATION OF THE 

GENERAL SYSTEM ARCHITECTURE 

The requirements of recurrent learning processes can be 
satisfied by the flexibility offered by FPGAs reconflguration ca-
pability, [11], [25], [26]. Weight modiflcation and architecture 
reconflguration can be carried out at run-time. 

When analyzing ANN hardware implementation, the follow-
ing considerations should be taken into account: frequency, 
precisión, conflguration issues, and parailelism degree to im-
plement. In order to improve general system features, two units 
have been designed: basic and control units. 

Basic units (specialized neural networks) are in charge of sig­
nal processing and weight and bias data storage. This includes 
all the required operations for neural computations, as imposed 
by the neuron model implemented, shown in Fig. 6: weights 
by inputs products, accumulation, and nonlinear function acti-
vation. The control units are in charge of signal transmission, 
making the parallel processing of the algorithm possible. 

The proposed architecture has been efflciently mapped to 
hardware from its algorithmic functional high abstraction level 
description, making it suitable to be implemented on an FPGA 
device. This stated efflciency is shown in Section V. 

A. Learning Algorithm Segmentation 

To accomplish the learning operation the algorithm is divided 
in three phases, known as: feedforward, back-propagation, and 
update [27]-[30]. In the feedforward phase, the input signáis 
propágate through the network from one layer to another, even-
tually producing some response in the output of the network. 
This response is compared with the desired (target) response, 
generating error signáis that are propagated in backward direc-
tion through the network. In this backward phase of operation, 
the free parameters of the network are adjusted to minimize the 
sum of square error. Finally, weights and biases are updated 
using the data obtained in the previous phase. The process is 
repeated as many times as necessary in order to have a trained 
network. Usually, this process is made using general-purpose 
computers, and is known as offline training. The three phases 
of the algorithm are shown in Fig. 4. 

Since the proposed architecture is self-reconflgurable at run-
time, independent and separated modules for each of the stages 
where developed [11], [12], [31]. 
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Fig. 4. Sequential algonthm for learning operation. 

It must be stated here that when using the word "recon­
flguration" within this paper, it is not referred to an actual 
FPGA fabric reconflguration, but a functional reconflguration 
based on some parameter update. Therefore, neither the net-
work structure is changed at all ñor the number of neurons 
modifled. 

For the system to carry out an online adaptation [3], [19], 
the same learning rules should always be applied concurrently 
over a new pattern. When the network is reconflgured, the 
control unit executes the learning process concurrently, using 
the training patterns stored in the previous learning phase along 
with the new pattern to be recognized. This pattern is the one 
that triggered this learning phase. 

When a learning process flnishes, collected data are trans-
mitted to the weights and bias network memories. This is 
carried out by the control unit, which makes them flow through 
the back-propagation level, directing this learning phase and 
making the FPGA get adapted. 

Fig. 5 shows the implementation of the different levéis of 
the learning algorithm. The feedforward and update modules 
corresponding to the basic unit were implemented in the same 
FPGA (Altera Cyclone II), being executed concurrently as a 
foreground process. 
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Fig. 5. Algorithms segmentation for learning operation. 

To accomplish this online learning, when the network fln­
ishes the feedforward operation, a dedicated module (to be 
explained later) computes the recognition uncertainty. If this 
computation exceeds an empirically set threshold, a request is 
sent to the control unit that triggers a learning phase of that 
network. The input responsible of this network response is 
therefore considered as a new pattern. The back-propagation 
module, actually responsible for the online learning stage, was 
implemented as a background process in the embedded Pow­
erPC processor in a Xilinx Virtex II device (virtex2p xc2vp30). 
Each module of the algorithm follows the general architecture 
of the system proposed and showed in Fig. 3. 

By means of a state machine, fhree modes of operation of 
the system were deflned. In the initialization mode, the system 
loads the initial valúes of the weights and biases from memory, 
entering afterward into the classification mode. In this state, the 
network works in feedforward. When, as explained above, it de-
tects a new pattern to apply to a new learning phase, it changes 
to the reconflguration mode. When this is over, the update is 
carried out in order to enter again into a new classification stage. 
The different modes of operation and the state machine will be 
explained later in this paper. 
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III. SPECIALIZED T N N S 

Taking into account the problems of size and scalability, we 
propose a design based on the mathematical model [28] of the 
neural networks, similar to one shown in Fig. 6(a). 

As explained above, the synapse number is limited (network 
size) by the FPGA resources available (mainly memory and 
área) [32]. In addition, the network architecture (number of 
neurons and number of layers) is also limited by these hardware 
resources [33]. In order to overeóme these difflculties, a basic 
processing unit (BPU) is suggested as the central component of 
the network, which can be modifled to feature one or several 
neurons. Each layer of the network is composed by several 
of these BPUs, obtaining different topologies according to the 
conflguration of the internal registers of the system. 

Fig. 6(b) shows the model of a BPU. The hardware architec­
ture is obtained by directly mapping the high-level functional 
model of the perceptron neural network into its equivalent 
hardware representation. The data input vector comes from the 
preprocessing stage, while the weights data bus comes from the 
training memory as shown of Fig. 3. The control of the layers 

has been implemented so that each layer is self-controlled 
but directed by the previous one, giving the system a general 
control strategy implemented in a distributed fashion [8]. This 
makes it possible for each module to have control over itself, 
but making the overall system work coordinately among the 
different modules, allowing the system to show the emergeney 
of an incipient intelligent behavior (distributed intelligence). 

Since a low-cost system is to be designed, as mentioned 
in the introduction, a device with scarce (limited) hardware 
resources has been chosen. Therefore, a tradeoff between per­
formance and hardware resources consumption has to be met. 
With the suggested model for the BPU, a nearly fully parallel 
architecture has been achieved. 

All hardware neurons are formed by a MAC unit (multiplier 
and accumulator), a serial unit (multiplexer), and the nonlinear 
activation function modules, all of them interconnected by a 
parallel system bus, as shown in Fig. 6(b). 

MAC units are connected through the internal data bus to 
their weights memories and to the input data serial stream (input 
vector). Supposing an W-neuron input layer, this architecture 
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Fig. 7. Output layer of a basic unit. 

allows carrying out N operations in parallel with each in­
put datum, due to the simultaneous access to the memories 
through the internal bus structure. Therefore, the weights and 
bias memories have been implemented in the RAM modules 
embedded in the FPGA (Altera M4K blocks). These modules 
allow being accessed independently since they can be split in 
blocks (never smaller than 4096 b through the various memory 
width-depth combinations possible), so faster (the fastest pos-
sible in terms of concurrent accesses to the memories) mem­
ory accesses are achieved thanks to this distributed memory 
scheme. 

As mentioned, a tradeoff has to be observed between cost 
and performance. Neural networks have a parallel connection 
between different layers. This would imply a huge resource 
consuming architecture, so some data serialization is needed. 
To further optimize the architecture, due to this mandatory 
serialization, just one adder and one activation function have 
been implemented. This way, a BPU has an output data vector, 
used as the input vector of the following BPU, Le., layer. 

A reduction of N — 1 bias adders and N — 1 activation 
functions is achieved. From the point of view of the information 
transfer through the different network layers, the BPU architec­
ture can be seen as a black box with an input and output vector 
(feedforward) structure. Due to this resource-sharing scheme, 
it is possible to implement several multilayer perceptron-type 
neural networks [21]. 

As a special case, when talking about a perceptron multilayer 
network with few neurons in the output layer, it is not necessary 
to do any serialization at all. Therefore, in output BPUs, there 
is an adder and an activation function per neuron. The bias 
memory has been implemented as registers within the adder, 
what avoids wasting most of the memory bits of a RAM block. 
The architecture of an output layer unit is shown in Fig. 7. 

With the described architecture for the BPUs, it is easy to 
build up a neural network by simply interconnecting two or 

Fig. 8. State machine defining system operation. 

more of these units, depending on the number of layers re­
quired. The interlayer connection is performed by sticking 
together data and control buses from each layer. The data flow 
is controlled by the control unit explained above. This hardware 
architecture of the network layers confers the system modular-
ity and scalability features. This may be helpful for future and 
more powerful versions, implemented on bigger FPGAs. 

The state machine of the Control Unit has been carefully 
designed to improve the system performance. Fig. 8 shows the 
three different branches that implement the functional behavior 
previously described. 

The design of the system architecture allows for several 
networks to work (classify) in parallel. Moreover, the training 
process could be executed in another TNN concurrently. 

In order to maintain the processing speed of a TNN in hard­
ware and its versatility in simulations, the reconflguration of 
the neural network on its different hardware levéis has to 
be possible. Different researches have revealed that general-
purpose processors can be used in order to reprogram the 
neural network. We could also use FPGAs to modify the bus 
structure and the BPU by means of a change in the conflguration 
registers [26]. 

Focusing on the two main ANN hardware implementation 
possibilities, the features of general-purpose processors make 
them more adequate in terms of programming easiness, al-
though they have two important drawbacks: the slow processing 
speed and the required área. On the other way, reconflgurable 
hardware networks are harder to configure but achieve higher 
processing speeds, due to its parallel architecture, while using 
a smaller chip área. Moreover, they can be included in an inte-
grated circuit as a system-on-chip. Due to the characteristics of 
the proposed system, it can be considered to be a heterogeneous 
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architecture, combining the best of both approaches: the pro-
gramming easiness of general-purpose processors and the in-
trinsic parallel architecture of FPGAs. 

The specialized network design has an Uncertainty compu-
tation stage. Its main ñmction is checking that the output data 
of the networks are somehow related to the output obtained 
with the training patterns, validating the recognition process. 
This happens when the uncertainty module reports a probability 
higher than 75%. On the other hand, if it is in a range between 
50% and 75%, a reconflguration request is asserted [34]. These 
probability levéis have been empirically set. This way, the sys­
tem is aware of what network was supposed to have identifled 
the object, and therefore, train that network again with the new 
pattern (input data just analyzed). The stages of this uncertainty 
module are shown in Fig. 9. 

When this request is asserted, input data are acquired and 
attached to the appropriate training memory (initially fllled with 
the patterns of the initial online training) as a new pattern for the 
following training process. Since the networks are trained to 
identify singularities, the data stored in memory are the pixels 
related to these singularities, not the entire image. 

When this online training (actually, this training is an adapta-
tion of the network, because it was initially trained, but is now 
retrained to get adapted, taking advantage of the initial training) 
is flnished, the hardware modules have been reconflgured: train­
ing memories (content and dimensions), as well as weight and 
bias memories have been updated, with new valúes obtained at 
the end of the process. 

IV. SYSTEM ARCHITECTURE—TNN AND 

CONTROL INTEGRATION 

The designed system is highly parallel, so it is able to 
execute several tasks at the same time. The networks in our 
system are also cooperative, so they are able to solve complex 
issues through the contribution of each small network. As an 

example of the system application, the networks can be trained 
to identify characteristic elements of shape (singularities) such 
as right-angled corners, round segments, and acute-angled 
corners. These singularities are used for the recognition of 
rectangular, circular, and triangular shapes. Autonomous robots 
or intelligent systems for cars may use this kind of system [23]. 

The general architecture of the system, and its control strat-
egy, as shown in Fig. 1, has been conceived so that it can 
easily be adapted to different applications. Due to this design 
requirement, the core of the architecture is based on an efflcient 
and robust shape recognition system that allows its adaptation 
to different recognition tasks with little tuning in the system 
architecture. 

The decisión to have the communication of the control 
system through a bus structure was taken after consideration of 
the efflciency level that we wanted to achieve. In this way, the 
memory blocks share the same space on the system and can be 
accessed with a logic address, obtaining as a result a distributed 
memory system on the networks with a centralized control. The 
addressing mode was considered to be the optimum model be-
cause it does not require a redundant memory for the networks, 
and only during the reconflguration process may exist a redun-
dancy in the network memories that have to be reconflgured, 
achieving a faster convergence of the algorithm. Fig. 10 shows 
the interconnection of the networks to the global control. 

The learning memory shown in Fig. 3 is nonvolatile and has 
all the required training patterns for the training of each of the 
specialized networks. 

The reconflguration takes place right when a new image 
must be recognized. Therefore, the architecture has to be 
modifled, and the new training patterns and targets added to 
the memory. When the training process ends, the memories 
are updated and the network connections have been already 
reconflgured so a new recognition process may begin. 

According to the research, there are different ways of recon­
flguration on a neural network. During the execution time, 
the number of neurons on the input layer can be modifled or 
enough knowledge can be given to the network by changing 
the training memory content. Both of these methods explained 
lead to the recognition of the image. 

Depending on the available hardware resources and the ap­
plications of the system, a dynamic reconflguration is possible 
when the image is part of a class with similar characteristics 
[35]. Therefore, the reconflguration of these specialized co­
operative networks is made in the control section, increasing 
their knowledge as new images are recognized. 

V RESULTS 

The weights and bias data initially stored in the memory 
modules were obtained by an online learning phase in the 
PowerPC, using a back-propagation algorithm. Moreover, sim-
ulation software was developed using Matlab and Simulink 
Neural Network Toolbox. The results obtained in the simula-
tions are described below. 

In order to obtain the data of the weights memories, 
450 training patterns per class of image (rectangular, circular, 
and triangular shapes) have been used. 
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The training method works in batch mode, which means that 
once all the patterns have been input, the learning stage updates 
the weights and biases according to the decreasing moment of 
the gradient and an adaptive learning scale [28]. 

The learning strategy followed (offline training with Matlab 
simulation model, initial online training in the PowerPC and 
successive relearning online phases) makes possible to func-
tionally validate the network, so that it can be compared with 
the hardware implementation. Moreover, having the initial 
weights/biases stored in memory and the network conflgured 
makes the successive retraining phases faster. 

Some Maltab results are shown in Fig. 11, where the graph 
shows the stages used for the algorithm to converge with the 
targets of the parameters [36]. 

As an example of the application of the system for signal 
recognition by means of singularities, Fig. 11 (a) shows the 
number of necessary training iterations for one of the networks 
specialized in recognizing acute-angled corners. 

Fig. ll(b) shows the results of the system (uncertainty mod­
ule) when they present/display 30 images that contain the vec-
tors that are characteristic in a correct sequence corresponding 
to the recognition of triangular signáis. 

A región of 6 x 5 (columns*rows) pixels has been used to 
detect the singularities. The classiflcation mode has been imple-
mented as a series of regions processing. First, a dedicated mod­
ule detects an special interest región within the image (a PAL 
fleld) called región of interest (Rol), shown in Fig. 12, sized 
60 x 45 pixels, and stores it in the internal embedded RAM 
memory. Then, successive subzones from this Rol are extracted 
and sent to the TNN to be processed. Each of these subzones 
is called región ofdetection (RoD). Therefore, dividing the Rol 
in 6 x 5 sized-RoDs, results in 10 x 9 data input vectors in 
one Rol. This is the actual amount of data being processed in 
each image fleld, resulting in 90 vectors of 30 pixels each one. 
This has been accomplished by sweeping the Rol, and by send-
ing each vector of characteristics to the TNN, and by storing 
the result associated to each región. In this way, probability 
maps of possible detected singularities are obtained so that the 
uncertainty stage can decide whether a signal has been detected 
or not, as shown in Fig. ll(b). 

In addition, further simulations in MATLAB, have estab-
lished that a Q8.16 (flxed-point fractional number binary 

1 Training wilh TOAINGDX 

Performance is 0.000998535, Goal ¡sO.OOl 

0 500 1000 1500 2000 2500 

Stop Training 2865 Epochs 

(a) 

Fie Edil View Insert lools Oesktop Wridcw Help 

0 £ H 3 fe $ Q. O ® '•£ OS s O 

0 5 10 15 20 25 30 

Shape recognition 

o Left córner Right córner O Lower córner 

(b) 

Fig. 11. Training results. (a) Training. (b) Simulation. 



Rol (60x45) 
(columns*rows) 

-720-

576 

±r 

RoD (6x5) 
(columns*rows) 

vw 1 
!• 

i 

/ } 
z. 45 

Traffic Sign Frame 

Sign: Triangular 
Circular 
Rectangular 

Detection Recognition 

Fig. 12. Traffic sign recognition. 

TABLE I 
RECOGNITION SYSTEM IMPLEMENTATION RESULTS 

Recognition System 

Logic Elements (LEs) 

Total Memory Bits 

M4Ks 

Frequency 

4,437/33,216(13%) 

72,416/483,840(15%) 

4 7 / 1 0 5 ( 4 5 % ) 

119.32 MHz 

TNN 

LEs 

Total Mem. Bits 

M4Ks 

Frequency 

BKU 

2924/33,216(9%) 

24480/483,840(5%) 

34/105(33%) 

Rol Extr.+Rol Buf. 

275/33,216 

2880 /483,840 

1/105 

119.32 MHz 

(a) (b) 

representation with 8 b to the left of the radix point as the 
integer part and 16 b to the right as fractional part) format is 
accurate enough to quantify weights and biases. In comparison 
with the first approximation made, Q 10.22, this reduction in 
the bit width leads to a reduction in the resources consumed by 
the network. However, more importantly, a great increase in the 
máximum operating frequency is also achieved. This is a key 
factor if we want to enhance the system. This was successfully 
validated in the FPGA implementation. 

As a design premise, we have always had in mind a design 
for reuse methodology. Therefore, a big effort has been made to 
specify as many generic hardware modules as possible. For this 
reason, the architecture and very high speed integrated circuit 
hardware description language description of the TNN has been 
improved so that later versions, apart from the basic function-
ality previously mentioned, allow building iV-layer, m-output 
perceptrons in the easiest and most automated way possible. 
These features have been incorporated so that we shall be able, 
in the future, to test the system architecture on larger FPGAs. 

Preliminary synthesis (no synthesis effort or optimiza-
tions directed to the synthesizer) results for Altera Cyclone 
EP1C20F400C6 and Cyclone-II EP2C35F672C6 devices have 
been obtained with the Altera Quartus II (v. 6.0) software 
package. The proposed architecture (Q8.16) fits in one Cyclone 
device, but remaining resources, mainly memory, are a bit 
scarce. Therefore, the system has also been implemented in 
the Cyclone-II device. Functional and postfitting simulations 
with Mentor Graphics ModelSim simulation environment show 
how the real-time restrictions imposed on the system and the 
functional specifications are met. 

Fitting results are shown in Table I(a) for the whole Recog­
nition System (including the TNN, Table I(b), and an image 

preprocessing stage). The implemented TNN has 30 neurons in 
the input layer, and 3 in the output layer. Fitting details for the 
most important blocks of the architecture are also shown. 

Table II shows the available resources for the Learning 
Algorithm implementation on a Xilinx Virtex-II PowerPC. It 
was coded in C language (400 code lines). Some interesting 
data are as follows. 

1) Learning method: Logsig-Logsig (see Fig. 13). 
2) Initial learning rate: Lr = 0.01. 
3) Máximum learning rate reached during learning: 

Lrmax = 0.111437. 
4) Minimum learning rate reached during learning: Lrmin = 

0.001582. 
5) Máximum iterations number: NJTERATIONS 250. 
6) Mean square goal error: TMSE (Total Mean Square 

Error) > 0.001. 
7) Weights and biases randomly initialized between —1 

and 1. 
8) Convergence reached on iteration 246 (273 real 

iterations). 
9) Final mean-square total error: ECMT = 0.000994. 

10) Execution time: 3.671 s. 
11) Compact Flash memory used to initialize the 450 patterns 

to train the network. 
12) Weights and biases are stored in the double data rate 

RAM memory (shared memory between the Xilinx and 
Altera platforms) in the Xilinx board, so that the Altera 
FPGA can access them during the update phase. 

The coding strategy has been directed to minimize the execu­
tion time by avoiding the penalization in context switching, so a 
linear programming model has been followed. Moreover, all the 



TABLE II 
AVAILABLE RESOURCES FOR THE LEARNING ALGORITHM IMPLEMENTATION 

Learning Algorithm 
(Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK Im. 14) 

Target Board 

Family 

Device 

Package 

Speed Grade 

Processor 

Processor clockfrequency 

Bus clockfrequency 

Debug interface 

Data Cache 

Instruction Cache 

On Chip Memory 

Total OffChip Memory 

Xilinx XUP Virtex-II Pro Development System Rev C 

virtex2p 

xc2vp30 

ff896 

-7 

PPC 405 

300.000000 MHz 

100.000000 MHz 

FPGAJTAG 

16KB 

16KB 

208 KB 

512 MB 

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB 

- DDR_512MB_64Mx64_rank2_rowl3_coll0_cl2_5 = 256 MB 

gularities may be used to detect traffic signs and/or pedestrians 
in a driving scenario. Therefore, advanced driver assistance 
systems may perfectly use this kind of system. In addition, an 
autonomous robot, and, in general, any kind of autonomous 
navigation system, may eventually benefit from the use of this 
cooperative, extremely fast, and reliable TNNs to make their 
navigation safer by detecting the contour of different possible 
objects that surround them [37], [38]. 

The next step will be porting the Altera implementation 
of the network to the Virtex II-Pro device, together with the 
PowerPC responsible of the online training. The reason to port 
the whole system to the Virtex device is the possibility to use 
the couple of hard-embedded PowerPC processors so that the 
processing power is increased and so, the back-propagation 
algorithm can be accelerated, taking into account the segmenta-
tion and parallelism degree in each one of the algorithm stages. 
Eventually, the learning algorithm will also be transformed to 
hardware for further performance improvements, so we need 
a more powerful device. In this scenario, a hard-embedded 
processor may at first be considered as irrelevant, but we predict 
a further enhance of the system that may require intensive 
algorithmic stages for decisión taking situations. 

The last goal of these efforts is trying to embed more intel-
ligence in the actual embedded systems, by scaling and trans-
forming into hardware some of the typical artificial intelligence 
algorithmic tools. 
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