
Reconfigurable Hardware Architecture of a Shape
Recognition System Based on Specialized Tiny

Neural Networks With Online Training
Félix Moreno, Jaime Alarcón, Rubén Salvador, and Teresa Riesgo

Abstract—Neural networks are widely used in pattern recog­
nition, security applications, and robot control. We propose a
hardware architecture system using tiny neural networks (TNNs)
specialized in image recognition. The generic TNN architecture
allows for expandability by means of mapping several basic units
(layers) and dynamic reconflguration, depending on the applica-
tion speciflc demands. One of the most important features of TNNs
is their learning ability. Weight modiflcation and architecture re­
conflguration can be carried out at run-time. Our system performs
objects identiflcation by the interpretation of characteristics ele-
ments of their shapes. This is achieved by interconnecting several
specialized TNNs. The results of several tests in different condi-
tions are reported in this paper. The system accurately detects
a test shape in most of the experiments performed. This paper
also contains a detailed description of the system architecture
and the processing steps. In order to valídate the research, the
system has been implemented and conflgured as a perceptron
network with back-propagation learning, choosing as reference
application the recognition of shapes. Simulation results show that
this architecture has signiflcant performance beneflts.

Index Terms—Neural network hardware implementation,
run-time learning, recognition.

I. INTRODUCTION

ONE OF THE major problems in computer visión is to
build systems with the ability to identify shapes in real

world scenarios [l]-[7]. The target application of this paper is
the correct identiflcation of road trafflc signs in images taken
by a car-mounted camera [8], [9]. The basic technique used
for this in most applications, known as pattern matching, is to
compare each portion of an image with a set of known models.
The approach taken in this paper is to use specialized tiny neural
networks (TNNs), which are explained in Section III, making
it possible to use a massively parallel architecture efflciently.
One of the most important features of artificial neural networks
(ANNs) is their learning ability. Size and real-time considera-

tions show that on-chip learning is necessary for a large range
of applications [3].

Neural-network-based recognition systems have several lev­
éis of inherent parallelism. Traditional software implementa-
tions cannot implement these parallel working schemes, unless
done on multiprocessor systems. Since the system proposed in
this paper is implemented in hardware, this inherent parallelism
can be exploited. The general architecture of the system is
shown in Fig. 1.

This higher level of parallelism achieved with the hardware
implementation, as opposed to most software attempts, allows
making several computations concurrently. Therefore, a higher
processing throughput is obtained [10]—[13]. In addition, the
hardware implementation is also highly portable [14], due to
the generic hardware description employed.

ANN implementations can be classifled in two main cat-
egories: software running on a microprocessor, digital signal
processors, or general-purpose processors, and hardware ar-
chitectures based on application speciflc integrated circuits or
fleld-programmable gate arrays (FPGAs) [15].

The microprocessor-based implementation is more flexible
and relatively easy to implement. However, when the network
becomes larger, it is not the best option as regards the process­
ing time.

The number of "synapses" and multipliers needed in a fully
interconnected network is proportional to the squared total
number of neurons. The speed slows down due to the increase in
the number of multipliers, and the chip área required increases
signiflcantly, which becomes one of the critical problems in
ANN design. In order to solve this chip size issue, the use of
hardware multipliers seems to be an option. In addition, neural
networks with reusable multipliers, or even without fhem at all,
may be designed [16], [17].

This paper explores multiplier reusability based on an inter-
nal bus structure. Taking into account the parallelism of the
neural network model, it is possible to map the architecture
on array processors, obtaining a linear growth in the number
of multipliers. Therefore, we are before a suitable scenario for
ANN hardware implementation in embedded systems. Fig. 2
shows a network interconnected by means of an array processor
model [18]—[21], where w¿ and x¿ are the inputs to each
processor. In the case of a neural network, these are the weights
and data inputs of each neuron, respectively.

The main objective of this paper is the design of a recon­
figurable efflcient low-cost architecture for shape recognition.

Global
Control

I nput Vector

System Bus

Fig. 1. General architecture of the system.

W , 1 n w-

Xn..X2 X1 W11

MAC

W1 2

±

2n

W22

' v 21

v n

multiplier

adder

T±

w 2 n

w 1n

t t

Fig. 2. Array-processor-based architecture.

Robust methods for the analysis of images, and the implementa-
tion of a system based on specialized TNN have been developed
for shape recognition by means of the analysis of characteristics
elements of shapes, called singularities [22], [23], and which
will be explained later in this paper, in Section V. Trafflc signal
and/or pedestrian recognition are two of the most relevant
applications. These networks work cooperatively, as explained
later in this paper, to obtain the classiflcation of the image.

The main restriction comes with the complexity of the infor-
mation contained in the image data, very sensitive to changes in
the environment. Therefore, it is necessary to develop a recog­
nition system that allows for dynamic reconflguration [1], [24].

The scarce resources provided by the hardware, imposed by
the low-cost design basis, require an architecture developed for
optimal use.

The system uses a low-cost CMOS camera. The images are
processed by an Altera Cyclone II FPGA that does median and
Sobel flltering of the incoming frames at PAL rate [720 x 576
size images at 25 fps (frames per second)]. The result of this
preprocessing stage is the input to the TNNs, also implemented
in the Altera FPGA and built up by small perceptron multilevel
networks.

To comply with TNN, and in general, neural network ability
to learn, a side-by-side online learning system has been built in
the embedded PowerPC processor in a Xilinx Virtex II device.
To allow a faster adaptation of the system, an initial training
was done with a simulation model implemented in Matlab that
helped when validating the functional behavior of the system.
After the PowerPC learning algorithm implementation was
flnished, another training phase was done, comparing it with

the results obtained in Matlab. These results were then used to
configure the networks in the FPGA.

The whole architecture of the system is shown in Fig. 3.

II. FPGA IMPLEMENTATION OF THE

GENERAL SYSTEM ARCHITECTURE

The requirements of recurrent learning processes can be
satisfied by the flexibility offered by FPGAs reconflguration ca-
pability, [11], [25], [26]. Weight modiflcation and architecture
reconflguration can be carried out at run-time.

When analyzing ANN hardware implementation, the follow-
ing considerations should be taken into account: frequency,
precisión, conflguration issues, and parailelism degree to im-
plement. In order to improve general system features, two units
have been designed: basic and control units.

Basic units (specialized neural networks) are in charge of sig­
nal processing and weight and bias data storage. This includes
all the required operations for neural computations, as imposed
by the neuron model implemented, shown in Fig. 6: weights
by inputs products, accumulation, and nonlinear function acti-
vation. The control units are in charge of signal transmission,
making the parallel processing of the algorithm possible.

The proposed architecture has been efflciently mapped to
hardware from its algorithmic functional high abstraction level
description, making it suitable to be implemented on an FPGA
device. This stated efflciency is shown in Section V.

A. Learning Algorithm Segmentation

To accomplish the learning operation the algorithm is divided
in three phases, known as: feedforward, back-propagation, and
update [27]-[30]. In the feedforward phase, the input signáis
propágate through the network from one layer to another, even-
tually producing some response in the output of the network.
This response is compared with the desired (target) response,
generating error signáis that are propagated in backward direc-
tion through the network. In this backward phase of operation,
the free parameters of the network are adjusted to minimize the
sum of square error. Finally, weights and biases are updated
using the data obtained in the previous phase. The process is
repeated as many times as necessary in order to have a trained
network. Usually, this process is made using general-purpose
computers, and is known as offline training. The three phases
of the algorithm are shown in Fig. 4.

Since the proposed architecture is self-reconflgurable at run-
time, independent and separated modules for each of the stages
where developed [11], [12], [31].

Platform Xilinx Virtex II Pro

reset_n

clk

Hard Processor
PowerPC

4— • -

>-
Training
Memory

(input vector)

ounut vector W I ?

? í

Network Control

W

TNN 1

<iutput vector

3g
Network Control

H

System Bus

oLitput vector
=f

Nehvork Control

W Layer_Out

TNM3

Platform Altera Cyclone I

Fig. 3. System architecture.

Feedforward
Module

I
Background
Process (

Backpropagation
Module

Backpropa gation
Module

I
Update
Module

Fig. 4. Sequential algonthm for learning operation.

It must be stated here that when using the word "recon­
flguration" within this paper, it is not referred to an actual
FPGA fabric reconflguration, but a functional reconflguration
based on some parameter update. Therefore, neither the net-
work structure is changed at all ñor the number of neurons
modifled.

For the system to carry out an online adaptation [3], [19],
the same learning rules should always be applied concurrently
over a new pattern. When the network is reconflgured, the
control unit executes the learning process concurrently, using
the training patterns stored in the previous learning phase along
with the new pattern to be recognized. This pattern is the one
that triggered this learning phase.

When a learning process flnishes, collected data are trans-
mitted to the weights and bias network memories. This is
carried out by the control unit, which makes them flow through
the back-propagation level, directing this learning phase and
making the FPGA get adapted.

Fig. 5 shows the implementation of the different levéis of
the learning algorithm. The feedforward and update modules
corresponding to the basic unit were implemented in the same
FPGA (Altera Cyclone II), being executed concurrently as a
foreground process.

Foreground J
Process c

Reconflguration

Feedforward
Module

Update
Module

Fig. 5. Algorithms segmentation for learning operation.

To accomplish this online learning, when the network fln­
ishes the feedforward operation, a dedicated module (to be
explained later) computes the recognition uncertainty. If this
computation exceeds an empirically set threshold, a request is
sent to the control unit that triggers a learning phase of that
network. The input responsible of this network response is
therefore considered as a new pattern. The back-propagation
module, actually responsible for the online learning stage, was
implemented as a background process in the embedded Pow­
erPC processor in a Xilinx Virtex II device (virtex2p xc2vp30).
Each module of the algorithm follows the general architecture
of the system proposed and showed in Fig. 3.

By means of a state machine, fhree modes of operation of
the system were deflned. In the initialization mode, the system
loads the initial valúes of the weights and biases from memory,
entering afterward into the classification mode. In this state, the
network works in feedforward. When, as explained above, it de-
tects a new pattern to apply to a new learning phase, it changes
to the reconflguration mode. When this is over, the update is
carried out in order to enter again into a new classification stage.
The different modes of operation and the state machine will be
explained later in this paper.

<S5)-H
© -

•

& - *
_

p „
Rx1 w

S X K

1
b1

R S K I

iZfe*
/ * ^

f1
a

Sx1

S= Neurons number

a = f (Wp + b)

Layer of S Neurons, abbreviated notation

(a)
Data Bus Input Vector

MEMORY MAC SERIALIZER

N ACTIVATION
BIASADDER FUNCTION

+
-T-

¥ DataOut

LAYER CONTROL

CONTROL MAC = MULTIPLY ACCUMULATE

DATA **NOT IN OUTPUT LAYER

ANN Basic Processing Unit
(b)

Fig. 6. TNN model. (a) Mathematical model. (b) Hardware model.

III. SPECIALIZED T N N S

Taking into account the problems of size and scalability, we
propose a design based on the mathematical model [28] of the
neural networks, similar to one shown in Fig. 6(a).

As explained above, the synapse number is limited (network
size) by the FPGA resources available (mainly memory and
área) [32]. In addition, the network architecture (number of
neurons and number of layers) is also limited by these hardware
resources [33]. In order to overeóme these difflculties, a basic
processing unit (BPU) is suggested as the central component of
the network, which can be modifled to feature one or several
neurons. Each layer of the network is composed by several
of these BPUs, obtaining different topologies according to the
conflguration of the internal registers of the system.

Fig. 6(b) shows the model of a BPU. The hardware architec­
ture is obtained by directly mapping the high-level functional
model of the perceptron neural network into its equivalent
hardware representation. The data input vector comes from the
preprocessing stage, while the weights data bus comes from the
training memory as shown of Fig. 3. The control of the layers

has been implemented so that each layer is self-controlled
but directed by the previous one, giving the system a general
control strategy implemented in a distributed fashion [8]. This
makes it possible for each module to have control over itself,
but making the overall system work coordinately among the
different modules, allowing the system to show the emergeney
of an incipient intelligent behavior (distributed intelligence).

Since a low-cost system is to be designed, as mentioned
in the introduction, a device with scarce (limited) hardware
resources has been chosen. Therefore, a tradeoff between per­
formance and hardware resources consumption has to be met.
With the suggested model for the BPU, a nearly fully parallel
architecture has been achieved.

All hardware neurons are formed by a MAC unit (multiplier
and accumulator), a serial unit (multiplexer), and the nonlinear
activation function modules, all of them interconnected by a
parallel system bus, as shown in Fig. 6(b).

MAC units are connected through the internal data bus to
their weights memories and to the input data serial stream (input
vector). Supposing an W-neuron input layer, this architecture

Data Bus

---*

MEMORY

WEIGHTS

i
i

BIAS

*

Input Vector

, ACTIVATION
M A C BIAS ADDER FUNCTION

• •

-*•

^

1
i

>

A

-»

+

+

+

1

i
LAY

í/-
-4 '

y-, -A '

•
•
1 •

i
ER CONTRC)L —

Out

Out

Out

-*-

CONTROL
DATA

MAC = MULTIPLY ACCUMULATE

Fig. 7. Output layer of a basic unit.

allows carrying out N operations in parallel with each in­
put datum, due to the simultaneous access to the memories
through the internal bus structure. Therefore, the weights and
bias memories have been implemented in the RAM modules
embedded in the FPGA (Altera M4K blocks). These modules
allow being accessed independently since they can be split in
blocks (never smaller than 4096 b through the various memory
width-depth combinations possible), so faster (the fastest pos-
sible in terms of concurrent accesses to the memories) mem­
ory accesses are achieved thanks to this distributed memory
scheme.

As mentioned, a tradeoff has to be observed between cost
and performance. Neural networks have a parallel connection
between different layers. This would imply a huge resource
consuming architecture, so some data serialization is needed.
To further optimize the architecture, due to this mandatory
serialization, just one adder and one activation function have
been implemented. This way, a BPU has an output data vector,
used as the input vector of the following BPU, Le., layer.

A reduction of N — 1 bias adders and N — 1 activation
functions is achieved. From the point of view of the information
transfer through the different network layers, the BPU architec­
ture can be seen as a black box with an input and output vector
(feedforward) structure. Due to this resource-sharing scheme,
it is possible to implement several multilayer perceptron-type
neural networks [21].

As a special case, when talking about a perceptron multilayer
network with few neurons in the output layer, it is not necessary
to do any serialization at all. Therefore, in output BPUs, there
is an adder and an activation function per neuron. The bias
memory has been implemented as registers within the adder,
what avoids wasting most of the memory bits of a RAM block.
The architecture of an output layer unit is shown in Fig. 7.

With the described architecture for the BPUs, it is easy to
build up a neural network by simply interconnecting two or

Fig. 8. State machine defining system operation.

more of these units, depending on the number of layers re­
quired. The interlayer connection is performed by sticking
together data and control buses from each layer. The data flow
is controlled by the control unit explained above. This hardware
architecture of the network layers confers the system modular-
ity and scalability features. This may be helpful for future and
more powerful versions, implemented on bigger FPGAs.

The state machine of the Control Unit has been carefully
designed to improve the system performance. Fig. 8 shows the
three different branches that implement the functional behavior
previously described.

The design of the system architecture allows for several
networks to work (classify) in parallel. Moreover, the training
process could be executed in another TNN concurrently.

In order to maintain the processing speed of a TNN in hard­
ware and its versatility in simulations, the reconflguration of
the neural network on its different hardware levéis has to
be possible. Different researches have revealed that general-
purpose processors can be used in order to reprogram the
neural network. We could also use FPGAs to modify the bus
structure and the BPU by means of a change in the conflguration
registers [26].

Focusing on the two main ANN hardware implementation
possibilities, the features of general-purpose processors make
them more adequate in terms of programming easiness, al-
though they have two important drawbacks: the slow processing
speed and the required área. On the other way, reconflgurable
hardware networks are harder to configure but achieve higher
processing speeds, due to its parallel architecture, while using
a smaller chip área. Moreover, they can be included in an inte-
grated circuit as a system-on-chip. Due to the characteristics of
the proposed system, it can be considered to be a heterogeneous

SEQUENCE UNCERTAINTY
COMPARATOR DETECTOR DETECTOR

>Threshold

Signal
Valid

Signal
No- Valid

CONTROL
Reconfig

* TNNDATAOUT ~ ~ " CONTROL

Fig. 9. Uncertainty module.

architecture, combining the best of both approaches: the pro-
gramming easiness of general-purpose processors and the in-
trinsic parallel architecture of FPGAs.

The specialized network design has an Uncertainty compu-
tation stage. Its main ñmction is checking that the output data
of the networks are somehow related to the output obtained
with the training patterns, validating the recognition process.
This happens when the uncertainty module reports a probability
higher than 75%. On the other hand, if it is in a range between
50% and 75%, a reconflguration request is asserted [34]. These
probability levéis have been empirically set. This way, the sys­
tem is aware of what network was supposed to have identifled
the object, and therefore, train that network again with the new
pattern (input data just analyzed). The stages of this uncertainty
module are shown in Fig. 9.

When this request is asserted, input data are acquired and
attached to the appropriate training memory (initially fllled with
the patterns of the initial online training) as a new pattern for the
following training process. Since the networks are trained to
identify singularities, the data stored in memory are the pixels
related to these singularities, not the entire image.

When this online training (actually, this training is an adapta-
tion of the network, because it was initially trained, but is now
retrained to get adapted, taking advantage of the initial training)
is flnished, the hardware modules have been reconflgured: train­
ing memories (content and dimensions), as well as weight and
bias memories have been updated, with new valúes obtained at
the end of the process.

IV. SYSTEM ARCHITECTURE—TNN AND

CONTROL INTEGRATION

The designed system is highly parallel, so it is able to
execute several tasks at the same time. The networks in our
system are also cooperative, so they are able to solve complex
issues through the contribution of each small network. As an

example of the system application, the networks can be trained
to identify characteristic elements of shape (singularities) such
as right-angled corners, round segments, and acute-angled
corners. These singularities are used for the recognition of
rectangular, circular, and triangular shapes. Autonomous robots
or intelligent systems for cars may use this kind of system [23].

The general architecture of the system, and its control strat-
egy, as shown in Fig. 1, has been conceived so that it can
easily be adapted to different applications. Due to this design
requirement, the core of the architecture is based on an efflcient
and robust shape recognition system that allows its adaptation
to different recognition tasks with little tuning in the system
architecture.

The decisión to have the communication of the control
system through a bus structure was taken after consideration of
the efflciency level that we wanted to achieve. In this way, the
memory blocks share the same space on the system and can be
accessed with a logic address, obtaining as a result a distributed
memory system on the networks with a centralized control. The
addressing mode was considered to be the optimum model be-
cause it does not require a redundant memory for the networks,
and only during the reconflguration process may exist a redun-
dancy in the network memories that have to be reconflgured,
achieving a faster convergence of the algorithm. Fig. 10 shows
the interconnection of the networks to the global control.

The learning memory shown in Fig. 3 is nonvolatile and has
all the required training patterns for the training of each of the
specialized networks.

The reconflguration takes place right when a new image
must be recognized. Therefore, the architecture has to be
modifled, and the new training patterns and targets added to
the memory. When the training process ends, the memories
are updated and the network connections have been already
reconflgured so a new recognition process may begin.

According to the research, there are different ways of recon­
flguration on a neural network. During the execution time,
the number of neurons on the input layer can be modifled or
enough knowledge can be given to the network by changing
the training memory content. Both of these methods explained
lead to the recognition of the image.

Depending on the available hardware resources and the ap­
plications of the system, a dynamic reconflguration is possible
when the image is part of a class with similar characteristics
[35]. Therefore, the reconflguration of these specialized co­
operative networks is made in the control section, increasing
their knowledge as new images are recognized.

V RESULTS

The weights and bias data initially stored in the memory
modules were obtained by an online learning phase in the
PowerPC, using a back-propagation algorithm. Moreover, sim-
ulation software was developed using Matlab and Simulink
Neural Network Toolbox. The results obtained in the simula-
tions are described below.

In order to obtain the data of the weights memories,
450 training patterns per class of image (rectangular, circular,
and triangular shapes) have been used.

Control address map

Physical address

Address space
"Window"

Physical address ->

weights and bias memorles of
the specialized neural network

Logical address

Fig. 10. System memory map.

The training method works in batch mode, which means that
once all the patterns have been input, the learning stage updates
the weights and biases according to the decreasing moment of
the gradient and an adaptive learning scale [28].

The learning strategy followed (offline training with Matlab
simulation model, initial online training in the PowerPC and
successive relearning online phases) makes possible to func-
tionally validate the network, so that it can be compared with
the hardware implementation. Moreover, having the initial
weights/biases stored in memory and the network conflgured
makes the successive retraining phases faster.

Some Maltab results are shown in Fig. 11, where the graph
shows the stages used for the algorithm to converge with the
targets of the parameters [36].

As an example of the application of the system for signal
recognition by means of singularities, Fig. 11 (a) shows the
number of necessary training iterations for one of the networks
specialized in recognizing acute-angled corners.

Fig. ll(b) shows the results of the system (uncertainty mod­
ule) when they present/display 30 images that contain the vec-
tors that are characteristic in a correct sequence corresponding
to the recognition of triangular signáis.

A región of 6 x 5 (columns*rows) pixels has been used to
detect the singularities. The classiflcation mode has been imple-
mented as a series of regions processing. First, a dedicated mod­
ule detects an special interest región within the image (a PAL
fleld) called región of interest (Rol), shown in Fig. 12, sized
60 x 45 pixels, and stores it in the internal embedded RAM
memory. Then, successive subzones from this Rol are extracted
and sent to the TNN to be processed. Each of these subzones
is called región ofdetection (RoD). Therefore, dividing the Rol
in 6 x 5 sized-RoDs, results in 10 x 9 data input vectors in
one Rol. This is the actual amount of data being processed in
each image fleld, resulting in 90 vectors of 30 pixels each one.
This has been accomplished by sweeping the Rol, and by send-
ing each vector of characteristics to the TNN, and by storing
the result associated to each región. In this way, probability
maps of possible detected singularities are obtained so that the
uncertainty stage can decide whether a signal has been detected
or not, as shown in Fig. ll(b).

In addition, further simulations in MATLAB, have estab-
lished that a Q8.16 (flxed-point fractional number binary

1 Training wilh TOAINGDX

Performance is 0.000998535, Goal ¡sO.OOl

0 500 1000 1500 2000 2500

Stop Training 2865 Epochs

(a)

Fie Edil View Insert lools Oesktop Wridcw Help

0 £ H 3 fe $ Q. O ® '•£ OS s O

0 5 10 15 20 25 30

Shape recognition

o Left córner Right córner O Lower córner

(b)

Fig. 11. Training results. (a) Training. (b) Simulation.

Rol (60x45)
(columns*rows)

-720-

576

±r

RoD (6x5)
(columns*rows)

vw 1
!•

i

/ }
z. 45

Traffic Sign Frame

Sign: Triangular
Circular
Rectangular

Detection Recognition

Fig. 12. Traffic sign recognition.

TABLE I
RECOGNITION SYSTEM IMPLEMENTATION RESULTS

Recognition System

Logic Elements (LEs)

Total Memory Bits

M4Ks

Frequency

4,437/33,216(13%)

72,416/483,840(15%)

4 7 / 1 0 5 (4 5 %)

119.32 MHz

TNN

LEs

Total Mem. Bits

M4Ks

Frequency

BKU

2924/33,216(9%)

24480/483,840(5%)

34/105(33%)

Rol Extr.+Rol Buf.

275/33,216

2880 /483,840

1/105

119.32 MHz

(a) (b)

representation with 8 b to the left of the radix point as the
integer part and 16 b to the right as fractional part) format is
accurate enough to quantify weights and biases. In comparison
with the first approximation made, Q 10.22, this reduction in
the bit width leads to a reduction in the resources consumed by
the network. However, more importantly, a great increase in the
máximum operating frequency is also achieved. This is a key
factor if we want to enhance the system. This was successfully
validated in the FPGA implementation.

As a design premise, we have always had in mind a design
for reuse methodology. Therefore, a big effort has been made to
specify as many generic hardware modules as possible. For this
reason, the architecture and very high speed integrated circuit
hardware description language description of the TNN has been
improved so that later versions, apart from the basic function-
ality previously mentioned, allow building iV-layer, m-output
perceptrons in the easiest and most automated way possible.
These features have been incorporated so that we shall be able,
in the future, to test the system architecture on larger FPGAs.

Preliminary synthesis (no synthesis effort or optimiza-
tions directed to the synthesizer) results for Altera Cyclone
EP1C20F400C6 and Cyclone-II EP2C35F672C6 devices have
been obtained with the Altera Quartus II (v. 6.0) software
package. The proposed architecture (Q8.16) fits in one Cyclone
device, but remaining resources, mainly memory, are a bit
scarce. Therefore, the system has also been implemented in
the Cyclone-II device. Functional and postfitting simulations
with Mentor Graphics ModelSim simulation environment show
how the real-time restrictions imposed on the system and the
functional specifications are met.

Fitting results are shown in Table I(a) for the whole Recog­
nition System (including the TNN, Table I(b), and an image

preprocessing stage). The implemented TNN has 30 neurons in
the input layer, and 3 in the output layer. Fitting details for the
most important blocks of the architecture are also shown.

Table II shows the available resources for the Learning
Algorithm implementation on a Xilinx Virtex-II PowerPC. It
was coded in C language (400 code lines). Some interesting
data are as follows.

1) Learning method: Logsig-Logsig (see Fig. 13).
2) Initial learning rate: Lr = 0.01.
3) Máximum learning rate reached during learning:

Lrmax = 0.111437.
4) Minimum learning rate reached during learning: Lrmin =

0.001582.
5) Máximum iterations number: NJTERATIONS 250.
6) Mean square goal error: TMSE (Total Mean Square

Error) > 0.001.
7) Weights and biases randomly initialized between —1

and 1.
8) Convergence reached on iteration 246 (273 real

iterations).
9) Final mean-square total error: ECMT = 0.000994.

10) Execution time: 3.671 s.
11) Compact Flash memory used to initialize the 450 patterns

to train the network.
12) Weights and biases are stored in the double data rate

RAM memory (shared memory between the Xilinx and
Altera platforms) in the Xilinx board, so that the Altera
FPGA can access them during the update phase.

The coding strategy has been directed to minimize the execu­
tion time by avoiding the penalization in context switching, so a
linear programming model has been followed. Moreover, all the

TABLE II
AVAILABLE RESOURCES FOR THE LEARNING ALGORITHM IMPLEMENTATION

Learning Algorithm
(Created by Base System Builder Wizard for Xilinx EDK 8.2 Build EDK Im. 14)

Target Board

Family

Device

Package

Speed Grade

Processor

Processor clockfrequency

Bus clockfrequency

Debug interface

Data Cache

Instruction Cache

On Chip Memory

Total OffChip Memory

Xilinx XUP Virtex-II Pro Development System Rev C

virtex2p

xc2vp30

ff896

-7

PPC 405

300.000000 MHz

100.000000 MHz

FPGAJTAG

16KB

16KB

208 KB

512 MB

- DDR_SDRAM_64Mx64 Dual Rank = 256 MB

- DDR_512MB_64Mx64_rank2_rowl3_coll0_cl2_5 = 256 MB

gularities may be used to detect traffic signs and/or pedestrians
in a driving scenario. Therefore, advanced driver assistance
systems may perfectly use this kind of system. In addition, an
autonomous robot, and, in general, any kind of autonomous
navigation system, may eventually benefit from the use of this
cooperative, extremely fast, and reliable TNNs to make their
navigation safer by detecting the contour of different possible
objects that surround them [37], [38].

The next step will be porting the Altera implementation
of the network to the Virtex II-Pro device, together with the
PowerPC responsible of the online training. The reason to port
the whole system to the Virtex device is the possibility to use
the couple of hard-embedded PowerPC processors so that the
processing power is increased and so, the back-propagation
algorithm can be accelerated, taking into account the segmenta-
tion and parallelism degree in each one of the algorithm stages.
Eventually, the learning algorithm will also be transformed to
hardware for further performance improvements, so we need
a more powerful device. In this scenario, a hard-embedded
processor may at first be considered as irrelevant, but we predict
a further enhance of the system that may require intensive
algorithmic stages for decisión taking situations.

The last goal of these efforts is trying to embed more intel-
ligence in the actual embedded systems, by scaling and trans-
forming into hardware some of the typical artificial intelligence
algorithmic tools.

REFERENCES

[1] A. de la Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol,
"Road traffic sign detection and classification," IEEE Trans. Ind. Elec­
tron., vol. 44, no. 6, pp. 848-859, Dec. 1997.

[2] A. de la Escalera, L. Moreno, E. A. Puente, and M. A. Salichs, "Neural
traffic sign recognition for autonomous vehicles," in Proc. IEEE Int. Conf.
Ind. Electron., Control Instrum., 1994, vol. 2, pp. 841-846.

File Edit Víew Insert Tools Desktop Window Help

D í g i l i i S i e t f t ® g | Pulí • o

100 150
epochs

Fig. 13. Learning rate.

loops have been unrolled to take advantage of the five pipeline
stages of the PowerPC. The training algorithm execution takes
about 3 min.

VI. CONCLUSIÓN

We have proposed and designed a new hardware architecture
for a neural network system based on specialized TNNs for
image recognition. One of the most important features of TNNs
is their online learning capability. Moreover, they follow a
cooperative working strategy among them, in order to solve
complex recognition problems. As an example of this system
application, TNNs trained to identify the mentioned shapes sin-

[3] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Invin, and V. Srikantarn,
"A generic reconfigurable neural network architecture as a network on
chip," in Proc. IEEE Int. SOC Conf., 2004, pp. 191-194.

[4] S. Estable, J. Schick, F. Stein, R. Janssen, R. Ott, W. Ritter, and
Y. J. Zheng, "A real time trafile sign recognition system," in Proc. Intell.
Vehicles Symp., 1994, pp. 213-218.

[5] J. Torresen, J. W. Bakke, and L. Sekanina, "Efficient recognition of
speed limit signs," in Proc. IEEE Int. Conf. Intell. Transp. Syst., 2004,
pp. 652-656.

[6] V. Moreno, A. Ledezma, and A. Sanchis, "A static images based-system
for traffic signs detection," in Proc. IASTED Int. Conf. Artif. Intell. Appl.,
2006, pp. 445^150.

[7] G. Adorni, V. D'Andrea, G. Destri, and M. Mordonini, "Shape searching
in real word images: A CNN based approach," in Proc. 4th IEEE Int.
Workshop CellularNeural Netw. Appl., 1996, pp. 213-218.

[8] J. Alarcón, R. Salvador, F Moreno, and I. López, "A new real-time hard­
ware architecture for road line tracking using a particle filter," in Proc.
32ndAnnu. IEEE IECON, París, France, 2006, pp. 736-741.

[9] I. López, R. Salvador, J. Alarcón, and F Moreno, "Architectural design
for a low cost FPGA-based traffic signal detection system in vehicles," in
Proc. SPIE, Gran Canaria, Spain, 2007, vol. 6590, p. 659 00M.

[10] M. Xiaobin, J. Lianwen, S. Dongsheng, and Y. Junxun, "A mixed par-
allel neural networks computing unit implemented in FPGA," in Proc.
IEEE Int. Conf. Neural Netw. Signal Process., Nanjing, China, Dec. 2003,
pp. 324-327.

[11] M. Avogadro, M. Bera, G. Dáñese, F Leporati, and A. Spelgatti,
"The Tótem neurochip: An FPGA implementation," in Proc. 4th IEEE
Int. Signal Process. Inf Technol, 2004, pp. 461^164.

[12] S. Bridges, M. Figueroa, D. Hsu, and C. Diorio, "A reconfigurable
VLSI learning array," in Proc. 31st Eur. Solid-State Circuit Conf, 2005,
pp. 117-120.

[13] T. Fukuda, T. Shibata, M. Tokita, and T. Mitsuoka, "Neuromorphic
control: Adaption and learning," IEEE Trans. Ind. Electron., vol. 39, no. 6,
pp. 497-503, Dec. 1992.

[14] E. Monmasson and M. N. Cirstea, "FPGA design methodology for in­
dustrial control systems—A review," IEEE Trans. Ind. Electron., vol. 54,
no. 4, pp. 1824-1842, Aug. 2007.

[15] N. M. Botros and M. Abdul-Aziz, "Hardware implementation of an ar­
tificial neural network using field programmable gate arrays (FPGA's),"
IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 665-667, Dec. 1994.

[16] M. A. Figueiredo and C. Gloster, "Implementation of a probabilistic
neural network for multi-spectral image classification on an FPGA based
custom computing machine," in Proc. Vth Brazilian Symp. Neural Netw.,
1998, pp. 174-178.

[17] H. Hikawa, "Implementation of simplified multilayer neural networks
with on-chip learning," in Proc. IEEE Int. Conf. Neural Netw., 1995,
vol. 4, pp. 1633-1637.

[18] S. B. Yun, Y. J. Kim, S. S. Dong, and C. H. Lee, "Hardware implementa­
tion of neural network with expandible and reconfigurable architecture,"
in Proc. IEEE Int. Conf. Neural Inf, 2002, vol. 2, pp. 970-975.

[19] B. Pino, F J. Pelayo, J. Ortega, and A. Prieto, "Design and evalua-
tion of a reconfigurable digital architecture for self-organizing maps," in
Proc. Int. Conf. Microelectron. Neural, Fuzzy Bio-Inpired Syst., 1999,
pp. 395^102.

[20] D. Hammerstrom, "A VLSI architecture for high-performance, low cost,
on-chip learning," in Proc. IJCNN Int. Conf. Neural Netw., 1990, vol. 2,
pp. 537-544.

[21] S. Vitabile, A. Gentile, G. B. Dammone, and F Sorbello, "Multi-layer
perceptron mapping on a SIMD architecture," in Proc. 12th IEEE Work­
shop Neural Netw. Signal Process., 2003, pp. 667-675.

[22] I. López, Visión por singularidades. Madrid, Spain: Auton. Syst. Lab.
(ASLab), Universidad Politécnica de Madrid (UPM), 2001. Internal
Publication.

[23] L. Priese, R. Lakmann, and V Rehrmann, "Ideogram identification in a
realtime traffic sign recognition system," in Proc. IEEE Intell. Vehicles,
Sep. 25-26, 1995, pp. 310-314.

[24] Y. E. Krasteva, E. de la Torre, and T. Riesgo, "Partial reconfiguration for
core relocation and flexible Communications," in Proc. Reconfigurable
Commun.-Centric SoC, Montpellier, France, pp. 91-97.

[25] J. L. Beuchat, J. O. Haenni, and E. Sánchez, "Hardware reconfigurable
neural networks," in IPPS, SPDP Worshops, 1998, pp. 91-98. [Online].
Available: citeseer.ist.psu.edu/beuchat98hardware.html

[26] J. A. Starzyk, Z. Zhen, and L. Tsun-Ho, "Self-organizing learning array,"
IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 355-363, Mar. 2005.

[27] J. G. Eldredge and B. L. Hutchings, "Density enhancement of a neural
network using FPGAs and run-time reconfiguration," in Proc. IEEE Work­
shop FPGAsfor CustomMach., Apr. 10-13, 1994, pp. 180-188.

[28] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design.
Stamford, CT: Thomson Learning, 1996.

[29] B. Króse and P Van der Smagt, An Introduction to Neural Networks,
8th ed. Amsterdam, The Netherlands: Univ. Amsterdam, 1996.

[30] H. M. Tai, J. Wang, and K. Ashenayi, "A neural network-based tracking
control system," IEEE Trans. Ind. Electron., vol. 39, no. 6, pp. 504-510,
Dec. 1992.

[31] M. A. Hannan Bin Azhar and K. R. Dimond, "Design of an FPGA based
adaptive neural controller for intelligent robot navigation," in Proc. IEEE
Euromicro Symp. Digital Syst. Des., 2002, vol. 2, pp. 283-290.

[32] Y. Taright and M. Hubin, "FPGA implementation of a multilayer percep­
tron neural network using VHDL," in Proc. 4th Int. Conf. Signal Process.,
1998, vol. 2, pp. 1311-1314.

[33] J. J. Blake, L. P Maguire, T. M. McGinnity, and L. J. McDaid, "Using
Xilinx FPGAs to implement neural networks and fuzzy systems," in IEE
Colloq. Neural Fuzzy Syst.: Design Hardware Appl. (Digest No. 1997/
133), pp. 1/1-1/4.

[34] A. Pérez-Uribe and E. Sánchez, "Implementation of neural constructivism
with programmable hardware," in Proc. Int. Symp. Neuro-Fuzzy Syst.,
1996, pp. 47-54.

[35] M. S. Obaidat and D. T. Macchiarolo, "An online neural network system
for computer access security," IEEE Trans. Ind. Electron., vol. 40, no. 2,
pp. 235-242, Apr. 1993.

[36] MATLAB, The Language of Technical Computing. Versión 7.4.0.287
(R2007a).

[37] P Vadakkepat, R Lim, L. C. De Silva, L. Jing, and L. L. Ling, "Multi-
modal approach to human-face detection and tracking," IEEE Trans. Ind.
Electron., vol. 55, no. 3, pp. 1385-1393, Mar. 2008.

[38] T. Ozaki, T. Suzuki, T. Furihashi, S. Okuma, and Y. Uchikawa, "Trajectory
control of robotic manipulators using neural networks," IEEE Trans. Ind.
Electron., vol. 38, no. 3, pp. 195-202, Jun. 1991.

Félix Moreno was born in Valladolid, Spain, in
1959. He received the M.Sc. and Ph.D. degrees in
telecommunication engineering from the Universi­
dad Politécnica de Madrid (UPM), Madrid, Spain, in
1986 and 1993, respectively.

He is currently an Assistant Professor of elec-
tronics with the UPM. He has published a large
number of papers in those fields and has participated
and acted as main researcher in several national-
or European Union-funded projeets. His research
interests are focused on evolvable hardware, high-

performance reconfigurable and adaptive systems, hardware embedded intel­
ligent architectures, and digital signal processing systems.

i A

^ ^ ^ ^ ^ Jaime Alarcón received the B.S. degree in electrical
^ f l and mechanical engineering and the M.S. degree

in engineering from the Universidad Nacional
Autónoma de México, México City, México, the
Master's degree in computer sciences from the
Instituto Tecnológico de Estudios Superiores de
Monterrey, Toluca, México, and the Ph.D. degree

H j V in electronics engineering from the Universidad Po­
litécnica de Madrid, Madrid, Spain.

He is a Full-Time Professor of electronics engi­
neering with the TEC de Monterrey Campus Toluca,

Toluca, México, where he also served as Professor and Manager of the electron­
ics and control department. His research interests are based on neural networks,
parallelism, hardware embedded architectures, and real-time systems.

http://citeseer.ist.psu.edu/beuchat98hardware.html

3263

^ ^ ^ ^ Rubén Salvador received the B.Sc. degree in
^^ ^ ^ telecommunication engineering from the Universi­

dad Politécnica de Madrid (UPM), Madrid, Spain,
» íT ' in 2001, the M.Sc. degree in electrical and electronic

engineering from the Universidad de Alcalá, Madrid,
in 2004, and M.Sc. degree in industrial electron-

H - ics from the UPM, in 2007, where he is currently
_ ^ B ^ ^ working toward the Ph.D. degree in the Centro de

Electrónica Industrial.
From January 2005 to October 2006, he worked

as a Researcher with the Intelligent Vehicle Systems
División, University Institute for Automobile Research, UPM. His research
interests include evolvable hardware, high-performance reconfigurable and
adaptive systems, hardware embedded intelligent architectures, and digital
signal processing systems.

m,M

Teresa Riesgo (M'96) was born in Madrid, Spain, in
1965. She received the M.Sc. and Ph.D. degrees in
electrical engineering from the Universidad Politéc­
nica de Madrid (UPM), Madrid, in 1989 and 1996,
respectively.

Since 2003, she has been a Full Professor of
electronics with the UPM. She has published a large
number of papers in those fields and has participated
and acted as Main Researcher in several European
Union-funded projects. She is currently the Director
of the Centro de Electrónica Industrial, UPM. Her

research interests are focused on embedded-system design, wireless-sensor
networks, configurable systems, and power estimation in digital systems.

