
ARTIFICIAL NEURAL NETWORK CIRCUIT FOR SPECTRAL

PATTERN RECOGNITION

A Thesis

by

FARAH RASHEED

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu
Committee Members, Yufeng Ge

Peng Li
 Samuel Palermo
Head of Department, Chanan Singh

 December 2013

Major Subject: Electrical Engineering

Copyright 2013 Farah Rasheed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147238404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ABSTRACT

 Artificial Neural Networks (ANNs) are a massively parallel network of a large

number of interconnected neurons similar to the structure of biological neurons in the

human brain. ANNs find applications in a large number of fields, from pattern

classification problems in Computer Science like handwriting recognition to cancer

classification problems in Biomedical Engineering.

 The parallelism inherent in neural networks makes hardware a good choice to

implement ANNs compared to software implementations. The ANNs implemented in

this thesis have feedforward architecture and are trained using backpropagation learning

algorithm. Different neural network models are trained offline using software and the

prediction algorithms are implemented using Verilog and compared with the software

models.

 The circuit implementation of feedforward neural networks is found to be much

faster than its software counterpart because of the parallel and pipelined structure as well

as the presence of a large number of computations that makes the software simulations

slower in comparison. The time taken from input to output by the circuit implementing

the feedforward prediction algorithm is measured from the waveform diagram, and it is

seen that the circuit implementation of the ANNs provides an increase of over 90% in

processing speeds obtained via post-synthesis simulation compared to the software

implementation.

 The ANN models developed in this thesis are plant disease classification, soil clay

 iii

content classification and handwriting recognition for digits. The accuracy of the ANN

model is found to be 75% to 97% for the three different problems. The results obtained

from the circuit implementation show a < 1% decrease in accuracy compared with the

software simulations because of the use of fixed-point representation for the real

numbers. Fixed-point representation of numbers is used instead of floating-point

representation for faster computational speed and better resource utilization.

 iv

To my family

 v

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis advisor, Dr. Jiang Hu, for all his help,

guidance and encouragement throughout my thesis. I would also like to thank all my

committee members, Dr. Palermo, Dr. Li, and Dr. Ge, for agreeing to be on my thesis

committee and for their valuable suggestions. A special thanks to Dr. Ge and his team

for sharing their laboratory data with me which helped me immensely in my research.

I wish to thank my parents, my grandparents, my sister, my brother-in-law and

my niece for their unconditional love and support, especially my father for being who he

was that made me the person I am today. He will always be my inspiration. Thanks to

my sister, Asma, for always believing in me and teaching me to reach for the stars.

Thanks to my husband, Shadab, for his love and endless patience throughout the course

of my graduate education.

Thank you, God, for everything you have given me throughout my life and for

giving me my family that makes every living moment a precious one.

Finally, I would like to thank everyone in the Department of Electrical and

Computer Engineering at Texas A&M for their support and encouragement while I

pursued my Master in Science degree and for providing such a good learning

environment to us students.

 vi

TABLE OF CONTENTS

Page

ABSTRACT……………………………………………………………………………... ii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Biological Neurons ... 4
1.3 Artificial Neural Networks ... 5
1.4 Plant Disease Classification ... 9
1.5 Soil Spectral Classification .. 10
1.6 Handwriting Recognition for Digits ... 11

2. SOFTWARE MODEL FOR TRAINING NEURAL NETWORKS 13

2.1 Pre-processing Inputs ... 14
2.2 Activation Function .. 14
2.3 Feedforward Prediction Algorithm .. 16
2.4 Backpropagation Learning Algorithm ... 18
2.5 Performance of the ANN .. 20

3. HARDWARE IMPLEMENTATION OF NEURAL NETWORKS FOR
PREDICTION .. 22

3.1 Methods of Implementation of ANN in Hardware .. 22
3.2 Fixed-point Representation of the Numbers .. 24
3.3 Neuron Implementation.. 25

4. VERIFICATION AND SYNTHESIS .. 32

4.1 Pre-synthesis Simulation .. 32
4.2 Synthesis .. 32
4.3 Static Timing Analysis ... 37

 vii

4.4 Post-synthesis Simulation .. 39
4.5 Generalization Ability of the ANNs ... 42
4.6 The ANN Circuit and Real World Applications .. 45

5. CONCLUSION .. 46

REFERENCES ... 48

 viii

LIST OF FIGURES

Page

Figure 1: Neurons in the Brain ... 4

Figure 2: Feedforward Artificial Neural Network Representation (Multi Layer

Perceptron (MLP) Model .. 6

Figure 3: A Single Neuron ... 8

Figure 4: Spectral Energy of Cotton Plant Leaves ... 10

Figure 5: Spectral Energy of the Soil Samples .. 11

Figure 6: Handwritten Digits from the MNIST Database .. 12

Figure 7: Sigmoid Function and its Derivative .. 15

Figure 8: ANN Module Hierarchy ... 25

Figure 9: Structure of a Neuron .. 27

Figure 10: Flowchart of the Neuron Operations .. 28

Figure 11: Critical Path of the Soil Clay Content Classification ANN 38

Figure 12: Timing Diagram: Inputs and Outputs in the Testbench 39

Figure 13: Timing Diagram: Neuron Module Instantiations ... 40

Figure 14: Timing Diagram: Neuron Module Processing .. 41

 ix

LIST OF TABLES

Page

Table 1: Accuracy of the ANN Models using C .. 21

Table 2: Comparison of ANN Models for Handwriting Recognition, Plant Disease

and Soil Clay Content Classification .. 23

Table 3: Comparison of Accuracy of Software and Hardware ANN Models.................. 32

Table 4: Synthesis Comparison of the ANN Models ... 33

Table 5: Comparison of Run Time of Software and Hardware ANN Models 35

Table 6: Comparison of Accuracy of Each Label in the ANN Models 35

Table 7: Comparison of the Generalization Ability of the ANN Models 43

Table 8: Accuracy Obtained by using Different Training:Testing Ratio 44

1

1. INTRODUCTION

Artificial Neural Network (ANN) is a state of the art technique for different

machine learning problems such as classification, image processing, etc. Unlike linear or

logistic regression, ANNs can learn complex non-linear hypothesis for a large number of

input features more efficiently [1]. The motivation behind neural networks was to have

machines that could mimic the working of the human brain [2]. Just like the brain can

learn to perform unlimited tasks from seeing things around us to solving complicated

mathematical problems, ANNs can be trained using a learning algorithm to solve several

problems. In this thesis, MATLAB, C and Verilog have been used to develop an ANN,

train it, and apply it to new inputs to test their accuracy and generalization ability.

1.1 Motivation

ANNs are inherently parallel since neurons in each layer of the network are

independent of one another. As such, each neuron performing many multiplications

simultaneously requires massive amounts of parallel computation being performed.

Also, in real-time applications, high speed operation can only be achieved if the neural

network implementation uses a parallel architecture. ANNs can be implemented using

either software or hardware.

Traditionally, ANNs were implemented in software because of the

mathematically expensive computations involved. Computations such as multiplications

and divisions are easier to implement in software since they are very expensive in

 2

hardware. Software implementations also allow flexibility for structural modification as

it is easier to modify the parameters in the ANN such as the number of layers, number of

neurons in the hidden layer and the activation function used. But, even the fastest

sequential processor cannot provide real-time response. As the ANN topology increases

with more neurons and layers the speed of the software ANN starts falling rapidly. And

from the applicability point of view, using one processor board to implement a single

neural network is too expensive.

ANNs implemented in hardware are more efficient because of the parallel

processing capabilities of hardware which increases the processing speeds. A spatial

parallelism approach, for example, allows each neuron in the same layer to run

simultaneously at really fast speeds. This will be shown in this thesis by comparing the

speeds of prediction using both C and Verilog (See Table 3). Hardware’s parallel

processing capabilities can lead to a dramatic increase in the processing speeds of an

ANN. For example, ANN can be used for voice recognition in a consumer application

such as a smartphone. It is easier to directly implement the neural network in a circuit

which provides a dedicated hardware solution compared to the expensive method of

using software processors to implement just one function.

By training ANN to solve problems the way human brain learns several functions

over time, we can use ANN to solve all kinds of artificial intelligence problems such as

image processing, classification problems such as pattern recognition, robotics, etc. And

these applications are not just limited to science and engineering, but also in fields such

as financial applications such as the stock market and forecasting and prediction.

 3

Different applications often have different requirements, especially when it

comes to speed. One of the circuits implemented in this thesis is plant disease

classification using reflectance spectra. The ANN is trained to look at reflectance spectra

of the leaves and decide if the leaves are healthy or diseased. This circuit, for example,

has a good application in the real-world. Consider a tractor fixed with a sprayer which

goes around in a field and needs to find diseased plants so that they can be sprayed with

pesticides to help control the disease. In such an application, first the diseased plant

needs to be identified and then sprayed. An ANN has been developed in this thesis to

classify plants as healthy or diseased based on reflectance spectra of leaves. Using the

hardware approach to ANN can help save time as they can perform real-time processing

after collecting the data to classifying the plant as healthy or diseased so that the sprayer

can be controlled automatically to turn on or stay off. The ANN circuit can complete the

classification in much less than a second so that the sprayer can be controlled

automatically. Using software to solve this problem on the other hand requires the

presence of a processor (or a computer) on board which performs the data collection and

classification to control the sprayer and may not be able to complete this fast according

to the speed of the tractor and the speed of operation required.

The ANNs are trained offline using MATLAB so that the training is better since

there is no restriction on the mathematical computations and resolution of data, and the

training is more flexible with regards to number of layers and number of neurons in the

ANN architecture. After training, the feedforward algorithm is implemented in hardware

using Verilog and is synthesized. The algorithm in Verilog uses a pipelined architecture

 4

so that all the computations are performed efficiently and faster prediction speeds are

obtained. The feedforward module in Verilog is implemented by dividing it into sub-

modules. The base modules are the two multipliers, the two accumulators, and the

activation function which will be explained in detail in Section 3.

1.2 Biological Neurons

The idea behind ANNs is to simulate neurons in the brain (See Figure 1) or

rather, simulate a network of several interconnected neurons. A neuron is a biological

cell that processes information, and consists of a cell body called soma, several dendrites

that serve as input wires to the neuron and receive inputs/signals from other locations,

and an axon that serves as an output wire through which it sends signals/messages to

other neurons [3].

Figure 1: Neurons in the Brain

 5

A neuron basically serves as a computational unit that receives inputs from other

neurons via input wires, does computations and sends the results to other neurons or

locations via axons. The data transmission to other neurons occurs when the electrical

potential of the neuron exceeds a certain threshold [1]. When the threshold has not been

reached, the neuron ‘suppresses’ the information by not activating the neuron. Similar to

biological neurons, artificial neurons in an ANN consist of input wires and an output

wire. The electric potential and the subsequent “firing” of the neuron when this threshold

is exceeded is modeled as weighted inputs to the neurons and an activation function

which is given as some non-linear function of the summation of all the weighted inputs

to the neuron. This means that when the summation of the products of weights and

inputs to the neuron exceeds a set threshold after passing it through the activation

function, the neuron passes the output, otherwise inhibits it.

1.3 Artificial Neural Networks

ANNs can be modeled using neurons that are interconnected as shown in Figure

2 [2]. An ANN consists of an input layer where the number of neurons is equal to the

number of input features, any number of hidden layers in between with an arbitrary

number of neurons, and an output layer in which the number of neurons depends on the

classification problem being solved. This architecture is called a feedforward ANN

architecture, as is evident from the model that signals are fed forward through the

network from the input layer to the output layer via the hidden layers. Figure 2 shows a

feedforward ANN with three inputs shown as the three input neurons, a hidden layer

 6

with four neurons, and two outputs of the network as shown in the two output neurons.

Additionally, there exists a bias neuron at the input layer and the hidden layer which

servers as an offset in the processing elements [2].

Figure 2: Feedforward Artificial Neural Network Representation (Multi Layer
Perceptron (MLP) Model1

The connections between the different nodes in an ANN are weighted, and it is

by updating these values of the weights while the ANN is being trained that the network

1 Soufian, M.; Soufian, M.; Thomson, M., "Practical comparison of neural networks and conventional
identification methodologies," Artificial Neural Networks, Fifth International Conference on (Conf. Publ.
No. 440) , vol., no., pp.262,267, 7-9 Jul 1997.

 7

is able to learn to perform its functions. This phase of the ANN where the network is

trained is called the training phase of the network which can be both supervised and

unsupervised. During this phase, training data sets that have been collected in the real

world are presented to the ANN. In the case of handwriting recognition, the training data

could be scanned pages with different handwritten numbers/letters on them. In

supervised learning, which is what this thesis focuses on, the training set consists of

input features as well as the desired output classification. The network is then trained

using a technique called backpropagation explained in Section 2.4, the basic idea of

which is to present the input features to the network, propagate them forward to the

output via the hidden layers, take the error between this output and the desired output,

and use that to update the weights for each neuron in each layer of the ANN. The above

process is repeated several times until the error value reaches some desired stage at

which the neural network is deemed trained.

Figure 3 shows the model of a single neuron in the ANN. The network in this

case consists of ‘m’ inputs x1 to xm with x0 being the bias value. The bias is responsible

for increasing or decreasing the input of the activation function which leads to the

neuron being “fired” or “inhibited”. The weights associated with an input xi is given by

wj
ki (where j represents the layer in which the neuron is located and the subscript ki

represents the connection from neuron i to neuron k). The neuron accepts these inputs

and weights, processes them by multiplying each input by its weight and performing a

summation of the products. The last step is performing the activation function on this

result which is the output of the neuron. The output of the neuron is given by

 8

∑ (1.1)

where m is the number of inputs to the neuron and bk is the bias value in that layer. The

bias is considered as another weight w0 associated with a constant input x0 = 1 [3]. The

summation of the weighted inputs is then passed to the activation function f(.) explained

in the next section.

Figure 3: A Single Neuron

For the ANN shown in Figure 2, the outputs of the hidden layer are fed forward

as inputs to the next layer in the network. The next layer has its own set of

corresponding weights for each input and uses Equation 1.1 to find outputs for all the

neurons in this hidden layer. The final output of this ANN is a set of two outputs for

each of the neuron in the output layer. The number of neurons in the output layer

corresponds to the number of classifications for the machine-learning problem. The

 9

activation function is responsible to either “fire” the neuron or “inhibit” it. This function

is responsible for making sure that the output of the neuron is within a certain range so

that it is not unbounded. The feedforward architecture in Figure 2 is a Multi Layer

Perceptron (MLP) model where the neurons have unidirectional connections from each

layer to the next forward layer [3].

The final output of the ANN shown in Figure 2 is

 ∑ ∑ (1.2)

 ∑ ∑ (1.3)

In the above equation, m represents the number of input features and n represents the

number of neurons in the hidden layer.

1.4 Plant Disease Classification

The ANN model developed here is to classify whether a plant is diseased or

healthy. The training set is obtained from Prof. Yufeng Ge’s lab in the Biological &

Agricultural Engineering department at Texas A&M. The data set consists of 43 input

features that are the reflectance spectra of cotton plant leaves from wavelengths 375 nm

to 2475 nm (in steps of 50 nm). The target output of the data sets consists of two labels

that stand for the leaf sample being either healthy or diseased. Figure 4 shows the

spectral energy of two random samples from each label taken from the training data set

for the cotton plant leaves. The plot for the reflectance drawn in blue indicates a healthy

leaf while the red plot indicates a diseased leaf.

 10

Figure 4: Spectral Energy of Cotton Plant Leaves

1.5 Soil Spectral Classification

The ANN model developed here is to classify whether the soil consists of low,

medium or high clay content. The training set is also from Prof. Yufeng Ge’s lab. The

data set has of 270 training samples each of which consists of 216 input features that are

the reflectance spectra of soil from wavelengths 350 nm to 2500 nm (in steps of 10 nm).

The target output of the data sets consists of three labels that stand for the clay content of

the soil. Figure 5 shows the spectral energy of three random samples from each label

taken from the training data set for the soil. The plot for the reflectance drawn in blue

indicates a low clay content, while the red and green plots indicate medium and high

clay content respectively.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Reflectance Spectra of Cotton Plant Leaves

Wavelength, nm

R
ef

le
ct

an
ce

 S
pe

ct
ra

Healthy

Diseased

 11

Figure 5: Spectral Energy of the Soil Samples

1.6 Handwriting Recognition for Digits

In handwriting recognition for digits, the inputs present to the neural network

consist of 400 features. These features are a 20x20 pixel scanned in image of several

handwritten numbers obtained from the MNIST database [4] [5]. The ANN is trained to

recognize digits from 0 to 9 i.e., this is a classification problem with 10 labels. The

training data consists of over 5000 samples which is a subset of over 60,000 training

samples present in the MNIST database. Figure 6 shows few of the handwritten digits in

the MNIST data set used for training the ANN.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Reflectance Spectra of Soil

Wavelength, nm

R
ef

le
ct

an
ce

 S
pe

ct
ra

Low Clay Content

Medium Clay Content
High Clay Content

 12

Figure 6: Handwritten Digits from the MNIST Database

In this thesis, ANN models are developed for the three models described above.

The results obtained as well as the accuracy is compared with each other and with the

software model. Section 2 explains the training algorithms used to train the ANN to

solve the above problems. Section 3 explains the hardware implementation of the ANN

and Section 4 shows the results obtained for the ANNs.

 13

2. SOFTWARE MODEL FOR TRAINING NEURAL NETWORKS

In this thesis, supervised learning is used to train the ANN using backpropagation

algorithm. Learning here implies using training data sets with known target outputs to

learn the weights of the network. This means updating the weights of the ANN between

the neurons and the layers over several iterations [3]. The ANN architecture used in the

thesis is the Multi-layered Perceptron (MLP) model and consists of two layers. The

ANN model is tested on three different sets of training data for different problems, each

with varying number of input features and output classification labels, as well as

different amounts of training data samples. As such, the number of neurons in the hidden

layer varies for all three models. In this section, the learning algorithm as well as the

prediction algorithm are described and are implemented in software using MATLAB,

and the accuracy of the obtained weights and ANN is tested using statistical techniques.

Software is chosen to train the ANN because of its flexibility in changing the

parameters of the ANN like the number of hidden layers, the number of neurons in the

hidden layers, as well as the ease in computing mathematical functions such as the

exponentials, derivatives, multiplications and divisions used in the learning algorithm

[6]. Scaling the size of the ANN for the backpropagation algorithm leads to an

exponential increase in the computational complexity of the model implemented in

hardware. Also, implementing the learning algorithm in hardware leads to loss of

efficiency if fixed-point representation of numbers is used, and is hardware expensive if

 14

floating-point representation is used. Therefore, offline learning in MATLAB is chosen

instead to train the ANN.

2.1 Pre-processing Inputs

The first step in this process consists of pre-processing the input data or

transforming the raw data by normalizing it for better results. During normalization, the

inputs are scaled to a range [-1,+1] which is called the pre-processing stage before

propagating them through the network for learning. The technique used is the min-max

normalization which distributes the input values on a whole, normalized interval chosen

[7]. The equation to perform normalization is:

 + (2.1)

where y is the normalized output, ymax and ymin are the maximum and minimum ranges

the inputs are to be normalized to, and xmax and xmin are the maximum and minimum

values of the inputs (for each training sample). This process is performed on each input

belonging to the training samples data set.

2.2 Activation Function

The activation function in an ANN is responsible for “firing” or “inhibiting” the

neuron. It is a non-linear function and is used to bound the output of a neuron to a

specific range. The activation function used in this thesis is the continuous logistic

function, also called as a sigmoid function (See Equation 2.2). The sigmoid function

limits the range of the output signal to [0,1] and its derivative can be easily calculated.

 15

 (2.2)

The derivative of the sigmoid function is:

1
1

1 1 1

1

1 1

1

1

1 1

1

1

1

1

1

1

1

										 1 (2.3)

Since the derivative of the sigmoid function is easily calculated given the input

term x (See Figure 7), it makes it computationally efficient as an activation function

since the gradient descent algorithm in the learning phase of the ANN needs to calculate

the gradient of the sigmoid function as will be explain in the backpropagation algorithm

in Section 2.4.

Figure 7: Sigmoid Function and its Derivative

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Input, x

O
ut

pu
t,

 y

Derivative of Sigmoid Function

Sigmoid Function

 16

2.3 Feedforward Prediction Algorithm

After the ANN has been trained using backpropagation, the model can be used

for prediction of new and unknown inputs to solve machine learning problems. The

feedforward algorithm to propagate the inputs forward to the output layer via the hidden

layers is explained in this section. The prediction part is explained before the learning

part since the backpropagation learning algorithm uses the feedforward algorithm to

measure the output of the ANN. After training has been completed, the parameters of the

ANN i.e., the connection weights are loaded into the feedforward program. The weights

are represented by W1 for the connection weights from neurons in the input layer to the

neurons in the hidden layer, and by W2 for the weight connections from neurons in the

hidden layer to the neurons in the output layer. The dimensions of the connection

weights are:

W1 is a (number of neurons in hidden layer) x (number of input features + 1) dimension

matrix, with the first row containing the weights from each neuron in the input layer to

the first neuron in the hidden layer, and so on.

W2 is a (number of neurons in output layer) x (number of neurons in hidden layer + 1)

dimension matrix, with the first row containing the weights from each neuron in the

hidden layer to the first neuron in the output layer, and so on.

In this algorithm, the dimensions and notations are given as follows:

The input consists of m features and is given by

[x1, x2,…,xm]

 17

The output of the hidden layer consisting of k neurons is given by

 [z1, z2,…,zk]

The output of the output layer consisting of p neurons is given by

 [y1, y2,…,yp]

The steps in the feedforward prediction algorithm are as follows:

1. For each neuron in the hidden layer, find the summation of the weighted inputs

∑ 		 												 (2.4)

where k represents the number of neurons in the hidden layer and bk1 represents the bias

value which can be seen as the weight for the constant value input x0 = 1.

2. Apply the activation function to the results obtained in step 1 to obtain the outputs of

the neurons in the hidden layer.

∑ 		 	
												 (2.5)

3. For each neuron in the output layer, i.e., the number of classifications of the machine

learning problem, find the summation of their weighted inputs.

∑ 		 												 (2.6)

where p represents the number of output neurons.

4. Apply the activation function to the results obtained in step 2 to obtain the outputs of

the neurons in the hidden layer.

∑ 		 	
											 (2.7)

5. The final prediction of the ANN is the neuron that contains the maximum output yp

which indicates the class that the input vector belongs to.

 18

2.4 Backpropagation Learning Algorithm

The backpropagation learning algorithm was used to train the feedforward MLP

ANN. To perform this supervised learning, the training data set is fed to the network

which consists of inputs and their known associated output. The inputs from the training

set are given to the system and the output of the neuron is measured by feedforward

propagation using randomly initialized weights. The error between this output and the

desired output is measured and the weights are updated to minimize this error at each

node in each layer. This process is repeated over several iterations while the error

reaches some specified threshold. The total error E is defined as follows [8]

	 ∑ ∑ 											 (2.8)

where Y is the desired target output, p is the number of neurons in the output layer and c

is the number of samples in the training data set. Gradient descent is used to minimize

this error for which the partial derivative of E with respect to the weights in the network

are needed [8]. For this reason, it is important that the activation function selected be

continuously differentiable as mentioned in Section 2.2.

The steps of the algorithm are:

1. Initialize the weights of the network randomly using uniform distribution between the

range given below where din represents the fan-in i.e., number of input nodes [9].

[
.

,
.

											 (2.9)

This is done in MATLAB using the rand function in the following way

A + (B-A) * rand()

 19

where A is the lower range and B is the upper range. The proper initialization is

important as it affects the learning speed of the ANN. If the inputs are not normalized,

the algorithm might have a slow convergence rate [7].

2. For each input in the training set x, perform the feedforward algorithm on it (as

explained in Section 2.2) to calculate the output of the ANN yp to the initialized weights

(where p denotes the number of classifications i.e., neurons in the output layer).

3. Calculate the error in the output layer between the obtained value and the outputs of

the data set.

											 (2.10)

where Y represents the target output as per the training data set for the associated input.

4. The next step is to calculate the error over the first layer of the ANN i.e., for the

internal neurons. This is done by propagating the output error signal obtained back to all

neurons in the internal layers [10]. The internal errors for the internal neurons in the

hidden layer are given by

∑ 											 (2.11)

and for the internal neurons in the input layer are given by

∑ 											 (2.12)

5. After all the internal deltas have been calculated, the connection weights for each

neuron is updated. The connection weights from the input layer to the hidden layer are

updated by:

 20

∑ 	 (2.13)

The connection weights from the hidden layer to the output layer are updated by:

∑ 	 (2.14)

 is the learning rate of the algorithm. The derivative of the sigmoid function f’’(.) is

used to adjust the weight in the direction of the gradient to arrive at the minima of a

function. This method is called the gradient descent method which is a first-order

optimization algorithm.

6. The steps 3 to 5 are repeated for each data sample in the training set for a large

number of iterations so that the weights converge quickly.

The number of iterations used in the program for this thesis for testing was 6000

iterations.

2.5 Performance of the ANN

 Two statistical techniques are used to estimate the error rate of the ANN models

trained using the backpropagation learning algorithm. Leave One Out Cross Validation

(LOOCV) test consists of using one data set from the training samples to test the ANN

while training the network with the rest of the samples. This method is repeated so that

each data set in the training sample is used once as the test data. [11]. The other method

used is Monte Carlo Cross Validation (MCCV) which randomly chooses 80% of the

training data set for training and uses the remaining 20% for testing, and averages the

errors obtained by repeating over 100 iterations.

 21

 The performance of the ANN for the three models trained using the

backpropagation method is tabulated in Table 1. An explanation of the results is given in

Section 4.

 MCCV LOOCV

Handwriting Recognition for Digits 98.26 % 98.53 %

Plant Disease Classification 83.8 % 84.2 %

Soil Clay Content Classification 76.16 % 74.25 %

Table 1: Accuracy of the ANN Models using C

For the purpose of this thesis, 80% of the training data sets were randomly

chosen to train the ANN. The remaining 20% of the data sets were saved to test the

ANN after the model was trained. This means that the MCCV method was chosen over

the LOOCV method because of simplicity of implementation while testing the hardware

circuit.

 22

3. HARDWARE IMPLEMENTATION OF NEURAL NETWORKS FOR

PREDICTION

The most important part of this thesis is to implement the prediction of ANNs in

hardware after the ANN has been trained offline. After training the ANN using the

backpropagation algorithm and measuring the accuracy of the ANN on several test sets,

the feedforward propagation algorithm is implemented in hardware using Verilog and

the performance is analyzed and compared to the software results. The weights obtained

from the training part are stored in a text file and loaded into a testbench for the Verilog

module to read the data, and the inputs to be classified are also stored in a text file and

passed to the module as well. It will be shown at the end of the section that the speed of

operation of the algorithm in hardware is much faster than the speed obtained when

running the program in MATLAB or C. Also, since all the values are real numbers

instead of integers, they are converted to a fixed-point representation before loading

them into Verilog. Fixed point is preferred over floating point because of faster

computational speed and better resource utilization, though it does lead to a loss in

accuracy of <1% [12].

3.1 Methods of Implementation of ANN in Hardware

 In software, the feedforward algorithm basically consists of a number of

multiplications and additions for each neuron, and the operation of an activation function

on the accumulated products of the inputs. Consider the ANN model for the plant

 23

disease classification problem posed in Section 1.3. The ANN model for this problem is

shown in Table 2. The model consists of 43 input neurons, 8 neurons in the hidden layer

and 2 output neurons.

Handwriting

Recognition for
Digits

Plant Disease
Classification

Soil Clay Content
Classification

Number of
Classifications 10 3 2

Number of
Training Samples

5000 (500 for each
digit)

702 (176 for
healthy label, 526
for diseased label)

270 (63 for low,
101 for medium,
106 for high clay

content)
Number of Input
Neurons 400 43 216

Number of Hidden
Neurons 25 8 8

Number of Output
Neurons 10 3 2

Number of Clock
Cycles from Input
to Output

729 64 252

Table 2: Comparison of ANN Models for Handwriting Recognition, Plant Disease

and Soil Clay Content Classification

Directly translating the software code to hardware code would therefore require

44 multiplications and 43 additions for each neuron in the hidden layer and 9

multiplications and 8 additions for each neuron in the output layer which is a total of 379

multiplications and 368 additions at the very least. It comes down to needing one

multiplier for each neuron input in the model and the cost increases significantly when

the number of input features and the number of hidden neurons increase. In this type of

 24

implementation, all the neurons in the first layer function simultaneously and therefore,

this is the fastest implementation of an ANN.

To avoid the huge number of multipliers and therefore, the resources needed, an

alternative architecture is developed for the hardware implementation of the feedforward

algorithm. The hardware architecture for ANN feedforward consists of developing a

neuron model for executing each layer sequentially. Each neuron in the hidden layer

computes the product of the inputs at the positive edge of every clock cycle. This

method reduces the number of multipliers but increases the number of clock cycles

required as the time taken for each layer to finish processing is equal to the number of

inputs. Therefore, for the plant disease classification problem, since the hidden layer

processes 43 input features and 1 bias input value, it takes 44 clock cycles to complete

the multiplications and two more clock cycles to compute the final sum of the products

and the activation function output. The outputs of these then are processed as inputs to

the next output layer. This method of hardware implementation requires 8 multipliers for

the hidden layer and 2 multipliers for the output layer for the plant disease classification

problem which is a huge decrease of 97% from the previous method. The trade-off in

this method is the decreased speed from input to output. Section 3.3 describes the circuit

implementation of this selected method.

3.2 Fixed-point Representation of the Numbers

As mentioned earlier, fixed-point representation of numbers is chosen over

floating-point so that area is more efficiently utilized and speed is also faster at the

 25

expense of a slight loss in accuracy [12]. 15-bit to 17-bit numbers are used for the inputs

and the weights after looking at the range of numbers in the training set for the inputs

and the range of the weights for the two layers obtained from training the ANN in

MATLAB. A uniform scaling factor for the inputs and the two sets of connection

weights is used to provide an accuracy of up to 10-4 decimal points. To undo the scaling,

a power of 2 is chosen so that right shift operation can be performed instead of division

which is a hardware intensive operation.

3.3 Neuron Implementation

The circuit implementation of the ANN feedforward algorithm consists of

making use of the parallel processing capabilities of hardware by performing the

computations of all the neurons in each layer in parallel. The ANN hierarchy is shown in

Figure 8. The testbench is responsible for loading the weights and the inputs into the

module main.v and thus start the execution of the program.

Figure 8: ANN Module Hierarchy

 26

The main.v module is the starting point of the algorithm. The module has input

ports which reads the weights for each neuron in the hidden layer and the output layer as

well as the values of the input data which is to be classified. The main program passes

the predicted value back to the testbench after the processing has been performed. The

main.v program instantiates modules for each neuron in the hidden layer and for each

neuron in the output layer. Since the number of neurons in the hidden and output layer

are different, two different modules called neuron_layer_one.v and neuron_layer_two.v

have been written.

3.3.1 main.v

The main.v program is the control center of the ANN module and is responsible

for activating the two layers in the model. Initially, it sets the trigger to enable the first

layer while keeping the second layer inactive. After the processing in the first layer has

been completed, it inactivates the first layer and triggers the operation of the second

layer. Since the inputs to the second layer neurons are the outputs of the first layer

neurons, the main.v program transfers the neuron_layer_1 results to the input ports of the

second layer neurons using a multiplexer one at a time. After the processing at the

hidden layer has been completed and the outputs of the neurons in the hidden layer have

been calculated, it stores these outputs in registers (one for each neuron) using a

multiplexer to send the results to the next layer, starts the trigger so that the next layer

can start processing, and sends the first layer outputs and the corresponding weights to

the neuron_layer_two.v module.

 27

After the second layer has finished processing, the module then finds out the

final output of the ANN i.e., the classification to which the inputs belong to and sends

the predicted output back to the testbench to be displayed to the user.

3.3.2 neuron_layer_one.v and neuron_layer_two.v

The neuron_layer_one.v and neuron_layer_two.v modules are written for

neurons in the hidden layer and output layer respectively. The modules are instantiated

in the main.v program and are passed an input and its corresponding weight every clock

cycle. During the processing of the hidden layers, all the neurons in the hidden layer

receive inputs and corresponding weights one at a time and perform multiplication

operation on them, storing the result in a register so that they can be accumulated. Figure

9 shows the architectural structure of a single neuron. This is a fully parallel

implementation of the ANN model. The number of clock cycles it takes to perform the

operations of the hidden layer depends on the number of input features in the ANN

model. The main.v module sends inputs and weights to the hidden layer neurons at each

positive edge of the clock cycle.

Figure 9: Structure of a Neuron

 28

This module uses the multiplier module mult_32bit.v (for layer one) and

mult_48bit.v (for layer two) to find the product of the input and the weight. This result is

then passed to the accumulator module which keeps a running sum of this result. This

resulting cumulative sum is right shifted to take care of the fixed-point scaling and is

passed to the sigmoid module. The sigmoid.v module passes the sigmoid output back to

the neuron_layer_one.v and neuron_layer_two.v modules which is the final output of the

neuron. Figure 10 shows the flowchart for the operations performed by the neurons for

both the layers.

Figure 10: Flowchart of the Neuron Operations

 29

3.3.3 mult_32bit.v and mult_48bit.v

These multiplier modules perform simple multiplication of the two inputs and

store the result in the output reg. This operation is carried out when the trigger to start

the multiplication is received from the neuron_layer_one.v and neuron_layer_two.v

modules.

3.3.4 accumulator.v and accumulator_layer2.v

These accumulator modules keep an ongoing cumulative sum of the product of

the inputs and the weights for the neurons. This operation is carried out when the trigger

to start the addition is received from the neuron_layer_one.v and neuron_layer_two.v

modules.

3.3.5 sigmoid.v

The activation function used in the thesis is the sigmoid function given by

 (3.1)

A lookup table implementation is used to implement the sigmoid function in

Verilog. A LUT is written where the inputs are divided into 201 different points

uniformly. To obtain more precision, a larger LUT can be implemented for more points

of the input values, but this leads to an exponential increase in the area of the

synthesized circuit being used for a LUT [13]. This operation is carried out when the

trigger to start the sigmoid LUT is received from the neuron_layer_one.v and

 30

neuron_layer_two.v modules. The modules send this trigger when the cumulative sum

operation has been finished.

 The total processing time of the algorithm is equal to the sum of number of

neurons in the input layer (+1 for the bias value), the number of neurons in the hidden

layer (+1 for the bias value) and four clock cycles, two for the accumulator for each

layer and two for the LUT for the activation function for each layer.

Table 2 lists the comparison of the ANN architectures for the handwriting

recognition for digits, plant disease classification and soil clay content classification. Of

all the three ANN architectures, handwriting recognition had a good training set that

consisted of 500 training samples for each digit that enabled it to be a well trained ANN.

The ANN model used consisted of 25 neurons giving it an accuracy of 97%, but testing

it with 8 neurons thereby reducing the size of the network by three times leads to a slight

decrease in accuracy by 2% while increasing the number of hidden nodes to 50 gave it

an accuracy of 99% as tested in C.

On the other hand, the training set for the soil clay content classification

consisted of lesser samples. A smaller neural network was used in this architecture as

using more than 8 hidden nodes led to overfitting. Trial and error was used when testing

the backpropagation algorithm in MATLAB to determine the best architecture for this

model. The accuracy obtained in this case was 75% as shown in Table 2.

The results for the plant disease classification ANN model are also shown in

Table 2. The accuracy of this model was in between the accuracy of the other two

models since the training data available for this model was more than the data set for the

 31

previous problem, but was not evenly distributed between the healthy and diseased

labels [14]. Balanced data sets are needed for ANNs to work well since the overall

classification accuracy is being optimized [14]. If a training set is imbalanced, then the

algorithm tens to be biased towards the class which contains the majority of the samples

among the training set and accurate decision boundaries between the different classes is

not well constructed [14]. The training data set consists of more samples for the diseased

classification when compared to the healthy classification which leads to the ANN being

trained in a bias way towards the majority classification data set. This is explained in

more detail in Section 4.1.

 32

4. VERIFICATION AND SYNTHESIS

4.1 Pre-synthesis Simulation

 Before synthesizing the circuit, functional simulation was performed using a

testbench using Synopsys VCS Compiler. The connection weights obtained from

training the ANN models using MATLAB were saved in text files and loaded into the

Verilog module using the testbench. 20% of the training data sets saved while training

the ANN model were loaded into the testbench via text files. The results obtained were

compared with the MATLAB and the C results. Using fixed-point representation of

numbers and using the right-shift operators for the two layers instead of division

operators caused a loss in accuracy for over < 1% of the testing data set. The results and

comparison of the three models are tabulated in Table 3.

 C Accuracy
Verilog
Accuracy

Plant Disease Classification 85.61% 85.04%
Handwriting Recognition for Digits 97.46% 97.10%
Soil Clay Content Classification 75.00% 73.00%

Table 3: Comparison of Accuracy of Software and Hardware ANN Models

4.2 Synthesis

 The ANN models were synthesized using Synopsys Design Compiler. The

symbol library used was generic.sdb and the target and link libraries used were

osu018_stdcells.db. The testbench used for simulation was edited to add the .sdf delay

file generated during the synthesis procedure and gate-level simulation of the

 33

synthesized netlist was performed. The results obtained from synthesis procedure were

verified with the results obtained from functional simulation and are shown in section

4.4. The results from the post-synthesis simulation were similar to the results from the

pre-synthesis simulation, thus, verifying the correctness and completeness of the written

Verilog code. The maximum clock frequency of the circuits was found to be 166.7 MHz

for the ANN models for soil clay content classification, 166.7 MHz for plant disease

classification, and 83.4 MHz for the ANN for the handwriting recognition for digits.

Table 4 lists the comparison of the summarized synthesis report for the three ANN

models.

Handwriting

Recognition for
Digits

Plant Disease
Classification

Soil Clay
Content

Classification
Maximum Clock Period 12 ns 6 ns 6 ns
Maximum Clock
Frequency 83.4 MHz 166.7 MHz 166.7 MHz

Number of Clock Cycles
from Input to Output 729 64 252

Time taken from Input to
Output (Prediction Time) 8.7 us 0.384 us 1.512 us

Critical Path Length 11.19 ns 5.82 ns 5.82 ns
Total Cell Area
Combinational
Non-combinational

4300972
3717852
583120

1307949
1134733
173216

1458403
1267091
191312

Total Dynamic Power 185.4229 mW 2.4481 uW 96.5632 mW
Total Number of Gates 3924 1312 1319
Total Number of
Transistors 202554 54498 60767

Total Number of Flip-
flops 955 477 477

Total Number of Latches 80 80 80

Table 4: Synthesis Comparison of the ANN Models

 34

 It is seen from the summarized synthesis report in Table 4 that the ANN circuit

for plant disease classification is smallest in terms of area, power consumption, number

of gates and number of transistors because of the ANN model which consist of 43 input

neurons, 8 hidden layer neurons and 2 output layer neurons (See Table 2). On the other

hand, the ANN model for handwriting recognition of numbers consists of 400 input

neurons, 25 hidden layer neurons and 10 output layer neurons and is the largest circuit.

This also causes an increase in the critical path length since the number of hidden layer

neuron instantiations and the number of multiplications needed for the inputs and the

weights is more than thrice the number of instantiations for the plant disease and soil

clay content classification models, leading to a slower circuit in terms of maximum

clock frequency and time taken for prediction.

 There are also 80 latches present in each circuit in addition to flip-flops as shown

in Table 4. The latches are inferred in the sigmoid.v module as a result of how the

module has been coded. They do not cause any undesirable effects in the synthesized

circuit and this has been verified by comparing the post-synthesis and the pre-synthesis

simulation results.

In order to compare the execution time of software and hardware, the clock()

command is used in the C program to find out the execution time of the C program from

the loading of inputs and weights into the ANN model to the display of the predicted

output on the console. To find the similar time for the post-synthesized netlist of the

ANN circuits, the number of clock cycles and the time taken are obtained from the

waveform diagrams generated by the gate-level simulation. The waveform diagrams

 35

obtained are shown in Section 4.4. Table 5 lists the comparison results for the three

ANN models for the software and hardware execution times.

C
Program
Run
Time,
seconds

Matlab
Program
Run
Time,
seconds

Verilog Post‐
synthesis
Simulation

Time,
microseconds

Plant Disease Classification 0.001322 0.037678 0.384 us

Handwriting Recognition for
Digits

0.005603 0.113470 8.700 us

Soil Clay Content
Classification

0.001322 0.037678 1.512 us

Table 5: Comparison of Run Time of Software and Hardware ANN Models

In order to further study the relationship between the training data available and

the accuracy of the ANN models, the accuracy of each label in the classification

problems are studied as shown in Table 6.

 Soil Clay Content
Classification

Plant Disease
Classification

Handwriting
Recognition for

Digits
Number of
Training
Samples

270 702 5000

Number of
Classifications 3 2 10

Overall
Accuracy

73% 85% 97%

Number of
Training

Samples per
Classification
and Accuracy

1 63 => 68%
2 101 => 73%
3 106 81%

1 176 => 56%
2 526 => 94%

0 500 99 2%
1 500 98%
2 500 97 4%
3 500 96%
4 500 97%
5 500 95 2%
6 500 98 2%
7 500 95 6%
8 500 98 2%
9 500 96%

Table 6: Comparison of Accuracy of Each Label in the ANN Models

 36

It is seen that the training database for the handwriting recognition problem is

well distributed between the different labels and has a large sample with which to train

the ANN. As such, the results show a very good accuracy for all the labels. On the other

hand, an interesting relationship is seen between the different classifications for the plant

disease classification problem. The ANN model shows an accuracy of 94% for the

‘diseased’ classification but a very low accuracy of 56% for the ‘healthy’ classification.

As mentioned earlier, this is due to an imbalance in the training samples for the two

classifications [14]. Since there are 526 training samples for the diseased classification

and only 176 for the healthy classification, the ANN is biased towards the diseased class

and is well trained for this class where as poorly trained to recognize the other class.

 And lastly, the accuracy of the trained ANN is mostly uniform across the three

labels for the soil clay content classification since the training data set is pretty unbiased

over the three classifications.

 Therefore, with a good training data set, the ANN models can be trained and

implemented to provide a good deal of accuracy for various classification problems in

different fields. The Verilog program is written in a way that makes it easy to change the

parameters of the ANN such as the number of hidden layers, and the number of neurons

in the input layer, the hidden layer, and the output layer.

 37

4.3 Static Timing Analysis

 After verifying the logical functionality of the circuit, the most important step is

performing Static Timing Analysis (STA) on the design to measure the speed of the

circuit [15]. A hardware circuit has various delays associated with it such as component

delays for the gates and wires within the circuit [16]. While gates have inertial and

propagation delays, presence of wires can lead to delays because of the parasitic

capacitances and resistances of the wire. STA techniques are used to verify that the

synthesized netlist will function correctly at the clock speed desired. STA is used to

validate the timing of the netlist by checking all paths in the circuit for timing violations

under the worst-care conditions [15]. The timing report is obtained from Synopsys

Design Compiler to check the critical path length in the circuit and the report gives the

data arrival time at this path, the required time as well as the slack present at that point.

 Figure 11 shows the timing analysis performed by the Synopsys Design

Compiler for the Soil Clay Content Classification ANN model and shows the critical

path of the circuit. The critical path of the circuit starts at neuron_lauer_1_mux_out_reg

[8] (rising-edge triggered flip-flop clocked by clk) and the endpoint of this path is at

out_reg[44] in the mult_layer_2 module of the neuron_layer_two_01 module. It can be

seen that the required time for the critical path is 5.82 ns which is the latest allowable

arrival time for the signal at the path endpoint [15]. The data arrival time is seen to be

5.82 ns which is the amount of time it takes for the signal to travel from the source to the

endpoint. The slack value (data required time – data arrival time) is zero which means

 38

that the data arrives just in time to meet the requirements. The critical path length of all

ANN models is shown in Table 4.

Figure 11: Critical Path of the Soil Clay Content Classification ANN

 39

4.4 Post-synthesis Simulation

 The gate-level timing simulation of the three ANN models is performed using a

clock period shown in Table 4. The circuit implementation of the three models is similar

with the difference being in the number of instantiations of the hidden layer neurons and

output layer neurons. Figure 12 shows the timing diagram for the gate-level timing

simulation of the character recognition ANN running with a clock period 12 ns. The

inputs and the weight parameters are read by the testbench and passed to the main

module and the resulting output prediction is read back by the testbench from the main

module as 7 which predicts the digit 7 for the input read by the program. The answer is

accurate and the timing diagram shows the 3 of the 25 neurons in the hidden layer and 3

of the 10 neurons in the output layer performing their work in a parallel manner.

Figure 12: Timing Diagram: Inputs and Outputs in the Testbench

Figure 13 shows the work being performed in the main.v module where three of

the 25 hidden layer neurons and 3 of the 10 output layer neurons are shown. All the

hidden layer neurons read the inputs and their connection weights simultaneously when

the trigger to start the first layer is provided. After the first layer has finished processing

and compute their outputs, the main module provides the trigger to start the second layer

and the output layer neurons start reading the inputs which are the outputs of the

 40

previous layer as well as the connection weights and finish their processing. After all the

layers finish their computations, the main program starts its prediction by firing the

result_done trigger which predicts the output classification based on the outputs of the

output layer neurons.

Figure 13: Timing Diagram: Neuron Module Instantiations

Figure 14 shows the timing diagram of the internal workings of the neurons in

the hidden and the output layer. The timing diagram only shows one of the neurons in

both the layers due to lack of space. The hidden layer starts computations when it

receives the neuron1_start trigger at which point it starts reading its inputs for each

neuron. The module then starts multiplying the inputs with their associated connection

weight and keeps a running cumulative sum of the product. At the completion of this

process where all 400 inputs have been read and processed, the answer is sent to the

LUT for the sigmoid activation function. The neuron1_start trigger is now set to LOW

and the results calculated now serve as inputs to the next layer. The neuron2_start signal

is triggered and a multiplexer is used to send one of the inputs of the hidden layer to the

output layer nodes, one at each positive edge of the clock cycle. The second layer

 41

neurons perform the computations in the same way and finally all 10 outputs at the

output layer are calculated over a period of 26 clock cycles (one for each of the 25

neuron inputs from the hidden layer and +1 for the final cumulative sum calculation).

Figure 14: Timing Diagram: Neuron Module Processing

The result obtained on running vcs tb_gate.v and simv commands is shown below:

> SUCCESS : X file was read successfully.

> SUCCESS : Theta2 file was read successfully.

> SUCCESS : Theta1 file was read successfully.

OutData is 7

The accuracy of the hardware implementation of the Verilog model was found to

be 1% less than the software implementation since fixed-point representation was used

instead of floating point representation. This led to some loss in precision, but using

 42

fixed-point representation saved computational efficiency as well as the design, and this

serves as a trade-off between the two number representations.

4.5 Generalization Ability of the ANNs

The generalization ability of the ANN models is tested in this section.

Generalization is the ability of the ANN to classify inputs that are not in the training data

sets i.e., input data that has not been presented to the ANN yet and is unknown [17]. An

ANN that is able to generalize well needs to be trained very well so it is able to

recognize the new input features presented to it. The data sets presented to the ANN for

training should be large and representative of all the classifications in the ANN

architecture so that the ANN has the ability to be well generalized.

To test the generalization ability of the ANN, 80% of the data sets were used to

train the ANN and the remaining 20% were saved to test the ANN. Table 1 had tabulated

the results from C obtained on using statistical tests LOOCV and MCCV (for 100

iterations). Table 7 lists the accuracy obtained by the ANN models on the remaining

20% of the test data set for all three ANN models for 5 different iterations. Each iteration

uses different randomly permuted data sets for training and testing.

 43

 C Accuracy
Verilog Accuracy

(Post-synthesis
Simulation)

Handwriting Recognition for Digits 1 94.7%
2 92.0%
3 92.4%
4 94.3%
5 93.5%

1 94.3%
2 89.7%
3 90.4%
4 94.2%
5 93.2%

Plant Disease Classification 1 87.0%
2 84.0%
3 85.3%
4 88.6%
5 82.9%

1 86.4%
2 82.4%
3 84.3%
4 85.6%
5 82.4%

Soil Clay Content Classification 1 74.4%
2 74.0%
3 73.1%
4 73.4%
5 70.2%

1 72.1%
2 67.8%
3 70.0%
4 69.8%
5 67.8%

Table 7: Comparison of the Generalization Ability of the ANN Models

 For the very first iteration in the three ANN models in Table 7, the training data

was sorted and 80% of data from each classification was chosen randomly. For example,

in the plant disease classification problem, the data samples used consisted of 702

samples, 176 of which represented the healthy classification and 526 represented the

diseased classification (See Table 6). To train the ANN, 141 samples from the healthy

classification and 420 samples from the diseased classification were chosen. After the

ANN was trained, the remaining 20% samples i.e., 141 samples were used to test the

trained ANN. This was done since the training data set is imbalanced which leads to a

very poorly trained and generalized ANN. In the case of soil clay content classification,

50 of the low clay content samples, 81 of the medium clay content samples and 85 of the

high clay content samples were used for training the ANN (80%). The remaining 20%

 44

samples i.e., 54 samples of the total 270 samples in the data set were used for testing the

ANN.

 Table 8 shows the accuracy obtained for different ratio of training and testing

samples used in the three ANN models. It is seen that the accuracy starts dropping off

when the number of samples used to train the ANNs starts decreasing. The accuracies

for the plant disease classification ANN and the soil clay content classificaion ANN drop

off sharply as the number of samples in the training data set is less compared to the ANN

for handwriting recognition for digits which contains over 500 samples for each

classification.

Training
Samples :
Testing
Samples

Ratio
C Accuracy

Verilog
Accuracy

(Post-synthesis
Simulation)

Handwriting Recognition
for Digits

90% : 10%
80% : 20%
70% : 30%
60% : 40%
50% : 50%

93.8 %
90.6 %
89.2 %
85.7 %
82.8 %

93.6 %
89.9 %
86.0 %
82.3 %
80.9 %

Plant Disease
Classification

90% : 10%
80% : 20%
70% : 30%
60% : 40%
50% : 50%

84.3 %
81.4 %
78.8 %
73.6 %
65.7 %

82.9 %
78.6 %
73.2 %
68.2 %
62.9 %

Soil Clay Content
Classification

90% : 10%
80% : 20%
70% : 30%
60% : 40%
50% : 50%

75.9 %
71.7 %
65.9 %
52.7 %
55.5 %

73.2 %
66.6 %
63.2 %
49.1 %
52.8 %

Table 8: Accuracy Obtained by using Different Training:Testing Ratio

 45

4.6 The ANN Circuit and Real World Applications

 The ANN circuit synthesized can be used in the real world in a few different

ways. One method which requires time and carries a high cost is to use the conventional

VLSI chip. A VLSI implementation can achieve fast processing speeds in real-time

applications, but a disadvantage is that they are not flexible when it comes to the ANN

topology. The Verilog code for the ANN can be synthesized for a Field Programmable

Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). The

synthesized netlist can be mapped onto an FPGA or an ASIC. Using FPGAs to

implement the neural network circuit allows the circuit to be flexible when it comes to

the number of neurons and number of layers in the system. Not just that, an FPGA

implementation is faster than the traditional VLSI design and also has a smaller size

[18]. The FPGA implementation of ANN circuits allows for the software advantage of

flexibility and the hardware VLSI circuit advantage of speed and parallel algorithm

acceleration at the same time making that the best hybrid approach to implementing the

ANN circuit for different applications in the real-world [18].

46

5. CONCLUSION

This thesis implemented various models of an Artificial Neural Network using

the feedforward architecture and trained using the backpropagation algorithm. The ANN

was trained offline using software and hardware was used to implement the feedforward

operation of the ANN.

MATLAB was used to train the neural network offline on the training data sets.

The circuit implementation of the feedforward algorithm in Verilog requires the

connection weights obtained by training the ANN in software to be read by the Verilog

model. The neural network results were obtained using statistical testing methods

LOOCV and MCCV. RTL code for the prediction part was implemented in Verilog and

the synthesized netlist was verified by using a testbench to test the netlist on various

input sets. The test samples used in post-synthesis simulation were the same ones used to

test the Verilog model in pre-synthesis simulation. The results obtained were the same in

both the cases thus verifying the functionality of the synthesized hardware by Synopsys

DCS.

The time taken to execute the feedforward algorithm in Verilog was much faster

than the time taken to implement the same algorithm in software. Since there are a large

number of computations in an ANN [19], software simulation takes a longer time than

the hardware realization. The use of fixed-point representation for the real numbers

caused a drop in accuracy of < 1% that can be eliminated by using floating-point

representation if desired.

 47

An accuracy of 97% was obtained for handwriting recognition, 85% for plant

disease classification and 75% for clay content in soil samples. The poor performance in

the latter cases was due to the supervised training algorithm used on the

limited/imbalanced training data sets available. The comparisons between the three

problems provided in Table 6 show that a better trained ANN model for more uniform

and large data sets can be implemented in Verilog for better accuracy.

 48

REFERENCES

[1] Bansal, R., Goel, A., and Sharma, M., “MATLAB® and Its Applications in

Engineering: [Based on MATLAB 7.5 (R2007b)].” Upper Saddle River, NJ: Prentice
Hall, 2009, pp. 361-71.

[2] Montgomery, D., Peck, E., and Vining, G., “Introduction to Linear Regression

Analysis.” Hoboken, NJ: John Wiley & Sons, 2012, pp. 527-30.

[3] Jain, A., Mao, J., and Mohiuddin, K., "Artificial neural networks: a tutorial."

Computer, vol. 29(3), 1996, pp. 31-44.

[4] LeCun, Y., and Cortes, C., "The MNIST Database of Handwritten Digits." [online]

1998, http://yann.lecun.com/exdb/mnist/.

[5] Frank, A. and Asuncion, A., “UCI Machine Learning Repository.” [online] 2010,

http://archive.ics.uci.edu/ml.

[6] Girau, B., “Neural Networks on FPGAs: a survey.” Second ICSC Symposium on

Neural Computation, Berlin, Germany, 2000.

[7] Leung, K., “Preparing the Data.” [online] 2007, http://cis.poly.edu/~mleung/FRE78

51/f07/preparingData.pdf.

[8] Rumelhart, D., Hinton, G., and Williams, R., “Learning representations by back-

propagating errors.” Neurocomputing: foundations of research. J. Anderson and E.
Rosenfeld. Cambridge, MA: MIT Press, 1988, pp. 696-99.

[9] Thimm, G. and Fiesler, E., “Neural network initialization.” From Natural to

Artificial Neural Computation. J. Mira and F. Sandoval, eds., Springer Verlag:
Berlin, vol. 930, 1995, pp. 535-542.

[10] LeCun, Y., Bottou, L., Orr, G., and Muller, K., “Efficient BackProp. Neural

Networks: Tricks of the Trade.” G. Orr and K.-R. Müller, eds., Springer Verlag:
Berlin, vol. 1524, 1998, pp. 9-50.

[11] Priddy, K., and Keller, P., “Artificial Neural Networks: An Introduction.”

Bellingham, WA: SPIE Press, 2005, pp. 1-17.

[12] Nichols, K., Moussa, M., and Areibi, S., “Feasibility of Floating-Point Arithmetic in

FPGA based Artificial Neural Networks.” 15th International Conference on
Computer Applications in Industry and Engineering, 2002, pp. 8-13.

 49

[13] Namin, A. H., Leboeuf, K., Wu, H., and Ahmadi, M., "Artificial neural networks

activation function HDL coder." IEEE Transactions on Electro/Information
Technology, 2009, pp. 389-92.

[14] Nguyen, G., Bouzerdoum, A., and Phung, S., “Learning Pattern Classification

Tasks with Imbalanced Data Sets.” Pattern Recognition, Peng-Yeng Yin (Ed.),
[online] 2009, http://www.intechopen.com/books/pattern-recognition/learning-
pattern-classification-tasks-with-imbalanced-data-sets

[15] Synopsys. “Synopsys Timing Constraints and Optimization User Guide.” [Online]

2010, Available: http://acms.ucsd.edu/_files/tcoug.pdf

[16] Wang, L.., Chang, Y., and Cheng, K., “Electronic Design Automation: Synthesis,

Verification, and Test (Systems on Silicon).” Burlington, MA: Morgan Kaufmann,
2009.

[17] Shekhar, S., and Amin, M., “Generalization by Neural Networks.” IEEE

Transactions on Knowledge and Data Engineering, vol. 4(2), 1992, pp. 177-85.

[18] Sahin, S., Becerikli, Y., and Yazici, S. “Neural Network Implementation in

Hardware Using FPGAs.” Neural Information Processing, vol. 4234, Springer
Berlin Heidelberg, 2006, pp. 1105-12.

[19] Botros, N., and Abdul-Aziz, M., "Hardware implementation of an artificial neural

network using field programmable gate arrays (FPGA's)." IEEE Transactions on
Industrial Electronics, vol. 41(6), 1994, pp. 665-67.

Supplemental Sources Consulted

Soufian, M.; Soufian, M. and Thomson, M. "Practical comparison of neural networks

and conventional identification methodologies." Artificial Neural Networks, Fifth
International Conference on (Conf. Publ. No. 440), vol. 41(6), 1997, pp. 262-67.

Fausett, L., “Fundamentals of neural networks: architectures, algorithms, and

applications.” Upper Saddle River, NJ: Prentice-Hall, 1994.

