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As the title suggests our project deals with a hardware implementation of artificial neural 

networks, specifically a FPGA implementation. During the course of this project we learnt about 

ANNs and the uses of such soft computing approaches, FPGAs, VHDL and use of various tools 

like Xilinx ISE Project Navigator and ModelSim. As numerous hardware implementations of 

ANNs already exist our aim was to come up with an approach that would facilitate topology 

evolution of the ANN as well. 

 

The key problem in the simulation of ANN’s is its computational overhead. Networks containing 

millions of neurons and ten billion connections, and complex models like spiking neurons with 

temporal time course that require convolutions to be computed at each synapse, will challenge 

even the fastest computers. Hence there is much interest in developing custom hardware for 

ANN’s. Points in favor of hardware implementations are: 

a) Inherent parallelism and connectionist model of ANN’s which find a natural application 

through hardware. General purpose processors operate sequentially. 

b) Simple ANN models require simple, low precision computations which can be performed 

faster on cheap and low precision hardware. Also since hardware is getting cheaper by 

the day, custom hardware can be built to perform complex computations. 

 

Field Programmable Gate Arrays (FPGA) are a type of hardware logic device that have the 

exibility to be programmed like a general-purpose computing platform (e.g. CPU), yet retain 

execution speeds closer to that of dedicated hardware (e.g. ASICs). Traditionally, FPGAs have 

been used to prototype Application Specific Integrated Circuits (ASICs) with the intent of being 

replaced in _nal production by their corresponding ASIC designs. Only in the last decade have 

lower FPGA prices and higher logic capacities led to their application beyond the prototyping 

stage, in an approach known as reconfigurable computing. A question remains concerning the 

degree to which reconfigurable computing has benefited from recent improvements in the state 

of FPGA technologies / tools. This thesis presents a Reconfigurable Architecture for 

Implementing ANNs on FPGAs as a case study used to answer this question. 
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2.1 Comparison between analog and digital implementations of ANN’s 
 

Intuitively analog seems a better choice as it would be better to represent synaptic weights by 

analog quantities. Computational density of analog chips is greater. Complex, non-linear 

functions like multiply, divide and hyperbolic tangent can be performed with a handful of 

transistors. Power required for these computations is less than with digital methods. 

However, people are more familiar with digital design now i.e. analog design is an uncommon 

capability. Most applications comprise of digital systems and a digital neural network will 

provide ease in integration with these systems. 

Analog designs are hardwired and thus inflexible. Digital designs are flexible as in they employ 

part software control, arbitrary precision and reprogammability. This enables them to solve a 

larger part of the problem at the price of reduced performance/cost.

 

Signal interconnection is also a problem. Wire interconnections in silicon are expensive and take 

up more area. The solution has to be multiplexing of connections i.e. multiple synaptic 

connections share the same wire. This adds to the complexity if the design but results in a 

massive reduction in cost. Analog designs are hard to multiplex. 

 

Amadahl’s law states that no matter how many processors are available to execute a subtask, the 

speed of a particular task is roughly proportional to the number of subtasks that have to be 

executed sequentially. Thus a programmable device that accelerates several phases of an 

application offers more benefits than a dedicated device. 

 

2.2 Hardware implementations using FPGAs 

 
This is the most promising method. The structure of FPGA’s is suitable for implementations of 

ANN’s.  

FPGA-based reconfigurable computing architectures are well suited for implementations of 

neural networks as one may exploit concurrency and rapidly reconfigure for weight and topology 

adaptation. All FPGA implementations attempt to exploit the reconfigurability if FPGA’s. 
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Identifying the purpose of reconfiguration sheds light on the different implementation 

approaches. 

1. Prototyping and simulation: FPGA’s can be reconfigured an innumerable number of 

times. This allows rapid prototyping and direct simulation in hardware, which also 

increases the speed of the simulation and can be used to test various ANN 

implementations and learning algorithms. 

2.   Density enhancement: This is the increase in the functional capacity per unit area of 

the chip. Density enhancement can be done in two ways.                                                                              

A) It is possible to time multiplex an FPGA chip for each of the sequential steps in an 

ANN algorithm. Each stage occupies the same entire hardware resource and the 

resource is configured for the stage which is reached. 

B) Dynamic constant folding: In this case the FPGA chip is time multiplexed  for 

each of the ANN circuits that is specialized with a step of constant operands in 

different stages during execution. 

                Both these methods incur a reconfiguration time overhead and are suitable only until a 

certain break even point below which the computation time is much smaller than reconfiguration 

time. 

3. Topology adaptation: Dynamically reconfigurable FPGA’s permit ANN algorithm with 

topology adaptation along with weight adaptation. 

 

The role which a FPGA-based platform plays in neural network implementation, and what 

part(s) of the algorithm it's responsible for carrying out, can be classified into two styles of 

architecture, as either a co-processor or as a stand-alone architecture. When taking on the role of 

a co-processor, a FPGA-based platform is dedicated to offoading computationally intensive tasks 

from a host computer. In other words, the main program is executed on a general-purpose 

computing platform, and certain tasks are assigned to the FPGA-based coprocessor to accelerate 

their execution. For neural networks algorithms in particular, an FPGA-based co-processor has 

been traditionally used to accelerate the processing elements (eg. neurons. 

On the other hand, when a FPGA-based platform takes on the role of a stand-alone architecture, 

it becomes self-contained and does not depend on any other devices to function. In relation to a 

co-processor, a stand-alone architecture does not depend on a host computer, and is responsible 

for carrying out all the tasks of a given algorithm. 
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3.1 A brief introduction to FPGAs 
FPGAs are a form of programmable logic, which offer flexibility in design like software, but 

with performance speeds closer to Application Specific Integrated Circuits (ASICs). 

With the ability to be reconfigured an endless amount of times after it has already been 

manufactured, FPGAs have traditionally been used as a prototyping tool for hardware designers. 

However, as growing die capacities of FPGAs have increased over the years and so has their use 

in reconfigurable computing applications. 

 

FPGA Architecture 

Physically, FPGAs consist of an array of uncommitted elements that can be interconnected in a 

general way, and is user-programmable. According to Brown et al. every FPGA must embody 

three fundamental components (or variations thereof) in order to achieve reconfigurability { 

namely logic blocks, interconnection resources, and I/O cells. Digital logic circuits designed by 

the user are implemented in the FPGA by partitioning the logic into individual logic blocks, 

which are routed accordingly via interconnection resources. Programmable switches found 

throughout the interconnection resources dictate how the various logic blocks and I/O cells are 

routed together. The I/O cells are simply a means of allowing signals to propagate in and out of 

the FPGA for interaction with external hardware. 

Logic blocks, interconnection resources and I/O cells are merely generic terms used to describe 

any FPGA, since the actual structure and architecture of these components vary from one FPGA 

vendor to the next. In particular, Xilinx has traditionally manufactured SRAM-based FPGAs; so-

called because the programmable resources3 for this type of FPGA are controlled by static RAM 

cells. The fundamental architecture of Xilinx FPGAs is shown in Figure 3.1. It consists of a two-

dimensional array of programmable logic blocks, referred to as Configurable Logic Blocks 

(CLBs). The interconnection resources consist of horizontal and vertical routing channels found 

respectively between rows and columns of logic blocks. Xilinx's proprietary I/O cell architecture 

is simply referred to as an Input/Output Block (IOB). 

Note that CLB and routing architectures differ for each generation and family of Xilinx FPGA. 

For example, Figure 3.2 shows the architecture of a CLB from the Xilinx Virtex-E family of 

FPGAs, which contains four logic cells (LCs) and is organized in two similar slices. Each LC 

includes a 4-input look-up table (LUT), dedicated fast carry-lookahead logic for arithmetic 

functions, and a storage element (i.e. a flip-flop). A CLB from the Xilinx Virtex-II family of 
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FPGAs, on the other hand, contains over twice the amount of logic as a Virtex-E CLB. It turns 

out that the Virtex-II CLB contains four slices, each of which contain two 4-input LUTs, carry 

logic, arithmetic logic gates, wide function multiplexers, and two storage elements. As we will 

see, the discrepancies in CLB architecture from one family to another is an important factor to 

take into consideration when comparing the spatial requirements (in terms of CLBs) for circuit 

designs which have been implemented on different Xilinx FPGAs. 

 

 

Figure 3.1: General Architecture of Xilinx 

FPGAs. 

 

 

 

 

 

 

 

 

Figure 3.2: Virtex-E Configurable Logic 

Block  

 

 

 

 

 

 

3.2 Implementation Issues 
FPGA implementations of neural networks can be classified on the basis of: 

1. Learning Algorithm  

2. Signal representation 

3. Multiplier reduction schemes 
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3.2.1 Learning Algorithm 

The type of neural network used in FPGA-based implementations is an important feature used in 

classifying such architectures. The type of neural network applied depends on the intended 

application used to solve the problem at hand. 

 

A. Backpropagation Algorithm 

1. RRANN Architecture by Elderedge 

2. RENCO by Beuchat 

3. ACME by Ferucci and Martin  

4. ECX card by Skrbeck 

 

B. Ontogenic Neural Networks 

1. FAST Architecture by Perez-Uribe. FAST was used to implement three different kinds of 

unsupervised, ontogenic neural networks, adaptive resonance theory (ART), adaptive heuristic 

critic (AHC), and Dyna-SARSA. 

 

C. Cellular Automata based neural networks 

 1. CAM- Brain Machine by de Garris. 

 

D. Modular Neural Networks 

1. REMAP Architecture by Nordstrom. 

 

3.2.2 Signal Representation  

Four common types of signal representations typically seen in ANN h/w architectures are: 

Frequency-based - is categorized as a time-dependent signal representation, since it counts the 

number of analog spikes (or digital 1's depending on h/w medium used) in a given time window 

(i.e. of n clock cycles). It is popularin  

analog hardware implementations. 

 

Spike Train - is categorized as a time- and space-dependent signal representation, since the 

information it contains is based on spacing between spikes (1's) and is delivered in the form of a 

real number (or integer) within each clock cycle. Used in the CBM. 
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Floating-point - is considered to be position-dependent because numerical values are represented 

as strings of digits. Floating-point as a signal representation for FPGA- based (i.e. digital) ANN 

architectures has been deemed as overkill. This is due to the fact that valuable circuit area is 

wasted in providing an over-abundance of range-precision, which is never fully utilized by most 

ANN applications. 

 

 

 

Figure 3.3 Signal Representation 

 

 

 

 

 

Fixed-point - is categorized as yet another position-dependent signal representation. Fixed-point 

is the most popular signal representation used among all the surveyed FPGA-based (i.e. digital) 

ANN architectures. This is due to the fact that fixed-point has traditionally been more area-

efficient than floating-point, and is not as severely limited in range-precision as both, frequency 

and spike-train signal representations 

The issues related to fixed point signal representation are  

1. Overflow and underflow 

2. Convergence rates 

3. Quality of generalization 

One way to help achieve the density advantage of reconfigurable computing over general 

purpose computing is to make the most efficient use of the hardware area available. In terms of 

an optimal range-precision vs area trade-off, this can be achieved by determining the minimum 

allowable precision and minimum allowable range, where their criterion is to minimize hardware 

area usage without sacrificing quality of performance. These two concepts combined can also be 

referred to as the minimum allowable range-precision. Holt and Baker showed that 16-bit fixed-

point was the minimum allowable range-precision for the backpropagation algorithm. However, 
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minimizing range precision (i.e. maximizing processing density) without affecting convergence 

rates is applications-specifc, and must be determined empirically. 

3.2.3 Multiplier Reduction Schemes 

The multiplier has been identified as the most area-intensive arithmetic operator used in FPGA-

based ANNs.  

Use of bit-serial multipliers - This kind of digital multiplier only calculates 

one bit at a time, whereas a fully parallel multiplier calculates all bits simultaneously. 

Hence, bit-serial can scale up to a signal representation of any range-precision, 

while its area-efficient hardware implementation remains static. However, the time vs. area 

trade-off of bit-serial means that multiplication time grows quadratically, with the length of 

signal representation used. Use of pipelining is one way to help compensate for such long 

multiplication times, and increase data throughput. 

 

Reduce range-precision of multiplier - achieved by reducing range-precision of 

signal representation used in (fully parallel-bit) multiplier. Unfortunately, this is not 

a feasible approach since limited range-precision has a negative effect on convergence rates, as 

discussed in previous section. 

 

Signal representations that eliminate the need for multipliers - Certain types of 

signal representations replace the need of multipliers with a less area-intensive logic operator. 

Perez-Uribe considered using a stochastic-based spike train signal his FAST neuron architecture, 

where multiplication of two independent signals could be carried out using a two-input logic 

gate. Nordstrom implemented a variant of REMAP for use with Sparse Distributed Memory 

(SDM) ANN types, which allowed each multiplier to be replaced by a counter preceded by an 

exclusive-or logic gate. Another approach would be to limit values to powers of two, thereby 

reducing multiplications to simple shifts that can be achieved in hardware using barrel shifters. 

Unfortunately, this type of multiplier reduction scheme is yet another example where use of 

limited range-precision is promoted. Such a scheme would jeopardize ANN performance (i.e. 

convergence rates) and should be avoided at all costs. 
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4.1 A brief introduction to ANN 
Artificial neural networks (ANNs) are a form of artificial intelligence, which have been modelled 

after, and inspired by the processes of the human brain. Structurally, ANNs consist of massively 

parallel, highly interconnected processing elements. In theory, each processing element, or 

neuron, is far too simplistic to learn anything meaningful on its own. Significant learning 

capacity, and hence, processing power only comes from the culmination of many neurons inside 

a neural network. The learning potential of ANNs has been demonstrated in different areas of 

application, such as pattern recognition, function approximation/prediction, and robot control 

 
Figure 4.1 The Perceptron Model  

 

Backpropagation Algorithm 

ANNs can be classified into two general types according to how they learn – supervised or 

unsupervised. The backpropagation algorithm is considered to be a supervised learning 

algorithm, which requires a trainer to provide not only the inputs, but also the expected outputs. 

Unfortunately, this places added responsibility on the trainer to determine the correct 

input/output patterns of a given problem a priori. Unsupervised ANNs do not require the trainer 

to supply the expected outputs. 

 

 

 

Figure 4.2 Multilayer Perceptron 
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According to Rumelhart et al. an ANN using the backpropagation algorithm has 

five steps of execution: 

 

Initialization- The following initial parameters have to determined by the ANN trainer a priori: 

• w(s)
kj (n) is defined as the synaptic weight that corresponds to the connection from neuron 

unit j in the (s - 1)th layer, to k in the sth layer of the neural network. This weight was 

calculated during the nth iteration of the backpropagation, where n = 0 for initialization. 

• η is defined as the learning rate and is a constant scaling factor used to control the step 

size in error correction during each iteration of the backpropagation algorithm. Typical 

values of η range from 0.1 to 0.5. 

• θ(s)
k is defined as the bias of a neuron, which is similar to synaptic weight in that it 

corresponds to a connection to neuron unit k in the sth layer of the ANN, but is NOT 

connected to any neuron unit j in the (s - 1)th layer. Statistically, biases can be thought of 

as noise, which better randomizes initial conditions, and increases the chances of 

convergence for an ANN. Typical values of θ(s)
k  are the same as those used for synaptic 

weights w(s)
kj (n) in a given application. 

 

Presentation of Training Examples- Using the training data available, present the ANN with 

one or more epoch. An epoch, as defined by Haykin, is one complete presentation of the entire 

training set during the learning process. For each training example in the set, perform forward 

followed by backward computations consecutively. 

 

Forward Computation- During the forward computation, data from neurons of a lower layer 

(i.e. (s-1)th layer), are propagated forward to neurons in the upper layer (i.e. sth layer) via a 

feedforward connection network. The structure of such a neural network is shown in Figure 4.1, 

where layers are numbered 0 to M, and neurons are numbered 1 to N. The computation 

performed by each neuron during forward computation is as follows: 

 

                                                                      Equation 4.1 

 

 

, where j < k and s = 1; : : : ;M 
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H(s)
k = weighted sum of the kth neuron in the sth layer 

w(s)
kj  = synaptic weight which corresponds to the connection from neuron unit j in the (s - 1)th 

layer to neuron unit k in the sth layer of the neural network  

o(s-1)
j = neuron output of the jth neuron in the (s - 1)th layer 

θ(s)
k = bias of the kth neuron in the sth layer 

 

                      Equation 4.2,  

 

where k = 1; : : : ;N and s = 1; : : : ;M 

o(s)
k = neuron output of the kth neuron in the sth layer 

f(H(s)
k ) = activation function computed on the weighted sum H(s)

k

Note that some sort of sigmoid function is often used as the nonlinear activation 

function, such as the logsig function shown in the following: 

    Equation 4.3 

                    

 

 

 

 

Figure 4.3 The Sigmoid Function  

 

 

 

 

 

Backward Computation- The backpropagation algorithm is executed in the backward 

computation, although a number of other ANN training algorithms can just as easily be 

substituted here. Criterion for the learning algorithm is to minimize the error between the 

expected (or teacher) value and the actual output value that was determined in the Forward 

Computation. The backpropagation algorithm is defined as follows: 

1. Starting with the output layer, and moving back towards the input layer, calculate the 

local gradients, as shown in Equations 4.4., 4.5, and 4.6. For example, once all the local 
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gradients are calculated in the sth layer, use those new gradients in calculating the local 

gradients in the (s -1)th layer of the ANN. The calculation of local gradients helps 

determine which connections in the entire network were at fault for the error generated in 

the previous Forward Computation, an is known as error credit assignment. 

2. Calculate the weight (and bias) changes for all the weights using Equation 4.7. 

3. Update all the weights (and biases) via Equation 4.8. 

 

                   Equation 4.4 

 

 

, where 

ε(s)
k = error term for the kth neuron in the sth layer; the difference between the 

teaching signal tk and the neuron output o(s)
k

δ(s+1)
j = local gradient for the jth neuron in the (s + 1)th layer. 

         Equation 4.5 

 

 

, where f’(H(s)
k) is the derivative of the activation function , which is actually a partial derivative 

of activation function w.r.t net input (i.e. weight sum), or 

 

 

Equation 4.6                  

, where a(s)
k = f(H(s)

k ) = os
k

 

 

Equation 4.7   

, where Δw(s)
kj is the change in synaptic weight (or bias) corresponding to the gradient of error 

for connection from neuron unit j in the (s - 1)th layer, to neuron k in the sth layer. 

 

                                        Equation 4.8 

, where k = 1; : : : ;Ns and j = 1; : : : ;Ns-1

ws
kj (n + 1) = updated synaptic weight (or bias) to be used in the (n + 1)th iteration 
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of the Forward Computation 

Δw(s)
kj (n) = change in synaptic weight (or bias) calculated in the nth iteration of the Backward 

Computation, where n = the current iteration 

w(s)
kj (n) = synaptic weight (or bias) to be used in the nth iteration of the Forward and Backward 

Computations, where n = the current iteration. 

 

 
 

Iteration- Reiterate the Forward and Backward Computations for each training example in the 

epoch. The trainer can continue to train the ANN using one or more epoch until some stopping 

criteria (eg. low error) is met. Once training is complete, the ANN only needs to carry out the 

Forward Computation when used in application. 

 

4.2 Implementation Approaches 
 

Basically when implementing the backpropagation algorithms on FPGAs there are two 

approaches 

1. Non-RTR Approach 

2. RTR Approach 

RTR stands for Run-Time-Reconfiguration.  

 

4.2.1 Non-RTR Approach 

The salient features of this approach are: 

 All the stages of algorithm reside inside the FPGA at once. 

 For the backpropagation algorithm the hardware elements required are adders, 

subtracters, multipliers and transfer function implementers.  

 A finite state machine oversees the sequential execution of the stages using the afore 

mentioned hardware elements. 

 The key design factor is the efficient use of the limited FPGA resources i.e. efficient 

design of the hardware components. 
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Performance enhancement can be achieved through: 

1. Proper selection of parameters like range-precision. 

2.  Efficient design of the hardware components used. 

3.  Pipelining 

 

 1.  Floating point representations have highest range-precision but require the largest area 

on chip.  

 Fixed point is more area efficient and can provide acceptable range-precision.  

Holt and Baker showed that 16-bit fixed-point was the minimum allowable range-precision for 

the backpropagation algorithm. However, minimizing range precision (i.e. maximizing 

processing density) without affecting convergence rates is application-specific, and must be 

determined empirically. 

One challenge in implementing the backpropagation on FPGAs is the sequential nature of 

processing between layers. A major challenge is that pipelining of the algorithm on a whole 

cannot occur during training due to the weight update dependencies of backpropagation, and as a 

result, the utilization of hardware resources dedicated to each of the neural network's layers is 

wasted. However, it's still possible to use fine-grain pipelining in each of the individual 

arithmetic functions of the backpropagation algorithm, which could help increase both, data 

throughput and global clock speeds 

 

Problems with this approach 

 Inefficient use of hardware resources because of the presence of idle circuitry during all 

times. 

 Does not fully justify the use of an FPGA except for prototyping. 

 No scalability in topology. 

 Large simulation times (which is not practical) using conventional HDLs. 

 

 

4.2.2 RTR approach 

 Only the stage in current execution is configured onto the chip. 

 The backpropagation algorithm can be divided into three stages of execution – 

feedforward, backward computation and weight update.   
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Figure 4.4 RTR and NON- RTR approach  

 

Reconfiguration 

FPGA support reconfiguration or programmability but at the cost of reduced performance as 

compared to ASICs. Therefore to justify the use of FPGAs in ANNs we have to exploit this 

reconfigurability. Thus through reconfiguration the functional density of the FPGA is increased.    

Run-time-reconfiguration will involve reprogramming time overhead. For networks with a small 

number of neurons the non RTR implementation is better but for networks with upwards of 23 

neurons the RTR method gives better results.  
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5.1 Introduction to XOR Problem  
The XOR logic function has two inputs and one output. It produces an output only if either one 

or the other of the inputs is on, but not if both are off or both ate on. We can consider this as a 

problem that we want the perceptron to learn to solve: output a 1 if the X is on and Y is off, or if 

Y is on and X is off, otherwise output 0. It appears to be a simple enough problem. The failure of 

the perceptron to successfully solve apparently simple problems such as the XOR one was first 

demonstrated by Minsky and Papert in their influential book Perceptrons.  

The XOR problem demonstrates some of the difficulties associated with learning in multilayer 

perceptrons. Occasionally the network could move in the energy landscape, to cross before 

reaching an actual deeper minimum, but the network has no way of knowing this, since learning 

is accomplished by following the energy function down it the steepest direction, until it reaches 

the bottom of a well, at which point there is no direction to move in order to reduce the energy. 

There are alternative ways to minimize these occurrences:  

If the rate at which the weights are altered is progressively decreased, then the gradient descent 

algorithm is able to achieve a better solution. 

Local minima can be considered to occur when two or more disjoint classes are categorized as 

the same. This amounts to poor internal representation within the 

hidden units, and so adding more units to this layer will allow a better recoding of the inputs and 

lessen the occurrence of these minima. 

 

 
Figure 5.1 The exclusive OR (XOR) problem: points (0,0) and (1,1) are members of class A; 

points (0,1) and (1,0) are members of class B. 
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5.2 Implementation approach 
The XOR Problem was implemented using a 3 layer, 5 neuron, multilayer perceptron model of 

Artificial Neural Network. The following approach was followed: -  

1. The network was initialized and random values were given to the weights ( between -1 

and 1) 

2. The weighted sum of the input values at the hidden neurons was calculated.  

3. The obtained value was run through a hard limiter function.  

4. The same procedure was followed for the output layer using the outputs of the hidden 

layer as the input.  

5. The values for deltas for the output and hidden layer was calculated.  

6. The weights were then updated using the delta values.  

7. The learning parameter, η, was taken as 0.5 
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Figure 5.2 5 Neuron model for XOR Problem 
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5.3 VHDL Program  
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_SIGNED.ALL; 
 
entity xor_nn is 
    Port ( in1 : in std_logic_vector(6 downto 0); 
              in2 : in std_logic_vector(6 downto 0); 
              clk : in std_logic; 
              result7 : out std_logic_vector (6 downto 0); 
              result1 : out std_logic; 
              done : out std_logic; 
              enable : in std_logic); 
end xor_nn; 
 
architecture fsm of xor_nn is 
 
signal macA_mr, macA_md, macB_mr, macB_md : std_logic_vector ( 6 downto 0 ); 
signal macA_en, macB_en : std_logic; 
signal macA_reset, macB_reset : std_logic; 
signal macA_done, macB_done : std_logic;  
signal macA_result, macB_result : std_logic_vector (13 downto 0); 
 
signal in31,in32 : std_logic_vector ( 6 downto 0); 
 
signal actfn_input : std_logic_vector (13 downto 0); 
signal actfn_output : std_logic_vector (6 downto 0); 
signal actfn_en : std_logic; 
 
type ffwd_state is ( s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, 
s16, s17,     
                              s18, s19, sa, sb, sc); 
signal xor_state : ffwd_state; 
 
signal b1,w10,w11,w12,b2,w20,w21,w22,b3,w30,w31,w32 : std_logic_vector ( 6 downto 
0); 
signal in1_tmp, in2_tmp : std_logic_vector ( 6 downto 0 ); 
signal actfn_tmp : std_logic_vector (13 downto 0); 
 
component three_ip_MAC is 
    Port ( 
              mr, md : in std_logic_vector ( 6 downto 0 ); 
              clk : in std_logic; 
              enable : in std_logic; 
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              reset : in std_logic; 
              done : out std_logic; 
              mac_result : out std_logic_vector ( 13 downto 0) 
            ); 
end component; 
 
component activation_function is 
    Port (  
            input : in std_logic_vector(13 downto 0); 
            output : out std_logic_vector(6 downto 0); 
            enable : in std_logic; 
            clk : in std_logic 
            ); 
end component; 
begin 
 
b1<= "0010000"; 
w10 <= "1101000"; 
w11<= "0010000"; 
w12<= "0010000"; 
 
b2<= "0010000"; 
w20 <= "1111000"; 
w21<= "0010000"; 
w22<= "0010000"; 
 
b3<= "0010000"; 
w30 <= "1111000"; 
w31 <= "1100000"; 
w32<= "0010000"; 
 
in1_tmp <= in1; 
in2_tmp <= in2; 
 
actfn_input <= actfn_tmp;  
macA : three_ip_MAC port map ( macA_mr, macA_md, clk, macA_en, macA_reset, 
macA_done,    
                                                    macA_result); 
macB : three_ip_MAC port map ( macB_mr, macB_md, clk, macB_en, macB_reset, 
macB_done,  

macB_result); 
actfn : activation_function port map ( actfn_input, actfn_output, actfn_en, clk); 
 
process (clk, enable) 
variable done_var : std_logic := '0'; 
begin 
if (enable = '1') then 
 if (clk'event and clk = '1' ) then 
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  case xor_state is 
   when s0 => 
    if ( done_var = '0') then 
     macA_reset <= '1'; 
     macB_reset <= '1'; 
     macA_mr <= "0000000"; 
     macB_mr <= "0000000"; 
     macA_md <= "0000000"; 
     macB_md <= "0000000"; 
     in31 <= "0000000"; 
     in32 <= "0000000"; 
     actfn_tmp <= "00000000000000"; 
       xor_state <= s1; 
    end if; 
   when s1 => 
    macA_mr <= b1; 
    macA_md <= w10; 
    macB_mr <= b2; 
    macB_md <= w20; 
    macA_reset <= '0'; 
    macB_reset <= '0'; 
    macA_en <= '1'; 
    macB_en <= '1'; 
    xor_state <= s2; 
   when s2 => 
    if ( macA_done = '1' and macB_done = '1') then 
     macA_en <= '0'; 
     macB_en <= '0'; 
     xor_state <= s3; 
    end if; 
   when s3 => 
    macA_mr <= in1_tmp; 
    macA_md <= w11; 
    macB_mr <= in1_tmp; 
    macB_md <= w21; 
    macA_en <= '1'; 
    macB_en <= '1'; 
    xor_state <= s4; 
   when s4 => 
    if ( macA_done = '1' and macB_done = '1') then 
     macA_en <= '0'; 
     macB_en <= '0'; 
     xor_state <= s5; 
    end if; 
   when s5 => 
    macA_mr <= in2_tmp; 
    macA_md <= w12; 
    macB_mr <= in2_tmp; 
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    macB_md <= w22; 
    macA_en <= '1'; 
    macB_en <= '1'; 
    xor_state <= s6; 
   when s6 => 
    if ( macA_done = '1' and macB_done = '1') then 
     macA_en <= '0'; 
     macB_en <= '0'; 
     actfn_en<= '1'; 
     xor_state <= s7; 
    end if; 
   when s7 => 
    actfn_tmp <= macA_result; 
    xor_state <= sc; 
   when sc => 
    xor_state <= s8; 
   when s8 => 
    in31 <= actfn_output; 
    xor_state <= s9; 
   when s9 => 
    actfn_tmp <= macB_result; 
    xor_state <= sa; 
   when sa => 
    xor_state <= sb; 
   when sb => 
    in32 <= actfn_output; 
    xor_state <= s10; 
   when s10 => 
    actfn_en <= '0'; 
    macA_reset <= '1'; 
    macB_reset <= '1'; 
    xor_state <= s11; 
   when s11 => 
    macA_reset <= '0'; 
    macB_reset <= '0'; 
    macA_mr <= b3; 
    macA_md <= w30; 
    macA_en <= '1'; 
    xor_state <= s12; 
   when s12 => 
    if ( macA_done = '1') then 
     macA_en <= '0'; 
     xor_state <= s13; 
    end if; 
   when s13 => 
    macA_mr <= in31; 
    macA_md <= w31; 
    macA_en <= '1'; 
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    xor_state <= s14; 
   when s14 => 
    if ( macA_done = '1') then 
     macA_en <= '0'; 
     xor_state <= s15; 
    end if; 
   when s15 => 
    macA_mr <= in32; 
    macA_md <= w32; 
    macA_en <= '1'; 
    xor_state <= s16; 
   when s16 => 
    if ( macA_done = '1') then 
     macA_en <= '0'; 
     actfn_en <= '1'; 
     xor_state <= s17; 
    end if; 
   when s17 => 
    actfn_tmp <= macA_result; 
    xor_state <= s18; 
   when s18 => 
    xor_state <= s19; 
    
   when s19 => 
    actfn_en <= '0'; 
    result7 <= actfn_output; 
    if ( actfn_output >= "0001000") then 
     result1 <= '1'; 
    else 
     result1 <= '0'; 
    end if; 
    done <= '1'; 
    done_var := '1'; 
    xor_state <= s0;     
   end case; 
 end if; 
else 
done <= '0'; 
done_var := '0'; 
result1 <= '0'; 
result7 <= "0000000"; 
macA_mr <= "0000000"; 
macB_mr <= "0000000"; 
macA_md <= "0000000"; 
macB_md <= "0000000"; 
in31 <= "0000000"; 
in32 <= "0000000"; 
actfn_tmp <= "00000000000000"; 
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end if; 
end process; 
 
end fsm; 
 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_SIGNED.ALL; 
 
entity three_ip_MAC is 
    Port ( 
           mr, md : in std_logic_vector ( 6 downto 0 ); 
           clk : in std_logic; 
           enable : in std_logic; 
     reset : in std_logic; 
     done : out std_logic; 
           mac_result : out std_logic_vector ( 13 downto 0) 
          ); 
end three_ip_MAC; 
 
architecture fsm of three_ip_MAC is 
 
type states is (init, add_sub, shift, accumulate); 
signal mply_state : states; 
signal count : std_logic_vector (2 downto 0); 
signal tmp_result : std_logic_vector ( 13 downto 0);  
 
begin 
 
 process (clk, enable, reset) 
  variable done_var : std_logic := '0'; 
  variable temp_md : std_logic_vector (7 downto 0) := "00000000"; 
  variable temp_out : std_logic_vector ( 14 downto 0 ) := 
"000000000000000"; 
  variable temp_result : std_logic_vector ( 13 downto 0):= 
"00000000000000"; 
 begin 
 if (reset = '1') then 
  mac_result <= "00000000000000"; 
  temp_result := "00000000000000"; 
  tmp_result <= "00000000000000"; 
 else 
 if(enable = '1') then 
  if (clk'event and clk = '1') then  
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   case mply_state is 
    when init => 
     if (done_var = '0') then 
      temp_out (6 downto 0) := mr; 
      temp_md (6 downto 0) := md; 
      temp_md (7) := md(6); 
      mply_state <= add_sub; 
     else  
      null; 
     end if; 
    when add_sub => 
     if (temp_out(0) = '1') then 
      if (count = "110") then  

temp_out ( 14 downto 7 ) := temp_out ( 14 downto 7 ) - temp_md ( 7 downto 0); 
      else 

temp_out ( 14 downto 7 ) := temp_out ( 14 downto 7 ) + temp_md ( 7 downto 0); 
      end if;   
       else 
      null; 
     end if; 
     mply_state <= shift; 
    when shift => 
     temp_out (13 downto 0) := temp_out (14 downto 1); 
     tmp_result (13 downto 0) <= temp_out (13 downto 0); 
     if (count = "110") then 
      mply_state <= accumulate; 
      done <= '1'; 
      done_var := '1'; 
      temp_out (14 downto 0) := 
"000000000000000"; 
      count <= "000"; 
     else 
      mply_state <= add_sub; 
      count <= count + 1; 
    end if; 
    when accumulate => 
     temp_result := temp_result + tmp_result; 
     mac_result <= temp_result;  
     mply_state <= init; 
   end case;  
  end if; 
 else 
  mply_state <= init; 
  tmp_result <= "00000000000000"; 
  temp_out (14 downto 0) := "000000000000000"; 
  done_var := '0'; 
  done <= '0'; 
  count <= "000"; 
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 end if; 
 
 end if; 
 
 end process; 
 
end fsm; 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_SIGNED.ALL; 
 
 
entity activation_function is 
    Port ( input : in std_logic_vector(13 downto 0); 
           output : out std_logic_vector(6 downto 0); 
           enable : in std_logic; 
     clk : in std_logic 
   ); 
end activation_function; 
 
architecture Behavioral of activation_function is 
 
begin 
 
process ( clk) 
 
begin 
 if (clk'event and clk = '1') then 
  if (enable = '1') then 
   if (input < 0) then 
    output <= "0000000"; 
   else 
    output <= "0010000"; 
   end if; 
  end if; 
 end if; 
 
end process;  
 
 
end Behavioral; 
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