
FPGA IMPLEMENTATION OF ARTIFICIAL NEURAL
NETWORKS

A THESIS SUBMITTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

BACHELOR OF TECHNOLOGY

IN

ELECTRICAL ENGINEERING.

By

Bhaskar Bateja
Roll No. – 10302061

And
Pankaj Sharma

Roll No. – 10302011

Department of Electrical Engineering
National Institute of Technology, Rourkela

FPGA IMPLEMENTATION OF ARTIFICIAL NEURAL
NETWORKS

A THESIS SUBMITTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

 BACHELOR OF TECHNOLOGY

IN

ELECTRICAL ENGINEERING.

By

Pankaj Sharma
Roll No. – 10302011

Under the guidance of

Dr. Pradipta Kumar Nanda

Department of Electrical Engineering
National Institute of Technology, Rourkela

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled “FPGA implementation of artificial neural

networks” submitted by Sri Pankaj Sharma in partial fulfillment of the requirements for

the award of Bachelor of Technoloy Degree in Electrical Engineering at National

Institute of Technology, Rourkela (Deemed University) is an authentic work carried out

by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been any other

University/ Institute for the award of any degree or diploma.

 Dr. P. K. Nanda

 Date: Professor and Head,

 Department of Electrical Engg.

National Institute of Technology

Rourkela - 769008

 i

ACKNOWLEDGEMENT

No thesis is created entirely by an individual, many people have helped to create this

thesis and each of their contribution has been valuable. My deepest gratitude goes to my

thesis supervisor, Dr.P.K.Nanda, Professor, Department of Electrical Engineering, for his

guidance, support, motivation and encouragement through out the period this work was

carried out. His readiness for consultation at all times, his educative comments, his

concern and assistance even with practical things have been invaluable. I would also like

to thank all professors and lecturers, and members of the department of Electrical

Engineering for their generous help in various ways for the completion of this thesis. A

vote of thanks to my fellow students for their friendly co-operation.

Pankaj Sharma
Roll. No. 10302011
Dept. Of Electrical Engineering
NIT Rourkela

 ii

TABLE OF CONTENTS

1. List of Figures iv

2. Introduction 1

3. Survey of hardware implementations of Artificial Neural Networks 3

3.1 Comparison between analog and digital implementations

 of ANN’s 4

2.2 Hardware implementations using FPGAs 4

 3. FPGA implementation issues 6

 3.1 A brief introduction to FPGA’s 7

 3.2 Implementation issues 8

 3.2.1 Learning algorithm 9

 3.2.2 Signal presentation 9

 3.2.3 Multiplier reduction schemes 11

 4. Implementation Approaches 12

 4.1 A brief introduction to ANN 13

 4.2 Implementation Approaches 17

 4.2.1 Non RTR approach 17

 4.2.2 RTR approach 18

 5. Implementation of multilayer ANN for XOR problem 20

 5.1 Introduction to XOR problem 21

 5.2 Implementation Approach 22

 5.3 VHDL program 23

 6. References 31

 iii

LIST OF FIGURES

Figure 3.1: - General architecture of Xilinx FPGAs.

Figure 3.2: - Virtex-E Configurable Logic Block

Figure 3.3: - Signal Representation

Figure 4.1: - The perceptron model

Figure 4.2: - Multilayer perceptron

Figure 4.3: - The sigmoid function

Figure 4.4: - RTR and NON – RTR Approach

Figure 5.1: - The XOR Problem

Figure 5.2: - 5 neuron model for XOR Problem.

 iv

Chapter 1

INTRODUCTION

 1

As the title suggests our project deals with a hardware implementation of artificial neural

networks, specifically a FPGA implementation. During the course of this project we learnt about

ANNs and the uses of such soft computing approaches, FPGAs, VHDL and use of various tools

like Xilinx ISE Project Navigator and ModelSim. As numerous hardware implementations of

ANNs already exist our aim was to come up with an approach that would facilitate topology

evolution of the ANN as well.

The key problem in the simulation of ANN’s is its computational overhead. Networks containing

millions of neurons and ten billion connections, and complex models like spiking neurons with

temporal time course that require convolutions to be computed at each synapse, will challenge

even the fastest computers. Hence there is much interest in developing custom hardware for

ANN’s. Points in favor of hardware implementations are:

a) Inherent parallelism and connectionist model of ANN’s which find a natural application

through hardware. General purpose processors operate sequentially.

b) Simple ANN models require simple, low precision computations which can be performed

faster on cheap and low precision hardware. Also since hardware is getting cheaper by

the day, custom hardware can be built to perform complex computations.

Field Programmable Gate Arrays (FPGA) are a type of hardware logic device that have the

exibility to be programmed like a general-purpose computing platform (e.g. CPU), yet retain

execution speeds closer to that of dedicated hardware (e.g. ASICs). Traditionally, FPGAs have

been used to prototype Application Specific Integrated Circuits (ASICs) with the intent of being

replaced in _nal production by their corresponding ASIC designs. Only in the last decade have

lower FPGA prices and higher logic capacities led to their application beyond the prototyping

stage, in an approach known as reconfigurable computing. A question remains concerning the

degree to which reconfigurable computing has benefited from recent improvements in the state

of FPGA technologies / tools. This thesis presents a Reconfigurable Architecture for

Implementing ANNs on FPGAs as a case study used to answer this question.

 2

Chapter 2

A SURVEY OF HARDWARE

IMPLEMENTATIONS OF ARTIFICIAL

NEURAL NETWORKS

Comparison between analog and digital implementations of ANNs

Hardware implementations using FPGAs

 3

2.1 Comparison between analog and digital implementations of ANN’s

Intuitively analog seems a better choice as it would be better to represent synaptic weights by

analog quantities. Computational density of analog chips is greater. Complex, non-linear

functions like multiply, divide and hyperbolic tangent can be performed with a handful of

transistors. Power required for these computations is less than with digital methods.

However, people are more familiar with digital design now i.e. analog design is an uncommon

capability. Most applications comprise of digital systems and a digital neural network will

provide ease in integration with these systems.

Analog designs are hardwired and thus inflexible. Digital designs are flexible as in they employ

part software control, arbitrary precision and reprogammability. This enables them to solve a

larger part of the problem at the price of reduced performance/cost.

Signal interconnection is also a problem. Wire interconnections in silicon are expensive and take

up more area. The solution has to be multiplexing of connections i.e. multiple synaptic

connections share the same wire. This adds to the complexity if the design but results in a

massive reduction in cost. Analog designs are hard to multiplex.

Amadahl’s law states that no matter how many processors are available to execute a subtask, the

speed of a particular task is roughly proportional to the number of subtasks that have to be

executed sequentially. Thus a programmable device that accelerates several phases of an

application offers more benefits than a dedicated device.

2.2 Hardware implementations using FPGAs

This is the most promising method. The structure of FPGA’s is suitable for implementations of

ANN’s.

FPGA-based reconfigurable computing architectures are well suited for implementations of

neural networks as one may exploit concurrency and rapidly reconfigure for weight and topology

adaptation. All FPGA implementations attempt to exploit the reconfigurability if FPGA’s.

 4

Identifying the purpose of reconfiguration sheds light on the different implementation

approaches.

1. Prototyping and simulation: FPGA’s can be reconfigured an innumerable number of

times. This allows rapid prototyping and direct simulation in hardware, which also

increases the speed of the simulation and can be used to test various ANN

implementations and learning algorithms.

2. Density enhancement: This is the increase in the functional capacity per unit area of

the chip. Density enhancement can be done in two ways.

A) It is possible to time multiplex an FPGA chip for each of the sequential steps in an

ANN algorithm. Each stage occupies the same entire hardware resource and the

resource is configured for the stage which is reached.

B) Dynamic constant folding: In this case the FPGA chip is time multiplexed for

each of the ANN circuits that is specialized with a step of constant operands in

different stages during execution.

 Both these methods incur a reconfiguration time overhead and are suitable only until a

certain break even point below which the computation time is much smaller than reconfiguration

time.

3. Topology adaptation: Dynamically reconfigurable FPGA’s permit ANN algorithm with

topology adaptation along with weight adaptation.

The role which a FPGA-based platform plays in neural network implementation, and what

part(s) of the algorithm it's responsible for carrying out, can be classified into two styles of

architecture, as either a co-processor or as a stand-alone architecture. When taking on the role of

a co-processor, a FPGA-based platform is dedicated to offoading computationally intensive tasks

from a host computer. In other words, the main program is executed on a general-purpose

computing platform, and certain tasks are assigned to the FPGA-based coprocessor to accelerate

their execution. For neural networks algorithms in particular, an FPGA-based co-processor has

been traditionally used to accelerate the processing elements (eg. neurons.

On the other hand, when a FPGA-based platform takes on the role of a stand-alone architecture,

it becomes self-contained and does not depend on any other devices to function. In relation to a

co-processor, a stand-alone architecture does not depend on a host computer, and is responsible

for carrying out all the tasks of a given algorithm.

 5

Chapter 3

FPGA IMPLEMENTATION ISSUES

A brief introduction to FPGAs

Implementation Issues

 6

3.1 A brief introduction to FPGAs
FPGAs are a form of programmable logic, which offer flexibility in design like software, but

with performance speeds closer to Application Specific Integrated Circuits (ASICs).

With the ability to be reconfigured an endless amount of times after it has already been

manufactured, FPGAs have traditionally been used as a prototyping tool for hardware designers.

However, as growing die capacities of FPGAs have increased over the years and so has their use

in reconfigurable computing applications.

FPGA Architecture

Physically, FPGAs consist of an array of uncommitted elements that can be interconnected in a

general way, and is user-programmable. According to Brown et al. every FPGA must embody

three fundamental components (or variations thereof) in order to achieve reconfigurability {

namely logic blocks, interconnection resources, and I/O cells. Digital logic circuits designed by

the user are implemented in the FPGA by partitioning the logic into individual logic blocks,

which are routed accordingly via interconnection resources. Programmable switches found

throughout the interconnection resources dictate how the various logic blocks and I/O cells are

routed together. The I/O cells are simply a means of allowing signals to propagate in and out of

the FPGA for interaction with external hardware.

Logic blocks, interconnection resources and I/O cells are merely generic terms used to describe

any FPGA, since the actual structure and architecture of these components vary from one FPGA

vendor to the next. In particular, Xilinx has traditionally manufactured SRAM-based FPGAs; so-

called because the programmable resources3 for this type of FPGA are controlled by static RAM

cells. The fundamental architecture of Xilinx FPGAs is shown in Figure 3.1. It consists of a two-

dimensional array of programmable logic blocks, referred to as Configurable Logic Blocks

(CLBs). The interconnection resources consist of horizontal and vertical routing channels found

respectively between rows and columns of logic blocks. Xilinx's proprietary I/O cell architecture

is simply referred to as an Input/Output Block (IOB).

Note that CLB and routing architectures differ for each generation and family of Xilinx FPGA.

For example, Figure 3.2 shows the architecture of a CLB from the Xilinx Virtex-E family of

FPGAs, which contains four logic cells (LCs) and is organized in two similar slices. Each LC

includes a 4-input look-up table (LUT), dedicated fast carry-lookahead logic for arithmetic

functions, and a storage element (i.e. a flip-flop). A CLB from the Xilinx Virtex-II family of

 7

FPGAs, on the other hand, contains over twice the amount of logic as a Virtex-E CLB. It turns

out that the Virtex-II CLB contains four slices, each of which contain two 4-input LUTs, carry

logic, arithmetic logic gates, wide function multiplexers, and two storage elements. As we will

see, the discrepancies in CLB architecture from one family to another is an important factor to

take into consideration when comparing the spatial requirements (in terms of CLBs) for circuit

designs which have been implemented on different Xilinx FPGAs.

Figure 3.1: General Architecture of Xilinx

FPGAs.

Figure 3.2: Virtex-E Configurable Logic

Block

3.2 Implementation Issues
FPGA implementations of neural networks can be classified on the basis of:

1. Learning Algorithm

2. Signal representation

3. Multiplier reduction schemes

 8

3.2.1 Learning Algorithm

The type of neural network used in FPGA-based implementations is an important feature used in

classifying such architectures. The type of neural network applied depends on the intended

application used to solve the problem at hand.

A. Backpropagation Algorithm

1. RRANN Architecture by Elderedge

2. RENCO by Beuchat

3. ACME by Ferucci and Martin

4. ECX card by Skrbeck

B. Ontogenic Neural Networks

1. FAST Architecture by Perez-Uribe. FAST was used to implement three different kinds of

unsupervised, ontogenic neural networks, adaptive resonance theory (ART), adaptive heuristic

critic (AHC), and Dyna-SARSA.

C. Cellular Automata based neural networks

 1. CAM- Brain Machine by de Garris.

D. Modular Neural Networks

1. REMAP Architecture by Nordstrom.

3.2.2 Signal Representation

Four common types of signal representations typically seen in ANN h/w architectures are:

Frequency-based - is categorized as a time-dependent signal representation, since it counts the

number of analog spikes (or digital 1's depending on h/w medium used) in a given time window

(i.e. of n clock cycles). It is popularin

analog hardware implementations.

Spike Train - is categorized as a time- and space-dependent signal representation, since the

information it contains is based on spacing between spikes (1's) and is delivered in the form of a

real number (or integer) within each clock cycle. Used in the CBM.

 9

Floating-point - is considered to be position-dependent because numerical values are represented

as strings of digits. Floating-point as a signal representation for FPGA- based (i.e. digital) ANN

architectures has been deemed as overkill. This is due to the fact that valuable circuit area is

wasted in providing an over-abundance of range-precision, which is never fully utilized by most

ANN applications.

Figure 3.3 Signal Representation

Fixed-point - is categorized as yet another position-dependent signal representation. Fixed-point

is the most popular signal representation used among all the surveyed FPGA-based (i.e. digital)

ANN architectures. This is due to the fact that fixed-point has traditionally been more area-

efficient than floating-point, and is not as severely limited in range-precision as both, frequency

and spike-train signal representations

The issues related to fixed point signal representation are

1. Overflow and underflow

2. Convergence rates

3. Quality of generalization

One way to help achieve the density advantage of reconfigurable computing over general

purpose computing is to make the most efficient use of the hardware area available. In terms of

an optimal range-precision vs area trade-off, this can be achieved by determining the minimum

allowable precision and minimum allowable range, where their criterion is to minimize hardware

area usage without sacrificing quality of performance. These two concepts combined can also be

referred to as the minimum allowable range-precision. Holt and Baker showed that 16-bit fixed-

point was the minimum allowable range-precision for the backpropagation algorithm. However,

 10

minimizing range precision (i.e. maximizing processing density) without affecting convergence

rates is applications-specifc, and must be determined empirically.

3.2.3 Multiplier Reduction Schemes

The multiplier has been identified as the most area-intensive arithmetic operator used in FPGA-

based ANNs.

Use of bit-serial multipliers - This kind of digital multiplier only calculates

one bit at a time, whereas a fully parallel multiplier calculates all bits simultaneously.

Hence, bit-serial can scale up to a signal representation of any range-precision,

while its area-efficient hardware implementation remains static. However, the time vs. area

trade-off of bit-serial means that multiplication time grows quadratically, with the length of

signal representation used. Use of pipelining is one way to help compensate for such long

multiplication times, and increase data throughput.

Reduce range-precision of multiplier - achieved by reducing range-precision of

signal representation used in (fully parallel-bit) multiplier. Unfortunately, this is not

a feasible approach since limited range-precision has a negative effect on convergence rates, as

discussed in previous section.

Signal representations that eliminate the need for multipliers - Certain types of

signal representations replace the need of multipliers with a less area-intensive logic operator.

Perez-Uribe considered using a stochastic-based spike train signal his FAST neuron architecture,

where multiplication of two independent signals could be carried out using a two-input logic

gate. Nordstrom implemented a variant of REMAP for use with Sparse Distributed Memory

(SDM) ANN types, which allowed each multiplier to be replaced by a counter preceded by an

exclusive-or logic gate. Another approach would be to limit values to powers of two, thereby

reducing multiplications to simple shifts that can be achieved in hardware using barrel shifters.

Unfortunately, this type of multiplier reduction scheme is yet another example where use of

limited range-precision is promoted. Such a scheme would jeopardize ANN performance (i.e.

convergence rates) and should be avoided at all costs.

 11

Chapter 4

IMPLEMENTATION APPROACHES

A brief introduction to ANN

Implementation Approaches

 12

4.1 A brief introduction to ANN
Artificial neural networks (ANNs) are a form of artificial intelligence, which have been modelled

after, and inspired by the processes of the human brain. Structurally, ANNs consist of massively

parallel, highly interconnected processing elements. In theory, each processing element, or

neuron, is far too simplistic to learn anything meaningful on its own. Significant learning

capacity, and hence, processing power only comes from the culmination of many neurons inside

a neural network. The learning potential of ANNs has been demonstrated in different areas of

application, such as pattern recognition, function approximation/prediction, and robot control

Figure 4.1 The Perceptron Model

Backpropagation Algorithm

ANNs can be classified into two general types according to how they learn – supervised or

unsupervised. The backpropagation algorithm is considered to be a supervised learning

algorithm, which requires a trainer to provide not only the inputs, but also the expected outputs.

Unfortunately, this places added responsibility on the trainer to determine the correct

input/output patterns of a given problem a priori. Unsupervised ANNs do not require the trainer

to supply the expected outputs.

Figure 4.2 Multilayer Perceptron

 13

According to Rumelhart et al. an ANN using the backpropagation algorithm has

five steps of execution:

Initialization- The following initial parameters have to determined by the ANN trainer a priori:

• w(s)
kj (n) is defined as the synaptic weight that corresponds to the connection from neuron

unit j in the (s - 1)th layer, to k in the sth layer of the neural network. This weight was

calculated during the nth iteration of the backpropagation, where n = 0 for initialization.

• η is defined as the learning rate and is a constant scaling factor used to control the step

size in error correction during each iteration of the backpropagation algorithm. Typical

values of η range from 0.1 to 0.5.

• θ(s)
k is defined as the bias of a neuron, which is similar to synaptic weight in that it

corresponds to a connection to neuron unit k in the sth layer of the ANN, but is NOT

connected to any neuron unit j in the (s - 1)th layer. Statistically, biases can be thought of

as noise, which better randomizes initial conditions, and increases the chances of

convergence for an ANN. Typical values of θ(s)
k are the same as those used for synaptic

weights w(s)
kj (n) in a given application.

Presentation of Training Examples- Using the training data available, present the ANN with

one or more epoch. An epoch, as defined by Haykin, is one complete presentation of the entire

training set during the learning process. For each training example in the set, perform forward

followed by backward computations consecutively.

Forward Computation- During the forward computation, data from neurons of a lower layer

(i.e. (s-1)th layer), are propagated forward to neurons in the upper layer (i.e. sth layer) via a

feedforward connection network. The structure of such a neural network is shown in Figure 4.1,

where layers are numbered 0 to M, and neurons are numbered 1 to N. The computation

performed by each neuron during forward computation is as follows:

 Equation 4.1

, where j < k and s = 1; : : : ;M

 14

H(s)
k = weighted sum of the kth neuron in the sth layer

w(s)
kj = synaptic weight which corresponds to the connection from neuron unit j in the (s - 1)th

layer to neuron unit k in the sth layer of the neural network

o(s-1)
j = neuron output of the jth neuron in the (s - 1)th layer

θ(s)
k = bias of the kth neuron in the sth layer

 Equation 4.2,

where k = 1; : : : ;N and s = 1; : : : ;M

o(s)
k = neuron output of the kth neuron in the sth layer

f(H(s)
k) = activation function computed on the weighted sum H(s)

k

Note that some sort of sigmoid function is often used as the nonlinear activation

function, such as the logsig function shown in the following:

 Equation 4.3

Figure 4.3 The Sigmoid Function

Backward Computation- The backpropagation algorithm is executed in the backward

computation, although a number of other ANN training algorithms can just as easily be

substituted here. Criterion for the learning algorithm is to minimize the error between the

expected (or teacher) value and the actual output value that was determined in the Forward

Computation. The backpropagation algorithm is defined as follows:

1. Starting with the output layer, and moving back towards the input layer, calculate the

local gradients, as shown in Equations 4.4., 4.5, and 4.6. For example, once all the local

 15

gradients are calculated in the sth layer, use those new gradients in calculating the local

gradients in the (s -1)th layer of the ANN. The calculation of local gradients helps

determine which connections in the entire network were at fault for the error generated in

the previous Forward Computation, an is known as error credit assignment.

2. Calculate the weight (and bias) changes for all the weights using Equation 4.7.

3. Update all the weights (and biases) via Equation 4.8.

 Equation 4.4

, where

ε(s)
k = error term for the kth neuron in the sth layer; the difference between the

teaching signal tk and the neuron output o(s)
k

δ(s+1)
j = local gradient for the jth neuron in the (s + 1)th layer.

 Equation 4.5

, where f’(H(s)
k) is the derivative of the activation function , which is actually a partial derivative

of activation function w.r.t net input (i.e. weight sum), or

Equation 4.6

, where a(s)
k = f(H(s)

k) = os
k

Equation 4.7

, where Δw(s)
kj is the change in synaptic weight (or bias) corresponding to the gradient of error

for connection from neuron unit j in the (s - 1)th layer, to neuron k in the sth layer.

 Equation 4.8

, where k = 1; : : : ;Ns and j = 1; : : : ;Ns-1

ws
kj (n + 1) = updated synaptic weight (or bias) to be used in the (n + 1)th iteration

 16

of the Forward Computation

Δw(s)
kj (n) = change in synaptic weight (or bias) calculated in the nth iteration of the Backward

Computation, where n = the current iteration

w(s)
kj (n) = synaptic weight (or bias) to be used in the nth iteration of the Forward and Backward

Computations, where n = the current iteration.

Iteration- Reiterate the Forward and Backward Computations for each training example in the

epoch. The trainer can continue to train the ANN using one or more epoch until some stopping

criteria (eg. low error) is met. Once training is complete, the ANN only needs to carry out the

Forward Computation when used in application.

4.2 Implementation Approaches

Basically when implementing the backpropagation algorithms on FPGAs there are two

approaches

1. Non-RTR Approach

2. RTR Approach

RTR stands for Run-Time-Reconfiguration.

4.2.1 Non-RTR Approach

The salient features of this approach are:

 All the stages of algorithm reside inside the FPGA at once.

 For the backpropagation algorithm the hardware elements required are adders,

subtracters, multipliers and transfer function implementers.

 A finite state machine oversees the sequential execution of the stages using the afore

mentioned hardware elements.

 The key design factor is the efficient use of the limited FPGA resources i.e. efficient

design of the hardware components.

 17

Performance enhancement can be achieved through:

1. Proper selection of parameters like range-precision.

2. Efficient design of the hardware components used.

3. Pipelining

 1. Floating point representations have highest range-precision but require the largest area

on chip.

 Fixed point is more area efficient and can provide acceptable range-precision.

Holt and Baker showed that 16-bit fixed-point was the minimum allowable range-precision for

the backpropagation algorithm. However, minimizing range precision (i.e. maximizing

processing density) without affecting convergence rates is application-specific, and must be

determined empirically.

One challenge in implementing the backpropagation on FPGAs is the sequential nature of

processing between layers. A major challenge is that pipelining of the algorithm on a whole

cannot occur during training due to the weight update dependencies of backpropagation, and as a

result, the utilization of hardware resources dedicated to each of the neural network's layers is

wasted. However, it's still possible to use fine-grain pipelining in each of the individual

arithmetic functions of the backpropagation algorithm, which could help increase both, data

throughput and global clock speeds

Problems with this approach

 Inefficient use of hardware resources because of the presence of idle circuitry during all

times.

 Does not fully justify the use of an FPGA except for prototyping.

 No scalability in topology.

 Large simulation times (which is not practical) using conventional HDLs.

4.2.2 RTR approach

 Only the stage in current execution is configured onto the chip.

 The backpropagation algorithm can be divided into three stages of execution –

feedforward, backward computation and weight update.

 18

Figure 4.4 RTR and NON- RTR approach

Reconfiguration

FPGA support reconfiguration or programmability but at the cost of reduced performance as

compared to ASICs. Therefore to justify the use of FPGAs in ANNs we have to exploit this

reconfigurability. Thus through reconfiguration the functional density of the FPGA is increased.

Run-time-reconfiguration will involve reprogramming time overhead. For networks with a small

number of neurons the non RTR implementation is better but for networks with upwards of 23

neurons the RTR method gives better results.

 19

Chapter 5

IMPLEMENTATION OF MULTILAYER
ANN FOR XOR PROBLEM

Introduction to XOR Problem

Implementation Approach

VHDL Program

 20

5.1 Introduction to XOR Problem
The XOR logic function has two inputs and one output. It produces an output only if either one

or the other of the inputs is on, but not if both are off or both ate on. We can consider this as a

problem that we want the perceptron to learn to solve: output a 1 if the X is on and Y is off, or if

Y is on and X is off, otherwise output 0. It appears to be a simple enough problem. The failure of

the perceptron to successfully solve apparently simple problems such as the XOR one was first

demonstrated by Minsky and Papert in their influential book Perceptrons.

The XOR problem demonstrates some of the difficulties associated with learning in multilayer

perceptrons. Occasionally the network could move in the energy landscape, to cross before

reaching an actual deeper minimum, but the network has no way of knowing this, since learning

is accomplished by following the energy function down it the steepest direction, until it reaches

the bottom of a well, at which point there is no direction to move in order to reduce the energy.

There are alternative ways to minimize these occurrences:

If the rate at which the weights are altered is progressively decreased, then the gradient descent

algorithm is able to achieve a better solution.

Local minima can be considered to occur when two or more disjoint classes are categorized as

the same. This amounts to poor internal representation within the

hidden units, and so adding more units to this layer will allow a better recoding of the inputs and

lessen the occurrence of these minima.

Figure 5.1 The exclusive OR (XOR) problem: points (0,0) and (1,1) are members of class A;

points (0,1) and (1,0) are members of class B.

 21

5.2 Implementation approach
The XOR Problem was implemented using a 3 layer, 5 neuron, multilayer perceptron model of

Artificial Neural Network. The following approach was followed: -

1. The network was initialized and random values were given to the weights (between -1

and 1)

2. The weighted sum of the input values at the hidden neurons was calculated.

3. The obtained value was run through a hard limiter function.

4. The same procedure was followed for the output layer using the outputs of the hidden

layer as the input.

5. The values for deltas for the output and hidden layer was calculated.

6. The weights were then updated using the delta values.

7. The learning parameter, η, was taken as 0.5

+1

+1

+1

+1

+1
+1

-2

+1

+1

-0.5

-0.5

-1.5

result1

in2

in1 Σ
Σ

Σ

Figure 5.2 5 Neuron model for XOR Problem

 22

5.3 VHDL Program

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity xor_nn is
 Port (in1 : in std_logic_vector(6 downto 0);
 in2 : in std_logic_vector(6 downto 0);
 clk : in std_logic;
 result7 : out std_logic_vector (6 downto 0);
 result1 : out std_logic;
 done : out std_logic;
 enable : in std_logic);
end xor_nn;

architecture fsm of xor_nn is

signal macA_mr, macA_md, macB_mr, macB_md : std_logic_vector (6 downto 0);
signal macA_en, macB_en : std_logic;
signal macA_reset, macB_reset : std_logic;
signal macA_done, macB_done : std_logic;
signal macA_result, macB_result : std_logic_vector (13 downto 0);

signal in31,in32 : std_logic_vector (6 downto 0);

signal actfn_input : std_logic_vector (13 downto 0);
signal actfn_output : std_logic_vector (6 downto 0);
signal actfn_en : std_logic;

type ffwd_state is (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15,
s16, s17,
 s18, s19, sa, sb, sc);
signal xor_state : ffwd_state;

signal b1,w10,w11,w12,b2,w20,w21,w22,b3,w30,w31,w32 : std_logic_vector (6 downto
0);
signal in1_tmp, in2_tmp : std_logic_vector (6 downto 0);
signal actfn_tmp : std_logic_vector (13 downto 0);

component three_ip_MAC is
 Port (
 mr, md : in std_logic_vector (6 downto 0);
 clk : in std_logic;
 enable : in std_logic;

 23

 reset : in std_logic;
 done : out std_logic;
 mac_result : out std_logic_vector (13 downto 0)
);
end component;

component activation_function is
 Port (
 input : in std_logic_vector(13 downto 0);
 output : out std_logic_vector(6 downto 0);
 enable : in std_logic;
 clk : in std_logic
);
end component;
begin

b1<= "0010000";
w10 <= "1101000";
w11<= "0010000";
w12<= "0010000";

b2<= "0010000";
w20 <= "1111000";
w21<= "0010000";
w22<= "0010000";

b3<= "0010000";
w30 <= "1111000";
w31 <= "1100000";
w32<= "0010000";

in1_tmp <= in1;
in2_tmp <= in2;

actfn_input <= actfn_tmp;
macA : three_ip_MAC port map (macA_mr, macA_md, clk, macA_en, macA_reset,
macA_done,
 macA_result);
macB : three_ip_MAC port map (macB_mr, macB_md, clk, macB_en, macB_reset,
macB_done,

macB_result);
actfn : activation_function port map (actfn_input, actfn_output, actfn_en, clk);

process (clk, enable)
variable done_var : std_logic := '0';
begin
if (enable = '1') then
 if (clk'event and clk = '1') then

 24

 case xor_state is
 when s0 =>
 if (done_var = '0') then
 macA_reset <= '1';
 macB_reset <= '1';
 macA_mr <= "0000000";
 macB_mr <= "0000000";
 macA_md <= "0000000";
 macB_md <= "0000000";
 in31 <= "0000000";
 in32 <= "0000000";
 actfn_tmp <= "00000000000000";
 xor_state <= s1;
 end if;
 when s1 =>
 macA_mr <= b1;
 macA_md <= w10;
 macB_mr <= b2;
 macB_md <= w20;
 macA_reset <= '0';
 macB_reset <= '0';
 macA_en <= '1';
 macB_en <= '1';
 xor_state <= s2;
 when s2 =>
 if (macA_done = '1' and macB_done = '1') then
 macA_en <= '0';
 macB_en <= '0';
 xor_state <= s3;
 end if;
 when s3 =>
 macA_mr <= in1_tmp;
 macA_md <= w11;
 macB_mr <= in1_tmp;
 macB_md <= w21;
 macA_en <= '1';
 macB_en <= '1';
 xor_state <= s4;
 when s4 =>
 if (macA_done = '1' and macB_done = '1') then
 macA_en <= '0';
 macB_en <= '0';
 xor_state <= s5;
 end if;
 when s5 =>
 macA_mr <= in2_tmp;
 macA_md <= w12;
 macB_mr <= in2_tmp;

 25

 macB_md <= w22;
 macA_en <= '1';
 macB_en <= '1';
 xor_state <= s6;
 when s6 =>
 if (macA_done = '1' and macB_done = '1') then
 macA_en <= '0';
 macB_en <= '0';
 actfn_en<= '1';
 xor_state <= s7;
 end if;
 when s7 =>
 actfn_tmp <= macA_result;
 xor_state <= sc;
 when sc =>
 xor_state <= s8;
 when s8 =>
 in31 <= actfn_output;
 xor_state <= s9;
 when s9 =>
 actfn_tmp <= macB_result;
 xor_state <= sa;
 when sa =>
 xor_state <= sb;
 when sb =>
 in32 <= actfn_output;
 xor_state <= s10;
 when s10 =>
 actfn_en <= '0';
 macA_reset <= '1';
 macB_reset <= '1';
 xor_state <= s11;
 when s11 =>
 macA_reset <= '0';
 macB_reset <= '0';
 macA_mr <= b3;
 macA_md <= w30;
 macA_en <= '1';
 xor_state <= s12;
 when s12 =>
 if (macA_done = '1') then
 macA_en <= '0';
 xor_state <= s13;
 end if;
 when s13 =>
 macA_mr <= in31;
 macA_md <= w31;
 macA_en <= '1';

 26

 xor_state <= s14;
 when s14 =>
 if (macA_done = '1') then
 macA_en <= '0';
 xor_state <= s15;
 end if;
 when s15 =>
 macA_mr <= in32;
 macA_md <= w32;
 macA_en <= '1';
 xor_state <= s16;
 when s16 =>
 if (macA_done = '1') then
 macA_en <= '0';
 actfn_en <= '1';
 xor_state <= s17;
 end if;
 when s17 =>
 actfn_tmp <= macA_result;
 xor_state <= s18;
 when s18 =>
 xor_state <= s19;

 when s19 =>
 actfn_en <= '0';
 result7 <= actfn_output;
 if (actfn_output >= "0001000") then
 result1 <= '1';
 else
 result1 <= '0';
 end if;
 done <= '1';
 done_var := '1';
 xor_state <= s0;
 end case;
 end if;
else
done <= '0';
done_var := '0';
result1 <= '0';
result7 <= "0000000";
macA_mr <= "0000000";
macB_mr <= "0000000";
macA_md <= "0000000";
macB_md <= "0000000";
in31 <= "0000000";
in32 <= "0000000";
actfn_tmp <= "00000000000000";

 27

end if;
end process;

end fsm;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity three_ip_MAC is
 Port (
 mr, md : in std_logic_vector (6 downto 0);
 clk : in std_logic;
 enable : in std_logic;
 reset : in std_logic;
 done : out std_logic;
 mac_result : out std_logic_vector (13 downto 0)
);
end three_ip_MAC;

architecture fsm of three_ip_MAC is

type states is (init, add_sub, shift, accumulate);
signal mply_state : states;
signal count : std_logic_vector (2 downto 0);
signal tmp_result : std_logic_vector (13 downto 0);

begin

 process (clk, enable, reset)
 variable done_var : std_logic := '0';
 variable temp_md : std_logic_vector (7 downto 0) := "00000000";
 variable temp_out : std_logic_vector (14 downto 0) :=
"000000000000000";
 variable temp_result : std_logic_vector (13 downto 0):=
"00000000000000";
 begin
 if (reset = '1') then
 mac_result <= "00000000000000";
 temp_result := "00000000000000";
 tmp_result <= "00000000000000";
 else
 if(enable = '1') then
 if (clk'event and clk = '1') then

 28

 case mply_state is
 when init =>
 if (done_var = '0') then
 temp_out (6 downto 0) := mr;
 temp_md (6 downto 0) := md;
 temp_md (7) := md(6);
 mply_state <= add_sub;
 else
 null;
 end if;
 when add_sub =>
 if (temp_out(0) = '1') then
 if (count = "110") then

temp_out (14 downto 7) := temp_out (14 downto 7) - temp_md (7 downto 0);
 else

temp_out (14 downto 7) := temp_out (14 downto 7) + temp_md (7 downto 0);
 end if;
 else
 null;
 end if;
 mply_state <= shift;
 when shift =>
 temp_out (13 downto 0) := temp_out (14 downto 1);
 tmp_result (13 downto 0) <= temp_out (13 downto 0);
 if (count = "110") then
 mply_state <= accumulate;
 done <= '1';
 done_var := '1';
 temp_out (14 downto 0) :=
"000000000000000";
 count <= "000";
 else
 mply_state <= add_sub;
 count <= count + 1;
 end if;
 when accumulate =>
 temp_result := temp_result + tmp_result;
 mac_result <= temp_result;
 mply_state <= init;
 end case;
 end if;
 else
 mply_state <= init;
 tmp_result <= "00000000000000";
 temp_out (14 downto 0) := "000000000000000";
 done_var := '0';
 done <= '0';
 count <= "000";

 29

 end if;

 end if;

 end process;

end fsm;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity activation_function is
 Port (input : in std_logic_vector(13 downto 0);
 output : out std_logic_vector(6 downto 0);
 enable : in std_logic;
 clk : in std_logic
);
end activation_function;

architecture Behavioral of activation_function is

begin

process (clk)

begin
 if (clk'event and clk = '1') then
 if (enable = '1') then
 if (input < 0) then
 output <= "0000000";
 else
 output <= "0010000";
 end if;
 end if;
 end if;

end process;

end Behavioral;

 30

REFERENCES

1. Haykins, Simon , Neural Networks – A comprehensive foundation, Delhi, Pearson

Prentice Hall India

2. Bhaskar, J. A VHDL Primer, Delhi, Pearson Prentice Hall India.

3. Stallings, William, Computer Architecture And Organisation, Delhi, Pearson Prentice

Hall India.

4. Zhu Jihan, Sutton Peter, FPGA Implementations of Neural Networks - a

Survey of a Decade of Progress, School of Information Technology and Electrical

Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.

5. Hammerstrom Dan, Digital VLSI for Neural Networks, Department of Electrical and

Computer Engineering, OGI School of Science and Engineering, Oregon Health and

Science University

6. Eldredge James G, Hutchings Brad L, Density Enhancement of a Neural Network Using

FPGAs and Run Time Reconfiguration, Presented at IEEE Workshop on FPGAs for

Custom Computing Machines Napa, CA, April 10-13, 1994, pg 180-188.

7. Eldredge James G, Hutchings Brad L, RRANN: - The Run Time Reconfiguration

Artificial Neural Network, Presented at IEEE Custom Integrated Circuits Conference,

San Diego, CA, May 1-4,1994, pg 77-80.

8. Gadea Rafael, Cerdá Joaquín, Ballester Franciso, Mocholí Antonio, Artificial Neural

Network Implementation on a single FPGA of a Pipelined On-Line Backpropagation,

ISSS 2000, Madrid, Spain ,2000 IEEE 1080-1082/00.

9. Nichols Kristian Robert, A Reconfigurable Architecture for implementing Artificial

Neural Networks on a FPGA, The Faculty of Graduate Studies,

The University of Guelph

10. Arroyo Ledn Marc A., Castro Arnold Ruiz, Ascencio Rakl R. Leal, An Artificial Neural

Network on a Field Programmable Gate Array as a virtual sensor, 0-7803-5588- 1/99,

1999 IEEE Transactions on Neural Networks.

11. Hadley J. D., Hutchings B. L., Design Methodologies for Partially Reconfigured

Systems, 0-8186-7086-X/95, 1995 IEEE, *This work was supported by ARPA/CSTO

under contract number DABT63-94-C-0085 under a subcontract to National

Semiconductor.

 31

12. Medhat Xiaoguang LI, Areibi Moussa Shawki, Arithmetic formats for implementing

Artificial Neural Networks on FPGAs, School of Engineering, University of Guelph,

Guelph, ON, CANADA, N1G 2W1

13. Botros Naleih M., Arir M. Abdul, Hardware Implementation of an Artificial Neural

Network Using Field Programmable Gate Arrays (FPGA's), 0278-0046/94, 1994 IEEE.

14. Merchant Saumil, Peterson Gregory D., Park Sang Ki, Kong Seong G., FPGA

Implementation of Evolvable Block-based Neural Networks, 2006 IEEE Congress on

Evolutionary Computation, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC,

Canada, July 16-21, 2006, 0-7803-9487-9/06, 2006 IEEE

15. Bemley Jessye, Neural Networks and the XOR Problem, 0-7803-7044-9/01/$10.00 02001

IEEE.

16. Rogers Alan, Keating John G, Shorten Robert, Heffernan Daniel M., Chaotic maps and

pattern recognition – the XOR problem, 0960-0779/02, 2002 Elsevier Science Ltd.

17. Lau Tsz Hei, Implementation of Artificial Neural Network on FPGA Devices,

Department of Computer System Engineering, University of Auckland, New Zealand.

18. Chan Ian D, Implementation of Artificial Neural Network on a FPGA Device,

Department of Electrical and Computer Engineering, University of Auckland, Auckland,

New Zealand.

19. Hernández Miriam Galindo, Ascencio Raúl R. Leal, Galicia Cuauhtemoc Aguilera, The

study of a prototype of a Artificial Neural Network on a Field Programmable Gate Array

as a function approximator, ITESO, Departamento de Electrónica, Sistemas e

Informática, Tlaquepaque, Jalisc, Mexico.

20. Alderighi M., Gummati E.L., Phi V, Sechi G.R, A FPGA-based Implementation of a

Fault-Tolerant Neural Architecture for Photon Identification, FPGA97, Monterey

California USA, 1997 ACM O-89791-801-0/97/02.

 32

 33

	front_cover_pankaj.doc
	By
	Bhaskar Bateja

	inner_cover_pankaj.doc
	By
	Pankaj Sharma
	Under the guidance of
	Dr. Pradipta Kumar Nanda

	Certificate_pankaj.doc
	Acknowledgement_pankaj.doc
	Table of Contents.doc
	LIST OF FIGURES.doc
	Report_final.doc
	Chapter 1
	
	
	
	INTRODUCTION

	REFERENCES.doc

