
Clemson University
TigerPrints

All Theses Theses

7-2008

FPGA ACCELERATION OF A CORTICAL
AND A MATCHED FILTER-BASED
ALGORITHM
Kenneth Rice
Clemson University, krice@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Rice, Kenneth, "FPGA ACCELERATION OF A CORTICAL AND A MATCHED FILTER-BASED ALGORITHM" (2008). All
Theses. 418.
https://tigerprints.clemson.edu/all_theses/418

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268631341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/418?utm_source=tigerprints.clemson.edu%2Fall_theses%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 
 
 
 
 
 

FPGA ACCELERATION OF A CORTICAL AND A MATCHED FILTER-BASED 
ALGORITHM 

 
 

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
Computer Engineering 

 
 

by 
Kenneth Lee Rice 

August 2008 
 
 

Accepted by: 
Tarek Taha Committee Chair 

Robert Schalkoff  
Adam Hoover  

  



 ii 

ABSTRACT 

 

Digital image processing is a widely used and diverse field. It is used in a broad 

array of areas such as tracking and detection, object avoidance, computer vision, and 

numerous other applications. For many image processing tasks, the computations can 

become time consuming. Therefore, a means for accelerating the computations would be 

beneficial. Using that as motivation, this thesis examines the acceleration of two 

distinctly different image processing applications. The first image processing application 

examined is a recent neocortex inspired cognitive model geared towards pattern 

recognition as seen in the visual cortex. For this model, both software and reconfigurable 

logic based FPGA implementations of the model are examined on a Cray XD1. Results 

indicate that hardware-acceleration can provide average throughput gains of 75 times 

over software-only implementations of the networks examined when utilizing the full 

resources of the Cray XD1. The second image processing application examined is 

matched filter-based position detection. This approach is at the heart of the automatic 

alignment algorithm currently being tested in the National Ignition Faculty presently 

under construction at the Lawrence Livermore National Laboratory. To reduce the 

processing time of the matched filtering, a reconfigurable logic architecture was 

developed. Results show that the reconfigurable logic architecture provides a speedup of 

approximately 253 times over an optimized software implementation. 



 iii 

ACKNOWLEDGMENTS 

 
I would like to acknowledge the summer student support at Lawrence Livermore 

Laboratory.  I would like to also acknowledge grants from the Air Force Research 

Laboratory (including the AFRL Information Directorate) and a National Science 

Foundation CAREER award. This work was also supported in part by a grant of 

computer time from the DOD High Performance Computing Modernization Program at 

the Naval Research Laboratory. Most especially, I would like to acknowledge and thank 

Tarek Taha, Abdul Awwal, Christopher Vutsinas, Robert Schalkoff, and Adam Hoover 

for their help and support in this research. 

 



 iv 

TABLE OF CONTENTS 

 

Page 
 

TITLE PAGE....................................................................................................................i 
 
ABSTRACT.....................................................................................................................ii 
 
ACKNOWLEDGMENTS ..............................................................................................iii 
 
LIST OF TABLES..........................................................................................................vi 
 
LIST OF FIGURES .......................................................................................................vii 
 
CHAPTER 
 
 I. INTRODUCTION .........................................................................................1 
 
 II. ACCELERATION OF A NEOCORTEX  
   INSPIRED COGNITIVE MODEL..........................................................4 
 
   Background ..............................................................................................7 
   Implementation ......................................................................................14 
   Experimental Setup................................................................................21 
   Results....................................................................................................25 
   Discussion ..............................................................................................29 
   Summary................................................................................................36 
 
 III. ACCELERATION OF MATCHED FILTER- 
   BASED POSITION DETECTION........................................................38 
 
   Background on Matched Filter-Based  
   Position Detection..................................................................................39 
   Related Works........................................................................................41 
   Automatic Alignment Algorithms .........................................................43 
   FPGA Acceleration of Image Correlation .............................................48 
   Hardware Performance ..........................................................................52 
   Summary................................................................................................53 
 
 IV. CONCLUSION............................................................................................54 
 
REFERENCES ..............................................................................................................56 



 v 

LIST OF TABLES 

 

Table                                                                                                                               Page 
 
 2.1 Networks implemented ................................................................................21 
 
 2.2 Hardware components for the networks accelerated ...................................24 
 
 2.3 FPGA resource utilization............................................................................26 
 
 2.4 Timing components for a single pass through the hardware 
   implementation ......................................................................................29 
 
 2.5 Throughput gain of FPGA accelerated designs over a  
   Software only design utilizing full Cray XD1  
   resources ................................................................................................35 
 
 3.1 Output comparison between C and FPGA implementations  
   for the peak and surrounding four locations ..........................................53 
 



 vi 

 LIST OF FIGURES 

 

Figure                                                                                                                             Page 
 
 2.1 A simplified model of the Bayesian network in  
   George and Hawkins model...................................................................10 
 
 2.2 Belief transfer in the network ......................................................................11 
 
 2.3 Data compression example ..........................................................................15 
 
 2.4 Network structure of model implemented ...................................................16 
 
 2.5 Hardware implementation of a network ......................................................17 
 
 2.6 Processing elements on an FPGA................................................................18 
 
 2.7 State machine diagram for a level 1 node....................................................20 
 
 2.8 Example of image categories .......................................................................22 
 
 2.9 Example of hand drawn input images..........................................................25 
 
 2.10 Average Nodes/(Second)(Core) throughput (τCPU) for  
   one network in the parallel software implementation ...........................27 
 
 2.11 Average Nodes/(Second)(FPGA) throughput (τFPGA) for  
   one network in the parallel hardware implementation ..........................28 
 
 2.12 Nodes/Second throughput for a software implementation 
  utilizing the full Cray XD1 ........................................................................ ..31 
 
 2.13 Nodes/Second throughput of the two hardware  
   implementation cases when utilizing the full Cray XD1.......................34 
 
 3.1 A set of corner-cube reflected pinhole images of various 
   image qualities .......................................................................................44 
 
 3.2 Image of the template used for pinhole images ...........................................44 
 
 3.3 Correlation peak versus template radius ......................................................45 
 



 vii 

List of Figures (Continued) 
 
Figure                                                                                                                             Page 
 
 3.4 Image with 160 pixel radius.........................................................................45 
 
 3.5 Two classes of fiducial patterns with positions identified ...........................46 
 
 3.6 The edge of the image in Figure 3.5 ............................................................47 
 
 3.7 The correlation with circle of the image in Figure 3.5 ................................47 
 
 3.8 The block diagram of the FPGA operations ................................................47 

 
 



CHAPTER ONE 

INTRODUCTION 

 

Digital image processing is a widely used and diverse field. Techniques of digital 

image processing are used in a broad array of areas such as tracking and detection, object 

avoidance, computer vision, and numerous other applications. For a number of image 

processing tasks, the time required to complete the computations can be expensive. 

Therefore, a means for accelerating the computations would be beneficial (for instance to 

help meet real-time requirements). 

Inherent within many digital image processing computations and algorithms is a 

degree of parallelism. The inherent parallelism of these computations points towards a 

hardware solution. Hardware solutions, in particular reconfigurable logic (such as field 

programmable gate arrays (FPGAs)), can be crafted in such a way that they would take 

advantage of the inherent parallelism within the image processing computations. 

Therefore, the motivating factor behind this research is the use of FPGAs to accelerate 

image processing applications. 

This thesis examines two distinctly different image processing applications for 

acceleration. The first image processing application that is examined is a neocortex 

inspired cognitive model. The neocortex is the outer layer of the human/primate brain 

where cognition and learning take place. Recent research in this area has resulted in new 

models for information processing inspired by the neocortex [3,14,19,29]. Several of 

these models are based on hierarchical Bayesian networks and describe the brain as a 



 2 

hierarchical device that computes by performing sophisticated pattern matching and 

sequence prediction. A Bayesian modeling framework incorporates several of the 

properties suggested for the neocortex [16]. These include a hierarchical structure of 

uniform processing elements, invariant representation and retrieval of patterns, auto 

associative recall, and sequence prediction through both feed-forward and feedback 

inference between layers in the hierarchy. 

Large scale versions of these models have the potential for significantly stronger 

inference capabilities than current computing systems [13]. Given the simple 

computation within the nodes of the models, hardware-acceleration of these systems 

holds significant promise to speed up these models. This could enable real-time 

implementations of large scale versions of these models to solve interesting problems. 

This thesis examines the acceleration of a recent neocortex inspired model [14] geared 

towards image recognition. Results indicate that hardware-acceleration can provide 

average throughput gains of 75 times over software-only implementations of the 

networks examined when utilizing the full resources of the Cray XD1. 

The second image processing application examined in this thesis is matched filter-

based position detection. The matched filter-based position detection technique examined 

here is at the heart of the automatic alignment (AA) currently being tested in the National 

Ignition Faculty presently under construction at the Lawrence Livermore National 

Laboratory. The matched filtering being performed here is currently very expensive. To 

reduce the processing time, a hardware solution for the matched filtering would be 

profitable. Therefore, a reconfigurable logic architecture for the matched filtering was 



 3 

developed. This resulted in a speedup of approximately 253 times over a software 

implementation. 

Chapter 2 analyzes the performance scaling of both hardware and software 

implementations of a neocortex inspired cognitive model on a Cray XD1. The Cray XD1 

provides an ideal platform for accelerating large scale versions of these models using 

hardware. This is because a Cray XD1 contains a large number of FPGAs and general 

purpose processors connected through a low latency, high bandwidth communication 

network. Chapter 3 discusses an approach to accelerate matched filter-based position 

detection computations using an FPGA. Chapter 4 concludes the thesis. 



 4 

CHAPTER TWO 

ACCELERATION OF A NEOCORTEX INSPIRED COGNITIVE MODEL 

 

While conventional von Neumann architectures excel at logical applications such 

as spreadsheets, signal processing, and modeling scientific experiments, they generally 

perform quite poorly on cognitive applications. These include tasks such as speech 

recognition, computer vision, textual and image content recognition, robotic control, and 

making sense of massive quantities of data [13]. These cognitive applications are found 

in many domains including national security, medicine, transportation, industry, and 

science. Biological systems excel at these applications largely due to differences in the 

underlying architectures and algorithms utilized compared to traditional computers [4].  

In the human brain, cognition and learning are primarily handled by the 

neocortex. The neocortex is the outer layer of the human/primate brain and consists of a 

fairly uniform structure. Research over the past decade has shed much light into the 

structures and functions of the neocortex [9]. Based on this understanding, several 

mathematical models of the neocortex have been proposed recently [3,14,19,29]. These 

models are significantly different from traditional artificial neural networks. They 

provide insights into the possible workings of the neocortex, and agree with many 

experimental results [9]. The newer models [14, 19] are based on hierarchical Bayesian 

networks and describe the brain as a hierarchical device that computes by performing 

sophisticated pattern matching and sequence prediction. A Bayesian modeling framework 

incorporates several of the properties suggested for the neocortex [16]. These include a 



 5 

hierarchical structure of uniform processing elements, invariant representation and 

retrieval of patterns, auto associative recall, and sequence prediction through both feed-

forward and feedback inference between layers in the hierarchy. 

Large scale versions of these models have the potential for significantly stronger 

inference capabilities than current computing systems [13]. The hierarchical structure of 

uniform computations within the Bayesian models provides scope for large amounts of 

parallelism. The computations within each node of these models are generally quite 

simple. Given the large amounts of inherent parallelism and the simplicity of the nodes in 

these models, hardware implementations allow for a high density of node computations 

to take place in parallel. Therefore hardware-acceleration of these systems holds 

significant promise to speed up these models. This would enable real-time 

implementations of large scale versions of these models to solve interesting problems.  

In this chapter, the performance scaling of both hardware and software 

implementations of a neocortex inspired cognitive model on a Cray XD1 is analyzed. The 

Cray XD1 provides an ideal platform for accelerating large scale versions of these 

models using hardware because it contains a large number of FPGAs and general purpose 

processors connected through a low latency, high bandwidth communication network. 

This enables the investigation of large scale hardware-accelerated implementations of 

neocortex inspired cognitive models, and also a comparison to large scale software 

implementations of the models. The Cray XD1 utilized had 432 dual core 2.0 GHz 

Opteron processors and 144 Virtex II Pro FPGAs (part XC2VP50). The main advantages 

of FPGA implementations are that several components of the cognitive models can be 



 6 

evaluated in parallel, and that specialized hardware components can be designed to speed 

up computation as compared to software implementations.  

The hierarchical Bayesian network model based on the neocortex developed by 

George and Hawkins [14] is accelerated. The model implements invariant pattern 

recognition as seen in the visual cortex using a collection of hierarchically connected 

nodes that perform similar computations. George and Hawkins [14] demonstrate that it 

performs well at recognizing a sequence of objects under various transforms. This model 

serves as the foundation for a commercial design currently being developed by Numenta 

[17] for a range of cognitive applications.  

Several networks of varying complexity based on the George and Hawkins model 

are implemented. From an analysis of the performance of these networks, an estimation is 

made for the throughput of the Cray XD1 for larger networks that would utilize the full 

resources of the system. These larger networks could be network-of-networks, as 

described by Anderson and Sutton [5], where many simple cortical networks are linked 

together to model more complex functions. Results indicate that hardware-acceleration 

can provide average throughput gains of 75 times over software-only implementations of 

the networks examined when utilizing the full resources of the Cray XD1. Preliminary 

results of this study was published in [24]. 



 7 

Background 

 

Hawkins’ Framework 

 

Hawkins presented [16] a theoretical framework describing the processes in the 

neocortex. This is the basis of the model implemented in this chapter. Hawkins describes 

the neocortex as a highly efficient pattern matching device [15] – as opposed to a 

computing engine. The brain learns by storing patterns and recognizes by matching 

incoming sensory data with learned patterns. It can recognize the same pattern under 

different conditions (invariance) much more efficiently than existing computer based 

systems. One example is the ability of the brain to recognize a face under different 

lighting conditions, or from different angles. Another example is the ability of a person to 

catch a ball thrown at him or her without much effort or thought. The brain can determine 

where to position the hand to catch a ball without complex calculations of velocity and 

wind direction. This is because it constantly matches (moment by moment) the ball’s 

movements with observations from the past of other ball throws. The fact that it is able to 

match patterns even though this throw is unique from all previous throws (different ball 

and wind velocities) demonstrates invariant pattern matching. 

It is well known that the neocortex is organized hierarchically and that it consists 

of a uniform computational fabric [10]. Hawkins states that activities in the bottom most 

layers of this hierarchy are performed without need for “conscious thought”. This 

includes regular activities such as walking. Thus patterns that do match in the brain are 



 8 

dealt with at this level. Unknown patterns are sent to higher levels to be dealt with by 

“conscious thought”. An example of this may be walking on a slippery or unfamiliar 

surface.  

After training is complete, most artificial neural networks make decisions without 

using feedback from previous inputs.  Hawkins states that since the inputs to the brain 

vary with time, a model of the brain needs to account for this dynamic input stream. Thus 

a model of the neocortex needs to recognize patterns not only spatially but also 

temporally. This would enable the neocortex model to constantly predict the next input in 

a sequence based on current and past inputs. For instance, if the neocortex model sees the 

inputs A, B, and C, it will predict that the next input will be D. This prediction is 

performed by layers higher in the hierarchy than the input layer. The predictions from the 

higher layers are sent back to the input layer through a series of feedback connections. 

When the future inputs do match the predictions, upper levels of the cortical hierarchy are 

not involved in the pattern analysis (for instance when walking normally, each step 

follows what the brain predicts will happen). In case the prediction does not match the 

input (hence a new input pattern is seen), higher levels of the hierarchy are brought into 

play.  

This idea of feedback and prediction is one of the fundamental components of 

Hawkins’ model. The mathematical model presented in [14] captures many of the 

properties presented by Hawkins in [16]. This model is being enhanced further by 

Numenta Inc. to capture more of the ideas presented in [16]. The main differences 

between this model and traditional artificial neural networks are the role of feedback 



 9 

during recognition (this allows the model to have a temporal aspect in addition to a 

spatial aspect), the hierarchical structure, and the invariant pattern recognition. Other 

studies of large scale cortical models include [1, 4, 18]. Johansson et. al. [18] and 

Ananthanarayanan et. al. [1] are developing large scale models of the neocortex on 

parallel clusters (without hardware-acceleration). Anderson et. al. [4] are designing the 

models for a large scale version of the neocortex based on a network-of-networks. They 

are using a BSB attractor [2] for the cortical model. It is important to note that the current 

understandings of the neocortex are far from complete. Thus the current models of the 

neocortex, even though they match many experimental results, are still highly 

speculative. These models however do perform well in many real world cognitive 

applications, and thus are worth accelerating. 

 

Model 

 

George and Hawkins developed an initial mathematical model of the visual cortex 

[14] based on the framework described above. Their model utilizes a hierarchical 

collection of nodes that employ Pearl’s Bayesian belief propagation algorithm [21]. Each 

node has one parent and multiple children (see Figure 2.1). Image information is fed in as 

input data to the bottom layer of nodes, and after a set of feed-forward and feedback 

belief propagations in the network, a final belief is available at the top level node. This 

belief is a distribution that indicates the degree of similarity between the input and the 

different items the network has been trained to recognize. 



 10 

 

Figure 2.1. A simplified model of the Bayesian network in the George and Hawkins 
model. Input data is fed to the bottom layer of nodes. 

 

The computational algorithm within each node of the model is identical and 

follows equations 1 to 6. Before a node starts computing, it receives belief vectors from 

its parent (π) and children (λ) as shown in Figure 2.2(a). The belief vectors from its 

children are all combined together as shown in equation 1. This combined belief vector 

from the children is then multiplied by an internal probability matrix, Pxu (generated in an 

offline training phase), and the belief vector from the parent (see equation 2). The 

multiplications are carried out element-by-element. A set of belief vectors are then 

generated for the parent and child nodes (equations 3 to 6). These output belief vectors 

are then transmitted to the parent and children of the node as shown in Figure 2.2(b). In 

this study, the implementation shown in [14] is utilized. This consists of three layers of 

nodes. 

 

 

 



 11 

[ ] [ ][ ]inproduct
child

i child iλ = λ∏  (1) 

[ ][ ] [ ] [ ][ ] [ ]xu in xu productF j k j P j k kπ λ= × ×  (2) 

[ ] ( [ ], [ ][ ])row row xum j max m j F j k=  (3) 

[ ] ( [ ], [ ][ ])col col xum k max m k F j k=  (4) 

[ ]
[ ]

[ ]
row

out

in

m j
j

j
λ

π
=  (5) 

[ ]
[ ][ ]

[ ][ ]
col

out

in

m k
child k

child k
π

λ
=  (6) 

 

πin from 

parent

λin from 

children

λout to

parent

πout to 

children

(a) (b)

πin from 

parent

λin from 

children

λout to

parent

πout to 

children

(a) (b)
 

Figure 2.2. Belief transfer in the network (the squares represent computation nodes). (a) 
Gathering beliefs from parent and children nodes before node computation. (b) 

Distribution of beliefs to parents and children nodes after node computation. 
 

Survey of Related Work 

 

This chapter discusses the FPGA based hardware-acceleration of the neocortex 

inspired cognitive model presented in [14]. Although several computational models of the 

neocortex have been developed recently [3,14,19,29], the hardware-acceleration of such 

models is scarce. This study is the first hardware-accelerated implementation of the 



 12 

George and Hawkins model as far as the authors know. FPGA acceleration of visual 

cortex models are seen in [8,12,27]. Torres-Huitzil et al. [27] implemented a bio-inspired 

model of visual perception of motion on an FPGA. Their model considered the 

interactions among the primary visual (V1), the middle temporal (MT), and the middle 

superior temporal (MST) areas of the brain. Their neuron based model with excitatory–

inhibitory connectionist processing for 128x128 images achieved about a 100 times 

speedup over a software implementation on a Pentium 4 processor. Bouganis et. al. [8] 

examined the FPGA acceleration of a visual attention model in the primary visual cortex 

(V1). FPGA acceleration showed a 10 times speedup over a 3.2 GHz Pentium 4 

processor. Furlong et. al. [12] implemented a visual brain circuit architecture (VBCA) on 

an Xilinx Virtex 4 FPGA and on a general purpose CPU. They demonstrated that the 

FPGA implementation gave a performance gain of 62 times over a general purpose CPU 

implementation.  

Several authors have examined the acceleration of neural network processing 

through FPGAs [6,11,22], custom integrated circuits [7,13], and parallel computation 

[1,18]. The FPGA designs in [6,11,22] implemented feed-forward fully connected neural 

networks, while the design implemented in this thesis is a Bayesian network that operates 

through both feed-forward and feedback belief propagations. Atencia et al. [6] presented 

the implementation of Hopfield networks on an FPGA, where the number of inputs into a 

neuron and the number of neurons could be parameterized. Pearson et. al. [22] 

implemented a collection of neural processing elements on an FPGA to emulate leaky-

integrate-and-fire neurons. Their system modeled a tactile sensory system for object 



 13 

recognition and texture discrimination. Gao and Hammerstrom [13] proposed a 

simplified model of the neocortex based on spiking neurons and examined conceptual 

implementations of the model using future CMOS and CMOL technologies. Pournara et 

al. [23] presented an FPGA implementation of a Bayesian network for the reconstruction 

of gene regulatory networks. The objective of their system was to determine the 

connections between different nodes, as opposed to the training weights of each node in a 

pre-connected system. Starzyk et al. [26] proposed a biologically inspired classifier 

geared towards hardware-acceleration. Weinstein et al. [28] presented FPGA acceleration 

of detailed but small scale neural models.  

Several researchers have explored the option of large scale implementations of 

neural networks. Boahen [7] proposed a collection of specialized mix-signal chips that 

would model a million neurons in the cortex at very low power consumption levels. 

Initial implementations of this work looking at the networking between components are 

presented in [20]. As an alternative approach for large scale modeling of neurons, 

Johansson et. al. [18] presented a parallel software-only implementation of spiking neural 

networks. They utilized a cluster of 442 dual Xeon processor based systems for their 

implementation and are able to model a mouse sized cortex. Ananthanarayanan and 

Modha [1] used a computationally efficient cortical simulator on a 32,765 processor 

BlueGene/L supercomputer to simulate a rat-scale cortical model based on spiking neural 

networks.  

 

 



 14 

Implementation 

 

Both parallel hardware-accelerated and software implementations on a Cray XD1 

of the neocortex inspired cognitive model proposed by George and Hawkins [14] were 

developed. This platform consisted of 144 Xilinx Virtex II Pro FPGAs (part XC2VP50), 

6 Xilinx Virtex 4 FPGAs, and 864 AMD Opteron 2.0 GHz cores (432 dual core 

processors). Each FPGA has access to high speed off-chip SRAM banks. On this system, 

a large network of nodes would be distributed across a set of processors and each 

processor would be able to take advantage of an FPGA for hardware-acceleration.  

 

Data Optimizations 

 

The data format and storage for the algorithm were optimized to accelerate the 

node computations. The computations listed in equations 1-6 are element-by-element 

matrix multiplications (as opposed to dot-products) and divisions. Hence there are no 

additions or subtractions needed. Thus to simplify the hardware implementation of the 

algorithm, a fixed point logarithm data representation is utilized instead of a floating 

point format. This enables the computations to be implemented using fast, highly 

efficient integer adders instead of slow, area consuming floating point multipliers and 

dividers. It also makes the nodes smaller and faster, thus allowing more nodes to be 

implemented in parallel and running at higher speeds on an FPGA. Utilizing smaller bit 

widths reduce the amount of logic necessary per node. As shown in [25], a bit width of 



 15 

16 was shown to have sufficient accuracy for this model and is therefore utilized in this 

study. 

The probability matrix (Pxu), utilized in equation 2, for the node computations is 

large and sparse. In the networks described in [14], these matrices had dimensions of 

139×744 and 744×91 for the level 1 and 2 nodes respectively, with about 97% zeros. 

Given that the matrix operations in equations 1-6 are element-by-element, the Pxu matrix 

is accessed sequentially in the implementation of equation 2. Given also that the outcome 

of equation 2 is a zero when Pxu[j][k] is zero, a significant fraction of computations can 

be avoided by encoding a string of zeros in this matrix. This implementation used a 

modified version of run-length encoding where only a string of consecutive zeros was 

encoded as a single zero followed by a number indicating the total number of consecutive 

zeros (as shown in Figure 2.3) to compress the matrix. This reduces memory storage 

requirements and speeds up the node computations. 

Both the hardware-accelerated and software implementations utilized compressed 

Pxu matrices, while the fixed point logarithm data representation was used only in the 

hardware-accelerated implementation (primarily since floating point calculations are very 

expensive in FPGAs). The software implementation utilized a floating point data 

representation. 

0002

1000

8000

0001

1  0  6  8  0  3  1  2  0  3
Compression

0002

1000

8000

0001

1  0  6  8  0  3  1  2  0  31  0  6  8  0  3  1  2  0  3
Compression

 

Figure 2.3. Data compression example. 

 



 16 

Software Implementation 

 

The software implementation of the model was developed in C and utilized MPI 

for communication between processors. The software implementation was accelerated by 

compressing each node’s training matrix (Pxu). The models implemented have three 

levels of nodes (see Figure 2.4). Each level 2 node has four level 1 node children, while a 

level 3 node has all the level 2 nodes as children. In this design, the amount of 

communication between level 1 and level 2 nodes is significantly higher than between 

level 2 and level 3 nodes. This is because the π and λ belief vectors sent between the level 

1 and level 2 nodes are larger, and there are more level 1 nodes than level 3 nodes 

connected to each level 2 node. In order to localize the heavier communication between 

nodes, each level 2 node and its four level 1 node children was grouped together (as 

shown by the boxed region in Figure 2.4) and partitioned the design based on these 

groupings.  

Level 1

Level 3

Level 2

Level 1

Level 3

Level 2

 

Figure 2.4. Network structure of model implemented. The box represents a grouping of 
nodes. The networks were partitioned based on this grouping. 

 

 

 

 



 17 

Hardware Implementation 

 

Each of the nodes in the network was implemented using a state machine. A 

similar grouping of nodes as in the software implementation was utilized – a level 2 node 

and its four level 1 children were grouped to form a processing element (PE). As shown 

in Figure 2.5, multiple processing elements can be placed on an FPGA, while a collection 

of FPGAs can operate in parallel. In this study, the level 3 node was implemented on a 

separate AMD processor (for the rest of this work this thesis refers to this as the root 

processor). Additional AMD processors (which this thesis calls host processors) were 

used as hosts to the FPGAs and acted as communications bridges between the nodes 

implemented on the FPGAs and the level 3 node implemented on the root processor. MPI 

was utilized for the communication between the root and host processors.  

 

Level 3

node

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

FPGA

PE

PE

FPGA

PE

PE

FPGA

PE

PE

FPGA

PE

PE

Level 1 

and 

level 2 

nodes

AMD Root 

Processor
Level 3

node

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

AMD Host 

Processor

FPGA

PE

PE

FPGA

PEPE

PEPE

FPGA

PEPE

PEPE

FPGA

PE

PE

FPGA

PEPE

PEPE

FPGA

PE

PE

FPGA

PEPE

PEPE

Level 1 

and 

level 2 

nodes

AMD Root 

Processor

AMD Root 

Processor

AMD Root 

Processor

 

Figure 2.5. Hardware implementation of a network. 

 



 18 

Figure 2.6 illustrates the connections between a collection of processing elements 

on an FPGA and shows the components within each processing element. Each processing 

element consists of a group of node state machines (four level 1 and one level 2 node) 

that are connected together through buffers. The buffers contain the λ and π belief vectors 

exchanged between nodes and are implemented using the FPGA’s on-chip block RAM 

units. The internal data needed by the nodes (Pxu, mrow, and mcol) are also contained in 

block RAMs. The host processor sends the λ inputs to the level 1 nodes. It also sends the 

π inputs and receives λ outputs of the level 2 nodes. 

  

Level 2 

node

Interface Logic

To AMD Host Processor

λ / π

λ / π

λ / π

λ / π

λ / π

λ

λ

λ

λ

λ / π

λ / π

λ / π

λ / π

λ / π

λ

λ

λ

λ

PE

PE

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 2 

node

Level 2 

node

Interface Logic

To AMD Host Processor

λ / π

λ / π

λ / π

λ / π

λ / π

λ

λ

λ

λ

λ / π

λ / π

λ / π

λ / π

λ / π

λ

λ

λ

λ

PE

PE

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 1 

node

Level 2 

node

 

Figure 2.6. Processing elements on an FPGA. 



 19 

The computations within each node as defined by equations 1 to 6, along with the 

optimizations listed in section 3.1, can be captured in a state machine. Given that nodes in 

different layers may have variations in the number of parent and children nodes, their 

state machines may also differ slightly. Figure 2.7 shows the state machine that describes 

the behavior of the level 1 nodes. The node state machines consist of three phases: 

Phase 1: This is an initialization phase. The block RAMs holding the mrow and 

mcol outputs of equations 3 and 4 are initialized. These two arrays hold the maximum 

value of the rows and columns of the Fxu matrix respectively. Each level 2 node has 

multiple level 1 node children. Therefore, for this node, equation 1 is implemented, 

where the different λin beliefs are combined to form λproduct.  

Phase 2: In the second phase, equations 2-4 are evaluated. This amounts to 

generating the Fxu matrix and storing the maximum of the rows and columns of this 

matrix in the mrow and mcol arrays. The entire Fxu matrix is never stored. Instead, as each 

value in the Fxu matrix is generated, it is compared against the appropriate element of the 

mrow and mcol arrays and is stored if the maximum value is encountered.  

Phase 3: In the last phase, equations 5 and 6 are evaluated. The outgoing λ and π 

beliefs are calculated from the mcol and mrow arrays generated in the previous phase. Note 

that level 1 nodes do not need to compute π values as they do not have any children.  

In Figure 2.7, equation 2 is evaluated in the “FXU Computation” state, equation 3 

in the “Write Max Row” state, and equation 5 in the “Write λout” state. In a level 2 state 

machine, additional states would be needed for equation 1 (in phase 1), equation 4 (in 

phase 2), and equation 6 (in phase 3).   



 20 

Put Zero In Max_Row

mrow[row_ind]=Zero

Put Zero In Max_Row

mrow[row_ind]=Zero

Inc Max Row

row_ind += 1

Inc Max Row

row_ind += 1

Restart Row Ind

row_ind = 0

Restart Row Ind

row_ind = 0

PXU

pxu_val = Pxu[ind]

PXU

pxu_val = Pxu[ind]

Finished Comp

finished_mr = 1

start_ λout= 1

ind = 0

Finished Comp

finished_mr = 1

start_ λout= 1

ind = 0

New Row Ind

col_ind = 0

row_ind += 1

New Row Ind

col_ind = 0

row_ind += 1

Inc Ind

Ind += 1

Inc Ind

Ind += 1

Skip

skip = 1

Skip

skip = 1

Zero

col_ind = col_ind + pxu_val

skip = 0

Zero

col_ind = col_ind + pxu_val

skip = 0

Reset

Initialize Variables

Reset

Initialize Variables

Inc Row Ind

row_ind += 1

Inc Row Ind

row_ind += 1

Dec Col Ind

col_ind = col_ind –

COL_SIZE

Dec Col Ind

col_ind = col_ind –

COL_SIZE

New Col Ind

col_ind = col_ind + 

COL_SIZE

New Col Ind

col_ind = col_ind + 

COL_SIZE

FXU Computation

fxu_val = λin[row_ind] + 

πin[col_ind] + pxu_val

FXU Computation

fxu_val = λin[row_ind] + 

πin[col_ind] + pxu_val

Write Max Row

mrow[row_ind] = 

fxu_val

Write Max Row

mrow[row_ind] = 

fxu_val
Inc Col Ind

col_ind += 1

Inc Col Ind

col_ind += 1

Write λout

λout[row_ind] =

mrow [row_ind] – πin[col_ind]

Write λout

λout[row_ind] =

mrow [row_ind] – πin[col_ind]

Start λout

row_ind = 0

Start λout

row_ind = 0

Finished λout

finished_ λout= 1

Finished λout

finished_ λout= 1

Update Row Ind

row_ind += 1

Update Row Ind

row_ind += 1

start_mr = 1 

finished_mr = 0

start_mr = 1 

finished_mr = 0

col_ind > -1col_ind > -1

pxu_val = ZEROpxu_val = ZERO

skip = 1skip = 1

Mrow[row_ind] < fxu_valMrow[row_ind] < fxu_val

start_ λout = 1start_ λout = 1

row_ind < ROW_SIZErow_ind < ROW_SIZE

Yes

Yes

Yes

No

No

No

No

Yes

row_ind >= ROW_SIZErow_ind >= ROW_SIZE

row_ind =ROW_SIZE

col_ind =COL_SIZE

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Start

Phase 1

Phase 2

Phase 3

Put Zero In Max_Row

mrow[row_ind]=Zero

Put Zero In Max_Row

mrow[row_ind]=Zero

Inc Max Row

row_ind += 1

Inc Max Row

row_ind += 1

Restart Row Ind

row_ind = 0

Restart Row Ind

row_ind = 0

PXU

pxu_val = Pxu[ind]

PXU

pxu_val = Pxu[ind]

Finished Comp

finished_mr = 1

start_ λout= 1

ind = 0

Finished Comp

finished_mr = 1

start_ λout= 1

ind = 0

New Row Ind

col_ind = 0

row_ind += 1

New Row Ind

col_ind = 0

row_ind += 1

Inc Ind

Ind += 1

Inc Ind

Ind += 1

Skip

skip = 1

Skip

skip = 1

Zero

col_ind = col_ind + pxu_val

skip = 0

Zero

col_ind = col_ind + pxu_val

skip = 0

Reset

Initialize Variables

Reset

Initialize Variables

Inc Row Ind

row_ind += 1

Inc Row Ind

row_ind += 1

Dec Col Ind

col_ind = col_ind –

COL_SIZE

Dec Col Ind

col_ind = col_ind –

COL_SIZE

New Col Ind

col_ind = col_ind + 

COL_SIZE

New Col Ind

col_ind = col_ind + 

COL_SIZE

FXU Computation

fxu_val = λin[row_ind] + 

πin[col_ind] + pxu_val

FXU Computation

fxu_val = λin[row_ind] + 

πin[col_ind] + pxu_val

Write Max Row

mrow[row_ind] = 

fxu_val

Write Max Row

mrow[row_ind] = 

fxu_val
Inc Col Ind

col_ind += 1

Inc Col Ind

col_ind += 1

Write λout

λout[row_ind] =

mrow [row_ind] – πin[col_ind]

Write λout

λout[row_ind] =

mrow [row_ind] – πin[col_ind]

Start λout

row_ind = 0

Start λout

row_ind = 0

Finished λout

finished_ λout= 1

Finished λout

finished_ λout= 1

Update Row Ind

row_ind += 1

Update Row Ind

row_ind += 1

start_mr = 1 

finished_mr = 0

start_mr = 1 

finished_mr = 0

col_ind > -1col_ind > -1

pxu_val = ZEROpxu_val = ZERO

skip = 1skip = 1

Mrow[row_ind] < fxu_valMrow[row_ind] < fxu_val

start_ λout = 1start_ λout = 1

row_ind < ROW_SIZErow_ind < ROW_SIZE

Yes

Yes

Yes

No

No

No

No

Yes

row_ind >= ROW_SIZErow_ind >= ROW_SIZE

row_ind =ROW_SIZE

col_ind =COL_SIZE

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Start

Phase 1

Phase 2

Phase 3

 

Figure 2.7. State machine diagram for a level 1 node. The diagram is separated into three 
phases. 



 21 

In the model presented in [14], all values in the entire system are either zero or 

positive. In the hardware implementation, zeros are represented by the smallest number 

given the data bit width (in logarithmic form, this would be the negative number with the 

highest absolute value possible). To prevent error propagation from this zero 

representation, control statements were added to the state machine to check if any of the 

operands are the log of zero. If this is the case, the result is also set to the log of zero.  

 

Experimental Setup 

 
Network Configurations 

 

In order to evaluate the parallel hardware and software implementations of the 

George and Hawkins neocortex inspired model, four networks of varying size and 

complexity were examined. The overall network structure was kept similar to the design 

in [14], with three layers of nodes per network and each level 2 node having four level 1 

children. The level 1 and 2 nodes were arranged in a square matrix form (as shown in 

Figure 2.1). Table 2.1 lists details about each of the networks examined, including the 

number of nodes implemented in each network (nodesNET) and the input image size. 

Table 2.1. Networks implemented. 

Nodes Implemented (nodesNET) 
Network parameter 

181 321 501 721 

Level 3 nodes 1 1 1 1 

Level 2 nodes 36 64 100 144 

Level 1 nodes 144 256 400 576 

Input image size 48x48 64x64 80x80 96x96 

Images per Category 4 6 6 6 



 22 

The networks were trained using the images and training algorithm described in 

[14]. For the networks examined, the input image size (listed in Table 2.1) is determined 

based on each level 1 node using a 4x4 pixel patch from the input image. Table 2.1 also 

lists the number of images per image category for each network. Each image category 

represents a different object for the networks to classify. Within each category, several 

variations of the object, such as width and/or height, are used for training. 76 of the 91 

binary image categories used in [14] was utilized. The George and Hawkins design 

contained two images in each image category. As the networks that were trained are 

larger than the ones in [14], larger images with more images per category were generated. 

This is to reflect the increased complexity that would be seen in larger networks. Figure 

2.8 shows some example training images from 2 different image categories and examples 

of different image variations within each of the categories. 

 

Ladder 2

Ladder 1 Window 1

Window 2

Ladder Window

Ladder 2

Ladder 1 Window 1

Window 2

Ladder Window

 

Figure 2.8. Example of image categories. Two image categories are shown (ladder and 
window) with two example images for each category. 



 23 

The images for these networks were created by scaling the images from the 32x32 

images in [14]. While scaling, the single pixel wide straight line characteristic seen in 14 

was maintained. This enabled maximum network recognition capability.  Increasing the 

number and size of images within an image category increases the complexity of the Pxu 

training matrix for the nodes in the networks. This also increases the computation time 

for each node. A collection of hand drawn images were used to test the systems. In order 

to allow the beliefs to stabilize, five passes through the network were used to analyze 

each input image. 

 

Setup 

 

The hardware-accelerated implementation on the Cray XD1 utilized on-chip 

FPGA memory exclusively for the processing elements. The training Pxu matrix for each 

node was large even after compression, thus making the processing elements memory-

constrained as opposed to logic-constrained. For instance, in the 321 node network 

implementation, each node consumed 40% of the block RAM (BRAM), but only 10% of 

the logic. The number of processing elements that can be placed on a single FPGA 

(PEFPGA) is determined by the memory utilization of each processing element (as shown 

in equation 7). To exclude partial processing elements, equation 7 needs to be rounded 

down. The Xilinx Virtex II Pro FPGAs (part number XCVP50) on the Cray XD1 contained 

232 18Kb block RAMs and 23,616 logic slices. 



 24 

   

   
FPGA

BRAMs units per FPGA
PE

BRAMs units per PE
=

 
  

 (7) 

Table 2.2 shows the composition of the hardware-accelerated implementations of 

the networks. The number of processing elements needed to implement each network 

(NPE) is determined by the number of level 2 nodes. The number of AMD processing 

cores needed (num_proc) is determined by the number of host processors acting as 

communication bridges plus the root processor implementing the level 3 node. Given that 

each FPGA requires one host processor, the number of level 2 nodes divided by PEFPGA 

plus the level 3 root processor gives num_proc (as shown in equation 8).  

(  2 )
_ 1

FPGA

Level nodes
num proc

PE
= +

 
 
 

 (8) 

 

Table 2.2. Hardware components for the networks accelerated. 

Network Size (nodesNET) 
Hardware Component 

181 321 501 721 

Number of processing elements 
(NPE) 

36 64 100 144 

Processing elements per FPGA 
(PEFPGA) 

2 2 2 2 

Number of processing cores 

(num_proc) 
19 33 51 73 

 

Large scale networks running on the full Cray XD1 would utilize a fixed number 

of processors. Therefore in the software implementation, the number of processing cores 

was restricted to five for all the networks examined. The level 3 node was executed on 

the root processor, while the lower level processors ran the network partitions shown in 

Figure 2.4. Each partition consisted of a level 2 node and its corresponding four level 1 



 25 

children. The software implementation utilized the algorithm optimizations listed in 

section 3.1 (except for the fixed point logarithmic data format).  

 

Results 

 

The functionality of the parallel hardware implementation  was verified against 

the software implementation using a variety of hand drawn input images. In order to test 

the invariance pattern recognition capability of the system, the input images were 

distorted by addition of noise, changes in size, horizontal and vertical translation, and 

shape variation (see Figure 2.9). In all cases, the hardware systems produced the same 

order of beliefs for the training images as the software systems.  

 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(a) (b)

(c) (d)  

Figure 2.9. Example of hand drawn input images. Shows: (a) standard image, (b) size 
distortion, (c) noise distortion, and (d) translation. 

 



 26 

To examine the worst case performance of hardware-accelerated systems, timing 

results for the slowest processing element for the networks was obtained. The system 

utilization of the FPGA with the largest processing elements in the networks is shown in 

Table 2.3 (these are generally also the slowest processing elements). The memory 

utilization of the larger networks increased because of the added complexity of the Pxu 

training matrices within the nodes of the networks. All the networks ran at 138 MHz.  

Table 2.3. FPGA resource utilization. 

Network Size (nodesNET) Resource 
Utilization 181 321 501 721 

Logic 21% 22% 22% 22% 

Memory 77% 85% 91% 91% 

 

The performance of these networks was measured using a nodes per second 

throughput (τ) performance measure. To enable performance scaling analysis between the 

software and hardware implementations, comparisons between the throughput per 

processing core (τCPU) and the throughput per FPGA (τFPGA) are made. These terms are 

calculated in equations 9 and 10 respectively. These equations are based the number of 

nodes in the entire network implemented (nodesNET), the time to complete one pass 

through a network (TSP), and the number of processing cores (num_proc) or FPGAs 

(num_FPGA) used for implementing the networks. Figure 2.10 shows the throughput per 

processing core for the networks using the software implementation while Figure 2.11 

shows the throughput per FPGA for the hardware implementation. In both of these 

figures, the throughput decreases as the complexity of the nodes increase for the larger 



 27 

networks. This shows a throughput gain of approximately 123 on average per FPGAs 

over each processing core for the networks implemented.  

_
NET

CPU

SP

nodes

T num proc
τ =

×
 (9) 

_
NET

FPGA

SP

nodes

T num FPGA
τ =

×
 (10) 

In order to simplify the analysis, the software portion of the network (the root 

processor running the level 3 node computation) is included in the FPGA throughput. 

This adds a very small increment to the FPGA throughput measure, given that there is 

only one level 3 node in the networks examined (this amounts to less than 1% of the 

overall nodes). This simplifies the analysis of scaling the FPGA implementation on the 

Cray XD1 since the system is reconfigurable logic-constrained.   

 

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800

Network Size

τ C
P

U

 

Figure 2.10. Average Nodes/(Second)(Core) throughput (τCPU) for one network in the 
parallel software implementation. 

 



 28 

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800

Network Size

τ F
P

G
A

 

Figure 2.11. Average Nodes/(Second)(FPGA) throughput (τFPGA) for one network in the 
parallel hardware implementation. 

 

To predict the performance of other FPGA configurations for a scaling analysis, it 

is essential to examine the timing components in the FPGA designs implemented. 

Therefore, the time for one pass through a fully parallel hardware-accelerated network 

(TSP) can be broken down into the following four parts: 

TPE – The time required for the level 1 nodes and connected level 2 node 

computation in one processing element on the FPGA. 

DL1 - The average time per pass for the host processor to send the λin belief 

vectors to the level 1 nodes in a processing element implemented on an FPGA. These 

vectors need to be sent only once per image. Given that five passes are performed per 

image, the level 1 λin belief vectors are sent only once every five passes. Therefore DL1 is 

one fifth of the actual communication time to send the vectors.  

DL2 – The average time for transferring the level 2 λout and πin belief vectors 

between the FPGA and the host processor. These vectors have to be sent during each 

pass. 



 29 

TMPI_ROOT – This term accounts for: a) the MPI communication time between all 

the FPGA host processors and the root processor implementing the level 3 node during 

one pass through a network, and b) the time to compute the level 3 node belief on the root 

processor. 

Table 2.4 lists these timing breakdowns as percentages for one entire pass through 

the different hardware-accelerated networks. The processing element computations can 

be performed in parallel, whereas the host processor to FPGA communications (the 

components contributing to DL1 and DL2) cannot be parallelized for a single FPGA. 

Table 2.4. Timing components for a single pass through the hardware implementation. 

Network Size (nodesNET) Timing 
Component 181 321 501 721 

DL1 1.10% 1.03% 0.94% 0.93% 
DL2 10.46% 10.14% 9.42% 9.51% 

TMPI_ROOT 3.52% 5.04% 6.44% 8.74% 
TPE 84.92% 83.79% 83.20% 80.82% 

 

Discussion 

 

To solve interesting problems, larger networks than those in Table 2.1 would be 

needed. As described in [5], these larger networks could be developed as a network-of-

networks built using the networks listed in Table 2.1. In such a system, all the networks 

would operate in parallel [5]. This section examines the potential performance of large 

networks utilizing the full resources of the Cray XD1 based on the results in section 5. 

An example of such a network may be a full-scale model of the human visual cortex. 

Examining the scaling of the model to large networks provides an indication of what 



 30 

architecture options to pick for the larger networks. Two types of homogenous network-

of-networks implementations are examined – a software-only implementation and a 

hardware-accelerated implementation. As shown in Table 2.3, the hardware 

implementations examined are memory bound. This limits the number of processing 

elements that can be placed in an FPGA. Utilizing the off-chip SRAM connected to each 

FPGA on the Cray XD1 would change the design to be logic bound and thus increase the 

number of processing elements that can be placed on an FPGA. Therefore for the 

hardware-accelerated implementation, two cases are considered: a) utilizing only the 

FPGAs’ on-chip memory and b) utilizing the off-chip SRAM available to the FPGAs.  

 

Software Scaling 

 

The estimated nodes per second throughput (τSystem,SW ) of software 

implementations of large network-of-networks on all 864 AMD cores on the Cray XD1 is 

illustrated in Figure 2.12. The performances of four different networks are shown (based 

on the four networks examined). The values in Figure 2.12 were derived using equation 

11. This is the throughput of a single processing core (τCPU, given by equation 9) 

multiplied by the number of total processing cores on the Cray XD1 (cores_available). 

The term τCPU includes the average I/O overhead per processor in the parallel 

implementation of a network. The larger networks in Table 2.1 have more complex Pxu 

matrices as they are trained with larger images. This causes the throughput of systems 

built around the larger networks to be lower than those built around the smaller networks. 



 31 

, _System SW CPU cores availableτ τ= ×  (11) 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

181 321 501 721

Netw ork Type

N
o
d
e
s
 /
 S

e
c
o
n
d

 

Figure 2.12. Nodes/Second throughput for a software implementation utilizing the full 
Cray XD1. The performance for four network types are shown based on the four 

networks listed in Table 2.1. 
 

Hardware Scaling 

 

The throughput of a network-of-networks utilizing hardware-acceleration will 

depend upon the number of processing elements that can be placed onto an FPGA and 

also the time for one pass through each network. In a network-of-networks all the 

networks are assumed to operate in parallel.  

 

FPGA Timing Analysis 

 

There are two possibilities for placing the data required by the processing 

elements in the hardware-accelerated system. These are to use either the on-chip memory 



 32 

on the FPGA or to use the high speed off-chip SRAM available to each FPGA on the 

Cray XD1. In the former case, the design is constrained by the memory utilization. As 

shown in section 4.2, only two processing elements can be placed on the FPGA when 

using only the on-chip memory (for example, in the 721 node design, over 90% of the on-

chip memory and only 22% of the logic is used). If the off-chip memory is utilized the 

design becomes logic-constrained, with the number of processing elements that can be 

placed (PEFPGA) given by equation 12. Based on this equation, PEFPGA comes out as 8 for 

the Xilinx Virtex II Pro FPGAs utilized. 

   

   
FPGA

Slices available on FPGA
PE

Slices per processing element

 
=  

 
 (12) 

As the number of processing elements per FPGA increases, the number of FPGAs 

needed to implement a full network in parallel decreases. The time for one pass through 

such a network is based on the four timing components listed in section 5. Equation 13 is 

based on these four timing components and shows how the single pass time (TSP) for a 

fully parallel hardware implementation changes with the number of processing elements 

per FPGA (PEFPGA). Of the four timing components, the processing element computation 

time (TPE) does not change since all the processing elements are computing in parallel. 

Studies indicate that the off-chip SRAM bandwidth is high enough that it would pose an 

insignificant impact on TPE. Since the amount of information flowing into the root 

processor remains the same, the sum of the MPI communication time to the root 

processor and the root node computation time (TMPI_Root) does not change. However the 

communication time (DL1 and DL2) between each FPGA and it’s host processor increases 



 33 

because more data is exchanged over each communication channel. The level 1 input data 

communication time (DL1) increases proportionally with the number of processing 

elements. In this design, a collection of level 2 nodes (denoted as L2_par_io) 

communicate with the host processor in parallel, therefore the level 2 communication 

time (DL2) increases with multiples of L2_par_io processing elements (for this design 

L2_par_io is four). 

( )1 2 _
2 _ _

FPGA
SP L FPGA L PE MPI ROOT

PE
T D PE D T T

L par io

  
= × + × + +  

  
 (13) 

 

Throughput of full Cray using hardware acceleration 

 

In a full Cray XD1 implementation of a network-of-networks utilizing hardware-

acceleration, the throughput depends on the number of networks that can operate in 

parallel and the time to complete one pass through a network. The number of networks 

that can be implemented using all the FPGAs on the Cray XD1 (networksSystem) depends 

on the number of processing elements that can operate in parallel (PESystem) and the 

number of processing elements needed to implement one network (NPE). These terms are 

derived in equations 14 and 15. 

_System FPGAPE FPGAs available PE= ×  (14) 

System

System

PE
networks

NPE
=  (15) 

Here FPGAs_available is the total number of FPGAs on the Cray XD1 (144). The 

nodes per second throughput for the full Cray XD1 implementation (τSystem,HW) is given by 



 34 

the number of nodes that can operate in parallel and the time for one pass through a 

network (TSP). This is shown in equation 16. Based on this equation, the estimated nodes 

per second throughput of the full Cray XD1 implementing network-of-networks using 

hardware-acceleration is shown in Figure 2.13. The performances for four types of 

networks are shown (based on the four networks examined). The throughput for both the 

on-chip memory and off-chip memory utilization cases are presented. 

,
  1 

System NET System NET

System HW

SP

networks nodes PE nodes

Time for pass NPE T
τ

× ×
= =

×
 (16) 

 

0

500000

1000000

1500000

2000000

2500000

3000000

181 321 501 721

Netw ork Type

N
o
d
e
s
/s

e
c
o
n
d

Off-chip memory On-chip memory

 

Figure 2.13. Nodes/Second throughput of the two hardware implementation cases when 
utilizing the full Cray XD1. These cases are the use of on-chip FPGA memory and the 

use of off-chip SRAM. The performance for four network types are shown based on the 
four networks listed in Table 2.1. 

 

 

 



 35 

Comparison 

 

Table 2.5 compares the potential throughput gain of the hardware-accelerated designs 

over the software design when utilizing the full resources of the Cray XD1 (based on 

Figures 12 and 13). The average throughput gains of the on-chip and off-chip memory 

utilization implementation over the software design are 20 and 75 respectively (see Table 

2.5). Given that there are four times as many processing elements for the off-chip versus 

on-chip implementations, a maximum throughput gain of four times can be expected. 

However due to the serialization in I/O between each FPGA and it’s host processor, a 

slightly lower throughput gain is seen (as shown in Table 2.5). 

Table 2.5. Throughput gain of FPGA accelerated designs over a software-only design 
utilizing full Cray XD1 resources. 

 

Network Type (nodesNET) 
Throughput gain 

181 321 501 721 

Using off-chip memory 74.56 77.40 76.61 73.28 
Using on-chip memory 21.79 20.78 20.49 19.61 

Ratio of off-chip/on-chip 
design 

3.42 3.72 3.74 3.74 

 

To accurately predict the throughput gains for larger networks, it would be 

necessary to implement the larger networks. This study was limited to smaller networks 

because the training of larger networks is very time consuming. The throughput gains of 

the hardware-accelerated over the software-only implementations were similar for all 

networks examined. Therefore one can speculate that for larger networks, similar 

throughput gains may be seen. 

 



 36 

Summary 

 

Biological systems have traditionally excelled over general purpose computing 

systems at cognitive applications. Better insights into the workings of primate brains have 

led to the development of new cognitive algorithms. Large scale implementations of 

these algorithms provide the potential to solve problems not currently possible with 

conventional computing systems. Given the large amounts of parallelism inherent in 

these models, hardware-acceleration can provide the potential to enable real-time 

implementations of these models. 

This chapter presented an implementation of the George and Hawkins cognitive 

model based on the neocortex [14] on the Cray XD1 architecture. Software and 

reconfigurable hardware implementations were compared for networks of varying sizes 

and complexity. Based on these implementation results, the potential performance of 

larger networks that would utilize the full resources of the Cray XD1 was estimated. 

Since the hardware design was constrained by the amount of on-chip memory available 

on the FPGAs, the potential performance of a hardware implementation that would use 

the off-chip SRAM available to each FPGA on the Cray XD1 was examined. Results 

indicate that hardware-acceleration can provide average throughput gains of 75 times 

over software implementations of the networks examined when utilizing the full 

resources of the Cray XD1 and the off-chip memory on the FPGAs. 

Although the implementations in this chapter were geared towards the Cray XD1, 

the results are applicable to other reconfigurable logic platforms. This is primarily since 



 37 

the models implemented utilize a sequential stream of data from their large Pxu training 

matrices. If these matrices were to be placed on FPGA platforms with long latency 

memory, the memory accesses to the nodes can be started ahead of time to bring in the 

data as needed. 

 



 38 

CHAPTER THREE 

ACCELERATION OF MATCHED FILTER-BASED POSITION DETECTION 

 

The National Ignition Facility, currently under construction at the Lawrence 

Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-

MJ, 500-TW, ultraviolet laser system for the study of inertial confinement fusion and the 

physics of matter at extreme temperatures and pressures [45]. Automatic alignment (AA) 

based on computer analysis of video images adjusts the laser beams quickly and 

accurately enough to meet stringent system requirements in less than 30 minutes. The AA 

system directs all 192 laser beams along the 300-m optical path to focus on a 50 µm spot 

at the target chamber center [46]. At the heart of this alignment technique is the image 

processing algorithm that determines the position of beam features that are embedded in 

images recorded along the beam path. Varieties of alignment fiducials incorporated in the 

optical system designate various beam types, such as reference beams and main beams. 

Many beam images have well-defined spot profiles (e.g., Gaussian beams) for which 

centroiding is an acceptable technique to determine positions within the required 

accuracy of one half pixel. However, laser beam images often exhibit intensity variation 

or other distortions for which the centroid-based approach may result in high position 

uncertainty. In these cases, matched filtering provides an excellent and stable position 

measurement [33, 35], albeit at the expense of extra processing time required for each 

beam image. This chapter discusses an approach to speed up these computations using 



 39 

field programmable logic array (FPGA). A performance improvement of 253 was 

achieved using the FPGA. 

 

Background of Matched Filter-Based Position Detection 

 

The matched filtering technique utilizes a given object as a template, whose 

position is known, to find the position of a second object by detecting the template’s 

matching position in the correlation domain. The classical matched filter (CMF) [44] and 

its variation phase only filter (POF) [38] has gained popularity due to its ability of 

detecting an object with high discrimination to the presence of strong noise and 

background distortions. In the CMF, the complex amplitude and phase of the reference 

pattern is used, whereas POF only uses the phase of the reference pattern to perform the 

correlation [38]. The amplitude modulated phase only filter (AMPOF) [32, 40] was 

designed to further enhance filtering performance by modulating the POF by an inverse 

type of amplitude. 

The Fourier domain treatment of the matched filter is described next. Let the 

Fourier transform of the to-be-detected object (template) function f(x, y) be denoted by 

( , ) ( , ) exp( ( , ))x y x y x yF U U F U U j U U= Φ  (17) 

and that of the input scene g(x, y) containing the desired object to be represented by  

)),(exp(),(),( yxyxyx UUjUUGUUG Ψ=  (18) 

A classical matched filter (CMF) corresponding to this function f(x, y) is expected 

to produce its autocorrelation. From the Fourier transform theory of correlation, the CMF 



 40 

is given by the complex conjugate of the input Fourier spectrum as denoted by equation 

19. 

)),(exp(),(),(*),( yxyxyxyxCMF UUjUUFUUFUUH Φ−==  (19) 

The inverse Fourier transformation of the product of F(Ux, Uy) and HCMF (Ux, Uy) 

results in the convolution of f(x, y) and f(-x, -y), which is the equivalent of the 

autocorrelation of f(x, y). Moreover, when |F(Ux, Uy)| is set to unity, HCMF becomes a 

phase only filter (POF): 

)),(exp(),( yxyxPOF UUjUUH Φ−=  (20) 

The correlation of input image with the template is simply: 

( ) ( ){ }1( , ) , ,CMF x y CMF x yC x y F G U U H U U−=  (21) 

The position of the object can be found from the position of the cross-correlation, 

autocorrelation, and the position of the template using equations 22-23. 

cautocrosspos  x  x   x x +−=  (22) 

cautocrosspos y  y  y   y +−=  (23) 

Here (xpos, ypos) is the to-be-determined position of the pattern in the image plane, 

(xauto, yauto) is the position of the template autocorrelation peaks (where the template is 

correlated with itself and the peak is determined off-line). The position of the cross-

correlation peak is (xcross, ycross), where the object appears in the actual scene and has to 

be determined from the real image. The position of the cross-correlation peak was 

estimated using a polynomial fit to the points surrounding the correlation peak. The 



 41 

center of the template (xc, yc) and (xauto, yauto) are normally constant and may be calculated 

off-line, while the cross-correlation peaks move with changes in the object. 

 

Related Works 

 

In the computational demanding world of image processing, many different 

research groups have ventured into the realm of reconfigurable computing [37, 39, 42, 

43, 47]. This was done in an effort to accelerate the image processing calculations to such 

a degree that would meet the requirements for real-time computation. The parallel 

architecture of FPGAs and the inherent parallel nature of image processing computations 

make this endeavor beneficial.  

Yamaoka et al. [47] discuss a novel algorithm for object tracking in video pictures 

based on image segmentation and pattern matching. Because of the expensive 

calculations required of this algorithm, Yamaoka et al. developed an FPGA/ASIC 

architecture for their algorithm. This enabled them to perform the object tracking in real-

time. 

Lindoso and Entrena [43] compare the implementation of Zero-Mean Normalized 

Cross-Correlation in the spatial and spectral domains implemented on FPGAs. They 

proposed an FPGA based reconfigurable architecture where they achieved speedups of at 

least two orders of magnitudes over 3.0 GHz Pentium 4 systems. They show that real-

time processing can be achieved from using this architecture by applying their design to a 

correlation-based fingerprint-matching algorithm.  



 42 

Hezel et al. [39] presented a high-performance FPGA implementation for generic 

shape-based object detection in images. Here, Hezel et al. discussed their design of a 

pipelined template matcher on a FPGA. They correlate the distance transform of an 

observed image and the template for the actual match. At best, they achieved a speedup 

of about 200 times when comparing their 82 MHz FPGA system to a (not optimized) 500 

MHz Pentium III PC system.  

Guase et al. [37] described three reconfigurable systems implementing Shape-

Adaptive Template Matching (SA-TM) to retrieve arbitrarily shaped objects within 

images or video frames. The three systems were a static system (static circuit configured 

to use off-chip memory only), a partially dynamic system (static circuit configured to use 

different on-chip memories), and a dynamic system (completely adapts to computation in 

terms of size and area of object template). They showed that their dynamic SA-TM 

design in a 50 MHz FPGA resulted in a speedup of almost 7,000 over a 1.4 GHz Pentium 

4 PC when processing a 100x100 template on 300 consecutive HDTV format video 

frames. 

Taking a different approach, Liang et al. [42] presented a generalized scheme to 

aid in mapping generalized template matching (GTM) operations to reconfigurable 

computers. As Liang et al. explain, GTM operations are image processing algorithms for 

two-dimensional digital filtering, morphologic operations, motion estimation, and 

template matching and others. Here, Liang et al. are focused on finding a balance 

between the host computer and the coprocessor FPGA. Reconfigurable design can be a 

very time consuming process, but by relaxing several constraints Liang et al. described a 



 43 

systematic approach to automate GTM designs for FPGAs being used in reconfigurable 

systems. 

 

Automatic Alignment Algorithms 

 

The alignment system in each NIF beam line contains 26 control loops that 

analyze high-resolution beam and reference images. A number of beam image types 

require matched filtering to determine the object positions. One such set of corner-cube 

reflected pinhole images is shown in Figure 3.1. Here, the image processing algorithm 

exploits a template correlation to determine the pinhole centers (xpos, ypos) as indicated by 

the cross in the center. The right side cross indicates the extent of the radius of the beam 

image. 

A variety of distortions can challenge position finding algorithms. Examples in 

Figure 3.1 exhibit a wide variety of distortions such as illumination, shade, shape, and 

size. A weighted, or even a binary centroid, measurement [41] will be severely affected 

by beam non-uniformity, intensity gradient, beam elongation or diffraction effects. The 

purpose of the template shown in Figure 3.2 is to find the center by matching the edge of 

the beam. Since the beam size varies, the algorithm must search over a range of radii to 

determine the best-matched circle [30]. The center of the circle that yields the highest 

correlation is chosen as the position of the pinhole image. While this template works for 

the majority of the beam images, a more accurate template was recently determined to 

represent beam images [34] that have minimal distortion. 



 44 

 

Figure 3.1. A set of corner-cube reflected pinhole images of various image qualities 

 

In the example, the radius of the edge-template shown in Figure 3.2 was varied 

from 33 to 42 pixels. The correlation peak at various radii is plotted as shown in Figure 

3.3. The peak reaches its maximum between a radius of 35 and 37, where 37 is the 

nominal radius of the image in Figure 3.1. A second order polynomial fit [33] through the 

correlation plane provides the x and y position of the correlation peak, from which 

equations 22 and 23 are used to find the center location. 

 

     

Figure 3.2. Image of the template used for pinhole images. 

 



 45 

0

5

10

15

20

25

30

35

32 33 34 35 36 37 38 39 40 41 42

Radius

P
e
a
k

 

Figure 3.3. Correlation peak versus template radius 

 

In another application, where the same template is used, the pinhole images are 

shown in Figure 3.4. Whereas the small pinholes vary from 32 to 45 pixels, these pinhole 

radii vary from 60 to 250 pixels. In order to reduce the processing time, instead of 

searching the whole range from 65 to 250 pixels, a measurement process is carried out to 

estimate the range to a smaller interval of 10 pixels [30].  

 

 

Figure 3.4. Image with 160 pixel radius 



 46 

In some alignment beam images, two types of fiducials (circles and squares) [31] 

are used to indicate the beam position and the alignment reference location. The diameter 

of the circle is similar to the side of the square resulting in correlation peak values that 

may be hard to discriminate (Figure 3.5). 

 

 

Figure 3.5. Two classes of fiducial patterns with positions identified 

 

To enhance the discrimination, and hence the detection accuracy, of the to-be-

detected objects, features such as object edges are used as shown in Figure 3.6. Instead of 

using circle templates, the circle edge is used for the filters. The resulting correlation 

cross-section from the right side of the wings is shown in Figure 3.7. Note from Figure 

3.7 that the circle autocorrelation is higher than cross-correlation with the squares 

exhibiting a 2:1 discrimination between the two. Based on the normalized autocorrelation 

value, a dynamic threshold (as a percentage of the maximum peak) can be selected to 

reject the non-circles correlations. After selecting the circles, the image is correlated with 

a second template consisting of a square mask. Now using equations 22 and 23, the 



 47 

position of the objects can be found from the position of the cross-correlation peak, the 

autocorrelation peak, and the template. In all these applications, the basic operation 

performed is a matched filtering via equation 21. 

 

 

Figure 3.6. The edge of the image in Figure 3.5 

 

 

Figure 3.7. The correlation with circle of the image in Figure 3.5 (the cross-section 
through the right wing shown) 

 



 48 

FPGA Acceleration of Image Correlation 

 

The most computationally intensive portion of the image processing is the two-

dimensional image correlation. Thus to shorten the alignment time, one can reduce the 

image processing time. For continuous high performance alignment operation such as 

may be required in a laser fusion power plant, faster methods of beam alignment will be 

necessary. One advantage of these computations is a significant amount of parallelism, 

thus enabling hardware acceleration.  

Here, the potential of hardware acceleration by implementing the correlation 

computations on an FPGA was evaluated. The test system utilized was a Cray XD1 with 

864 2.0 GHz AMD Opteron cores and 144 Xilinx Virtex II Pro FPGAs. In this system, 

only one FPGA and AMD core was utilized for the testing. The AMD core sends the 

images to be processed to the FPGA and receives back the location and peak value in the 

correlation output. A more practical approach for FPGA acceleration would be to utilize 

an FPGA accelerator card in a desktop computing system (such cards average about 

$2500 per FPGA at present). 

 

Hardware design 

 

Figure 3.8 presents a system overview of the FPGA implementation. Input data 

and intermediate values are stored in buffers (shown as the shaded boxes). These are on-

chip memories on the FPGA. The inputs to the system, f(x, y) and g(x, y), represent the 



 49 

template and source image in equations 17 and 18, respectively. Up to 32 templates can 

be loaded into the FPGA (in the buffers labeled f0 to f31) and applied to each source 

image (in the buffers labeled g0 and g1). The two-dimensional Fast Fourier Tranforms 

(FFTs) in equations 17 and 18 are performed using two consecutive one-dimensional 

FFTs. Similarly, the inverse FFT in equation 21 is implemented with two one-

dimensional forward FFTs.  

The FFT units were built using Xilinx-supplied library components. To enable 

high-throughput computation, the system is pipelined into a pre-phase and four phases as 

shown in Figure 3.8.  In this design, the amount of time required for the sobel filter 

computation is the same as the amount of time to complete approximately four phases. 

Therefore, the pre-phase is designed to occur independently of the phase computations. 

By alternating the two source image buffers (g0 and g1) between being used as input to 

the sobel filter unit and as a memory buffer to hold the incoming source image data, the 

system allows for the sobel filter computation to overlap the image-template 

computations.  

Each phase works on a particular image–template combination. Since the same set 

of templates is used for each image, the templates are preloaded in on-chip buffers. This 

allows high-speed access to the templates that accelerated the system performance. Note 

the time to load each template onto the FPGA is longer than the pipeline phase 

computation time. Since each phase requires multiple cycles to compute, two buffers are 

needed between consecutive phases. For example, in Figure 3.8, the upper buffer (mb0) 

between Phases 1 and 2 holds the output being generated by Phase 1. The lower buffer 



 50 

(mb1) holds the completed output previously generated by Phase 1, for use in Phase 2. 

Switches pipe data to the appropriate buffers.  

 

FFTShift

and Find 

Max

CCMF

Max 

5

40

/

40

/

31

/

32

/

32

/

32

/

G2(Ux,Uy)·

HCMF,2(Ux,Uy)

sw sw

FFTShift

and 

Conjugate 

Multiply

12 bit 

FFT

14

/

8

/

20

/

f0

f31

sw
16 bit 

FFT

16 bit 

FFT

24 bit 

FFT

24 bit 

FFT

40

/

G1(Ux,Uy)·

HCMF,1(Ux,Uy)

Phase 2

Phase 3 Phase 4

g0

g1

sw

8

/

Phase 1Pre-Phase

8

/

14

/

20

/

mb0

mb1

swsw

31

/

14

/

14

/

mb0

mb1

swsw

mb0

mb1

swsw
12 bit 

FFT

Sobel

Filter

mb0

mb1

swsw

8

/

FFTShift

and Find 

Max

CCMF

Max 

5

40

/

40

/

31

/

32

/

32

/

32

/

G2(Ux,Uy)·

HCMF,2(Ux,Uy)

sw sw

FFTShift

and 

Conjugate 

Multiply

12 bit 

FFT

14

/

8

/

20

/

f0

f31

sw
16 bit 

FFT

16 bit 

FFT

24 bit 

FFT

24 bit 

FFT

40

/

G1(Ux,Uy)·

HCMF,1(Ux,Uy)

Phase 2

Phase 3 Phase 4

g0

g1

sw

8

/

Phase 1Pre-Phase

8

/

14

/

20

/

mb0

mb1

swsw

31

/

14

/

14

/

mb0

mb1

swsw

mb0

mb1

swsw
12 bit 

FFT

Sobel

Filter

mb0

mb1

swsw

8

/

 

Figure 3.8. The block diagram of the FPGA operations. The boxes labeled “sw” are 
switches. 

 

The pre-phase and the four phases in the architecture perform the following 

functions: 

Pre-Phase: The pre-phase consists of applying a sobel filter to the input image 

g(x, y) to detect the edges. The time for this stage is only seen once because it is 

overlapped with the computation of the input image g(x, y) with the various template 

images. 

Phase 1: The first one-dimensional FFT for Complex Fourier transform 

represented by equations 17 and 18 is computed. These two computations can be carried 



 51 

out in parallel. The inputs to this phase are unsigned 8 bit values. Since an 8 bit FFT unit 

would treat the inputs as signed values, a larger bit width FFT unit is needed. Therefore a 

12 bit FFT unit is used in the first phase. The first phase 12 bit FFT outputs are stored in 

buffers labeled mb0 and mb1 exiting Phase 1. 

Phase 2: The second one-dimensional FFT to complete the Complex Fourier 

transform represented by equations 17 and 18 is computed. As the maximum output value 

for Phase 1 is 14 bit, a 16 bit FFT unit is used for the second phase. Also part of equation 

21 is evaluated. Here the output of equation 17 is conjugated and multiplied by the output 

of equation 18. An FFT shift operation is executed in parallel with the multiplication in 

order to center the image. The 40 bit output is stored in a buffer. 

Phase 3: The first one-dimensional FFT for the inverse FFT in equation 21 is 

evaluated. Since the inverse FFT is implemented with two 24-bit forward FFT units, they 

use only the most significant 24 bits of the inputs. This introduces round-off error as the 

computations take place in the integer domain. 

Phase 4: The second one-dimensional FFT for the inverse FFT is equation 21 is 

evaluated here. Pipelined computation of the location of the peak in the output of 

equation 21 (CCMF) is also determined. The absolute value of each location is computed 

and then compared against previously generated values to determine the peak location. 

The coordinates and amplitude of the peak along with the amplitude of the four 

surrounding locations are stored and returned to the processor. The index of the template 

image where the maximum has occurred among the submitted template images to the 

FPGA is also returned to the processor.  



 52 

Hardware Performance 

 

The system above was implemented on a Xilinx Virtex II Pro FPGA (part number 

XCVP50) on a Cray XD1. The FPGA synthesized system ran at 160 MHz. The logic 

utilization was 69% while the block RAM utilization was 75%. The algorithm was also 

ported to a 2.0 GHz AMD Opteron core using C. The optimized FFT library developed 

by Stefan Gustavson [36] was utilized by the C software implementation.  

 Both systems were tested with 64x64 images and 32 template images per image. 

The overall runtime of the FPGA system to process a source image through 32 template 

images was about 0.427 ms, while the C system required 108.406 ms. This is equivalent 

to the FPGA system giving a speedup of approximately 253 times over the C system. 

Newer generation FPGAs with larger resources and higher clock speeds would allow 

multiple pipelines to analyze more images in parallel, thus resulting in greater speedups. 

Table 3.1 compares the output of the C and the FPGA implementations for both auto and 

cross-correlation examples. The absolute value of the peak and its surrounding four 

locations are shown along with the error for each location. The average absolute error for 

these values is 2.20%. 

 

 

 

 

 



 53 

Table 3.1. Output comparison between C and FPGA implementations for the peak and 
surrounding four locations (output values are to be multiplied by 109). 

 

Pixel Locations C FPGA Error (%) 

Top Center 5.62 5.61 0.18 
Right Center 5.62 5.91 -5.15 

Center 6.67 6.28 5.74 
Left Center 5.63 5.89 -4.67 

Bottom Center 5.63 5.63 -0.11 

(i) Cross correlation between a circle and a square 

Pixel Locations C FPGA Error (%) 

Top Center 12.11 12.05 0.50 
Right Center 12.11 12.41 -2.49 

Center 16.11 15.83 1.74 
Left Center 12.11 12.42 -2.58 

Bottom Center 12.11 12.05 0.50 

(ii) Auto-correlation of a square 

Pixel Locations C FPGA Error (%) 

Top Center 9.35 9.32 0.40 
Right Center 9.35 9.60 -2.59 

Center 12.34 11.96 3.06 
Left Center 9.35 9.60 -2.65 

Bottom Center 9.35 9.30 0.60 

(iii) Auto-correlation of a circle 

 

Summary 

 

Automatic alignment of the NIF laser is dependent on computationally intensive 

image processing. One important component of the image processing is matched 

filtering. This chapter describes an approach to speed up this computation using low cost 

parallel computing hardware. The results indicate a speedup of approximately 253 using 

an FPGA over a 2.0 GHz AMD Opteron processing core.  



 54 

CHAPTER FOUR 

CONCLUSION 

 

This thesis shows the utilization of hardware-acceleration for two very different 

image processing applications. The first image processing application, a neocortex 

inspired cognitive model, is presented in Chapter 2 while the second image processing 

application, matched filter-based position detection, is presented in Chapter 3. 

This thesis presented an implementation of the George and Hawkins cognitive 

model based on the neocortex [14] on the Cray XD1 platform. Software and 

reconfigurable hardware implementations were compared for networks of varying sizes 

and complexity. Based on these implementation results, the potential performance of 

larger networks that would utilize the full resources of the Cray XD1 were estimated. 

Since the hardware design was constrained by the amount of on-chip memory available 

on the FPGAs, the potential performance of a hardware implementation that would use 

the off-chip SRAM available to each FPGA on the Cray XD1 was examined. Results 

indicate that hardware-acceleration can provide average throughput gains of 75 times 

over software implementations of the networks examined when utilizing the full 

resources of the Cray XD1 and the off-chip memory on the FPGAs. 

Although the cognitive model implementations in this research were geared 

toward the Cray XD1, the results are applicable to other reconfigurable logic platforms. 

This is primarily since the models implemented utilize a sequential stream of data from 

their large Pxu training matrices. If these matrices were to be placed on FPGA platforms 



 55 

with long latency memory, the memory accesses to the nodes can be started ahead of time 

to bring in the data as needed. One area of future work is to evaluate larger networks, the 

training of these networks, and other cognitive models on the Cray XD1. 

The other image processing application examined in this thesis was matched 

filter-based position detection. An approach to accelerate the NIF automatic alignment 

matched filtering computations using reconfigurable hardware was described. The results 

indicate a speedup of approximately 253 times using an FPGA over a 2.0 GHz AMD 

Opteron processing core. Other applications that can benefit from the speed enhancement 

include associative recall of extremely large databases of medical or other images using a 

partial queue. Future work is to evaluate variants of the matched filter-based position 

detection geared towards other image processing applications. One such example would 

be fingerprint recognition. 



 56 

REFERENCES 

 

[1]  R. Ananthanarayanan and D. Modha, “Antomy of a Cortical Simulator,” 
Proceedings of the ACM/IEEE Conference on Supercomputing, November 2007. 

 

[2]  J.A. Anderson, “The BSB Network,” In: Hassoun, M.H. (ed.): Associative Neural 

Networks. Oxford University Press, New York, 77-103, 1993. 

 

[3]  J. A. Anderson. “Arithmetic on a parallel computer: Perception versus logic,” Brain 

and Mind, 4:169–188, 2003. 

 

[4]  J. A. Anderson, P. Allopenna, G. S. Guralnik, D. Scheinberg, J. A. Santini, S. 
Dimitriadis, B. B. Machta, and B. T. Merritt, "Programming a Parallel Computer: 
The Ersatz Brain Project," In W. Duch, J. Mandziuk, and J.M. Zurada (Eds.), 
Challenges to Computational Intelligence, Springer: Berlin, 2006. 

 

[5]  J. A. Anderson and J. P. Sutton, “If we compute faster, do we understand better?,” 
Behavior Research Methods, Instruments, and Computers, 29:67–77, 1997. 

 

[6]  M. Atencia, H. Boumeridja, G. Joya, F. García-Lagos, and F. Sandoval, "FPGA 
implementation of a systems identification module based upon Hopfield 
networks," Neurocomputing, 70:2828–2835, October 2007. 

 

[7]  K. Boahen, "Neurogrid: Emulating a Million Neurons in the Cortex," in IEEE 

International Conference of the Engineering in Medicine and Biology Society, 
2006. 

 

[8]  C.-S. Bouganis, P. Y. K. Cheung, and L. Zhaoping, "FPGA-Accelerated Pre-
Attentive Segmentation In Primary Visual Cortex," in International Conference 
on Field Programmable Logic and Applications, 2006.  

 

[9]  T. Dean. “A Computational Model of the Cerebral Cortex,” Proceedings of the 

Twentieth National Conference on Artificial Intelligence (AAAI-05), pages 938-
943, Cambridge, Massachusetts, 2005. AAAI, MIT Press. 

 

[10]  D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the 
primate cerebral cortex,” Cereb. Cortex1, 1–47 (1991). 

 



 57 

[11]  D. Ferrer, R. Gonz´alez, R. Fleitas, J. P. Acle, R. Canetti, “NeuroFPGA - 
Implementing Artificial Neural Networks on Programmable Logic Devices,” in 
Design, Automation and Test in Europe Conference and Exhibition Designers’ 

Forum, 2004. 

 

[12]  J. Furlong, A. Felch, J. M. Nageswaran, N. Dutt, A. Nicolau, A. Veidenbaum, A. 
Chandrashekar, and R. Granger. "Novel Brain-Derived Algorithms Scale Linearly 
with Number of Processing Elements," Proceedings of ParaFPGA Conference: 

Parallel Computing with FPGA's, 2007. 

 

[13]  C. Gao and D. Hammerstrom. "Cortical Models Onto CMOL and CMOS—
Architectures and Performance/Price," IEEE Transactions on Circuits and 

Systems I, 54(11):2502-2515, Nov 2007. 

 

[14]  D. George and J. Hawkins. “A Hierarchical Bayesian Model of Invariant Pattern 
Recognition in the Visual Cortex,” in International Joint Conference on Neural 

Networks, 2005. 

 

[15]  J. Hawkins. "Why Can't a Computer be more Like a Brain?" IEEE Spectrum, April 
2007. 

 

[16]  J. Hawkins and S. Blakeslee. “On Intelligence,” Times Books, Henry Holt and 
Company, New York, NY 10011, Sept 2004. 

 

[17]  J. Hawkins and D. George, “Hierarchical Temporal Memory – Concepts, Theory, 
and Terminology,” Whitepaper, Numenta Inc, May 2006. 

 

[18]  C. Johansson and A. Lansner. "Towards Cortex Sized Artificial Neural Systems," 
Neural Networks, 20(1):48-61, January 2007. 

 

[19]  T. S. Lee and D. Mumford. “Hierarchical bayesian inference in the visual cortex,” 
Journal of the Optical Society of America A, 2(7):1434-1448, 2003. 

 

[20]  P Merolla, J Arthur, B E Shi and K Boahen, "Expandable Networks for 
Neuromorphic Chips," IEEE Transactions on Circuits and Systems I, 54(2):301-
311, February 2007. 

 

[21]  J. Pearl. “Probabilistic Reasoning in Intelligent Systems,” Morgan Kaufman 
Publishers, San Francisco, California, 1988. 



 58 

[22]  M. Pearson, M. Nibouche, A.G. Pipe, C. Melhuish and I.Gilhespy, B. Mitchison, K. 
Gurney, T. Prescott, and P. Redgrave, "A Biologically Inspired FPGA Based 
Implementation of a Tactile Sensory System for Object Recognition and Texture 
Discrimination," in International Conference on Field Programmable Logic and 

Applications, 2006. 

 

[23]  I. Pournara, C. S. Bouganis, and G. A. Constantinides. “Fpga-Accelerated Bayesian 
Learning For Reconstruction of Gene Regulatory Networks,” in International 

Conference on Field Programmable Logic and Applications, 2005. 

 

[24]  K. L. Rice, C. N. Vutsinas, and T. M. Taha. “A Preliminary Investigation of a 
Neocortex Model Implementation on the Cray XD1,” Proceedings of the 

ACM/IEEE Conference on Supercomputing, November 2007. 

 

[25]  K. L. Rice, T. M. Taha, and C. N. Vutsinas. “Hardware Acceleration of Image 
Recognition through a Visual Cortex Model,” Optics and Laser Technology, 
40(6):795-802, 2008. 

 

[26]  J. A. Starzyk, Z. Zhu, and T.-H. Liu. "Self-Organizing Learning Array," IEEE 

Transactions on Neural Networks, 16(2):355-363, March 2005. 

 

[27]  C. Torres-Huitzil, B. Girau, and C. Castellanos-Sanchez. "On-chip Visual 
Perception of Motion: A Bio-inspired Connectionist Model on FPGA," Neural 

Networks Journal, 18(5-6):557–565, 2005. 

 

[28]  R. K. Weinstein and R. H. Lee, “Architecture for high-performance FPGA 
implementations of neural models,” Journal of Neural Engineering, 3, 21-34, 
2006.  

 

[29]  R. Zemel. “Cortical belief networks,” in Hecht-Neilsen, R., ed., Theories of the 

Cerebral Cortex. New York, NY: Springer-Verlag, 2000. 

 
[30] A. A. S. Awwal, “Automatic identification of templates in matched filtering,” in 

Photonic Devices and Algorithms for Computing VI, edited by K. Iftekharuddin 
and A. A. S. Awwal, Proceedings of  SPIE, 2004. 

 
[31] A. A. S. Awwal, “Multi-object feature detection and error correction for NIF 

automatic optical alignment” in Photonic Devices and Algorithms for Computing 

VIII, edited by K. Iftekharuddin and A. A. S. Awwal, Proceedings of  SPIE, 2006. 



 59 

[32] A.A.S.  Awwal, M.A. Karim, and S.R.  Jahan. “Improved Correlation 
Discrimination Using an Amplitude-modulated Phase-only Filter,” Applied 

Optics, 29, 233-236, 1990. 
 
[33] A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, T. Salmon, and P 

Wegner. “Detection and Tracking of the Back-Reflection of KDP Images in the 
presence or absence of a Phase mask,” Applied Optics, 45(13):3038-3048, 2006.  

 
[34] A. A. S. Awwal, K. Rice, R. Leach and T. Taha, “Higher accuracy template for 

corner cube reflected image,” to be presented at the Optics and Photonics for 

Information processing(II), San Diego, August CA 2008. 
 
[35] J. V. Candy, W. A. McClay, A. A. S. Awwal, and S. W. Ferguson. “Optimal 

position estimation for the automatic alignment of a high-energy laser,” Journal 

of Optical Society of America A, 22(7):1348-1356, 2005. 
 
[36]  FFT code and related material, <http://www.jjj.de/fft/fftpage.html>.  

 

[37] J. Gause, K.Y.P. Cheung, and W. Luk. “Reconfigurable Shape-Adaptive Template 
Matching Architectures,” Proceedings of the 10

th
 Annual IEEE Symposium on 

Field-Programmable Custom Computing Machines, 2002. 
 
[38] J. L. Horner and J. Leger.  “Pattern recognition with binary phase-only filters,” 

Applied Optics, 24(5):609-611, 1985. 
 
[39] S. Hezel, A. Kugel, R. Männer, and D.M. Gavrila. “FPGA-based Template 

Matching using Distance Transforms,” Proceedings of the 10
th

 Annual IEEE 

Symposium on Field-Programmable Custom Computing Machines, 2002. 
 
[40] M. A. Karim and A. A. S. Awwal. Optical Computing: An Introduction, John 

Wiley, New York, NY, 1992. 
 
[41] W. A. McClay III, A. A. S. Awwal, H. E. Jones, K. C. Wilhelmsen, W. Ferguson, 

M. McGee, and M. G. Miller. “Evaluation of laser-based alignment algorithms 
under additive random and diffraction noise,” Photonic Devices and Algorithms 

for Computing VI, edited by K. Iftekharuddin and A. A. S. Awwal, Proceedings 

of  SPIE, 2004. 
 
[42] X. Liang and J. S.-N. Jean. “Mapping of Generalized Template Matching Onto 

Reconfigurable Computers,” IEEE Transactions on Very Large Scale Integration 

Systems, 11(3):485-498, June 2003. 
 



 60 

[43] A. Lindoso and L. Entrena. “High Performance FPGA-based Image Correlation,” 
Journal of Real-Time Image Processing, 2(4):223-233, 2007. 

 
[44] A.V. Lugt.“Signal Detection by Complex Spatial Filtering,” IEEE Transactions on 

Information Theory, 10(2):139-145, 1964. 
 
[45] E. Moses, C. Wuest.  “The National Ignition Facility: Status and Plans for Laser 

Fusion and High-Energy-Density Experimental Studies”, Fusion Science and 

Technology, Vol. 43, p. 420, May 2003. 
 
[46] K.C. Wilhelmsen, A. A. S. Awwal, S. W. Ferguson, B. Horowitz, V. J. Miller 

Kamm, and C. A. Reynolds. “Automatic Alignment System for the National 
Ignition Facility” Proceedings of the International Conference on Accelerator 

and Large Experimental Physics Control Systems, 2007. 
 
[47] K. Yamaoka, T. Morimoto, H. Adachi, T. Koide, and H.J. Mattausch. “Image 

Segementation and Pattern Matching Based FPGA/ASIC Implementation 
Architecture of Real-Time Object Tracking,” Proceedings of the 2006 Conference 

on Asia South Pacific Design Automation, 2006. 
 


	Clemson University
	TigerPrints
	7-2008

	FPGA ACCELERATION OF A CORTICAL AND A MATCHED FILTER-BASED ALGORITHM
	Kenneth Rice
	Recommended Citation


	Microsoft Word - thesis_v10.doc

