3,058 research outputs found

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO

    Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques

    Get PDF
    Wind and solar irradiance are promising renewable alternatives to fossil fuels due to their availability and topological advantages for local power generation. However, their intermittent and unpredictable nature limits their integration into energy markets. Fortunately, these disadvantages can be partially overcome by using them in combination with energy storage and back-up units. However, the increased complexity of such systems relative to single energy systems makes an optimal sizing method and appropriate Power Management Strategy (PMS) research priorities. This thesis contributes to the design and integration of stand-alone hybrid renewable energy systems by proposing methodologies to optimise the sizing and operation of hydrogen-based systems. These include using intelligent techniques such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Neural Networks (NNs). Three design aspects: component sizing, renewables forecasting, and operation coordination, have been investigated. The thesis includes a series of four journal articles. The first article introduced a multi-objective sizing methodology to optimise standalone, hydrogen-based systems using GA. The sizing method was developed to calculate the optimum capacities of system components that underpin appropriate compromise between investment, renewables penetration and environmental footprint. The system reliability was assessed using the Loss of Power Supply Probability (LPSP) for which a novel modification was introduced to account for load losses during transient start-up times for the back-ups. The second article investigated the factors that may influence the accuracy of NNs when applied to forecasting short-term renewable energy. That study involved two NNs: Feedforward, and Radial Basis Function in an investigation of the effect of the type, span and resolution of training data, and the length of training pattern, on shortterm wind speed prediction accuracy. The impact of forecasting error on estimating the available wind power was also evaluated for a commercially available wind turbine. The third article experimentally validated the concept of a NN-based (predictive) PMS. A lab-scale (stand-alone) hybrid energy system, which consisted of: an emulated renewable power source, battery bank, and hydrogen fuel cell coupled with metal hydride storage, satisfied the dynamic load demand. The overall power flow of the constructed system was controlled by a NN-based PMS which was implemented using MATLAB and LabVIEW software. The effects of several control parameters, which are either hardware dependent or affect the predictive algorithm, on system performance was investigated under the predictive PMS, this was benchmarked against a rulebased (non-intelligent) strategy. The fourth article investigated the potential impact of NN-based PMS on the economic and operational characteristics of such hybrid systems. That study benchmarked a rule-based PMS to its (predictive) counterpart. In addition, the effect of real-time fuel cell optimisation using PSO, when applied in the context of predictive PMS was also investigated. The comparative analysis was based on deriving the cost of energy, life cycle emissions, renewables penetration, and duty cycles of fuel cell and electrolyser units. The effects of other parameters such the LPSP level, prediction accuracy were also investigated. The developed techniques outperformed traditional approaches by drawing upon complex artificial intelligence models. The research could underpin cost-effective, reliable power supplies to remote communities as well as reducing the dependence on fossil fuels and the associated environmental footprint

    Stand-alone solar-pv hydrogen energy systems incorporating reverse osmosis

    Get PDF
    The world’s increasing energy demand means the rate at which fossil fuels are consumed has increased resulting in greater carbon dioxide emissions. For many small (marginalised) or coastal communities, access to potable water is limited alongside good availability of renewable energy sources (solar or wind). One solution is to utilise small-scale renewably powered stand-alone energy systems to help supply power for everyday utilities and to operate desalination systems serving potable water (drinking) needs reducing diesel generator dependence. In such systems, on-site water production is essential so as to service electrolysis for hydrogen generation for Proton Exchange Membrane (PEM) fuel cells. Whilst small Reverse Osmosis (RO) units may function as a (useful) dump load, it also directly impacts the power management of stand-alone energy systems and affects operational characteristics. However, renewable energy sources are intermittent in nature, thus power generation from renewables may not be adequate to satisfy load demands. Therefore, energy storage and an effective Power Management Strategy (PMS) are vital to ensure system reliability. This thesis utilises a combination of experiments and modelling to analyse the performance of renewably powered stand-alone energy systems consisting of photovoltaic panels, PEM electrolysers, PEM fuel cells, batteries, metal hydrides and Reverse Osmosis (RO) under various scenarios. Laboratory experiments have been done to resolve time-resolved characteristics for these system components and ascertain their impact on system performance. However, the main objective of the study is to ascertain the differences between applying (simplistic) predictive/optimisation techniques compared to intelligent tools in renewable energy systems. This is achieved through applying intelligent tools such as Neural Networks and Particle Swarm Optimisation for different aspects that govern system design and operation as well as solar irradiance prediction. Results indicate the importance of device level transients, temporal resolution of available solar irradiance and type of external load profile (static or time-varying) as system performance is affected differently. In this regard, minute resolved simulations are utilised to account for all component transients including predicting the key input to the system, namely available solar resource which can be affected by various climatic conditions such as rainfall. System behaviour is (generally) more accurately predicted utilising Neural Network solar irradiance prediction compared to the ASHRAE clear sky model when benchmarked against measured irradiance data. Allowing Particle Swarm Optimisation (PSO) to further adjust specific control set-points within the systems PMS results in improvements in system operational characteristics compared to using simplistic rule-based design methods. In such systems, increasing energy storage capacities generally allow for more renewable energy penetration yet only affect the operational characteristics up to a threshold capacity. Additionally, simultaneously optimising system size and PMS to satisfy a multi-objective function, consisting of total Net Present Cost and CO2 emissions, yielded lower costs and carbon emissions compared to HOMER, a widely adopted sizing software tool. Further development of this thesis will allow further improvements in the development of renewably powered energy systems providing clean, reliable, cost-effective energy. All simulations are performed on a desktop PC having an Intel i3 processor using either MATLAB/Simulink or HOMER

    Energy evaluation and improvement of silk house microgrid system

    Get PDF
    Mestrado de dupla diplomação com a Universidade de CoruñaIn solar-powered microgrids, solar power yield prediction is critical to optimize operations and reduce the impact of uncertainties. Solar radiance prediction is essential for solar power yield prediction, which typically requires historical solar radiance data. Moreover, uncertainty and low correlation of Photovoltaic power availability with load reduces the benefits of their integration in the microgird. These challenges can be resolved by implementing buffer such as an energy storage system or a diesel group. However this leads to increased operational cost. Solar radiance forecasting helps to reduce reserve requirement, thereby improving the use of photovoltaic energy inside the microgrid system, technically in term of power control, economically in term of energy cost and environmentally in term of toxic emissions that can be provided from the buffer systems such as the batteries and diesel group. The work presented in this thesis addresses the problem of predicting solar radiance in order to increase the performance of the Bragan¸ca city silk house microgrid using regression machine learning based approaches including linear regression models, regression trees, Gaussian process regression models, support vector machines, kernel approximation, ensembles of regression trees, and neural network regression models, the model performances results are compared in term root mean squared errors, mean square error, R-squared, mean absolute error.Nas micro redes de energia solar, a previsão da producão de energia solar ´e fundamental para optimizar as operações e reduzir o impacto das incertezas. A previsão da irradiacão solar ´e essencial para a previsão da produção de energia solar, o que normalmente requer dados históricos de irradiação solar. Além disso, a incerteza e a baixa correlaãoo da disponibilidade de energia fotovoltaica com a carga reduz os benefícios da sua integração no microgird. Estes desafios podem ser resolvidos através da implementação de amortecedores, tais como um sistema de armazenamento de energia ou um grupo diesel. No entanto, isto leva a um aumento do custo operacional. A previsão da irradiação solar ajuda a reduzir a necessidade de reservas, melhorando assim a utilização de energia fotovoltaica dentro do sistema de microgeração, tecnicamente em termos de controlo de energia, economicamente em termos de custo energético e ambientalmente em termos de emissões tóxicas que podem ser fornecidas pelos sistemas tampão, tais como as baterias e o grupo diesel. O trabalho apresentado nesta tese aborda o problema da previsão da irradiação solar a fim de aumentar o desempenho da micro-rede da casa da seda da cidade de Bragança utilizando abordagens baseadas na aprendizagem da máquina de regressão, incluindo modelos de regressão linear, árvores de regressão, modelos de regressão do processo Gaussiano, máquinas vectoriais de suporte, aproximação do núcleo, conjuntos de árvores de regressão, e modelos de regressão da rede neural, os resultados do desempenho dos modelos são comparados em termos de erros quadráticos médios de raiz, erro quadrático médio, R-quadrado, erro absoluto médio.

    Use of MPPT techniques to reduce the energy pay-back time in PV systems

    Get PDF
    Abstract: Photovoltaic (PV) energy is a free-energy that is used as an alternative to fossil fuel energy. However, PV system without maximum power point tracking (MPPT) produces a low, unstable power and with a long energy pay-back time. This paper presents an innovative artificial neuro-fuzzy inference system (ANFIS) MPPT technique that could extract maximum power from a complete PV system and with a lessened EPBT. To confirm the effectiveness of the ANFIS algorithm, its result was compared with the results of PV system using Perturb&Observe (P&O) technique, non-MPPT technique, combination of artificial neural network and support vector machine as ANN-SVM technique and using Pretoria city weather data as case studies. Results show that ANFIS-MPPT yielded the best result and with the lowest EPBT

    A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency

    Get PDF
    In this paper, we address the problem of asset performance monitoring, with the intention of both detecting any potential reliability problem and predicting any loss of energy consumption e ciency. This is an important concern for many industries and utilities with very intensive capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically with Association Rule (AR) Mining. The combination of these two techniques can now be done using software which can handle large volumes of data (big data), but the process still needs to ensure that the required amount of data will be available during the assets’ life cycle and that its quality is acceptable. The combination of these two techniques in the proposed sequence di ers from previous works found in the literature, giving researchers new options to face the problem. Practical implementation of the proposed approach may lead to novel predictive maintenance models (emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of performance and help manage assets’ O&M accordingly. The approach is illustrated using specific examples where asset performance monitoring is rather complex under normal operational conditions.Ministerio de Economía y Competitividad DPI2015-70842-

    Support Vector Machine for Photovoltaic System Efficiency Improvement

    Get PDF
    Photovoltaic panels are promising source for renewable energy. They serve as a clean source of electricity by converting the radiation coming from the sun to electric energy. However, the amount of energy produced by the photovoltaic panels is dependent on many variables including the irradiation and the ambient temperature, leading to nonlinear characteristics. Finding the optimal operating point in the photovoltaic characteristic curve and operating the photovoltaic panels at that point ensures improved system efficiency. This paper introduces a unique method to improve the efficiency of the photovoltaic panel using Support Vector Machines. The dataset, which is obtained from a real photovoltaic setup in Spain, include temperature, radiation, output current, voltage and power for a period of one year. The results obtained show that the system is capable of accurately driving the photovoltaic panel to produce optimal output power for a given temperature and irradiation levels

    Optimal Scheduling of Energy Storage Using A New Priority-Based Smart Grid Control Method

    Get PDF
    This paper presents a method to optimally use an energy storage system (such as a battery) on a microgrid with load and photovoltaic generation. The purpose of the method is to employ the photovoltaic generation and energy storage systems to reduce the main grid bill, which includes an energy cost and a power peak cost. The method predicts the loads and generation power of each day, and then searches for an optimal storage behavior plan for the energy storage system according to these predictions. However, this plan is not followed in an open-loop control structure as in previous publications, but provided to a real-time decision algorithm, which also considers real power measures. This algorithm considers a series of device priorities in addition to the storage plan, which makes it robust enough to comply with unpredicted situations. The whole proposed method is implemented on a real-hardware test bench, with its different steps being distributed between a personal computer and a programmable logic controller according to their time scale. When compared to a different state-of-the-art method, the proposed method is concluded to better adjust the energy storage system usage to the photovoltaic generation and general consumption.Unión Europea ID 100205Unión Europea ID 26937

    A Review on Application of Artificial Intelligence Techniques in Microgrids

    Get PDF
    A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    corecore