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Abstract 

The world’s increasing energy demand means the rate at which fossil fuels are consumed has 

increased resulting in greater carbon dioxide emissions. For many small (marginalised) or 

coastal communities, access to potable water is limited alongside good availability of 

renewable energy sources (solar or wind). One solution is to utilise small-scale renewably 

powered stand-alone energy systems to help supply power for everyday utilities and to 

operate desalination systems serving potable water (drinking) needs reducing diesel generator 

dependence. In such systems, on-site water production is essential so as to service electrolysis 

for hydrogen generation for Proton Exchange Membrane (PEM) fuel cells. Whilst small 

Reverse Osmosis (RO) units may function as a (useful) dump load, it also directly impacts 

the power management of stand-alone energy systems and affects operational characteristics. 

However, renewable energy sources are intermittent in nature, thus power generation from 

renewables may not be adequate to satisfy load demands. Therefore, energy storage and an 

effective Power Management Strategy (PMS) are vital to ensure system reliability.  

This thesis utilises a combination of experiments and modelling to analyse the performance 

of renewably powered stand-alone energy systems consisting of photovoltaic panels, PEM 

electrolysers, PEM fuel cells, batteries, metal hydrides and Reverse Osmosis (RO) under 

various scenarios. Laboratory experiments have been done to resolve time-resolved 

characteristics for these system components and ascertain their impact on system 

performance. However, the main objective of the study is to ascertain the differences between 

applying (simplistic) predictive/optimisation techniques compared to intelligent tools in 

renewable energy systems. This is achieved through applying intelligent tools such as Neural 

Networks and Particle Swarm Optimisation for different aspects that govern system design 

and operation as well as solar irradiance prediction.  

Results indicate the importance of device level transients, temporal resolution of available 

solar irradiance and type of external load profile (static or time-varying) as system 

performance is affected differently. In this regard, minute resolved simulations are utilised to 

account for all component transients including predicting the key input to the system, namely 

available solar resource which can be affected by various climatic conditions such as rainfall. 

System behaviour is (generally) more accurately predicted utilising Neural Network solar 

irradiance prediction compared to the ASHRAE clear sky model when benchmarked against 

measured irradiance data. Allowing Particle Swarm Optimisation (PSO) to further adjust 
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specific control set-points within the systems PMS results in improvements in system 

operational characteristics compared to using simplistic rule-based design methods. In such 

systems, increasing energy storage capacities generally allow for more renewable energy 

penetration yet only affect the operational characteristics up to a threshold capacity. 

Additionally, simultaneously optimising system size and PMS to satisfy a multi-objective 

function, consisting of total Net Present Cost and CO2 emissions, yielded lower costs and 

carbon emissions compared to HOMER, a widely adopted sizing software tool. Further 

development of this thesis will allow further improvements in the development of renewably 

powered energy systems providing clean, reliable, cost-effective energy. All simulations are 

performed on a desktop PC having an Intel i3 processor using either MATLAB/Simulink or 

HOMER. 
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Nomenclature 

Symbol Description 
α Self-discharge rate (%/month) 
δ Declination angle of the sun (degrees) 
Φ Latitude (degrees) 
θZ Zenith angle (degrees) 
ω Hour angle (degrees) 
ΔTpv Temperature difference between the cell and back surface (°C) 
A Solar irradiation (W/m2) 
a Diode quality factor 
ac Empirical constant  
APV PV panel area (m2) 
ASHRAE American Society of Heating, Refrigeration, and Air Conditioning 
BATSOC Battery’s instantaneous State of Charge (%) 
bc Empirical constant  
BOP Balance of Plant 
c1 Cognitive acceleration constant 
c2 Social acceleration constant 
CB Battery capacity (Ah) 
CBmin Minimum battery discharge capacity (Ah) 
CCO2 Cost penalty for carbon emissions ($/kg CO2) 
CH Maximum hydrogen storage capacity (kg) 
CH2O Minimum water capacity threshold (litres) 
CH2O(batt) Minimum threshold water tank level (litres) before battery power is used for 

water generation 
CH2O(PV) Minimum percentage (of maximum desalinated water storage capacity) (%) 
Ci Capital cost ($) 
CMH Minimum hydrogen storage capacity level (litres) 
COE Cost of Energy ($/kWhr) 
CPCO2 Monetary cost of CO2 ($/ton) 
CRF Capacity Recovery Factor 
Eg Energy band gap (eV) 
Ei Annual power consumption per component (kWhr/yr) 
EIN Battery initial charge (Ah) 
Eload,served Electric load served (kWhr/yr) 
ET Equation of Time 
Gbest Global best solution from all particles 
H2Omax Maximum water storage capacity (L) 
HOMER Hybrid Optimization of Multiple Energy Resources 
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I Operation current (A) 
i Component 
IB Beam Radiation (W/m2) 
IB Battery current (A) 
ID Hourly diffuse radiation (W/m2) 
IFC Fuel cell operating current (A) 
IG  Hourly global irradiance (W/m2) 
IGNOCT Nominal Operating Cell Temperature (°C) 
IL Photocurrent (A) 
IL.ref Short circuit current at reference temperature (A) 
IN Hourly beam radiation (W/m2) 
IO Diode reverse saturation current (A) 
IPV Short circuit current (A) 
iR Interest rate (%) 
ISC Irradiance Constant (1367 W/m2) 
Isc.ref Short circuit current (A) 
iR Interest rate (%) 
K Constriction Factor  
KI Polarisation coefficient (C/m2) 
l Longitude of location (degrees) 
LAT Local Apparent Time 
n nth day of the year (Chapter 2) 
n Electrons per mole of H2O (Chapter 3) 
n Season (Chapter 4) 
NB Number of Lead-acid batteries 
nC Number of electrolyte cells 
NElect Number of PEM electrolysers 
nF Faradays efficiency (%) 
NH Number of Metal Hydride Canisters 
nH2 Hydrogen flow rate (mol/s) 
NN Neural Network 
NPC Net Present Cost ($) 
NRO Number of RO units 
O&Mi Operational and Maintenance cost ($/yr) 
OECD The Organisation of Economic Co-operation and Development 
OEDF Duty factor for the electrolyser (litres/start-stop) 
OESS Number of start/stop cycles for a PEM electrolyser 
OFC Minute resolved hydrogen consumption (litres/minute) 
OFCSS Number of start/stop cycles for a PEM fuel cell 
OH Total hydrogen generation (litres) 
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OHT Target hydrogen yield (litres) 
OW Total of desalinated water (litres) 
PB Battery Power (Ah) 
Pbest Particle Personal Best 
PEM Proton Exchange Membrane 
PFC Fuel Cell Power (W) 
PIN Battery input power supplied (Ah) 
PLC Programmable Logic Controller 
PMS Power Management Strategy 
PMU Power Management Unit 
P0 Output power drawn (W) 
PPV PV Panel Power (W) 
PRO RO Power (W) 
PSO Particle Swarm Optimisation 
PV Photovoltaic 
QR Rate of accumulated charge 
R1 Constants 
R2 Constants 
Ri Replacement cost ($) 
Ri,CO2 Carbon emission rate per component (CO2/kWhr) 
Rproj Project lifetime (yrs) 
RO Reverse Osmosis 
RQ Research Question 
RS Series resistance (Ω) 
Rsh Shunt resistance (Ω) 
RT Internal resistance (Ω) 
Si Salvage value ($) 
SOCBAT Battery State-Of-Charge (%) 
ST Standard time 
STL Standard meridian for local time zone 
t Time step 
TElect Minimum duration the PEM electrolyser(s) can operate (minute) 
TA Ambient temperature (°C) 
Tannual Total load demand to be served (kWhr/yr) 
TE Min runtime for electrolyser (minute) 
TDS Total Dissolved Salts 
TLOL Loss of Load (kWhr) 
Tmpv Back surface temperature of the PV module (°C) 
Tpv PV panel operating temperature (°C) 
Tpv.ref PV panel reference temperature (°C) 
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TREF Reference Temperature (°C) 
TW Deionised water temperature (°C) 
µIsc Temperature coefficient of the short circuit current 
ULoad Maximum permissible unmet load (%) 
UB Battery voltage (V) 
UOC Voltage max load (V) 
UPV Open circuit voltage (V) 
VFC Fuel cell voltage (V) 
Vi

k Particle velocity 
Voc.ref Short circuit voltage (V) 
Vt

k Plausible position of particle 
Wload,served Water load served (kWhr/yr) 
WS Wind speed (m/s) 
X Optimisation decision variable 
Xi

k Position of particle 
Xmax Upper bound of decision variable 
Xmin Lower bound of decision variable 
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Chapter 1. General Introduction 

1.1 - World Energy and Water Demands 

Continued growth in global energy demand means increased fossil fuel consumption and 

higher emissions. Society is becoming more environmentally aware of carbon emissions and 

the need for sustainable energy to replace fossil fuels. Interest internationally and in Australia 

is directed to the utilisation of renewable sources [1] with the aim of reducing emissions 

associated with electricity generation via fossil fuels.  Figure 1.1, sourced from the Key 

Energy Statistics 2014 by the International Energy Agency [2], indicates that only 0.1% of 

total power was generated renewably (via solar, wind, geothermal etc.) in 1973 compared to 

1.1% in 2012. Over the same period, there was a corresponding increase in power generation 

based on fossil-fuels from 6,106Mtoe to 13,371Mtoe (1Mtoe=11,630 GWh).  

 

Figure 1.1 - World total primary energy supply Ratios for countries of the Organisation of 

Economic Co-operation and Development (OECD). Source: [2] 

Whilst population growth contributes to a rise in total power consumption, the demand for 

potable water also increases across four main sectors including agriculture, production of 

energy, industrial uses and human consumption. The production of crops and livestock is the 
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most demanding on water reserves accounting for 70% of all water withdrawn [3].  

Furthermore, the transport of potable water to remote locations also provides additional costs. 

In some countries, the supply cost ($/m3) of potable water can be up to 800% more compared 

to non-potable water at the same location [4, 5].  This provides an opportunity to utilise on-

site desalination systems reducing the cost of potable water generation through effective on-

site energy management [5-7].  

Desalination has the potential to help meet rising worldwide water demands, but is limited by 

its cost due to the relatively large specific energy consumption (kWhr/m3). The energy 

consumption of desalination also has an environmental impact, in particular the release of 

carbon dioxide (CO2) into the atmosphere through the burning of fossil fuels. Additionally, 

the effects of climate change and demographics can exacerbate widespread problems with 

access to potable water for many small (marginalised) or coastal communities. In its 2010 

report, the National Centre of Excellence in Desalination, an Australian government initiative 

for the study of water security against the natural variability of rainfall and potential future 

impacts of climate change reported that “the need is urgent for large-scale production of 

potable water from alternative water supplies for Australia’s metropolitan and rural regions, 

including affordable and sustainable desalination technologies” [8].  

1.2 - The Role of Renewable Energy 

The central focus of world energy policy in recent years is aimed at increasing the proportion 

of energy derived from renewables as seen in Figure 1.1, and thus reducing dependence on 

fossil energy sources [1, 9]. Renewable energy is generated from naturally occurring 

resources including sunlight and wind as well as hydroelectric, tidal and geothermal sources. 

Energy produced through renewable sources provides a “clean” alternative for the production 

of electricity compared to fossil based fuels. Electricity production through renewable 

sources is naturally sustainable and can significantly reduce carbon emissions compared to 

fossil fuels. However, while renewable energy is environmentally friendly, its disadvantages 

are low energy conversion efficiencies, high set-up cost and intermittent supply when 

compared to fossil fuels [9].  
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Figure 1.2 - Western Australian remote power generation. Source: [10] 

Figure 1.2 highlights diesel generators as the primary source of energy, alongside natural gas, 

for remote locations in Western Australia. For rural communities away from hydroelectric 

sources, solar and wind have the potential to alleviate dependence on diesel in addition to 

decreasing the carbon footprint. In particular, the attractiveness of solar-PV systems lies in 

their good reliability and relative ease of installation, particularly for small scale applications. 

The major advantage of using solar-PV panels is that, once panels are set up their operational 

cost and reliability are favourable. The main disadvantage of solar-PV panels is their low 

efficiency energy conversion and dependence on seasonal environmental conditions (e.g. 
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temperature and cloud cover during daylight hours) affect power output. Conventional solar-

PV panel efficiencies are typically between 15-20% [11].  

Due to the intermittent nature of both solar and wind, two options exist to provide reliable 

power supply:  

• In conjunction with renewable energy, use fossil fuel generators to make up the 

deficit; or 

• Store excess renewable energy, so that the stand-alone energy system can run when 

available renewable energy is insufficient. 

To ensure minimal dependence on fossil fuels for power generation, localised energy storage 

and improvements in the overall efficiency of the energy system are needed. While many 

other forms of energy storage exist (i.e. flywheels, capacitors or hydrogen), batteries are most 

commonly integrated into stand-alone energy systems [12] but they are not adequate for long 

term (seasonal) storage due to high parasitic losses and relatively low storage capacities [13]. 

The potential of hydrogen as an energy carrier provides the ideal opportunity for both 

seasonal storage and meeting daily power requirements through an energy conversion device 

(e.g. fuel cell). 

1.3 - The Hydrogen Economy 

Global awareness about the carbon emissions has generated considerable interest 

internationally and in Australia in the ‘hydrogen economy’, whereby hydrogen is considered 

as an energy carrier which is utilised via a fuel cell for power generation to provide an 

alternative to fossil fuels. Hydrogen is attracting significant research globally as a possible 

long term, renewable energy carrier as opposed to fossil fuels.  Its advantage is as a clean 

energy source, when derived from renewable sources, for fuel cell systems. Hydrogen is the 

most abundant element on Earth and burns readily with oxygen, releasing considerable 

amounts of energy as heat with only water as a chemical by-product and no carbon-based 

greenhouse gas emissions.  

2𝐻𝐻2 + 𝑂𝑂2 → 2𝐻𝐻2𝑂𝑂 
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While fuel cell technology has allowed various stationary and vehicle applications to be 

possible as listed in section 1.4, there are technical and economic challenges that have limited 

the uptake of the use of hydrogen as an alternative fuel. These challenges include: 

• Large-scale hydrogen production from fossil fuels must currently be used until 

hydrogen can be obtained economically from renewable sources;  

• Infrastructure for hydrogen delivery and filling stations; 

• Improved technologies for hydrogen transport and long term storage; 

• Fuel cells with improved reliability and lower costs; and 

• Addressing public concerns about safety. 

Hydrogen is highly flammable with a high energy content by weight (nearly three times that 

of gasoline), but has a low energy density by volume at a standard temperature and 

atmospheric pressure. However, hydrogen is a carrier of energy and must be used in 

combination with devices such as fuel cells to generate useful electricity. Furthermore, 

hydrogen does not exist in a natural state and must be refined.  

Today, hydrogen for use as a feedstock for industrial processes where power generation is not 

the function, is most commonly produced through steam reforming of natural gas. Although 

other techniques exist such as partial oxidation, pyrolysis, biomass and water electrolysis [14, 

15], the drawback of the generating hydrogen through hydrocarbons is the resulting carbon 

emissions. In this regard, it is desirable to produce hydrogen from water electrolysis using 

renewable energy sources rather than fossil fuels because emissions are minimised but is 

usually more costly because it requires greater energy expenditure than using fossil fuels. 

Generated hydrogen on-site, is an attractive option for remote communities which cannot be 

economically supplied via the electrical grid. 

1.4 - Stand-Alone Energy Systems 

A stand-alone energy system can generally be considered as a power system, not connected 

to the main electrical grid, which is solely responsible for providing power to meet external 

load demands. Stand-alone systems are most commonly utilised in remote locations where 

connecting to the electrical grid is too expensive. Such systems can be easily be deployed and 

can be custom designed for a variety of applications including: 
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• Telecommunications: e.g. back-up and UPS systems for mobile phone network 

infrastructure in remote areas [16] 

• Agriculture: e.g. water pumping [5, 17] 

• Environmental: e.g. habitat monitoring [18] 

• Power generation: e.g. power supply for remote communities [19] 

• Marine: e.g. fresh water production and powering ships [20] 

However, many of these systems are still largely reliant on fossil fuels with renewable 

sources increasingly being integrated [21]. Among stand-alone renewable energy systems, 

various technological options are suitable for different applications using combinations of 

renewable sources. Commonly, solar and wind are the preferred sources of renewable energy 

for small scale applications [22]. Additionally, devices such as Reverse Osmosis can be 

integrated into renewable energy systems to provide water in periods of excess renewable 

energy (i.e. act as a useful dump load) for electrolysis or drinking requirements. 
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Figure 1.3 - System block diagram for a) Solar desalination system; b) Solar hydrogen 

generation system with integrated desalination; and c) Solar energy system incorporating 

desalination. 
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A typical renewably powered stand-alone power system, with on-site desalination can be 

separated into three distinct sub-systems is shown in Figure 1.3 which forms the 

technological focus of this thesis. These systems are: 

1. A stand-alone solar-PV desalination system (Figure 1.3a), responsible for providing 

potable water via renewables through the use of a Reverse Osmosis device; 

2. Through the addition of a PEM electrolyser to the architecture of Figure 1.3a, a stand-

alone solar hydrogen generation subsystem is formed responsible for producing 

hydrogen and potable water from on-site desalination; and  

3. Finally, integrating a fuel cell into the architecture of 1.3b, a full stand-alone solar-PV 

hydrogen energy system is created (Figure 1.3c) responsible for generating power and 

desalinated water. 

Whilst each subsystem is able to be operated individually, each subsystem (i.e. hydrogen 

generation and water production) contributes to a full operating system depicted in Figure 

1.3c whereby both electrical and desalinated water demands are met. This full system makes 

use of all available solar energy either by directly powering system devices or storing excess 

energy via batteries, as hydrogen or extra water. Therefore, it is critical to break down the 

entire system (Figure 1.3c) into subsystems (Figures 1.3a and 1.3b) to analyse how each 

subsystem performs. 

The aforementioned systems comprise of a PV array, a Reverse Osmosis (RO) unit, batteries, 

a Proton Exchange Membrane (PEM) electrolyser and a PEM fuel cell, with the metal 

hydrides for hydrogen storage. Photovoltaics are the preferable option for the stand-alone 

energy system because of their high reliability, low maintenance cost (no moving parts) and 

greater consistency/predictability of solar radiation compared to wind. A PEM fuel cell is 

essential alongside sufficient reserves of hydrogen to allow reliable power supply in periods 

where the renewable energy source is insufficient to serve the load. Unlike other fuel cells 

(e.g. solid-oxide and alkaline fuel cells), a PEM fuel cell can operate at lower temperatures 

and with higher energy efficiency. Additionally, the incorporation of a RO into the system 

architecture not only helps provide drinking water but also the water needed for on-site 

hydrogen generation through electrolysis.  

For the electrolysis process, a PEM electrolyser is preferred due to its higher energy 

efficiency, better lifetime (no degradation associated with switching ON/OFF), 
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environmentally friendly status (no corrosive electrolyte), and easy maintenance compared to 

conventional alkaline electrolysers [23-25]. Its main advantage is that it can generate 

hydrogen and store it at an elevated pressure (i.e. up to 15bar [26]) without the need for a 

separate compressor which would increase the energy consumption. The intermittency of 

renewable energy means energy storage is critical for system reliability. The investigated 

system includes two forms of energy storage, namely Lead-acid batteries and hydrogen. 

Whilst other battery technologies exist (e.g. Nickel-Cadmium, Lithium Ion etc.), Lead-acid 

batteries remain the cheaper option as a short term energy storage/buffer device. For long-

term energy storage, that accounts for seasonal effects (i.e. winter months), metal hydride 

canisters can be directly coupled with the PEM electrolyser as well as with hydrogen stored 

at relatively safe, low temperatures and pressures [27].  

1.5 - Research Questions 

There is a need to optimise the design (i.e. operational strategy and sizing) of stand-alone 

renewable energy systems incorporating on-site water generation to meet increasing demands 

(power and water) and alleviate dependency on fossil fuels. In this regard, this research is 

multi-disciplinary in that it not only addresses renewable energy conversion, system 

operation and storage, and water production, but also evaluates artificial intelligence in such 

systems. The four research questions (RQ’s) addressed are: 

Research Question 1 (RQ 1): How is the overall performance of solar-PV energy systems 

affected when accounting for dynamic device transients?  

Research Question 2 (RQ 2): Can the incorporation of (intelligent/adaptive) predictive 

software tools significantly improve the performance of these energy systems, compared to 

non-predictive (simplistic) energy balancing techniques? 

Research Question 3 (RQ 3): Can the use of (intelligent/adaptive) optimisation software 

tools improve system performance when meeting single and multi-objective functions 

compared to a more widely adopted technique?  

Research Question 4 (RQ 4): How does scalability affect energy systems incorporating 

desalination, solar-PV and hydrogen fuel cells/storage? 
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1.6 - Outcomes 

From the above research questions the following outcomes were achieved: 

• Transients of laboratory scale devices have been experimentally derived and 

incorporated into the models of the stand-alone energy systems depicted in Figure 1.3 

with the impact of temporal resolution on system performance evaluated (Chapter 2);  

• Neural Network solar irradiance prediction has been compared against the ASHRAE 

clear sky model to test their validity and effects on system performance (i.e. 

component operational characteristics as shown in Figure 1.3b) over two seasons 

(Chapter 3); 

• A new optimisation model (Particle Swarm Optimisation) has been proposed for 

system sizing and Power Management Strategy and compared to a more well-known 

sizing program (HOMER). This comparison has been evaluated for specific system 

objectives such as maximum hydrogen generation, specific amount of hydrogen to be 

generated only and to minimise loss of load (Chapter 4);  

• To document the application of PSO for the sizing and Power Management Strategy 

of the system depicted in Figure 1.3c, to meet different types of external load 

demands (i.e. electricity and potable water requirements) with technical and 

environmental performance evaluated (Chapter 5); and 

• The significance of component and external load scale has been analysed to determine 

its influence on system operational characteristics and the system’s ability to meet 

desired objectives (Chapter 2 to 5).  

Although solar irradiance, rainfall, power and water demand profiles used in this research 

have been sourced in the Western Australian context, the methods used can be adapted for 

different geological locations. 

1.7 - Thesis Structure 

In the following section, a general overview of the thesis structure is presented with a 

summary of methods used, shown in Table 1.1. Whilst full details of each experiment are not 

supplied, this outline serves to provide a summary of the chapters in this thesis and a linkage 

to the publications.  
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Table 1.1 - Summary of methods used in each chapter.1 

Chapter 1 provides a general introduction to the global energy situation as well as potable 

water generation for remote locations. This serves to highlight the need for increased use of 

renewable energy in power generation, particularly outside of the main electrical grid. The 

chapter then moves to present the broad research questions and outcomes which the thesis 

will address. 

Chapter 2, published in Desalination, reviews current literature pertaining to stand-alone 

energy systems incorporating desalination and system component models used in such 

systems. It then details a methodology used to model a small-scale, stand-alone, solar-PV 

powered Reverse Osmosis (RO) system (Figure 1.3a), which forms the first subsystem (water 

generation), investigating the effect of including system component intricacies. It explains 

dynamic device characteristics and analyses the scale of solar-PV panels, with and without 

battery storage, in terms of total annual desalinated water produced. 

Chapter 3, published in the International Journal of Hydrogen Energy, extends upon Chapter 

2 through the inclusion of a PEM electrolyser in the system architecture (Figure 1.3b) 

forming the second subsystem (hydrogen generation). Based on literature for solar irradiance 

prediction techniques, a methodology to study renewable energy intermittency on system 

performance is proposed. The impact on the operational characteristics of a stand-alone, 

solar-PV hydrogen generation system is analysed using two different solar irradiance 

prediction techniques for different battery storage capacities. The comparison between the 

performance of the ASHRAE clear sky model and Neural Network prediction is conducted 

1 Details for ASHRAE and PSO (optimisation algorithm) can be seen in Chapter 3.7 and 

Appendix F, respectively. HOMER is a well-known sizing tool for energy systems. 

ASHRAE
Neural 

Network
Meteorological 

Data
Device 

Transients PSO HOMER
Electric 

Load
Water 
Load

Chapter 2 X X

Chapter 3 X X X X

Chapter 4 X X X X X

Chapter 5 X X X X X X

Research Methods
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for two seasons (Western Australian winter and summer) which provide two levels of solar 

irradiance intermittency.     

Chapter 4 further develops upon the stand-alone hydrogen energy system used in Chapter 3 

by examining the impact of renewable energy intermittency and optimisation on the 

operational characteristics of the full system depicted in Figure 1.3c. Published in the 

International Journal of Hydrogen Energy, this chapter demonstrates the validity of applying 

Particle Swarm Optimisation (PSO) on the sizing and Power Management Strategy (PMS) 

deployed in such systems for a single objective function. The proposed optimisation method 

additionally identifies the choice of PSO acceleration parameters that yield best results. Three 

scenarios are developed for the analysis of implementing PSO, and a comparison with a 

simplistic method is made. 

Chapter 5, published in Energy, investigates the techno-economic and environmental 

feasibility in sizing a stand-alone solar-PV hydrogen energy system (Figure 1.3c) for two 

external demand profiles (electric and water). In this chapter, the effect of scalability of water 

storage capacity and electric demand on system performance, when using two optimisation 

techniques (HOMER and PSO) to minimise Net Present Cost (NPC) and CO2 emissions, is 

identified. 

Chapter 6 provides a brief overview of the study, including a statement of the problem and 

the methods involved. The chapter then provides a summary and discussion pertaining to the 

four research questions developed in Chapter 1. Furthermore, the relevance of the results 

when designing stand-alone solar-PV energy systems incorporating desalination is discussed.  

Chapter 7 concludes the work done in this thesis, together with recommendations of further 

investigations that can contribute to the development of stand-alone hydrogen energy systems 

incorporating on-site water production. 
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Chapter 2. The Effects of Including Intricacies in the 

Modelling of a Small- Scale Solar-PV Reverse Osmosis 

Desalination System 

Daniel P. Clarke*, Yasir M. Al-Abdeli and Ganesh Kothapalli 

This chapter was published as a full research paper in Desalination. Whilst all efforts were 

made to retain the original features of this article, minor changes such as the layout, number 

formats, font size and style were implemented in order to maintain consistency in the 

formatting style of the thesis. 

2.1 - Abstract 

With the global demand for freshwater rising alongside the cost of power generation from 

fossil-based fuels, access to potable water in small (marginalised) or coastal communities can 

be alleviated using renewable energy sources such as solar or wind. Whilst large-scale 

renewably powered desalination systems have been the focus of much research, where 

smaller systems are concerned, there remains ambiguity as to the significance of modelling 

all system intricacies and the effects of Solar-Photovoltaics (solar-PV) scalability on total 

water yield. 

After detailing the methodology used to model such Reverse Osmosis (RO) systems, this 

chapter presents the results of simulations used to investigate a small-scale, stand-alone, 

solar-PV powered (RO) system, with/without battery storage. Results indicate system 

performance was affected differently when including power characteristics of RO devices 

and also by the temporal resolution used in simulations. The scale of the renewable energy 

conversion used (solar-PV) appears to be a factor in some cases. Parameters varied in the 

simulations include RO (unit) power characteristics, saline water concentration/temperature, 

PV panel power characteristics as well as the dynamic charging and discharging of batteries 

and the efficiency of power conditioning used in the renewable energy system. Simulations 

are done using MATLAB and use laboratory-based data to establish device characteristics. 

2.2 - Introduction 

The supply of drinkable water is a global concern with many areas throughout the world 

suffering from increased water shortages [1, 2]. Whilst access to potable water networks and 
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grid-connected power (for water purification) may be exacerbated for remote communities, 

this situation can be alleviated through the availability of renewable energy sources (solar or 

wind). The effect of drought, climate change and population growth means desalination of 

seawater offers the assurance of contributing to meet increasing water demand. However, due 

to high energy demands associated with seawater desalination diesel generators remain 

predominately in use to provide power in remote areas which leads to an increase in fossil 

fuel consumption and wider emissions [3]. The International Energy Agency [4] estimates 

that only 0.2% of total power in 1973 was generated renewably compared to 1.1% in 2009, 

with a corresponding increase in power generation based on fossil-fuels from 3724Mtoe to 

5170Mtoe (1Mtoe=11,630 GWh).  It is believed that renewably powered stand-alone 

desalination systems will have an increasingly critical role in the long-term water security of 

many nations, as well as alleviating reliance on fossil fuels and minimising environmental 

impact. In this regard, the use of solar-PV [5-10] as well as other renewable energies has been 

utilised [11-18].  

Desalination systems based on solar-PV form the largest renewable energy conversion 

method used in conjunction with potable water production, with RO being the most common 

pathway [19, 20]. The attractiveness of solar-PV lies in its good reliability and relative ease 

of installation particularly for off-grid, small-scale systems. Coupling RO with solar-PV is 

well aligned with strategic water industry issues, namely “development of simple, low 

maintenance renewable energy systems that can supplement power supply for small 

desalination facilities” [21].  

Optimally integrating desalination into energy systems necessitates quantifying total 

renewable energy availability, its conversion efficiency into energy carriers such as electricity 

and its subsequent utilization or storage. When modelling these systems, the temporal aspects 

used in simulations will also likely affect the overall predictions of system performance and 

potable water production. Such simulations can include the modelling of energy system 

components [11, 22] and desalination processes [23, 24] and is made possible using software 

tools [25]. Although fairly complex modelling techniques have been applied [11], where 

small stand-alone renewable powered desalination systems are concerned, more research is 

also warranted into the energy storage options available for such systems, including the 

integration of battery-free energy storage (e.g., via hydrogen) during seasonal variability of 

renewable energy sources [19]. The temporal resolution used in such simulations also 
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remains a key consideration as it not only impacts the total time needed for data processing 

but also has the potential to affect the accuracy of the results attained. Limited research has 

been done to investigate this with many results being based on a nominal time step of 1 hour 

[9, 11, 16, 24, 26] and simulation lengths of one year [27] as the most commonly 

implemented. Additionally, whilst the use of simulations based on daily averages can provide 

an excellent (quick) overview of system performance [10], the use of such relatively lengthy 

time steps raises the question as to the degree to which such temporal resolution impacts the 

outcomes and whether smaller time steps are always warranted [28]. The inclusion of 

different desalination system power characteristics in these simulations can further 

complicate the predictions and may also be affected by system scalability. 

This chapter sheds new light on the interplay between renewably powered desalination 

system components, RO devices and overall system performance, under different temporal 

resolutions. The research does this by examining the effects which these factors have on 

annual predictions of potable water production and renewable energy utilization. This is done 

using simulations conducted in the MATLAB/Simulink environment.  

2.3 - Experimentation 

To accurately model device characteristics in the systems simulations, a series of tests were 

undertaken to resolve the efficiencies and power characteristics of modelled components2. 

Figure 2.1 gives the general layout of the systems tested and modelled while Figure 2.2 

depicts the RO unit and data acquisition system. A solar energy system incorporating PV 

panels (make: Heckert Solar- Germany, model: HS-PL 135) was tested in conjunction with 

its Power Management Unit (PMU) that is capable of supplying loads of up to 700W. The 

PMU consists of four components: a Programmable Logic Controller (make: Beckhoff- 

Germany, model: BC9000) to regulate operational modes; a 12Volt lead acid battery with a 

minimum depth of discharge at 20% of rated capacity; Converters (DC-DC and DC-AC); and 

a charge controller (make: SMART Power Systems-Germany, model: SMART MS 300) to 

limit the charging current of the battery banks to a maximum (solar) charging current of 30A 

2 Refer to Appendix C for error analysis methods. 
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at 12V and maintain full battery capacity without overcharging. 

 

Table 2.1 gives basic hardware specifications and relevant model parameters for PV panels 

used in the simulations. Each PV panel has an effective area of about 0.87m2. 

 

 

Figure 2.1 - Overall layout of system showing components modelled and data acquisition.3 

3 Refer to Appendix D for Chapter 2 system MATLAB/Simulink model. 

Parameter Value Parameter Value

ISC (Irradiance constant) 1367 W/m2 Longtiude (location) 115.8°

ID (diffuse radiation) 0.25IB (bean radiation) Latitude (location) -31.75°

A (model constant) 1000 B (model constant) 0.18
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Figure 2.2 - Experimental setup with the RO unit and the data acquisition system. 

 

Table 2.1 - Solar irradiance modelling parameters with longitude and latitude parameters for 

a typical Perth based location. 

The PLC tested and modelled incorporates three distinct operational modes. Mode-I involves 

PV power used to (only) run utilities which may be DC or AC. If PV power is inadequate to 

meet load demand, the system works in Mode-II with PV power only used to charge energy 

storage media (e.g., batteries) in this stand-alone system. If PV power is in excess of that to 

run utilities, the system operates in Mode-III with PV power supplying both utilities (DC or 

AC) and charging energy storage media. Whilst power control may fluctuate between these 

operational modes through the day, the likelihood of running systems in Mode-III increases 

during summer when good solar irradiance exists.  

Parameter Value Parameter Value

ISC (Irradiance constant) 1367 W/m2 Longtiude (location) 115.8°

ID (diffuse radiation) 0.25IB (bean radiation) Latitude (location) -31.75°

A (model constant) 1000 B (model constant) 0.18
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Energy storage in small scale renewable energy systems is commonly achieved using 

batteries, although other forms of energy storage also exist including capacitors, flywheels or 

hydrogen [29]. Energy storage becomes important when there is excess solar energy available 

that is not utilised or when there exists a mismatch between solar energy and load demand. 

Excess energy is defined as energy available from the solar panel/s which is not used by the 

Reverse Osmosis unit (the load demand) or not stored which happens either when no storage 

media exists or is already at full capacity. Figure 2.3 helps demonstrate these concepts for 

data on the 21st of December. The stand-alone system tested and modelled incorporates a 

lead acid battery (make: Banner- Germany, model: SBV 12-55) with a 55 Ah capacity 

(C=20h/12Volts). Subsequent simulations will consider characteristics derived from 

experiments for discharging and charging in addition to a maximum battery leakage of 10% 

per month, which appears to be a reasonable estimate [30].  

  

 

Figure 2.3 - Definition of excess energy using the 21st of December data (hourly resolved) 

for APV=1m2 after RO operation and 55Ah battery charging. 
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A laboratory-scale Reverse Osmosis unit (make: Katadyn- Switzerland, model: Power 

Survivor 40E) was used to desalinate simulated saline water. Small-scale RO units typically 

include pre-filters (for particulate removal), a pump to yield the needed osmotic membrane 

pressures and energy recovery to reduce specific energy consumption (kW/m3). This DC 

powered RO unit has a nominal (potable) water production rate of 5.5litres/hr and a nominal 

power rating of 50W at 12VDC. The unit however operates using a reciprocating piston 

which means a highly dynamic (fluctuating) current draw is realised at 12VDC. Figure 2.4 

shows one complete cycle of the pump for a constant 12V supply with the operational 

frequency of the RO unit equal to 0.5Hz. The water recovery ratio of 10% (potable water 

produced relevant to total feedwater) was found through monitoring.  

  

 

Figure 2.4 - RO current profile measured at the battery with 10ms sampling rate (sample data 

shown for demineralised feedwater at TA=25°C). 

The battery charging rate characteristics shown in Figure 2.5a are achieved in the lab by 

using a power supply to charge the batteries thereby simulating the (DC) input solar current 

that would alternatively be supplied via a solar-PV system. The results demonstrate a linear 

relationship between charging rate and time taken for the battery to be charged to 100%. That 
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is if the charging rate is doubled then the time taken to fully charge the battery is halved. The 

rate of battery discharge from testing at 50W was done with DC testing at a nominal (time-

averaged) 50W load (4A, 12Volts) as well as a dynamic (fluctuating) DC load of 50W±30W. 

Figure 2.5b shows the effect of fluctuating and time-averaged loads on battery performance 

with fluctuating loads causing the battery to deplete at an increased rate. The rate at which the 

battery depletes is an important factor.  These two loads with the same mean power 

characteristic were used to help model the effect of merely using the nominally designated 

(steady) DC power specifications of an RO unit (50W,4A,12VDC), versus incorporating the 

exact intricacies associated with a dynamically fluctuating DC load from a reciprocating 

pump RO unit (50W±30W, 4.17A±2.5A, 12VDC). The battery’s State-Of-Charge (BATSOC) 

is defined as the amount of energy stored in the battery at a required power rating. To 

establish the efficiency of the DC convertor embedded within the stand-alone PV energy 

system, the output power drawn (P0) by a static (50W) DC load connected to the system was 

compared to the input power supplied (PIN). Figure 2.6 illustrates the DC-DC conversion 

process for this system is approximately 99% efficient whilst the DC-AC converter is 

approximately 82% efficient. Because the RO unit operates under a DC mode, the subsequent 

simulations therefore considered the DC-DC efficiency. 
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Figure 2.5 - Battery characteristics: a) measured battery charging (55Ah, TA=25°C) over time 

at varying input rates. b) Measured battery discharge (55Ah, TA=25°C) over time at 50W 

dynamic (fluctuating) load and 50W nominal (time-averaged) load. 
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Figure 2.6 - Solar-PV system converter under different modes of operation (DC-DC and DC-

AC). 

Energy consumption associated with desalination is a major element that contributes to the 

cost of freshwater production, production rate being dependent on feedwater composition, 

pre-treatment and pressurising [31-34]. The simulated saline water used to supply the RO unit 

was prepared using pre-dissolved solutions of (crystallised) rock salt in demineralised water 

(at different levels of salinity). Total Dissolved Salts (TDS) in the feedwater were measured 

using a water conductivity meter (make: Eutech Instruments- Singapore, model: CyberScan 

CON 10 Cond/TDS meter). The range of salinity investigated was from 1% to 4% which 

resembles brackish to high saline seawater, respectively. To accurately model RO device 

characteristics, experiments were undertaken to establish the dependence of specific energy 

consumption (kW-hr/m3) on feedwater salinity in the range of 25°C to 35°C. Figure 2.7a 

shows that specific energy consumption increases substantially with an increase in salinity. 

By referring to Figure 2.7b it can be seen that the feedwater salinity also affects the potable 

water production rate. An increase in salinity decreases the rate at which potable water is 
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produced from approximately 5L/hr to 4.2L/hr. Water temperature, potable water production 

rate and variable salinity is accounted for in the simulations for the annual yield of potable 

water. 

Finally, a data acquisition unit (make: National Instruments- U.S.A, model: CompactRIO 

cRIO-9072) was incorporated in order to take the measurements of voltage, current and 

temperatures.  
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Figure 2.7 - Experiment based characteristics for a) the variation of specific energy 

consumption for RO at varying TA and salinity of feedwater. b) The potable water production 

rate for RO at varying TA and salinity of feedwater. 
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2.4 - Modelling- Methodology  

Once the device specific characteristics of the PMU and RO unit were resolved, modelling 

was used to predict the total conversion of solar energy via the PV panels4 as well as the 

battery’s instantaneous State of Charge (BATSOC). 

Solar irradiance: Solar irradiance is the energy incident upon the earth surface which can be 

collected via photovoltaic panels and converted to electrical energy. Although (location 

specific) meteorological data based on cumulative (total) daily solar irradiance is available 

for a location in Australia (-31.75°, 115.8°), utilizing solar irradiance models can yield 

(global) irradiance (IG) resolved to a higher resolution at either 1hr or 1 minute. The 

utilization of solar irradiance models can therefore allow (energy system) simulations to be 

hourly or minutely based rather than daily, hence pseudo-dynamic. For this purpose, global 

irradiation models are used to predict hourly or minutely resolved IG over 365 days. Solar 

irradiance can be predicted by various models, many of which modify the ASHRAE clear sky 

model by proposing location specific factors A, B and C [35]. The ASHRAE model also 

forms the basis for renewable energy input into the simulations presented in this chapter.  

 𝐼𝐼𝐺𝐺 = 𝐼𝐼𝑁𝑁 cos 𝜃𝜃𝑍𝑍 + 𝐼𝐼𝐷𝐷  Equ. 2.1 

 𝐼𝐼𝑁𝑁 = 𝐴𝐴 × 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐵𝐵

cos 𝜃𝜃𝑍𝑍
�  Equ.2.2 

 𝐼𝐼𝐷𝐷 = 𝐶𝐶 × 𝐼𝐼𝑁𝑁 Equ.2.3 

The hourly global irradiance (IG, W/m2), hourly beam radiation (IN, W/m2), hourly diffuse 

radiation (ID, W/m2) may be calculated using Equation 2.1 to 2.3 with factors A and B as per 

Table 2.2. Factor C is also set to zero because this allows predicted daily averages to match 

those from actual averaged daily data [36]. The zenith angle (θZ) is also dependent on the two 

parameters of latitude (Φ), the hour angle (ω) and may be calculated as per Equation 2.4 to 

2.8. The nth day of year (n) is also defined through the declination angle of the sun (c) as 

given by Equation 2.8: 

 cos 𝜃𝜃𝑍𝑍 = sin𝛷𝛷 sin 𝛿𝛿 + cos𝛷𝛷 cos 𝛿𝛿 cos𝜔𝜔 Equ.2.4 

4 Refer to Appendix D for PV panel model. 
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 𝜔𝜔 = 15(12 − 𝐿𝐿𝐿𝐿𝐿𝐿)        Equ.2.5 

 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐸𝐸 ± 4(𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑙𝑙) Equ.2.6 

 
𝐸𝐸𝐸𝐸 = 229.2(0.000075 + 0.001868 cos 𝑥𝑥 − 0.032077 sin 𝑥𝑥

− 0.014615 cos 2𝑥𝑥 − 0.04089 sin 2𝑥𝑥 
Equ.2.7 

  
𝛿𝛿 = 23.45 sin �

360 × (284 + 𝑛𝑛)
365

� 
Equ.2.8 

The hour angle, which represents the solar angle remaining to solar noon, is equivalent to 

15°hr-1 (365°/24hr) and 0.25°min-1 (365°/24*60min). The other parameters are defined as 

noon based Local Apparent Time (LAT), Standard Time (ST) Standard meridian for Local 

Time zone (STL), longitude of location (l)and the Equation of Time (ET) correction in 

minutes where x= (n-1)/360/365.  

     

 
Parameter Value Parameter Value 

 
PMAX 130 WP Efficiency 13.61% 

 
TREF (reference temperature)  25°C UOC (voltage max load) 17.2V 

     
Table 2.2 - Solar-PV panel specifications (each) and relevant modelling parameters [40]. 

To validate the veracity of resolved IG predictions, Figure 2.8a shows the predictions made 

using the ASHRAE model5 compared to measured solar irradiance [37]. All solar hours 

plotted include standard time-zone corrections given by Equation 2.7 [35]. Since daily 

(averaged) solar irradiance values were verified, all minute resolved are also correct. 

  

5 Refer to Appendix D for ASHRAE Clear Sky model code. 
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Figure 2.8 - a) Validation of irradiance. Dots: measured daily IG (data: [37]); line: Daily 

predicted solar irradiance using the ASHRAE model. b) Annual variation of wind speed for a 

typical Perth based location (data source: [38]). 
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PV panels: Photovoltaic cells can be modelled using the single diode equivalent. This model 

mimics the solar irradiance as a current source connected in parallel with a diode generating 

electrical current from incident energy [39, 40]. Photovoltaic panels are similarly comprised 

of many cells (typically 36) which are connected in both series and parallel to produce power, 

with photocurrent (IL) directly proportional to the irradiance (IG) [39-41]. Diode 

characteristics also set the open circuit voltage of the PV cell thereby determining the cell I-V 

characteristics. The I-V characteristic curve can be generated as a function of incident solar 

irradiance, wind speed and the cell temperature using Equation 2.9 to 2.11[22]: 

𝐼𝐼𝑝𝑝𝑝𝑝 = 𝐼𝐼𝐿𝐿 − 𝐼𝐼0 �𝑒𝑒
𝑈𝑈𝑝𝑝𝑝𝑝+𝐼𝐼𝑝𝑝𝑣𝑣𝑅𝑅𝑠𝑠

𝑎𝑎 − 1� −
𝑈𝑈𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑝𝑝𝑝𝑝𝑅𝑅𝑠𝑠

𝑅𝑅𝑠𝑠ℎ
 

                     

Equ.2.9 

𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑞𝑞

 Equ.2.10 

𝐼𝐼𝐿𝐿 =
𝐼𝐼𝐺𝐺

𝐼𝐼𝐺𝐺.𝑟𝑟𝑟𝑟𝑟𝑟
�𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + µ𝐼𝐼𝐼𝐼𝐼𝐼�𝑇𝑇𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝.𝑟𝑟𝑟𝑟𝑟𝑟�� 

   Equ.2.11 

In these equations, the parameters are photocurrent (IL), diode reverse saturation current (IO), 

series resistance (RS) and shunt resistance (Rsh) which corresponds to the leakage current and 

for theoretical modelling purposes is neglected. In addition, other parameters are open circuit 

voltage (UPV), short circuit current (IPV) and thermal voltage for a given diode quality factor 

(a). Also IG.ref is reference solar irradiation (1000 Wm2), IL.ref is the short circuit current at 

reference temperature and solar irradiation (A), Tpv is the operating temperature of the cell 

(Kelvin), Tpv.ref is the reference temperature of 298K and µIsc is the temperature coefficient of 

the short circuit current. The saturation current of the diode I0 is also given by [22]: 

In Equation 2.12 to 2.13, the different parameters are the operating temperature of the cell 

(Tpv), the reference temperature from manufacturers specifications (Tpv.ref), energy band gap 

𝐼𝐼0 = 𝐼𝐼0𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑇𝑇𝑝𝑝𝑝𝑝

𝑇𝑇𝑝𝑝𝑝𝑝.𝑟𝑟𝑟𝑟𝑟𝑟
�
3

𝑒𝑒
�
𝐸𝐸𝑔𝑔
𝑘𝑘𝑘𝑘�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

−
𝐸𝐸𝑔𝑔
𝑘𝑘𝑘𝑘�𝑇𝑇𝑝𝑝𝑝𝑝

�
    Equ.2.12 

𝐼𝐼0𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐼𝐼𝑠𝑠𝑠𝑠.𝑟𝑟𝑟𝑟𝑟𝑟

𝑒𝑒
𝑞𝑞𝑉𝑉𝑜𝑜𝑜𝑜 @ 𝑇𝑇𝑇𝑇𝑇𝑇.𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛𝑛𝑛𝑇𝑇𝑝𝑝𝑝𝑝.𝑟𝑟𝑟𝑟𝑟𝑟 − 1

     Equ.2.13 
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(Eg), short circuit current (Isc.ref) and the short circuit voltage (Voc.ref) of the PV panel at a 

reference temperature, typically 298K.  

Integrating solar power into the system simulations must take into account the PV panel 

current-voltage (IPV-VPV) characteristics which are hardware reliant but are strongly affected 

by incident solar irradiance (IG), panel temperature (TPV) and wind speed (WS). Parameters 

IG, TPV and WS are location dependant and dynamic (time dependant and seasonal). In the 

simulations, panel temperatures were derived using measured (meteorological) ambient 

temperatures (TA) and localised wind speed (WS). Wind speed affects the performance of the 

solar cell through its effect on PV panel temperature [22]. A sample of the wind data used 

[38] is plotted in Figure 2.8b. Equations 2.14 to 2.15 express the power (IPV-VPV) 

characteristics using (TPV), WS and TA [22]: 

𝑇𝑇𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +
𝐼𝐼𝐺𝐺

𝐼𝐼𝐺𝐺.𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝛥𝛥𝛥𝛥𝑝𝑝𝑝𝑝       Equ. 2.14 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝐴𝐴 + 𝐺𝐺𝑒𝑒(𝑎𝑎𝑐𝑐+𝑏𝑏𝑐𝑐𝑊𝑊𝑆𝑆)  Equ. 2.15 

In these equations, the parameters are the instantaneous solar irradiation at Nominal 

Operating Cell Temperature (NOCT) is IGNOCT; TA is the ambient temperature; ΔTpv is the 

temperature difference between the cell and the back surface of the PV panel; Tmpv is the 

back surface temperature of the PV module; WS is the wind speed; and ac, bc are empirical 

constants for cell temperature calculations. 

Simulations are later undertaken for panel areas of APV=1m2 (unit area of PV panel), APV= 

2.6m2 (3 panels) and 8.7m2 (10 panels) in order to show the effects of scalability. The power 

(IPV-VPV) characteristics are shown as a function of incident solar irradiance in Figure 2.9a 

and as a function of PV panel temperature (TPV) in Figure 2.9b. Through the models used, 

later simulations will also incorporate the effects of TPV and WS on PV panels which gives 

more accurate representations of overall power PPV (PPV =IPV*VPV), the effects of which are 

shown in Figure 2.9c. In the systems simulations, values for TA were based on meteorological 

data [36] and were set at the peak temperature for each day which is approximately around 

solar noon. 
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Figure 2.9 - Modelled PV characteristics: a) power versus voltage at varying IG (TA=25°C, 

WS=0m/s). b) Current versus voltage at varying TPV and WS=0m/s. c) Current and voltage at 

varying WS (IG=1000W/m2, TA=25°C.) 
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Energy storage: Because solar irradiance is highly dynamic, integrating storage media into 

energy systems is designed to provide supplemental power to RO over periods when incident 

solar radiation is insufficient to generate enough power. The operational status of the energy 

system depends on its ability to support utilities (such as RO), maintain energy storage 

(SOCBAT) at 100% for as long as possible and (potentially) yield excess renewable energy for 

seasonal storage. Based on the availability of renewable energy and the respective load 

demand, there may be an excess of renewable energy. This excess should also be utilised 

through charging batteries which can be used to supply the load under periods of low solar 

exposure or during the night [42, 43]. 

The battery voltage is an important consideration in the operation of the reverse osmosis unit. 

For RO to operate at its rated DC power (PRO=50W), nominal RO device specifications 

require (battery) potential at 11.0-12.5V. For this reason, the simulations undertaken will also 

consider the battery as fully-charged at 12.5V (SOCBAT= 100%) and fully depleted beyond 

“practical” use at 11V (SOCBAT= 0%). As such, monitoring the battery voltage also provides 

a timeframe over which the RO unit operates on any given day or hour. Battery voltage and 

State of Charge is defined as [44]: 

𝑈𝑈𝐵𝐵(𝑡𝑡) = (1+∝ 𝑡𝑡)𝑈𝑈𝐵𝐵0 + 𝑅𝑅𝑇𝑇𝐼𝐼𝐵𝐵(𝑡𝑡) + 𝐾𝐾𝐼𝐼𝑄𝑄𝑅𝑅(𝑡𝑡) Equ. 2.16 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸𝐼𝐼𝐼𝐼 + � 𝑈𝑈𝐵𝐵(𝑥𝑥)𝐼𝐼𝐵𝐵(𝑥𝑥)𝑑𝑑𝑑𝑑        
𝑡𝑡

0
 

   Equ. 2.17 

𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡 − 1) +
𝑃𝑃𝐵𝐵(𝑡𝑡) × ∆𝑡𝑡
1000 × 𝐶𝐶𝐵𝐵

 
 Equ. 2.18 

Where Equation 2.16 to 2.19, the different terms denote: battery voltage (UB); self-discharge 

rate (α); internal resistance (RT); battery current (IB); polarisation coefficient (KI); the rate of 

accumulated charge (QR); and EIN is the battery initial charge (V). Other parameters in these 

equations are battery State of Charge (SOCBAT); (PB) is rate power flow (Charging PB>0, 

Discharging PB<0); time step (t); and (CB) which is the total nominal capacity of battery in 

kW-hr. When the battery is at full capacity, SOCBAT is 100%. 

2.5 - Simulation and Results 

Simulations are undertaken to investigate the effects of two factors on the overall 

performance of the energy system modelled, under the conditions of battery storage of excess 
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(renewable) energy and no excess energy storage. Temporal resolution (hourly or minute 

based) is examined in relation to the annual yield of potable water and the battery state of 

charge. The results apply for a specifically sized RO unit with investigations into the effects 

of time-resolved, versus time-averaged, characteristics on larger scaled RO units also being 

warranted in the future. However, results attained even for a lab-scale unit are important as 

they show the difference of using simulations which are either hour or minute based as well 

as the effects of incorporating nominally stated I-V (time-averaged power) characteristics 

(from data derived using device technical sheets) as opposed to actually including measured 

or dynamic I-V (fluctuating power). 
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Figure 2.10 - Effect of method used to account for RO device power characteristics on 

maximum desalinated water produced from 3% salinity feedwater using hourly resolved 

simulations for a PV panel area of 1m2. a) No battery for energy storage; b) Battery 

incorporated. 
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Figure 2.10 shows the amount of desalinated water produced (per unit PV area) for both 

battery and battery-less configurations using hourly resolution. In Figure 2.10a, no battery is 

implemented (system running in Mode-I) which results in periods whereby the power 

delivered to the RO unit (by the PV panels) is inadequate and thus no potable water is 

produced. The incorporation of battery storage results in an increase in potable water 

production across all days of the year as evident in Figure 2.10b. This shows that energy 

storage media are needed in such instances to better utilise available renewable energy 

through, for example, by using ‘excesses’ to charge batteries or other methods such as energy 

storage via hydrogen. 

A seasonal trend is also observed through a decrease in potable water production in 

(Australian) winter months due to the lack of low solar irradiance.  

 

Table 2.3 - Comparison of yearly totals for excess energy and water production at different 

APV.6 

The inclusion of dynamic I-V RO power characteristics results in a significant impact on 

annual potable water production. Table 2.3, which presents a summary of all simulation 

results, shows that using hourly based simulations and APV=1m2, the use of nominal RO (I-V) 

characteristics yields approximately 7300L/year (battery-less) and 9000L/year (with battery) 

of potable water as compared to much lesser values when using dynamic RO (I-V) 

6 Nominal (time-averaged) power of the RO unit was taken from the manufacturers datasheet 

where dynamic was the result from experimentation. 
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characteristics. The discrepancy between the PV-systems’ performance under two different 

ways of incorporating the power characteristics of utilities (RO) highlights the need to 

consider the instantaneous I-V drawn by these utilities. When only nominal power 

characteristics are considered in the simulations, system performance appears to only be 

governed by energy balances (energy needed to drive the RO versus total energy available 

from PV and batteries). When using dynamic power characteristics, there is an additional 

complexity of whether the instantaneous I-V will also trip the PMU. For a relatively small 

scale of PV energy conversion (APV=1m2), the likelihood that power drawn by utilities will 

trip the PMU becomes more possible and hence less water appears to be desalinated.  
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Figure 2.11 - Effect of method used to account for RO device power characteristics on 

maximum desalinated water produced from 3% salinity feedwater using hourly resolved 

simulations for a PV panel area of APV=2.6m2. a) No battery for energy storage; b) Battery 

incorporated. 
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Figure 2.11 similarly shows overall energy system performance but for a PV panel 

conversion area of APV= 2.6m2. Through increasing the scale of the PV array, the conversion 

of solar irradiance to electrical energy is increased thus providing more power. Increased 

solar energy results in the RO unit operating during periods where it was unable to do so at 

APV=1m2. With the increase of renewable energy yield, Table 2.3 also shows that using 

nominal RO (I-V) power characteristics gives predictions with an increase in annual potable 

water production to approximately 14,300L/year (battery-less) and 16,500L/year (with 

battery). Similar results also apply for the inclusion of dynamic RO (I-V) power 

characteristics whereby increasing APV yields more power and 12,000L/year (battery-less) or 

14,300L/year (with battery). Like with the case for APV=1m2, the use of dynamic RO (I-V) 

characteristics at APV=2.6m2 also provides less than that using nominal RO (I-V) 

characteristics. A further examination of the data shown in Table 2.3 (or between Figure 2.10 

and Figure 2.11), also indicates that the relative effect of using dynamic RO (I-V) 

characteristics, as opposed to nominal (I-V) characteristics, appears to diminish as APV 

increases. This also indicates that scalability is another consideration which impacts on the 

effect of including time-resolved device characteristics. 
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Figure 2.12 - Effect of method used to account for RO device power characteristics on total 

excess energy using 3% salinity feedwater with hourly resolved simulations for a PV panel 

area of APV=2.6m2. Figure 2.12a - No battery for energy storage; Figure 2.12b - Battery 

incorporated. 

41 
 



Using battery storage improves the system’s ability to meet overall utility demand (RO). As 

shown in Figure 2.3, without the use of battery storage the energy that is not used for 

desalination becomes excess energy. Figure 2.12 shows these excess energy for APV=2.6m2. 

The amount of excess energy predicted with simulations using nominal RO (I-V) power 

characteristics is significantly more than those using dynamic RO (I-V) power characteristics. 

Additionally, a seasonal trend similar to annual potable water production is evident with less 

excess energy in winter months as compared to summer months. With no battery storage, 

Figure 2.12a illustrates there is more excess that is not captured or used for RO because of 

insufficient power on any given day compared to the incorporation of battery storage as 

shown in Figure 2.12b. There are periods where no excess energy is observed (with battery) 

as in these periods all available energy (not used for RO) is stored. Incorporating battery 

storage means excess energy can be stored for use under low solar irradiation conditions. 

However, data in Table 2.3 shows that increasing the scale of the system (more APV) seems to 

increase the amounts of water desalinated since battery power supplements solar energy and 

allows RO to operate for longer periods.  

One observation from Figures 2.8 – 2.10 is the occurrence of abrupt (sharp) 

increases/decreases in the data for freshwater production and excess energy. This is believed 

to be due to the time step (hourly) used in the simulations presented thus far. However, within 

the hourly time-step there may exist times when the operational status of utilities, solar 

energy or battery SOC may change. This suggests the time-scale of resolution is another 

consideration worthy of further examination in the modelling. Very little evidence exists to 

show this aspect has been systematically researched in the literature on small scale stand-

alone PV energy systems. 
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Figure 2.13 - Effect of method used to account for RO device power characteristics on 

maximum desalinated water produced from 3% salinity feedwater using minute resolved 

simulations for a PV panel area of APV=2.6m2. a) No battery for energy storage; b) Battery 

incorporated. 
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Figure 2.13 shows data for water production using minute based simulations of solar 

irradiance and battery SOC. The minute resolution provides smoother results compared to 

Figure 2.11 (also for APV=2.6m2). Table 2.3 also shows summary data for both predicted 

(annual) water desalination as well as excess energy (not utilised) using both minute based 

simulations and hourly. The data indicates that whilst some differences do exist (both with 

and without batteries); these are only insignificant for the system scale investigated. 

2.6 - Conclusions 

The modelling methodology has been presented for small-scale solar-PV systems with RO. 

Simulations are used to study the effects of different modelling methodologies on system 

performance over a period of one year. Overall system performance has been analysed in 

terms of total water produced (litres) and excess renewable energy stored (kW-hr), both with 

and without battery storage and for different scales of solar-PV conversion. 

Simulations indicate that time-resolved power characteristics of system components should 

be measured and incorporated when analysing system performance, rather than merely using 

power derived from nominal (time-averaged) I-V specifications. The implications of ignoring 

(dynamic) sub-component power characteristics, such as the instantaneous current and 

voltage drawn by RO or other utilities and merely resorting to time-averaged nominal I-V 

levels such as those featured in device specifications, appears to significantly perturb the 

analyses for the range of conditions tested. Simulations also show these effects are more 

pronounced for solar-PV/RO systems with smaller PV conversion capacity (e.g., per metre 

square of panels). System scalability therefore appears to affect the sensitivity of simulations 

as well as the type of I-V characteristics used. 

The simulations also confirm that including media to store excess renewable energy (such as 

batteries) appears to have greater impact on the performance of smaller systems compared to 

larger ones. In the systems modelled, energy storage was implemented via lead-acid batteries. 

Further investigation is warranted into the utilisation of longer-term storage technologies 

within solar-PV/RO systems, including the use of hydrogen which may be more suitable for 

prolonged storage and the effects of time-resolved, versus time-averaged, characteristics on 

larger scaled RO units. The need for excess energy storage is exacerbated as the power 

needed to run utilities increases (more water or less efficient RO) and renewable energy 

availability falls. 
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Chapter 3. The Impact of Renewable Energy Intermittency 

on the Operational Characteristics of a Stand-Alone Hydrogen 

Generation System with On-site Water Production 

Daniel P. Clarke*, Yasir M. Al-Abdeli and Ganesh Kothapalli 

This chapter was published as a full research paper in Desalination. Whilst all efforts were 

made to retain the original features of this article, minor changes such as the layout, number 

formats, font size and style were implemented in order to maintain consistency in the 

formatting style of the thesis. 

3.1 - Abstract 

In renewably powered remote hydrogen generation systems, on-site water production is 

essential so as to service electrolysis in hydrogen systems which may not have recourse to 

shipments of de-ionised water. Whilst the inclusion of small Reverse Osmosis (RO) units 

may function as a (useful) dump load, it also directly impacts the power management of 

remote hydrogen generation systems affecting operational characteristics.  

This research investigates the impact on the hydrogen generation system when simulations 

utilise different methods to account for solar power needed to drive the system as well as 

varying scales of (short-term) battery capacity. The simulations, in MATLAB/Simulink, 

utilise two specific methods of irradiance prediction (ASHRAE clear sky model and Neural 

Networks) and are benchmarked against measured irradiance data for Geraldton (Western 

Australia). This imposes different levels of accuracy and intermittency. Laboratory testing 

and device-level models help simulate the operational characteristics of a hydrogen 

generation system including on-site water production. Operational characteristics studied 

include: total energy available for PEM electrolysis, ontime of the electrolyser in steady-state, 

the number of start/stop cycles for the electrolyser and its duty factor (litres of hydrogen 

generated over the total number of start/stops).  

Results show that increasing systems’ battery capacity only affects the operational 

characteristics of a PEM electrolyser up to a threshold capacity (Ah). Increasing battery 

capacity generally allows for more renewable energy penetration. Additionally, the hydrogen 

generation system behaviour is (generally) more accurately predicted, across all battery 
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capacities, when Neural Networks are used to predict the availability of solar irradiance. The 

ability to predict accurate levels of solar irradiance becomes more important in winter when 

irradiance is at its lowest. The results also highlight the need to use highly resolved 

(temporal) simulations which are able to better capture device-level operational 

characteristics. 

3.2 - Introduction 

Renewable energy is attracting increased attention to meet growing global energy demand by 

providing cleaner power generation options and decreasing dependence on fossil-based fuels 

[1]. However, the intermittent and seasonal nature of renewable energy sources (e.g. wind 

and solar) presents the need for effective (long-term) energy storage [2, 3] in addition to the 

appropriate sizing of (short-term) battery capacity to help cater for very short transients. 

Intermittency arises in numerous ways such as when there is no sunlight during night periods, 

if wind power fluctuates or cloud cover causes a variation in the output of Photovoltaic (PV) 

panels. To help mitigate against the effects of intermittency and seasonal variations, batteries 

are predominately used in renewable energy systems but these are not ideal for long-term 

storage due to high losses [4] as well as reliability issues and environmental impact [5]. 

Hydrogen has the potential to become one of the main energy carriers in the near-term, with 

literature covering different aspects of what has been termed the “Hydrogen Economy” [6-8]. 

Hydrogen fuel cells and electrolysers have been coupled with hydrogen storage and minimal 

battery capacity to yield stand-alone (renewable) energy systems. These systems may feature 

a single means of primary energy conversion, such as solar-PV [9-11] or wind turbines [12, 

13], as well as hybridised architectures consisting of more than one primary energy 

conversion pathway [2, 14, 15]. In any of these hydrogen-based systems, there will often be a 

surplus of power in periods of low load (demand) or high renewable energy availability. 

These excesses which are not utilised arise when hydrogen storage tanks or batteries reach 

their fully charged capacity and results in less renewable energy penetration. Such excesses 

are normally diverted to a dump load so as to maintain energy system balance and avoid 

having to repeatedly start-up/shut-down system components. Depending on the hardware 

configuration and Power Management Strategy (PMS) employed, the dump load most 

commonly takes the form of an energy storage or dissipation device such as batteries [16-19], 

super capacitors [20], electrolysers [15, 21-23] or even resistive circuits [3].  
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Despite the critical reliance of stand-alone hydrogen energy systems on the availability of 

suitably pure feed water for electrolysis, there appears to be very little published research 

linking water desalination (as a form of dump load) to stand-alone hydrogen energy systems 

[24]. Such a linkage is necessary bearing in mind hydrogen systems are mostly intended for 

operation in stand-alone mode and based at remote locations. In such an operational 

landscape, continual shipments of deionised water may not be possible. This scenario means 

that integrating small-scale desalination into the energy system not only provides the 

necessary water for electrolysis (hydrogen generation) but can also be a (useful) dump load 

serving potable water requirements. From an operational perspective, the result is increased 

renewable energy penetration through better utilisation of primary energy sources such as 

solar.  

There is scarcity of research into energy modelling of systems linking water production to 

hydrogen despite that such linkages are worth pursuing [25]. Additionally, many aspects of 

electrolysers have also been simulated such as power characteristics, operational 

temperatures and pressures as well as factors affecting hydrogen flow rates [9, 10, 26-28]. 

However, the factors influencing the cyclic operation of electrolysers when integrated into 

energy systems have not been adequately addressed in the published literature. Although 

PEM electrolysers suffer from degradation [29], the detrimental effects of start-stop cycles on 

PEM electrolysers appear to have received little attention in the literature. Under low-duty 

cycles which result in less severe intermittency compared to that anticipated with solar-PV 

and wind energy systems [30], some studies have revealed the number of start-stop does not 

significantly impact the electrolyser performance [28, 31]. One reason for this lack of 

research into PEM electrolyser durability may be the fact that such devices have historically 

been used in controlled (laboratory) environments to generate hydrogen for analytical use and 

not subjected to the intermittency of stand-alone systems. However, start-stop cycles become 

an important factor in other PEM devices such as fuel cells whereby the number of start-stops 

has been more extensively researched [32, 33] and found to limit the lifetime of such devices 

[12, 13]. As such, more work is needed to discern the impact of energy intermittency on 

hydrogen generation systems.  

This chapter investigates the effect of solar energy intermittency and battery capacity on the 

operational characteristics of a solar-PV powered hydrogen generation system. The system 

architecture modelled is similar to that which would typically be integrated within a 
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remotely-based stand-alone energy system or hydrogen refuelling station. The system 

modelled is (conceptually) directly coupled with an RO device and its operation simulated 

over two seasons (winter and summer) to highlight two levels of solar energy intermittency 

and yield. Two specific solar prediction techniques are also deployed and compared to 

measured irradiance data so as to demonstrate the impact of the prediction technique on the 

operational characteristics of a hydrogen generation system. The methods used over the same 

timeframe are the ASHRAE (clear sky) model and Neural Networks , both of which are 

benchmarked against measured solar irradiance data for Geraldton, Western Australia [34]. 

The effects of superimposing different scales of (short-term) battery storage within the 

hydrogen generation system are also studied to ascertain its impact on the operational 

characteristics of a PEM electrolyser. System operational characteristics investigated include: 

number of start/stop cycles for electrolysis; hydrogen generation duty cycles (litres 

generated/start-stop); total water produced as feedstock for electrolysis; plus the total excess 

solar energy not utilised.  

3.3 - Methodology 

The renewably powered, stand-alone, hydrogen generation system which provides the basis 

for the simulations is shown in Figure 3.17. This system consists of three solar-PV panels and 

a Power Management Unit (PMU), whereby a PEM electrolyser is driven through the PMU. 

More details on the subcomponents for this solar-hydrogen system (make: Heliocentris - 

Germany; model: Solar Hydrogen Extension) are noted below. If conceptually integrated 

with Reverse Osmosis (RO) and water de-ionisation, the overall hydrogen generation system 

can potentially be applied to coastal locations where an abundance of seawater is available to 

provide water for electrolysis.  In establishing the relevant modelling parameters and 

(hardware specific) operational characteristics for system components, a range of laboratory-

based measurements are undertaken, with some recourse to using physical models  derived 

from the literature8 (where indicated below). MATLAB/Simulink is used as the basis for all 

simulations conducted which extends to applying the ASHRAE model and Neural Networks 

to predict solar irradiance availability as well as modelling time-resolved energy flows.  

7 Refer to Appendix D for Chapter 3 system MATLAB/Simulink model. 
8 Refer to Appendix C for error analysis methods. 
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Figure 3.1 - Stand-alone hydrogen generation system with on-site Reverse Osmosis. The 

dashed box indicates potential integration scenarios into refuelling stations (mobile 

applications) or fuel-cells (off-grid power generation). 

A. System-Level Simulation 

To simulate the stand-alone hydrogen generation system, each component is first 

modelled (individually) before integrating all components into a single system-level 

simulation. The simulations aim to resolve four operational characteristics across the 

different seasons modelled and under the influence of varying intermittency in solar 

energy: 

1. Total energy (kW-hr) and electrolyser ontime (T0, minutes); 

2. The number of start/stop cycles for electrolysis;  

3. The duty factor for hydrogen production (litres/ start-stop); and 

4. Desalinated water (litres) available for electrolysis. 

Some general aspects related to implementing the simulations are noted below: 
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• To estimate the power generated by the PV-array and which forms the energy (input) 

into the entire system, the magnitudes and time-series for solar energy data should be 

based on irradiance measurements. However, because techno-economic studies 

conducted for establishing (new) energy systems might not always have access to 

measured solar irradiance, recourse can then sometimes be to predictions. This 

research uses three types of solar energy (input) data: measured irradiance sourced 

from the Bureau of Meteorology and predicted irradiance derived using Neural 

Networks or the ASHRAE (clear sky) model9. All irradiance data, whether measured 

or predicted, is for a specific Western Australian location. The measured irradiance 

data provides a benchmark to calculate the accuracy of predictions and identify the 

implications of different predictive techniques on the operational characteristics of the 

system. The two predictive methods also serve to impose two levels of intermittency 

for solar irradiance. All irradiance data, whether measured or predicted, is minute 

resolved and spans the Australian summer (December, January and February) and 

winter (June, July and August).  

• A Power Management Strategy (PMS) is needed to control the activation of various 

hardware components and is normally implemented through the PMU. The simulation 

uses the hardware characteristics of the PMU which consists of four components: a 

Programmable Logic Controller (make: Beckhoff- Germany, model: BC9000); 

converters (DC-DC and DC-AC); a charge controller (make: SMART Power 

Systems-Germany, model: SMART MS 300) to limit maximum (solar) charging 

current for batteries to 30A at 12V and protect batteries from over-depletion; and 

some lead-acid battery capacity (12V, 55Ah). To further resolve the impact of battery 

scale on the operational characteristics of the hydrogen generation system, total 

battery capacity is numerically scaled in the simulations between 0Ah (no battery) and 

200Ah (equivalent to 2.4kW-hr). Figure 3.2 presents this strategy.  

• Pre-set power thresholds are typically used in a logic-based PMS to represent the 

minimum power requirements for activating/deactivating various components. In the 

present investigation, the pre-set power threshold in the PMS is not dynamically 

varied as it does not constitute an objective of this research. The utilisation of a 

different PMS will however (likely) impact the relative operational characteristics of a 

9 Refer to Appendix D for ASHRAE Clear Sky model code. 
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hydrogen system and has already been investigated elsewhere [3, 35]. In the PMS 

adopted and depicted in Figure 3.2, provided there is sufficient renewable energy to 

run the electrolyser for an operational time greater than ten minutes (i.e., about twice 

the transient start-up time for this device) and there exists a sufficient amount of 

deionised water, the PMS dictates the system generates hydrogen. The de-ionised 

water storage capacity is defined at an upper limit of 50L which is sufficient to supply 

the PEM electrolyser for 2 days. The simulations assume a cartridge type de-ioniser. 

The lower threshold of reserve water capacity below which the electrolyser will not 

function is set at 25L (a single day of operation in case RO is under preventive 

maintenance). Any energy not used to power the electrolyser is used to desalinate 

seawater and thereafter to charge batteries. At 10 bar output, the electrolyser draws 

about 250W. Where the total available power over the next time-steps is less than that 

which is sufficient to operate both the electrolyser and RO unit, the PMS diverts any 

excess power to raise the battery State-of-Charge (SOC). The simulations assume the 

battery is used for the short-term energy storage (only) and not long-term (seasonal) 

storage. Once the battery SOC reaches 100%, any power not utilised to operate the 

PEM electrolyser or RO unit is wasted and flagged as “excess energy not utilised”. 

Within the PMS, various counters are used to count amounts of hydrogen produced, 

water desalinated, component operational times, device start-stops, the battery SOC 

and excess energy not utilised. 

• At the start of the simulations for any season (T=0mins), the battery State-Of-Charge 

(BATSOC) is assumed to be 100% with a defined minimum depth of discharge of 20% 

of rated capacity in any time-step.  

• Laboratory-based testing is used to derive converter efficiencies (DC-DC and DC-

AC), solar panel performance and battery characteristics. Details for how these were 

resolved in addition to the linkage between solar irradiance and PV panel output 

power used in simulations are reported elsewhere [19]. 
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Figure 3.2 - The Power Management Strategy (PMS) used in the systems-level simulations. 

The time-scale for simulations is one minute applied over an entire season. 
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B. Electrolysis 

PEM electrolysers, because of their favourable start-up characteristics and relatively lower 

power demand, have the potential to allow simple integration into small stand-alone 

hydrogen generation systems. In the present research, one of the aims is to identify how 

seasonal fluctuations of solar irradiance and electrolyser (device) start-up/shutdown 

characteristics affect the maximum amount of hydrogen which can be generated. As such, 

hydrogen storage capacity is considered unlimited in the simulations so as not to artificially 

limit the ability of the electrolyser to operate due to storage capacity. The basic model for the 

amount of hydrogen generated via electrolysis (in litres) is defined by Equation 3.1 [3]: 

𝑛𝑛𝐻𝐻2 =
𝑛𝑛𝐶𝐶 × 𝐼𝐼
𝑛𝑛 × 𝐹𝐹

× 𝑛𝑛𝐹𝐹  Equ. 3.1 

In this regard, the hydrogen flow rate (nH2) is designated in mol/s, whilst the other parameters 

are Faradays efficiency (nF), number of electrolyte cells (nC), operation current (I) in Amps, 

electrons per mole of H2O (n=2) and Faradays constant (F= 9.65 x 104 C/mol). 

Whilst Equation 3.1 has been extensively used in published research to simulate the 

production rate of hydrogen for a given energy input and efficiency across electrolysis, this 

(physics) representation does not include other electrolyser specific characteristics such as 

start-up time and inefficiencies arising from Balance of Plant (BOP) components which 

constitute (parasitic) power consumption. Such considerations are important for the 

integration of PEM electrolysers in stand-alone systems, particularly for small-scale systems 

but are often overlooked in simulations. Where intermittency is present, which is generally 

true for all electrolysers operated outside a laboratory environment via renewables, the need 

to consider such factors becomes imperative and can mean the electrolyser is likely to shut-

off and require multiple starts per day. In the simulations undertaken in this study, the PEM 

electrolyser (make: DBS - Italy, model: NMH2 500) is part of the solar-hydrogen generation 

system and coupled with water supply. This AC powered electrolyser has a nominal 

hydrogen flow rate of 30L/hr and a maximum nominal power rating of 250VA at 10bar 

delivery pressure. Figure 3.3 shows data from laboratory derived tests for the current profile 

of the PEM electrolyser at an operating pressure of 10bar. The electrolyser is assumed to 

operate at this operating pressure throughout these results so as to limit the effects of BOP 

components on overall electrolyser efficiency (based on laboratory testing). The data shows a 

significant transient (approximately 275 seconds) associated with each start-up. For a 
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renewably powered hydrogen generation system, this transient puts a constraint on the ability 

to utilise the electrolyser every time it is started. As such, the PMS adopted for the 

simulations stipulates that only when (foreseeable) power levels are sufficient to maintain the 

PEM electrolyser in operation for 10 minutes or greater, will this device be activated. A 

10min block essentially caters for a little over twice the length of the transient start-up. 

Laboratory testing also revealed that deionised water temperature (TW) has no effect on 

electrolyser performance in the range of 25°C to 35°C. This temperature is assumed to be the 

average daily ambient temperature on any day in the simulations.  

 

Figure 3.3 - Electrolyser current profile measured from start-up to steady flow. Data acquired 

at a sampling interval of 0.5s. Electrolyser operates at 10 bar internal pressure, 0.2psi/min 

pressure rise and TW=22°C. 

C. Reverse Osmosis 

Reverse Osmosis (RO) is the most commonly integrated water purification technique in 

renewably powered desalination [36-39]. The scale of an RO unit determines the water 

volume flow rate and hence also impacts on feedstock available for hydrogen generation via 

electrolysis. The system-level simulations conducted incorporate a RO device (make: 

Katadyn – Switzerland, model: PowerSurvivor 40E). The device has a nominal desalinated 

water production rate of 5.5L/hr with a power rating of 50W and a recovery ratio of 10 % 
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potable water [40]. The recovery ratio for the RO device is defined as the amount of 

desalinated water produced for a given amount of input (saline) water. Selecting a relatively 

small RO device ensures the PMS maximises the use of solar energy for hydrogen generation 

and not water production. However, a number of factors which affect RO performance also 

need to be taken into consideration, and those include water salinity and temperature as well 

as its dynamic power (draw) characteristics. System simulations use the dynamic time-

resolved characteristics which have been experimentally derived earlier for this RO device 

[19]. Because the hydrogen generation system being modelled is for a coastal location, the 

availability of saline water is considered unlimited. Feed water is assumed to have a Total 

Dissolved Salt (TDS) concentration of 3% corresponding to seawater. The tank storage 

capacity for desalinated water is set to 50L in the simulations with a minimum threshold of 

25L considered. The initial capacity of 30L is assumed in the first time-step of simulations. 

D. Powering the Hydrogen Generation System 

In simulations of solar-PV hydrogen systems, the solar irradiance incident upon a horizontal 

or tilted surface at the location of interest is an important parameter as it largely determines 

the input power to the system. Due to the highly stochastic nature of solar irradiance, many 

models have been developed for the prediction of this energy input. In the research presented 

here, a minute-based temporal resolution is used throughout the simulations to provide an 

accurate system response to varying real-time conditions. Additionally, two specific methods 

of solar irradiance prediction are compared not only because of their different accuracies, but 

also because they impose two levels of intermittency on solar energy input. The impact of 

using both the ASHRAE clear sky model and NN on system operational characteristics is 

then benchmarked against that derived from measured data. The solar energy is converted via 

the PV array (make: Heckert Solar - Germany, model: HS-PL 135) which has three panels 

(total 2.6m2) and supplies electrical energy to the PMU10.  

The ASHRAE clear sky model has the merit of being a mathematical model with (some) 

empirically refined constants used to predict solar irradiance, but the distinct disadvantage of 

not being able to predict the generally stochastic nature of solar irradiance or susceptibility to 

varying cloud cover. The second method selected to predict the solar irradiance is based on a 

Neural Network (NN) which although requires very large amounts of (historical) training 

10 Refer to Appendix D for PV panel model. 
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data, can also be designed to account for the likely occurrence of cloud cover by considering 

rainfall data in the same time-series. Historical rainfall and irradiance data is therefore used in 

the current study to provide a likely measure for cloud cover on total solar energy yield used 

to drive the hydrogen generation system. Neural Networks11 are typically used in applications 

where analyses would be difficult when applied to nonlinear systems which exhibit stochastic 

behaviour and which are dependent on a large number of process parameters. In this manner, 

the present chapter also investigates the role which different solar energy prediction methods 

can have in relation to the cyclic operation of stand-alone hydrogen generation systems. 

Whilst the ASHRAE clear sky model provides a relatively simple approach for estimating 

minute-resolved solar irradiance for any location [41], applying the model to the Western 

Australian coastal city of Geraldton requires accurate values for three (local) model 

parameters (A, B and C). Representative values for these parameters have been derived for 

many locations around the world [42-44], however have not been published to date for 

Australia. This research has derived the parameters for Geraldton, Western Australia, and is 

given in the Section 3.7.  

11 Further details of the theory of Neural Networks are given in Appendix E 
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Figure 3.4 - Validations of the minute resolved solar irradiance data predicted (daily totals) 

for Geraldton, Western Australian. Predictions from the ASHRAE model and Neural 

Networks are benchmarked against measured data from the Bureau of Meteorology. 

Figure 3.4 shows the daily irradiance totals obtained from summing up minute-resolved 

irradiance over a 24hr period for both Australian winter (1 June - 31 August) and summer 

periods (1 December - 28 February). Figure 3.5 depicts a typical daily profile for minute-

resolved irradiance during a winter and summer day and highlights the stochastic nature of 

measured irradiance data. These results reveal that the NN predictions are able to better 

predict the time-averaged (Figure 3.4) and time-resolved (Figure 3.5) fluctuations in the 

measured irradiance data compared to the ASHRAE model across both seasons. The ensuing 

results will demonstrate that accurately representing strong variability heavily impacts on the 

operational characteristics of a hydrogen generation system. 
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Figure 3.5 - Comparison of different minute resolved solar irradiance prediction methods for 

the summer and winter solstice: a) 21st June and b) 21st December. Location: Geraldton, 

Western Australia. 

The use of Neural Networks with renewable energy systems is a well-researched area [6, 45-

48], but the effects arising from prediction accuracy onto the cyclic operation of a hydrogen 

generation system have not been investigated before. In this regard, preliminary testing 

conducted (results not shown here) has revealed that if a Neural Network is used to predict 
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(future) solar irradiance data by being trained on historical irradiance data alone, it may be 

less accurate than if trained on historical irradiance data and another meteorological 

parameter, related positively or negatively to solar irradiance. As such, there is a positive 

impact expected on prediction accuracy when the number of input parameters is increased 

because the accuracy of a Neural Network depends on its ability to resolve relationships 

between independent inputs (such as calendar date) and dependant outputs (such as solar 

irradiance). The network then uses the perceived relationship between these input-outputs to 

predict future values of the dependant parameter, which in this study is minutely resolved 

solar irradiance needed to drive the hydrogen generation system. This method can be adapted 

to any location providing that access to meteorological data exists [45-48]. A Nonlinear 

AutoRegressive network with eXogenous inputs (NARX) is a type of recurrent dynamic 

network which is commonly used in time-series modelling and uses a feedback process to 

self-iterate. The defining equation for the NARX model is given below in Equation 3.2, 

whereby the output signal y(t) is regressed on previous (historical) values of the output signal 

and previous values of an independent (exogenous) input signal u(t): 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1), 𝑦𝑦(𝑡𝑡 − 2), … . ,𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�,𝑢𝑢(𝑡𝑡 − 1),𝑢𝑢(𝑡𝑡 − 2), … . ,𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢)) Equ. 3.2 

In this research, the NN training dataset is derived from meteorological data for Geraldton- 

Western Australia [34] and spans a period of five years (2001-2005, minute resolved). To 

highlight seasonal effects on the hydrogen generation system, results for only the two 

extreme seasons of summer and winter will be presented. In predicting the solar irradiance at 

any time-step I(t), the Neural Network considers historical data as far back as I(t-60). This 

means the NN considers historical data for an equivalent hour (60 minutes) for each 

prediction of solar irradiance in the next minute (ahead). Additionally, the Neural Network 

also uses historical (daily total) rainfall data to help refine its predictions of minute resolved 

solar irradiance. Daily rainfall data is available from the Bureau of Meteorology for the same 

locality [49]. Total measured rainfall and solar energy in each season are given in Table 3.1. 

This data is also compared to predicted irradiance derived from the ASHRAE model as well 

as Neural Networks. Again, summer and winter seasons are used in simulations to help 

provide a contrast between the effects of high and low cloud cover (seasonal) rainfall on the 
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hydrogen generation system12. Figure 3.6 shows that for both winter and summer, the NN 

model with the inclusion of rainfall more accurately predicts irradiance compared to the 

ASHRAE clear sky model. Because the amount of rainfall in winter far exceeds that in 

summer, it is also seen the biggest errors (peaks) associated with the ASHRAE model 

correspond with calendar weeks of increased rainfall. It is during such periods of strong 

rainfall where NN out-performs the ASHRAE model for solar energy input into the hydrogen 

generation system. Alternatively, for the summer season where rainfall is minimal, the results 

derived from both the ASHRAE and NN predictions are mixed in terms of accuracy. To 

calculate the percentage error depicted in Figure 3.6, Equation 3.3 is used: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (%) =  
|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉|

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
× 100 

Equ. 3.3 

 

Table 3.1 - Total solar energy13 (across summer and winter) as predicted by the ASHRAE 

model and Neural Networks. Measured (annual) solar energy data, averaged over 2001 to 

2005, is also given against these for comparison. Predictions are for a system comprising 

three solar panels (2.6m2). Annual average seasonal rainfall is also shown. Location for data 

is the Western Australian city of Geraldton (latitude: -28.77°, longitude: 114.61°). 

12 To check the robustness of the predictions when applied to other geographical locations, 

preliminary analyses (not given here) were also undertaken for another city (latitude: -31.75°, 

longitude: 115.8°) [19]. 
13 Total solar energy received (kW-hr) by the 2.6m2 PV array 

Measurements 255 121
ASHRAE Model 264 127
Neural Networks 251 119

Total Rainfall (mm) 5 222

Summer

Total Solar Energy Across Season (kW-hr)

Winter
Sournce of 

Irradiance Data
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Figure 3.6 - Errors for different solar irradiance prediction methods relative to measured 

irradiance data: a) Australian winter (June-August) and b) Australian summer (December-

February). 

3.4 - Results and Discussion 

Figure 3.7 presents data for the effect of different irradiance prediction techniques and 

varying battery capacity on the energy available to operate the PEM electrolyser and the 

excess energy not utilised during winter. Similarly Figure 3.8 gives the same results but for 
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summer. At the “systems-level”, results presented in Figure 3.7 and Figure 3.8 indicate that 

predicting energy availability for electrolysis can more accurately be done when Neural 

Networks are used compared to the ASHRAE model. The effect of including a larger battery 

capacity means greater penetration of renewable energy which in turn allows a greater 

available energy for driving the PEM electrolyser. In both winter (Figure 3.7) and summer 

(Figure 3.8), there appears to be a threshold battery capacity whereby further increases to the 

short-term energy storage (battery scale) do not appear to significantly influence the energy 

available for electrolysis.  

 

Figure 3.7 - Total predicted energy available for PEM electrolysis in winter (June-August). 

Three methods have been used to calculate incident irradiance at varying battery capacity. 
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Figure 3.8 - Total predicted energy available for PEM electrolysis in summer (December -

Febuary). Three methods have been used to calculate incident irradiance at varying battery 

capacity. 

Across winter and summer, the threshold (saturation) battery capacity when derived from the 

more accurate NN or measured irradiance data appears to be around 83Ah. The excess energy 

not utilised also appears to approach minimal values at this level of battery capacity. Whilst 

increasing battery capacity in winter increases the total energy available for electrolysis from 

around 16kW-hr (at 0Ah) to 116kW-hr (at 200Ah), Table 3.2 shows that energy available for 

RO only increases from 1kW-hr (at 0Ah) to 9kW-hr (at 200Ah).Table 3.2 also shows that for 

summer, those values similarly increase only from around 9-10 kW-hr (at 0Ah) to 17-18 kW-

hr (at 200Ah). This confirms the effectiveness of the PMS adopted in that, with the increase 

in battery capacity, the majority of solar energy is diverted for hydrogen generation. It should 

be noted here that in the absence of start-up transients for a reciprocating piston RO device, 

the amount of desalinated water produced is proportional to the energy available as dictated 

by the PMS. However, the capacity to generate hydrogen is dependent on three factors, 

namely the amount of (renewable) energy to run the electrolyser, the availability of de-

ionised/desalinated water and the start-up characteristics of the electrolyser.  
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Table 3.2 - Total desalinated water produced, ontime and energy distributed for the Reverse 

Osmosis unit over both winter (June - August) and summer (December – Febuary) for one 

year. Three methods have been used to calculate the incident irradiance at varying battery 

capacity. 

Summer Winter Summer Winter Summer Winter
Meas. 5,957 604 10 1 459 46

ASHRAE 6,678 923 11 2 514 71
NN 5,496 581 9 1 423 45

Meas. 9,051 3,534 15 6 697 272
ASHRAE 9,045 2,543 15 4 697 195

NN 8,991 3,630 15 6 693 279
Meas. 10,054 4,261 17 7 774 328

ASHRAE 9,735 3,438 16 6 750 264
NN 9,736 4,196 16 7 750 323

Meas. 10,496 4,568 17 8 809 352
ASHRAE 10,567 4,283 18 7 814 329

NN 10,301 4,569 17 8 794 352
Meas. 10,585 4,797 18 8 815 369

ASHRAE 10,884 5,067 18 8 838 390
NN 10,539 4,731 18 8 812 364

Meas. 10,523 5,140 18 9 811 396
ASHRAE 10,923 5,380 18 9 841 414

NN 10,334 5,010 17 8 796 386

Battery 
Capacity 

(Ah)

Source of 
Irradiance 

Data

Reverse Osmosis 
Ontime (min)

RO Water Produced 
(Litres)

0

Energy to RO 
(kW-hr)

27

55

83

110

200
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Table 3.3 - Operational characteristics of the PEM electrolyser over the winter season (June-

August) for one year. Three methods have been used to calculate incident irradiance onto 

three solar panels (2.6m2) at varying battery capacity. 

In addition to the observations derived at the systems-level, the simulations undertaken also 

provide a valuable insight into the device-level operational characteristics associated with 

hydrogen generation. These device-level characteristics are based on the results presented in 

Table 3.3 which also shows the effect different irradiance prediction techniques, as well as 

battery capacity, on the operational characteristics of the electrolyser which include 

electrolyser steady flow time (TS, minutes) as defined in Figure 3.3, number of start/stop 

cycles, specific energy consumption (kW-hr/m3) and total hydrogen generated (litres) for 

winter. Table 3.4 presents a similar compilation of data but for summer. These data show that 

greater battery capacity allows better renewable energy penetration resulting in an increase in 

steady flow time. This appears true across all battery storage capacities and for all methods of 

predicting solar irradiance. An interesting outcome is also shown in Figure 3.9 whereby it is 

seen that with greater (short-term) battery storage, which allows the electrolyser to operate 

for longer steady-flow periods (Table 3.2 and Table 3.3), results in a fewer number of 

Meas. 3,474 3,859 55 28 10.41 1,545
ASHRAE 4,927 5,144 31 76 9.1 2,355

NN 3,336 3,700 52 29 10.37 1,486
Meas. 19,016 19,912 128 71 9.16 9,060

ASHRAE 14,043 14,687 92 73 9.13 6,700
NN 19,736 20,856 160 58 9.34 9,308

Meas. 22,864 23,823 137 80 9.06 10,953
ASHRAE 19,303 19,982 97 96 8.94 9,312

NN 22,699 23,875 168 64 9.24 10,762
Meas. 24,484 25,478 142 83 9.04 11,745

ASHRAE 23,279 23,930 93 122 8.81 11,314
NN 24,495 25,552 151 78 9.08 11,719

Meas. 25,448 26,281 119 103 8.9 12,308
ASHRAE 27,018 27,662 92 143 8.74 13,187

NN 25,295 26,317 146 83 9.04 12,137
Meas. 27,131 27,880 107 127 8.56 13,566

ASHRAE 28,671 29,315 92 152 8.72 14,014
NN 26,736 27,618 126 103 8.9 12,927

110

200

Specific 
Energy 

Consumption 
(kW-hr/m3)

Total 
Hydrogen 
Produced 
(Litres)

Duty Factor 
(Litres/Start-

Stop)

Start-
Stops 
over 

Ontime 
(number)

Total 
Ontime 
(mins)

Steady 
Flow Time 

(mins)

Source of 
Irradiance 

Data

0
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Battery 
Capacity 
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start/stop cycles, but there appears to be a plateau effect. There is a threshold whereby the 

number of start/stop cycles seems to taper off (or fall). This threshold also coincides with 

conditions where optimal renewable energy penetration is approached (Figure 3.7 and Figure 

3.8). The data also helps define another operational (device-level) characteristic for the 

electrolyser, namely, the electrolyser duty factor which is the total accumulated amount of 

hydrogen generated per total number of start/stop cycles. Figure 3.10 shows the duty factor 

generally increases for larger battery capacity probably because of the availability of larger 

energy for hydrogen generation (Figure 3.7) for the same or fewer number of start/stop cycles 

(Figure 3.9).  

 

Table 3.4 - Operational characteristics of the PEM electrolyser over the summer season 

(December-Febuary) for one year. Three methods have been used to calculate incident 

irradiance onto three solar panels (2.6m2) at varying battery capacity. 

Figures 3.7 – 3.10 show that whilst using different methods to account for the power needed 

to run a hydrogen generation system result in more subtle inaccuracies in relation to some 

characteristics such as electrolyser ontime (T0) as shown in Table 3.2 and Table 3.3, the use 

(Litres/Start-Stop)

Meas. 31,583 32,570 141 108 8.87 15,298
ASHRAE 34,920 35,543 89 193 8.64 17,149

NN 29,477 30,730 179 79 9.07 14,112
Meas. 48,423 49,203 108 221 8.61 23,822

ASHRAE 47,575 48,205 90 261 8.56 23,473
NN 47,802 48,523 103 229 8.59 23,541

Meas. 53,832 55,085 161 163 8.73 26,290
ASHRAE 53,132 54,345 145 179 8.72 25,960

NN 53,078 54,270 148 175 8.72 25,943
Meas. 56,690 57,959 159 174 8.71 27,711

ASHRAE 57,506 58,748 168 167 8.70 28,132
NN 55,742 56,946 160 170 8.71 27,260

Meas. 56,966 58,216 176 158 8.71 27,858
ASHRAE 59,137 60,380 169 171 8.69 28,947

NN 55,968 57,188 170 161 8.70 27,374
Meas. 57,171 58,298 155 181 8.67 28,022

ASHRAE 59,332 60,569 169 172 8.69 29,048
NN 56,151 57,232 151 182 8.66 27,535
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of different methodologies has a relatively stronger impact on device-level (electrolyser) 

operational characteristics. These more notable impacts include the number of start/stops 

(Figure 3.9) and the duty factor (Figure 3.10). From these data, it is also clear that methods 

such as Neural Networks allow for a higher prediction accuracy of various electrolyser 

operational characteristics. This indicates the need to consider which of these tools to use 

when establishing techno-economic analysis targeted at stand-alone hydrogen generation 

systems. Alternatively, electrolyser ontime, duty factor as well as total hydrogen generated 

and the number of start/stops is less accurately predicted with the ASHRAE model than with 

Neural Networks. This can be attributed to the ASHRAE models’ inability to accurately 

follow the stochastic nature of the solar irradiance (Figure 3.5). This may also indicate that 

using highly resolved (temporal) simulations may yield different outcomes in relation to 

device-level operational characteristics, when compared to less resolved simulations which 

may be hourly based (for example). This is because of the limiting effect of low-resolution 

simulations to represent the highly fluctuating nature of renewable energy sources. 

 

Figure 3.9 - Total predicted number of start/stop cycles for the PEM electrolyser in winter 

(June-August). Three methods have been used to calculate incident irradiance at varying 

levels of battery capacity. 
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Figure 3.10 - Predicted duty factor for the PEM electrolyser in winter. Three methods have 

been used to calculate incident irradiance at varying levels of battery capacity. 

To best utilise the available renewable energy, the electrolyser duty factor should be 

maximised, so that less power is consumed in start-up processes whilst simultaneously 

maximising hydrogen generation. This can be facilitated by using an “optimum” battery 

capacity which also results in decreasing electrolyser specific energy consumption (kW-

hr/m3) as shown in Table 3.3 because less energy is directed to parasitic start-up processes. 

3.5 - Conclusions 

The effect of solar energy intermittency and battery capacity on the operational 

characteristics and energy utilisation of a solar-PV powered hydrogen generation system have 

been explored. The methodologies used in this research include laboratory-based testing to 

resolve device-level operational characteristics as well as minute resolved simulations 

conducted using MATLAB/Simulink. The focus of the research is a (conceptual) renewably 

powered hydrogen generation system intended for use in conjunction with a refuelling station 

or via a fuel cell, but operated at a coastal location. The hydrogen generation system is 

directly coupled with a RO device and simulated over two seasons (winter and summer) for a 

specific Western Australian location. Very few studies have been conducted to analyse 

hydrogen generation systems with water production also integrated. Two specific solar 

prediction techniques, highlighting two levels of intermittency are chosen. This helps identify 
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the impact of prediction accuracy on the renewable power generated and the operational 

characteristics of the hydrogen system. Both methods are benchmarked against using 

meteorological data. Low levels of intermittency are obtained via implementing the 

ASHRAE (clear sky) model whilst severe intermittency is derived from using Neural 

Networks. The above effects are also analysed with different scales of (short-term) battery 

storage14 and benchmarked against operational characteristics obtained from measured 

irradiance data. 

Results indicate the importance of considering which methods are used to predict the solar 

irradiance needed to run the system when forecasting device-level operational characteristics 

in stand-alone hydrogen generation systems. Two issues appear to be relevant here: (i) the 

general accuracy of the method and (ii) its ability to forecast fluctuation. Using a simplistic 

solar prediction technique (ASHRAE) produces larger relative errors in energy availability 

than Neural Networks when compared to measured irradiance data. The larger errors produce 

an overestimation of hydrogen production when using ASHRAE compared to NN or 

measured data. This can be attributed to the fact that ASHRAE is unable to account for 

dynamic fluctuations in solar irradiance. Solar energy intermittency and varying battery scale 

impacts the operational characteristics of a PEM electrolyser as well as the energy 

distribution between system components. Specifically, results (Table 3.3) highlight that start-

stop cycles and duty factor (litres/start-stops) are more accurately predicted using methods 

(NN) which forecast intermittency in the renewable energy resource. The merit of using such 

methods, compared to others (ASHRAE), however appears less significant when deriving 

specific energy consumption (kW-hr/m3).  The effects of such solar irradiance prediction 

techniques have varying influence depending on season. The ability to predict accurate levels 

of solar irradiance becomes important in winter where irradiance is at its lowest levels with 

high levels of fluctuation and less of an impact in summer where irradiance is at its maximum 

as well as minimal fluctuation.  

An increase in battery storage capacity allows for greater renewable energy penetration 

resulting in increased hydrogen yield with higher hydrogen generation in both seasons and 

steady flow time also increases across all battery storage capacities. The inclusion of battery 

storage capacity in both summer and winter allows the electrolyser to operate for more 

14 Battery storage capacities are scale multiples (i.e. 1 battery 2 batteries etc.) 
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extended periods (operational times) and a greater duty factor. The increase in duty factor 

subsequently results in a decrease in the PEM electrolyser specific energy consumption. 

Further investigations are warranted into the optimisation of the Power Management Strategy 

as another means for helping optimise systems and device-level operational characteristics. 

An “intelligent” PMS may also lead to better scaling of hydrogen and water storage 

capacities as well as devices such as electrolysers. Although desalinated water is exclusively 

used for electrolysis in this study, an adaptive PMS strategy may also consider using the RO 

unit to service further water requirements (i.e. drinking). 

3.6 - Chapter References  

[1] Flannery T, Sahajwalla V. The critical decade: generating a renewable Australia. 

Available from, http://climatecommission.gov.au/wp-content/uploads/Renewables-

report_lowres.pdf; 2012. [cited March,2013]. 

[2] Mehrpooya M, Daviran S. Dynamic modeling of a hybrid photovoltaic system with 

hydrogen/air PEM fuel cell. Iranica Journal of Energy & Environment. 2013;4:104-9. 

[3] Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C. Power management 

strategies for a stand-alone power system using renewable energy sources and hydrogen 

storage. International Journal of Hydrogen Energy. 2009;34:7081-95. 

[4] Dufo-López R, Bernal-Agustín JL, Contreras J. Optimization of control strategies for 

stand-alone renewable energy systems with hydrogen storage. Renewable Energy. 

2007;32:1102-26. 

[5] Gray EM, Webb CJ, Andrews J, Shabani B, Tsai PJ, Chan SLI. Hydrogen storage for off-

grid power supply. International Journal of Hydrogen Energy. 2011;36:654-63. 

[6] Akdemir B, Cetinkaya N, Kulaksiz AA. Forcasting renewable energy potential of Turkey 

using artificial neural network up to 2030. In: IPCBEE, editor. International Conference on 

Clean and Green Energy. Singapore: IACSIT Press; 2012. p. 30-5. 

[7] McLellan B, Shoko E, Dicks AL, Costa JCDd. Hydrogen production and utilisation 

oppurtunities for Australia. International Journal of Hydrogen Energy. 2005;30:669-79. 

74 
 



[8] Penner SS. Steps towards the hydrogen economy. International Journal of Energy. 

2006;31:33-43. 

[9] Paul B, Andrews J. Optimal coupling of PV arrays to PEM electrolysers in solar-

hydrogen systems for remote area power supply. International Journal of Hydrogen Energy. 

2008;33:490-8. 

[10] Garcia-Valverde R, Miguel C, Martinez-Bejar R, Urbina A. Optimized photovoltaic 

generator-water electrolyser coupling through controlled DC-DC converter. International 

Journal of Hydrogen Energy. 2012;33:5352-62. 

[11] Nafeh AE-SA. Hydrogen production from a PV/PEM electrolyzer system using a neural-

network-based MPPT algorithm. International Journal of Numerical Modelling: Electronic 

Networks, Devices and Fields. 2011;24:282-97. 

[12] Geovanni S, Orlando L, Rafeal P, Alberto S, Sebastian P. Analysis of the current 

methods used to size a wind/hydrogen/fuel cell-integrated system: a new perpective. 

International Journal of Energy. 2010;34:1042-51. 

[13] Genç G, Çelik M, Serdar Genç M. Cost analysis of wind-electrolyzer-fuel cell system 

for energy demand in Pınarbaşı-Kayseri. International Journal of Hydrogen Energy. 

2012;37:12158-66. 

[14] Pedrazzi S, Zini G, Tartarini P. Complete modeling and software implementation of a 

virtual solar hydrogen hybrid system. Energy Conversion and Management. 2010;51:122-9. 

[15] Jalilzadeh S, Rohani A, Kord H, Nemati M. Optimum design of a hybrid 

Photovoltaic/Fuel Cell energy system for stand-alone applications.  6th International 

Conference on Electrical Engineering/Electronics, Computer, Telecommunications and 

Information Technology, ECTI-CON 2009. p. 152-5. 

[16] Qi ZY, Lin E. Integrated power control for small wind power system. Journal of Power 

Sources. 2012;217:322-8. 

[17] Li C-H, Zhu X-J, Cao G-Y, Sui S, Hu M-R. Dynamic modeling and sizing optimization 

of stand-alone photovoltaic power systems using hybrid energy storage technology. 

Renewable Energy. 2009;34:815-26. 

75 
 



[18] Kaldellis JK, Zafirakis D. Optimum sizing of stand-alone wind-photovoltaic hybrid 

systems for representative wind and solar potential cases of the Greek territory. Journal of 

Wind Engineering and Industrial Aerodynamics. 2012;107:169-78. 

[19] Clarke DP, Al-Abdeli YM, Kothapalli G. The effects of including intricacies in the 

modelling of a small-scale solar-PV reverse osmosis desalination system. Desalination. 

2013;311:127-36. 

[20] Glavin ME, Hurley WG. Optimisation of a photovoltaic battery ultracapacitor hybrid 

energy storage system. Solar Energy. 2012;86:3009-20. 

[21] Patsios C, Antonakopoulos M, Chaniotis A, Kladas A. Control and analysis of a hybrid 

renewable energy-based power system.  2010 XIX International Conference on Electrical 

Machines (ICEM). Rome 2010. p. 1-6. 

[22] Zhou T, Francois B. Modeling and control design of hydrogen production process for an 

active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy. 

2009;34:21-30. 

[23] Tao Z, Francois B, el Hadi Lebbal M, Lecoeuche S. Real-time emulation of a hydrogen-

production process for assessment of an active wind-energy conversion system. Industrial 

Electronics, IEEE Transactions on. 2009;56:737-46. 

[24] Kyriakarakos G, Dounis AI, Arvanitis KG, Papadakis G. A fuzzy logic energy 

management system for polygeneration microgrids. Renewable Energy. 2012;41:315-27. 

[25] Carter D, Ryan M, Wing J. The fuel cell industry review Available from, 

http://www.fuelcelltoday.com/media/1713685/fct_review_2012.pdf; 2012. [cited 

March,2013]. 

[26] Garcia-Valverde R, Espinosa N, Urbina A. Simple PEM water electrolyser model and 

experimental validation. International Journal of Hydrogen Energy. 2012;37:1927-38. 

[27] Clarke RE, Giddey S, Badwal SPS. Stand-alone PEM water electrolysis system for fail 

safe operation with a renewable energy source. International Journal of Hydrogen Energy. 

2010;35:928-35. 

76 
 



[28] Millet P, Mbemba N, Grigoriev SA, Fateev VN, Aukauloo A, Etiévant C. 

Electrochemical performances of PEM water electrolysis cells and perspectives. International 

Journal of Hydrogen Energy. 2011;36:4134-42. 

[29] Oliveira LFL, Laref S, Mayousse E, Jallut C, Franco AA. A multiscale physical model 

for the transient analysis of PEM water electrolyzer anodes. Physical Chemistry Chemical 

Physics. 2012;14:10215-24. 

[30] Millet P, Grigoriev SA, Porembskiy VI. Development and characterisation of a 

pressurized PEM bi-stack electrolyser. International Journal of Energy Research. 

2013;37:449-56. 

[31] Lee B, Park K, Kim H-M. Dynamic simulation of PEM water electrolysis and 

comparison with experiments. International Journal of Electrochemical Science. 2013;8:235-

48. 

[32] Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W. A review of 

PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power 

Sources. 2008;184:104-19. 

[33] de Bruijn FA, Dam VAT, Janssen GJM. Review: durability and degradation issues of 

PEM fuel cell components. Fuel Cells. 2008;8:3-22. 

[34] Bureau of Meteorology (Australia). Solar exposure data for Geralton, Western Australia. 

Available from, http://reg.bom.gov.au/climate/reg/oneminsolar/index.shtml; 2012. [cited 

October,2012]. 

[35] Shabani B, Andrews J, Watkins S. Energy and cost analysis of a solar-hydrogen 

combined heat and power system for remote power supply using a computer simulation. 

Solar Energy. 2010;84:144-55. 

[36] Fahmy FH, Ahmed NM, Farghally HM. Optimization of renewable energy power 

system for small scale brackish reverse osmosis desalination unit and a tourism motel in 

Egypt. Smart Grid and Renewable Energy. 2012;3:43-50. 

77 
 



[37] Soric A, Cesaro R, Perez P, Guiol E, Moulin P. Eausmose project desalination by 

reverse osmosis and batteryless solar energy: design for a 1m3 per day delivery. Desalination. 

2012;301:67-74. 

[38] Avlonitis SA, Avlonitis DA, Panagiotidis T. Experimental study of the specific energy 

consumption for brackish water desalination by reverse osmosis. International Journal of 

Energy Research. 2012;36:36-45. 

[39] Qiu TY, Davies PA. The scope to improve the efficiency of solar-powered reverse 

osmosis. Desalination and Water Treatment. 2011;35:14-32. 

[40] Katadyn. PS-40E Manual Available from, 

http://katadynch.vs31.snowflakehosting.ch/fileadmin/user_upload/katadyn_products/Downlo

ads/Manual_Katadyn_PS-40E_EN.pdf; 2011. [cited April 2011]. 

[41] Jamil Ahmad M, Tiwari G. Solar radiation models- a review. International Journal of 

Energy Research. 2011;35:271-90. 

[42] Amarananwatana P, Sorapipatana C. An assessment of the ASHRAE clear sky model for 

irradiance prediction in Thailand Nuntiya. Asian Journal on Energy and Environment. 

2007;8:523-32. 

[43] Nijegorodov N. Improved ashrae model to predict hourly and daily solar radiation 

components in Botswana, Namibia, and Zimbabwe. Renewable Energy. 1996;9:1270-3. 

[44] Al-Sanea SA, Zedan MF, Al-Ajlan SA. Adjustment factors for the ASHRAE clear-sky 

model based on solar-radiation measurements in Riyadh. Applied Energy. 2004;79:215-37. 

[45] Martin L, Zarzalejo LF, Polo J, Navarro A, Marchante R, Cony M. Prediction of global 

solar irradiance based on time series analysis: Application to solar thermal power plants 

energy production planning. Solar Energy. 2010;84:1772-81. 

[46] AbdulAzeez MA. Artificial neural network estimation of global solar radiation using 

meteorological parameters in Gusau, Nigeria. Archives of Applied Science Research. 

2011;3:586-95. 

[47] Yona A, Senju T, Sabar AY, Funabashi T, Sekine H, Kim C-H. Application of neural 

network to one-day-ahead 24 hours generating power forecasting for photovoltaic system. In: 

78 
 



IEEE, editor. The 14th International Conference on Intelligent System Applications to Power 

Systems. Kaohsiung, Taiwan: IEEE; 2007. 

[48] Krishnaiah T, Rao SS, Madhumurthy K, Reddy KS. Neural network approach for 

modelling global solar radiation. Journal of Applied Sciences Research. 2007;3:1105-11. 

[49] Bureau of Meteorology (Australia). Rainfall data for Geralton, Western Australia. 

Available from, 

http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_display_type=dailyZippedDataFile&

p_stn_num=008051&p_c=-12975576&p_nccObsCode=136&p_startYear=2013; 2012. [cited 

October,2012]. 

3.7 - Chapter Appendix 

To accurately resolve the A, B and C parameters, minute resolved meteorological data for 

Geraldton [34] was used to benchmark against the ASHRAE prediction. The A, B and C 

parameters were then iteratively refined. The method for the  calculation of the A, B and C 

values of the ASHRAE model is defined in [42], whereby: 

𝐼𝐼𝑁𝑁 = 𝐴𝐴 × 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐵𝐵 × sec 𝜃𝜃𝑍𝑍) Equ. A1 

ln 𝐼𝐼𝑁𝑁 = ln𝐴𝐴 − 𝐵𝐵 × sec𝜃𝜃𝑍𝑍 Equ. A2 

In the relations above, parameters denote minutely beam radiation (IN, W/m2), zenith angle 

(θZ, deg) with A (W/m2) and B (dimensionless) as model correction factors. The zenith angle 

is approximately the same as the hour angle for the 21st day of each month [42]. When 

meteorological data is plotted in the form of Equation A2, values for A and B can be 

visualised, whereby parameter A is the inverse natural logarithm of the vertical axis intercept 

and B the slope of this line. The last parameter C, which is the diffuse radiation parameter, is 

obtained by averaging the ratio of the diffuse irradiance to the direct normal irradiance which 

can be obtained from the meteorological dataset. Table 3.5 shows the A, B and C parameters 

derived using this method across the summer and winter periods and subsequently used in the 

simulations. 
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Table 3.5 - The A, B, C parameters used in the ASHRAE model when applied to the Western 

Australian city of Geraldton (latitude: -28.77°; longitude:114.61°). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

December 1,379 0.290 0.070
January 1,253 0.220 0.090

February 1,089 0.125 0.070
June 1,120 0.173 0.570
July 1,000 0.122 0.740

August 1,600 0.370 0.790

C 
(dimensionless)

Summer

Winter

Australian 
Season Month

A 
(W/m2)

B 
(dimensionless)
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Chapter 4. The Impact of using Particle Swarm Optimisation 
on the Operational Characteristics of a Stand-Alone Hydrogen 
System with On-site Water Production 

Daniel P. Clarke*, Yasir M. Al-Abdeli and Ganesh Kothapalli 

This chapter was published as a full research paper in International Journal of Hydrogen 

Energy. Whilst all efforts were made to retain the original features of this article, minor 

changes such as the layout, number formats, font size and style were implemented in order to 

maintain consistency in the formatting style of the thesis. 

4.1 - Abstract 

In Chapter 3, we analysed the impact of renewable energy intermittency on the operational 

characteristics of hydrogen energy systems with pre-set Power Management Strategies not 

subject to optimisation.  This follow-up chapter demonstrates the validity of successfully 

applying Particle Swarm Optimisation (PSO) to size and optimise these systems. Specifically, 

PSO is used to iteratively converge on the (short-term) battery capacity (Ah) and hydrogen 

storage (L) in addition to defining the switching parameters which a Power Management 

Strategy (PMS) uses. The PSO algorithm is guided by three operational objective functions 

and conducted using MATLAB/Simulink. Simulations also incorporate laboratory resolved 

device characteristics. 

Results are benchmarked against earlier deployed methods and show improvements with a 

PSO optimised PMS depend on system scale, with greater relative benefits arising at smaller 

scales. The choice of PSO acceleration parameters also affects the time to reach an optimal 

solution.  

4.2 - Introduction 

Due to dispersed population within Australia, remote communities are heavily reliant on 

stand-alone diesel-based power generation with access to the utility grid sometimes being 

uneconomical. Where such communities are also located at coastal locations, combining 

energy provision with potable water production becomes an attractive option. Society is 

becoming more environmentally aware of carbon emissions and the need for sustainable 

power generation practises to replace fossil fuels. The utilisation of renewable sources [1] has 
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been identified as the best candidate for achieving stand-alone power generation with reduced 

emissions. Renewable energies such as wind and solar are perpetual, clean and can be used in 

stand-alone energy systems. However, the inevitable intermittency and unpredictability of 

energy sources [2] results in periods where load demand cannot be fully met via available 

renewables or when surpluses may exist during periods of low load (demand). This highlights 

the need to incorporate energy storage media such as batteries and hydrogen [3, 4] coupled 

with better renewable resource predictions.  

In such application scenarios and for a given resource and load profile, the overall penetration 

of renewables, reliability of meeting external loads and indeed the operational characteristics 

(switching, performance) of the energy system components are a function of both the Power 

Management Strategies (PMS) deployed and the scale of hardware. Therefore, optimisation 

techniques are essential to maximise system performance and reduce the likelihood of 

unnecessarily cycling devices into On/Off mode such as fuel cells due to degradation issues 

[5, 6].  

With the above in mind, the sizing and operational strategies of a stand-alone energy system 

have been achieved using various optimisation techniques including iterative, probabilistic, as 

well as intelligent methods which rely on genetic algorithms, fuzzy logic and neural networks 

[7, 8]. In this regard, Particle Swarm Optimisation (PSO) has been deployed to optimise some 

aspects of stand-alone energy systems as it offers many advantages such as PSO having fewer 

tuneable parameters compared to other intelligent techniques [9]. However, two important 

challenges present themselves in this regard. Firstly, the effective use of PSO still requires 

tuning “acceleration parameters” to achieve accurate results and the impact of such 

(acceleration) parameters in relation to stand-alone hydrogen energy systems has largely not 

been addressed in the literature [10, 11]. Secondly, the merit of using PSO to help scale 

hydrogen energy system components and optimise the operational characteristics of the 

energy system (as a whole) has not been adequately addressed to date. The current research 

aims to address both these deficiencies.  

Outside the scope of the present chapter which analyses the use of PSO to size and optimise 

power management strategies, most other published research with PSO focusses on its impact 

from a techno-economic perspective. Within stand-alone hydrogen systems, the use of PSO 

has been shown to positively affect total system costs [12-16], with the cost of electricity 

improving by 18.5% [17] or to shorten the payback time from 12.3 years to 5.7 years [18]. 
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Additionally, the use of PSO has been shown to reduce environmental impact from the 

running, production and installation of renewable energy systems over a 25 year lifetime by 

increasing total carbon emissions saved from approximately 3,260 tons to 3,980 tons [18].  In 

order to increase the probability of meeting an electric load demand, most research done to 

date on hydrogen systems has predominantly been based on Power Management Strategies 

(PMS), which are themselves not optimised [8, 19-21]. Optimising the PMS by adjusting 

specific control set-points used in stand-alone hydrogen systems further maximises system 

performance whilst reducing system costs [22, 23]. However, rarely has the effect of 

optimising a PMS onto the operational characteristics (and longevity) of energy system 

components been addressed in the literature. For hybrid systems, a PSO optimised PMS can 

minimise dependence on diesel generators [22] by 10%, when compared to HOMER, and 

reduce Loss of Load (TLOL) 15 for the smallest total system cost possible [6]. Additionally, 

some research has indicated that an optimised PMS results in better component switching 

(On/Off) to meet a load, for the lowest system cost [9], but overlooked incorporating the 

dynamic operational characteristics of system components. Also, PSO has been used to 

identify the best inclination angle of solar-PV arrays to maximise available energy [24]. 

Despite the above, the simultaneous optimisation of both system size and the PMS control 

set-points has received little attention. 

This chapter aims to extend the analyses done in our previous work [25] by additionally using 

Particle Swarm Optimisation to simultaneously optimise battery scale and hydrogen storage 

capacity as well as the Power Management Strategy in a stand-alone power generation 

system. In this context, three objective functions are used to guide and help assess the impact 

of PSO on system performance. Objective-1 maximises hydrogen generation (litres/season) 

whilst Objective-2 is to minimise the PEM electrolysers’ duty factor for a given hydrogen 

target (litres/season). With the addition of an electric external load demand, Objective-3 aims 

to minimise the Loss-Of-Load time (TLOL) and the number of fuel cell start-stops whilst 

maximising an electrolysers’ duty factor. For all these objective functions, the PSO 

acceleration parameters are also varied to analyse their influence. The simulations are 

implemented for a specific set of hardware components and geographical locations and cover 

the Australian winter season.     

15 Defined elsewhere in this chapter 
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4.3 - Methodology 

Figure 4.1 depicts the renewably powered, stand-alone, hydrogen energy system which 

provides the basis for the study16. This system integrates two main sub-configurations. The 

first (shown outside the dashed box) is the “hydrogen generation assembly” investigated in 

our previous work into the impact of renewable energy intermittency on operational 

characteristics [25]. In that earlier analysis and as commonly found in published works, the 

energy system operated to a Power Management Strategy with pre-set control points to 

govern the switching of various hardware components. There was also no external electric 

load connected. The second sub-configuration in Figure 4.1 (shown inside the dashed box) is 

an additionally interfaced electric load and water demand (to satisfy the water needs of 

electrolysis and drinking). The system simulations presented in the current study consider the 

characteristics of a number of hardware components and consist of solar-PV panels17 (Make: 

Heckert Solar - Germany, Model: HS – PL 135), a PEM electrolyser (Make: DBS – Italy, 

Model: NMH2 - 500), a Reverse Osmosis (RO) unit (Make: Katadyn - Switzerland, Model: 

PowerSurvivor 40E) and a PEM fuel cell (Make: Ballard Power Systems - Canada, Model: 

1.2kW). The switching of these components is typically controlled through a connected 

Power Management Unit (PMU) which typically implements the Power Management 

Strategy (PMS). The PMU is simulated through this research using MATLAB/Simulink on a 

desktop PC having an Intel i3 processor. The operational characteristics and details of these 

hardware components have been laboratory tested18 and reported elsewhere [25, 26]. 

16 Refer to Appendix D for Chapter 4 system MATLAB/Simulink model. 
17 Refer to Appendix D for PV panel model. 
18 Refer to Appendix C for error analysis methods. 
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Figure 4.1 - Stand-alone hydrogen energy system with on-site water production. All energy 

system components outside the dashed box constitute the “hydrogen generation assembly”. 

The dashed box indicates an electric load and water demand that is interfaced with the 

“hydrogen generation assembly”. 

4.3.1 - The Hydrogen Energy System 

A single system-level simulation aims to resolve six characteristics over a period spanning an 

entire calendar season. The outputs from the simulation are: 

1. Total PEM electrolyser hydrogen output (OH) to go into storage and run a fuel 

cell (litres/season); 

2. Number of start/stop cycles for a PEM electrolyser (OESS);  

3. Total desalinated water output (OW) by RO (litres/season); 

4. Minute resolved hydrogen consumption (OFC) by a PEM fuel cell (litres); 

5. Number of start/stop cycles for a PEM fuel cell (OFCSS); and 
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6. Likelihood for meeting a dynamic electric load (TLOL). 

Using (1) and (2) the duty factor for the electrolyser (OEDF) is calculated (total hydrogen 

generated relative to the number of electrolyser start-stops). All simulations are implemented 

using a temporal resolution of one minute, whereby these time steps can be summed to also 

provide hourly, daily or seasonal totals. Due to the physical and operational limitations of the 

modelled hydrogen system, there is a set of constraints that each of the six variables above 

must satisfy to form any plausible solution. These upper and lower bounds are given in the 

Table 4.1, whereby those relating to the max battery capacity (200Ah) and min (transient) 

electrolyser runtime (5 minutes) are derived based on hardware characteristics which were 

laboratory resolved earlier [25]. 

 

Table 4.1 - Upper and lower bounds of the decision variables used to limit the solution space 

for the Particle Swarm Optimisation algorithm. 

Solar Irradiance Data: The power generated by the PV-array forms the energy (input) into 

the system. In this regard, minute resolved irradiance data is sourced from the Bureau of 

Meteorology [27] and converted using the photovoltaic array model [26]. The photovoltaic 

array for both configurations has a nominal area of 2.6m2 which is the same as that in the 

small-scale, stand-alone energy system tested earlier (without PSO) [25]. Figure 4.2a shows 

the distribution of seasonal minute resolved solar irradiance over any day whereby the large 

unpredictability of this resource over a single season is apparent from the spread of values 

over any time step. All data spans winter (June, July and August: 132,480 minutes) for a 

specific Western Australian coastal location (Geraldton). Winter is chosen because the 

susceptibility of cloud cover results in stronger uncertainty in solar irradiance (fluctuations) 

and highlights the effect of using an (intelligent-based) method such as PSO to derive the 

Power Management Strategy and size hydrogen energy system components. Although 

Decision Variable Components Lower Bound Upper Bound

Battery Capacity, CB (Ah) 0 200

Min Water Threshold, Ch20 (L) 5 49

Min runtime for electrolyser, TE (min) 5 500

Max Hydrogen Capacity, CH (L) 0 500

Min Hydrogen Capacity, CMH (% of CH) 0 100
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measured (historical) solar irradiance at Geraldton, Western Australia is used, the methods 

presented here can also be integrated with predictive models and methods to consider (future) 

predictions of irradiance data using techniques such as ASHRAE clear sky (irradiance) model 

or Neural Networks [25]. 
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Figure 4.2 - Minute resolved daily distribution of solar irradiance (a), external electric load 

(b) and fuel cell hydrogen consumption (c). Fuel cell operation meets the gap between 

available renewables (a) and the external electric load (b). 
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PEM Electrolyser: The major advantage of a PEM electrolyser in a small-scale, stand-alone 

energy system is its ability to generate hydrogen at pressures compatible with storage via 

metal hydrides which may negate the need for an additional compressor. This not only 

reduces external power consumption but allows simple integration into smaller stand-alone 

systems. However, the continual cyclic operation of a PEM electrolyser results in higher 

(parasitic) power expenditure due to start-up times associated with these devices. This also 

highlights the need to maximise the duty factor in these devices (hydrogen generated per 

number of start-stop cycles). The start-up time for the electrolyser used in the present 

simulations is 5 minutes and has been previously laboratory derived [25]. 

Reverse Osmosis Unit: Reverse Osmosis is commonly integrated into stand-alone solar-PV 

systems [28-31]. The integration of a Reverse Osmosis (RO) unit with hydrogen systems 

negates the need for regular deionised water shipments to support electrolysis and allows for 

such systems to be sustainably deployed in off-grid coastal locations where seawater is 

abundant. Moreover, on-site water desalination alongside an energy system can also provide 

drinking water requirements. This is an important consideration as most energy management 

analyses published on hydrogen systems, with the exception of a few [11, 32], do not even 

consider the provision of water that is critical to the operation of these systems. In this regard, 

excess energy not utilised to meet (electric) load demand can be diverted to power RO units, 

rather than dump loads, and the water produced can be further processed by a (static, gravity 

fed) cartridge type de-ioniser. In addition to the (daily fluctuating) water needs for the 

electrolysis, the simulations will therefore consider a (fixed seasonal) water demand of 10L 

per day to meet the immediate drinking needs for three persons in a small stand-alone system 

[33]. An alternate drinking water usage can be tested using the simulations if needed. 

Energy Storage: Solar irradiance is highly dynamic and only available over specific hours of 

the day, thus integrating energy storage media into renewable energy systems is primarily 

designed to provide supplemental power in periods when incident solar radiation is 

insufficient. Some (secondary) needs for energy storage media also include short-time energy 

supplements to smooth intermittency, emergency shutdown or maintaining sensors and 

actuators. For this purpose, hydrogen systems typically implement a metal hydride or 

compressed gas storage combined with mostly lead-acid batteries, and rarely Li-Ion batteries 

[34]. The incorporation of hydrogen storage allows the fuel cell to meet the electric load 

demand by using the hydrogen reserves produced from surplus solar-PV energy. In these 
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simulations, PSO will define the scale needed of hydrogen storage as well as converging onto 

an optimal (secondary needs) battery capacity within the hardware bounds (Table 4.1). 

PEM Fuel Cell: Whilst other types of fuel cells exist (alkaline, molten carbonate and solid 

oxide), PEM technology offers the advantages of low operational temperatures, fast start-up 

times and water as a by-product [35, 36]. However, the longevity of a fuel cell is affected by 

accumulative operational hours and the number of start/stop cycles [5, 37]. Fuel cell 

durability has been the focus of much investigation in terms of dynamic loads, transients and 

parameters affecting performance [6, 37-41]. Hence, the present study also investigates the 

effects of using (intelligent) optimisation of the PMS on the operational characteristics of a 

PEM fuel cell. In this regard, the instantaneous electrical power supplied by the PEM fuel 

cell is fundamentally defined as: 

Where, (PFC) is the output of the fuel cell, (VFC) is the fuel cell voltage and (IFC) the fuel cell 

operating current. However, this approach neglects the power losses attributed to on-board 

components such as the air pump, cooling fan, sensors, actuators and controllers which vary 

as the fuel cell power output changes. In this regard, it is necessary to consider the Balance of 

Power (BOP) components of the fuel cell to ascertain the net power supplied to an external 

load after satisfying the power requirements of the fuel cell stack. Using the fuel cell 

manufacturers’ polarisation (VFC vs. IFC) and efficiency curves [42], hydrogen consumption 

and efficiency are plotted up to a maximum net power of 1.2kW in Figure 4.3 and considered 

in the simulations. In this manner the simulations use fuel cell characteristics which 

incorporate the power losses associated with BOP. The duty factor for the fuel cell can also 

be calculated (total power supplied by the fuel cell relative to the number of fuel cell start-

stops for the same time period). Because the lifetime of a fuel cell is largely dependent on the 

operational hours and number of start-stops, a higher fuel cell duty factor means fewer start-

stops for the same operational hour limit. 

𝑃𝑃𝐹𝐹𝐹𝐹 =  𝑉𝑉𝐹𝐹𝐹𝐹 × 𝐼𝐼𝐹𝐹𝐹𝐹  Equ. 4.1 
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Figure 4.3 - Net system efficiency and hydrogen consumption of a 1.2kW PEM fuel cell as a 

function of net power output. The system efficiency is defined by the ratio of net power 

output to the lower heating value of hydrogen consumed in the fuel cell. SLPM: Standard 

Litres Per Minute; LHV: Lower Heating Value of hydrogen (3.00 kWh/Nm3). 

Power Management Strategy: A Power Management Strategy (PMS) is needed to control 

the activation of various energy system hardware components and is typically implemented 

through a PMU (which is mostly represented by a Programmable Logic Controller, PLC). 

The PMS applied within the hydrogen energy system is depicted in Figure 4.4, and except for 

the (dashed) part of this which is needed to satisfy the electric load and water demand, is 

tested against that (non PSO optimised) PMS applied in our earlier study [25].  In the current 

investigation, PSO is integrated into the simulation to optimise four (operational) control set-

points within this PMS (Figure 4.4) in addition to the size of energy system components. 

These four parameters are:  

1. Minimum delay time before the PEM electrolyser operates (TE): Before the PEM 

electrolyser can operate, it is desirable to secure a continuous period of sufficient 

solar-PV energy which lasts longer than its start-up time (5 minutes). This helps 

ensure the power requirement of the electrolyser (device rating of 250W) are satisfied. 

However, prolonging these delays prior to start-up means less hydrogen produced 
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over any single day. Any energy not used to power the PEM electrolyser is used to 

desalinate seawater up to a maximum given water storage tank capacity (50L).  

2. Minimum water capacity threshold (CH2O): For the PEM electrolyser to operate, 

the reserve of suitable (desalinated, deionised) water must be higher than a threshold 

to ensure continuity of operation. If the reserve falls below this threshold, hydrogen 

generation is terminated and energy is diverted to water production which is then 

prioritised. However, if water capacity is at the water storage tank maximum (50L), 

any surplus energy is used to charge batteries. Once the battery State-of-Charge 

reaches SOC=100%, any power not utilised to operate the PEM electrolyser or RO 

unit is then dumped and deemed a surplus.  

3. Maximum hydrogen storage capacity (CH): Once the maximum hydrogen storage 

capacity of the metal hydride canisters (500L) is reached, the PEM electrolyser is 

switched off with power diverted to the production of desalinated water (device rating 

of DC 50W) or otherwise used to charge the battery. Other peak storage capacities 

can be built into the simulations. 

4. Define minimum hydrogen capacity threshold (CMH): Through the use of a 

minimum threshold, the electrolyser remains off until the hydrogen stored once again 

falls to a minimum threshold at which point electrolysis is reactivated.  

5. Battery capacity (CB): Battery storage allows for short-term energy supplements to 

power system components such as the PEM electrolyser and RO unit. This allows 

greater renewable energy penetration which results in extended operational time. 

However, batteries are not used in this system (Figure 4.1) to directly supply electric 

load demand. 
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Figure 4.4 - Power Management Strategy (PMS) for the stand-alone hydrogen energy system. 

The dashed box indicates the addition of a fuel cell to a hydrogen generation system to meet a 

(electric) load demand. 
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Obviously the above noted hardware limits can be revised up/down if needed. At the start of 

the simulations (T=0mins), the battery, water and hydrogen capacity is assumed to be 100% 

(Table 4.1) with the battery having a pre-set minimum depth of discharge over any time-step 

at SOC=20%. To optimise the Power Management Strategy, the PSO algorithm seeks out 

within the search space of plausible solutions, the set of parameters (CB, CH2O, TE, CH and 

CMH) which maximise system performance for a given operational objective function. This 

optimal solution is termed (X) and expressed in Equation 4.2 and more on the methodology 

used by the PSO to seek out this optimal solution (X) is described in the next section. 

4.3.2 - The Particle Swarm Optimisation Algorithm 

The algorithm mimics a number of particles which move in a search space, defined by the 

range of hardware and dynamic operational constraints described above. The number of 

particles is typically in the range of 20 – 40 [43]. The overall aim for these particles is to each 

“land on” (find) an optimal solution. The grid position of any single particle throughout this 

search space represents one possible solution for it and the best solution for this particle is 

represented by (Pbest). The movement of particles is governed by the operational objective 

functions (described in this section). The global best (Gbest) solution is obtained out of all the 

(Pbest) solutions for the entire swarm [13, 44, 45]. In the PSO algorithm, the updated position 

and velocity of the (i-th) particle are represented in Equation 4.3 [44] as: 

Where (𝑉𝑉𝑡𝑡
𝑘𝑘) is the possible dimension for (i) particles with position (Xi

k) and velocity (Vi
k), a 

constriction factor (K) which controls the velocity magnitude, the individual best position of 

particle (i) is (Pbest), the global best position across all particles is (Gbest) and the inertia 

weight (w) controls how much of the particles previous velocity (speed which particle moves 

in the search space) is retained. Additionally, the iteration number is denoted by (k) and non-

negative acceleration factors (c1 and c2) are specific to the PSO with random numbers (R1 and 

R2) in the range of [0 to 1]. The cognitive acceleration constant (c1) controls how much the 

particle heads towards its own personal best position. The social acceleration constant (c2) 

alternatively controls the tendency of that same particle to head towards the global best 

𝑋𝑋 = [𝐶𝐶𝐵𝐵,𝐶𝐶𝐻𝐻2𝑂𝑂 ,𝑇𝑇𝐸𝐸 ,𝐶𝐶𝐻𝐻,𝐶𝐶𝑀𝑀𝑀𝑀] Equ. 4.2 

𝑉𝑉𝑡𝑡𝑘𝑘+1 = 𝐾𝐾(𝑉𝑉𝑖𝑖𝑘𝑘 × 𝑤𝑤 + 𝑐𝑐1 × 𝑅𝑅1 × �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)− 𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑐𝑐2 × 𝑅𝑅2 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖𝑘𝑘�) Equ. 4.3 
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position across all particles19. The acceleration parameters of the PSO algorithm are selected 

based on a “grid search” method whereby each parameter (c1 and c2) are changed in intervals 

of 0.5 to a maximum of 2. The result is 16 combinational pairs of c1 and c2 with the 

population size remaining constant throughout at 24 particles. The PSO has parameters in 

Equation 4.3 which can be adapted to yield better results for optimisation and the algorithm 

starts by generating random positions and velocities for the particles, within the bounds 

(Table 4.1). During the main loop of the algorithm, the velocities and positions of the 

particles are iteratively updated until one of two stopping criteria is met: (i) a maximum 

iteration number of 100 or (ii) no change in 30 iterations for Gbest. Throughout the 

simulations conducted it was observed that the maximum number of iterations whereby Gbest 

remains unchanged is more likely to cause the PSO to meet the stopping criteria. This 

indicates the number of iterations stipulated (100) was sufficient to attain an optimised 

solution. The PSO algorithm is run 3 times for each objective after which an average output 

value is established (OH, OESS, OW, OFC, OFCSS, TLOL) along with its associated optimisation 

time.  

Operational Objective Function 1: Optimise the PMS by finding X which maximises 

hydrogen generation (litres/season)  

For the “hydrogen generation assembly” (Figure 4.1) an operational objective which may 

arise in an application scenario is to maximise hydrogen generation for a given solar 

irradiance profile. This scenario would materialise where a hydrogen refuelling station needs 

to meet specific reserves to guarantee fuel stock availability. This operational objective 

function is expressed as: 

The terms of Equation 4.4 denote total hydrogen generation (OH) and the PEM electrolysers’ 

duty factor (OEDF) over the entire season. This objective is tested for up to six battery scales 

(CB= 0Ah battery-less operation, 0-27Ah, 0-55Ah, 0-83Ah, 0-110Ah and 0-200Ah) which 

will form a comparison with the non PSO optimised PMS system [25]. 

19 Refer to Appendix F for further details on PSO. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀 � [(𝑂𝑂𝐻𝐻)]
𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=𝑑𝑑𝑑𝑑𝑑𝑑

 
Equ. 4.4 
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Operational Objective Function 2: Optimise the PMS by finding X which maximises the 

PEM electrolysers’ duty factor for a target hydrogen generation (litres/season)  

Generating the maximum possible hydrogen for a given solar irradiance profile in a given 

season is not always possible in stand-alone renewable hydrogen systems due to storage 

limits. Any hydrogen that is generated beyond what is required would be considered surplus 

to requirements. In such instances it would be more beneficial to target a needed hydrogen 

quantity but achieve this at increased hardware component efficiencies. The aim of PSO here 

is to find X (Equation 4.2) that accurately generates the target hydrogen yield (OHT) whilst 

maximising the PEM electrolysers’ duty factor (OEDF). A higher PEM electrolyser duty factor 

means fewer start-stops to generate the same amount of hydrogen. A higher duty factor 

therefore increases process efficiency by reducing start-up transients and the ability to divert 

power to other uses. This scenario is likely to occur when multiple load demands (i.e. water 

desalination and power generation) are needed as with a remote residential house. Equation 

4.5 is utilised to find X for a given hydrogen target: 

The additional terms in Equation 4.5 denote the daily total of desalinated water (OW) and 

total hydrogen generation (OH) over the entire season. The effectiveness of PSO in optimising 

this operational objective function is tested at CB=0, 27, 55, 83, 110 and 200Ah over the 

winter season for comparison with the rule-based system. 

Operational Objective Function 3: Optimise the PMS by finding X which minimises the 

Loss of Load time and the PEM fuel cell start/stops but maximises the PEM electrolysers’ 

duty factor 

For a given (dynamic, minute resolved) electric and water load demand (Figure 4.2b), the 

PSO aims to find X (Equation 4.2) that best meets the electric load and drinking water 

requirements. For most cases, the PSO is able to find a unique solution to X. However, in 

some instances, where a number of plausible solutions exist for X, the algorithm then filters 

these solutions seeking out those which minimise the number of PEM fuel cell start/stops 

(OFCSS) or (thereafter) maximise the PEM electrolysers’ duty factor (OEDF). The time (in 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀 � [|𝑂𝑂𝐻𝐻 − 𝑂𝑂𝐻𝐻𝐻𝐻|]
𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀 � [ (𝑂𝑂𝐸𝐸𝐸𝐸𝐸𝐸)]
𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=𝑑𝑑𝑑𝑑𝑑𝑑

 Equ. 4.5 
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minutes) in which the electric load (powering an external load and RO unit) is not satisfied is 

defined as the Loss of Load (TLOL). Equation 4.6 is utilised to find X: 

4.4 - Results and Discussion  

Optimisation for maximum hydrogen generation: Figure 4.5 presents data derived by 

applying Operational Objective Function-1 which uses a variety of c1 and c2 PSO 

acceleration parameters and constraints (CB, CH2O, TE, CH, CMH) to govern the optimal 

solution X. As noted earlier, the optimisation derived from Operational Objective Function-1 

focusses on maximising OH without considering other performance parameters. Results 

indicate that using PSO to optimise the control set-points in the PMS allows the system to 

generate more hydrogen compared to a Power Management Strategy with merely pre-set 

control points [25]. The improvement occurs across all levels of battery capacity and is 

accompanied by an increase in electrolyser duty factor. The greater duty factors achievable 

with PSO mean the optimised Power Management Strategy delivers more hydrogen for lesser 

electrolyser start-stops. The percentage increase in hydrogen generation, as a function of 

various combinations of PSO acceleration parameters (c1 and c2), is shown in Figure 4.6a. In 

general, results indicate that when battery scale (CB) is decreased, the use of PSO to optimise 

a PMS has more (relative) impact resulting in a higher percentage increase in hydrogen 

generation. In this regard, the choice of acceleration parameters appears to have an 

insignificant effect. This highlights that optimisation of a Power Management Strategy is 

more significant in smaller scale systems.  Figure 4.6b shows the time needed to achieve a 

PSO derived solution can vary from around 510 seconds to 711 seconds. A performance 

decrement in duty factor (negative % improvement) is observed when using PSO (compared 

to a pre-set PMS) at CB=0 to 110Ah. Careful examination of the raw data at this condition 

indicates that whilst the PSO algorithm identifies an increased OH (Figure 4.6a) compared to 

the non-optimised PMS [25], this improvement in hydrogen generation comes at the expense 

of duty factor. Such a behaviour is due to the nature of the Operational Objective Function-1 

which only seeks to optimise for hydrogen generation. Such limitations may be overcome by 

using multi-objective function optimisation methods which are beyond the scope of the 

present work but worthy of pursuit. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

𝑛𝑛=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛

𝑖𝑖=𝑑𝑑𝑑𝑑𝑑𝑑

 Equ. 4.6 
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Figure 4.5 - A comparison between an optimised, and non-optimised, PMS on the hydrogen 

generated (per season) and the electrolysers’ duty factor. Results for PSO (unconnected 

markers) are derived based on a variety of c1 and c2 acceleration parameters (Operational 

Objective Function-1) and compared to data for a non-optimised PMS (trend lines, [25]). 
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Figure 4.6 - The effects of battery scale and choice of PSO acceleration parameters (c1 and 

c2) on (a) total hydrogen output via electrolysis; (b) electrolyser duty factor; and (c) time to 

attain PSO solution over all values of c1 and c2 for Operational Objective Function-1. 
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Optimisation for maximum duty factor: Figure 4.7 presents data relating to Operational 

Objective Function-2 which uses a variety of c1 and c2 PSO acceleration parameters and 

constraints (CB, CH2O, TE, CH, CMH) to maximise OEDF whilst meeting a target OH. Within the 

range OH=1,468L to 13,044L, results show that as the target hydrogen generation increases, 

the use of PSO to optimise the PMS has less (relative) impact on improving electrolyser duty 

factor. Furthermore, there exist no clear combination of values for c1 and c2 which provide 

the best solution. This highlights the need to also consider the choice of acceleration 

parameters when using PSO to optimise hydrogen energy systems, something which has not 

been adequately tested in the published literature. The acceleration parameters also have a 

significant impact on the optimisation time under Operational Objective Function-2 as shown 

in Figure 4.7b. It is noted that PSO also results in two “negative improvements” for some 

combinations of c1/c2 at OH=13,044L (at c1/c2=0.5/1 and 1.5/1). Examination of the raw 

data in these two cases reveals the PSO algorithm had met the stopping criteria (30 iterations 

without any change to Gbest). By relaxing the stopping criteria, at the expense of optimisation 

time, this should be overcome, even though it appears the two stopping criteria used in this 

study suffices for all other cases tested. 
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Figure 4.7 - The effects of size of (target) hydrogen production and choice of PSO 

acceleration parameters (c1 and c2) on (a) electrolyser duty factor and (b) time needed to 

arrive at PSO optimised solution for Operational Objective Function-2. 
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Optimisation for load demand: Operational Objective Function-3 uses different 

combinations of c1 and c2 to seek out the solution which minimises the Loss of Load time 

(TLOL) within the constraints (CB, CH2O, TE, CH and CMH). The incorporation of some battery 

storage allows for greater renewable energy penetration resulting in longer periods in which a 

PEM electrolyser can operate resulting in more hydrogen generated necessary for PEM fuel 

cell use. Figure 4.8a shows the starting Loss of Load for the entire stand-alone system when 

governed by a non-optimised PMS and compares this to a PSO optimised PMS in Figure 

4.8b. Figure 4.8c also highlights the impact of maximum hydrogen storage (CH) on the Loss 

of Load time. With higher hydrogen storage capacity, the PEM fuel cell has the potential to 

run for longer periods of time even when there is insufficient solar energy to replenish 

hydrogen reserves. This results in an increase in the hydrogen energy systems’ ability to meet 

the external load and is evident across most battery capacities tested, particularly at lower 

scale. An example of the gains of using PSO, is the reduction (at CB=0-27Ah, CH=125L) of 

TLOL from around 21,000 minutes over the season (132,480 minutes) to around 9,000 

minutes. These gains mean the total time over which the system does not meet the seasonal 

load (at CB=0-27Ah, CH=125L) is more than halved from 15.8% to 6.8%. 
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Figure 4.8 - The effects of size of hydrogen storage capacity and battery scale on Total Loss 

of Load given a (a) Non-optimised PMS, (b) PSO optimised PMS for Operational Objective 

Function-3. 
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Whilst reducing the Loss of Load is the primary outcome derived from Operational Objective 

Function-3, it also aims to maximise system component performance through the 

minimisation of PEM device start-stops and likely (conceptual) transients such as the number 

of start-stops of the PEM fuel cell whilst satisfying an external load (total kWh). The number 

of PEM fuel cell start-stops at a variety of battery and maximum hydrogen capacity intervals 

is also analysed at this condition (CB=0-27Ah, CH=125L), shown in Figure 4.9. Careful 

examination of the data shows in the case of the non-optimised PMS, battery-less (0Ah) 

operation results in about 205 start-stops of the fuel cell (Figure 4.9a) compared to an 

improvement to 173 start-stops when using PSO (Figure 4.9b). Therefore, using a PSO 

optimised PMS positively impacts the number of start-stops experienced by the PEM fuel cell 

through a 15.6% reduction. However, results also show that as battery capacity increases this 

effect of PSO diminishes. This is because as TLOL approaches zero meaning all the load is 

met, the number of PEM fuel cell start-stops becomes more dependent on the external electric 

load profile, rather than the choice of parameters (CB, CH2O, TE, CH, CMH) which govern the 

solution (X). 
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Figure 4.9 - The effects of size of hydrogen storage capacity and battery scale on the number 

of PEM fuel cell start-stops given a (a) Non-optimised PMS, (b) PSO optimised PMS for 

Operational Objective Function-3. 
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Figure 4.10 presents the PEM fuel cell duty factor at varying battery capacity and maximum 

hydrogen storage intervals. The number of PEM fuel cell start-stops and Loss of Load 

directly influence the duty factor of the fuel cell. Results indicate that allowing PSO to 

optimise the PMS generally allows the system to minimise Total Loss of Load but also 

maximises the PEM duty factor (Figure 4.10b) compared to a Power Management Strategy 

with pre-set control points (Figure 4.10a). Overall, Figure 4.10 also indicates that when 

battery scale is decreased, the use of PSO to optimise a PMS has more (relatively) greater 

impact resulting in a higher percentage increase in PEM duty factor. This highlights that 

implementing an optimisation to a Power Management Strategy further identifies the 

significance in smaller scale systems to best utilise available solar irradiance to meet an 

external load and limit the cyclic behaviour of PEM devices. 
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Figure 4.10 - The effects of size of hydrogen storage capacity and battery scale on the PEM 

fuel cell duty factor given a (a) Non-optimised PMS, (b) PSO optimised PMS for Operational 

Objective Function-3. 
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4.5 - Conclusions 
The effects of using PSO to size some of the components and optimise the PMS for a stand-

alone hydrogen system have been tested and analysed using three objectives. Simulations and 

the implementation of the PSO algorithm are done at one minute resolved solar irradiance 

data for an Australian winter period (August, June and July) and conducted using 

MATLAB/Simulink. The research conducted compares optimisation with PSO to that using a 

rule-based equivalent system in which control set points are predefined.  The main outcomes 

may be summarised as: 

• Using PSO to optimise the Power Management Strategy results in greater hydrogen 

yield from electrolysis and an improved PEM electrolyser duty factor. These 

improvements in electrolysis appear more pronounced as the systems scale (battery 

storage capacity, targeted hydrogen generation per season) is reduced. 

• The likely performance gains to a PEM fuel cell, in terms of start-stops, also appears 

to improve with the use of PSO to size the system and optimise the Power 

Management Strategy. 

• The use of PSO in the optimisation of stand-alone hydrogen energy systems, 

particularly at the scale investigated in this chapter, appears to yield significant 

reductions in Loss of Load time. 

• To achieve the above, there needs to be a careful selection of the PSO acceleration 

parameters, c1 and c2, as well as the stopping criteria for the optimisation algorithm. 

All these factors can affect not only the solution attained (gains from using PSO), but 

also the time needed to arrive at the solution. 
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Chapter 5. Multi-Objective Optimisation of Renewably 
Powered Hybridised Energy Systems with Desalination  

Daniel P. Clarke*, Yasir M. Al-Abdeli and Ganesh Kothapalli 

This chapter was is currently under review as a full research paper in Energy. Whilst all 

efforts were made to retain the original features of this article, minor changes such as the 

layout, number formats, font size and style were implemented in order to maintain 

consistency in the formatting style of the thesis. 

5.1 - Abstract 
The optimisation, sizing and techno-economic assessment of stand-alone renewable energy 

systems affects not only the likelihood of deployment but also their reliability to supply 

electricity and potable water where needed. Very little work has been done earlier into the 

effects of integrating water desalination alongside meeting load demand. Moreover, the 

impact of intelligent techniques, in this context, against more established software tools has 

not been applied. In this chapter, Particle Swarm Optimisation (PSO) is compared to 

HOMER for the simultaneous optimisation of size and Power Management Strategy (PMS) 

in stand-alone hybrid energy systems. These systems incorporate significant relative water 

load met by reverse osmosis. Multi-objective functions in PSO minimise Total Net Present 

Cost (NPC) (includes capital, maintenance and replacement costs over a 25 year system 

lifetime) and lifetime CO2 emissions whilst meeting these two loads. Results are analysed and 

compared for the conditions of dynamic (15 minute resolved) versus static water demand in 

addition to meeting varying electric loads. The PSO algorithm is implemented using 

MATLAB/Simulink and compared to a similar overall configuration developed in HOMER 

to meet the same loads (electric, water). 

Results show using PSO achieves systems having lower NPC compared to HOMER, with the 

margin of improvement more pronounced in greater scale systems as water storage capacity 

and electrical load increase. Additionally, having a time-varying water profile negatively 

effects system performance by increasing NPC and CO2 emissions compared to a static water 

profile.  
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5.2 - Introduction 

With connection to the electrical grid very costly for remote locations, renewable energy is 

increasingly being integrated into stand-alone energy systems to reduce reliance on diesel 

power generation. Renewables (such as solar and wind) remain attractive as perpetual and 

secure long-term energy sources. As such, they are an excellent candidate for stand-alone 

power generation at reduced or negligible operational emissions [1].  However, renewable 

sources are highly stochastic and experience seasonal fluctuations [2]. Thus energy storage 

devices such as batteries and hydrogen are often used in stand-alone (hybrid) energy systems 

[3-6]. Energy storage is essential where there exists a mismatch between external electrical 

loads and the availability of renewables, and facilitates overall system operation by 

smoothing out load fluctuations [6] and improving operational characteristics [7].  

Effective sizing of hybridised energy systems is necessary to achieve objectives such as 

meeting external load demand or reducing lifetime CO2 footprint, whilst operating at the 

lowest energy cost ($/kWhr) [8, 9]. The sizing of such systems commonly relies on 

“simplistically” matching peak demand with the maximum rated capacity of system 

components [10, 11]. However, this approach has the likely outcome that systems are 

oversized which yields more costly solutions to meet a given electric load profile. More 

elaborate techniques attempt to optimise sizing through numerical methods, which can be 

iterative or probabilistic as well as based on genetic algorithms, fuzzy logic or neural 

networks [3, 8, 12-18]. Within this scope, Particle Swarm Optimisation (PSO) is an 

intelligent optimisation technique with many advantages such as fewer tuneable parameters 

and less dependence on the set of initial conditions, compared to some of the other intelligent 

techniques [19-21]. Additionally, the use of PSO has been shown to reduce environmental 

impact over a systems lifetime by reducing CO2 emissions [22]. Software tools such as 

HOMER (Hybrid Optimisation Model for Electric Renewables) developed by the National 

Renewable Energy Laboratory, NREL-USA) have also been applied to allow techno-

economic sizing of micro-power hybrid systems [23-25] and are freely available [26]. 

However, whilst such software tools are accompanied with excellent Graphical User 

Interfaces (GUI’s), they are largely used as “black boxes” with some limited ability to 

parameterise. They are also not self-adaptive nor capable of accounting for device transients 

such as start-up time or control set points (e.g. storage capacity thresholds), both of which 

affects system performance. 
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In relation to the optimisation of hydrogen systems, published literature largely focusses on 

the use of pre-defined (static) Power Management Strategies (PMS) [8, 12, 27-29] even when 

other intelligent methods have been used [16]. This occurs despite system-level inputs 

(renewables) are highly intermittent and outputs (electric load demand) also fluctuate. An 

effective PMS is critical in hybridised systems as both the reliability of meeting external 

loads as well as system performance are affected by the PMS architecture and the control set-

points within it [30-32]. Specifically, an optimised PMS can result in reduced payback time 

[22], improved system reliability at the smallest total infrastructure cost [33-39], and 

reductions to the cost of energy ($/kWhr) over the system lifetime [35, 40]. However, both 

the sizing of stand-alone energy systems and optimisation of their PMS typically needs to 

consider not only single objectives, such as minimising Net Present Cost (NPC), but multiple 

objectives which are economic, environmental or a combination of these three [41-43]. In this 

regard, multi-objective optimisation has targeted minimising the cost of energy by using 

different storage technologies [44], total hardware costs over the system’s lifetime [29, 45] 

and operational emissions [46, 47], even though much of this research still encompasses 

diesel generation. Little research has been done to apply multi-objective optimisation to the 

PMS in renewably powered hybridised (hydrogen) energy systems designed to meet both 

electric load and desalinated water demand. Such elaborate optimisations are also beyond the 

scope of software tools such as HOMER because unlike PSO, such tools do not incorporate 

the dynamic characteristics of hardware components which is necessary to give system 

simulations the necessary realism as conditions fluctuate through the day. 

Furthermore, few studies have attempted to compare the resulting performance gains when 

using PSO, in a multi-objective context to optimise both the Power Management Strategy 

(PMS) and component size, against widely adopted software optimisation tools such as 

HOMER. This type of research is worthwhile because for much lower levels of complexity 

(single objective function optimisations), the use of PSO compared to HOMER can decrease 

dependence on diesel generators by 10%, attain a lower NPC [39] and yield cost of energy 

improvements [48]. However, these earlier works have not accounted for the dynamic (time-

resolved) operational characteristics of energy system components, have not considered 

systems which also sustain (small-scale) stand-alone desalination systems and have also 

overlooked the need to consider environmental impact (CO2 emissions). This can be 

addressed through multi-objective optimisations like those covered by the present study. 
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This chapter extends our preliminary work whereby PSO was used to optimise Power 

Management Strategies with only single objectives [32]. In the present research, optimisation 

of both energy system (component) sizing and the PMS is done for multiple objective 

functions, and then compared to HOMER. The stand-alone energy system considered in the 

present study is completely powered by renewables and must meet two external loads: (i) 

power generation (kWhr) and (ii) desalinated water generation (litres). The two objective 

functions used to guide the optimisation are: (i) minimising total Net Present Cost (NPC, $) 

and (ii) CO2 emissions (kg/kWhr over a lifetime). The present research also studies the 

effects of dynamic, versus static, water demand as well as varying the scale of electric load 

and water storage capacity. A secondary aim of this research is to also study the effects of 

Power Management optimisations on device cyclability. The PSO algorithm is implemented 

using MATLAB/Simulink (v.8.3) and the simulations are performed on a desktop PC having 

an Intel i3 processor. The reader is referred to our earlier work for details of the PSO 

methodology [32] which uses the optimised acceleration parameters c1=1.5 and c2=1. Many 

of the energy system components, featuring in the simulations, have already been 

experimentally resolved through our earlier works [7, 49]. Renewable data profiles for a 

specific coastal location (Geraldton, Western Australia) [50], having an abundant supply of 

salt water for Reverse Osmosis (RO), are utilised throughout. 

5.3 - Methodology 

Figure 5.1 presents the structure of the hybrid energy system which forms the focus of this 

study20. Table 5.1 lists typical component data used in the simulations (cost components) for 

PV panels21, PEM fuel cell(s), PEM electrolyser(s), DC/DC converter(s), metal hydride 

canister(s) [51] as well as lead-acid batteries [52], reverse osmosis unit(s) [53] and water 

storage tank(s) [54] with their associated CO2 emission rate (kg CO2-eq/kWhr) [46, 55]. This 

data is specified per single unit, but the number of hardware units is derived through the 

optimisation22. 

20 Refer to Appendix D for Chapter 5 system MATLAB/Simulink model. 
21 Refer to Appendix D for PV panel model. 
22 Refer to Appendix C for error analysis methods. 
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Figure 5.1 - Stand-alone hybrid energy system incorporating three distinct sub-systems: (i) 

electrical, (ii) hydrogen and (iii) desalination. The DC/DC converter is included within the 

PMU bundle. 
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Table 5.1 - Stand-alone hybridised energy system components. Cost components and 

emissions shown have been integrated into the simulations. 

HS - PL135 (0.13kW
, 0.8m

2 ), Heckert Solar - Germany

Nexa 1200, Ballard Power Systems - Canada

DC/DC Converter

PV Panels

PEM
 Fuel Cell

PEM
 Electrolyser

M
etal Hydride

$2,500/kW
$0.02/hr/kW

500 start-stops 
or 5,000 Hrs

0.02

$7,000/kW
$6,000/kW

$20/year
20 Years 

0.045

0.011

$2,000/kW
$1,500/kW

$20/year
5 Years

0.011

$730 - $2,852
$0.05/kL

20 Years
0.149

Gunt RO CE530 (1.1kW
,42L/hr), Germany

$4,500
$900

$900
5 Years

Replacement       
Cost           
(R

1 )

Operation &
 

M
aintenance 
(O&

M
1 )

Lifetime (L)
Emissions 

(kgCO
2 /kW

hr) 
(R

i,C
O

2 )

0.149

$750/kW
$8/year

15 Years
0

$113/Bat
$1.13/Bat/year

265kW
hr

0.028

$1,200/kg
$15/kg/year

20 Years

Reverse Osmosis

W
ater Storage

Component Type
Component M

odel
Capital Cost         

(C
1 )

Various, 2kL-20kL
$730 - $2,852

$800/kW

$133/Bat

$1,300/kg

$3,000/kW

NM
H2 - 500 (0.025kW

, 30SLH
2 /hr), DBS - Italy 

85G555B-NPT (500 SLH
2 ), Ovonic - Germany

SBV 12-55 (12V, 55Ah), Banner - Germany

Nexa DC1200, Heliocentris - Germany

Lead-Acid Battery
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Electrical sub-system: This is responsible for converting solar energy to supply both the 

electrical load demand and other energy system components. Short-term energy storage 

(lead-acid batteries) are used for meeting daily demands while long-term storage (hydrogen) 

helps supplement battery capacity when seasonal or daily solar energy fluctuations mean 

short-term storage is insufficient to supply loads. Lead-acid batteries are used in the present 

research because of their lower capital costs compared to alternative technologies such as 

nickel-cadmium and Li-Ion [56]. Figure 5.2 shows the normalised daily variation of power 

and water demand as well as solar irradiance over a year. Although the values plotted show 

daily totals, this is derived using 15 minute resolved data which itself is used in the 

simulations. In these simulations, both external power and water demand is also scaled 

(up/down) to help analyse the effects of scalability. Cumulative power demand is scaled such 

that averaged daily demand over an entire year is at three levels (1.5, 2.5 and 3.5 kWhr/day). 

Although the annual water required is kept fixed at 146kL/yr, the simulation also consider the 

impact of assuming a uniformly distributed equivalent daily rate (400 litres/day over 365 

days) versus a time-varying water profile as depicted in Figure 5.2. Furthermore, to satisfy 

this external water demand, the required power is approximately 3 to 6 times that of the 

external electric load. 
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Figure 5.2 - Normalised daily variation of electricity demand, incident solar irradiance [45] 

and water demand over 365 days. The cumulative daily (normalised) profile of power and 

water, is scaled to yield 1.5, 2.5 or 3.5 kWhr/day over a year in addition to 400 litres/day, 

respectively. 

Desalination sub-system: This incorporates RO units plus water storage tanks designated 

through their max storage capacity (H2Omax) and is responsible for supplying potable 

(drinking) water as well as electrolysis, whereby water is deionised using non-power 

consuming static cartridges. The values for H2Omax are either 2kL or 20kL in the simulations. 

Whilst many desalination techniques exist (multistage flash, vapour compression and electro 

dialysis [57]), RO is chosen because it is the most commonly integrated (non-thermal) 

desalination technique in renewable energy systems [15, 58-60]. Reverse Osmosis has lower 

energy consumption, low installation costs, minimal use of treatment chemicals and low 

maintenance compared to other desalination technologies [59-63]. To accurately model the 

AC powered Reverse Osmosis unit a series of tests were undertaken to resolve its power 

consumption characteristics for different levels of salinity, temperature and feed water 

pressure. Power characteristics were acquired with the help of an AC Power Data Logger 

(model: Clamp on Power HiTester 3169, make: Hioki-Japan). Figure 5.3 shows the 

experimental set-up used and some of the data acquired. Results showed that although RO 

performance is affected by feed water temperature, salinity and pump pressure, feed water 
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pressure has a more significant impact on the instantaneous power consumption and permeate 

(desalinated water) flow rate, compared to temperature. As feed water salinity and 

temperature decrease, both permeate flow rate and power increase. In the simulations 

undertaken, the supply of saline (sea) water is considered unlimited (Total Dissolved Salt, 

TDS = 2.69%), RO is operated at a pressure of 55bar with varying daily temperature taken 

into consideration. The simulations monitor the amount of desalinated water produced, stored 

and amounts withdrawn for consumption (drinking, electrolysis). 
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Figure 5.3 - a) Testing set-up of Reverse Osmosis unit (Gunt CE-350, 1.1kW, 42L/hr) and the 

power meter used to derive specific energy consumption (inset); b) device characteristics at 

varying feed water temperature and salinity as well as pumping pressure. 

123 
 



Hydrogen sub-system: This includes PEM electrolysers, PEM fuel cells and metal hydride 

storage (Table 5.1). Our earlier laboratory based testing showed the PEM electrolyser 

modelled has a start-up time of 5 minutes [7] which has also been integrated when simulating 

electrolyser operation. The PEM fuel cell supplies the external electric load during periods 

where solar irradiance is insufficient. Hydrogen storage is necessary to guarantee sufficient 

reserves of hydrogen fuel for use if solar irradiance is insufficient and achieved via hydride 

canisters each having a peak storage pressure of 10bar (to match the PEM electrolysers’ 

output pressure). Further details on the operational characteristics of these devices is reported 

elsewhere [7, 32, 49]. 

Sizing methods: Two sizing techniques are used in this study so as to provide a comparison 

between adaptive techniques (Particle Swarm Optimisation) and a (deterministic) rule-based 

software tool (HOMER). Both optimisation techniques consider the left most bracketed term 

in Equation 5.1 comprising of the number of PV panels (NPV), number of PEM fuel cell 

modules (NFC), number of RO units (NRO), number of PEM electrolysers (NElect), number of 

metal hydride canisters (NH), quantity of Lead-Acid batteries (NB) and maximum water 

storage capacity (H2Omax) to achieve an optimal solution subject to the objective function(s): 

Device capacities have already been presented in Table 5.1. The HOMER solution seeks an 

optimised system configuration (number of component units) for a given (software pre-set) 

PMS. Alternatively, an intelligent method such as PSO optimises the PMS as well as the 

scale of system by adaptively converging on the best control set points which regulate the 

operation of each component. While electrical demand takes priority over water generation, 

these set points allow the system to change this priority when reserves of desalinated water 

reach a lower threshold. In this case, under low electrical demand and high renewable energy 

availability, excess energy is diverted to water production rather than charging batteries or 

hydrogen canisters. 

𝑋𝑋 = 𝑓𝑓𝑓𝑓�𝑁𝑁𝑃𝑃𝑃𝑃 ,𝑁𝑁𝐹𝐹𝐹𝐹 ,𝑁𝑁𝑅𝑅𝑅𝑅 ,𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑁𝑁𝐻𝐻 ,𝑁𝑁𝐵𝐵,𝐻𝐻2𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚], [𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐶𝐶𝐻𝐻2𝑂𝑂 (𝑃𝑃𝑃𝑃),𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐻𝐻2𝑂𝑂 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏),𝐶𝐶𝑀𝑀𝑀𝑀� Equ. 5.1 
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Table 5.2 - Upper and lower bounds of the decision variables used by HOMER and those 

used to guide the Particle Swarm Optimisation of the PMS. 

The second bracketed term of Equation 5.1 gives the five control set points (decision 

variables) that only PSO is able to integrate and adapt to find an optimal solution. Between 

the two optimisation methods (HOMER and PSO), it is this aspect of the PMS optimisation 

which differs between them. The starting PMS (successively optimised by PSO) is depicted 

in Figure 5.4 whereas HOMER looks at the available dispatchable power sources and 

assumes their operation in a manner which produces the required power most cheaply. 

Although the comparative analyses in this chapter are derived for this (starting) PMS, the aim 

is to demonstrate the benefits/challenges of using PSO versus HOMER. As such, any other 

PMS should also be possible to implement. Table 5.2 presents the different parameters used 

by the PSO optimisation algorithm and HOMER.  The (starting) “initial conditions” during 

the first iteration of PSO assume water, battery and hydrogen storage State-of-Charge are at 

100%. The value of (TElect) sets the duration of continuous solar-PV power needed before the 

electrolyser is operated to ensure the device is not unnecessarily cycled, bearing in mind its 

transient characteristics [7]. Prolonging (TElect) means less hydrogen produced over any time-

step. Any energy not used to generate desalinated water is diverted to power the PEM 

Decision Variable Lower Bound Upper Bound

NPV 1 15
NFC 0 3
NRO 1 3
NElect 0 5
NH 0 10
NB 0 20

H2Omax (L) 2,000 20,000
TElect (minutes) 15 60

CH2O (PV) (% of max) 0 1
CBmin (% of max) 0 1

CH2O (batt) (% of max) 0 1
CMH (% of max) 0 1
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electrolyser(s). To govern whether RO is operated by solar-PV or battery storage, two control 

set points are defined as CH2O (PV) and CH2O (batt), respectively. The use of (CH2O (PV)) defines 

the min percentage (of maximum desalinated water storage capacity) to ensure both 

electrolysis and potable water needs can be met over any time-step. If the water reserve falls 

below this threshold, desalination of potable water takes priority over hydrogen generation 

but if more solar-PV energy exists (after RO) then hydrogen is produced. When water storage 

and hydrogen capacity are at their maximum, surplus energy is used to charge batteries. Once 

the battery State-of-Charge reaches SOC=100%, any power not utilised to operate RO units 

or PEM electrolysers is then dumped and deemed an excess. The (CBmin) defines the 

minimum battery discharge capacity whilst (CH2O (batt)) stipulates the minimum threshold 

water tank level (litres) before battery power is used for water generation. Due to the 

detrimental effects associated with PEM fuel cell technology [64, 65], effective battery 

utilisation through the use control set-points in the PMS is crucial in maximising PEM fuel 

cell performance by reducing the number of start-stop cycles. Lastly, (CMH) determines the 

minimum metal hydride storage charge below which electrolysis is reactivated to top-up 

canisters. This decreases the number of start-stop cycles for the PEM electrolyser whenever 

the hydrogen reserve falls below 100%. If hydrogen capacity is above the minimum threshold 

and insufficient surplus power exists to generate water, this surplus is used to charge 

batteries.  
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Figure 5.4 - Power Management Strategy (PMS) for the stand-alone hybrid energy system. 

The dashed box indicates the part of the PMS that enables the system to meet two load 

demands (electric and water). 
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Both HOMER and PSO consider a Load Following Control Method whereby battery 

charging is only allowed from renewables (e.g. solar) and not through other forms of power 

generation (e.g. fuel cell). HOMER deploys a PMS set by the software’s in-built algorithms, 

whereby at each simulation time step (in this study,15 minutes) the software looks at all 

available dispatchable power sources and operates primary movers which meet the required 

amount of power and operating reserve most cheaply ($/kWhr). This “optimisation” is 

obviously subject to only a single objective function; cost of energy ($/kWhr). However, in a 

PSO optimised PMS, specific control set points within the PMS can be tuned such that device 

hardware transients and storage thresholds (battery, hydrogen and desalinated water) are also 

taken into consideration.  

Objective Functions: The system includes two types of power demand: primary 

instantaneous loads and deferrable loads. A deferrable load can be met at any stage of the 

day, is not fixed to a specific time (hh:mm), and applied by HOMER when treating 

desalination. The optimisations done by PSO have been implemented to analyse the impact of 

two types of water demand: an instantaneous and dynamically changing demand (15 minute 

intervals) versus a single (static) value spread throughout the day. Both the deferrable and 

instantaneous water demand consider a cumulative requirement of 400 litres/day applied 

across 365 days, but with it fluctuating over every 15 minute time-step (dynamic) or fixed 

(static). An instantaneous water demand obviously needs to be met within the present time-

step regardless of irradiance, whereas HOMERs’ treatment of deferrable loads means it is 

met more conveniently over any period of the day when surplus renewables exist. The effects 

of these two approaches are analysed. 

When deriving the optimal cost of energy ($/kWhr), the Net Present Cost (NPC) of the 

modelled energy system is the only objective function considered by HOMER. NPC takes 

into account the initial capital costs, component replacement costs as well as component 

operation and maintenance costs. Alternatively, multi-objective optimisation through PSO 

additionally considers minimising the associated CO2 emissions over the system lifetime. The 

method of calculating the carbon emissions for the operation of any device (kg/kWhr) is 

based on Life Cycle Assessment (LCA). These CO2 emissions are derived on a pro-rata basis 

using two inputs: the total CO2 emissions (kg) over the entire lifetime of any single energy 

system component which are then proportioned per year (e.g., 120 kg for an electrolyser over 

5 years which yields 24 kg/yr); and the maximum expected operational hours for any single 
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component until its replacement (e.g., 10950 kWhr for an electrolyser over 5 years). The 

resulting (kg/kWhr) is then used in conjunction with the actual usage (kWhr) for each device. 

Table 5.1 shows the values for these associated financial costs and emissions for each 

component in addition to their respective lifetimes. The operational objective function for 

total NPC is derived in Equation 5.3: 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 =  � 𝐶𝐶𝑖𝑖 + 𝑅𝑅𝑖𝑖 + 𝑂𝑂&𝑀𝑀𝑖𝑖
𝑖𝑖=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

− 𝑆𝑆𝑖𝑖   Equ. 5.2 

The terms of Equation 5.2 - 5.4 denote the total annualised cost (Cann, tot), the applicable 

interest rate (iR), a project lifetime of 25 years (Rproj), the capacity recovery factor (CRF) and 

the annual cost of CO2 emissions (CCO2). The annualised cost is comprised of capital cost 

(Ci), replacement cost (Ri), salvage value (Si), operational and maintenance cost (O&Mi) for 

each component (i). The component (i) designates either a PV panel, Reverse Osmosis (RO) 

unit, PEM electrolyser, PEM fuel cell, metal hydride canister, converter or Lead-Acid 

battery. The gravimetric cost penalty for carbon emissions (CCO2) associated with the systems 

is derived in Equation 5.5: 

𝐶𝐶𝐶𝐶𝐶𝐶2 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2�𝐸𝐸𝑖𝑖 × 𝑅𝑅𝑖𝑖,𝐶𝐶𝐶𝐶2�  Equ. 5.5 

In this regard, (CPCO2) is the monetary cost of CO2 ($24.15/ton of CO2), (Ei) is the annual 

system component power consumption/utilisation (kWhr) and (Ri, CO2) is the specific CO2 

emission rate (per kWhr) associated with each system component (Table 5.1). The specific 

CO2 emissions rate is obtained using Life Cycle Assessment (LCA) which considers 

emissions over the component life including direct and indirect emissions. Direct emissions 

are associated with component construction, operation and decommissioning whereas indirect 

emissions are derived from manufacturing and transport of materials [61]. It is important that 

the emission rate (kg CO2/kWhr installed) includes utilised energy and excess energy as this 

directly impacts the NPC and CO2 emissions over the system lifetime [16]. Cost of energy 

(COE) is the average cost per kWh of useful electrical power (not including dumped surplus) 

produced by the system. To calculate the COE, the annualised cost of producing electricity 

𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶𝐶𝐶𝐶𝐶2
𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑅𝑅 ,𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 Equ. 5.3 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑖𝑖,𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� =
𝑖𝑖𝑅𝑅(1 + 𝑖𝑖𝑅𝑅)𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(1 + 𝑖𝑖𝑅𝑅)𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 1
  

Equ. 5.4 
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(the total annualised cost) is divided by the total electric energy produced and utilised to meet 

load. The COE is derived as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑡𝑡𝑡𝑡 +  𝐶𝐶𝐶𝐶𝐶𝐶2

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑒𝑒𝑒𝑒
  Equ. 5.6 

Terms of Equation 5.6 denote cost of energy (COE) in ($/kWhr), total annualised system cost 

(Cann, tot) in ($), electrical load served (Eload, served) in (kWhr/yr) and water load served (Wload, 

served) in (kWhr/yr). 

Optimisation Constraints: In any plausible solution, a set of constraints (common to both 

PSO and HOMER) need to be satisfied: 

i. Unmet Load Constraint: Over any time-step (15 minutes), the total power supplied 

by the stand-alone energy system must satisfy both load demands (direct electrical 

power and indirect power necessary for desalination) so as to achieve a certain supply 

reliability criterion. The reliability criteria affects component sizing/selection, energy 

cost ($/kWhr) and total emissions (CO2 kg/year). Designing stand-alone systems for 

100% power supply reliability can result in very high system costs because under 

such criteria even short duration peak demands must be met even if the likelihood for 

them to occur is rare. Therefore, a compromise is needed to allow high reliabilities 

for meeting power but at slightly lower constraints in relation to the occurrence of 

peaks (e.g. 98±0.25% reliability). In this manner, the majority of the load demand is 

met but with a smaller associated cost. This relation can be represented by Equation 

5.7. 

𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿  ≥  (1 − 𝑈𝑈𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   Equ. 5.7 

The terms of Equation 5.7 denote actual load served (TLOL, kWhr/yr), total load 

demand to be served (Tannual, kWhr) and the maximum permissible unmet load (ULoad, 

%). In this study, optimisations consider a maximum ULoad of 2%, i.e.  98% of the 

load demand is met for any solution to satisfy the operational objective function(s). 

ULoad is defined as the difference between total load that must be satisfied (kWhr/yr) 

to achieve 100% (water and electricity) and actual load met (kWhr). 
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ii. Design Variable Constraint: To limit the solution space, any plausible solutions, 

must also fall within pre-designated limits to the variable (X) (Equation 5.1) as 

designated by Equation 5.8 and presented in Table 5.2: 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  ≤  𝑋𝑋 ≤  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  Equ. 5.8 

5.4 - Results and Discussion 

Figure 5.5 shows the Net Present Cost ($) over the 25 year system lifetime for both 

optimisation techniques (HOMER and PSO). The NPC is derived for both daily static (Figure 

5.5a) time-varying (Figure 5.5b) desalinated water profiles, both of which total 400 litres/day 

and are 15 minute resolved. Results indicate that PSO almost consistently achieves system 

sizing at much lower NPC compared to HOMER. This trend is maintained over different 

electrical loads (1.5, 2.5 and 3.5 kWhr/day/yr) and desalinated water storage capacity (which 

sets upper limits on the operational time for RO). Overall, the results show that NPC 

calculated using HOMER can sometimes be around double that derived from PSO which has 

the propensity to significantly affect the type/size of system configuration developed and 

techno-economic feasibility. This is also apparent in the Cost of Energy (COE) which is 

directly related to NPC, yielding greater cost ($/kWhr) with an increase in NPC. These cost 

savings based on PSO optimised systems however become even more apparent at greater 

water storage capacities or if varying water demand is assumed. The results also indicate that 

system sizing done assuming a constant (averaged) water demand, which has typically been 

followed in the published literature [12, 53], is likely to yield different outcomes compared to 

more realistic (dynamically) changing daily water requirements, even when the total 

(cumulative) annual demand remains the same (e.g. 400 litres/day over 365 days/yr). As 

such, the present research highlights that in relation to stand-alone desalination systems, 

modelling should incorporate the intricacies of daily demand if more accurate system sizing 

and techno-economic feasibility are desired. Another notable observation is the apparent 

immunity of PSO to whether static or dynamic water demand is used. This is attributed to the 

adaptive nature of PSO.  
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Figure 5.5 - Net Present Cost using two optimisation techniques (HOMER and PSO) at 

varying annually averaged electrical demand for; a) static; b) time-varying daily desalinated 

water demand. 
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Table 5.3 - The optimal number of system hardware components (HOMER and PSO) at 

varying annually averaged electrical demand for a static and time-varying desalinated water 

profiles. 

In order to provide high reliability of meeting loads, energy storage is a critical component of 

stand-alone systems. In this regard, battery throughput (kWhr) is a performance measure and 

defined as the total amount of energy that cycles through the battery bank, whether in 

charging or discharge mode. Battery throughput can also be used to determine operational 

lifetime [68]. Figure 5.6 shows the annual battery throughput for systems optimised via 

HOMER and PSO, using static (Figure 5.6a) and time-varying (Figure 5.6b) desalinated 

water profiles. The data for varying electrical load demand and desalinated water storage 

capacity is also shown. Results show a higher battery throughput in a PSO optimised system 

across all water storage capacities and electric loads compared to HOMER. Whilst greater 

electric loads result in an expected increase battery throughput, the more surprising finding is 

that increased water storage capacity has no distinct effect on battery throughput when using 

PSO while a general decrease is seen with HOMER. With battery charging solely occurring 

from renewables (solar-PV), these battery throughput results also highlight PSO’s ability to 

maintain comparable load reliability, but for a smaller solar-PV array size (kW). Table 5.3 

provides the data to support these arguments whereby it is seen that for instances where PSO 

and HOMER have comparable battery numbers (e.g. dynamic load data for 1.5-3.5 

kWhr/day), the number of PV panels selected by HOMER is significantly more at 52 panels 

against 29-48 via PSO. The significance of this variation becomes more apparent when based 

on data in Table 5.1, the capital cost of PV is around $7,000/kW which yields a unit cost of 

1.5 10 2 - 20 52 1 4 1 2 1
2.5 10 2 - 20 52 1 7 1 2 1
3.5 10 2 - 20 56 1 10 1 2 1
1.5 10 2 - 20 52 1 15 1 2 1
2.5 10 2 - 20 52 1 18 1 2 1
3.5 10 2 - 20 52 1 20 1 2 1
1.5 10 2 - 20 26 1 14 1 1 1
2.5 10 2 - 20 35 1 19 1 2 1
3.5 10 2 - 20 42 1 20 1 1 1
1.5 10 2 - 20 29 1 17 1 1 1
2.5 10 2 - 20 38 1 20 1 1 1
3.5 10 2 - 20 48 1 19 1 1 1

Optimised System Size
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around $910/panel (at 0.13 kW/panel and panels of 0.8m2). This demonstrates more effective 

energy management and sizing through PSO optimised systems. Furthermore, the results 

derived indicate that HOMER increases the solar-PV array size resulting in less battery 

throughput (with water storage capacity). Alternatively, for (12V, 55Ah) batteries the cost is 

$113/battery. Hence, it is clearer why PSO optimised systems have lower NPC. 
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Figure 5.6 - Annual battery throughput using two optimisation techniques (HOMER and 

PSO) at varying annually averaged electrical demand for a) static; b) time-varying 

desalinated water profiles. 
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Detrimental effects are associated with cyclic operation of PEM fuel cells [64]. Attaining the 

same operational output, but over more start-stop cycles (i.e. a smaller duty factor), will 

indirectly affect the NPC in the long-term through more frequent replacements or service 

stoppages. The duty factor can be defined as kilowatt hours supplied (applicable for the PEM 

fuel cell) or litres of hydrogen generated (applicable for the PEM electrolyser) per total 

number of start-stop cycles of each device, respectively. Figures 5.7 and 5.8 show duty 

factors plotted for optimisations derived based on HOMER and PSO at varying electrical 

demand and water storage capacity (2kL and 20kL). Whilst, the same level of change is not 

always reflected in HOMER, the PSO optimised system does appear to have a significantly 

different duty factor, but which also changes proportionally with electric load. For fuel cells, 

the results show that PSO optimisations can yield duty factors which are 34% (Figure 5.7b) to 

61% (Figure 5.7a) lower compared to duty factors from HOMER (at 3.5kWhr/day). In this 

regard, it is worth noting that such differences may be a factor of the varied system 

architectures selected by HOMER and PSO (Table 5.3) as well as the power served by the 

fuel cell. As for electrolysers, the results appear slightly more varied with duty factor with 

PSO likely to exceed those of HOMER (at 3.5kWhr/day, Figure 5.8a), but are generally 

lower.  These results therefore highlight that a consequential effect of using PSO is to change 

the duty factors but which improve with scale. Finally, it is worth noting that although the 

total usage of the PEM fuel cell appears fairly low (kWhr values depicted in Figure 5.7), this 

value is a function of the daily usage assumed (1.5-3.5kWhr/day/yr), electric load profiles 

and availability of renewables. With greater electric loads and lower renewables penetration, 

total PEM fuel cell usage (kWhr) is expected to increase. 
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Figure 5.7 - Annual PEM fuel cell duty factor: a) 2kL water storage; b) 20kL water storage 

capacity. Results are at annually averaged electrical demand (1.5 to 3.5 kWhr/day) for a time-

varying desalinated water profile using HOMER and PSO. Additionally, total annual power 

generated by the PEM fuel cell (kWhr/yr) are given for each case. 
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Figure 5.8 - Annual PEM electrolyser duty factor: a) 2kL water storage; b) 20kL water 

storage capacity. Results are at annually averaged electrical demand (1.5 to 3.5 kWhr/day) for 

a time-varying desalinated water profile using HOMER and PSO. Additionally, total annual 

hydrogen generated (litres/yr) are given for each case. 
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Table 5.4 shows CO2 emissions (kg/yr) associated with HOMER and PSO optimised systems 

for time-varying water demand profiles at different electrical load demand and desalinated 

water storage capacities. Results highlight the anticipated greater amounts of CO2 footprint 

with increased electric demand, since system components are involved with greater usage 

(kWhr/yr). In the PSO optimised system, the PMS assigns a lower CH2O (PV) threshold (% of 

maximum desalinated water storage capacity). The consequence is that the RO unit is in 

operation only when water reserves fall below this condition. However, the RO unit does not 

operate beyond the maximum desalinated water capacity (H2Omax). With greater water 

storage capacity (H2Omax), the value assigned by PSO to CH2O (PV) is adjusted such that RO 

does not have to operate as often. Although the lower and upper bounds for CH2O (PV)  are 

given as 0 and 1, respectively (Table 5.2), for a water storage capacity of 20kL (electric load 

1.5kWhr/day), the value of CH2O (PV)  is 58 % which is equivalent to supplying 8,400 litres to 

the water load before RO is needed to operate (if initial water storage capacity is 100%). 

Alternatively, at 2kL (electric load 1.5kWhr/day), the value of CH2O (PV)  is 14 % or supplying 

1,720 litres to the water load before needing the RO to operate (if initial water storage 

capacity is 100%). The potential to supply more water volume (approximately 4.8 times) 

from the bigger tank before the RO is needed results in less CO2 emissions associated with 

water desalination for a water storage capacity of 20kL compared to 2kL. Table 5.4 also 

identifies that RO and solar-PV contribute a higher portion of CO2 emissions compared with 

any other system components. Whilst these arguments explain why the CO2 emissions 

associated with maintaining adequate capacity in a 20kL tank appear generally lower than 

emissions for the 2kL desalinated water capacity, such an outcome may not always eventuate 

for other starting conditions. This particular outcome of the research may be an end result of 

the fact both tanks (2kL and 20kL) were assumed full at the first time instant in the 

simulations. Had both tanks been at partial capacity, more work (RO) might have been 

needed to bring the 20kL tank back to full capacity. Additionally, it appears that for the 

starting conditions considered, the adaptive PSO algorithm yielded CH2O (PV)  values at 58% 

and 14% for the 20kL and 2kL desalinated water tanks, respectively. As such, for a specific 

single water volume draw-off from the tank (litres), it is expected the 2kL tank reaches its 

minimum allowed level (CH2O (batt)) much earlier than the 20kL tank. In this case, the outcome 

would be the need to restart RO much earlier (or more frequently) with a 2kL tank. As such, 

this aspect of the comparison may require further research to see the effects if CH2O (PV) values 

selected had been the same. 
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Table 5.4 - The breakdown of CO2 emissions for each hardware component using HOMER 

and PSO. Results are for a dynamic desalinated water profile. 

Data  in Table 5.3 has already indicated that PSO optimised systems over the range 2-20kL 

(dynamic water profiles) show on average fewer solar-PV panels due to greater reliance on 

battery throughput compared to HOMER (Figure 5.6). Whilst battery CO2 emissions are less 

in HOMER optimised systems (Table 5.4), in the majority of the cases studied, the PSO 

optimised system appears to have lower CO2 emissions associated with other system 

components. This results in PSO achieving mostly lower total system CO2 emissions 

compared to HOMER across different electrical load and water storage capacities. However, 

these effects become relatively more pronounced as electrical load is decreased or for greater 

water storage capacity which is interesting. This highlights the adaptive nature of PSO by 

effectively sizing and optimising the PMS achieving lower solar-PV array resulting in much 

lower NPC and CO2 emissions compared to HOMER. It also highlights the need for more 

research into the effects of optimising and sizing stand-alone energy systems when 

desalination via RO is integrated. 

2 20 2 20
PEM Fuel Cell 0.36 0.04 0.00 0.00
PEM Electrolyser 3.06 0.09 0.01 0.02
Lead-acid Batteries 30.04 7.59 30.12 20.82
PV Panels 409.77 774.00 342.16 334.89
RO unit 531.53 524.89 468.51 421.10

975 1,307 841 777
PEM Fuel Cell 0.32 0.04 0.05 0.02
PEM Electrolyser 1.88 0.18 0.04 0.02
Lead-acid Batteries 34.33 12.85 49.03 46.26
PV Panels 455.31 819.54 455.61 452.73
RO unit 531.65 526.32 479.28 453.47

1,023 1,359 984 953
PEM Fuel Cell 0.40 0.06 0.49 0.33
PEM Electrolyser 2.26 0.32 0.23 0.18
Lead-acid Batteries 37.63 18.28 66.14 66.32
PV Panels 500.81 819.54 574.05 521.25
RO unit 531.65 522.92 469.94 473.79

1,073 1,361 1,111 1,062

Total CO2 Emissions (kg/yr)

3.5

Total CO2 Emissions (kg/yr)

1.5

Total CO2 Emissions (kg/yr)

2.5

Water Storage Capacity (kL) Water Storage Capacity (kL)
Electric Load

(kWhr/day)

Annualised CO2 

Emissions 
(kg/yr)

HOMER PSO
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5.5 - Conclusions 

PSO and HOMER have been compared when simultaneously sizing and optimising the 

control set-points in the PMS of a stand-alone hybrid energy system. Whilst the HOMER 

optimisations have used only NPC, the custom developed PSO model uses multi-objectives 

which include both Net Present Cost and CO2 emissions. Simulations and the implementation 

of the PSO algorithm is done at fifteen minute resolution for an assumed system lifetime of 

25 years. The research conducted compares optimisations with PSO to a system developed to 

meet an equivalent load in HOMER over different scales of electrical load demand and 

desalinated water storage capacity (static water profiles compared to time-varying for equal 

annual totals). Whilst few works have undertaken comparisons between intelligent techniques 

(such as PSO) and commonly used software tools in stand-alone system optimisations (e.g. 

HOMER), the present work also applies both techniques to energy systems incorporating 

desalination.  

Under the conditions and hardware characteristics tested, the main outcomes may be 

summarised as: 

• Using PSO to optimise the sizing and the Power Management Strategy results in 

lower Net Present Cost compared to HOMER. These improvements (up to half at 

3.5kWhr/day) in NPC appear more pronounced as the systems scale (water storage 

capacity, electrical load demand) is increased; 

• In order to provide accurate system sizing and techno-economic analyses, modelling 

of stand-alone hybrid energy systems should incorporate intricacies in load demands 

(electric and water);  

• A smaller solar-PV array is needed in PSO optimised systems through reliance on 

greater battery throughput which results in more effective energy management and 

sizing compared to HOMER; 

• Using PSO improves the cost performance of stand-alone hybrid energy systems, 

particularly at the scale investigated in this chapter and generally appears to yield 

significant decreases in NPC and CO2 emissions compared to HOMER.  

While each of these outcomes impacts the cost effective design and operation of stand-alone 

hybrid energy systems, there is still more opportunity to further our understanding of the 
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factors affecting the optimisation of stand-alone (hybrid) energy systems that integrate on-site 

desalination. Factors to investigate include the integration of different energy storage 

technologies into these systems, using combinations of different prime movers (diesel 

generator sets and/or wind turbines) and testing the optimisation for sensitivity to different 

starting conditions for water capacity, metal hydride level or battery State-of-Charge. 
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Chapter 6. General Discussion 

For many small off-grid communities in Australia, access to potable water is limited as is the 

availability of electricity from renewable energy sources. Solar or wind provide an 

opportunity to utilise small-scale renewably powered energy systems to help supply power 

and to operate desalination systems. However, many factors in stand-alone energy systems 

directly impact upon operational characteristics that affect performance as well as the ability 

to meet load demands, including renewables and load (electricity, water) prediction, system 

optimisation and energy system component selection. For this reason, the thesis addressed 4 

key research questions pertaining to the factors influencing stand-alone renewable energy 

system performance. 

Research Question 1 (RQ 1): How is the overall performance of solar-PV energy systems 

affected when accounting for dynamic device transients?  

The first step in this research was to establish time-resolved characteristics for system 

components, with Reverse Osmosis and the PEM electrolyser being major challenges. With 

water being a critical aspect of the system, as it contributes to drinking requirements and 

water for electrolysis, characteristics for time-varying versus nominal power profiles are 

compared for a renewably powered Reverse Osmosis (RO) unit. From the analysis in Chapter 

2, simulations identified that using a (dynamic) RO power profile significantly decreases 

annual total desalinated water yield by approximately 76% for a 1m2 solar-PV array 

compared to nominal I-V characteristics. These effects became less pronounced for solar-

PV/RO systems with higher PV conversion capacity (e.g., per metre square of panels) as the 

decrease in total desalinated water yield is only about 4%. With the dynamic RO unit as the 

only source of water, this deficiency in total desalinated water output, negatively impacted 

upon system performance in terms of both meeting water demand and hydrogen generation. 

Combined with RO device characteristics, the start-up transient of the PEM electrolyser must 

be accounted for in system models and simulations. Chapter 3 experimentally derived the 

start-up transient of the PEM electrolyser to be approximately 275 seconds before useful 

hydrogen is generated. For a stand-alone renewable power system utilising hydrogen as an 

energy source, the transient puts a constraint on the ability to utilise the electrolyser every 

time it is started and the amounts of hydrogen that can be produced. As such, a Power 

Management Strategy (PMS) was needed to ensure that only when available power levels 
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were sufficient to maintain the PEM electrolyser for greater than the start-up transient, will 

the device be activated. Failure to stipulate the activation time of the PEM electrolyser results 

in unnecessarily cycling the device thus causing energy expenditure without hydrogen 

generation where the system would be better served by charging batteries or powering the RO 

unit. Overall, time-resolved power characteristics of system components, particularly Reverse 

Osmosis (RO) units and PEM electrolysers, are important and should be incorporated when 

analysing system performance rather than merely using power derived from nominal (time-

averaged) I-V specifications. This provided accurate system simulations based on real 

conditions thus allowing correct sizing of stand-alone systems to successfully satisfy load 

demands.  

Research Question 2 (RQ 2): Can the incorporation of (intelligent/adaptive) predictive 

software tools significantly improve the performance of these energy systems, compared to 

non-predictive (simplistic) energy balancing techniques? 

Within stand-alone solar-PV energy systems, the prediction of solar irradiance was crucial for 

deploying effective resource management through Power Management Strategies aimed at 

satisfying system objectives. Due to the highly stochastic nature of solar irradiance, to 

estimate the power generated by the PV-array (the energy input into the entire system), the 

magnitudes and time-series for solar energy data should be based on irradiance 

measurements. However, because those deploying new stand-alone energy systems in remote 

locations might not always have access to measured solar irradiance, predictions are needed 

to correctly size these systems.  

Chapter 3 analysed an intelligent method (Neural Network) for solar irradiance prediction by 

comparing it to a simplistic alternative (ASHRAE clear sky model). The comparison was 

analysed in terms of the prediction methods impact on the hydrogen energy systems 

operational characteristics. Whilst, the ASHRAE clear sky model has the merit of being a 

mathematical model with (some) empirically refined constants used to predict solar 

irradiance, it has the distinct disadvantage of not being able to predict the generally stochastic 

nature of solar irradiance. Whereas Neural Network (NN) requires very large amounts of 

(historical) training data to successfully predict the fluctuations (minute resolved) in solar 

irradiance. It was found that, through the use of particular historical meteorological data (i.e. 

rainfall), predictions can become more accurate. However, the choice of meteorological data 
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to be used is important as rainfall increases accuracy of prediction in winter but has no effect 

in summer (where rainfall is limited), for non-tropical parts of Western Australia. 

The use of intelligent predictive techniques to account for the power needed to run a 

hydrogen generation system results in more subtle inaccuracies in relation to some 

characteristics such as electrolyser operational time compared to simplistic alternatives. 

However, the impact becomes more pronounced on device-level operational characteristics 

for the PEM electrolyser. Based on a system using measured solar irradiance, a Neural 

Network allows for a higher prediction accuracy of the number of start/stops and the duty 

factor of a PEM electrolyser compared to ASHRAE. The ASHRAE model’s inability to 

accurately follow the stochastic nature of the solar irradiance results in a higher duty factor 

while having fewer start-stops compared to Neural Network. While ASHRAE affects system 

performance positively, when benchmarked against a system using measured solar irradiance, 

Neural Network was superior in predicting system performance. The solar irradiance 

prediction techniques also have varying influence depending on season. The ability to predict 

accurate levels of solar irradiance becomes important in winter (where irradiance were both 

low and fluctuating) and less in summer (where irradiance were both higher and more stable). 

This indicates when establishing techno-economic analysis targeted at stand-alone hydrogen 

generation systems, intelligent predictive techniques such as Neural Network should be used.  

Research Question 3 (RQ 3): Can the use of (intelligent/adaptive) optimisation software 

tools improve system performance when meeting single and multi-objective functions 

compared to a more widely adopted technique?  

To ascertain the impact that intelligent optimisation has on system performance, it is 

compared to rule-based alternatives for various system objectives. Based on factors 

influencing system performance such as device transients, scalability and prediction of 

available solar irradiance, the implementation of optimisation techniques is essential for 

providing effective sizing and operation of hybridised energy systems. For the purpose of 

implementing intelligent optimisation techniques into stand-alone solar-PV energy systems, 

Particle Swarm Optimisation (PSO) was selected as it can be easily implemented into system 

simulations with fewer tuneable parameters. However, it was found that acceleration 

parameters associated with PSO need to be determined for each scenario so that results 

obtained are consistently optimised. Chapter 4 provides an analysis pertaining to multiple 

single-objective functions which include optimising a system’s Power Management Strategy 
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to maximise device duty factors and hydrogen yield as well as reliably meeting the external 

electric load.  

In regard to hydrogen generation, the research undertaken indicates that using PSO, to 

optimise the control set-points in the PMS, allows the system to generate more hydrogen 

compared to a rule-based optimised Power Management Strategy. Increases of up to 7% in 

hydrogen yield and a 12% increase in the PEM electrolyser duty factor are achieved with 

PSO compared to simplistic techniques. Using intelligent techniques allows the optimised 

Power Management Strategy to deliver more hydrogen for fewer electrolyser start-stop 

cycles. For the scale of system investigated in Chapter 4, using PSO to optimise a PMS has a 

greater impact on PEM electrolyser duty factor (up to 80% for a lower quantity target of 

hydrogen) when meeting a specified seasonal hydrogen generation target.  

Furthermore, in order to meet an electric load demand, solar-PV systems must have an 

additional source of energy to supply demand in periods of insufficient solar irradiance. With 

this in mind, the incorporation of some battery and hydrogen storage allows for greater 

renewable energy penetration and thus longer periods in which a PEM electrolyser can 

operate to generate more hydrogen for PEM fuel cell use. With higher hydrogen storage 

capacity, the PEM fuel cell was able to run for longer periods even when there was 

insufficient solar energy to replenish hydrogen reserves. The improvements in the system’s 

ability to meet an external electric load demand, when using PSO, mean the total time over 

which the system does not meet the seasonal load was more than halved from 15.8% to 6.8% 

(Chapter 4). While a load demand is generally considered to be a power profile, communities 

at remote locations often also need desalinated water for consumption, hence multi-objective 

functions are necessary.  

Chapter 5 further extended the analysis of using PSO through simultaneously optimising size 

and the Power Management Strategy. Optimisations are based on techno-economic and 

environmental objective functions while meeting external electric and water demand profiles. 

PSO outputs are then compared to those for a well-known optimisation program (HOMER). 

Additionally, the type of water demand (static vs time-varying) is analysed to ascertain the 

impact on system performance.  Results showed that PSO almost consistently achieves lower 

system sizing at much lower Net Present Cost (NPC) compared to HOMER over different 

electrical loads (1.5, 2.5 and 3.5 kWhr/day/yr) and desalinated water storage capacities. 

These positive improvements in NPC show the superiority of using intelligent optimisation 
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techniques compared to simplistic alternatives. The disadvantage occurred in an increase of 

13% in CO2 emissions using PSO, even though a 50% decrease in NPC is evident compared 

to HOMER. Also, having a time-varying water demand profile negatively affects system 

performance, resulting in increases in NPC, CO2 emissions and PEM device operational 

characteristics compared to a static profile. However, PSO was less susceptible to type of 

water demand probably because of its adaptive nature. This highlights the adaptive nature of 

PSO by achieving a much lower NPC compared to HOMER but a balance, between the 

economic and environmental aspects of sizing stand-alone hybrid energy systems, was 

necessary when implementing multi-objective functions. 

Research Question 4 (RQ 4): How does scalability affect energy systems incorporating 

desalination, solar-PV and hydrogen fuel cells/storage? 

In the context of this thesis, the effect of scalability analyses on, the impact of increasing 

energy storage (e.g. batteries and water storage capacity), size of the solar-PV array as well as 

scale of external load demands (electric and water) on system performance is very important. 

The role of desalinated water storage becomes essential with stand-alone solar-PV energy 

systems which have to generate water on-site. Chapter 2 showed that increasing the solar-PV 

size positively impacts upon system performance by allowing greater operational periods for 

the RO unit as well as maintaining battery State-of-Charge at 100% for longer. Storing excess 

renewable energy (via batteries) has a greater impact on the performance of smaller systems 

compared to larger ones by allowing devices such as RO and PEM electrolysers to run for 

extended periods thus resulting in higher duty factors, as evident in Chapters 2 to 4. Through 

having greater battery and water storage capacity, better renewable energy penetration is 

attained resulting in an increase in reliability, water and hydrogen yield. Any excess energy 

beyond hydrogen generation or charging of batteries is diverted to water production which 

acts as a useful dump load for supplying the PEM electrolyser and external water demands.  

The work presented in Chapter 5 enabled the analysis of increasing load demand and its 

effect on system performance in relation to Net Present Cost (NPC) and carbon emissions at 

varying water storage capacities. Simulations revealed, negative improvements in carbon 

emissions and NPC occur with greater system size when greater electric load was increased. 

For a PSO optimised system, NPC and CO2 emissions rise by approximately 77% and 57%, 

respectively as electric load is increased, for a water storage capacity of 2kL. However, for 

greater water storage capacity (20kL) the NPC and CO2 emissions only increase by 45% and 
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59%, respectively. Having larger water storage capacity allows energy otherwise utilised for 

RO to be diverted to hydrogen generation and charging of batteries thus maximising the 

system’s ability to meet load demands. Increasing energy storage capacity (i.e. batteries and 

indirectly water storage) has a positive influence on the system’s performance. However, 

optimisation is necessary so that external load demands are met at minimum cost. 

Overall, this research has analysed many factors influencing stand-alone solar-PV energy 

systems for both power generation and the provision of desalinated water the incorporation of 

a Reverse Osmosis unit. Such systems have received little attention within current literature, 

with the provision of suitable water for drinking and hydrogen generation through water 

electrolysis, these systems are becoming more important in remote communities. The results 

of this research show that modelling of stand-alone solar-PV energy systems should account 

for the intricacies of daily demand profiles as well as dynamic device characteristics if more 

accurate system sizing and techno-economic feasibility are desired. While the system 

investigated was limited to only solar-PV providing the input power, the methodologies 

developed in this thesis can be easily adapted to systems incorporating multiple renewable 

energy sources (i.e. solar and wind).  
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Chapter 7. Conclusion and Future work 

7.1 - Findings 

This thesis has largely focused on the methodologies that affect stand-alone solar-PV systems 

incorporating desalination. Through a combination of mathematical models and experiments, 

a full system was developed in MATLAB/Simulink to address the research questions derived 

in Chapter 1. The solar radiation data incorporated in this work are specific to a non-tropical 

Western Australian location and the assumed cost factors of system components are 

consistent with present literature values. The developed models are used to evaluate factors 

influencing stand-alone solar-PV systems including the incorporation of dynamic device 

transients, minute resolved system simulations as well as applying predictive and 

optimisation techniques for various system objectives.  

This thesis evaluates three solar-PV systems through simulated models with each succeeding 

system being an extension of the previous architecture. These are: 

1. A stand-alone solar-PV desalination system (Figure 1.3a), responsible for providing 

potable water via renewables through the use of a Reverse Osmosis device; 

2. Through the addition of a PEM electrolyser to the architecture of Figure 1.3a, a stand-

alone solar hydrogen generation subsystem is formed responsible for producing 

hydrogen and potable water from on-site desalination; and  

3. Finally, integrating a fuel cell into the architecture of 1.3b, a full stand-alone solar-PV 

hydrogen energy system is created (Figure 1.3c) responsible for generating power and 

desalinated water. 

For many small off-grid communities in Australia, access to potable water are limited as are 

the availability of power generated from renewable energy sources. For this reason, the stand-

alone solar-PV energy system explored in this thesis are beneficial for remote communities as 

it is able to generate power as well as potable water making these communities more self-

reliant. Solar photovoltaics are a suitable choice for many remote areas in Australia as solar 

irradiance is plentiful. As a result, the current dependence on diesel power generation in such 

communities would be alleviated reducing carbon emissions and thus having a more positive 

environmental impact. However, in a stand-alone solar-PV hydrogen energy system 

incorporating Reverse Osmosis, having not enough potable water means the amount of 
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hydrogen that can be generated as well as the time in which the fuel cell can be operated is 

reduced. This shows maintaining the subsystems as shown in Figure 1.3 (i.e. water 

production, hydrogen and power generation) is critical for system operation as each 

subsystem makes use of the other.  

As the stand-alone energy system is dependent on the devices deployed, establishing dynamic 

(time-resolved) characteristics for the system components are important with battery, Reverse 

Osmosis and the PEM electrolyser being the major challenge. With water being a critical 

aspect of the system, characteristics for time-varying versus nominal power profile are 

compared for a renewably powered Reverse Osmosis (RO) unit. According to the research 

conducted, using nominal I-V curves results in an overestimation of desalinated water 

production with minute resolved simulations able to capture dynamic behaviour better than 

hourly resolution. Furthermore, seasonal variations in water generation occurs with less water 

produced in winter (lower solar irradiance) compared to summer and this highlights the 

importance of energy storage. 

Secondly, with the inclusion of a PEM electrolyser having a start-up transient, the effect of 

solar energy prediction and battery capacity on the operational characteristics of a solar-PV 

powered hydrogen generation system was explored. The simulations conducted utilised two 

specific methods of irradiance prediction (ASHRAE clear sky model and Neural Networks) 

which were benchmarked against measured irradiance data for Geraldton (Western 

Australia). The research identified that using a simplistic solar prediction technique 

(ASHRAE clear sky) produces larger relative errors in energy availability than Neural 

Networks when compared to measured irradiance data. Additionally, Neural Networks were 

able to predict fluctuations better than ASHRAE model across two seasons (Australian 

summer and winter). Using a Neural Network, particularly to predict solar irradiance input, 

yielded more accurate operational characteristics and hydrogen yield compared to ASHRAE. 

The thesis also explored the validity of applying Particle Swarm Optimisation (PSO) to size 

analyses and optimisation of stand-alone solar-PV hydrogen energy systems. Allowing PSO 

to adjust the system’s Power Management Strategy (PMS) results in improvements in system 

operational characteristics compared to using simplistic rule-based design methods. 

Additionally, PSO is compared to HOMER for the simultaneous optimisation of system size 

and PMS. Both Total Net Present Cost (NPC) and carbon emissions were considered whilst 

meeting two external loads (electricity and desalinated water generation). Using PSO with 
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stand-alone hybrid energy systems achieved systems having a significantly lower NPC 

compared to HOMER but at a cost of a small increase in associated CO2 emissions, with the 

margin of improvement more pronounced when water storage capacity and electrical load are 

increased. Additionally, having a time-varying water profile negatively affects system 

performance by increasing NPC and CO2 emissions compared to a static profile.  

Lastly, the research on the effect of scalability focussed on the impact, of increasing energy 

storage (e.g. batteries and water storage capacity), size of the solar-PV array and the type and 

scale of external load demand (electric and water), on system performance. Increasing the 

solar-PV size positively impacts upon system performance by allowing greater periods when 

an electrolyser and RO unit can operate and maintaining battery State-of-Charge at 100% for 

longer. Storing excess renewable energy (via batteries) has greater impact on the performance 

of smaller systems compared to larger ones with increasing electric load demand. Through 

having greater battery or water storage capacity, better renewable energy penetration was 

attained resulting in increased reliability, water and hydrogen yield. Any excess energy, 

beyond hydrogen generation or charging of batteries, is diverted to water production thus 

acting as a useful dump load for supplying the PEM electrolyser and external water demands. 

While increasing the scale of components has a positive impact on system operational 

characteristics, it has a detrimental effect on the techno-economic viability when sizing stand-

alone energy systems.  

7.2 - Future Work 

While each of the aspects analysed in this thesis has contributed to knowledge aiding the 

design of accurate, reliable, cost effective stand-alone solar-PV energy systems, there is still 

more room for further development of this research to further improve such systems. For 

example: 

• With device-level characteristics playing a major role in the performance of stand-

alone energy systems, future work should incorporate the dynamic transients of 

different types of devices. Based on a library of dynamic models of possible system 

components, a tool can be developed for sizing a stand-alone energy system that is 

most cost effective and suitable to the desired application. 

• Within stand-alone renewable energy systems, energy storage remains a critical 

component for ensuring that high system reliability. Further work is warranted into 
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the integration of energy storage with particular focus on limiting amounts of excess 

energy whilst at low systems costs. Additionally, storage device characteristics are of 

importance which relates to start-up as well as charging and discharging 

characteristics.  A potential storage mechanism, that could be further modelled, is the 

Superconducting Magnetic Energy Storage unit (SMES). 

• A complete life cycle assessment to determine the most cost effective system 

configuration of stand-alone solar energy systems, incorporating reverse osmosis for 

the provision of energy and water. This would extend to comparing different types of 

configurations to achieve the same objective. 

• Seasonal variation in load demands and renewable energy availability means systems 

must be correctly sized to ensure system reliability. The ability to predict solar 

irradiance and load demand (i.e. water and power) presents the opportunity to analyse 

an adaptive Power Management Strategy (PMS) compared to a static PMS.  

• Lastly, the construction of a laboratory-scale, stand-alone solar-PV energy system 

would be of considerable interest, to validate simulation results for a variety of 

scenarios. This would offer a means of testing the integration of intelligent techniques 

into a pilot system and adaptive system control. 
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Appendix C - Error Analysis 

In regards to this thesis, all experimental work there is a possibility of experimental error. 

Experimental measurements always have uncertainties that are referred to as errors. As a 

result, the value of any experimentally measured value will deviate from its true (nominal) 

value. It is of the utmost importance to be able to estimate how big the difference between 

these two values to determine the validity of such experiments. 

Experimental errors can be classified either as Systematic Errors or Random Errors.  

Systematic errors are errors associated with measurement instruments or techniques that 

produce consistent errors, e.g. an improperly calibrated Total Dissolved Salts (TDS) meter. 

Table 8.1 shows the uncertainties in data acquisition devices used in this thesis.  Errors in 

reading a measurement may also produce systematic errors.  Avoiding these systematic errors 

depends on the skill of the observer to detect and prevent or correct them by being consistent.  

Data Acquisition Unit Accuracy 

Hioki Power Data Logger ±2% 

CompactRIO ±0.5% 

Hydrogen Generator Monitor ±5% 

CyberScan CON 10 Cond/TDS meter ±1% 

Table 8.1 – Accuracies of experimental measurement equipment. 

Random errors are from unknown or unpredictable events in during an experiment.  Random 

errors are just as likely to produce a result that is too large as they are likely to produce one 

that is too low.  These errors are sometimes beyond the control of the observer with likely 

causes being fluctuations in temperature, piston position of the Reverse Osmosis unit or 

estimates of measurement readings by the observer. To minimise the effect of random errors, 

multiple trails or measurements and averaging the results are taken so that the random 

fluctuations become statistically insignificant.   
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This thesis uses three methods of accounting for errors. These are: 

1) Average (Mean) Value: The experimental measurements or system simulations in 
this thesis are repeated several times, and it is unlikely that identical results will be 
obtained for all trials.  For a set of measurements the true value is most probably 
given by the average or mean value.  The average or mean value <x> of a set of n 
measurements is 

 <x> = 
n

xxx n+++ ...21 = ∑
=

n

i
ix

n 1

1  
Equ. C1 

As all experiments were conducted multiple times, the errors are reduced by taking 
the mean value.       

2) Difference: The error is defined as the difference between your measured value and 
the "nominal" value. 
 Error = (Measured Value) – (Accepted Value) Equ. C2 
This type of error analysis suited the comparisons of the number of start-stop cycles 
of PEM devices.     

3) Percentage Error: The percent error (relative error) is of much greater significance 
than the actual difference between the observed value and the accepted value.  The 
percent error of an experimental value is  

  

Percent error = (
valueaccepted

Error ) ×100% Equ. C3 

If the percent error is >0, the measurement is greater than the accepted value.  If it is 
<0, then the measurement is less than the accepted value. This error analysis can be 
seen in Figure 3.6.   
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Figure 8.1 – Reverse Osmosis current profile. Sampled at 10ms. 

For example, when reading real-time voltages and current to determine device transients to 
incorporate into a MATLAB/Simulink model, the digital values are continuously fluctuating 
in steady state.  Based the error analyse using averaged values and the uncertainties of 
measurement devices, Figure 8.1 shows the Reverse Osmosis unit current profile of Chapter 
2 with errors. Due to determining the dynamic transients of system devices, the data is 
sampled as low as possible to capture all fluctuations in the profile. As a result, applying error 
bars would make plots congested and not easily read so plots throughout thesis depict the 
average value of experiments. 
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Appendix D - System Modelling 

The technical details for system components used for the modelling of a stand-alone solar 
hydrogen system in this thesis are given below. However, for full details, manuals and the 
MATLAB/Simulink system coding for the system covered in each chapter of this thesis, 
please refer to attached CD. 

D-1 - Solar-PV modules 

 

Table 8.2 - Solar module technical specifications. 

  

Parameter Value

PMAX 130WP

TREF(reference temperature) 25°C

TCELL(normal operating cell temperature) 48.2°C

ISC(short circuit current) 8.33A

IR(reverse current feed) 15A

IMP(current at max load) 7.85A

UOC(open circuit voltage) 21.56V

UMP(voltage at max load) 17.2V

µIsc( Temperature coefficient ISC) 0.05%K-1

µUoc( Temperature coefficient UOC) -0.34%K-1

µpupp(performance coefficient) -0.45%K-1

Ŋ(efficiency) 13.61%

Efficiency 13.61%
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D-2 - Power Management Unit 

 

Table 8.3 - Power Management Unit (PMU) technical specifications. 

  

Parameter Value

Modes 3

Mode 1 Automatic without PC

Mode 2
Automatic with PC(user can monitor and 

change parameters)

Mode 3 HG30 (manual hydrogen generator mode)

Data Communication Ethernet/Serial

Solar Battery Generator MS300-S01

NBatBank(supported battery bank) 2

ICHARGE(max charging current) 30A

VOUT(output voltages) 2x 12VDC/1x 230VAC

Programmable Logic Controller Beckhoff BC9000

Measurements 3x 50A Shunts

IPV(photovoltaic module current) Varying

IBatCHARGE(battery charge current) Varying

LLOADS(parasitic loads fuel cell) Varying
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D-3 - Battery 

 

Table 8.4 - Battery technical specifications. 

D-4 - Reverse Osmosis Unit 

 

Table 8.5 - Katadyn Reverse Osmosis unit technical specifications. 

 

Table 8.6 - Gunt Reverse Osmosis unit technical specifications. 

 

Parameter Value

Battery 2x Banner Standby Bull

VBAT(battery voltage) 12VDC

CBAT(battery capacity) 55Ah (@C=20hrs.)

Type
Lead Acid AGM(Absorbed 

Glass Mats)

Parameter Value

IRO(operating current) 4A/3A

VRO(operating voltage) 12VDC/24VDC

QFEED(feed water flow rate) 56L/hr.

QW(rate of water production) 5.6L/hr.(@13.8VDC)

PBR(pump pressure) 800 psi

Pump type Rotary/Reciprocating

Parameter Value

IRO(operating current) 5.2A

VRO(operating voltage) 230V/50Hz

QFEED(feed water flow rate) 425L/hr.

QW(rate of water production) 108L/hr(maximum)

PBR(pump pressure) 120 bar

Pump type Piston
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D-5 - Hydrogen Generator 

 

Table 8.7 - PEM electrolyser and Metal Hydride storage technical specifications. 

D-6 - Fuel Cell 

 

Table 8.8 - PEM Fuel Cell technical specifications. 

  

Parameter Value

Hydrogen input Max 17 bar

Hydrogen out 0-17 bar

Solenoid valve control signal 12V

Pressure Relief Valve 25 bar

Stop valve Manual

Type Metal Hydride Storage

Storage capacity Max 3x 760 SL

Discharge rate 3x 5.5 SL/min

Filling pressure 10-17 bar

Parameter Value

Rated Output 1200W

Operating Voltage 22-50V

Rated Voltage 26V

Power consumption during start 60W

Hydrogen flow meter ±1.5% of final value
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Appendix E - Neural Networks 

An Artificial Neural Network23 (ANN) is a computer model that takes inspiration from the 

way biological systems, such as the brain, process information. It is composed of a large 

number of interconnected elements, called neurons, working to solve specific problems. 

However, in order for ANNs to solve problems they need a set of training data that it uses to 

learn relationships between inputs and outputs.  An ANN must be trained and configured for 

a specific application, such as pattern recognition or data classification, through a learning 

process. 

 ANNs have many advantages over traditional (e.g. statistical analysis) methods of 

modelling. These advantages include but not limited to:  

1. Adaptive: An ability to learn how to do tasks based on the data given for training.  

2. Self-Organisation: An ANN can create its own organisation or representation of the 

information it receives during learning time.  

3. Real Time Operation: ANN computations can be carried out in parallel. 

While ANNs have numerous applications, in regard to this thesis an ANN was used for the 

prediction of solar irradiance. As solar irradiance like many environmental conditions (e.g. 

temperature, rainfall, wind speed etc.) are time-series, feedforward Neural Networks are the 

most widely used to forecast this data due to its straightforwardness as found through the 

literature review conducted in Chapter 3. However, while feedforward networks are 

worthwhile for static time-series data, inaccuracy occurs in more complex stochastic data 

such as solar irradiance. This complexity arises due to season, location, cloud cover etc. In 

this regard, recurrent networks are networks with one or more cycles that apply to time series 

data and that use outputs of network units at time t as input to other units at time t+1 are more 

23 Further Neural Network theory can be obtained from: 

[1] White H. Artificial Neural Networks: Approximation and Learning Theory: Blackwell 

Publishers, Inc.; 1992. 
[2] Reed RD, Marks RJ. Neural Smithing: Supervised Learning in Feedforward Artificial Neural 

Networks: MIT Press; 1998. 

[3] Vidyasagar M. A Theory of Learning and Generalization: Springer-Verlag New York, 

Inc.; 2002. 
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suitable. However, the main disadvantage of such a network lies in their difficulty to train as 

large amounts of historical data must be used. 

As meteorological datasets (i.e. solar irradiance, rainfall etc.) are season dependant, a NARX 

(Nonlinear autoregressive with external input) network, as shown in Figure 8-2, was utilised 

because it is able to predict one time series given past values of the same time series. 

 

Figure 8.2 - NARX (Non-linear autoregressive with external input) network. 

A Nonlinear AutoRegressive network with eXogenous inputs (NARX) is a type of recurrent 

dynamic network which is commonly used in time-series modelling and uses a feedback 

process to self-iterate. The defining equation for the NARX model is given below in Equation 

2, whereby the output signal y(t) is regressed on previous (historical) values of the output 

signal and previous values of an independent (exogenous) input signal u(t): 

𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … . ,𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�,𝑢𝑢(𝑡𝑡 − 1),𝑢𝑢(𝑡𝑡 − 2), … . ,𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢)) Equ. E1 

 

 

 

 

 

 

Appendix F - Particle Swarm Optimisation 

In particle swarm optimization, simple software agents, called particles, move in the search 

space of an optimization problem. The position of a particle represents a candidate solution to 
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the optimization problem at hand. Each particle searches for better positions in the search 

space by changing its velocity according to rules originally inspired by behavioural models of 

bird flocking. 

The PSO algorithm starts by generating random positions for the particles, within an 

initialization region. Velocities are usually initialized within a region but they can also be 

initialized to zero or to small random values to prevent particles from leaving the search 

space during the first iterations. During the main loop of the algorithm, the velocities and 

positions of the particles are iteratively updated until a stopping criterion is met. 

Where 𝑉𝑉𝑡𝑡𝑘𝑘 is the possible dimension for i particles with position (Xi
k) and velocity (Vi

k), the 

individual best position of particle I (Pbest), the global best position (Gbest), inertia weight (w) 

which controls how much of the particles previous velocity (speed which particle moves in 

the search space) is retained, iteration number (k) for a total of n iterations, non-negative 

acceleration factors (C1 and C2), random numbers (R1 and R2) in the range of [0, 1] and a 

constriction factor (K) which controls the velocity magnitude. The cognitive acceleration 

constant (c1) controlling how much the particle heads towards its personal best position. The 

social acceleration constant (c2) which controls the tendency that the particle heads towards 

the global best position. The acceleration parameters of the PSO algorithm are selected based 

on a “grid search” method whereby each parameter (c1 and c2) are changed in intervals of 

0.5 to a maximum of 2.  

The optimisation technique used within this research is Particle Swarm Optimisation (PSO). 

PSO is not available in MATLAB tools, thus the PSO algorithm had to be developed and 

adapted to optimise the stand-alone renewable energy system. The PSO algorithm is based 

upon previous MATLAB PSO coding24 and modified for maximum performance for the 

stand-alone energy systems explored in this thesis. For the PSO algorithm coding as well as 

values for the system configuration, please refer to the attached CD. 

 

24 Ebbesen, S., Kiwitz, P. and Guzzella, L. "A Generic Particle Swarm Optimization Matlab 
Function", 2012 American Control Conference, Proceedings of the, June 27-29, Montreal, 
Canada, pp. 1514-1524 

𝑉𝑉𝑡𝑡𝑘𝑘+1 = 𝐾𝐾(𝑉𝑉𝑖𝑖𝑘𝑘 × 𝑤𝑤 + 𝑐𝑐1 × 𝑅𝑅1 × �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖) − 𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑐𝑐2 × 𝑅𝑅2 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖𝑘𝑘�) Equ. F1 
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Appendix G - Datasets  

This thesis utilised the following datasets for simulations: 

1. Solar Irradiance; 

2. Wind Speed; 

3. Rainfall; 

4. Electric load demand profile; and 

5. Water load demand (consumption) profile 

Due to the resolution of the data used (i.e. 1 minute) over an entire year/s, please refer to 

attached CD for the full datasets.  
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