301 research outputs found

    Hardware architecture of an SVD based MIMO OFDM channel estimator

    Get PDF

    MAC and baseband processors for RF-MIMO WLAN

    Get PDF
    The article describes hardware solutions for the IEEE 802.11 medium access control (MAC) layer and IEEE 802.11a digital baseband in an RF-MIMO WLAN transceiver that performs the signal combining in the analogue domain. Architecture and implementation details of the MAC processor including a hardware accelerator and a 16-bit MACphysical layer (PHY) interface are presented. The proposed hardware solution is tested and verified using a PHY link emulator. Architecture, design, implementation, and test of a reconfigurable digital baseband processor are described too. Description includes the baseband algorithms (the main blocks being MIMO channel estimation and Tx-Rx analogue beamforming), their FPGA-based implementation, baseband printed-circuit-board, and real-time test

    Polynomial matrix decomposition techniques for frequency selective MIMO channels

    Get PDF
    For a narrowband, instantaneous mixing multi-input, multi-output (MIMO) communications system, the channel is represented as a scalar matrix. In this scenario, singular value decomposition (SVD) provides a number of independent spatial subchannels which can be used to enhance data rates or to increase diversity. Alternatively, a QR decomposition can be used to reduce the MIMO channel equalization problem to a set of single channel equalization problems. In the case of a frequency selective MIMO system, the multipath channel is represented as a polynomial matrix. Thus conventional matrix decomposition techniques can no longer be applied. The traditional solution to this broadband problem is to reduce it to narrowband form by using a discrete Fourier transform (DFT) to split the broadband channel into N narrow uniformly spaced frequency bands and applying scalar decomposition techniques within each band. This describes an orthogonal frequency division multiplexing (OFDM) based system. However, a novel algorithm has been developed for calculating the eigenvalue decomposition of a para-Hermitian polynomial matrix, known as the sequential best rotation (SBR2) algorithm. SBR2 and its QR based derivatives allow a true polynomial singular value and QR decomposition to be formulated. The application of these algorithms within frequency selective MIMO systems results in a fundamentally new approach to exploiting spatial diversity. Polynomial matrix decomposition and OFDM based solutions are compared for a wide variety of broadband MIMO communication systems. SVD is used to create a robust, high gain communications channel for ultra low signal-to-noise ratio (SNR) environments. Due to the frequency selective nature of the channels produced by polynomial matrix decomposition, additional processing is required at the receiver resulting in two distinct equalization techniques based around turbo and Viterbi equalization. The proposed approach is found to provide identical performance to that of an existing OFDM scheme while supporting a wider range of access schemes. This work is then extended to QR decomposition based communications systems, where the proposed polynomial approach is found to not only provide superior bit-error-rate (BER) performance but significantly reduce the complexity of transmitter design. Finally both techniques are combined to create a nulti-user MIMO system that provides superior BER performance over an OFDM based scheme. Throughout the work the robustness of the proposed scheme to channel state information (CSI) error is considered, resulting in a rigorous demonstration of the capabilities of the polynomial approach

    Scalable Architecture of MIMO Multi-carrier CDMA System on Programmable Logic

    Get PDF
    In this paper, a scalable architecture of the multicarrier CDMA system using Multiple-Input-Multiple-Output (MIMO) technology is designed in the programmable logic array. The system-level partitioning with different architecture design entries is described. The overall computing architecture for complex signal processing blocks, e.g., channel estimation, frequency domain equalization, demodulation etc is described. The MIMO architecture is easily extended from a SISO system with single antenna. This scalable architecture demonstrates resource utilization efficiency and easy extension to MIMO configurations

    Efficient implementation of channel estimation algorithm for beamforming

    Get PDF
    Abstract. The future 5G mobile network technology is expected to offer significantly better performance than its predecessors. Improved data rates in conjunction with low latency is believed to enable technological revolutions such as self-driving cars. To achieve faster data rates, MIMO systems can be utilized. These systems enable the use of spatial filtering technique known as beamforming. Beamforming that is based on the preacquired channel matrix is computationally very demanding causing challenges in achieving low latency. By acquiring the channel matrix as efficiently as possible, we can facilitate this challenge. In this thesis we examined the implementation of channel estimation algorithm for beamforming with a digital signal processor specialized in vector computation. We present implementations for different antenna configurations based on three different approaches. The results show that the best performance is achieved by applying the algorithm according to the limitations given by the system and the processor architecture. Although the exploitation of the parallel architecture was proved to be challenging, the implementation of the algorithm would have benefitted from the greater amount of parallelism. The current parallel resources will be a challenge especially in the future as the size of antenna configurations is expected to grow.Keilanmuodostuksen tarvitseman kanavaestimointialgoritmin tehokas toteutus. Tiivistelmä. Tulevan viidennen sukupolven mobiiliverkkoteknologian odotetaan tarjoavan merkittävästi edeltäjäänsä parempaa suorituskykyä. Tämän suorituskyvyn tarjoamat suuret datanopeudet yhdistettynä pieneen latenssiin uskotaan mahdollistavan esimerkiksi itsestään ajavat autot. Suurempien datanopeuksien saavuttamiseksi voidaan hyödyntää monitiekanavassa käytettävää MIMO-systeemiä, joka mahdollistaa keilanmuodostuksena tunnetun spatiaalisen suodatusmenetelmän käytön. Etukäteen hankittuun kanavatilatietoon perustuva keilanmuodostus on laskennallisesti erittäin kallista. Tämä aiheuttaa haasteita verkon pienen latenssivaatimuksen saavuttamisessa. Tässä työssä tutkittiin keilanmuodostukselle tarkoitetun kanavaestimointialgoritmin tehokasta toteutusta hyödyntäen vektorilaskentaan erikoistunutta prosessoriarkkitehtuuria. Työssä esitellään kolmea eri lähestymistapaa hyödyntävät toteutukset eri kokoisille antennikonfiguraatioille. Tuloksista nähdään, että paras suorituskyky saavutetaan sovittamalla algoritmi järjestelmän ja arkkitehtuurin asettamien rajoitusten mukaisesti. Vaikka rinnakkaisarkkitehtuurin hyödyntäminen asetti omat haasteensa, olisi algoritmin toteutus hyötynyt suuremmasta rinnakkaisuuden määrästä. Nykyinen rinnakkaisuuden määrä tulee olemaan haaste erityisesti tulevaisuudessa, sillä antennikonfiguraatioiden koon odotetaan kasvavan

    Spatial modulation schemes and modem architectures for millimeter wave radio systems

    Get PDF
    The rapid growth of wireless industry opens the door to several use cases such as internet of things and device-to-device communications, which require boosting the reliability and the spectral efficiency of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high-speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. In conventional (fully digital) multiple-input-multiple-output (MIMO) transceivers, each antenna is connected to a specific radio-frequency (RF) chain and high resolution analog-to-digital-converter. Unfortunately, these devices are expensive and power hungry especially at mmWave frequency band and when operating in large bandwidths. Having this in mind, several MIMO transceiver architectures have been proposed with the purpose of reducing the hardware cost and the energy consumption. Fully connected hybrid analog and digital precoding schemes were proposed in with the aim of replacing some of the conventional RF chains by energy efficient analog devices. These fully connected mapping requires many analog devices that leads to non-negligible energy consumption. Partially connected hybrid architectures have been proposed to improve the energy efficiency of the fully connected transceivers by reducing the number of analog devices. Simplifying the transceiver’s architecture to reduce the power consumption results in a degradation of the attained spectral efficiency. In this PhD dissertation, we propose novel modulation schemes and massive MIMO transceiver design to combat the challenges at the mmWave cellular systems. The structure of the doctoral manuscript can be expressed as In Chapter 1, we introduce the transceiver design challenges at mmWave cellular communications. Then, we illustrate several state of the art architectures and highlight their limitations. After that, we propose scheme that attains high-energy efficiency and spectrum efficiency. In chapter 2, first, we mathematically describe the state of the art of the SM and highlight the main challenges with these schemes when applied at mmWave frequency band. In order to combat these challenges (for example, high cost and high power consumption), we propose novel SM schemes specifically designed for mmWave massive MIMO systems. After that, we explain how these schemes can be exploited in attaining energy efficient UT architecture. Finally, we present the channel model, systems assumptions and the transceiver devices power consumption models. In chapter 3, we consider single user SM system. First, we propose downlink (DL) receive SM (RSM) scheme where the UT can be implemented with single or multiple radio-frequency chains and the BS can be fully digital or hybrid architecture. Moreover, we consider different precoders at the BS and propose low complexity and efficient antenna selection schemes for narrowband and wideband transmissions. After that, we propose joint uplink-downlink SM scheme where we consider RSM in the DL and transmit SM (TSM) in the UL based on energy efficient hybrid UT architecture. In chapter 4, we extend the SM system to the multi-user case. Specifically, we develop joint multi-user power allocation, user selection and antenna selection algorithms for the broadcast and the multiple access channels. Chapter 5 is presented for concluding the thesis and proposing future research directions.Considerando los altos requerimientos de los servicios de nueva generación, las infraestructuras de red actual se han visto obligadas a evolucionar en la forma de manejar los diferentes recursos de red y computación. Con este fin, nuevas tecnologías han surgido para soportar las funcionalidades necesarias para esta evolución, significando también un gran cambio de paradigma en el diseño de arquitecturas para la futura implementación de redes.En este sentido, este documento de tesis doctoral presenta un análisis sobre estas tecnologías, enfocado en el caso de redes inter/intra Data Centre. Por consiguiente, la introducción de tecnologías basadas en redes ópticas ha sido estudiada, con el fin de identificar problemas actuales que puedan llegar a ser solucionados mediante el diseño y aplicación de nuevas técnicas, asimismo como a través del desarrollo o la extensión de los componentes de arquitectura de red.Con este propósito, se han definido una serie de propuestas relacionadas con aspectos cruciales, así como el control de dispositivos ópticos por SDN para habilitar el manejo de redes híbridas, la necesidad de definir un mecanismo de descubrimiento de topologías ópticas capaz de exponer información precisa, y el analizar las brechas existentes para la definición de una arquitectura común en fin de soportar las comunicaciones 5G.Para validar estas propuestas, se han presentado una serie de validaciones experimentales por medio de escenarios de prueba específicos, demostrando los avances en control, orquestación, virtualización y manejo de recursos con el fin de optimizar su utilización. Los resultados expuestos, además de corroborar la correcta operación de los métodos y componentes propuestos, abre el camino hacia nuevas formas de adaptar los actuales despliegues de red respecto a los desafíos definidos en el inicio de una nueva era de las telecomunicaciones.Postprint (published version

    Hardware implementation of multiple-input multiple-output transceiver for wireless communication

    Get PDF
    This dissertation proposes an efficient hardware implementation scheme for iterative multi-input multi-output orthogonal frequency-division multiplexing (MIMO-OFDM) transceiver. The transmitter incorporates linear precoder designed with instantaneous channel state information (CSI). The receiver implements MMSE-IC (minimum mean square error interference cancelation) detector, channel estimator, low-density parity-check (LDPC) decoder and other supporting modules. The proposed implementation uses QR decomposition (QRD) of complex-valued matrices with four co-ordinate rotation digital computer (CORDIC) cores and back substitution to achieve the best tradeoff between resource and throughput. The MIMO system is used in field test and the results indicate that the instantaneous CSI varies very fast in practices and the performance of linear precoder designed with instantaneous CSI is limited. Instead, statistic CSI had to be used. This dissertation also proposes a higher-rank principle Kronecker model (PKM). That exploits the statistic CSI to simulate the fading channels. The PKM is constructed by decomposing the channel correlation matrices with the higher-order singular value decomposition (HOSVD) method. The proposed PKM-HOSVD model is validated by extensive field experiments conducted for 4-by-4 MIMO systems in both indoor and outdoor environments. The results confirm that the statistic CSI varies slowly and the PKM-HOSVD will be helpful in the design of linear precoders. --Abstract, page iv
    corecore