445 research outputs found

    Investigation of Distance to Break Using Compliant Nonlinear and Linear Materials in a Simulated Minimally Invasive Surgery Task

    Get PDF
    Accurate interpretation of the mediated haptic information in minimally invasive surgery (MIS) is critical for applying appropriate force magnitudes into soft tissue with the aim of minimizing tissue trauma. Force perception in MIS is a dynamic process with surgeon\u27s administration of force into tissue revealing information about the remote surgical site which will further inform the surgeon for additional haptic interaction. The relationship between applied force and material deformation rate has been shown to provide biomechanical information specifying the distance remaining until the tissue would fail, which has been termed distance-to-break (DTB). The current study continues the investigation of whether observers can use DTB to stop before a tissue\u27s failure point. Similar to past results, observers could reliably perceive DTB in simulated nonlinear biological tissues

    Anthropomorphic surgical system for soft tissue robot-assisted surgery

    Get PDF
    Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS). These procedures have significantly decreased blood loss, postoperative morbidity and length of hospital stay in comparison with open surgery. R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient.This thesis aims to investigate, design and prototype a novel system for R-A MIS that will provide more natural and intuitive manipulation of soft tissues and, at the same time, increase the surgeon's dexterity. The thesis reviews related work on surgical systems and discusses the requirements for designing surgical instrumentation. From the background research conducted in this thesis, it is clear that training surgeons in MIS procedures is becoming increasingly long and arduous. Furthermore, most available systems adopt a design similar to conventional laparoscopic instruments or focus on different techniques with debatable benefits. The system proposed in this thesis not only aims to reduce the training time for surgeons but also to improve the ergonomics of the procedure.In order to achieve this, a survey was conducted among surgeons, regarding their opinions on surgical training, surgical systems, how satisfied they are with them and how easy they are to use. A concept for MIS robotic instrumentation was then developed and a series of focus group meetings with surgeons were run to discuss it. The proposed system, named microAngelo, is an anthropomorphic master-slave system that comprises a three-digit miniature hand that can be controlled using the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands have been developed for decades, none have been used for surgical operations. As the system has a human centred design, its relation to the human hand is discussed. Prototypes of both the master and the slave have been developed and their design and mechanisms is demonstrated. The accuracy and repeatability of the master as well as the accuracy and force capabilities of the slave are tested and discussed

    Neuromorphic vibrotactile stimulation of fingertips for encoding object stiffness in telepresence sensory substitution and augmentation applications

    Get PDF
    We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland). In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency-mimetic neuronal models, and can be useful for the design of high performance haptic devices

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    A Cost-Effective Haptic Device for Assistive and Rehabilitation Purposes

    Get PDF
    With the growing population of elderly, the need for assistance has also increased considerably especially for the tasks such as cleaning, reaching and grasping objects among others. There are numerous assistive devices in the market for this group of people. However, they are either too expensive or require overwhelming user effort for manipulation. Therefore, the presented research is primarily concerned with developing a low-cost, easy to use assistive device for elderly to reach and grasp objects through intuitive interface for the control of a slave anthropomorphic robotic arm (tele operator). The system also implements haptic feedback technology that enables the user to maneuver the grasping task in a realistic manner. A bilateral master-slave robotic system combined with the haptic feedback technology has been designed, built and tested to determine the suitability of this device for the chosen application. The final prototype consists of primarily off the shelf components programmed in such a way as to provide accurate teleoperation and haptic feedback to the user. While the nature of the project as a prototype precluded any patient trials, testing of the final system has shown that a fairly low cost device can be capable of providing the user an ability to remotely control a robotic arm for reaching and grasping objects with accurate force feedback

    Haptic-Enhanced Learning in Preclinical Operative Dentistry

    Get PDF
    Background: Virtual reality haptic simulators represent a new paradigm in dental education that may potentially impact the rate and efficiency of basic skill acquisition, as well as pedagogically influence the various aspects of students’ preclinical experience. However, the evidence to support their efficiency and inform their implementation is still limited. Objectives: This thesis set out to empirically examine how haptic VR simulator (Simodont®) can enhance the preclinical dental education experience particularly in the context of operative dentistry. We specify 4 distinct research themes to explore, namely: simulator validity (face, content and predictive), human factors in 3D stereoscopic display, motor skill acquisition, and curriculum integration. Methods: Chapter 3 explores the face and content validity of Simodont® haptic dental simulator among a group of postgraduate dental students. Chapter 4 examines the predictive utility of Simodont® in predicting subsequent preclinical and clinical performance. The results indicate the potential utility of the simulator in predicting future clinical dental performance among undergraduate students. Chapter 5 investigates the role of stereopsis in dentistry from two different perspectives via two studies. Chapter 6 explores the effect of qualitatively different types of pedagogical feedback on the training, transfer and retention of basic manual dexterity dental skills. The results indicate that the acquisition and retention of basic dental motor skills in novice trainees is best optimised through a combination of instructor and visualdisplay VR-driven feedback. A pedagogical model for integration of haptic dental simulator into the dental curriculum has been proposed in Chapter 7. Conclusion: The findings from this thesis provide new insights into the utility of the haptic virtual reality simulator in undergraduate preclinical dental education. Haptic simulators have promising potential as a pedagogical tool in undergraduate dentistry that complements the existing simulation methods. Integration of haptic VR simulators into the dental curriculum has to be informed by sound pedagogical principles and mapped into specific learning objectives

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    MEMSurgery: An integrated test-bed for vascular surgery

    Get PDF
    Abstract Many surgical procedures require skillful manipulations of blood vessels, especially in conventional invasive or minimally invasive surgical procedures. Current surgical methods do not allow the surgeon to receive any real time feedback of the tissue properties when operating on the vessel. As a result, the unintentional application of excessive force may damage the blood vessel. To minimize such trauma, and to study the interaction of surgical instruments with the vessel structure, we have developed an integrated surgical testbed called MEMSurgery (Microelectromechanical Sensory augmented Surgery). The test-bed integrates four elements: a) force sensors mounted on surgical appliances, b) a feedback control mechanism utilizing the intrinsic mechanical properties of the blood vessel, c) feedback of the force applied on the tissue back to the surgeon through a haptic feedback device, and d) visual feedback by a graphical computer model of the vessel. Finally, we evaluate the performance of MEMSurgery by testing the hypothesis that the combination of haptic feedback, feedback control based on vascular mechanical properties, and real-time visual representation of the vessel will help the surgeon decrease the probability of applying excess force while occluding the blood vessel. To this end, we designed a rodent experimental model to obtain the ideal minimum occlusion force (MOF). After a series of human performance studies, and subsequent comparison to direct application of force on the forceps (without feedback), the results show that the probability of applying reasonable MOF increases from 35.5% to 80%. After a brief training period, the probability increases to 90%

    Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

    Get PDF
    The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials
    • …
    corecore