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Abstract 

Background: Virtual reality haptic simulators represent a new paradigm in 

dental education that may potentially impact the rate and efficiency of basic 

skill acquisition, as well as pedagogically influence the various aspects of 

students’ preclinical experience. However, the evidence to support their 

efficiency and inform their implementation is still limited. 

Objectives: This thesis set out to empirically examine how haptic VR simulator 

(Simodont®) can enhance the preclinical dental education experience 

particularly in the context of operative dentistry. We specify 4 distinct research 

themes to explore, namely: simulator validity (face, content and predictive), 

human factors in 3D stereoscopic display, motor skill acquisition, and 

curriculum integration.  

Methods: Chapter 3 explores the face and content validity of Simodont® haptic 

dental simulator among a group of postgraduate dental students. Chapter 4 

examines the predictive utility of Simodont® in predicting subsequent 

preclinical and clinical performance. The results indicate the potential utility of 

the simulator in predicting future clinical dental performance among 

undergraduate students. Chapter 5 investigates the role of stereopsis in 

dentistry from two different perspectives via two studies. Chapter 6 explores 

the effect of qualitatively different types of pedagogical feedback on the 

training, transfer and retention of basic manual dexterity dental skills. The 

results indicate that the acquisition and retention of basic dental motor skills in 

novice trainees is best optimised through a combination of instructor and visual 
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display VR-driven feedback. A pedagogical model for integration of haptic 

dental simulator into the dental curriculum has been proposed in Chapter 7. 

Conclusion: The findings from this thesis provide new insights into the utility 

of the haptic virtual reality simulator in undergraduate preclinical dental 

education. Haptic simulators have promising potential as a pedagogical tool in 

undergraduate dentistry that complements the existing simulation methods. 

Integration of haptic VR simulators into the dental curriculum has to be 

informed by sound pedagogical principles and mapped into specific learning 

objectives.  
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1.1 Introduction 

In dentistry, intensive theoretical and practical preclinical training is 

fundamental to undergraduate dental education experience. Fine motor skills 

are honed through simulation-based training using the renowned phantom 

head simulator with plastic teeth.  

Recently, the vast advancement in virtual reality (VR) technology has unlocked 

exciting new avenues for simulation-based education via advanced interfaces 

and safe virtual environments with powerful and flexible features. Therefore, 

virtual reality simulators (with and without haptic technology) have been 

increasingly adopted across many dental schools around the world. 

Concomitantly, a growing body of literature has emerged that recognize the 

importance of these simulators in dentistry and advocate their use in various 

dental training contexts such as manual dexterity and basic skills training, 

implant dentistry, oral and maxillofacial surgery. 

Despite the increased adoption of such simulators into dental education, they 

are still considered in their early stages in terms of development, design 

features, applications and utility. Furthermore, many aspects of virtual reality 

simulation training particularly with haptics remain under-examined and lack 

empirical evidence that support their use based on pedagogical principles. The 

implementation of any technology in pedagogical contexts is professionally, 

logistically and financially demanding, and virtual reality simulators are no 

exception. Therefore, it is crucial to critically evaluate many factors before their 

full adoption into the curriculum.  

There is a need to empirically scrutinize the existing simulators in the context 

of dental training and education to identify their potential utility as pedagogical 
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tools and to inform their future design improvement. 

The achievement of such a goal is not an easy research mission, due to the 

inherently broad and multifaceted nature of the topic, that demands 

collaborative research efforts from various disciplines including dentistry, 

education, engineering, cognitive psychology, and computer sciences. 

1.2 Aim 

The general aim of this research project is to evaluate the effects of a haptic 

dental simulator (Simodont®) on the learning of basic dental fine motor skills in 

the context of preclinical operative dentistry. 

1.3 Research motivation 

The current thesis is motivated by the following research questions: 

1. How virtual reality dental simulators with haptic technology would 

enhance the preclinical experience of undergraduate dental students?  

2. Can haptic dental simulator predict future preclinical and clinical 

performance? 

3. What factors would affect the utility of such simulator?  

4. How they can be effectively integrated into the dental curriculum? 

1.4 Objectives 

For a focused approach to this research investigation, we specify 4 research 

themes to explore through cross-sectional studies: fine motor skill acquisition, 

human factors (HF) in 3D stereoscopic display, prediction of future dental 

performance, and curriculum integration.  
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The objectives of the current research project are: 

1- To explore the validity of Simodont® early training in predicting 

subsequent preclinical and clinical performance.  

2- To investigate the role of stereopsis (depth perception resulting from 

binocular retinal disparities), in dentistry and its influence on preclinical 

and clinical dental performance using VR simulator.  

3- To investigate the role of pedagogical feedback, as a critical factor in 

simulation-based education, on the training, transfer and retention of 

basic manual dexterity dental skills using Simodont®. 

4- To design a pedagogical model for integration of virtual reality haptic 

dental simulator into undergraduate dental curriculum. 

1.5 Thesis outline 

The manuscript of this thesis is structured into 8 chapters.  

Chapter 1 introduces the thesis background and defines its aim, motivation 

and objectives, with outline of the thesis structure. The relevant literature is 

reviewed in Chapter 2, focusing on the principles of motor skill learning, 

medical and dental simulation, virtual reality and haptic technologies. Further 

focused review of literature is presented at the beginning of each of the 

following four chapters. 

The scope of the next two chapters is the simulator validity. In Chapter 3, the 

face and content validity of the Simodont® is explored, while the predictive 

validity of the Simodont® is investigated in Chapter 4. 

Chapter 5 focuses on stereopsis, as an important human factor issue that 

potentially influences the utility of virtual reality simulators. This chapter is 

organised into two sections, reporting two studies about stereopsis in dentistry 
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from different perspectives, each with distinct experimental approach and 

participants. The first study investigates the impact of removing stereopsis 

within the stereoscopic display in Simodont® VR simulator (whilst leaving other 

information unaffected) on the performance of postgraduate dentists in 

standard dental tasks. The second study explores the association between 

undergraduate students’ stereoscopic acuity levels and their practical dental 

performance in preclinical operative dentistry course.  

Chapter 6 is an investigation into the role of pedagogical feedback on motor 

skill acquisition among novice participants with no previous dental training. The 

chapter provides an in depth discussion of the role of feedback from its various 

sources (educator, simulator) and how it influences the acquisition of fine 

motor skills in VR simulated setting.  

Chapter 7 focuses on how the haptic dental simulator can be integrated 

effectively into the undergraduate dental curriculum by proposing a 

pedagogical integration model with a theoretical foundation. The proposed 

model aims to not only integrate the haptic simulator, but also to provide a 

recommendation to restructure the undergraduate dental experience to 

incorporate wider pedagogical concepts that have been underutilised, but have 

the potential to better prepare dental students for clinical practice. 

Finally, Chapter 8 provides a general discussion of the findings and the overall 

conclusions. Additionally, thesis limitations and suggestions for future work are 

presented. 
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Figure 1-1 Thesis schematic outline. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
7 

 

 

 

 

 

 

 

 

 

 

Chapter 2 : Literature Review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
8 

 

The goal of undergraduate dental education is to provide an effective learning 

environment that fosters the development of dental students into competent 

dentists. Competency comprises academic knowledge, clinical skills and 

professional attitudes, which defines the minimum acceptable performance 

level for a dentist at the time of graduation capable of safe, effective and 

independent dental practice (Plasschaert et al. 2007; Cowpe et al. 2010).  

One of the most important objectives in undergraduate dental education is the 

learning of fine sensorimotor skills (Evans & Dirks 2001). Although learned 

early in dental school, these skills continue to evolve over the years of dental 

practice. This learning must be achieved in concert with broad foundation 

knowledge of basic health and dental sciences, as well as other important 

skills such as teamwork, effective communication, problem solving, treatment 

planning, and decision-making. 

Dental students start providing supervised treatment to real patients relatively 

early in their career (3rd or 4th year in most dental schools) compared to other 

healthcare professionals. This demands a clinically acceptable level of highly 

specific sensorimotor skills, such as hand-eye-finger coordination, spatial 

perception (Evans & Dirks, 2001) mirror (indirect) vision, use of finger support, 

precise instrument handling and other skills to perform dental procedures 

safely and effectively in the unique oral environment, which is challenging in 

many ways: 

• Working with delicate oral tissues (e.g. lips, cheeks, teeth, tongue, and 

gingival tissues) in the presence of saliva, blood and other oral fluids. 

• Restricted access environment, with limited range of movements. 
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• The manipulation of specialised, relatively small, dental instruments with 

precise movement and coordination, which require a high level of 

manual and finger dexterity.  

• Performance of specific dental procedures, the majority of which are 

invasive and irreversible (e.g. tooth cutting and preparation) 

Therefore, due to the nature of the profession, dental education has been 

always reliant on simulators for teaching sensorimotor skills more than any 

other health specialty (Levine et al. 2013). This learning takes place primarily 

in the simulation laboratories and within the context of operative dentistry. 

Operative/restorative dental sciences are the foundation of almost all other 

dental specialties and the area to which most of the preclinical teaching time is 

dedicated (Ferguson et al. 2002) . It is a constantly evolving speciality that is 

continuously updated with more understanding of the carious process, its risk 

assessment and management approaches with a variety of new restorative 

materials and treatment techniques, that demand highly specific skills and an 

on-going practice using simulation, even at the postgraduate level. This is 

particularly true as minimally invasive dental (MID) procedures are being 

progressively employed for maximum conservation of tooth structure (Walsh & 

Brostek 2013; Frencken et al. 2012). 

Beyond sensorimotor skill learning, simulation is needed to facilitate the 

transition into the dental clinic, to augment ergonomics and to enhance the 

students’ preclinical experience through inclusion of a wide range of simulated 

patient scenarios (Hollis et al. 2011) emphasising a holistic approach to patient 

management. 

From G.V. Black’s giant tooth models and Fergus’s phantom head (Mason 
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2005) to high fidelity virtual reality simulators and robotics, dental education 

has come a long way in the realism of the preclinical simulation experience, 

which continue to be an integral part of undergraduate dental education. 

Effective instruction in preclinical dentistry is multidimensional and requires 

broad knowledge not only of dental sciences but also educational 

methodologies, assessment best practices, and thorough an understanding of 

basic principles of motor skill acquisition. 

The first section of this chapter is an overview of the concept of simulation and 

simulation-based education in medicine and dentistry. 

2.1 Simulation 

Simulation is a methodology that replicates or amplifies real experiences with 

directed experiences using analogous tools or settings that imitate real world 

conditions, with the goal of learning and training, in an immersive and 

interactive mode (Gaba 2004; Littlewood 2011). For many years, simulation 

has been effectively utilized for education, assessment, and maintenance of 

various skills across diverse domains especially in complex professions which 

demand a high degree of precision and safety such as aviation (for pilot and 

crew training), and for the military (Issenberg et al., 2005). The earliest 

evidence of simulation efficacy in training came from the performance 

improvement of pilots in aviation training, which made flight simulation an 

integral part of the aviation industry to maintain the high safety standards 

(Levine et al. 2013; Littlewood 2011; Allerton 2010). 

Simulation in healthcare education is not new, and has been utilised as a 

learning tool as early as the 19th century (e.g. anatomy models), however, it 

has evolved now into a distinct pedagogical modality (Bradley 2006). It is an 



 
 

11 

educational methodology to replicate real patient care scenarios in a controlled 

environment, to achieve pre-defined learning objectives, using artificial models, 

standardized patients or virtual reality devices for the purpose of improvement 

of individual and team performance in a health care system. It is a 

standardized educational medium for training, rehearsal, assessment and 

maintenance of a wide range of skills across multiple healthcare disciplines, in 

a safe and ethical environment that enhances the learning tasks’ predictability, 

consistency, and reproducibility without jeopardizing patient safety (Okuda et 

al. 2009; Sevdalis et al. 2016; Gaba 2004; Cheng et al. 2016). Simulation is 

particularly suited for formative assessments, where the learners are provided 

with immediate constructive feedback on their task performance in a simulated 

environment (Damassa & Sitko 2010).  

Simulation methodology include special devices, partial or full patient 

simulators, that provide appropriate interaction media in response to the 

participant’s actions and manipulation (Gaba 2004). They span a wide range of 

fidelity (the level of realism of a simulated condition or setting) and can be 

simply categorised into part task trainers, full body computer-enhanced 

mannequins, and virtual reality simulators (Scalese et al. 2008). Although the 

majority of simulators in health care education are designed for learning of 

procedural skills (e.g. MIS-minimally invasive surgery, obstetrics, dentistry), 

soft skills (or non-technical skills) such as communication skills, team work, 

and decision making can also be learned effectively using structured 

simulation settings (Gaba 2004).  

The availability of simulators and advancement in their fidelity does not 

preclude the need for faculty well trained in pedagogical principles (Okuda et 
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al. 2009), it actually emphasise their central role in various simulation-based 

educational settings. Although simulation is an adjunctive methodology and not 

a substitute for real clinical practice, if well planned and effectively utilised it 

improves the trainee competence and confidence in real world settings (Levine 

et al. 2013). 

The simple distinction between simulation as an event and simulator as a tool, 

is advocated to emphasise that both should synergistically compliment the 

educational experience of a health care professional, and underpin any 

scientific investigation into the simulation-based education. In other words, 

simulation is a unique learning opportunity that must be well planned and 

implemented in a controlled environment as part of a wider structured 

curriculum, whereas simulators are tools that form a valuable part of the 

simulation experience (Dutta et al. 2006).  

Simulation has become fully integrated into the clinical training of 

undergraduate medical students, postgraduate surgical residents as well as for 

continuing professional development (Issenberg & Scalese, 2007). 

In the recent guidelines for Transforming and Scaling up Health Professionals' 

Education and Training, the World Health Organization (WHO) strongly 

recommend the use of simulation methods with fidelity levels appropriate for 

various training/education contexts in health profession education. Additionally, 

it recommends several research activities to bridge the knowledge gaps in the 

use of simulation methods such as the long-term impact on learner’s 

performance, and the effect on patient outcomes (WHO 2014).  

These recommendations highlight the fact that simulation is unique and 

versatile not only as an education and training methodology but also as 

investigational research tool (Littlewood 2011), therefore, simulation based 
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research has grown exponentially in recent years (Sevdalis et al. 2016), albeit 

with great inconsistency among studies, which highlight the need for 

improvement and standardization of  the quality of the reported research in the 

field. Recently, Cheng and colleagues published the first reporting of 

guidelines for the use of simulation in health care research by creating 

extensions to the CONSORT (Consolidated Standards of Reporting Trials 

statement for randomised trials) and STROBE (Strengthening The Reporting 

of OBservational studies in Epidemiology) statements (Cheng et al. 2016). The 

guidelines are necessary to guide the research efforts into systematic, 

unbiased, scientifically sound approach for health care simulation research 

which should provide common language that recognize the value of research 

findings beyond any contextual differences. 

2.1.1 Simulation-based medical education 

The classical approach to surgical training is the apprenticeship model “see 

one, do one”, where the novice trainee is learning from the expert while 

treating patients in the clinical environment. This long-standing, teacher-

centred approach served well as the gold standard for many years since the 

early days of surgical training (Levine et al. 2013). However, this 

apprenticeship model has been challenged in recent years (Brydges et al. 

2007; Grantcharov & Reznick 2008), and a paradigm shift in the field of 

surgical education has been witnessed (Sachdeva et al. 2011; Alaker et al. 

2016). This has been driven by several factors, including the increased 

emphasis on patient safety; the need to expand the educational experience of 

the trainee to include a wide range of new skills imposed by advances in 

knowledge base, surgical tools and technology (e.g. MIS), despite the 
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reduction in annual training hours of residents that translate into less likelihood 

of case-specific clinical training opportunities. Additionally, the need to give the 

trainee a standardized educational experience that is structured, well planned 

and caters for individual learning differences; and the need to provide a safe, 

controlled learning environment that promotes learning, and facilitates training 

for all skill levels with opportunity for deliberate practice (McCaskie et al. 2011; 

Cosman et al. 2002; Motola et al. 2013; Bradley 2006; Grantcharov & Reznick 

2008; Konia & Yao 2013). 

Therefore, simulation-based education has emerged as a distinct field to 

bridge the educational gap between theory and practice on real patients, and 

as an essential intermediate stage between “see one, and do one” (Akaike et 

al. 2012). 

From a motor skill perspective, the technological advances in the surgical 

armamentarium have led to more utilization of minimally invasive surgical 

modalities and shifting away from traditional open surgery. This approach has 

modernised surgical care and profoundly impacted surgical outcomes (i.e. 

minimal incisions, less trauma to the patient, reduced hospital stay and 

recovery time, etc.). However, these technology-enhanced surgical techniques 

introduce a new interface (e.g. 2D screen in laparoscopic surgery) between the 

surgeon and the tissues, which potentially affects the interaction modes and 

subsequently the performance (Tanagho et al. 2012).Therefore, surgeons 

need to learn and be competent at a new set of cognitive and sensorimotor 

skills before performing any surgical procedure in the operating theatre, which 

demands intensive training. This shift has led to increased adoption of VR 

simulators, along with other simulation modalities, in many surgical training 
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programs for skill training, maintenance and for assessment and objective 

evaluation of surgical competency. VR simulation training becomes an 

essential step in the early stages of sensorimotor skill acquisition particularly in 

laparoscopic surgery, where the research findings showed its impact on 

improved operative performance with reduction of the operative time (Cosman 

et al. 2002; McCaskie et al. 2011; Alaker et al. 2016; Scalese et al. 2008; 

Okuda et al. 2009). The technological advances in image processing, and 

computer software and hardware paved the way for progressively 

sophisticated, highly realistic VR simulators in terms of their design features, 

fidelity and expanded utility. For example, Patient- specific virtual reality 

simulation (PSVR), is a technique in which a VR simulator is used to perform 

patient specific surgical rehearsal (or warm-up) based on real patient imaging 

data (e.g. from Computed Tomography-CT- or MRI). This technique aids in 

intervention planning and potentially impacts the operator preparation level not 

only technically but also in non-technical aspects such as decision-making, 

and teamwork training (Willaert et al. 2012).  

2.1.2 Simulation-based dental education  

2.1.2.1 Phantom head simulators: 

More than 100 years ago, the concept of the phantom head simulator was 

introduced by Oswald Fergus to improve ‘the preliminary instruction’ (Mason 

2005) and the realism of the dental training. Fergus’s phantom head was 

designed to be used in the laboratory and be attached to the dental chair 

(Perry et al. 2015). Since then it has undergone many design refinements and 

modifications to improve and expand its utility. The simulated maxillary and 
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mandibular jaws (Typodont/ Dentoform) are becoming increasingly realistic, 

simulating various dental diseases (e.g. periodontitis, caries) and include the 

full set of individual anterior and posterior plastic teeth (permanent and 

primary) that can be removed, replaced and adjusted as required. 

Today, phantom head simulators with typodont are considered the gold 

standard for undergraduate preclinical teaching as well as for postgraduate 

skill training in most dental schools around the world (Gottlieb et al., 2013). 

The  phantom head simulator is a partial task trainer, with simulated torso, that 

facilitates the learning of fine sensorimotor skills and tooth preparation and 

restoration procedures in a safe environment (Fugill 2013). They are versatile 

and reliable educational tools of relatively low initial cost that have been in use 

for a long time (Ben Gal et al., 2011). However, the plastic teeth used in these 

mannequins lack the real tactile sensation of natural layers of tooth structure 

(i.e. enamel and dentine) and there is a constant need for unit and handpiece 

technical maintenance as well as constant availability of disposable training 

resources (plastic teeth, burs, etc.). 

2.1.2.2 Virtual Reality-based simulation 

With the continuous technological advances, computer assisted dental 

simulators have been developed based on virtual and augmented reality 

technology. Computer software is used to create a virtual reality environment 

based on mathematical models that allow users to interact and navigate 

through the virtual world similar to real life. The unique feature of VR 

simulators is the availability of objective real-time feedback on student 

performance, in addition to the feasibility of iterative practice without the need 

for additional resources (plastic teeth, burs, etc.). Therefore, VR simulators 
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were reported to be particularly effective for formative assessment and 

evaluation that is facilitated by immediate and post practice feedback (e.g. 

video recordings), as well as in enhancing fine motor skill acquisition rate 

(Buchanan 2001; Shahriari-Rad 2013; Vervoorn et al. 2015). 

Compared to traditional simulators, haptic VR simulators were also reported to 

enhance the student learning via improved hand-eye coordination and self-

reflection (Cox et al. 2015) . Additionally, learners with low visual-spatial ability 

seem to benefit more from VR simulation training than conventional training 

(Nilsson et al. 2007). 

 

A. Augmented Reality dental simulators: 

The first VR simulator for dental education, the DentSim (Image Navigation 

Ltd., New York), was developed in the late 1990’s (Rose et al. 1999; Dutã et 

al. 2011) and it is the most widely investigated in the literature.  

The DentSim system is based on augmented reality technology, in the sense 

that a phantom head with plastic teeth and handpiece is still used (real tools) 

augmented with special computerised 3D graphics and optical sensors that 

provide auditory and visual feedback. It is based on GPS (global positioning 

system) technology, and it tracks the position of the manikin jaws and 

handpiece via LED sensors. The computer screen is attached to the unit and it 

shows 3D representation of the preparation with real-time quantitative 

feedback and detailed evaluation of performance (compared to an ideal 

preparation in the database)(LeBlanc et al. 2004; Levine et al. 2013).  

In a comparative study Jasinevicius et al. (2004)compared the DentSim virtual 

reality simulator to the non-computerised phantom head simulator in terms of 

student-faculty interaction (time, and type of feedback requested) and 
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preparation related factors (number of preparations, time spent and the quality 

of the preparations). Although the quality of the preparations done by both 

groups were comparable, the students trained with virtual reality simulators 

needed significantly less instructional time from the faculty than the other 

group. Therefore, it has been suggested that virtual reality simulators may 

provide a self-directed learning approach of sensorimotor skills (Jasinevicius et 

al. 2004). Similarly, Buchanan (2004) reported that students who were trained 

with (DentSim) learned faster, performed equally well, and carried out more 

procedures than students who were trained in traditional laboratories 

(Buchanan 2004). Therefore, virtual reality simulation using (DentSim) is 

considered an effective approach for skill development especially in operative 

dentistry compared to traditional simulation (LeBlanc et al. 2004); and training 

sessions in both laboratories can be effectively alternated for manual dexterity 

training, with the provision of appropriate feedback (Wierinck et al. 2006). 

Urbankova (2010) highlighted the importance of immediate feedback gained 

from the DentSim simulator especially at the early stages of dental skill 

acquisition; and advocated the integration of simulation technology at the 

beginning of the preclinical experience (Urbankova 2010). 

Collectively, the evidence from studies on DentSim suggests its effectiveness 

as a training tool as it shortens the learning curve of operative procedural 

skills, minimises faculty instruction time and provides objective immediate 

feedback. 

Another augmented reality based simulator is CDS-100 (EPED INC., Taiwan) 

that is similar in concept to the capabilities of DentSim, albeit not as thoroughly 

researched (Gottlieb et al. 2013). 
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B. Haptic Simulators:  

The advancement of haptic technology has produced a step-change in the virtual 

reality world and specifically on dental simulator development. Dental simulators 

that include haptic technology fundamentally change the way one interacts with 

virtual objects by providing realistic feel and touch sensation (Gottlieb et al. 2013). 

Haptic VR simulators transfer the simulation experience, almost entirely, to the 

virtual world (i.e. no phantom head, plastic teeth, real typodonts, or real 

handpiece). 

The speed of development in the design and features of various haptic dental 

simulators was not always matched by empirical research into their pedagogical 

effectiveness, especially large-scale longitudinal investigations. However, 

cumulative evidence of their utility in dental education is currently emerging in the 

literature, and VR simulators are gaining momentum in the dental community and 

increasingly being implemented by dental schools around the world that support 

this type of pedagogical innovation (Eaton et al. 2008; Vervoorn et al. 2015).  

Currently, there are a number of commercially available haptic dental 

simulators that has been utilised and investigated in the literature, such as 

Simodont® (Moog Inc., The Netherlands), VOXEL-MAN Dental (VOXEL-MAN, 

Germany) and VirTeaSy® Dental (HRV-simulation, France).  



 
 

20 

 

Figure 2-1 Examples of commercially available haptic VR dental simulators. 
[A] Simodont® (image courtesy of Moog Inc.). [B] VirTeasy® Dental 
simulator (image courtesy of hrv-simulation.com). 

 

i. Simodont® 

This simulator was developed by joint efforts from Moog Inc. (Nieuw-Vennep, 

Amsterdam, The Netherlands) a company with expertise in flight haptic 

simulation and ACTA (the Academic Centre for Dentistry, Amsterdam, the 

Netherlands).  

It is the main simulator investigated in the current thesis, and in depth 

description of Simodont® is presented in Chapter 3 (section 3.2.1). 

An early pilot study upon its introduction reported that the manual dexterity 

skills learned on Simodont® were transferable to a traditional, preclinical 

laboratory. Furthermore, the investigators observed that students working on 

the Simodont® had a more ergonomically correct working position than 

students working in phantom head laboratory; due to the fixed position of the 

visual display the student has to assume correct upright posture while sitting 

A B



 
 

21 

on the chair and cannot over bend his/her head while working especially while 

performing indirect tasks (Bakker et al. 2010). Investigation into the system 

continued by the researchers in ACTA (de Boer et al. 2016a; de Boer et al. 

2013; Vervoorn & Wesselink 2009; de Boer et al. 2016b) and several other 

researchers around the world (Farah-Franco et al. 2016; Bakr et al. 2013; 

Koopman et al. 2010). Majority of these studies were conducted among first 

year dental students. The construct validity of Simodont® has been recently 

reported among undergraduate dental students at different levels of dental 

study (Mirghani et al. 2016), Simodont was found to be sensitive to variations 

in dental experience among participants and statistically significant differences 

were found between first year students and more experienced students (at 

year 3 onward) in performance of virtual dental tasks using the simulator. 

ii. VirTeasy® dental 

It is a relatively new haptic dental simulator with few evaluation and validation 

studies in the literature. A construct validity study was conducted by a group of 

researchers in France, and reported that VirTeasy® was able to discriminate 

between novices and experts in a restorative dentistry task (Zerbib et al. 

2013). A recent study in Russia has reported its positive acceptance by dental 

students and its promising potential as a simulation tool for a variety of dental 

procedures (Abramov et al. 2016). 

iii. HapTEL Project 

The haptic dental simulator HapTEL (Tse et al. 2010) was developed by King’s 

College London in collaboration with Reading and Birmingham City 

Universities, and involves a multidisciplinary team of experts as well as dental 

students. The system iterative development and evaluation process is 
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originally focused on three main strands: technical, educational and curriculum 

integration (San Diego et al. 2012). The simulator allows undergraduate 

students to practice a number of restorative dental procedures virtually, with an 

interface that allows for two students as well as instructor to see the virtual 

tooth being prepared, in addition to a student head-tracking feature.  

After eight years of research and implementation in undergraduate dental 

training in King’s College London, the system proved its effectiveness in 

enhancing students’ learning (Vervoorn et al. 2015). Moreover, the HapTEL 

system was further expanded to teach students to administer intra-muscular 

injections, a step that broadens the HapTEL system utility to involve other 

health care students (Cox et al. 2014). 

In a collaborative evidence review after eight years of research, both 

Simodont® and HapTEL, were reported to consistently impact the students 

learning experience positively particularly in spatial reasoning, hand-eye 

coordination and fine motor skills acquisition (Vervoorn et al. 2015). Such a 

wide scale review highlights that there is encouraging empirical evidence that 

dental haptic simulators are effective, however there still exists a need for 

further evaluation and validation studies. 

Although the current discussion is focused on VR simulators with particular 

applications in operative dentistry and manual dexterity training, there are 

other types of VR simulators that have been investigated in the literature with 

applications in other dental specialities. For example, dental implant training 

(Kusumoto et al. 2006; Chen et al. 2012), oral and maxillofacial surgery 

(Pohlenz et al. 2010), endodontic (Suebnukarn, Haddawy, Rhienmora, & 

Gajananan 2010), and periodontics (Luciano et al. 2009).  

Moreover, robotic simulated patients with ultra-realistic features such as saliva 
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secretion and various simulated movements (e.g. Dentaroid, by Nissin Inc., 

Japan) have been also available commercially (Nissin 2017), however, the 

reported evidence on their utilisation is still limited. Tanzawa et al. (2012) 

introduced a simulated robotic patient into a fifth year dental OSCE exam and 

report its effectivness in risk management skill training (Tanzawa et al. 2012). 

Such robotic simulated patients could potentially be used for soft skills training 

of undergraduate students such as patient-student communication, and patient 

management in various simulated scenarios.  

The following section of this chapter provides an overview of virtual reality 

technology with focused emphasis on haptics and human interaction with VE. 

2.2 Virtual Reality Technology 

Virtual reality is a computer-generated 3D environment in which a user/person 

can interactively participate (Wann & Mon-Williams 1996) simulating various 

real life scenarios, especially those that are dangerous or impossible to 

approach physically in the real world.  

Sherman and Craig (2002) defined virtual reality as “ A medium composed of 

interactive computer simulations that sense the participant’s position and 

actions, providing synthetic feedback to one or more senses, giving the feeling 

of being mentally immersed or being present in the simulation or virtual world ” 

(Sherman & Craig 2002). 

Any VR system encompasses hardware, software and assembled contents 

that collectively generate the VR experience ( Figure 2-2). 
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Figure 2-2 Schematic outline of the main components of Virtual Reality system. Adapted from (Sherman & Craig 2002) 
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Central to any VR experience are the following four key elements (Craig et al. 

2009; Sherman & Craig 2002): 

1- Virtual world: an imaginary space that can be displayed/modelled via 

special platform or medium. 

2- Immersion: a sensation of being in an environment; also known as sense 

of presence or suspension of disbelief.  It is a fundamental characteristic of VR 

experience. It can be physical or mental immersion achieved through synthetic 

stimuli to the senses via the use of technology. 

3-Sensory feedback: an essential component of VR system, it determines 

how the virtual world is perceived by the user. In the virtual environment, 

synthetic stimuli are most commonly presented to all or one of the three main 

human perceptual senses (visual, aural, and haptic). The combined stimulation 

of these three senses leads to more immersion in the virtual environment. The 

key visual features that impact on VR display include depth 

perception/stereopsis, field-of-view1, and critical fusion frequency2 .  

The sensory feedback is communicated directly to the participants based on 

their physical position, which must be tracked via position sensors.  

High-speed computers, as mediating devices, are essential to achieve 

immediate interactive sensory feedback. 

4- Interactivity: responding to user actions is the hallmark of the VR system. 

There are three forms of interactivity in the VR system:  

                                              

1 A measure of the angular width of a user’s vision that is covered by the display at any given 

time (Sherman & Craig 2002). 
2 Frequency of light stimulation at which it becomes perceived as stable an continuous 

sensation (Critical Flickr Frequency) (Sherman & Craig 2002). 
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a. The ability to influence a computer-based world 

b. The ability to change one’s viewpoint within a world 

c. The ability of the user to move physically within the world, obtaining new 

vantage point3 through head movement. 

2.2.1 Mixed Reality 

There are many variations across what is called the “virtuality continuum” 

(Milgram & Kishino 1994)  (Figure 2-3 ), ranging from completely real to 

completely virtual as the two ends of a spectrum. Mixed reality is the term used 

when real and virtual objects are used within a single display, the exact 

description is dependant on which platform has been used predominantly. 

Milgram & Kishino (1994) proposed a taxonomy of mixed reality displays 

based on three dimensions: 

1- The extent of world knowledge (i.e. knowledge about the displayed world).  

2- Reproduction fidelity (i.e. the degree of realism in the display) 

3- The extent of presence metaphor (i.e. the extent of the user presence)  

Augmented Reality (AR) is considered a type of virtual reality, where the virtual 

representations are combined with perception of the physical/real world. The 

user’s normal vision is augmented with additional virtual information such as 

graphics or data that are overlaid via movable visual display (e.g. head 

mounted display) giving the user an altered view of the real world, and 

facilitate the performance of some actions that might be impossible in the real 

world.  

                                              

3 A position from which something is viewed or considered. 
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On the other hand, Augmented Virtuality (AV) refers to a virtual environment 

augmented with physical elements via direct real-time interaction and 

representation by the user/object.  

 

 

Figure 2-3 The Virtuality Continuum; adapted from Milgram & Kishino (1994).      
Image sources: (from real to virtual: 1-photo by the author, 2- image courtesy of microsoft 

hololens™:https://microsoft.com/microsoft-hololens, 3-http://antycipsimulation.com, 4- image courtesy of 

SecondLife® http://secondlife.com). 

2.2.2 Haptics  

Originally, the word haptic comes from the Greek verb (ἅπτεσθαι) haptesthai: 

to touch, implying the ability to touch and manipulate objects. It primarily refers 

to the science and physiology of the sense of touch (Grunwald 2008), 

however, haptics currently involve wider perspective related not only to the 

study of touch, but also to human-environment interaction via the sense of 

touch (Minogue & Jones 2006).  

Haptics is a fast growing and essentially multidisciplinary field involving 

mechanical engineering, neuroscience, experimental psychology, robotics, and 

computer science with wide array of applications such as medical simulators, 

and rehabilitation devices.  

The study of haptics is structured into three main strands: human haptics 

which involve the study of human sense of touch; machine haptics that involve 

Virtuality Continuum 
(Milgram & Kishino, 1994) 

Real Environment Augmented Reality

AR

Augmented Virtuality

AV
Virtual Environment

Mixed Reality- MR
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the design and the use of devices that replace or augment human touch, and 

computer haptics that involve software for mathematical modelling and 

rendering algorithms for creation of virtual objects (Srinivasan & Basdogan 

1997). A brief overview of each area is presented next. 

2.2.2.1 Sense of Touch (human haptics) 

Touch is central to the somatosensory system, which encompass networks of 

peripheral receptors and neural pathways connected to the central nervous 

system to facilitate the encoding of various sensations. Touch can be sensed 

across the human body via the various receptors distributed in the skin, 

muscles and joints. Apart from the skin, the hand - a uniquely complex organ- 

is considered the main part of the body that is associated with the sense of 

touch. The fingertips, in particular, are highly complex regions with an intense 

distribution of low threshold receptors, and considered one of the most 

sensitive areas of the human body (Vallbo & Johansson 1984; Johansson & 

Flanagan 2009; Grunwald 2008). 

The sense of touch is mediated through cutaneous (tactile) and kinesthetic 

perception. The cutaneous sensory input is received via mechanoreceptors 

and thermoreceptors of the skin. Skin mechanoreceptors include four types 

(Purves et al. 2001; Grunwald 2008):  

1. Meissner’s Corpuscles: the most common type in hairless skin, and 

constitute about 40% of hand sensory innervation. It is sensitive to low-

frequency vibrations (30–50 Hz) on the skin. 

2. Pacinian Corpuscles: constitute about 10-15% of hand sensory 

innervation and detect high frequency vibrations. 
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3. Markel’s Disks: constitute 25% of hand sensory innervation, particularly 

dense in the fingertips. They detect light pressure, object edges, and 

rough texture. 

4. Ruffini Corpuscles: constitute 20% of hand sensory innervation, and 

detect skin stretching. 

The kinesthetic sensory input is received via proprioceptors and 

mechanoreceptors of muscles, tendons and joints, providing information about 

the body position, movement and joint angle (Van Erp et al. 2010).  

Haptic perception comprises both cutaneous and kinesthetic modalities and is 

referred to as tactual perception (Dahiya & Valle 2012; Lederman & Klatzky 

2009). 

Haptic sensorimotor loop in human and machine interactions (with real and 

virtual objects) is illustrated in Figure 2-4. 
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Figure 2-4 Haptic sensorimotor loops in [A] human-real object interaction and 
[B] human-virtual object interaction. Adapted from (Srinivasan & 
Basdogan 1997) 
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2.2.2.2 Haptic technology (machine haptics) 

In computer-generated environments, the term haptics is used to describe 

human-machine interaction. It involves the ability to sense, manipulate and 

interact with virtual objects in haptic virtually simulated environment to perform 

specific sensory motor tasks (Srinivasan & Basdogan 1997; Mihelj & Podobnik 

2012). 

The haptic experience in a virtual environment (VE) is characterized by bi-

directional flow of information between the user and computer-generated 

synthetic environment via the haptic interface that stimulates both tactile and 

kinaesthetic sensations by applying forces, vibration or motion to the user 

(Mihelj & Podobnik 2012; Robles-De-La-Torre 2009).  

At a basic level, a haptic system comprises a user, a haptic interface (device), 

and virtual environment (VE) (Figure 2-5).  
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Figure 2-5 Flowchart of the basic components of haptic system. 

 

Haptic interfaces are specialised devices (with hardware and software 

components) that allow user interaction with the virtual environment via 

realistic feel, touch and manipulation of three-dimensional objects. The 

mechanical components of the haptic interface are in physical contact with 

user who can manipulate it.  

There are two basic classes of the haptic devices based on underlying control 

mechanism: 

A. Impedance controlled devices (e.g. Sensable's Phantom devices) in 

which the device will react with a force if a virtual object is met via user 

movement (i.e. measure movement and display force; or displacement 

in and force out), so that the mass and friction of the device is felt by the 

user. 
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B. Admittance-controlled devices (e.g. The HapticMaster) are the opposite 

of impedance controlled devices, in which the device will react with the 

proper displacement in response to the force exerted by the user (i.e. 

measure force and display movement ; or force in and displacement 

out). Due to its robust features of high force and stiffness, the 

admittance control mechanism has been constantly utilized in flight 

simulators industry (Van der Linde et al. 2002; Mihelj & Podobnik 2012). 

 

Figure 2-6 Examples of haptic devices. [A] The Geomagic Touch™ (formerly 

Sensable’s Phantom Omni) an impedance controlled device by Geomagic-

3D systems (image courtesy of Geomagic®: geomagic.com) . [B] The 

HapticMaster™ an admittance-controlled device by Moog FCS Robotics 

(image courtesy of Moog Inc.) 

 

Haptic rendering allows the creation of 3D representation of the virtual object 

with a variety of characteristics (e.g. shape, surface texture and dynamics) via 

mathematical models that are either surface based or volumetric based 

models (composed of voxels). The haptic sequence of collision detection4 and 

                                              

4 The motion of object is limited by intersections with other objects and other dynamic 

constrains (i.e. computational problem of detecting the intersection of two or several 
objects in computer simulated environment)(Srinivasan & Basdogan 1997). 
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response, which constitute the haptic rendering algorithm, is constantly run in 

real-time, and precisely defines the characteristics of the virtual environments 

and virtual objects (Srinivasan & Basdogan 1997; Grunwald 2008). 

2.2.2.3  Haptic research in dentistry  

There are two research approaches to haptics in dentistry and dental 

education: 

1- Haptic simulators development: this approach focuses on the design, 

engineering, preliminary testing and technical specifications of simulator 

prototypes. The developed prototypes range in fidelity from limited 

haptic functionalities to more advanced prototypes that reached the 

stage of pilot testing with dental students and dentists (e.g. Wang et al. 

2003; Wu et al. 2009; Kim et al. 2005; Yau et al. 2006; Yoshida et al. 

2011).  

2- Haptic simulators utility and implementation: this approach focuses 

on the investigation of the developed, or commercially available 

simulators including various validation studies, functional utility and 

comparative evaluation with the existing simulators (Luciano et al. 2009; 

Ben-Gal et al. 2011; Vervoorn & Wesselink 2009; Cormier et al. 2011; 

Tse et al. 2010).  
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2.2.3 Visual perception in Virtual Environment  

Among the key factors that contribute to the effective use of VR simulation are 

human factors (ergonomics), specifically human-VR environment interaction. 

This form of physical and cognitive ergonomics is part of the wider concept of 

ergonomics that address different types of human-system interactions to 

ultimately optimize human well-being and overall system performance (IEA 

2016). Exploring and addressing these factors will allow us to maximise VR 

system potential and its usability.  

More specifically, there is a need to understand how students/trainees perform 

most effectively in VR environments. Otherwise, some issues may negatively 

impact on the training experience of the student, resulting in compromised 

learning (Lewis & Griffin 1997) and negative transfer of training5.  

The existing body of literature on human factors in VR environments has 

focused on several aspects such as human performance efficiency and 

systems characteristics, in addition to health and safety issues. Human 

performance efficiency in VE is affected, among other factors, by the individual 

user differences that can be simplified (Stanney et al. 1998) as differences in: 

1. Input (the user/student perception in VE) e.g. visual depth perception, 

and Inter pupillary distance (IPD).   

2. Throughput (how the user/student interpret the received information) 

e.g. cognitive styles. 

3. Output (how the user/student interact and perform the desired task) e.g. 

task performance. 

 

                                              

5 Negative transfer occur if the practiced task impaired the performance of subsequent task or 

negatively affecting its performance (Schmidt & Wrisberg 2008). 
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Visual perception parameters particularly depth perception and stereopsis are 

important user factors that influence the performance on VR 3D simulators 

with stereoscopic displays. Therefore, understanding depth perception 

mechanisms is central to successful performance in virtual environments 

(Poyade et al. 2009).  

2.2.3.1 Depth perception  

Depth perception is not a single entity but rather a complex process that 

comprises rich sensory information conveyed to the brain and influences the 

quality of human-environment interaction and performance of everyday tasks 

(Blavier & Nyssen 2008) via various types of retinal and extra-retinal cues. 

 The extra-retinal (oculomotor) depth cues are provided by the eye 

muscles proprioception and include accommodation6 and 

convergence7. 

 Retinal (visual) depth cues include binocular and monocular cues.  

The horizontal separation of the human eyes, which is known as the average 

inter-ocular distance (ranges from 6.3 cm to 6.5 cm), results in two slightly 

different retinal images presented to each eye (binocular disparity) and fused 

by the brain to give the perception of depth in its highest form to visualize 

objects in three dimensions. Binocular and oculomotor cues play a major role 

in depth perception at near distance (within 3m) (Lin & Woldegiorgis 2015). 

The perception of the third dimension is further enhanced by coordinating the 

gaze direction of both eyes, as well as by motion (via head, body and object 

movements). It is noteworthy that each type of movement generates different 

                                              

6 The eye ability to change its focus from distant to near object via adjusting the focal length of 
the lens. 

7 The simultaneous inward movement of both eyes toward each other. 
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three dimensional information which is also different from 3D information 

derived from a stationary position (Wexler & van Boxtel 2005).  

At the neuronal level, the perception of stereoscopic depth is a multi-stage 

process involving dorsal and ventral cortical pathways (Parker 2007). 

Monocular cues can be obtained by one eye only and perceived in just two 

dimensions. Examples of monocular depth cues include occlusion, linear 

perspective, motion parallax, texture, size, and shading and contour (Poyade 

et al. 2009; Bruce et al. 2003). These cues can be also described as relative 

cues, which indicate how far an object is from the observer relative to another 

object. On the other hand, accommodation and convergence cues are 

described as egocentric cues, which give information about the distance 

between the observer and an object (Hofmeister et al. 2001). 

The brain uses a combination of different depth cues to achieve precise and 

reliable perception of the surrounding world (Lambooij et al. 2009). Although 

depth can be perceived with monocular cues only, the finest quality and 

vividness of depth (or the relative z-axis) can be only perceived with binocular 

disparity (known as stereopsis) which is the most accurate among other depth 

cues (Poggio & Poggio 1984; Fielder & Moseley 1996; Saladin 2005). 

Generally, the availability of depth cues, particularly stereopsis, significantly 

affect the hand-eye coordination which is most useful in the fine tuning of 

motor control tasks (Schiller et al. 2012). 

The last section of this chapter provides an overview of the principles of motor 

learning as an integral component in understanding skill acquisition in real and 

simulated environments.  
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2.3 Principles of Motor skill learning 

2.3.1 Motor skill 

Motor skill can be defined as an activity that requires voluntary movement of 

the head, body, and/or limbs to achieve a specific goal with a level of 

proficiency. Fine motor skill is a type of motor skill that utilizes small 

musculature as the primary muscles involved in performance to achieve a 

specific goal that needs hand-eye coordination, and a high degree of precision 

of hand and fingers movement (Magill 2011). 

Any motor skill encompasses a subset of motor abilities, which are individual 

traits that collectively form the basis for skill performance. These abilities 

determine the person performance potential to be skilful at certain motor tasks 

(Haibach et al. 2011). It follows that the individual differences (i.e. strength 

level, and limitations) in the underlying motor abilities impact their potential and 

achievements for skilled performance. Moreover, the pattern of motor abilities 

that underpin skilled performance can be modified with practice (Schmidt & 

Wrisberg 2008).  

The specificity hypothesis indicates that each motor skill requires very specific 

motor abilities for skilled performance, a unique combination of several abilities 

(Henry 1968; Haibach et al. 2011). According to Fleishman (1975) and based 

on many research studies, abilities can be categorized into perceptual–motor 

abilities (related more to fine motor skills) and physical proficiency abilities 

(related more to gross motor abilities). From Fleishman’s taxonomy (Fleishman 

1975), we can identify the perceptual-motor abilities that are directly related to 

dentistry and dental performance and these are presented in Table 2.3-a. 
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Table 2.3-a Perceptual-motor abilities directly relevant to dentistry and dental 

performance (Fleishman 1975; Magill 2011).  

Perceptual 

motor ability 
Definition Example 

Control Precision 

Ability to make rapid and precise 

movement adjustments of control 

devices involving single arm-hand 

movements. 

 Manipulating the 

handpiece during cavity 

preparation. 

Manual dexterity 
Ability to make skillful arm-hand 

movements to manipulate objects 

under speed conditions. 

 Cementation of anterior 

esthetic porcelain 

veneers  

Finger dexterity 

Ability to make skillful, controlled 

manipulations of tiny objects 

involving primarily the fingers. 

 Carving amalgam 

restoration  

 Applying resin composite 

layered restoration 

Arm-hand 

steadiness 

Ability to make precise arm-hand 

positioning movements where 

strength and speed are 

minimized. It includes steadiness 

maintenance during arm 

movement or static arm position. 

 Moving the handpiece to 

prepare a full crown 

(indirectly) in a maxillary 

molar tooth  

Wrist, finger 

speed 

Ability to make rapid and 

repetitive movements with hand 

and fingers, and/or rotary wrist 

movements.  

 Applying Tofflemire matrix 

band  

 Cleaning and shaping of 

root canal with rotary files 

Aiming 
Ability to rapidly and accurately 

move the hand to small target. 

 Applying pulp capping 

material 

 Caries excavation 

 

2.3.2 Motor learning 

Motor learning is defined as “a set of complex processes (perception, cognition 

and action) associated with practise or experience, leading to relatively 

permanent changes in the capability of producing skilled action” (Shumway-

Cook & Woollacott  2012). Motor learning can involve the acquisition of new 

motor skill, performance enhancement of a learned skill, or the re-acquisition 
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of motor skill that has been affected by disease or injury (Magill 2011). In 

dentistry, learning fine motor skills can involve all the three mentioned types at 

different stages, for example, the preclinical stage is primarily dedicated to the 

acquisition of new skills; clinical and post graduate stages are mainly focused 

on enhancement of the learned skills, although new motor skills can be 

learned at anytime during dental career. 

On the other hand, motor control is related to the regulation of the motor 

activity through neuromuscular coordination and activation of specific body 

parts involved in the skilled action (Magill 2011). 

Early theories of motor skill acquisition (e.g. Anderson (1982), Fitts and Posner 

(1967), and Schneider and Shiffrin (1977)) characterize learning as a multi-

stage process based on cognitive demands perspective that starts with 

conscious effort and reliance on resources to perform a motor task and 

culminates in performance independence or automaticity (Langan-Fox et al. 

2002). In Fitts and Posner’s (1967) theory it was proposed that motor skill 

acquisition follows three stages. The cognitive stage involves a high degree of 

cognitive activity, such as understanding the nature of the task and develop 

strategies to carry out the task.  Next is the associative stage, in which the 

learner begins to refine the learned skill, with improved error detection and 

correction mechanisms. The third stage is the autonomous stage in which the 

skill becomes automated with less cognitive demands during its performance 

(Shumway-Cook & Woollacott, 2012).  

More recently, researchers have suggested that the motor learning process 

can be explained as (Wolpert et al. 2011) : motor learning components (task-

relevant information), the processes involved in learning these components, 
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and the internal representation of motor learning (internal models). Those 

recent concepts are presented in a simplified flowchart (Figure 2-7) that 

categorize the principles of motor learning into three main parts: what are the 

components of motor learning, how to learn these components, and where the 

learning is represented in our brain (internal neural models).  
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Figure 2-7 Simplified flowchart of the principles of motor learning; based on Wolpert et al. papers (Wolpert et al. 2011; Wolpert & 

Flanagan 2010)  
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2.3.3 Motor Learning and performance 

Performance is differentiated from learning as being a transitory change in 

motor action during practice, which can be observed and measured. Learning 

is a relatively permanent change that can not be directly measured but can be 

inferred and evaluated after practice by identifying specific performance 

characteristics namely improvement, consistency, stability, persistence and 

adaptability. Retention test for example is a mean of evaluating performance 

persistence while transfer test is evaluating the adaptability of the performance 

to novel context (Magill 2011; Shumway-Cook et al. 2012). The goal of dental 

training is not only to facilitate performance during practice, but also to 

enhance the skills learning and transfer. 

Generally, three main factors influence the performance of any motor skill: the 

skill characteristic, the person who performs the skill, and the performance 

environment (context).  

Sensorimotor learning can be measured through its behavioural effects. 

Improvement of motor task performance may occur with repeated practise over 

time, which could be as a result of learning or some other factors such as 

increased motivation. To determine if the improvement is an actual learning 

effect, a retention test can be performed after the initial skill-training phase. 

The rationale is to allow time for other intervening factors (e.g. fatigue and 

motivation) to fade or return to normal. Therefore, the retention test provides a 

measure of the extent to which improvements made during the training phase 

are retained over the interval between training phase and retention test 

(Tresilian 2012). 

Skill retention depends on the type of skill acquired, the extent of skill learning 
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and the time interval between training and re-test (retention test) (McGaghie et 

al. 2010).  

The variability of performance during training can be used as a measure of 

learning; if the skill is being learned, the variability in performance should 

decrease and the overall performance becomes more consistent. Haptic 

feedback in virtual reality simulations can enhance the psychomotor skill 

learning by reduction of the learning time (shorter learning curve), 

improvement of performance quality and dexterity in a realistic virtual 

environment (O’Malley et al., 2006). 

Among several factors that influence the motor skill learning and performance, 

some are particularly relevant to medical and dental training. Wulf et al. (2010) 

identified four factors, described next,  that have consistently been shown to 

enhance the motor skill learning including: observational learning, learners’ 

focus of attention, performance feedback and self-controlled practice (Wulf et 

al. 2010). 

A- Observational learning: evidence from neuroimaging research 

indicates the importance of observational learning (Gallese & Goldman 

1998; Molenberghs et al. 2012). It shows that during action production 

and observation a set of specific neural structures are activated. The 

unique contribution of observation to motor learning is that it allows the 

learner to process information (related to coordination patterns and 

subtle task features and evaluate task strategies) that would be 

impossible to process during physical practice.  

It has been shown that alternating between physical practice and 
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observation (e.g. dyad practice1) contributes positively to performance 

during retention and transfer. This has an implication in increasing the 

efficiency of training without increasing the time or the need for extra 

resources. 

B- Focus of attention: it has been shown that during motor skill 

instruction, when the trainee attention is directed toward body parts 

(e.g., hand, fingers) the learning was relatively ineffective, compared to 

directing the trainee’s attention to external focus (e.g. site of carious 

lesion). The external focus of attention results in more efficient learning 

by speeding up the early phases of motor learning, and minimizing self-

focus that may detract from the concentration on critical performance 

components. Therefore, simple verbal change during motor skill 

instruction can significantly influence performance outcome. This 

particularly impacts the learning of complex motor skills that need high 

levels of coordination. 

This area of research is still evolving with more yet to be learned about 

what optimal external foci would enhance the learning of specific motor 

skills.  

  

C-  Feedback: it is one of the most influential factors affecting motor skill 

learning. Evidence suggests that not only the informational component 

of feedback is important in motor skill learning but also the motivational 

components as well. 

A more detailed discussion about the role of feedback in motor skill 

learning is presented in Chapter 6 of this thesis. 

                                              

1 Two participants alternate between physical and observational practice, undertaking only half 

of the training physically compared to individual training (Wulf et al. 2010). 
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D- Self-controlled practice: evidence from motor learning literature 

suggests that learning of a motor skill is enhanced when learners are 

given a degree of control/ autonomy over the practice conditions (e.g. 

practice schedule, timing of feedback) (Zimmerman 2002). This 

changes the learner’s passive role in a prescribed practice protocol, to 

active involvement, participation and motivation. 

2.3.4 Performance measures 

As mentioned above, motor learning cannot be measured directly, it can only 

be inferred from characteristics of a person’s performance. The measurement 

of motor performance is categorised into outcome & production measures. 

Outcome measures indicate the performance outcome of a motor skill (e.g. 

percentage of errors). Performance production measures relate to the 

characteristics that produced the outcome, it indicates specific aspects of the 

motor control system during action performance (e.g. displacement, velocity) 

(Magill 2011; Tresilian 2012). Error measures are important and meaningful 

performance outcome measures particularly with fine motor skills that demand 

precision and accuracy. Error measures can indicate the causes of 

performance problems, which is essential for motor learning and for instruction 

as well (Magill 2011). Kinematic measures are performance production 

measures that are based on recording the movement of specific body parts 

while a person is performing a skill. Kinematic is a descriptive term that refers 

to motion without regard to forces or mass, when the force is considered it is 

referred to as Kinetics. Kinematic measures denotes three characteristics: 

displacement, velocity and acceleration (Magill 2011).  

A haptic VR system can provide error and kinematic measurements 
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automatically which can be used for objective assessment of task 

performance. Such data are not available in conventional skill training 

environments (Suebnukarn et al. 2009). 
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Chapter 3 : Face and content validity of Simodont® virtual 

reality haptic dental simulator 
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Virtual reality simulators have been increasingly adopted in undergraduate 

dental education (Dutã et al. 2011; Perry et al. 2015). The growing body of 

literature on the utility of various types of VR simulators in dental education is 

promising and starting to substantially impact the pedagogical approach to 

undergraduate dentistry (Buchanan 2004; Wierinck et al. 2007; Rees et al. 

2007; Bakr et al. 2013; Vervoorn et al. 2015; Cox et al. 2015). The increased 

availability of dental virtual reality simulators demand a thorough evaluation of 

their features in order to facilitate a well informed decision process about how 

to best utilize and integrate them into the dental curriculum. The evaluation of 

these simulators is a multistep process that starts by investigating the 

perception of the new technology by the primary users (educators, and 

students at different stages) and validation of its various contents and potential 

utility.  Therefore, validation of virtual reality simulator is a vital first step before 

its full adoption (McDougall 2007).  

Validity refers to the ability of a test/device to measures what it is intended to 

measure, (i.e. the simulator actually measures what it is intended to evaluate 

or measure). Benchmarks have been developed for validity assessment using 

several methods including face validity, content validity, concurrent validity, 

construct and predictive validity. Face validity relates to the realism of the 

simulator, while content validity evaluates the training potential of the simulator 

as a teaching modality. Both face and content validity relies on expert 

judgment during the early phases of simulator introduction (McDougall 2007; 

Gallagher et al. 2003).  

The term simulator realism is frequently used to describe how closely the 

features, appearance and functionality of the simulator resemble real-world 
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conditions that are being simulated (Maran & Glavin 2003; Hamstra et al. 

2014). It is mainly referring to the simulated design features that look-like the 

features of the real case (e.g. plastic typodont tooth closely representing the 

natural tooth shape, anatomic features and color).  There are wide variations in 

the degree of simulator realism from sophisticated replication of full real-life 

features to simplified representation of some aspects of the case/task . The 

term fidelity is sometimes used to broadly describe the simulator realism. 

However, simulation fidelity encompasses two specific elements, the structural 

and the functional fidelity. The structural fidelity is related to the realism of the 

simulator appearance, while the functional fidelity is related to how closely it 

simulates the target action. Structural fidelity/realism does not necessarily 

translate into educational effectiveness and the extent of simulator fidelity 

should be mapped strategically into the learning objective of the specific 

training context (Hamstra et al. 2014). 

The Simodont® is one currently available haptic VR dental simulator. The 

realism of the simulator has been evaluated, upon its first introduction, among 

10 educators and 25 general dental practitioners (Vervoorn & Wesselink 

2009). Subsequently, its realism and the training potential were evaluated by 

researchers from Griffith university in a series of three studies, one among 11 

academic staff (Bakr et al. 2013) , among second year dental students (Bakr et 

al. 2014), and among 4th and 5th year dental students (Bakr et al. 2015). More 

recently, the Simodont® user experiences among 68 first year dental students 

have been also evaluated (Farah-Franco et al. 2016). Although face validity 

has been established among undergraduate dental students in the previously 

mentioned studies, there have been no reported face and content validation 

studies, so far, among postgraduate dentists from different dental specialities. 
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This group has diverse educational and clinical background that will enrich the 

available data regarding various user experiences, and will contribute to face 

and content validation literature of Simodont®, which should ideally inform the 

future utility and design of this simulator. 

3.1 Aim 

The current investigation aimed to explore, via a post experience online 

questionnaire, the face and content validity of Simodont® haptic dental 

simulator among a group of postgraduate dental students with at least 3 years 

dental experience, following their participation in a study using the Simodont® 

simulator (Chapter 5, section 5.2). 

3.2 Methods 

3.2.1 Simodont® haptic dental simulator  

The Moog Simodont® dental trainer is a virtual reality haptic dental simulator 

developed by Moog Inc. (Nieuw-Vennep, Amsterdam, Netherlands) and ACTA 

(the Academic Centre for Dentistry, Amsterdam, the Netherlands). The 

Simodont® device consists of a training console with haptic interface and an 

attached computer screen.  

3.2.1.1 The haptic interface  

The key feature of any haptic interface is that it allows user interaction with the 

virtual environment via simulated sensory information and force feedback that 

allow touch and manipulation of three-dimensional objects. 

Simodont’s® haptic interface provides force feedback based on the admittance 

control paradigm (for details see page 32,33 ) of the HapticMaster (Moog Inc. 

2011) ( Figure 2-6,B), through which the simulator responds to force exerted 
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by the user, leading to a sense that the user is interacting with an object of 

equal mass.  

The simulator comprises of two separate, varied frequency loops (haptic and 

graphics). The simulation of tooth cutting and collision detection runs via the 

haptic loop so that the realistic force feedback in tooth cutting simulation is 

computed within 1 millisecond. The force feedback robotic arm is connected to 

the courseware so that every movement is visualised on the attached 

computer screen (Bakker et al. 2010).  

3.2.1.2 Simulator Screen  

The training console of the simulator consists of a small screen (5” size with a 

60Hz refresh rate and 800x600 resolution) located in front of the trainee so 

that it simulates the patients’ head position. Underneath the screen is a 

physical handpiece with a virtual tip, and dental mirror handle with virtual head. 

The screen size is ‘life-sized’ and accurately seen in the physical workspace of 

the hand piece, which is mirrored in the co-located visual display (Moog Inc. 

2016). The high-resolution stereo image with real size co-located visual display 

(approximating the human eye acuity limits) is facilitated by 3D projection and 

mirror technology. Magnification (zoom in/out) of the 3D display is possible up 

to 125% in the current settings used with all participants in our studies, but can 

be increased up to 300%, similarly, the full rotation of the virtual models in the 

3D display is possible.  

3.2.1.3 Stereoscopic display  

To obtain the 3D stereoscopic vision in Simodont®, the simulator is equipped 

with two digital multimedia projectors from LG™ (type HS101, resolution 

800X600), which operate simultaneously resulting in projection of two images 
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superimposed onto the screen through a polarizing filter. The operator needs 

to wear passive polarised glasses for the image to be perceived as one 3D 

image (de Boer et al. 2016a).  

For the 2D vision in Simodont®, one of the projectors can be turned off, and in 

our stereopsis experiment (Chapter 5, section 5.2 ) we asked the participants 

to wear another type of glasses (non polarized lightly tinted glasses) to perform 

the tasks under 2D conditions. The simulator was engineered to output a 

single image (to both eyes) within the non-stereoscopic conditions. 

3.2.1.4 Courseware 

A separate computer is attached to the Simodont® training console and it 

contains a specialised courseware (developed by ACTA), with two 

components: the virtual clinic and the virtual lab.  

The courseware comprises lesson programs and modules with a range of 

manual dexterity exercises, operative dentistry procedures, as well as crown 

and bridge cases, all with varied levels of difficulty. The manual dexterity 

module offers automatic evaluation and records the real-time kinematics of 

student performance, which appears on the attached computer screen and 

shows all the recorded metrics in detail  (e.g. the percentage of the target 

removed, the percentage of errors done to the sides and bottom of the shape). 

Therefore, the participant will be able to monitor his/her progress in real-time. 

The available teeth library is derived from real extracted teeth. The volumetric 

data of the teeth is acquired via i-CAT™ scanner - a specialised cone beam 

Computed Tomography technology for dental CT scans (Imaging Sciences 

International, LLC) (Bakker et al. 2010). The varied force feedback of the 

virtual teeth is based on the density values of the manipulated dental tissue; 
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for example enamel is harder to remove than soft carious dentin. The virtual 

teeth library is expandable and editable, allowing for the addition of various 

shapes and sizes of virtual teeth with and without pathology (de Boer et al. 

2013), with unlimited practice possibilities using imported dental cases of 

varied complexity, contributed by some dental schools including ACTA and 

Leeds School of Dentistry (Moog Inc. 2016).   

3.2.1.5 Virtual handpiece and instruments  

Hand instruments are simulated (true to size) as well as various types of dental 

bur (diamond, tungsten carbide and steel). Dental mirror allows the realistic 

examination of the teeth from all sides, in addition to other instruments such as 

dental explorer with force feedback. The dental tools have six degrees of 

freedom positional sensing, generating three degrees of freedom force 

feedback (Bakker et al. 2010).  

The speed of the virtual hand piece is controlled using a realistic foot pedal. 

Once the operator presses the foot pedal the handpiece operates with a 

realistic air turbine (rotor) sound and the dental bur starts revolving. Once the 

bur comes in contact with the block or the virtual tooth the cutting takes place 

providing that the participant presses on a specific area of the virtual tooth. 

When a virtual tooth is cut, multimodal simultaneous visual, audio and tactile 

feedback are received (de Boer et al. 2013). 
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Figure 3-1  Simodont® simulator device with labelled components. Image courtesy of Moog (Moog Inc. 2011). 
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Figure 3-2 Simodont® trainee perspective showing the co-located visual 

display as the screen appears in the physical workspace of the handpiece 
and the mirror. Image courtesy of Moog (Moog Inc. 2011). 

 

3.2.2 Participants 

Sixteen participants (13 female and 3 male, mean age = 32.8 years, SD = 3.5 

years) participated voluntarily and answered the questionnaire after completing 

the stereopsis experiment using Simodont® haptic simulator (Chapter 5, 

section 5.2) . The participants were postgraduate dental students, from various 

dental specialities with at least three years of clinical experience (Figure 3-3), 

completing their studies at the School of Dentistry, University of Leeds. They 

had no previous experience in using Simodont® or any other dental VR 

simulator. Ethical approval was obtained from DREC (Dental Research Ethics 

Committee) at the School of Dentistry, University of Leeds (DREC ref: 

230915/LA/178). 
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Figure 3-3 The participants’ (N=16) dental speciality and clinical experience by 
years of dental practice. 

 

3.2.3 Questionnaire 

An online questionnaire (appendix A.1) was sent via email link to all participants, 

after the stereopsis experiment, to explore the Simodont® user experience. The 

questionnaire is structured into the following 4 main sections with a total of 30 

questions: 

A. Section A (4 questions) focused on general demographics (age, gender, 

dental specialty, years of dental practice).  

B. Section B (10 questions) focused on face validity/ simulator realism 

(visual realism, auditory realism, haptic realism, the 3D representation). 

The questions in this section were on a 5-point Likert scale: (1-Very 

realistic, 2-Realistic, 3-Neutral, 4-Not realistic, 5-Not realistic at all). 
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C. Section C (16 questions) focused on content validity / simulator usability 

and training potential. The questions in this section were on a 6-point 

Likert scale: (1-Strongly disagree, 2-Disagree, 3-Neither agree nor 

disagree, 4-Agree, 5-Strongly agree, 6-do not know). 

D. Free text comment space was provided for feedback and elaboration on 

the experience of using Simodont® and any additional issues that were 

not covered in sections B and C. 

The questionnaire was pilot tested with postgraduate colleagues in dentistry, not 

involved in the experiment, for wording and overall consistency and it was 

refined accordingly. 

3.2.4 Statistical data Analysis  

Descriptive statistics, frequency distribution and statistical comparisons for all 

ratings were determined. Combined ratings were calculated to obtain the overall 

experience as positive, neutral, or negative: For section B: positive (Very 

realistic and Realistic), neutral and negative (Not realistic and Not realistic at 

all). For section C and sub-sections: yes (Agree and Strongly agree), neutral  

(Neither agree nor disagree and do not know) and no (Strongly disagree and 

Disagree). To explore group differences based on specialism, Kruskal-Wallis H 

test was conducted for each item in section B and C of the questionnaire. All 

statistical analyses were performed using IBM SPSS® Statistics for Windows 

(Version 22, Armonk, NY: IBM Corp., 2013). The free text comments were 

analysed and coded into main themes. 
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3.3 Results 

3.3.1 Reliability  

 Cronbach’s alpha was calculated to test reliability and internal consistency for 

the ratings of section B (simulator realism) and section C (training potential) of 

the questionnaire. Both sections had a high level of internal consistency, with 

Cronbach's alpha values of (.806) for section B and (.755) for section C. 

3.3.2 Responses for simulator realism- section B 

The realism of the simulator was investigated in 10 questions, and the results 

showed that postgraduate dentists generally viewed the Simodont® as realistic 

tool (Figure 3-4). The means for each question and frequency distribution of the 

ratings is presented in (Table 3.3-a).  

 

Figure 3-4 Combined overall ratings for the Simodont® realism [A] in general 
and [B] for each item in section B (realism). 
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Table 3.3-a Means (±SD), variance, and frequency distribution of section B 

of the questionnaire (face validity), on 5-point Likert scale (1:Very 

realistic, 2:Realistic, 3:Neutral, 4:Not realistic 5:Not realistic at all) 

Question Mean (SD) Variance 
1 

n(%) 

2 

n(%) 

3 

n(%) 

4 

n(%) 

5 

n(%) 

Visual realism 
 

Teeth (and oral environment) 2.94(± 0. 854) 0.729 0 
6 

(37.5%) 

5 

(31.3%) 

5 

(31.3%) 0 

Handpiece 2.19(± 0. 750) 0.563 
2 

(12.5%) 

10 

(62.5%) 

3 

(18.8%) 

1 

(6.3%) 0 

Dental burs 2.25(± 0. 775) 0.600 
2 

(12.5) 

9 

(56.3%) 

4 

(25%) 

1 

(6.3%) 0 

Dental mirror 2(± 0. 73) 0.533 
3 

(18.8%) 

11 

(68.8%) 

1 

(6.3%) 

1 

(6.3%) 0 

Other instruments 2.64(± 0. 497) 0.247 0 
5 

(31.3%) 

9 

(56.3%) 
0 

0 

The indirect vision (mirror 

vision) exercise 
2.44(±1.21) 1.463 

4 

(25%) 

5 

(31.3%) 

4 

(25%) 

2 

(12.5%) 

1 

(6.3%) 

Haptic realism  

Hardness, texture and tactile 

feedback of enamel, sound 

dentin and carious dentin 

2.88(±1.025) 1.05 0 
8  

(50%) 

3 

(18.8%) 

4 

(25%) 

1 

(6.3%) 

The cutting efficiency of the 

handpiece, manipulation of 

the instruments (excavator, 

probe etc.) 

2.5(± 0. 966) 0.933 
2 

(12.5%) 

7 

(43.8%) 

4 

(25%) 

3 

(18.8%) 0 

Auditory realism  

The sound of the handpiece 2(± 0. 894) 0.800 
5 

(31.3%) 

7 

(43.8%) 

3 

(18.8%) 

1 

(6.3%) 0 

Stereoscopic realism  

The depth of the virtual 

scenery (the 3D 

representation) 

2.38(± 0. 619) 0.383 
1 

(6.3%) 

8  

(50%) 

7 

(43.8%) 
0 0 
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3.3.3 Responses for simulator training potential - section C 

The training potential of the simulator was tested through 16 questions in 

Section C of the questionnaire. Generally, the participants believe that 

Simodont® is a valuable training tool to supplement, but not to replace, existing 

phantom head simulator (Figure 3-5). The participants believe that Simodont® is 

not difficult to use (Figure 3-6A) and they positively rated the indirect vision 

exercise (Figure 3-6B) as well as their overall Simodont® experience (Figure 

3-6C). The mean for each question and frequency distribution of the ratings is 

presented in (Table 3.3-b). 

 

Figure 3-5 Combined overall ratings for the Simodont® training potential [A] 
in general and [B] for each item in the sub-section. 
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Figure 3-6 Combined overall ratings for the Simodont® [A] difficulty of use; and 
[B] indirect vision exercise subsections of the questionnaire section C.  

 

No Neutral Yes
0

5

10

15

Difficulty of use 

R
e
s
p
o
s
e
s
 (

n
)

Helpful Comparable to phantom excercise
0

5

10

15

20

Indirect vision excercise

R
e
s
p
o
n
s
e
s
 (

n
)

No
Neutral
Yes

A B



 
 

63 

Table 3.3-b  Means (±SD), variance, and frequency distribution of 
section C of the questionnaire (content validity), on 6-point Likert 
scale (1:Strongly disagree, 2:Disagree, 3:Neither agree nor disagree, 

4:Agree, 5:Strongly agree, 6: do not know) 

Question 
Mean 
(SD) 

Variance 1 
n(%) 

2 
n(%) 

3 
n(%) 

4 
n(%) 

5 
n(%) 

6 
n(%) 

Difficulty of use  

I found the simulator 
unnecessarily complex 

2 
(± 0.73) 

0.533 
3 

(18.8%) 
11 

(68.8%) 
1 

(6.3%) 
1 

(6.3%) 
  

The simulator was difficult to use 
2.25 

(± 0.931) 
0.867 

3 
(18.8%) 

8 
(50%) 

 

3 
(18.8%) 

2 
(12.5%) 

 
  

I would need the support of a 
technical person to be able to 
use this simulator 

2.73 
(±1.438) 

2.067 
3 

(18.8%) 

5 
(31.3%) 

 

2 
(12.5%) 

 

4 
(25%) 

 
 

1 
(6.3%) 

Training Potential 

Most students would learn to 
use this simulator very quickly 

3.88 
(±1.03) 

1.05  
3 

(18.8%) 
 

9 
(56.3%) 

4 
(25%) 

 
 

I believe that I would be a better 
dentist now if I had received 
Simodont® training during my 
undergraduate training 

3.44 
(±1.504) 

2.263 
2 

(12.5%) 
 

1 
(6.3%) 

7 
(43.8%) 

2 
(12.5%) 

 

2 
(12.5%) 

 

2 
(12.5%) 

 

I felt very confident using 
Simodont® simulator. 

3.38 
(±1.15) 

1.32 
1 

(6.3%) 

2 
(12.5%) 

 

5 
(31.3%) 

 

7 
(43.8%) 

 
1 

(6.3%) 

Would be a useful educational 
tool in preclinical dental training 

4.5 
(±.816) 

0.667   
2 

(12.5%) 

 

5 
(31.3%) 

 

8 
(50%) 

1 
(6.3%) 

Would be a useful tool in early 
dental skill training 

4.38 
(± 0.5) 

0.25    
10 

(62.5%) 
6 

(37.5%) 
 

Would be a useful tool in 
advanced dental skill training 

3.44 
(±1.365) 

1.863 
2 

(12.5%) 
 

2 
(12.5%) 

 

2 
(12.5%) 

 

8 
(50%) 

1 
(6.3%) 

1 
(6.3%) 

I believe that the Simodont® can 
replace the traditional dental 
simulators  

2.44 
(±1.263) 

1.596 
2 

(12.5%) 
 

10 
(62.5%) 

1 
(6.3%) 

2 
(12.5) 

 
 

1 
(6.3%) 

I believe that the Simodont® can 
supplement traditional dental 
training 

4 
(±1.095) 

1.2 
1 

(6.3%) 
1 

(6.3%) 
 

9 
(56.3%) 

5 
(31.3%) 

 
 

I recommend the use of 
Simodont® to new dental 
trainees 

4.5 
(± 0.632) 

0.40   
1 

(6.3%) 
6 

(37.5%) 
9 

(56.3%) 
 

Indirect vision exercise 

The indirect vision exercise in 
the Simodont® is helpful for 
practicing mirror vision skills 

3.94 
(±1.063) 

1.129  
3 

(18.8%) 
 

8 
(50%) 

5 
(31.3%) 

 
 

The indirect vision exercise 
experience in the Simodont® 
approximates the phantom head 
exercise experience 

3.06 
(±1.289) 

1.663 
1 

(6.3%) 
6 

(37.5%) 

2 
(12.5%) 

 

6 
(37.5%) 

 
1 

(6.3%) 
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3.3.4 Response differences based on Specialism  

There were no statistically significant differences among participants (grouped 

by dental specialism) in any of the responses to sections B and C of the 

questionnaire as assessed by Kruskal-Wallis H test for each item (p’s > 0.05). 

The combined overall ratings for the Simodont® realism, training potential and 

difficulty of use by participants’ specialism are presented in ( Figure 3-7). 

 

Figure 3-7 Combined overall ratings for the Simodont’s® [A] training potential; 
[B] difficulty of use and [C] realism by participants’ specialism.  
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3.3.5 Free text comments/feedback 

Free text comments were provided by 8 (50%) participants only, and the 

contents were analysed and coded into two main themes (technical and 

realism) and presented in (Table 3.3-c).  Half of the feedback (four comments) 

was about technical issues in the simulator particularly the lack of finger 

support during task performance, the difficulty in handpiece and mirror 

movements. The other three comments were about the simulator realism in 

general, and specifically (addition of water to handpiece).  

Table 3.3-c Free text comments by some participants (n=8), with content 
coding and main themes. 

Text Comment Code Theme 

“Adding water virtually to Simodont® would make it better 

simulator for oral environment especially during cavity 

preparation.” 

Adding water to handpiece Realism 

“Hand piece felt heavy and stiff hard to move around” Handpiece maneuverability Technical 

“Thanks for a very interesting experience” 
Positive Experience 

“The main problem I encountered and wish to point out 

was the lack of proper finger support when using 

Simodont® specially for the indirect vision (i.e. no jaw or 

other teeth or other facial structure to help support hand to 

keep handpeice stable) which forms a big difference in  

training skills.” 

Finger support 

 
Technical 

“I found phantom head simulator more realistic than 

Simodont® but training could be improved by adding 

Simodont®. I have never used Simodont® before so it could 

be a good tool but with regular use.” 

Supplement Phantom head 

 
Realism 

“It was a great experience but I didn't think it simulated real 

dental work. Thank you for giving me a chance to try it :)” 
Didn’t simulate real dental 

work 
Realism 

“It was initially difficult to get used to for me. I didn't like the 

movements of the mirror but if I used it more I would be 

able to work it out” 

Mirror movements/control Technical 

“It would be great if the simulator was provided with a part 

to help fingers support when using the hand piece (like we 

do on adjacent teeth in real patient). This will give better 

control on light touches with the handpeice specially for 

indirect vision (I found it difficult to control the drilling 

without supporting my other fingers)” 

Finger support 

 
Technical 
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3.4 Discussion  

Simodont® haptic dental simulator was well accepted by the postgraduate 

dentists who participated in this study. They rated the simulator as realistic 

(mean range 2 - 2.94) particularly the visual, auditory and 3D realism. This is in 

agreement with previous studies on Simodont® realism (Bakr et al. 2013; 

Vervoorn & Wesselink 2009). Yet in the free text comment, some participants 

elaborated on the realism of the simulator and point out some missing 

elements (e.g. water cooling in the handpiece, finger rest). Similarly, general 

dentists in a previous study were critical about the realism of Simodont® 

(Vervoorn & Wesselink 2009), potentially because they might be comparing it 

with real clinical work and not with training on conventional non-computerized 

simulator. 

Other realism issues in our results include the force feedback, hardness and 

handpiece manoeuvrability, which mainly related to haptic realism (functional 

fidelity), as one participant commented about the stiffness of the handpiece 

and cutting efficiency, and the other commented about the control over mirror 

movement. This is also in agreement with participants’ experience in one study 

(Bakr et al. 2013) who commented about the weight of the handpiece and its 

cutting efficiency, and in another study with general dentists who were 

specifically not satisfied with force feedback of the simulator (Vervoorn & 

Wesselink 2009).  

Generally the participants did not find difficulty in using Simodont®, but some of 

them believe that technical support might be needed.  

Most participants found the indirect vision exercise on Simodont® to be helpful, 

however, there was some uncertainty regarding its similarity to the indirect 
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view exercise in phantom head. This was totally expected, as the participants 

were dentists with clinical experience and the level of simulation of mirror 

vision is compared to their current real experience and their undergraduate 

training on typodonts. However, for first year dental students this particular 

exercise is potentially very helpful (as pointed out by some participants) in 

introducing the concept of mirror vision skills in a game-like feature, which then 

can be enhanced and built upon through more realistic physical training on the 

phantom head. Moreover, two participants pointed out the lack of finger 

support, a technical issue that adversely affect the indirect vision performance, 

and has been also previously raised in another study (Bakr et al. 2013). The 

finger rest is crucial to achieve hand steadiness that facilitates controlled finger 

movements necessary for the fine dental manoeuvres. 

With regard to the training potential of the simulator, almost all participants 

agreed that Simodont® is a valuable training tool for undergraduate dentistry 

particularly in early skill training and would recommend it to new dental 

trainees, however, they believe that it can only supplement the conventional 

phantom head simulator but not totally replace it. Additional confirmation from 

the free text feedback revealed that although, they did appreciate its 

uniqueness and value, it is clear that they see the phantom head simulator as 

more realistic and better able to simulate dental work. This is in agreement 

with all previous studies on face validation of Simodont® (Bakr et al. 2013; 

Farah-Franco et al. 2016; Vervoorn & Wesselink 2009; Bakr et al. 2014; Bakr 

et al. 2015). This is not surprising, as the features of both simulators and the 

type of simulated procedures that can be performed are different. This should 

not be discouraging, but rather a catalyst for improving the simulator current 

features to meet the need of the end user (dental students and educators), 
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which calls for an interdisciplinary approach (involving dentists, dental 

educators, students, psychologists, and engineers) during the design and 

upgrade stages of the simulator. It is also important for dental educators to 

structure the preclinical simulation experience with a sound pedagogical 

approach that utilizes the simulation methodology based on the learning 

objectives and specific learning contexts, rather than adapting the learning 

process to the available simulator features.  

3.5 Conclusion 

Simodont® was well accepted by most of the participating postgraduate 

students, who believe that it is a valuable training tool to supplement, but not to 

replace the existing phantom head simulator. Some participants were critical 

about the force feedback, hardness and handpiece manoeuvrability, which 

mainly related to haptic realism (functional fidelity) of the simulator. Generally 

the participants did not find difficulty in using Simodont®, but some of them 

believe that technical support might be needed and raised some technical 

issues (such as the lack of finger support) that need to be addressed. No 

differences were found among participants based on their dental specialty in 

any aspect of the simulator evaluation responses.  Interdisciplinary approach 

to the design and upgrade of this simulator and other VR simulators is 

recommended to optimize its utility. 
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Chapter 4 : The predictive validity of Simodont® virtual reality 

haptic dental simulator  
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Among the primary research interests in the utility of VR simulators is whether 

they can be of predictive value for future preclinical and clinical dental 

performance. Prediction of future dental performance (both academic and 

clinical) has been always a fundamental concern for dental educators. Early 

identification of potential students who are more likely to thrive in dental school 

and beyond has both pedagogical, administrative and economic implications 

(Ranney et al. 2005; Urbankova et al. 2013). While it allows for early 

intervention, focused instruction and support for the weak/challenged students, 

it also facilitate a better selection process at the outset with objective criteria 

particularly with the growing number of dental schools applicants. 

The distinction between cognitive abilities (academic performance) and 

perceptual abilities (psychomotor skills) as predictors of dental performance 

has been advocated (Smithers et al. 2004), as each has its own characteristics 

, skill sets and conditions that influence their predictability. 

A wide range of predictors of academic performance has been investigated in 

the dental literature, for example, GPA (grade point average) (Sandow et al. 

2002; Curtis et al. 2007), DAT (dental aptitude test) (Wood & Boyd 1982; 

Kramer 1986; Carroll & Schuster 2015), UKCAT (United Kingdom clinical 

aptitude test) (Lala et al. 2013), MMI (multiple mini interviews) (Foley & Hijazi 

2013; McAndrew et al. 2016), and personality profiles (Poole et al. 2007; 

Chamberlain et al. 2005; Jones et al. 1997).  

While the prediction of early academic performance in dental school has been 

identified to some extent with the use of prior academic grades and various 

admission tests, the prediction of psychomotor skill/manual dexterity practical 

performance of dental students in preclinical and clinical settings is less 
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evident and not clearly defined (Urbankova & Engebretson 2011b). A wide 

range of predictors of psychomotor skills have been investigated (Table 3.5-a) 

including chalk carving tests (Gansky et al. 2004; Ballard et al. 2015; Peterson 

1974), waxing tests (Walcott et al. 1986) , wire-bending tests (Kao et al. 1990; 

Kothe et al. 2014), tweezers dexterity test (Lundergan et al. 2007), spatial 

ability tests (Heintze et al. 2004), Crawford Small Parts Dexterity test (Boyle & 

Santelli 1986; Spratley 1992) and other standard psychometric tests (Suksudaj 

et al. 2012; Causby et al. 2014) as well as other predictors (Luck et al. 2000; 

Boushell et al. 2011; Gray & Deem 2002; Zawawi et al. 2015).  

The majority of the investigated manual dexterity tests revealed a limited 

predictive value, and it has been suggested to utilise them as screening tools 

rather than predictors of performance (Ranney et al. 2005). The limited 

predictive value of even well established psychomotor tests has been 

attributed to incomplete understanding of the specific psychometric properties 

of the tests and more important, to the limited relevance of the tests to the 

specific dental tasks being predicted (i.e. reduced generalizability) (Causby et 

al. 2014). 
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Table 3.5-a Summery of key studies (in chronological order) on the prediction 
of practical dental performance. 

Author (year) Sample (N) Predictor  Outcome  Main findings 

Boyle and Santelli 

(Boyle & Santelli 

1986) 

71 The Crawford Small 

Parts Dexterity Test 

Mean performance 

in four preclinical 

laboratory courses  

The test may improve 

selection accuracy when 

used with other admission 

criteria. 

Walcott et al., 1986 

(Walcott et al. 1986) 

131 Two waxing test Eight preclinical 

performance 

measures 

The waxing tests are 

better predictors than the 

perceptual portion of the 

DAT. May be useful in the 

early identification of 

weak students. 

Kao et al., 1990 

(Kao et al. 1990) 

105 Wire-bending test Grades from seven 

restorative 

preclinical courses 

Wire-bending scores 

correlated significantly 

preclinical restorative 

courses and identified low 

performing students. 

Spratley , 1992 

(Spratley 1992) 

 

45 Battery of 3 manual 

dexterity tests 

developed based on 

Crawford Small Part 

Dexterity Test.  

Practical 

examination in 

dental technology  

 

No correlation 

 

Gansky et al., 2004 

(Gansky et al. 2004) 

 

244 Chalk carving 

(plaster block 

carving) 

Preclinical 

restorative course 

performance  

No correlation 

 

Lundergan et al., 

2007(Lundergan et 

al. 2007)  

 

50 Two different types 

of tweezers dexterity 

tests   (Johnson 

O’Connor Test 

#32022 and #18) 

-First year Practical 

performance at 5 

courses. 

-Cumulative GPA 

-Overall rank at time 

of graduation 

The predictive power of 

tweezers dexterity tests 

for the seven educational 

outcomes measures was 

weak. 

Boushell et al., 2011 

(Boushell et al. 

2011) 

81 Learn-A-Prep II  

 

Practical 

examinations in a 

preclinical 

restorative dentistry 

course.  

The depth aspect of 

performance on the LAP II 

was predictive of practical 

performance only early in 

the course.  

Suksudaj et al., 

2012 (Suksudaj et 

al. 2012) 

 

2 cohorts 

2007(n=52) 

2008(n=74) 

Selected standard 

psychometric tests: 

Cognitive, 

perceptual speed 

and psychomotor 

ability tests 

(MOD) cavity 

preparation 

exercises on plastic 

teeth  

 

both innate psychomotor 

ability and motivation 

showed only weak 

associations with dental 

performance on cavity 

preparation exercises.  

Kothe et al., 2014 

(Kothe et al. 2014) 

3 student 

cohorts 

2008(n=23) 

2009(n=69) 

2010 (n=54) 

Wire bending test 

(HAM-Man)  

 

Practical 

performance in the 

first two laboratory 

courses 

Significant correlations for 

all cohorts between HAM-

Man and performance. 

Explained up to 20.5% of 

performance variance.  

Ballard et al., 2015 

(Ballard et al. 2015) 

176 Chalk carving 

exercise 

Grade in preclinical 

operative dentistry 

Positive correlation 

between the chalk carving 

scores and the preclinical 

operative dentistry course 

grade. 

Moravej-Salehi et 
al., 2016 (Moravej-
Salehi et al. 2016) 

92 -Handwriting Test  
-Drawing Test  
 

Class I Amalgam 
cavity on Typodont 
 

Significant association 
between drawing and 
cavity preparation skills; 
although not clinically 
considerable. 
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The use of preclinical dental simulator performance to predict clinical 

performance has been the focus of many studies, since the preclinical 

simulated restorative tasks are close in some aspects to the actual clinical 

cases. Nevertheless, the results of these studies varied widely.  

The first group of studies investigated the phantom head simulator 

performance to predict later preclinical and/or clinical performance. An early 

preclinical performance of Class I cavity preparation for amalgam restoration 

on a typodont has a limited predictive value of students performance later in 

the preclinical course, suggesting that manual skills were improved during the 

practical training and the low performers early in the course improved 

considerably with training and scored high later (Polyzois et al. 2011). In 

another study, no correlation was found between the students preclinical 

performance on typodont (two full veneer crown preparations for a fixed partial 

denture case with provisional restorations), and subsequent clinical 

performance on live patients (full crown preparation with provisional restoration 

fabrication) (Curtis et al. 2007). Similarly, student full PFM crown performance 

in the clinic did not correlate with preclinical typodont performance, with 

greater variability and lower scores in the clinical test (Nunez et al. 2012). On 

the other hand, a retrospective study of two cohorts found a significant 

association between the students’ preclinical performance (in operative 

dentistry and fixed prosthodontics courses) and their clinical performance; the 

researchers highlights the need for further studies to identify the specific 

factors that affect preclinical and clinical performance and contribute to this 

association (Velayo et al. 2014). The difficulty in finding a definite predictive 

relationship between the multidimensional clinical performance and the fairly 
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standardised preclinical typodont tests performance can possibly be attributed 

to several factors such as the contextual differences between the two settings 

(dental clinic and preclinical laboratory) and patient case variability.  

The second group of studies investigated the performance on virtual reality 

dental simulators as predictor of early and later preclinical performance. 

Computerized AR dental simulator pre-test performance correlated 

significantly with the students’ early preclinical course performance but not with 

their later performance where more complex dental procedures were involved. 

However, the study did not conclude the predictive value of the computerized 

simulator as this was limited by the relatively small sample size and the 

technical sensitivity of the device according to the authors (Gray et al. 2003) . 

In another study, AR simulator (DentSim) pre-test correlated positively and 

predicted the students’ performance in preclinical manikin course (Imber et al. 

2003). Similarly, DentSim pre-test performance predict the students’ 

performance in early (but not later) preclinical operative dentistry course, 

suggesting its diagnostic utility in early identification of students challenged by 

complex manual dexterity tasks (Urbankova & Engebretson 2011a).  

The ability of VR haptic dental simulators to predict future preclinical dental 

performance was also investigated. In a study using IDEA® (Individual Dental 

Education Assistant simulator), three haptic dental tasks were used to identify 

the best predictors of preclinical operative dentistry performance, and a strong 

association was found between the more complex haptic exercise and 

preclinical operative dentistry performance (Urbankova & Engebretson 2011b). 

In a follow-up study, the authors tested dental students on a complex haptic 

exercise in eight consecutive trials measuring both accuracy and time to 

completion and found it to correlate significantly (p<0.05) with early preclinical 
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operative course performance (Urbankova et al. 2013). In a recent study, using 

Simodont® haptic dental simulator, the students performance of basic haptic 

exercise (achievement of 60% and 75% target levels) was statistically 

significantly correlated with their performance at the preclinical operative 

dentistry course with high sensitivity values (i.e. students who passed the 

haptic test at 60% and 70% were significantly more likely to pass the 

preclinical test) (Polster et al. 2015).  

Thus, convergent evidence from previous studies on the predictive value of 

dental VR simulators indicate they could predict only early preclinical 

performance but not later performance, where the correlation with the basic 

skills and abilities would have been possibly diluted by learning/practice effect 

during the preclinical course. Furthermore, there are no reported studies, so 

far, on the prediction of clinical dental performance from haptic dental 

simulator performance. The possible association between early preclinical 

haptic simulator performance and clinical performance is not straightforward 

and subject to many confounding variables that potentially affect the student 

performance in both settings. However, investigating such issue would provide 

valuable insights into the ability of such simulator to selectively identify the 

core abilities required for successful performance even later in the actual 

clinical environment where the students arrive with a cumulative reservoir of 

skills learned throughout their intensive preclinical training. 

Therefore, this retrospective cohort study set out to investigate the potential of 

VR haptic dental simulator Simodont® to predict preclinical and clinical dental 

performance among a single undergraduate student cohort in one dental 

school. We hypothesized that early preclinical performance on Simodont® 
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haptic simulator by undergraduate dental students is associated with their 

preclinical and clinical performance.   

4.1 Aim and objectives 

The aim of the current study is to examine the predictive value of VR haptic 

dental simulator in undergraduate dental performance. 

The objectives are: 

1) To explore the relationship between students’ preclinical performance 

on Simodont® (Year 2 of dental school) and their subsequent 

performance in two preclinical and one clinical tests as follow: 

a- Preclinical phantom head simulator tests: 

I. Spotter test (Year 2) 

II. Typodont full crown preparation test (Year 3). 

b- Clinical test at fourth year:  

• Full crown preparation test on live patients. 

2) To explore the relation between the students’ preclinical performance in 

phantom laboratory tests (at Years 2 and 3) and their subsequent 

clinical performance (at Year 4) 

4.2  Methods 

4.2.1 Participants 

The 2012 cohort of undergraduate dental students (N=72, 46 female, 26 male) 

at the School of Dentistry, University of Leeds, were selected for this 

retrospective study. Ethical approval to access the students’ data was obtained 

from DREC (Dental Research Ethics Committee) at the School of Dentistry, 

University of Leeds (DREC ref: 230915/LA/178). 
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4.2.2 Performance assessment results  

A total of four practical tests results ( three preclinical, and one clinical) were 

obtained for each student (Figure 4-1) from the student education office and 

from the module leaders. Confidentiality was maintained by assignment of 

code numbers replacing students name. 

4.2.2.1 Preclinical performance results: 

1. Year2- Virtual Reality Haptic dental simulator (Simodont®):  

The average results of students practice trials on manual dexterity 

exercises available in the Simodont® courseware (ACTA, the 

Academic Centre for Dentistry, Amsterdam, the Netherlands).  

 Due to the large number of trials performed by each student 

for different exercises and due to differences in number of 

trials per student, we standardize the selection criteria in the 

current study as follow: the number of trials included per 

student is 33 and the minimum task completion level is 60%. 

N.B: In an attempt to include the full cohort, I searched for all 

the successful trials by each student, then found that the 

minimum number of trials was 33 (i.e. the maximum number 

performed by one of the student),  based on that I decide to 

use that number for all the students in the cohort to minimise 

variability. The results for each trial done by each student 

were downloaded from the Simodont® server, filtered, 

arranged in Excel sheets, calculated and exported to SPSS 

for analysis. 

2. Phantom head simulator:  
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a- Year2-Spotter test: performed in the phantom head using 

typodont with mounted plastic teeth. In this laboratory test, the 

students were asked to spot the wrong/defective part of a 

preparation or restoration. Afterwards, the dental instructors 

assign a final mark out of 100 to each student based on his/her 

performance. 

b- Year3-Crown test: Full crown preparation on typodont with 

mounted plastic teeth in the phantom head simulator, 40% of the 

grade of this test is assigned to the student critical self-evaluation 

(the ability to critically evaluate his/her own work e.g. identify 

preparation errors). 

4.2.2.2 Clinical Performance results: 

• Year 4 -Full PFM clinical crown preparation test on real patients. 
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Figure 4-1 Flowchart of the 4 performance assessments investigated 
retrospectively in the current study.  

 

4.2.3 Data collection and statistical analysis 

This study used a quantitative methodology. Preliminary analyses showed that 

all continuous variables (test results) were normally distributed, as assessed 

by Shapiro-Wilk's test (p > .05), and there were no outliers. 

Pearson's product-moment correlation was run to assess if there is any 

association between students’ performance at any of the four tests separately 

for each pair of tests. The strength of association was interpreted based on 

Cohen’s (1988) guidelines : small correlation (0.1< r <0.3), moderate 

correlation (0.3< r <0.5), and strong correlation (r >0.5). 

Multiple regression analysis was run to explore the relation between students’ 

clinical and preclinical performance, with clinical crown test performance as the 

Year 2 Year 3 Year 4

Simodont Practice 

(Manual Dexterity exercises)

Typodont Spotter test

Typodont full crown test Full PFM clinical crown 

1

2

3 4

Preclinical Clinical 

2012 Cohort 

Dental undergraduate students

N=72
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dependent variable and preclinical tests (VR Simodont®, Spotter test, and 

preclinical crown test) as the predictors (independent variables).  

The students numerical test scores in the current study were further 

categorized into dichotomous (low/high performers) distinction based on each 

test overall results (appendix A.2.1), and the proportion of high and low 

performing students at each test were calculated. Fischer exact test was used 

to compare proportions of high performing students at the clinical crown test 

with high performing students at each preclinical test. Odds ratio and 95% 

confidence intervals were calculated for high performance at the clinical crown 

test (dependent variable) according to high performance at all three preclinical 

tests (independent variable).  

Sensitivity and specificity of each preclinical test to predict clinical crown test 

performance were also calculated. The operational definitions of sensitivity, 

specificity and predictive values in the context of fine motor skill testing as 

described in the current study, are presented in Table 4.2-a. 

The statistical significance threshold was set to p < .05. All statistical analyses 

were performed using IBM SPSS® Statistics for Windows (Version 22, Armonk, 

NY: IBM Corp., 2013). 
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Table 4.2-a The operational definitions of sensitivity, specificity and predictive 
values in the context of fine motor skill testing as described in the current 
study. 

Test feature Operational definition 

Sensitivity  
Indicates how accurately does the test identify high 
performing students who would be also high 
performers in a clinical test (i.e. the true positives). 

Specificity  
Indicates how accurately does this test identify low 
performing students who would also be low 
performers in a clinical test (i.e. the true negatives). 

Predictive value  
The ratio of correctly identified high performing 
students to all high performers (i.e. true positives to all 
positives)(Domino & Domino 2006) 

Positive predictive 
value (PPV) 

The proportion of positive test (high performers) that 
are true positives (correctly identified high performing 
students) 

Negative predictive 
value (NPV) 

The proportion of negative test (low performers) that 
are true negatives (correctly identified low performing 
students). 
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4.3 Results 

Descriptive statistical measures of the mean, standard error of the mean, and 

coefficient of variation were determined for describing the characteristics of all 

the practical tests and graphically plotted at (Figure 4-2). 

 

Figure 4-2 Dot plot of the students’ performance scores in the four practical 
tests (N=72), showing the Mean and standard error of the mean (SEM). 
The Coefficient of variation (CV) of each test is shown as percentages. 

 

4.3.1 Correlation Analysis  

4.3.1.1 Simodont® VR test and Phantom head tests: 

a- Spotter test performance: 

No statistically significant correlation was found between students’ 

performance at Simodont® and the typodont spotter test, r (70) = 0.076, 

p= 0.526. 

b-  Preclinical crown test performance: 

Similarly, no statistically significant correlation was found between 

students’ performance at Simodont® and preclinical crown test on 

typodont, r (70) = -0.006, p= 0.961. 
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4.3.1.2 Simodont® VR test and Clinical crown test: 

Pearson's correlation test revealed a moderate positive correlation 

between students’ performance at Simodont® and the clinical crown test 

results at year 4 of dental school, and it was statistically significant, r (70) = 

0.377, p= 0.001.  

4.3.1.3 Preclinical Phantom head tests and Clinical crown test:  

a- Clinical crown test results and Spotter test results: 

Students’ performance at the clinical crown test and typodont spotter 

test were statistically significantly correlated r (70) = 0.237, p= 0.045. 

b- Clinical crown test results and Preclinical crown test results: 

Students’ performance at the clinical crown test and the preclinical 

crown test on typodont were not significantly correlated r (70) = 0.221, 

p= 0.062. 

4.3.1.4 Preclinical Phantom head tests: 

Students’ performance at both phantom head tests (spotter and 

preclinical crown)  were not significantly correlated r (70) = 0.139, p= 

0.246.  

Summary of the correlations between all four practical tests is shown in 

Figure 4-3. 
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Figure 4-3 Scatter plots for Inter-tests performance correlations with 95% CI. 
[A] Simodont and clinical crown tests, [B] Spotter and clinical crown tests, 
[C] Simodont and spotter tests, [D] Preclinical crown and clinical crown 
tests, [E] Simodont and preclinical crown tests, and [E] Spotter and 
preclinical crown tests. 
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4.3.2 Regression Analysis 

To further explore the relation between students’ clinical and preclinical 

performance, first , individual linear regression analyses were run for each 

preclinical test alone as predictor for the clinical crown test performance (Figure 

4-4).  Subsequently, multiple regression analysis [method: stepwise] was 

conducted with clinical crown test performance as the dependent variable and 

preclinical tests (VR Simodont®, spotter test, and preclinical crown test) as the 

predictors (independent) variables.  

The multiple regression assumptions were all examined as follow:  

• There was independence of residuals, as assessed by a Durbin-Watson 

statistic of 1.597.  

• There was homoscedasticity, as assessed by visual inspection of a plot of 

studentized residuals versus unstandardized predicted values.  

• There was no evidence of multicollinearity, as assessed by tolerance 

values greater than 0.1. Levels of F to enter and F to remove were set to 

correspond to p levels of .05 and .10, respectively, to adjust for familywise 

alpha error9 rates associated with multiple significance tests.  

a. VR Simodont alone as predictor of clinical crown performance:  

A significant regression equation was found F (1,70)= 11.58, p=.001, with 

an R2 of .142. This indicates that Simodont performance explained 

(predicted) 14.2% of the clinical crown test performance with adjusted R2 

of 13%, a medium size effect according to Cohen (1988). 

b. Spotter test alone as predictor of clinical crown performance:  

                                              

9 Also known as alpha inflation (type 1 error-incorrect rejection of the null hypothesis). It is the 

probability of coming to at least one false conclusion in a series of hypothesis testing.  
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F (1,70)= 4.167, p=.045, with an R2 of .056. This indicates that spotter test 

performance explained (predicted) only 5.6% of the clinical crown test 

performance with adjusted R2 of 4.3%. 

c. Preclinical crown test as predictor of clinical crown performance: F 

(1,70)= 3.602, p=.062, with an R2 of .049. This indicates that preclinical 

crown test performance statistically explained only 4.9% of the clinical 

crown test performance with adjusted R2 of 3.5%. 

d. Multiple regression model: The best fitting model for predicting clinical 

crown test performance is a linear combination of VR Simodont® 

performance at year 2 and preclinical crown test performance at year 3, R 

=. 438, R2 =. 192, F (2,69) = 8.192, p=. 001.  
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Figure 4-4 Regression analyses with fitted regression lines and regression 
equations for the prediction of clinical crown test performance with [A] VR 
Simodont® performance as predictor, [B] Spotter test performance as 
predictor, and [C] Preclinical crown test performance as predictor. The 
dotted blue lines represent 95% CI. 
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4.3.3 Odds ratio, sensitivity, and specificity  

Students who were high performers at Simodont® assessment were 10.241 

times more likely (95% CI [1.223, 85.781]) to be high performers at clinical 

crown test as well (2-sided Fischer exact p=. 015). Simodont® predicted clinical 

crown test performance with 97.1% Sensitivity and 23.7% specificity.  

Students who were high performers at preclinical typodont spotter test were 

only 1.780 times more likely (95% CI [.607, 5.224]) to be high performers at 

clinical crown test as well (2-sided Fischer exact p=. 422) and that was not 

statistically significant. Therefore, spotter test is a weak predictor of clinical 

crown test performance with 79.4% Sensitivity and 31.6% specificity.  

Students who were high performers at preclinical crown test were only 2.875 

times more likely (95% CI [1.095, 7.545]) to be high performers at clinical 

crown test as well (2-sided Fischer exact p=. 036).  Although a weaker 

predictor than Simodont®, preclinical crown test is better than spotter test at 

predicting clinical crown test performance with 67.6% Sensitivity and 57.9% 

specificity. Sensitivity and specificity values for all three preclinical tests are 

shown in Figure 4-5.    

The Receiver Operating Characteristic (ROC) curve analysis was done for the 

three predictors, Simodont® , spotter and the preclinical crown test (Figure 

4-6). The area under the curve (AUC) for Simodont®  was better than that of 

both typodont tests, while spotter and preclinical crown tests have comparable 

AUC values (Table 4.3-a). 
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Figure 4-5 Sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) of the 3 preclinical tests for prediction of clinical 
crown test performance. 

 

 

Figure 4-6 The Receiver Operating Characteristic (ROC) curve analysis for 

the predictors, Simodont® , spotter test and the preclinical crown test. 
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Table 4.3-a The area under the curve values, AUCROC (with 95% CI) for the 
three predictors. 

 AUC 

(Area Under the 
Curve) 

95% Confidence Interval 

Lower bound Upper bound 

        VR Simodont .689 .567 .811 

        Spotter  .622 .493 .752 

        Preclinical Crown .628 .496 .761 
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4.4 Discussion 

The results from the current study revealed a medium positive correlation 

between VR haptic simulator performance and subsequent clinical crown 

test performance among a group of undergraduate dental students. 

Moreover, this correlation exhibited a statistically significant predictive 

value with implications for expanding the utility of haptic simulator further in 

preclinical undergraduate dental education.  

The Simodont® assessment in the present study was standardized to 

include an average of multiple trials with no less than 60% target level for 

each student, on basic manual dexterity exercises available in the 

Simodont® courseware. These trials were spread over multiple sessions as 

a formative assessment and performed early on in the second year 

practical training before phantom head simulator training. The possible 

implication of these specific training conditions on the results obtained may 

be explained through several points related to both the learner and the 

learning context. Although the assessment was for basic abstract manual 

dexterity tasks, they were correlated with actual clinical performance - two 

essentially different performance settings. This may be attributed to the 

possibility that the simulator specifically identified common basic abilities 

required for dental performance such as the precision in holding and 

manipulating the handpiece, the ability for controlled cutting/drilling in 

depth, and other factors related to the basic fine motor abilities of the 

student. Besides, the formative nature of this assessment implied that 

students practiced in relaxed/non stressful atmosphere on their own time, 

possibly motivated by the aspiration to practice dentistry (virtually) early on 
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in the dental school, to improve their manual skills, and/or to gain the 

instructor and peer recognition for achieving the best training results at the 

end of the module.  This has been facilitated by the capabilities offered by 

the haptic simulator particularly the unlimited practice reiteration without the 

need for extra resources, and the real-time objective evaluation on each 

trial provided automatically by Simodont®. This draws our attention to the 

unique research opportunity provided by Simodont® to study the effect of 

deliberate practice (Ericsson 2004) on fine motor skill development and 

refinement, an important, yet relatively unexplored, concept in dental 

education research. 

Our data showed no correlation between Simodont® assessment and any 

of the phantom lab typodont preclinical tests (i.e. 2nd year spotter test, and 

3rd year typodont crown test). These particular findings are different from 

what has been reported previously by Polster et al. (2015) and by 

Urbankova et al. (Urbankova et al. 2013; Urbankova & Engebretson 

2011b), where a positive association were found between students 

performance on haptic simulators assessment and typodont exams. One of 

the primary differences between (Urbankova et al. 2013; Urbankova & 

Engebretson 2011b) studies and ours, is that the association was between 

single session haptic exercise and 3 preclinical operative dentistry exams 

(mainly simple and compound Class II as well as Class III) and the 

association was with early preclinical performance but not later. While in 

our study the haptic assessment was 33 exercises spread over multiple 

sessions (at year 2) and the typodont exam was one full crown preparation 

(at year 3).  
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On the other hand, performance in both phantom lab typodont tests was 

correlated, albeit weakly, with the clinical crown test performance in the 

present study. However, the predictive value was less than that obtained 

from Simodont®. This is in agreement with Velayo et al. (2014) who 

reported that preclinical training on typodont is associated with the clinical 

performance with weak predictive value. Similarly, An OSCE-based 

knowledge exam (where the students were asked to identify critical errors 

in preparation and casting of FPD) was found to be weakly correlated with 

the clinical performance of full crown competency exam (Curtis et al. 2007). 

In contrast, reports from other studies showed no correlation between 

preclinical training on typodont and subsequent clinical performance  

(Curtis et al. 2007; Nunez et al. 2012). It is important to highlight that the 

interpretation and comparison with other studies is limited by the wide 

disparity in methodological approaches to typodont exams and grading 

criteria, in addition to the inherent variations expected in clinical settings 

due to differences among patients’ conditions.  

The coefficients of variation of all four tests in the current study were 

calculated to explore the relative variability in scores at different 

assessment settings. The highest score variability was reported for the 

clinical crown test, and the least variable scores were for Simodont® 

assessment. This gradual difference in performance scores is anticipated, 

since the clinical setting variability implies that each clinical case/patient is 

different despite the specific criteria used to standardize the exam (e.g. 

mandibular or maxillary tooth, the presence of adjacent tooth, normal 

occlusion, etc.). Furthermore, the clinical experience is multifaceted 

affected by several factors that are difficult to standardize such as the 
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dental characteristics of the patient (e.g. limited mouth opening, 

effectiveness of local anaesthesia), the patient attitude and behaviour, and 

the student stress/ anxiety level. On the other hand, the other tests are in 

preclinical simulated settings that are fairly consistent using identical plastic 

and virtual teeth. 

In the current study, the typodont crown test at year 3 is, theoretically, the 

closest of all other preclinical tests to the actual clinical crown test, basically 

performing the same procedure in simulated (phantom typodont) and later 

in actual clinical (live patient) setting. This was reflected in the higher 

specificity values for the typodont crown test (57.9%) compared to the other 

preclinical tests (i.e. out of the 38 low performing students at the clinical 

crown test, 22 were also low performers at the typodont crown test). 

Moreover, typodont crown test in the current study was not only evaluating 

the fine motor skills of the students, but also evaluating the student self-

critical ability, a part that contributes significantly (40%) to the final grade. 

The ability to accurately and realistically evaluate their own work imply that 

the students have clear understanding of the success criteria for that 

specific task, and are able to identify unsuccessful or less than optimal 

performance attempts. This important ability has been shown to affect the 

practical performance of undergraduate dental students significantly in 

preclinical dentistry, as high performing students reported to be more 

critical about their performance compared to low performing student (Cho 

et al. 2010) and improvement in their self-evaluation skill resulted in 

performance improvement (Curtis et al. 2008).  

The spotter test at year 2 differs from the other two preclinical tests in the 

fact that it particularly tests the cognitive ability of the students to identify 
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critical preparation and restoration errors rather than their fine motor skill 

per se. However, we found that it is more sensitive test (79.4%) than 

typodont exam (67.6%) in predicting clinical crown performance (i.e. out of 

34 high performing students at the clinical crown test, 27 were also high 

performers at the spotter test). 

Simodont® performance alone explained 14.2% of the variation in the 

clinical crown test with high sensitivity (97.1%) (i.e. out of 34 high 

performing students at the clinical crown test, 33 were also high performers 

at Simodont® assessment). The addition of typodont crown test contributes 

an additional 5% (p=. 043) to the explanatory power of the regression 

model. The spotter test results did not contribute significantly to the model 

and was excluded as a predictor in the stepwise regression analysis. The 

full model of Simodont® and typodont test raised the predictive value to 

19.2%; this leaves 80.8% of the variation in clinical crown test performance 

to be explained by other variables (e.g. patient characteristics, student 

stress level, clinical environment) . 

The differences among various tests and their predictive values may be 

explained in terms of incremental validity (Cohen & Swerdlik 1999), as 

each type of assessment (predictor) is included if it contributes specific 

aspects that can not be offered by other tests, collectively attaining 

predictive value that account for the inherently multidimensional learning 

experience, emphasizing the fact that there is no single ideal predictor for 

clinical dental performance yet, as each type of assessment is capturing a 

specific dimension of the clinical performance. 

As mentioned earlier, there was a wide variation in Simodont® practice 

frequency among students in this cohort, while some of them had 
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performed more than 80 trials, others did as low as 35 trials in total. This is 

not surprising, because there was no specific module requirement as to the 

amount of practice on Simodont®, so the student approach was self-

directed learning, therefore the number of practice attempts varied widely.  

The significant explanatory power of the clinical performance variations by 

Simodont® has important implications for its integration into the 

undergraduate dental curriculum, and the identification of its unique 

pedagogical potential. First, the early use of the simulator by dental 

students (at Year 2) is supported by the present findings, and we further 

suggest that there should be a minimum requirement for practice on the 

Simodont®  (specifically manual dexterity exercises) before moving on to 

the next practical training stage in the curriculum. The rationale of such 

competency-based approach is that it will standardize the practice among 

students to an acceptable level, for example, x practice trials per module 

with minimum task goal of x%. The students are allowed to practice more if 

they wish, but not less than the minimum requirement, an approach that will 

cater for students’ varied learning preferences and sensorimotor abilities. 

However, empirical evidence is needed to specifically determine the 

minimum acceptable practice requirement. 

The second possible implication is the possibility of early identification of 

students with difficulties in performing basic manual dexterity tasks, and 

provides them with appropriate pedagogical support and structured practice 

sessions. For example, a student may struggle to achieve the success 

criteria of 60% at a task despite repeated performance attempts; the 

educator should be able to identify specifically what is the major contributor 
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to this outcome (e.g. high depth errors draw the attention to the need for 

more control of handpiece pressure exerted by the student) and will direct 

the student practical efforts into more relevant direction that will improve 

the performance outcome. Despite the current promising results (especially 

the association between that successful practice attempts on Simodont® 

and good clinical crown test performance), we acknowledge the limitation 

of exploring a single cohort of undergraduate students in single institution. 

Larger validation studies are warranted on other dental cohorts and across 

other institutions. Moreover, future research should investigate how 

Simodont® training is related to other practical assessments across the 

preclinical and clinical undergraduate curriculum.  

4.5 Conclusions 

Significant correlation was found between VR haptic simulator performance 

and subsequent clinical crown test performance among a group of 

undergraduate dental students. Simodont® has a statistically significant 

predictive value which explained 14.2% of the variation in the clinical crown 

performance.  

These findings have implications to expand the potential utility of haptic 

dental simulator Simodont® in the undergraduate dental curriculum.



 
 

98 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 : Stereopsis and Dental performance 
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Despite the importance of depth perception in dental practice, the available 

literature about the how depth perception impacts dental performance is still 

limited (Arruda et al. 2008; Nick et al. 2009; Ricketts et al. 1995; Dimitrijevic et 

al. 2011). Additionally, the particular importance of stereopsis in dentistry has 

been debated and questioned (Syrimi & Ali 2015; Mon-Williams et al. 2015). 

Furthermore, the increased availability of VR dental simulators with 

stereoscopic displays demands careful evaluation of the possible factors that 

impacts their utility (e.g. human factors). Stereopsis is an important human 

factor issue that potentially influences the utilisation of VR simulators. These 

simulators provide a unique opportunity to address the fundamental issue of 

whether stereopsis has a functional role within dentistry. The Simodont® 

simulator presents an opportunity to examine this question as it can be 

engineered to provide a full binocular experience with or without stereoscopic 

viewing. This enables a robust investigation into the impact of removing 

stereoscopic information whilst keeping the other visual features of the display 

constant.  

The next sections provide detailed overview about stereopsis, stereoscopic 

tests, prevalence and functional significance in Surgery and Dentistry.  

5.1 Stereopsis 

Stereopsis can be defined as the ability to perceive depth from binocular 

horizontal retinal disparity. It is a sensory process that represents the 

fundamental functional difference between monocular and binocular vision 

(Ogle 1959) . It is particularly advantageous in performance of fine motor tasks 



 
 

100 

(especially in near distance) that need high levels of hand-eye coordination 

and comprehension of complex visual presentations (Fielder & Moseley 1996; 

Bloch et al. 2014). For goal-directed motor skills in close distance (within 2 

meters), stereopsis is critical to prehension (the act of reaching and grasping 

an object to manipulate it to achieve specific goal), and functionally associated 

with it (Luursema et al. 2008). 

Stereopsis is quantified as stereoscopic acuity or stereoacuity; which is 

defined as “the depth-discrimination threshold when binocular disparity is the 

only cue to depth” (Howard & Rogers 2002) . Stereoacuity is measured as the 

difference in angles subtended at the optical nodes of the eyes and expressed 

in minutes or seconds of arc (Gulick & Lawson 1976), and represent the 

minimum perceivable horizontal disparity (Lee & McIntyre 1996) that leads to 

three dimensional percept, and the smaller the angular measurement the 

better the stereoacuity. The stereoacuity unit of measurement [second of arc, 

arcsec,″] equals to 1/60 minute of arc and 1/3600 of a degree (Howard & 

Rogers 1995). 

5.1.1 Tests 

Stereoscopic tests have been utilized either as a screening tool (to indicate the 

presence or absence of stereopsis and other ocular disorders), or as a 

diagnostic tool to determine the stereoacuity threshold of the individual (level 

of depth discrimination) which can be improved with practice (Coutant & 

Westheimer 1993). While untrained human observer can discriminate relative 

depth disparity of 30 arc sec, experienced observers, with practice, can 

discriminate much fine disparities of as low as 4–8 arc sec (Wilcox & Allison 

2009). 
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Classically, stereopsis has been tested using real objects (2-3 vertical rods) 

and the gold standard of such tests is the Howard-Dolman test (Howard 1919). 

Other types of stereopsis tests utilize stereoscopic devices (Davson 1962).  

Stereopsis is subdivided into two main types: local and global stereopsis, both 

are dependent on binocular horizontal disparities. Local stereopsis accounts 

for monocular cues and is tested by contour stereogram tests; while global 

stereopsis is devoid of observable monocular cues and purely dependent on 

correlated retinal disparities and tested by random-dot stereogram tests. The 

monocularly visible contours in local stereopsis tests adjunct the oculomotor 

control and disparity fusion, and this process is not present in global stereopsis 

tests (Saladin 2005; Fricke & Siderov 1997). 

An Example of a test for local stereopsis is the Titmus stereo test (Figure 

5-1A). It consists of three subtests (the Stereo Fly test, the Circle test, and the 

Animal stereo test) and uses polarizing glasses at 40 cm distance. Random-

dot stereograms tests for global stereopsis, are also known as cyclopean 

stereogram tests. The cyclopean form referred to the correctly fused two 

images and locally detected disparities without any monocular cue about the 

shape or depth of the form.  

In 1960, Julesz introduced random-dot stereogram as a vision research tool 

(Julesz 1960). Many of the currently available stereoscopic tests are based on 

random-dot stereogram including TNO stereo test (Figure 5-1B), Frisby stereo 

test, Random-dot E stereo test, Randot test, and Lang lenticular-sheet stereo 

test. The interpretation of the results of these tests has to be done with caution 

as some people may lack the ability to focus correctly on the test stimulus and 

therefore find difficulty fusing the random-dot stereogram, despite the fact that 
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they have a normal stereoscopic vision (Howard & Rogers 2002).  

 

Figure 5-1 Examples of stereo tests. [A] Titmus Fly Stereo test for measuring 
local stereopsis. [B] TNO Stereo test for measuring global stereopsis. 
Images courtesy of : www.eyesfirst.eu 

 

There are variations in the reported stereoacuity due to differences in the 

testing methodology, therefore, normative values are not clear cut (Zaroff et al. 

2003). In general, clinically normal stereoacuity values are approximately 30-

40 arc sec (McIntire, Havig, & Geiselman 2014; Fielder & Moseley 1996) and 

up to 50-60 arc sec (Lee & Koo 2005). 

5.1.2 Functional significance  

Stereopsis is one qualitatively distinct part of the whole depth perception 

experience; therefore, there is on-going debate about its functional impact 

especially in professions that heavily relay on high levels of visual abilities for 

skilled performance (e.g. aviation, MIS, dentistry) (Fielder & Moseley 1996; 

Snyder & Lezotte 1993; Waqar et al. 2012). 

One major difficulty with investigating the role of stereopsis in real-world tasks 

is that binocular viewing confers a number of advantages. For example, a 

binocular view provides vergence10 information that can be used to gauge the 

egocentric distance of a fixated target (Tresilian et al. 1999). Two eyes also 

                                              

10 Simultaneous movement of both eyes in opposite direction to obtain single binocular vision. 

A B
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enable a wider field of view and improved perceptual thresholds. This means 

that covering one eye to remove binocular vision does not provide an 

appropriate experimental manipulation for the purpose of establishing the 

contribution of stereopsis to a given task, and increases the difficulty in 

interpreting any decline in performance following this manipulation. As such, 

while there are a number of studies that have shown poorer performance on a 

variety of tasks under monocular viewing conditions (e.g. Wagner et al. 2012), 

these studies do not address the issue of the role played by stereopsis in the 

task. Some studies have shown the importance of stereopsis in real world 

tasks. These studies have compared the performance of individuals with and 

without stereo deficits on tasks involving manual dexterity. O’Connor et al. 

(O’Connor et al. 2010) showed that participants with normal stereoacuity had 

higher levels of performance on a pegboard and bead-threading task. Melmoth 

et al. (Melmoth et al. 2009) provided evidence that individuals with reduced 

stereoacuity have poorer coordination in reach-to-grasp movements (indexed 

by the reach kinematics). Moreover, Piano and O’Connor (Piano & O’Connor 

2013) showed that degrading stereoacuity through the introduction of 

monocular refractive error (using spherical lenses to induce power difference 

so that one eye is more dominant) caused a decrease in manual performance 

within participants who had normal stereoacuity. The overall conclusion that 

emerges from these studies is that stereopsis does provide useful information 

that can be shown to support skilled performance in certain visuo-motor tasks.  

5.1.3 Stereopsis and VR stereoscopic displays 

Stereoscopic displays are the part of a VR system used to enhance the sense 

of immersion in simulated 3D VR environments (Held & Hui 2011) (see section 
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2.2 ). The enhanced interaction and immersion provided by stereoscopic 

displays is attributed to adequate field of view (FOV), increased awareness 

and enhanced depth perception via realistic depth cues that minimize the need 

for compensatory strategies to perceive depth (Lin & Woldegiorgis 2015; 

McMenemy & Ferguson 2007; Lewis & Griffin 1997). 

Moreover, 3D stereo displays are especially useful in the performance of 

complex depth-related near tasks (e.g. spatial manipulations of objects), tasks 

involving distance estimation, navigation, detecting relative positions and 

objects (McIntire, Havig, & Geiselman 2014).  

From a pedagogical perspective, the 3D stereo displays within the VR training 

environments, combined with skilled well-designed instruction, substantially 

contribute to spatial localization and comprehension of the anatomical 

structures and various surgical/dental procedures in a realistic presentation 

(Held & Hui 2011; Luursema et al. 2008).  

Technically, in stereoscopic 3D displays there is a need for special eyeglasses 

to see the two slightly different stereo pairs (i.e. for stereo-channel separation: 

to direct the appropriate view to the correct eye and block the incorrect view to 

the opposite eye) and obtain the 3D sensation. Stereo-channel separation can 

be done with a variety of techniques including anaglyph/color-interlaced, 

polarization-interlaced, time-multiplexed, and head-mounted display. On the 

other hand, auto-stereoscopic display does not require any special glasses 

and the user can view the 3D scene directly (McAllister 2002; Geng 2013).  

The increased adoption and constant improvements of 3D stereo displays and 

VR technologies in various applications including dental and medical training, 

assumes that the user/trainee has normal binocular vision and stereopsis 
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(Bradley et al. 2014). However, significant individual variations in depth 

perception exist when using stereoscopic displays (McIntire et al. 2014) which 

may be complicated by the presence of visual symptoms of eye strain, visual 

fatigue and discomfort either due to binocular visual deficits, or due to 

geometrical distortion of the stereoscopic display (e.g. crosstalk11, binocular 

rivalry12)(Lambooij et al. 2009).  

Gadia et al. (2014) highlighted the importance of testing stereo acuity and 

stereo blindness prior to performance of critical tasks using stereoscopic 

displays (e.g. VR training) (Gadia et al. 2014). Trainees with deficient 

stereopsis may undergo totally different visual experience using 3D displays 

than trainee with normal stereopsis. This difference may manifest as 

accommodation problem (i.e., suppression, superimposition, binocular rivalry) 

and while they may adapt to such perceptual problems in real world (e.g.by 

utilizing monocular depth cues), they may not be able to do so in a virtual 

environment, particularly during task performance in near distance (Hale & 

Stanney 2006). Furthermore, some subjects with normal stereopsis may not 

perform well using stereoscopic 3D displays, phenomena that has been 

described as stereo anomaly and pseudo-stereo anomaly. This phenomenon 

has been attributed to deficits in fine vs. coarse stereopsis mechanisms which 

is based on the magnitude of horizontal disparities (McIntire, Havig, 

Harrington, et al. 2014). 

 

                                              

11 Incomplete isolation of the left and right image channels so that one leaks (leakage) or 
bleeds into the other. Also described as Ghosting.  

12 Visual perception phenomenon in which two different retinal images compete for the 

perceptual dominance. 
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5.1.4 Stereopsis and Surgical performance  

In the surgical literature, the relation between depth perception and surgical 

performance has been explored by several studies particularly in relation to 

minimally invasive surgery as well as in general surgical training where fine 

motor skills acquisition is vital.  

In ophthalmology, a review of literature highlights the lack of evidence to 

support stereopsis as necessary attribute to achieve acceptable skill levels in 

ophthalmic surgery. Stereo deficiency may be compensated by the use of 

other depth cues and by excellent manual dexterity (Elliott 2008). For example, 

experienced surgeons may utilize the movement of the surgical instrument 

(motion parallax perspective), relative size, texture gradient, and familiar 

anatomy to compensate for the lack of the third dimension (Wagner et al. 

2012). In a study among a group of medical students, the stereoacuity levels 

were positively correlated with their initial performance scores on the Eyesi™ 

intraocular VR surgical simulator for cataract surgery, specifically at navigation 

and forceps training modules. However, it is unknown if this initial correlation 

would remain significant at more advanced stages of training (Selvander & 

Åsman 2011). 

In minimally invasive surgery (MIS), the main challenge is to operate on 3 

dimensional surgical sites via an indirect, restricted 2 dimensional monitor 

screen. This has a negative impact on depth perception and spatial orientation 

during performance. Currently, robotic-assisted laparoscopic surgery with 3D 

visualization has been increasingly used; it overcomes some of the 

disadvantages posed by the classical laparoscopic surgical technique (Blavier 

& Nyssen 2008) particularly the availability of stereoscopic depth information 
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(Held & Hui 2011). Therefore, depth perception, as a detrimental factor in MIS, 

has been thoroughly investigated in laparoscopic surgery training literature and 

its impact on performance.  

Superior performance in 3D visual display and with robotic laparoscopy has 

been repeatedly reported. A study among medical students, with no previous 

experience in open or minimally invasive surgery, compared the surgical 

performance with regard to type of visual display used (2D vs.3D) and the type 

of surgical instrument (classical vs. robotic assisted laparoscopy). 3D visual 

display performance was found to be superior to 2D performance regardless of 

the surgical instrument used (Blavier & Nyssen 2008). Another study examined 

the effect of 2D vs. 3D visual display while performing three different 

laparoscopic surgery tasks among participants with varying laparoscopic 

experience. Each task was performed in open performance (direct), in 3D 

visual display using (The EndoSite 3Di simulator), and using the DaVinci® 

robotic system. The same tasks were repeated using an eye patch simulating 

monocular vision. Three-dimensional vision significantly impacted the 

performance regardless of the participant’s experience, task difficulty, or the 

surgical settings used (Wagner et al. 2012). Similar findings have been 

reported in another study using Fundamentals of Laparoscopic Surgery (FLS) 

skill set in 2D and 3D visual display among participants with various range of 

surgical experiences (Tanagho et al. 2012). 

In contrast, Mistry et al. (2013) showed that training performance of surgery 

naïve medical students on the McGill Inanimate System for Training and 

Evaluation of Laparoscopic Skill (MISTELS) using Monoscopic (2D) 

visualization displays was the same as or better than performance under 
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stereoscopic (3D) visualization. This has been attributed to the inherent 

difficulty of the tasks that were beyond the students’ skill level and to the 

possible role of increased cognitive load with stereoscopic visualization during 

training (Mistry et al. 2013).  

Equal performance was reported for subjects who have normal stereopsis and 

those with no stereopsis in 2D visual display (video-assisted) laparoscopic 

surgical simulator. However, in binocular direct view tasks (3D visual display), 

stereo-absent participants perform worse than those with normal stereopsis, 

although the level of stereoacuity didn’t correlate with task performance (Bloch 

et al. 2014). Similarly, no correlation was found between the level of 

stereoacuity and performance of simulated surgical tasks using VR 

laparoscopic simulator (Hoffmann et al. 2015). Collectively, despite the wide 

range of reported findings, there is substantial evidence to support the 

stereopsis role in performance of fine surgical tasks particularly in robotic 

laparoscopy under 3D visualisation. 

5.1.5 Depth perception in dentistry 

Good visual perception is also paramount to the practice of dentistry. It is a 

highly visual professional field that involves working in a limited small-scale 

environment and performing fine skilled manipulations that require high degree 

of hand-eye coordination and attention to fine detail in tenths of millimetre (e.g. 

tooth preparation depth) . Therefore, not only is visual acuity important but also 

other visual attributes such visual depth perception, contrast sensitivity and 

colour vision (Wasson & Schuman 1992; Gokce et al. 2010; Mushtaq et al. 

2016). Depth perception in dentistry enables the dentist not only to visually 

perceive depth but also to precisely judge position, estimate distances and 
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correct sizes during dental performance (Dimitrijevic et al. 2011). Moreover, 

good visual acuity and depth perception are important assets in clinical 

diagnosis of dental caries, in estimation of correct convergence of the crown 

preparation, in oral radiography interpretation and to control the depth of 

various cavity preparations (Arruda et al. 2008; Wenzel 1999; Nick et al. 2009; 

Ricketts et al. 1995). 

Dental literature has focused mainly on visual acuity and colour vision of 

dentists with only few studies on visual depth perception. Additionally, limited 

research has explored the relation between vision quality and dental 

performance. Currently, studies have explored the effect of vision 

enhancement through magnification on dental performance (Bowers et al. 

2010; Perrin et al. 2014; Eichenberger et al. 2013; Maggio et al. 2011; 

Eichenberger et al. 2015).  

When a comprehensive vision screening has been conducted among 

undergraduate dental students, several visual defects have been reported 

including defects in visual acuity, squints, limited convergence, and defective 

stereopsis (with four students exhibited no stereopsis using the TNO stereo 

test). None of the screened students were aware of their visual deficiencies 

and were referred for treatment (Rawlinson 1988).The same author continued 

the vision screening program of undergraduate dental students for a further six 

years. The same visual defects reported previously in addition to defects in 

colour vision were consistently found among all studied cohorts. The inability 

of some students to complete the dental course or the difficulty in passing 

exams didn’t correlate with their results in the visual screening. Therefore, it 

has been concluded that minor correctable visual defects are not critical to the 
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successful completion of dental study and hence their use as predictor of 

performance was not supported (Rawlinson 1993). 

Another study assessed dental students’ vision and track visual changes 

longitudinally for four years during dental school. The students have been 

screened for near and distance visual acuity (with and without correction), 

colour vision, ocular movements, and stereopsis. The results of the baseline 

assessment revealed that 23% of the students had deficits in one or more of 

the screened visual components and none of them were aware of it. Minor 

colour deficiency was detected in10% of the students, heterophoria (an ocular 

condition in which one or both eyes tend to wander away from the position 

where both eyes are looking together) in 8%, and less than normal stereopsis 

in 5% of the screened students (Green et al. 2011; Green et al. 2013). 

Nevertheless, no data has been reported on the effect of these visual 

deficiencies on performance in dental school. 

Forgie and colleagues screened a group of practicing dentists in Scotland for 

visual acuity, convergence, accommodation, contrast sensitivity, heterophoria 

and stereoscopic vision. The results showed an overall accepted values of 

visual standards and recommended regular eye examinations for dentists. 

They indicate that although 10% of the examined dentists had no stereopsis 

(stereo blind) and/or defective stereopsis, they were capable of successful 

clinical performance (Forgie et al. 2001). 

5.1.5.1 Stereopsis and dental performance   

An earlier study (Ireland et al. 1982) explored the specific role of stereopsis in 

dental psychomotor learning and whether it can predict student performance. 

The results of the TNO stereo test were compared to students' performance in 
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preclinical operative dentistry course. The study found that students with low 

level of stereoacuity still performed well in the course, suggesting the use of 

other depth cues (e.g. monocular depth cues). Therefore, it has been 

concluded that a high level of stereopsis is not a prerequisite to acquire dental 

fine motor skill.  

In oral radiology, dental students have been trained to use stereovision and 

radiographic depth interpretation to compose 3D image from two radiographs 

(using the buccal-object rule). The training was done using a single image 

colour field stereogram and classical stereograms of circles. Their visual acuity 

as well as stereopsis was measured and 5% showed no stereopsis. Students 

who accurately composed the 3D images achieved better diagnostic 

performance for third molar localization and root deviation than those who 

couldn’t compose the 3D image (Wenzel 1999). 

Early student performance on a manual dexterity training aid (Learn-A-Prep II -

LAP II) was compared to their performance in subsequent practical 

examinations (class II amalgam preparation and complex amalgam 

preparation). The depth aspect of (LAP II) performance was only predictive of 

practical performance early in the course. It has been suggested that normal 

stereoacuity level and good depth perception may have contributed to the 

early acceptable preparation depth. Through subsequent training, handpiece-

handling skills have been developed resulting in more precise control of the 

preparation, therefore augmenting the depth perception skills (Boushell et al. 

2011). Another study examined the ability of dentists and dental students to 

estimate depth and reproduce small distances during performance using three 

experimental tasks (depth perception task, distance task, and writing task). 
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The results were compared to participants’ stereopsis level, dental 

performance and practical experience. Experienced dentists have better 

accuracy in performing the three tasks, albeit not significantly, and 

inexperienced students (early in this course) performed poorly. Inexperienced 

students tend to overestimate depth and distance and this tendency improved 

with practical experience. The participants’ stereoacuity scores did not 

correlate with their depth estimation or with the students’ grades. The authors 

highlighted the fact that although depth estimation is influenced by the degree 

of depth perception but they are not the same (Dimitrijevic et al. 2011).  

So far, the converging evidence supports the role of depth perception in dental 

performance, however, the specific role of stereopsis in dentistry is not 

supported and debated as well. 

5.1.5.2 Virtual reality dental simulators  

Despite the importance of depth perception in dental practice, there has been 

some debate regarding the particular importance of stereopsis in dentistry. A 

recent review of literature didn’t support the functional significance of 

stereopsis in dental training and concluded that defective or absent stereopsis 

is not a hindrance to dental practice and, therefore, should not be considered a 

prerequisite to dental training (Syrimi & Ali 2015). However, these conclusions 

have been questioned subsequently by Mon-Williams et al. (Mon-Williams et 

al. 2015) based on the fact that the paucity of available evidence from dental 

literature about the role of stereopsis does not necessarily preclude its 

significance. Since stereopsis is task specific, there is a need to explore its role 

in dental tasks that are particularly dependent on depth perception (e.g. cavity 

preparation). They highlight the need for empirical evidence regarding the 
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significance (or not) of stereopsis in dentistry particularly at this time where 

virtual reality simulators (with stereoscopic displays) are being increasingly 

adopted in dental training (Mon-Williams et al. 2015).   

The intuition that stereopsis might be important in dentistry is reflected in the 

design of dental surgical simulators which provide realistic haptic feedback and 

3D rendered images for the purpose of training. There is no doubt that the 

provision of 3D stereovision provides a powerful and realistic rendition of the 

oral cavity. Nevertheless, there are no data to support the inclusion of such 

perceptual information within the design of these surgical simulators (i.e. there 

is no evidence to demonstrate that dentists actually use stereo information to 

carry out dental procedures). The existence of such simulators does, however, 

provide a unique opportunity to address the fundamental issue of whether 

stereopsis has a functional role within dentistry. The Simodont® simulator 

presents an opportunity to examine this question as it can be engineered to 

provide a full binocular experience with or without stereoscopic viewing. This 

enables a robust investigation into the impact of removing stereoscopic 

information whilst keeping the other visual features of the display constant.  

As the debate continues about the functional significance of stereopsis in 

dentistry, it is imperative to investigate the topic empirically, particularly in 

relation to three main aspects : the experience of the operator (dental student 

or dentist), the complexity of various dental tasks and procedures, as well as 

the performance setting (dental clinic, virtual simulator, or phantom head 

simulator). 

Drawing upon those three main aspects, this chapter has set out to investigate 

the role of stereopsis in dentistry from two different perspectives. Therefore, 
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two studies were conducted, each with a distinct experimental approach and 

participants, to answer a specific set of questions about the role of stereopsis 

in dental performance.  
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5.2 SECTION ONE:  Investigating the role of stereopsis in 

dental performance using VR haptic simulator
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5.2.1 Aims and objectives 

This study aimed to measure the impact of removing stereopsis within the 

stereoscopic display in Simodont® VR simulator (whilst leaving other 

information unaffected) on the performance of postgraduate dentists in 

standard dental tasks. 

It is hypothesised that the removal of stereopsis should cause more 

performance errors in depth if stereopsis has a functional role in fundamental 

dental skills.  

Therefore, using the VR haptic dental simulator Simodont®, the objective of the 

current study is to explore how the performance of postgraduate students is 

affected by: 

a) Viewing conditions:  stereoscopic (3D visual display) and non-

stereoscopic (2D visual display).  

b) Task difficulty: represented by two viewing orientations (direct and 

indirect via virtual dental mirror). 

5.2.2 Methods 

5.2.2.1 Participants 

Sixteen participants (13 female and 3 male, mean age = 32.8 years, SD = 3.5 

years), with at least three years of clinical experience, but no previous 

experience of using a dental VR simulator, participated voluntarily in the study 

following email announcement and personal communication by the researcher.  

The participants were postgraduate dental students from various dental 

specialities (Paediatric dentistry, prosthodontics, periodontics, oral biology and 

oral surgery) completing their studies at the School of Dentistry, University of 
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Leeds (see Chapter 3, section 3.2.2). They have no history of ophthalmological 

or neurological disorders and have normal or corrected vision and their 

stereoscopic acuity was measured using StereoTAB test, (described in the 

following section). All participants completed an informed consent, were fully 

debriefed and were clearly informed that their participation has no impact on 

their academic marks as all data are anonymised and the study has been 

conducted independently from their studies. 

Ethical approval was obtained from DREC (Dental Research Ethics 

Committee) at the School of Dentistry, University of Leeds (DREC ref: 

230915/LA/178). 

5.2.2.2 Stereoscopic Acuity Test 

To ensure that the participants had access to stereo-information before 

exploring whether removal of such information has an impact on real-world 

performance, stereoacuity was measured using StereoTAB v3.0.4. (Vallejo 

2014), This is a random-dot based stereo test presented as a digital 

automated application specifically designed for measuring global stereopsis (in 

seconds of arc) at near and long distances.  

It is a non-invasive, simple and quick (2-3min) test that requires the use of 

anaglyph eyeglasses (red/cyan or red/green). It uses pictures of stereo figures 

that are embedded in a background of random dots. The StereoTAB test was 

reported to be a sensitive test with good discriminative power and correlated 

well with the TNO stereoscopic test (Poças 2016; Vallejo et al. 2014).  

The test was delivered using an iPad 2 (Model number A1395). The iPad was 

placed at table top in front of the participant, stabilized with a tripod stand 

(size: 22x8.5x2 cm) with distance of approximately 1m as specified in the 
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application settings and the participant wore anaglyph eyeglasses (red/cyan) 

with red filter on the left eye. The experimental setup for testing stereoacuity is 

illustrated in Figure 5-2. 

A descending staircase procedure was used, whereby the stereoacuity level 

gradually decreased with each new stimulus. Once the application is opened, 

the finest procedure button is selected, then a random dot pattern appears in 

the centre of the screen with a hidden shape (⅙ sliced circle) oriented in one of 

four possible orientations (up, down, left or right) depending on the missing 

slice position. If the participant cannot identify the hidden shape the question 

mark button can be pressed and new shape will appear. On the other hand, if 

the participant identifies the hidden stimulus the corresponding button (with 

matching shape) can be pressed at the button bar. Next, a new hidden random 

shape will appear with a lower level of stereoacuity. The same procedure 

continued (screen 10 levels of stereoacuity) until the results appear on the 

screen with the recorded stereoacuity measurement obtained by the 

participant.  

The minimum binocular disparity measurement depends on the pixel size of 

the device used (Vallejo 2014). In our experiment an iPad 2 Retina was used, 

and it is 40 arc sec for the finest stereopsis. There are 10 possible arc sec 

measurements that could be recorded: 40, 79, 119, 159,199, 238, 278, 318, 

357, 397. The lower the measurement the better the stereoacuity, therefore, 

values above 100 arc sec were considered as stereo deficient.  

The stereoacuity test is used in the current study as a screening test only and 

is not diagnostic, and this was made clear to all participants.  
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Figure 5-2 [A] Schematic illustration of the experimental setting used in the 
current study for testing stereoacuity, and the anaglyph glasses (red/blue) 
used during the test, the red line represent the participant-iPad distance 
(≈ 1m). [B] An iPad 2 with (Stereo TAB) application interface, and the test 
interface.  

 

5.2.2.3 Experimental tasks 

Each participant performed four different tasks from the manual dexterity 

module in Simodont®. The tasks were two basic abstract shapes with minimal 

geometric difference (Figure 5-3). The rationale of choosing the two slightly 

different shapes is to ensure that the performance is not due to a practice 

effect (i.e. performing the same shape four times) and at the same time to 

ensure that both shapes are not markedly different in geometry, which may 

add a difficulty factor that is not intended in the current experiment. 

A

B
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Participants performed each task with two viewing orientations: directly viewing 

the shape and indirectly via a virtual dental mirror (Figure 5-3C). Participants 

were instructed to cut as much of the target region as possible whilst 

minimizing/avoiding drilling into the leeway and the container regions.  

The participants were able to freely move (rotate and tilt) the test block 

(abstract shape) with control handle located beneath the display screen, so 

that it is possible for them to access the target area conveniently (as it is 

possible in a real clinical case where the patient position can be adjusted to 

access the tooth to be treated). 

To avoid any confounding order effects, the task shape order was 

counterbalanced13 as well as the task viewing orientation among participants. 

 

 

 

 

 

 

                                              

13 A method for controlling the order effect in repeated measures study design. 
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Figure 5-3. Schematic illustrations of the manual dexterity tasks used in the 

current study available from the Simodont® courseware [A] Top-view of 

the abstract shapes used in the experimental tasks. [B] Side view with 
cross-section shows the different regions of the abstract shape. The sides 
and bottom of these regions comprised the error metrics for laterality and 
depth, respectively. [C] Reflected abstract shape via virtual dental mirror 
used in the indirect view tasks. 

 

5.2.2.4 Experimental protocol 

The experiment was conducted at the Simodont® Skill Laboratory at the 

School of Dentistry, University of Leeds. The stereoacuity level of the 

participants was measured using the StereoTAB application. Afterwards, the 

participants were introduced to the Simodont® haptic dental simulator with a 

short overview, followed by a demonstration of the simulator and testing 

procedure. Each participant was allowed to try out the device as part of the 

introduction, to familiarize themselves with the procedure and the required task 

(Figure 5-4). Each participant then started to perform the experimental tasks in 

the order specified by the investigator. The target removal percentage of 60% 

was considered acceptable, once reached; the participant can stop cutting the 

Shape 1 Shape 2

Shape cross-section

A

B
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Container
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shape and the task ends. After each task, the performance measures were 

recorded. In the stereoscopic tasks, the participant wore polarized passive 3D 

glasses provided with the simulator. While in the non-stereoscopic conditions, 

the participant were provided with non-polarized lightly tinted eyeglasses, in 

order to minimize the differences between the two viewing conditions and to 

avoid the light intensity difference that may affect performance. 

At completion, participants received a debrief sheet, outlining the aims of the 

study and the researcher contact details, should they have further questions at 

a later time, or should they wish to withdraw their data at any stage.  
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Figure 5-4 Experimental protocol used in the current study. 

 

5.2.2.5 Data collection and statistical analysis 

This is a cross sectional quantitative study with repeated measure design. 

Dental task performance was captured using the metrics provided 

automatically by the simulator: error scores (Leeway and Container-see Figure 

5-3B) for the sides and the bottom of the abstract shape, and the task 

completion percentages. For this study, we were primarily concerned with the 

amount of depth related errors made by participants within each condition. To 
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this end, we used a composite score of the amount of depth error in the 

leeway bottom and container bottom regions of the abstract shape (quantified 

as the volume prepared/cut as a percentage of total surface area) to identify 

depth error (DE). We also calculated the total error scores made by the 

participant at two other specific areas of the abstract shape- the leeway and 

container sides to produce a composite score for lateral error (LE). Finally, the 

percentage of total surface area removed (provided by the simulator as task 

completion %) was used as Target Area Removal (TAR) measure.  

Each dependent variable was subjected to a two (Type of Vision [2D vs. 3D] X 

two (Orientation [Direct vs. Indirect]) repeated measures ANOVA. All data 

were tested for departures from normality by boxplot, Q-Q plots, histograms 

and Shapiro-Wilk’s test with transformations performed where necessary 

(container lateral scores before calculating the composite lateral scores).  

The statistical significance threshold was set to p < 0.05. Bonferroni-corrected 

post hoc comparisons were performed where significant main effects were 

found. Partial eta squared values (ηp²) were reported to indicate effect size. All 

statistical analyses were performed using IBM SPSS® Statistics for Windows 

(Version 22, Armonk, NY: IBM Corp., 2013). 

5.2.3 Results  

5.2.3.1 Stereoacuity results 

All participants exhibited stereoacuity values within the normal range (40-79 

arc sec). However, two participants showed abnormal results (one was unable 

to detect any stimulus in the StereoTAB test, and the other participant scored 

318 arc sec and was considered stereo deficient but in the current sample is 

an outlier). Although both continued the experimental protocol, we decided 
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later to exclude them from the final data analysis and therefore, the total 

sample size is reduced to 14 participants. 

5.2.3.2 Depth errors (DE) 

The effect of the type of visual display (3D stereoscopic/2D non-stereoscopic) 

used to perform the tasks on DE was statistically significant, F (1,13)= 9.539, 

p= 0.009, ηp² =0.42, with mean drilling error being higher for the non-

stereoscopic viewing condition (M = 20.62, SE = 2.78) compared to 

stereoscopic (M=13.77, SE=2.32); with statistically significant mean difference 

of 6.843, 95% CI [2.057, 11,629] (Figure 5-5 A). These results indicate that 

participants were drilling too far in the non-stereoscopic viewing condition. 

On the other hand, the effect of task orientation on DE was not significant, 

 F (1,13)=0.024, p=0.880, ηp² =0.002, with comparable mean depth errors 

values for direct (M = 17.24, SE = 2.76) and indirect orientation (M = 17.16, SE 

= 2.78) (Figure 5-5B). 

The two-way interaction between visual display manipulations and orientation 

on DE was not statistically significance, F (1,13)= 2.728, p = 0.12, ηp² = 0.17.  
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Figure 5-5 Composite Depth errors (DE) in [A] non-stereoscopic and 
stereoscopic visual display conditions; [B] direct and indirect viewing 
conditions. Error bars represent ± 1 S.E.M. Red star denote statistical 
significance. 

 

5.2.3.3 Lateral errors (LE) 

In contrast to DEs, the effect of the type of visual display (3D stereoscopic/2D 

non-stereoscopic) used to perform the tasks had no statistically significant 

effect on the amount of LEs made by participants (Figure 5-6A), F (1,13)= 0.152, 

p= 0.703, ηp² = 0.012.  

In addition, there was no effect of orientation (D/ID) on LEs, F (1,13)= 0.502, 

p= 0.491, ηp² = 0.037 (Figure 5-6B). The two-way interaction between visual 

display manipulations and orientation on LE was also not statistically 

significance, F (1,13)=0.567, p= 0.465, ηp² = 0.042. 
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Figure 5-6 Composite Lateral errors (LE) in [A] non-stereoscopic and 
stereoscopic visual display conditions; [B] direct and indirect viewing 
conditions. Error bars represent ± 1 S.E.M. 

 

5.2.3.4 Target area removal (TAR) 

The effect of the type of visual display (3D stereoscopic/2D non-stereoscopic) 

did not significantly influence the total amount of TAR (Figure 5-7A), F (1,13)= 

1.729, p= 0.211, ηp² = 0.117. 

However, reflecting the expected difficulties associated with indirect tasks, we 

did find a significance of orientation (Figure 5-7B). F (1,13)= 4.973, p= 0.044, 

ηp² = 0.277, with higher mean TAR scores for direct observation (M=68.24, 

SE= 1.39) compared to indirect (M=65.22, SE= 0.97), and a statistically 

significant mean difference of 3.021, 95% CI [0.095, 5.948]. 

The two-way interaction between visual display type and orientation on TAR 

did not reach statistical significance, F (1,13)= 4.01, p=  0.067, ηp² = 0.236.   
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Figure 5-7 Target area removal (TAR) scores in [A] non-stereoscopic and 
stereoscopic visual display conditions; [B] direct and indirect viewing 
conditions. Error bars represent ± 1 S.E.M. Red star denote statistical 
significance. 

 

Table 5.2-a Means (± SD) for all the performance metrics recorded in the 
current study under the 4 experimental conditions. (N=14). 

 Non-stereoscopic display Stereoscopic display 

Direct Indirect Direct Indirect 

Performance 

Metrics 

TAR Target area 

removal (%) 
66.79 (± 3.8) 65.21(±3.9) 69.7(±8.3) 65.24(±4.7) 

DE Depth errors 

composite (%) 
9.2(±6.02) 11.4 (±7.14) 8.03(±4.9) 5.7 (±5.4) 

LE Lateral errors 

composite (%) 
4.11(±3.13) 4.9(±3.9) 3.9 (±4.04) 4.5(±3.6) 
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5.2.4 Discussion  

In this study, we investigated the role of stereopsis in basic simulated dental 

task performance among postgraduate dentists. The data showed that the 

dentists benefitted from the presence of stereovision. Importantly, we 

demonstrated that the presence of stereovision decreased the preparation 

errors in depth but not the lateral errors. This allows confidence that the 

experimental manipulation was specific to the hypothesized role of stereopsis 

(i.e. improving depth perception) rather than a general decrease in 

performance induced by unusual viewing conditions.  

One of the main factors that contribute to the superiority of stereoscopic 3D 

visual display conditions over 2D, during performance is the enhanced 

distance perception (Lin & Woldegiorgis 2015) which is valuable information in 

fine motor task performance. 

The current findings are consistent with the results of an earlier study (de Boer 

et al. 2016a) using Simodont® where novice dental students showed superior 

performance in manual dexterity exercises under 3D stereoscopic relative to 

2D non-stereoscopic visual display conditions, however, unlike our study, their 

participants wore the 3D polarized glasses in both viewing conditions which 

may contribute to the reported eye discomfort in 2D visual display conditions.  

Our findings also showed a reliable effect of task view orientation, with lower 

target area removal in the indirect (mirror) condition made when compared to 

direct condition. This is not surprising because indirect tasks (performed with 

mirror vision) are inherently more challenging and impose additional task 

challenges in terms of hand-eye coordination, dental mirror positioning and 

hand piece control.  
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We were interested to see whether there was a two-way interaction between 

the visual display conditions and task orientation on the performance metrics. 

In fact, we found no statistically reliable interaction on any of our measures. 

The lack of an interaction may be due to the small sample size, however, the 

results do suggest that the largest effects on performance are driven by the 

presence or absence of stereo information and the task complexity. 

The participants with normal stereoacuity have presumably refined their dental 

skills on the basis of this information being available. It is possible that 

individuals with long-term stereo-deficits may learn to use other sources of 

information (e.g. the knowledge of dental anatomy, or the use of gauging 

instrument as periodontal probe) and thereby avoid a reliance on stereopsis. 

This possibility has been explored within previous research exploring the role 

of stereopsis in reaching-to-grasp (Grant et al. 2007) where it was found that 

individuals with permanent stereo-deficits show performance decrements (i.e. 

these individuals were not able to compensate for their stereo-deficits). There 

is a need, however, to determine whether it is possible to compensate for long-

term stereo-deficits in dental skills. This will require the identification of 

qualified dentists with stereo-deficits and comparing their performance with 

dentists who have normal stereoacuity.  

One participant in the current study was unable to identify the stereoscopic 

stimulus in the stereo test (i.e. unable to detect any visible edges in the 

random dots background) despite that we repeated the test after a five minute 

break. This could be explained as deficient or completely absent stereoscopic 

acuity, or possibly the participant has otherwise normal stereopsis but was 

unable to respond to the test stimulus due to differences in depth cues 
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perception that is not optimal for this particular test (Saladin 2005; Howard & 

Rogers 2002). Confirming either case is beyond the scope of the current study, 

however, this was explained to the participant and they were reassured that 

this test is not intended to diagnose any visual condition and it is employed in 

the current study for screening purposes only. The participant continued the 

experiment with no difficulty in any of the experimental conditions. 

The present findings also have implications for the design of VR dental 

simulators. There has been an assumption that stereovision is an important 

feature of such simulators. The data presented here provide empirical support 

for this assumption.  

Further issues that need careful consideration in simulator design more 

broadly are the fact that the types of monocular cues typically available in 

natural environments which can compensate for stereopsis (e.g. shadows) are 

not fully simulated in VR simulators. Additionally, the presence of ghosting (i.e. 

crosstalk or the incomplete isolation of the left and right image channels so 

that one leaks (leakage) or bleeds into the other) on the projection screen 

could also impact on performance (McIntire et al. 2014; Lin & Woldegiorgis 

2015). The fact that dentists are learning to use stereopsis to control their 

actions suggests that simulators should ensure the perceptual information 

used in training maps to the information available in the ‘real world’. We 

therefore argue that simulators should, for example, control for inter-pupillary 

distance (e.g. via calibration) to ensure that disparities are rendered accurately 

within the displays. Discrepancy between the inter-pupillary distance of the 

trainee and the inter-ocular distance of the display will lead to eyestrain or 

visual fatigue (as a result of defective accommodation and binocular fusion) 
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(Lewis & Griffin 1997; Lambooij et al. 2009) and subsequently may result in 

reduced performance.  

Finally, since dental tasks vary widely in terms of their complexity, it is likely 

that this will affect the need for stereoscopic information for successful 

performance. In the current study, the tasks were basic manual dexterity 

exercises that were controlled in terms of the standardized settings within 

which the removal of the target area is performed. The shape was positioned 

evenly in the participant’s view and was presented in a uniform virtual block 

with no adjoining dental structures. It seems reasonable to assume that the 

role of stereopsis will increase as the perceptual-motor demands of the task 

increase (Fielder & Moseley 1996; Bloch et al. 2014; Piano & O’Connor 2013). 

The fact that we found an effect of removing stereopsis in relatively simple 

tasks indicates the fundamental role for stereopsis in dentistry.  

5.2.5 Conclusion  

The performance of simulated tasks in haptic virtual reality dental simulator 

was optimized under stereoscopic 3D visual display conditions. The presence 

of stereovision decreased the preparation depth-related errors but not the 

lateral errors. The data confirm that the participating dentists used stereopsis 

and its presence resulted in improved performance.  

It remains to be determined whether individuals with stereo-deficits can 

compensate adequately. Nevertheless, these findings suggest an important 

role for stereopsis in dentistry and justify the design of simulators with 3D 

stereoscopic displays. 
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5.3 SECTION TWO: The Correlation between Stereoscopic 

Acuity and Dental Performance among Undergraduate 

Dental Students
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5.3.1 Aims and objectives 

This study aimed to investigate the association between undergraduate 

students’ stereoscopic acuity and their practical dental performance in 

preclinical operative dentistry.  

Therefore, the objectives of the present study are: 

1- To measure the level of stereoacuity among a group of undergraduate 

dental students. 

2- To explore the correlation between the stereoacuity and dental 

performance represented by final practical test results in two preclinical 

training settings: 

a) Preclinical Laboratory 1: using virtual reality haptic dental simulator 

(Simodont®).  

b) Preclinical Laboratory 2: using Phantom head simulator.  

5.3.2 Methods 

5.3.2.1 Participants 

A group of undergraduate dental students (N=28, 18 female and 10 male) from 

third year dentistry program at the School of dentistry, University of Leeds, 

participated voluntarily in the study following an email announcement and 

personal communication by the researcher. All participants completed an 

informed consent sheet, were fully debriefed and the study was approved by 

Dental Research Ethics Committee at the School of Dentistry, University of 

Leeds (DREC ref: 230915/LA/178). 
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5.3.2.2 Stereoscopic Acuity Test 

Stereoacuity of the participants was measured using StereoTAB test (detailed 

description in section one, section 5.2.2.2). 

5.3.2.3 Preclinical dental performance 

The students’ dental performance results were obtained from the student 

education office and from the module leaders. The Simodont® results (for 

each trial done by each student) were accessed via the Simodont® server, 

downloaded, filtered, arranged in Excel sheets, calculated and exported to 

SPSS for analysis. Confidentiality was maintained by assignment of code 

numbers replacing students name. For each participant, a total of 4 final 

grades were obtained and calculated as follow: 

A. Result 1 (Preclinical VR Simodont® laboratory):  

These are the average results of students practice on manual 

dexterity exercises available in the Simodont® courseware (by ACTA). 

Due to the large number of trials performed by each student for 

different exercises and due to differences in number of trials per 

student, we standardize the selection criteria in the current study as 

follow: the number of trials included per student is 30 and the task 

completion level is 60% and above.  

B. Result 2 (Preclinical Phantom head simulator laboratory):  

a. Phantom1 (Year 2): Spotter test results performed in the 

phantom head using typodonts. In this laboratory test, the 

students are asked to spot the wrong/defective part of a 

preparation or restoration. Afterwards, a final mark out of 
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100 is assigned to students based on their performance 

by the instructor. 

b. Phantom 2 (Year 2): The average of continuous 

assessment (CA) practical exercises, graded on scale of 

4 (Excellent, Acceptable, Below acceptable, Fail). A total 

of nine exercises, each exercise consists of two tasks: 

cavity preparation and restoration using amalgam, 

composite or resin modified GIC (Table 5.3-a). 

c. Phantom 3 (Year 3): The result of full crown preparation 

test on typodont plastic teeth at year 3. 

Table 5.3-a Continuous assessment (CA) exercises (phantom lab) at year 2 of 
dental school. 

Restorative material Preclinical exercise 

Resin Composite 

 

• Occlusal Cavity Preparation and 
Restoration 

• Posterior Approximal Cavity 
Preparation and Restoration 

Amalgam 

 

• Occlusal Cavity Preparation and 
Restoration 

• Approximal Cavity Preparation and 
Restoration 

Resin Composite 

 

• Anterior Approximal Cavity 
Preparation and Restoration 

• Incisal Corner Cavity Preparation 
and Restoration 

 

Resin modified glass 

ionomer cements (RMGIC) 
Cervical Cavity Preparation and Restoration 

Amalgam 

 
Large Cavity Preparation and Restoration 

Resin Composite 
 

Large Cavity Preparation and Restoration 
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5.3.2.4 Data collection and statistical analysis 

This is a cross-sectional study using a quantitative methodology. Preliminary 

analyses showed that all continuous variables (test results) were normally 

distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no 

outliers. For the ordinal variables, preliminary analysis showed the relationship 

to be monotonic, as assessed by visual inspection of a scatterplot. 

The stereoacuity results were coded as stereo normal and stereo deficient 

based on the obtained measurement. To explore the performance of the 

students in each test based on their stereoacuity measurement, independent 

sample t-test was run for each assessment. A Mann-Whitney U test was run 

for the preclinical continuous assessment test (ordinal variable). 

Spearman's rank-order correlation test was run to assess the relationship 

between stereoacuity and students’ performance at the three tests (Crown, 

Spotter, and Simodont®). A Goodman and Kruskal's gamma correlation test 

was run to assess the relation between stereoacuity (two codes) and phantom 

continuous assessment results (four codes) because both variables were 

ordinal. 

Linear regression analyses were run to explore the relationship between 

stereoacuity and performance at the three tests (crown, spotter, and 

Simodont®). Additionally, an ordinal logistic regression with proportional odds 

was run to determine the effect of stereoacuity on phantom CA performance. 

The statistical significance threshold was set to p < 0.05. All statistical 

analyses were performed using IBM SPSS® Statistics for Windows (Version 

22, Armonk, NY: IBM Corp., 2013). 
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5.3.3 Results 

5.3.3.1 Stereoacuity test results 

Most participants (78.6%) exhibited normal stereoacuity within the range of 40-

60 arc sec. Other participants (21.4%) scored 159 arc sec and above in the 

StereoTAB test, and recorded as stereo deficient.  

Mann-Whitney U test was run to determine if there were differences in 

stereoacuity levels among male and female students. Distributions of 

stereoacuity levels were similar, as assessed by visual inspection. Median 

stereoacuity was not statistically significantly different between males and 

females (Figure 5-8), U = 88, z = -0.135, p = 0.944. 

  

 

Figure 5-8 Stereoacuity distribution among male and female students (N=28). 
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5.3.3.2 Stereoacuity and practical dental performance 

A. Group differences 

An independent-samples t-test was run to determine if there were 

differences in test scores between stereo normal and stereo deficient 

students. There were no outliers in the data, as assessed by inspection of 

a boxplot. Exam scores for each level of stereoacuity were normally 

distributed, as assessed by Shapiro-Wilk's test (p > 0.05), and there was 

homogeneity of variances, as assessed by Levene's test for equality of 

variances (p = 0.33).  

Stereo deficient participants performed slightly better (M = 78.83, SEM = 

3.628), in the typodont crown test than stereo normal (M = 76.23, SEM = 

2.898). However, the mean performance difference between the two 

groups M = 2.6, 95% CI [-14.745, 9.533], was not statistically significant, t 

(26) = -0.441, p = 0.66, d = 0.22 (a small effect size according to 

Cohen1988). 

For the Phantom 1 Spotter test, comparable performance of both groups 

were reported for stereo normal (M = 71.77, SE = 2.35) and stereo 

deficient (M = 70.67, SE = 4.34) participants, so the mean performance 

difference between the two groups M = 1.11, 95% CI [-9.25, 11.46], was 

not statistically significant, t (26) = 0.219, p = 0.83, d = 0.10. 

In the Simodont® test, performance scores for stereo deficient group was 

higher (M = 79.67, SE = 2.32) than stereo normal group (M = 76.8, SE = 

0.94), however, this difference did not reach statistical significance, and 

the mean performance difference is M= -2.85, 95% CI [-7.28, 1.56], t (26) 
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= -1.33, p = 0.19. d = 0.56 , a medium effect size according to Cohen 

(1988). 

For the Phantom 2 results (preclinical continuous assessment), Mann-

Whitney U test was run and revealed a similar distribution of the test 

scores for both groups as assessed by visual inspection. Median Test 

scores were not statistically significantly different between stereo normal 

(mean rank = 14.14) and stereo deficient (mean rank = 15.83) participants, 

U = 74, z = 0.52, p = 0.68. The performance of both groups on all four 

tests is shown in Figure 5-9. 

 

Figure 5-9 The performance of stereo normal and stereo deficient students in 
the practical assessment. [A] Mean and SEM (error bars) of the 
preclinical tests. [B] Mean rank of the preclinical phantom continuous 
assessment results. 
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B. Correlation analyses 

Spearman’s rho tests showed no significant correlation between 

stereoacuity and any of the three practical test results (Simodont® test, 

spotter test, and crown test), p > 0.05 (Table 5.3-b).  

Similarly, Goodman and Kruskal's γ test revealed a non significant small 

positive correlation (G= 0.25, p= 0.58) between stereoacuity and 

phantom two results (CA). 

Table 5.3-b Spearman's rank-order correlation (rs) between stereoacuity and 
students performance (N=28). 

 
Spearman’s rho 

correlation coefficients 

with Stereoacuity 

p-value 

 

Simodont® VR Test 0.248 0.203 

Phantom Spotter Test -0.060 0.763 

Phantom Crown Test 0.076 0.702 

Correlations significant at p < 0.05.  
 
 
 

C. Regression analyses 
 

• Linear regression  

Regression analyses showed that there was no evidence (p >0.05) of a 

significant predictive relationship between a participant’s stereoacuity and their 

preclinical practical performance. 

For the phantom spotter test, stereoacuity level did not predict the student 

performance significantly F (1,26)= 0.048, p= 0.83. Stereoacuity accounted for 

only 0.2% (R2= 0.002) of the variation in the performance with adjusted R2 

value of - 0.037. 
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Similarly, for the typodont crown test, stereoacuity level did not predict the 

student performance significantly F (1,26)= 0.067, p= 0.79. It accounted for 

only 0.3% (R2= 0.003) of the variation in the performance with adjusted R2 

value of - 0.036. 

Although for the Simodont® VR assessment, stereo acuity level also did not 

predict the student performance significantly F (1,26)= 1.76, p= 0.19; however, 

it accounted for 6.4% (R2= 0.064) of the variation in the VR performance with 

adjusted R2 value of 0.028, much more than the performance variations in the 

two phantom tests. 

• Ordinal logistic regression 

Ordinal logistic regression with proportional odds was run to determine the 

effect of stereoacuity levels (dichotomous) on phantom CA performance 

(ordinal). The deviance goodness-of-fit test indicated that the model was a 

good fit to the observed data, χ2 (1) = 1.358, p = 0.24. However, the final 

model did not statistically significantly predicted the phantom CA performance 

over and above the intercept-only model, χ2 (1) = 0.181, p = 0.67.  

The odds ratio of being in a higher category (excellent) of the dependent 

variable (Phantom CA) for stereo normal versus stereo deficient participants is 

1.475 95% CI [0.273, 7.982], a statistically non-significant effect, χ2 (1) = 

0.203, p = 0.65. Therefore, the stereoacuity level did not have a statistically 

significant effect on predicting the phantom CA performance Wald χ2 (1) = 

0.203, p = 0.65. 
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5.3.4 Discussion 

The majority of participants in the current study exhibited normal stereoacuity 

values, however, about 21.4% showed deficient stereo acuity according to the 

StereoTAB test. Moreover, the students’ performance in four different 

preclinical operative dentistry assessments did not correlate significantly with 

their stereoacuity.  

Stereoacuity values were a non-significant/weak predictor of student preclinical 

performance. These findings are consistent with previous studies in the dental 

literature (using TNO stereo test) (Ireland et al. 1982; Rawlinson 1993; 

Dimitrijevic et al. 2011) which did not find any association between 

undergraduate dental students performance and their stereoacuity 

measurements. Of note are the differences in the reported prevalence of 

stereo deficiency among dental students in the current study and other studies 

(5%(Green et al. 2011) , 7%(Dimitrijevic et al. 2011) , and 23% (Rawlinson 

1993) ) as well as among other groups (Coutant & Westheimer 1993; Biddle et 

al. 2014; Selvander & Åsman 2011) . Although some studies have reported 

complete loss of stereopsis among some dental students (Rawlinson 1993), 

and dentists (Forgie et al. 2001) this was not found in our sample of 

undergraduates. 

In the current study, stereo deficient students performed as good as and even 

slightly better than stereo normal students in preclinical continuous 

assessment, typodont crown test and Simodont® assessment, however this 

trend did not reach statistical significance. Similar trend has been reported 

previously in the surgical literature where stereo impaired or stereo blind 

participants performed better than stereo normal group in some, but not all, 
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experimental tasks (Barry et al. 2009; Waqar et al. 2012; O’Connor et al. 

2010). Such trends emphasise the multidimensional nature of depth perception 

particularly during performing fine intricate tasks that depends on the 

interaction of many different physical, neurologic, cognitive and sensorimotor 

attributes. Moreover, the stereo deficient participants who are at the 3rd year of 

dental school possibly are still able to sufficiently perceive depth (albeit not 

optimally due to impaired stereopsis) via compensatory mechanisms such as 

monocular depth cues (e.g. relative size, shadows, and aerial perspective). 

Furthermore, it is interesting to know, not only from our study but also from 

other stereopsis-screening studies in the dental and surgical literature, that 

subjects who have impaired stereopsis did not know about their visual 

anomaly before the test. This implies that, unlike other visual deficits, 

stereopsis is a quality of binocular vision that enhances our visual experience 

but when it is absent, we are still able to navigate satisfactorily in the visual 

world using other compensatory depth cues. 

Such results draw our attention to the fact that the level of dental performance 

cannot be attributed to a single factor per se such as stereoscopic acuity. The 

complexity of dental procedures demands a more focused approach to 

investigate the possible effect of stereoscopic acuity particularly at task level 

(Fielder & Moseley 1996; O’Connor et al. 2010) where the subtle influences 

become more evident and identifiable. Dental tasks vary widely in terms of 

complexity and the need for three-dimensional information for successful 

performance. The following factors are suggested which might potentially 

affect clinical task performance in some operative dental procedures (that 
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need special attention to fine detail). These can be grouped as dentist and task 

related factors. 

Dentist factors  

• Cognitive attributes and scientific knowledge 

• Hand-eye coordination 

• Visual acuity 

• Manual dexterity and sensorimotor skills 

• Stress/fatigue  

Specific task factors  

• Type of dental treatment (preventive, restorative, prosthetic, surgical) 

• For operative procedures: 

 The accessibility and the position of the tooth in the dental arch 

(maxillary, mandibular, anterior, or posterior) 

 The ability to control the oral environment (i.e. moisture control, isolation 

with rubber dam) 

 The level of task complexity (e.g. full PFM crown preparation on upper 

second maxillary molar, or simple class I resin composite restoration on 

lower first molar) 

 Level of task details needed (e.g. measuring depth, length or the width 

of the cavity or the tooth, locating root canal orifices or applying layers 

of different restorative materials in confined small part of the tooth).  

Such factors and many others should be carefully considered when designing 

future studies for stereopsis investigation in dentistry. Additionally, future 

studies should explore longitudinally how the stereo deficient students will 

thrive in dental school, and whether they find some procedures particularly 

difficult to perform successfully. 

Although our findings are in line with previous dental literature, this should not 

rule out the functional significance of stereopsis in dentistry. Rather, it should 

be a catalyst to fine-tune the future research approaches to this topic by 
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focusing on individual dental tasks and how critical stereoscopic acuity is to its 

successful performance. 

5.3.5 Conclusion 

The majority of undergraduate dental students in our sample exhibited normal 

stereo acuity values, however, about 21.4% showed stereo deficiency. No 

significant correlation was found between stereoacuity and students’ preclinical 

performance in virtual reality and conventional simulation settings. Therefore, 

stereoacuity is considered a weak predictor of student preclinical performance 

in the current study. Further research focusing on the effect of stereoacuity on 

performance at task-level is warranted particularly among larger cohorts of 

dental students. 
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Chapter 6 : Feedback and motor skill acquisition using a 

haptic dental simulator 
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Feedback can be broadly described as the information received during or after 

an action, event or process that form the basis for improvement (Magill 2011). 

The feedback provided to learners about their performance is in the heart of 

any learning cycle, and it has been identified as the most important feature that 

promotes effective learning in simulation-based education (Issenberg et al. 

2005; McGaghie et al. 2010). In simulation-based dental education, the 

learning of sensorimotor skills in simulation laboratories is a fundamental part 

of the dental curriculum particularly at the preclinical stage. It provides a safe 

learning environment with the availability of feedback and support from dental 

educators in a structured training setting.  

The technological advances in medical and dental simulation methodologies 

and the increased adoption of high fidelity simulators based on VR technology 

emphasised the central role of feedback in pedagogy by introducing special 

types of performance feedback, such as visual and auditory feedback (Scalese 

et al. 2008). Additionally, kinematic measurements are automatically recorded 

in these simulators that convey precise quantitative information about the 

learner’s motor abilities during simulated task performance (Suebnukarn et al. 

2009). This unique feature of VR simulators is not available in the more 

traditional physical simulators, that do not provide any degree of interactivity 

with learner’s input, and it is qualitatively different from the information 

conveyed in an instructor’s feedback, therefore adding another dimension to 

the performance assessment that was not accessible before.  

In the wider pedagogical context, feedback in technology-assisted instruction 

comprises the information conveyed to the learner via a variety of sources 

(e.g. verbal, display) following his/her input, aiming to shape the learner’s 
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perception, cognition or action (Shute 2008). Whatever the source of 

performance feedback, its ultimate goal should be to enhance learning and 

that is very much dependant on the content of the feedback, and how it is 

optimally utilized in specific learning contexts. 

Due to the importance of sensorimotor skill learning in dental education, 

understanding the role of feedback from the motor skill acquisition perspective 

is vital to promote effective skill learning in simulation settings and beyond.  

In the context of motor skill learning, performance is differentiated from 

learning as being a transitory change in motor action observed during practice. 

Learning can be only evaluated after practice, specifically through retention or 

transfer tests (Shumway-Cook et al. 2012).  

Performance feedback is defined as all the information the learner receives as 

result of a movement or practice of motor skill. It provides guidance to achieve 

the correct movement or the desired skill level. It has both informational and 

motivational influence on motor skill learning (Wulf et al. 2010; Wulf & Schmidt 

2014). 

Substantial evidence from experimental psychology suggests that feedback 

modulates the rate of learning and that appropriate feedback at various stages 

of skill acquisition can accelerate the learning process (Baker & Young 1960; 

Gordon 1968; Hester et al. 2010; Wolpert et al. 2011; Yousif & Diedrichsen 

2012; Mushtaq et al. 2013).  

6.1 Types of feedback 

Feedback can be broadly classified, based on its source, into intrinsic or 

extrinsic.  
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• Intrinsic feedback: it is the sensory perceptual information provided 

naturally, as a result of an individual’s movement, through exteroception 

(i.e. vision, audition), and proprioception (i.e. from mechanoreceptors in 

the skin, proprioceptors in the muscles and joints that provide 

information about movement, location and velocity) (Proctor & Dutta 

1995; Magill 2011).  

• Extrinsic (augmented) feedback: is the additional information provided 

by an external source such as a person/instructor or a device through 

various modalities (single or combined) such as visual (e.g. screens, 

head-mounted display), auditory (e.g. speakers, headphones), and 

haptic (i.e. through tactile and kinaesthetic input that provide information 

about certain features of the task). 

Augmented (extrinsic) feedback is commonly categorised based on its 

information contents into :  

1. Knowledge of result (KR): information about the outcome of the 

performance only, with no specific information about what aspects of 

the movement contributed to the outcome. In the conventional 

preclinical dental skill training environments (using phantom head 

simulators), terminal feedback (KR) is typically provided by an instructor 

when the student completed all or part of the dental task (e.g. cavity 

preparation) (Feil et al. 1986). 

2. Knowledge of performance (KP): information about the quality of 

performance and movement characteristics in terms of kinetic (i.e. 

forces applied during performance) and kinematic information (i.e. 

temporal and spatial properties of the movement) both of which 

contribute to performance dynamics that resulted in the outcome 
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(Proctor & Dutta 1995). Such information is not available in a 

conventional dental training environment. 

Augmented feedback can be delivered at different timings, and at various 

frequencies. It can be provided during performance (concurrent, on-line), or at 

the end of performance (terminal feedback) and it could be immediate or 

delayed (Tresilian, 2012; Sigrist et al., 2013). Feedback frequency refers to 

how frequent the performance feedback is available to the learner. It could be 

continuous (100% frequency) after each trial, intermittent (reduced frequency 

after a set of trials) or fading feedback (reduced frequency of feedback 

overtime) (Sigrist et al. 2013). Additionally, bandwidth feedback (when errors 

exceed certain defined limits) and self-controlled (the learner decides when to 

access the feedback and through which modality) has been described (Wulf & 

Schmidt 2014).  

6.2 Feedback in motor skill learning .. Help or Hinder? 

The effect of feedback on motor skill learning is dependant on multiple factors 

such as the complexity of the skill, the feedback frequency, contents, timing, 

the learner’s experience, and the learner’s focus of attention (Shea & Wulf 

1999; Wulf & Schmidt 2014). 

The theoretical underpinning of the role of feedback in motor skill learning can 

be explained on the basis of the guidance hypothesis (Salmoni et al. 1984) 

and the cognitive load theory (Sweller 1988).  

Concurrent and frequent feedback was found to be detrimental in simple skill 

learning. It has been shown that feedback presented frequently during simple 

motor skill acquisition, provides guidance to the learner about the important 

features of the learned skill and enhance performance during training and 
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acquisition phases. However, the performance declines in no-feedback 

conditions, because the frequent concurrent feedback produced dependency 

on the external information and interrupted the intrinsic representation of the 

task, thereby negatively impacts on the long-term learning (Sigrist et al. 2013), 

this has been described as the guidance hypothesis (Salmoni et al. 1984). 

Delayed terminal feedback is found to promote error estimation and detection 

by the learner, provided that the learner is familiar with target performance 

goal (i.e. not in the early acquisition phase), but this process can be interrupted 

if concurrent and immediate feedback is provided (Sigrist et al. 2013; Wulf & 

Schmidt 2014).  

 In contrast, the more complex the skill the more useful the concurrent 

feedback is to the learner, as it prevents cognitive overload by guiding the 

learner to the most effective strategies to perform certain movements. It directs 

the attention of the trainee to the relevant aspects of the skill and facilitates 

understanding of the underlying processes required to complete a difficult 

motor task thereby contributing to the development of accurate motor 

representations and facilitating the learning of the complex skill (Wulf et al. 

1998; Sigrist et al. 2013; Sigrist et al. 2015). The majority of research supports 

the positive effect of concurrent feedback in complex motor skills learning 

(Sigrist et al. 2013; Shea & Wulf 1999; Wulf & Shea 2002; Huegel & O’Malley 

2010).  

The cognitive load theory (Sweller 1988) focuses on the information 

processing in learning and how the capabilities of the working memory handle 

the mental effort associated with new information/tasks, providing a framework 

for effective instructional design. The information overload associated with a 

new task or learning conditions can negatively impacts the limited capacity of 
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the working memory, however when the new information is structured into 

defined units (cognitive schemas) that can be conveniently processed and 

stored in the long-term memory, the cognitive load is reduced and the learning 

is facilitated. The cognitive load can be intrinsic (i.e. related to the 

characteristics and nature of the task), or extraneous (i.e. related to how the 

task or task-related information is presented). Germane cognitive load is the 

effort required to organize the new information into cognitive schemas in the 

long-term memory. Both extraneous and germane cognitive loads can be 

changed by instructional design, and the optimal instruction that would 

facilitate learning should reduce the extraneous cognitive load, thereby 

enhancing the creation of cognitive schemas in the long-term memory (Sweller 

et al. 1998; Sweller 1988; Hatala et al. 2014).   

In motor skill learning, explanation of the task by an instructor facilitates its 

understanding and therefore reduces the learner’s cognitive load (Hatala et al. 

2014).  Additionally, specific feedback (KP- Knowledge of performance) 

information (i.e. prescriptive feedback) provided concurrently about critical 

movement pattern and how to correct errors, particularly to beginners /novices, 

prevents the cognitive overload therefore enhances the learning of complex 

skills that require high levels of coordination (Magill 2011; Wulf & Shea 2002). 

During motor skill acquisition, augmented feedback facilitates the association 

between the intrinsic feedback (e.g. proprioception) and the goal of the learned 

task, resulting in better recall of the learned task and maintained performance 

that depends on intrinsic feedback alone during no-feedback situations (i.e. 

real task performance) (Anderson et al. 2001). 
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6.3 Performance Feedback in Simulation-based education  

The availability of Knowledge of result (KR) feedback during simulated practice 

has been identified as one of the most important factors that leads to effective 

learning (Sigrist et al. 2013; Shea & Wulf 1999; Wulf & Shea 2002; Huegel & 

O’Malley 2010).   

Virtual reality simulation technologies offer an opportunity to present on-line 

continuous feedback on surgical performance through presentation of visual 

and auditory information (Scalese et al. 2008). With the introduction of haptic 

VR simulators, sensory (tactile) feedback become available that allows 

trainees to feel and touch virtual objects – thereby providing information that 

can potentially be used to learn the parameters of a task above and beyond 

auditory and visual cues.  

6.3.1 In medical and surgical education 

Multiple sources of feedback during motor skill training in surgical simulation-

based education has been shown to consistently result in superior 

performance compared to single feedback source/modality, particularly for 

immediate post-tests (Hatala et al. 2014). For novice trainees in endovascular 

skill training, VR feedback resulted in general improvements in performance in 

difficult tasks and skill acquisition was further accelerated through the 

introduction of expert instructor-guided feedback (Boyle et al. 2011). Similarly, 

the availability of instructor feedback in VR laparoscopic complex skill training 

has resulted in increased learning efficiency (Strandbygaard et al. 2013) 

although this did not affect the long-term retention of the learned skills 

(Bjerrum et al. 2015). On the other hand, for suturing skill performance 

retention, verbal expert feedback was found to be superior to simulator 
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generated feedback with and without expert reference values in junior medical 

students (Porte et al. 2007).  

The timing of feedback was found to impact on the surgical skill learning, as 

terminal feedback is reported to be superior to concurrent feedback for 

retention of simple skills in novices (Hatala et al. 2014). Novice endoscopists 

who received terminal feedback during training on a colonoscopy simulator 

task outperform those who received concurrent feedback at a transfer test 

(Walsh et al. 2009). Novice medical students trained with concurrent feedback, 

terminal feedback, or video based instruction practice settings performed 

equally in the acquisition of basic surgical skill, however, at retention test, only 

terminal feedback and video based instruction groups retained their 

performance level (Xeroulis et al. 2007). 

6.3.2 In dental education        

In the dental literature, the use of VR simulators for undergraduate operative 

dentistry training was found to be effective in providing objective formative 

evaluation, and in enhancing skill acquisition rates (Buchanan 2001).  

The role of feedback in dental preclinical training has also been investigated in 

conventional (Feil et al. 1986), computer-assisted (Wierinck et al. 2005) and 

VR environments (Suebnukarn et al. 2010; Rhienmora et al. 2009).  In 

conventional preclinical operative training (phantom head simulators), the 

effect of providing continuous concurrent feedback from an instructor has been 

found to result in significant performance improvements relative to 

presentation of terminal KR feedback alone (Feil et al. 1986).  

In a series of experiments, Wierinck et al. explored the role of augmented 

feedback from a computer-assisted/augmented reality simulator (DentSim) on 

skill acquisition (Wierinck et al. 2005; Wierinck et al. 2006a; Wierinck et al. 
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2006b). The simulator provided augmented visual computerized feedback 

about a student’s preparation compared to an ideal standard. In one study, 

when only one type of feedback was provided (visual feedback from the 

simulator) to novice dental students, performance was enhanced temporarily 

during training of the manual dexterity skills, but this did not result in skill 

retention (Wierinck et al. 2005). In another study, standardised expert input 

provided at a tutorial session, before the students completed a task, was found 

to be more beneficial for retention and transfer of skill than VR feedback alone 

(Wierinck et al. 2006b). Suebnukarn et al. (2010) showed that the availability of 

augmented kinematic feedback, about variations of movement pattern by the 

haptic VR simulator whilst performing an endodontic access preparation, 

enhanced student performance at the early stages of skill acquisition and 

retention (Suebnukarn et al. 2010).  

In concert, these studies suggest that: (i) VR simulator-driven feedback can be 

useful as a means of improving performance; (ii) multi-modal feedback 

methods should result in faster skill acquisition relative to VR alone.  

Therefore, the type of feedback of interest in the current investigation is 

augmented feedback (both knowledge of result and knowledge of 

performance) and how it impacts the learning of simulated basic dental tasks. 

This augmented feedback is specifically obtained from two extrinsic sources: 

dental educator (verbal) and VR haptic dental simulator (visual, haptic). 

6.4 Aim and Objectives 

Predicated on the existing research, the aim of the current study was to 

examine the contributions of augmented feedback from: (i) a VR haptic 

simulator, (ii) an instructor, and (iii) a combination of the two. In order to avoid 
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confounding effects, the experiments were conducted with handpiece naïve 

subjects with no previous dental training.  

Specifically, we investigated the impact of feedback on:  

(a) rate of motor skill acquisition  

(b) the ability to generalise the learnt skill to other tasks (skill transfer) 

(c) long-term changes in learning (retention).  

6.5 Materials and Methods 

6.5.1 Participants 

Sixty-three participants (13 male and 50 female, mean age = 22.7 years, SD = 

3.4 years) with no previous dental training participated voluntarily in the study 

following email and poster announcements at the University of Leeds in 

exchange for £20 remuneration. The participants were undergraduate 

university students studying at various faculties/schools (except Dentistry) at 

the University of Leeds. They were remunerated for their time and it was made 

clear that payment would not be dependent on performance. Participants were 

randomly allocated to one of three groups. Each group (n = 21) received 

qualitatively different types of pedagogical feedback during dental training, 

described in the procedure section below. Participants completed an informed 

consent sheet, were fully debriefed and the study was approved by the ethics 

committees of the School of Psychology and School of Dentistry at the 

University of Leeds. 

6.5.2 Devices 

6.5.2.1 Simodont®  

Participants were trained and tested on the Simodont® VR haptic dental 

simulator. For full simulator description (see Chapter 3, section 3.2.1). 
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For this study, we used the manual dexterity exercises from the courseware 

package to train and test all participants to prepare basic abstract shapes 

using the same dental instruments (high-speed hand piece and one type of 

dental bur-FG856/016).  

Table 6.5-a Kinematic performance measures provided by the Simodont® 

 

 

 

 

 

 

 

 

 

6.5.2.2 CKAT 

In order to ensure equivalence in underlying motor abilities in our sample, the 

clinical kinematic assessment tool - (CKAT; (Culmer et al. 2009)) an objective 

measure of motor control - was used to assess motor ability at baseline. 

The CKAT is a specialized software system for measuring detailed hand 

movements. It is designed to operate on a commercially available tablet, with 

the tablet stylus as the main input device that measures the planar position of 

the stylus tip on the laptop screen. In the current study, Toshiba tablet 

(Toshiba Portégé, 14″ screen: 260 × 163 mm, 1,280 × 800 pixels, 32 bit colour, 

60 Hz refresh time) was used to run the KAT system (Figure 6-1). It delivers 

inter-active kinematic assessment trials in which a computerised series of 

A- Target removal (%) 

B- Error Scores (%) 

Leeway bottom 

Leeway sides 

Container bottom 

Container sides 

C- Time elapsed (seconds) 

D- Drill Time (seconds) 

E- Handpiece movement (m) 

Moved with left hand 

Moved with right hand 
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manual fine motor control tests objectively record hand movements in details 

using accurate and repeatable measurements from standardised three visual- 

spatial tasks across a range of subtests including tracking, sequential aiming 

and tracing tasks in fixed order. Automated data analysis functions are 

integrated within the CKAT system and run after each trial to quantify 

performance metrics. The data processing steps and task requirements for the 

battery are described in more detail elsewhere (Flatters, Mushtaq, et al. 2014; 

Flatters, Hill, et al. 2014). 

 

 

Figure 6-1 [A] The Toshiba tablet (with stylus pen) used to run CKAT system 

in the current study (Model Toshiba Portégé M700 Series). [B] Schematic 

drawing of an example of dot-tracking task in CKAT, the participant has to 

follow the moving green dot and keep the stylus on the screen all the 

time. 

 

6.5.3 Simodont® Tasks 

Five different geometric shapes, available in two different depths (0.4mm and 

0.8mm) were employed in this experiment. A schematic example of one of the 

shapes (cylindrical) is shown in (Figure 6-2A).  

Each shape consisted of three zones (Figure 6-2B): (i) a target zone- which 

must be removed by the participant; (ii) Leeway zones (side and bottom) is 

A B
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adherently surrounding the target zone and the participants were instructed to 

avoid removing (as possible); and (iii) the container zones (sides and bottom) 

represented by a block that surrounds the abstract shape that participants 

were also told they must avoid during target removal. Furthermore, the 

participants were informed that the acceptable target removal percentage of all 

tasks in the current study was 70%. Operational definitions of the performance 

measures are shown in Table 6.5-b. 

Table 6.5-b Operational definitions of performance measures  

Performance measures Operational definition 

Task completion (%) TC The amount of the target removed by the participant. For the tasks 

conducted here, 70% reflected a reasonable performance level. 

Drill Time (preparation 

time) in seconds DT 

The total time taken by the participant to drill the shape 

Error scores (%)  Error scores were defined as those when drill movement extended beyond 

the safe/designated margins of a given shape (see Figure 6-2B) and were 

computed as a percentage of the total region (leeway/bottom) 

 

 

Figure 6-2 [A] Schematic drawing of one of the abstract shapes available in 

manual dexterity training module of Simodont® courseware; [B] Cross-

section of the abstract shape (3 coloured zones).  

 

A B
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6.5.4 Procedure 

Initially, the participants’ motor skills were assessed with the CKAT.  After 

completing the CKAT test, participants were given a 10-minute introduction to 

the Simodont® haptic dental simulator. This was followed by a demonstration 

of how to use the handpiece and the foot pedal to remove the marked orange 

target area of the shape (see Figure 6-2B) and avoid going beyond the shape 

boundaries. All participants were allowed to try out the device (2-3 minutes) as 

part of the introduction to familiarize themselves with the procedure and the 

required task. Next, a baseline skill (BL) assessment was conducted, and the 

participants were asked to prepare a simple abstract shape (with no feedback 

at all). The training phase included practice completing four exercises on two 

abstract shapes. During this phase, each group received a different type of 

feedback during training. One group (referred to as Device Feedback [DFB] 

from hereon in) received feedback from the Simodont® only, (i.e. visual display 

of kinematic information about performance including error scores, drill time, 

and task completion percentage) (see   

Table 6.5-a).  

Group 2: Instructor Verbal Feedback [IFB] received verbal feedback from a 

qualified dental instructor only, with no access to information from the device 

(i.e. no visual display of kinematic measures). The verbal feedback from the 

instructor was concurrent and included comments about performance (e.g. 

cutting the target area, holding the handpiece) in addition to answering 

questions about the task and the procedure. 

Group 3: Instructor and Device [IDFB], received combined feedback from the 

same instructor (verbal instructions about performance) and device (visual 
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display of kinematic information). The same instructor provided feedback to the 

IFB and IDFB groups. 

The training phase was followed by a transfer test to examine skill 

generalisation. Here, all participants performed two tests on novel abstract 

shapes that had not been encountered during training (without feedback). The 

retention phase of the study consisted of post-tests performed at three-time 

intervals (immediate, one-week, and one-month). The exercises performed at 

these sessions were identical to the shape practised during the training phase 

(without feedback). With the exception of the haptic feedback provided by the 

simulator, all the other phases (baseline, transfer and retention) were 

performed under no feedback conditions. No specific time limit was set to 

complete each task, however, all participants in all groups spent an average of  

30 seconds to 1.5 minute per task. 

The experimental protocol is illustrated in Figure 6-3. 
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Figure 6-3 Experimental protocol of the current study. 



 
 

164 

6.5.5 Data collection and statistical analysis 

CKAT performance was analysed using R statistical software (R Development 

Core Team, 2010); The arithmetic mean of the tracking, aiming and tracing 

tasks composite scores were calculated to give the overall test score for the C-

KAT. A detailed analysis methodology is described by Flatters et al. (2014).  

Dental task performance was captured using the following metrics provided 

automatically by the simulator: Task completion (%), Drill Time (seconds), 

Leeway Errors scores % (separately for sides and bottom) and Container 

Errors scores % (separately for sides and bottom). A composite error score 

was calculated by combining the z-scored means of both leeway and both 

container error scores.  

One-way analysis of variance (ANOVA) with group as a factor was conducted 

on the baseline (pre-test) scores for each performance measure to identify the 

initial differences amongst the three groups. In order to examine the 

performance at experimental stages, the following repeated measures 

ANOVAs were conducted at: 

 Training, we conducted a 3 (Group; DFB vs. IFB vs. IDFB) x 4 (Time 

[Exercise Session 1 vs. 2 vs. 3 vs. 4) ANOVA;  

 Transfer a 3 (Group) x 2 (Transfer Test 1 vs. 2) ANOVA;  

 Retention, a 3 (Group) x 3 (Time; Immediate vs. Week vs. Month) 

ANOVA. 

Gender differences were investigated using independent-samples t-test for all 

performance measures at baseline, training, transfer and retention phases. 

All data were tested for departures from normality by boxplot, Q-Q plots, 

histograms and Shapiro-Wilk test (p < .05) with transformations performed 
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where necessary. Where transformations did not yield normally distributed 

data (i.e. container error scores), non-parametric tests (Kruskal-Wallis) were 

performed. Where assumption of sphericity14 was violated (as indicated by 

Mauchly's test), Greenhouse & Geisser corrected p values are reported. The 

statistical significance threshold was set to p < .05. Bonferroni-corrected post 

hoc comparisons were performed where significant main effects were found. 

Partial eta squared values (ηp²) are reported to indicate effect size. One-way 

ANOVAs were applied to estimate between-group differences on each training 

exercise separately whenever significant interactions where encountered. All 

statistical analyses were performed using IBM SPSS® Statistics for Windows 

(Version 22, Armonk, NY: IBM Corp., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

                                              

14 Sphericity is an important assumption for repeated measure ANOVA analysis. It indicates 

that the differences between all combination levels of the within-subjects factor must have 
equal variances. When violated, an adjustment (to the degree of freedom- DOF) is 
required so that it retains valid results (p-values) (Martin & Bridgmon 2012). 
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6.6 Results 

6.6.1 Overall Simodont® composite error scores 

The overall Composite error scores were significantly different among the 

groups, [F (2,60) = 5.63, p = 0.006, ηp
2 = 0.158] with the IDFB having 

significantly lower error scores (M = 13.68, SD = 5.6) than DFB (M = 21.4, SD 

= 9.6) (Figure 6-4).  

There was no statistically significant difference between male and female 

participants in the overall composite error scores, [t (61) = -1.464, p = 0.148]. 

 

  

Figure 6-4 The overall composite error scores among the 3 feedback groups: 
[DFB] Device Feedback group, [IFB] Instructor Feedback group, [IDFB] 
Instructor Device Feedback group. Error bars represent ±1 SEM. 

 

6.6.2 Performance at baseline test (Pre-test) 

At baseline (BL), there were no significant differences (F’s < 2.86, p’s > 0.065) 

among the groups in any of the performance measures (DT, TC, leeway errors 

A scores, container errors B scores), indicating a relatively similar basic skill 

level (Figure 6-5). Similarly, no significant differences were found in any of the 

performance measures between male and female participants (t’s < 1.274, p’s 

> 0.21) at baseline (Figure 6-6). 
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Figure 6-5 Performance measures among the 3 feedback groups at Baseline 
(pre-test). Error bars represent SD of the mean. Task completion (TC), 
drill time (DT), Leeway errors (A) and Container errors (B). 
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Figure 6-6 Performance measures among male and female participants at 
Baseline (pre-test). Error bars represent SD of the mean. Task 
completion (TC), drill time (DT), mean leeway errors (LE) and mean 
container errors (CE). 

 

6.6.3 Performance at training phase 

There were no significant differences among groups in the total time taken to 

perform the task (drill time) during all training exercises (Table 6.6-a), [F 

(2.52,151) = 1.078, p = 0.4, ηp
2 = 0.018]. However, significant main differences 

among the groups in the task completion percentage (i.e. how much of the 

target zone was removed) were found, [F (3.6, 109) = 7.06, p = 0.001, ηp
2 = 

0.19]. Post hoc analysis revealed that DFB group had significantly higher TC 

scores than other groups in the first (p = 0.001) and the fourth (p = 0.004) 

training exercises.  

For the Leeway errors (A), the leeway sides’ error scores (LS) were 

significantly different among the groups during training, [F (2.7, 162.35) = 18.5, 

p < .001, ηp
2 = 0.24]. Post hoc analysis revealed that IDFB group had 
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significantly lower error scores than the other groups during first (p = .007), 

second (p = 0.045), and fourth (p = 0.039) training exercises.  

Similarly, the leeway bottom error scores (LB) were significantly different 

among the groups during training, [F (2, 121.7) = 542.5, p < 0.001, ηp
2 = 0.9]. 

Post hoc analysis with Bonferroni corrections revealed that the IDFB group 

had significantly lower error scores than the other groups during first (p = 

0.002), and second (p = 0.024) training exercises. The Container error (B) 

scores (bottom and sides) were not significantly different among the groups 

during training phase (χ2 (2)< 4.2, p > 0.120). 

No significant differences were found in any of the performance measures 

between male and female participants (t’s < 1.565, p’s > 0.12) at training 

stage. 

Table 6.6-a Mean scores for the performance measures (DT, TC, errors) 

among the 3 experimental groups at training phase (Mean ± SEM). 

 
DFB IFB IDFB 

Drill Time 53.13 ± 4.5 65.43 ± 6.2 50.04 ± 3.4 

Task Completion 94.2 ± 0.71 92.58 ± 0.83 88.8 ± 1.01 

Error A (Mean Leeway 

errors) 
24.9 ± 2.23 22.12 ± 1.5 16.6 ± 1.27 

Error B (Mean container 

errors) 
1.3 ± 0.21 0.89 ± 0.08 .78 ± 0.083 

 

6.6.4 Performance at transfer (generalisation) tests 

Drill time was significantly different among groups during transfer tests, [F 

(2,60) = 5.75, p = 0.02, ηp
2 = 0.87]. Post hoc analysis revealed that during the 

second transfer test, the IFB group took a significantly longer time to perform 
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the 2nd  transfer test (M = 99.95 s, SD = 57.2) than the DFB group (M = 64.67 

s, SD = 36.4). The other performance parameters were not statistically 

significant; TC [F (2,60) = 0.337, p = 0.56], and error scores [F (2,60) = 2.17, p 

= 0.12] among the groups during the transfer tests (Figure 6-7B and Table 

6.6-b). 

No significant differences were found in any of the performance measures 

between male and female participants (t’s < 1.539, p’s > 0.13) at transfer 

stage. 

Table 6.6-b  Mean scores for the performance measures (DT, TC, errors) 

among the 3 experimental groups at transfer phase (Mean ± SEM). 

 
DFB IFB IDFB 

Drill Time 69.7± 7.32 101.85± 11.6 80.7± 5.35 

Task Completion 90.38± 0.78 90.34± 1.12 86.1± 0.90 

Error A (Mean Leeway 

errors) 
28.5± 1.80 28.28± 2.43 23.15± 1.4 

Error B (Mean container 

errors) 
2.7± 0.35 2.01± 0.23 1.79± 0.15 

 

6.6.5 Performance at retention tests 

During the three retention post-tests (Figure 6-7, Table 6.6-c), drill times were 

not significantly different between groups [F (2,60) = 0.83, p = .44, ηp
2 = 

0.027]. Additionally, no significant differences were found when the BL test 

compared to retention tests’ drill times [F (2.3,139.15) = 0.757, p = .48, ηp
2 = 

0.012].  
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Task completion percentages were significantly different among groups during 

the retention tests, [F (1.8,108.5) = 614.2, p < 0.001, ηp
2 = 0.91] with the 2nd  

retention test (one-week post-test), IFB group showing a significantly higher 

percentage of TC than IDFB (p = 0.017).  

The Leeway sides’ (LS) error scores were significantly different among the 

groups during the 2nd  retention test (one-week post-test), [F (2,60) = 4.027, p 

= 0.023], as well as during the one-month retention test, [F (2,60) = 6.5, p = 

0.003]. IDFB had significantly lower LS scores than IFB (p = .019) and DFB (p 

= 0.004) groups. The Leeway bottom scores (LB), the container bottom (CB) 

and container sides’ scores (CS) were not significantly different among groups 

during retention tests, p > 0.05.  

No significant differences were found in any of the performance measures 

between male and female participants (t’s < 1.384, p’s > 0.17) at retention 

stage. 

Table 6.6-c Mean scores for the performance measures (DT, TC, errors) 

among the 3 experimental groups at retention phase (Mean ± SEM). 

 
DFB IFB IDFB 

Drill Time 61.3 ± 8.9 69.8± 7.4 57.3 ± 5.23 

Task Completion 95.8 ± 0.78 95.8 ± 0.84 91.8 ± 1.38 

Error A (Mean Leeway 

errors) 
17.4 ± 1.9 14.9 ± 1.22 11.5 ± 1.01 

Error B (Mean container 

errors) 
0.44 ± 0.09 0.31 ± 0.08 .26 ± 0.05 
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Figure 6-7 Transfer and Retention. Mean Drill time for the three groups at 

transfer [A] and retention tests [B]; Mean Leeway side error scores at 

transfer [C] and retention [D] tests. Error bars represent ±1 SEM. 
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Figure 6-8 [A] Mean Drill time in seconds, [B] Mean Leeway errors A scores, 
and [C] Mean Container errors B scores for all 3 feedback groups across 
all sessions [Baseline (BL), Training (T1, T2, T3, T4), Transfer (TR1, 
TR2), and Retention (R1, R2, R3)]. Error bars represent SEM, and the 
stars indicate the statistically significant differences (p<0.05). 

 

BL T1 T2 T3 T4 TR1 TR2 R1 R2 R3
0

20

40

60

80

100

120

D
ri
ll 

T
im

e
 (

s
e
c
)

«

BL T1 T2 T3 T4 TR1 TR2 R1 R2 R3
0

10

20

30

40

50

M
e
a
n
 L

e
e
w

a
y
 e

rr
o
r 

(A
) 

«

«

«

BL T1 T2 T3 T4 TR1 TR2 R1 R2 R3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 C

o
n
ta

in
e
r 

e
rr

o
rs

 (
B

) 

DFB IFB IDFB

A

B

C



 
 

174 

6.6.6 Performance and fine motor control abilities 

The CKAT scores did not significantly differ between groups, [F (2,60) = 1.365, 

p = 0.263, ηp
2 = 0.044], or between male and female participants [ t (61) = 

1.492, p = 0.141]. A Spearman's rank-order correlation was performed to 

assess the relationship between the overall performance scores and CKAT 

battery scores. There was no correlation between CKAT and errors [rs (61) = 

0.128, p = 0.319]. 
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6.7 Discussion 

Novice participants were taught a basic manual dexterity task within a VR 

haptic simulator using qualitatively different types of feedback during training. 

We found that the participants who received a combination of instructor-led 

and VR haptic simulator feedback adopted a more cautious strategy than 

those who were exposed to one type of feedback alone. Specifically, they 

produced fewer errors and also removed less of the target than the other 

groups. We suggest that such behaviour is potentially advantageous for novice 

trainees - producing safer practice relative to an over ambitious student 

sacrificing accuracy for greater target removal. Importantly, we also 

demonstrated that the presence of VR devices alone is not sufficient for 

optimal training of motor skills and must be coupled with expert guidance.  

Our findings are consistent with the motor learning and medical literature 

which indicates that multimodal feedback is more effective than unimodal 

feedback- particularly during the early acquisition of complex skills (Sigrist et 

al. 2013; Hatala et al. 2014). Whilst others have previously shown the value of 

providing augmented visual feedback with additional tuition sessions prior to 

training (Wierinck et al. 2006b), our work presents the first set of data 

demonstrating the value of haptic simulator feedback combined with 

continuous instructor feedback in motor skill acquisition and retention. 

Although there were some differences among the three groups in baseline 

(pre-test) performance, this trend was not statistically significant (in any of the 

performance measures), and did not explain performance differences at 

subsequent experimental stages.  
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The device feedback group exhibited significantly higher task completion 

scores in less time compared to the other two groups, however, this has 

impacted the accuracy of performance as they also have higher error scores 

and subsequently lower overall performance. Since there was no time limit in 

any experimental phase, this trend could potentially be explained by the 

presentation mode of the performance measures on the computer screen, so 

their attention was directed toward the first information appeared on screen 

(which was task completion score), with little or no attention given to other 

measures such as error scores, because there were no guidance provided 

during training phase as what important measures to look for when they want 

to evaluate their progress. The finding that the group who received feedback 

from the device alone was the lowest performing throughout the experiment is 

instructive for the teaching of motor control skills in dentistry. Research on 

motor skill acquisition indicates the existence of two broad mechanisms that 

interact and contribute to learning any given motor task (Haith & Krakauer 

2013). The most rapid method of improving task performance is known as 

“model-based” (MB) learning and depends upon previously developed ‘forward 

models’ that allow the trainee to make predictions about the consequences of 

their actions.  This is the type of mechanism that most likely underlies the 

process of learning to use dental loupes (i.e. where an experienced dentist will 

use existing knowledge about task-related perceptual information to calibrate 

to a new visual environment in order to perform a task). Although MB learning 

is initially a cognitively expensive activity, the speed of skilled acquisition can 

lead to relative automaticity of performance in a short period of time (Haith & 

Krakauer 2013). The second form of learning is known as “model-free” (MF). 

This learning involves the development of ‘inverse models’ or ‘controllers’ via 
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trial and error learning and is a slower process. MF learning is an essential 

component of skill acquisition and would underpin the learning process within 

all three of our experimental groups. But the provision of additional information 

allows individuals to exploit MB learning processes and generalise their skills 

to situations that have not been previously encountered. In line with this 

framework for understanding motor learning, the present data suggest that 

excessive error can be reduced through guidance from an external source 

such as an experienced instructor (i.e. the IDFB group). This guidance 

provides information that can be used rapidly to develop forward models 

specifying appropriate task-related actions. Evidence that participants in the 

IDFB group were able to achieve such a feat is demonstrated by the finding 

that their skill levels were consolidated over time and that information learnt in 

one task could be generalised to another, thus demonstrating rapid near 

transfer (Schmidt & Wrisberg 2008) - a hallmark of MB processes.  

The aim of the transfer tests is to evaluate skill learning using similar task at 

different training settings or different task and same training condition. The 

transfer phase in the present study comprises two tests, both using different 

tasks (abstract shapes) that were not encountered during training. This 

particular type of transfer is referred to as near transfer or generalization of the 

learned skill (Schmidt & Wrisberg 2008). Typical transfer test would be 

performed in different training environment (such as phantom head simulator). 

Our results showed that all groups exhibited lower overall performance scores 

at the transfer phase, particularly a sharp rise in error A and error B scores 

(Figure 6-8), although not statistically significant. This could be attributed to the 

unfamiliar features of the new shape that is not encountered during training, 
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which is a transition from straight outline to circular and cross abstract shapes 

that need a slightly different preparation approach. 

In the current study, the concurrent verbal feedback from the instructor is a 

form of knowledge of performance (KP) that did not simply indicate the 

presence or absence of errors, but also elaborated on how to enhance 

performance by directing the trainee attention to important performance 

aspects. Additionally, the participants were encouraged to enquire about any 

performance related information, therefore moving away from unidirectional 

instruction to dialogue-rich learning context.  

In the IFB group, receiving verbal feedback alone without any visual display of 

performance measures from the simulator allow the student to depend solely 

on the verbal comments and instructions from the tutor to guide the 

performance. This represents a cognitive effort to understand and process 

what should be done until reaching a mental representation of the desired 

outcome before actually executing the action. This was evident in the overall 

trend of IFB group to spend longer time performing the task throughout the 

experimental phases (Figure 6-8), although this was not statistically significant 

except at transfer test. Additionally, the student may not be able to know what 

exactly contributed to good or otherwise unsuccessful performance (i.e. 

whether it is the leeway sides or the bottom error scores that was more 

serious). 

On the other hand, the superior performance of IDFB group could be related to 

the instructor directing the trainee attention to task relevant information and 

specific automatic measures that are generated by the simulator, ultimately 

combining the important aspects of the learned task from both sources and 
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minimizing the distraction from redundant or irrelevant information (Kalyuga 

2008) which prevent cognitive overload and enhance performance. The flow of 

information received by the student is processed more efficiently when it is 

distributed over multiple sensory modalities, because of the specificity of the 

human senses that process various types of information differently (Sigrist et 

al. 2015). 

It is worth noting that whilst reducing error through instructor feedback was 

useful for our sample of novice trainees, error augmentation could provide a 

more effective means of accelerating learning in a group with a higher level of 

skill (Chen 2001). In other words, the amount of assistance and pedagogical 

feedback provided to final year undergraduates to achieve mastery of a task is 

likely to be qualitatively different to the optimal strategy for trainees earlier in 

their training. Task difficulty is also likely to modulate the relationship between 

optimal feedback and motor learning. For example, the optimal feedback for a 

basic manual dexterity exercise might be different to that required for a Class II 

cavity preparation or during the application of restorative materials. This could 

be further explained on the basis of what abilities constitute the main skill ( see 

Table 2.3-a), for example in manual dexterity training, feedback is focused on 

how to hold the handpiece correctly, on hand-eye coordination, cutting 

pressure and direction etc., while training on more specific procedures such as 

Class II cavity preparation will require a more precise feedback about a 

smooth conservative preparation, retention and resistance forms and avoiding 

damage to the adjacent teeth etc. It follows that the type of feedback provided 

during preclinical and clinical dental training needs to be carefully considered 

and investigated in order to ensure optimal learning. In fact, no feedback is 
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sometimes necessary as in the case where the students are experienced and 

highly motivated to monitor their own performance (Chen 2001). 

The introduction of VR simulators with the real-time quantitative evaluation of 

the student input, add another dimension into how feedback is delivered to 

dental students. Based on these objective simulator-generated metrics further 

assessment can be provided such as objective augmented feedback to 

students, errors detection and correction, as well as informed decisions about 

student’s competence in particular procedures (Porte et al. 2007). 

It is critical that dental educators investigate the best pedagogical approaches 

to utilize such kinematic information to enrich the feedback practices during the 

simulation experience. They need to draw on key theoretical concepts from 

other disciplines (particularly education literature, motor skill learning literature) 

and adapt the best practices to suit our specific needs and ultimately optimize 

the dental student learning experience. 

6.8 Conclusions 

The learning of basic manual dexterity skills was accelerated when participants 

were provided with haptic simulator’s feedback in conjunction with an 

experienced dental instructor feedback, relative to groups with access to the 

device only or instructor only feedback. This was particularly beneficial for the 

retention of learned skills. There was an overall performance improvement for 

all groups at the end of the experiment (retention phase), which was evidenced 

by lower error scores as well as comparable time for task performance (DT). 

These findings were supported by evidence from motor learning literature 

which describe the rapid  “model-based” learning, based on previously 

developed ‘forward models’ (as seen in the combined feedback group 
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performance), and the slower “model-free” learning based on ‘inverse models’ 

via trial and error (as seen in the device feedback group performance). 

These data indicate that integration of VR into a dental curriculum needs 

consideration in order to maximise VR's potential utility in motor skill learning 

and to complement existing simulation techniques. This will be discussed 

further in the next chapter. 
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Chapter 7 : Integrating Virtual Reality Haptic simulation into 

the curriculum - a model for preclinical dentistry  
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Dentistry is unique among all health care professions in two important aspects: 

first, dental students enter the clinical environment, coming in contact with real 

patients very early on in their professional careers (typically the third year of 

study in most dental schools around the world).  The second aspect is the 

irreversible nature of most dental procedures (e.g. teeth preparation) that 

mandates the use of simulation as standard approach for the teaching of 

sensorimotor skills in preclinical laboratory. Phantom head simulators (bench-

top or complete unit), have been the gold standard in most dental schools 

around the world (Fugill 2013; Perry et al. 2015). More recently, VR simulators 

become increasingly common in dental schools world wide, with encouraging 

reports of their effectiveness (Buchanan 2004; Koo et al. 2013; Vervoorn et al. 

2015; Cox et al. 2015).  

Despite that, it remains unclear how exactly these simulators might be 

integrated into existing dental curriculums, and whether they can replace 

and/or supplement the existing traditional simulators and how. Whilst the 

nature of the response to each question will vary as a function of the 

capabilities of each simulator model and the specific learning objective of each 

module, there are common themes emerging from the literature about the 

utility of these systems. There is also a body of theory (e.g. from cognitive 

psychology) and models from a number of other disciplines that have 

embraced the use of VR technology (e.g. the aviation, minimally invasive 

surgery) that could be valuable for dental education.  

Furthermore, it is worth emphasising that the mere presence/ addition of haptic 

simulators or VR technologies does not by itself enhance learning or drive 

pedagogical change. It has to be thoughtfully integrated into the educational 
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continuum and tied to specific learning objectives, so it can be utilized to its full 

potential (Scott 2015; Motola et al. 2013; Issenberg et al. 2005; Plasschaert et 

al. 2007).  

Moreover, simulation as an educational methodology can be supplemented 

with other adjunctive pedagogical approaches (Motola et al. 2013) and flexible 

learning strategies at every stage of the training (e.g. Open Educational 

Resources (OER), e-learning, and mobile learning) to maximize the learning 

outcome and introduce the student to a positive multifaceted educational 

experience. These adjunctive strategies, also known as blended learning 

approaches (UNESCO-IBE 2013), if carefully selected, and strategically used, 

have the potential to improve the quality of teaching and learning, and 

enhance the students’ engagement in the learning process (Garrison & 

Kanuka 2004).  

Despite that each dental school is considered unique in its approaches and 

learning environment, however, the common feature that characterise almost 

all institutions is the intensive dental curriculum. This represents an attempt to 

accommodate two important constituents of dental education : basic 

biomedical sciences and dental sciences with associated sensorimotor 

learning and practical training (Hendricson & Cohen 2001). If new pedagogical 

innovations such as haptic VR simulators are to be efficiently implemented in 

such curricula, it must not be perceived as ‘add on’ or extra components. It 

should be thoughtfully integrated into the fabric of the dental curriculum using 

pedagogically-informed strategies. 

An overview of curriculum design and models is presented in the following 

section. 
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7.1 Curriculum models 

Curriculum refers to the planned sequence of intended experiences and 

focused instruction in a defined context with a set of goals and values that 

collectively describe the learner’s educational experience (Knight 2001; Wiles 

2008). Curriculum models are comprehensive theoretical frameworks that are 

utilised for the design and consolidation of various components of the 

curriculum based on particular principles and standards (UNESCO-IBE 2013). 

Several curriculum models have been described in the literature, and can be 

generally grouped into product models and process models. Product models 

focus on the outcome of the learning experience, the plans and intentions to 

reach the learner’s destination, mostly in a teacher-led approach. The process 

models, on the other hand, focus on the learning process, the activities 

involved, and are concerned with the learner’s personal and professional 

development, as in the learner-centred approach (O’Neill 2015; Bates 2015; 

UNESCO-IBE 2013). Most of the time, elements from both models (with 

variable emphases) are incorporated into the design of curricula and 

programmes, and no single best model has yet been identified that is 

appropriate for all contexts (O’Neill 2015). 

The current proposed model is inspired by Bruner’s spiral curriculum design 

principles (Bruner 1966), which in essence emphasise the staged logical 

progression from simple to complex levels, where the knowledge is 

consolidated and revisited at increased levels of intensity and complexity as 

the learners progress further in the curriculum. This design is based on and 

correlated with the constructivists approach to learning as pioneered by Jean 

Piaget (Bates 2015), that is building new knowledge on the basis of an existing 

knowledge and experiences. This theoretical paradigm is operationalized 
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through simulation-based education where the students can link prior relevant 

experiences and knowledge to new experiences in an increasingly complex 

context that facilitates its application in real-world settings (Pasquale 2013). 

Here, combining existing theory and evidence, a model is conceptualised that 

can be incorporated into an undergraduate dental curriculum (according to the 

learning objectives for different training scenarios) with a specific application 

for operative dentistry and manual dexterity training (Figure 7-1).  

7.2 Rational  

This model aims not only to integrate VR simulation but also to restructure the 

traditional dental curriculum to incorporate wider pedagogical concepts that 

have the potential to better prepare the student for clinical practice through 

deep learning strategies that goes beyond practical aspects of the profession. 

The valuable recommendations proposed by the ADEE (Association for Dental 

Education in Europe) for curriculum structure, performance assessment, 

learning, and teaching (Plasschaert et al. 2007; Manogue et al. 2011) have 

also been taken into account during the conceptualisation of the model.  

7.3 Theoretical foundation of the model 

The theoretical foundation of the model is derived from the following key 

concepts, taking into account the learning outcomes/objectives and the 

performance assessment needed at each dental training stage: 

7.3.1 Cognitive Apprenticeship  

The Cognitive Apprenticeship theory (Collins et al. 1989) is directly relevant to 

motor skill teaching and learning in preclinical dentistry. This theory presents 

six stages for teaching practical skills (modelling, coaching, scaffolding, 
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articulation, reflection, and exploration/transfer). The first three stages have 

been readily applied in dental education for a number of years and are likely to 

be familiar to most educators, as they represent part of the classical/traditional 

apprenticeship model. Modelling involves demonstration of the new skill/task 

by the expert (dental educator) while the students observe and conceptualize 

the process for executing that task. In the next step the students practice that 

skill under the guidance of the educator (coaching) who offers guidance, 

advice and feedback. Scaffolding is evident in the support provided by the 

educator to the students while performing the task. This support should 

gradually decrease (fading) as the student become more capable of 

independent performance.  

The final three stages (articulation, reflection, and exploration) focus on the 

learner’s own experience and observation as a route for deep learning. In 

articulation, the student applies the learned skill in a meaningful context and 

integrates the knowledge and practical experience in a problem-solving 

scenario.  In the stage of (reflection) the learner attempts to think critically and 

make sense of the event, reflect on the performed actions, how they have 

been performed, what went well and what should be changed in the future to 

attain the desired outcome.  Finally, in the stage of (exploration) the student is 

allowed to apply the knowledge and skills in different contexts (transfer) and 

enhance their abilities to deal with problems that might arise and has not been 

encountered before.  

The Cognitive Apprenticeship Instructional model can be viewed as staged 

transition in the learning process from being externally directed by the tutor 

until it becomes increasingly self-directed by the learner (Whipp et al. 2000). 

The model highlights the importance of making the tacit knowledge of the 
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expert more visible and explicit to the learner/novice to facilitate their 

conceptual modelling of the target skill. Likewise, it facilitates the learner 

thinking to be visible to the instructor/expert for guidance and support. This 

strategy is the primary difference between cognitive apprenticeship and 

traditional apprenticeship model (Collins et al. 1991). The cognitive 

apprenticeship instructional model has been applied in several health 

professional education settings particularly for sensorimotor skill learning 

(Woolley & Jarvis 2007; Lim-Dunham et al. 2016; Stalmeijer et al. 2009; 

Stalmeijer et al. 2013; Kilistoff et al. 2013; Ong et al. 2015). 

7.3.2 Experiential learning theory  

Simulation-based education in preclinical dentistry is an ideal experiential 

learning platform, that is mainly delivered as small group teaching in the 

preclinical laboratory. Experiential learning (Kolb 1984) is more than just 

learning through experience, it also entails thinking and conceptualizing the 

performed actions and planning future behaviours. Kolb’s experiential learning 

cycle involves 4 main stages: concrete experience, reflective observation, 

abstract conceptualization, and active experimentation. The effective 

implementation of these stages help to structure the simulation session and 

allow the practice/experience to be supported subsequently by reflection and 

analysis (Fanning & Gaba 2007), facilitating a deeper learning approach to the 

intended objective. Additionally, it will contribute to standardization of the 

simulation session among instructors with varied experiences and teaching 

approaches. 
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7.3.3 Reflection  

The ability of an individual to self-reflect on his/her own actions has been 

identified by Schön (Schön 1984) as central to improvement and effective 

professional practice . He specifies two types of reflective practice based on 

their timing; either during the event which is described as reflection-in-action, 

or after the event which is described as reflection-on-action (Phrampus & 

O’Donnell 2013).  

The metacognition concept of reflection/debriefing is an important key element 

not only in experiential learning and simulation-based training but also for life-

long learning. Reflection on experiences is also paramount to the development 

of competency (Ericsson 2004), it is usually achieved through formative 

assessment approaches that foster the metacognitive skills and reflective 

practices (Crawford et al. 2007). It allows the students to be active participants 

in their own learning, and allow the assessment of the learning process to 

capture important aspects beyond the recall of scientific information (Leach 

2002).  

However, the concept of reflection is largely underutilized in dental training and 

education. This could be due to many reasons, for example, the highly 

dynamic dental environment with critical time limit may not support deeper 

analysis/reflection on actions; also the dental curriculum in most dental schools 

is overwhelmingly crowded with many subjects concurrently, that leaves 

minimal or no time for reflection (Hendricson 2012). Additionally, lack of formal 

training in pedagogy for most dental instructors may set another barrier for 

implementation of reflective practices.  
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Reflection and reflective learning are cognitive skills that do not evolve 

naturally but need continuous practice (Tricio et al. 2015). It has been reported 

that young dental students in their early years of dental school showed lower 

reflective skills compared to postgraduates (Tricio et al. 2015). Such findings 

emphasise the importance of early and gradual introduction of the concept of 

reflection in the undergraduate dental curriculum to foster deep learning 

strategies as early as possible among students (Whipp et al. 2000).  

In the current model, the concept is gradually introduced starting with simple 

reflection in the first two years and expand it later (years Y3 onward) to include 

debriefing as an integral part of context-based simulation scenarios. Simple 

reflection in the current model is designed to familiarize the students with the 

concept of reflection and foster the habit of critically analysing their own 

performance and ‘make sense’ of the simulation sessions. A simple reflection 

log can be incorporated into the laboratory manual and/or included in the 

online learning management system (LMS) of the School. Whatever the 

approach, the reflection log should be simple, and easy to understand and 

completed by the student on a regular basis. It must be supported by 

instructors feedback and provide a catalyst for performance improvement 

(Sweet et al. 2009). Additionally, peers can be an effective source of feedback 

that can stimulate reflection, such formative evaluation if well designed and 

implemented has promising pedagogical potential (Finn & Garner 2011). 

Recently, formative structured peer assessment and feedback on clinical 

performance have been reported to positively impact dental undergraduates’ 

reflective thinking skills as well as their academic achievement (Tricio et al. 

2016). Moreover, the students’ reflection records can be a comprehensive 

source for formative assessment and tangible evidence on their progress 
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(Albino et al. 2008). An example of simple reflection log (adapted from Gibbs, 

1988) is presented in Table 7.3-a.  

Debriefing can be introduced later into the model where the skill learning 

becomes more context-based with clinical case scenarios. The dental educator 

is in the best position of carefully selecting the cases/events that can benefit 

from debriefing and to apply a suitable debriefing technique. It should be noted 

that not all simulation scenarios need debriefing; it is much dependent on the 

learning objectives and whether or not the debriefing will add valuable 

conclusions that inform future performance (Fanning & Gaba 2007). 

A critical prerequisite for successful implementation of reflection/debriefing 

practices is the instructors’ training on structured discussions and debriefing 

methods (Fanning & Gaba 2007; Phrampus & O’Donnell 2013) , in addition to 

deep understanding of best practices in providing effective feedback (Archer 

2010) to their students (e.g. using feedback models) in a supportive learning 

environment. 
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Table 7.3-a A proposed example of simple reflection log/journal (adapted from 

Gibbs, 1988) 

Reflection step Question 

1. Description 
What was the exercise/project? 

2. Feelings 
What did you feel/think while doing the exercise? 

3. Evaluation 
What was good and what was not so good/difficult about the 

experience? 

4. Analysis 
What factors helped or hindered you from doing the project 

properly? 

5. Conclusion 
Summarize what you could have done differently to achieve the 

outcome? 

6. Action plan 
For the next session, sum up what you will do based on today’s 

experience? 

 

7.3.4 Facilitation  

The educator in the current model is described as both instructor and 

facilitator. Facilitation and instruction are two ends of a spectrum; on one end 

is the traditional instruction/lecturing, where the educator is the source of 

information and the learners are predominantly passive listeners without 

actual participation. On the other hand, in facilitation the educator is co-

learning with students in a continuous active dialogue, providing them with 

guidance and support to reach their own conclusion (Rhodes & Bellamy 

1999; Fanning & Gaba 2007; Alao et al. 2010) using various facilitation 

methods/styles.  Effective facilitation according to Rogers (Rogers 1969; 

Bates 2015) encompasses three main elements/attitudes:  

1- Congruence (i.e. being genuine ; accepting own limitations and 

expressing true feelings/opinions without fear of losing rapport with student) 

2- Empathy (understanding and considering the other person’s viewpoint) 

3- Respect (non-judgmental acceptance of others).
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Figure 7-1 Dental skill training model
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7.4 Model description 

This model is suited for a five-year dentistry program, where year one and two 

(Y1, Y2) are preclinical, while year three (Y3) is the start of the clinical practice 

on real patients. The model involves four progressive dental skill-learning 

stages with two skill transfer stages. It is important to acknowledge that the 

choice of simulator type at each stage of training is very much dependent on 

the learning objectives of that stage, and less dependent on the simulator 

fidelity (McGaghie et al. 2010) .  

7.4.1 Learning environment and contexts 

In this model, there are three main dental learning settings: the VR haptic 

simulator preclinical laboratory, the phantom head simulator preclinical 

laboratory and the dental clinic.  

A. The first learning setting (the VR haptic simulator preclinical laboratory) 

It comprises two skill-learning stages: the manual dexterity and basic skill 

stages. The use of haptic VR simulator is based on its features that 

support the learning objectives of these stages, hence its early 

introduction. In the current model, we specifically refer to Simodont®
 

 which 

is designed for learning of basic motor skills necessary for dental training. 

The simulator’s courseware has various levels of dental tasks complexities 

(ranging from abstract geometrical shapes to advanced treatment planning 

scenarios and fixed prosthodontics cases).  

At these two stages the aim is to develop the fine motor abilities of the 

student through series of exercises starting at an abstract level and 

progressing into simple context-based level, with real-time objective 
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feedback from the VR simulator on each movement, and the opportunity to 

repeat the training tasks as many times as required. 

An example of an abstract learning is to cut/prepare a simple geometric 

virtual block with designated target area that has a specific depth and 

width. An example of simple context-based scenario is learning the basics 

of caries excavation in an isolated virtual tooth without details about the 

other teeth in the jaw, case history, or patient information.  At these two 

stages the student will be introduced to some basic dental instruments 

available in the VR simulator library and their uses, such as dental 

handpiece with burs, dental mirror, dental explorer and hand excavators. 

Moreover, the student will learn basic skills such as holding the handpiece 

correctly, finger rest support for controlled hand movements, hand-eye 

finger coordination, attention to details, and using of dental mirror for 

indirect vision tasks.  

B. The second learning setting (the phantom head preclinical laboratory) 

The student will continue at the basic skill stage with simple contexts but 

will be introduced to a different learning setting, the physical phantom head 

laboratory. This is the first transfer stage in this model, moving from virtual 

environment to physical environment. The student reaches this stage with 

necessary basic motor skills that will be applied in new context. 

After introducing the student to this new learning setting, they will start 

applying what has been learned in the VR laboratory into the phantom 

head laboratory using simulated jaws, plastic teeth and real dental 

instruments. An important learning objective at this stage is basic dental 

ergonomics (i.e. ideal seating positions of the student and the simulated 
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patient torso), which has been made possible by the structural fidelity of 

the phantom head that approximate the real dental clinic setting.  

Next is the intermediate skill learning stage, with complex context-based 

training scenarios (e.g. posterior mandibular tooth with Class II occluso-

distal caries and opposing missing tooth, or anterior teeth with multiple 

proximal carious lesions). At this stage the student will be introduced to 

dental materials uses and manipulation as well as the basics of dental 

restorations, therefore, the training scenario will include both preparation 

and restoration of the carious teeth. Also at this stage the training will be 

expanded to include effective utilisation of various isolation techniques 

(e.g. rubber dam application), managing restorative cases and problem 

solving, as well as manipulating variety of dental equipment and 

instruments effectively. The third stage at this preclinical setting is the 

advanced skill learning stage. At this advanced stage, the training context 

will progress into complete clinical case scenarios with holistic approach to 

patient management. For example, a patient case with complete dental 

and medical history, dental x-rays, differential diagnosis, prognosis and 

proposed treatment plan. 

C. The third learning setting (the dental clinic)  

Later at the advanced skill stage, the student moves from the preclinical 

laboratory environment to the real-life clinical environment and this 

transition mark the second transfer stage in the current model. When the 

students reach this stage, they must be competent at the basic restorative 

procedures so that they need less deliberate attention in performing the 

skill and most of the attention should be directed toward a holistic 

approach for patient treatment and management. A degree of automaticity 
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in performing basic dental tasks (e.g. controlling handpiece, mirror 

positioning) is needed before starting clinical treatment of patients, 

because it will maximize the skill transfer and help the student to 

concentrate on other important (but less familiar) tasks that demands 

higher attention (Clancy et al. 2002; Stefanidis et al. 2012).  

It is important to note that the skill learning stages are progressive but 

there is always possibility to re-visit any of the stages depending on the 

learning need and objectives (shown as double-headed arrows in the 

model). For example, at the advanced skill stage, the student might need 

to learn about new tooth preparation technique, so she/he will be back at 

the basic skill stage to learn this particular skill.  

7.4.2 Educator role 

In the current model, the dual role of the educator as instructor or facilitator 

is much dependent on the specific learning context and could be alternating 

in the same stage. For example, in the early manual dexterity phase the 

instructor role may dominate to introduce the novices to the new learning 

environment and providing basic scientific knowledge, but it can also 

involve facilitation at specific simulation scenarios. In the more advanced 

skill learning stages, the facilitator role may dominate, where the educator 

is providing support to learners with active constructive dialogue and co-

learning. 

7.4.3 Assessment methods 

In the model I incorporate Miller’s pyramid for clinical skills 

assessment/competence (Miller 1990) as a guide and a point of departure 

for design and implementation of suitable assessment strategies at each 



 
 

198 

stage of the continuum. The assessment methods should be 

multidimensional covering multiple areas of competency. 

At both transfer stages, the student competency can be assessed with 

both comprehensive summative (e.g. OSCE stations, MCQ, oral 

examination) and formative assessments (e.g. portfolios, reflective 

logbooks) as well as cumulative evaluation of student practical projects 

performance throughout the year. 

7.5 Discussion 

The model presented here is staged and progressive at several levels 

(learning settings, contexts, metacognition, assessment and educator role). It 

involves mapping different Learning settings/environment into specific learning 

contexts, from abstract all the way through to clinical case scenarios.  

The use of Simodont at the first stage of the current model is considered a 

cost-effective training option particularly for early manual dexterity training, 

which demands unlimited repetitive practice with objective evaluation. This is 

possible in the phantom head laboratory but with great limitation to the number 

of plastic teeth that the student is allowed to use or be able to purchase, 

subsequently resulting in limited chances for repetitive practice due to 

restricted time and resources.  

As the student advance into the more complex levels of skill development, the 

phantom head simulator becomes more suitable training option for advanced 

learning contexts due to its features. As noted from the model design, the 

phantom laboratory stage encompasses three learning contexts (basic, 

intermediate and advanced) and this is due to its versatility and flexibility to 

accommodate different levels of training scenarios effectively. Therefore, there 
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still exists a clear need for physical simulation (phantom head) in preclinical 

dentistry at present, particularly for instrument handling, and manipulation of 

restorative material in addition to ergonomic training.  

Nonetheless, with continuous technological advancement and the 

improvement of the Simodont’s current features, the role of VR haptic 

simulators might not be limited to the first stage at Y1 only. Potentially it could 

be of utility throughout the preclinical training and beyond (i.e. in postgraduate 

training) for example: remedial practice for under achieving students; warm-up 

practice (before complex clinical cases); deliberate practice & mastery learning 

(Ericsson 2004; Motola et al. 2013). These suggested uses need wide scale 

investigation and research to prove their effectiveness in specific dental 

training settings.  

The transfer of skill learned in the preclinical dental laboratories into clinical 

settings (transfer 2) is a challenging milestone, and can be explained through 

two levels:  

1. The learning level: which includes the learned skill itself (e.g. using the 

handpiece, precise cutting according to specific criteria, and the use of 

indirect vision).  

2. The performance level: which includes other factors that influence the 

performance of the learned skill and it is largely related to the target 

environment. This includes student level of stress/anxiety, the patient-

student rapport, the infection control practices, the general school 

regulations and standards. It can be viewed as the standards that dictate 

the level of performance of the learned skill (Chambers 2012). 

Despite every effort, the smooth transition from the preclinical laboratory to the 

dental clinic is a demanding process (Walls et al. 1999; Fugill 2013) that needs 
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careful planning and combined effort from both the students and the 

educators. Moreover, the whole process of curriculum integration of VR 

simulation is complex and demanding. To be successful, it needs careful 

appraisal, commitment, teamwork and must go through all the integration 

phases (planning, implementation, evaluation, and revision) (Motola et al. 

2013). 

7.6 Conclusion 

A pedagogical integration model is conceptualised with theoretical foundation 

for effective integration of Simodont® haptic dental simulator. The model takes 

into account the overall preclinical experience, through incorporation of wider 

pedagogical concepts, in the context of the simulation laboratory and the 

subsequent clinical setting. In addition, the model is flexible and it can be 

modified according to a specific module’s learning objectives and/or possible 

advancement in the simulator’s capabilities.  
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Chapter 8 : General discussion and Conclusion
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8.1 General discussion 

Before discussing the findings of the current thesis, it would be helpful to 

pause and reflect on the overall aims of the project. The title of this thesis 

(haptic-enhanced learning in preclinical operative dentistry) implies 

enhancement of learning of dental skills via haptics, but the concept of 

enhancement itself merits more clarification (Kirkwood & Price 2014) within 

the current context. The Oxford dictionary (Online 2010) defines 

enhancement as “an increase or improvement in quality, value, or extent” 

and enhance as “Intensify, increase, or further improve the quality, value, or 

extent of”. A more operational description of how technology (of various 

sorts) can improve learning in specific pedagogical context can be clarified 

using the levels described in the HEFCE revised e-Learning strategy report. 

The report recognizes certain possible benefits of technology on learning 

(HEFCE 2009) as follow:  

1. Improving the efficiency of the learning process (e.g. cost-effectiveness, 

sustainability, time efficiency)  

2. Enhancement of the existing learning process that subsequently result 

into improved outcome  

3. Transformation of the learning process either totally, by positively 

changing the existing pedagogical approaches, or by introducing new 

approaches. 

In light of this elaboration, it can be argued that virtual reality haptic 

simulators in their current features and capabilities contribute competently 

to the first two levels described above, namely, the efficiency and 

enhancement levels (discussed next). Nevertheless, the power to transform 
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the existing learning process fully or partially and drive innovation is yet to 

be attained, potentially through future (and on-going) developments in the 

computational speed, haptic interface sophistication and well-designed 

specialised educational software. 

The thematic approach presented in the current thesis enables me to 

discuss the findings from a broader perspective without losing the focus on 

the specific nature of each investigation in terms of scope, time, 

participants, and contexts.  

The enhancement of learning brought about by the use of Simodont®, 

within the context of the current research, was evident on two levels, the 

outcome and the process. The potential enhancement of learning 

outcomes can be appreciated from our findings in the feedback study 

(chapter 6) and the prediction of future performance study (chapter 4).  

In chapter 6, the incorporation of an objective real-time formative feedback 

during student performance did affect the efficiency of basic skills 

acquisition, particularly when combined with strategic support from a dental 

educator during the early training phase. The critical role of feedback in 

simulation-based education demands a careful planning of its content, 

timing and sources. Our findings confirmed the importance of feedback in 

simulation-based dental education found in the literature and went a step 

further by defining specifically the best approach to provide feedback in the 

skill acquisition phase of dental training using a virtual reality haptic 

simulator (i.e. the combined feedback from simulator and instructor during 

early skill training phase). 
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In chapter 4, the students’ early practice on Simodont® translated into 

better early clinical test performance. The Simodont® is found to be highly 

sensitive as a basic assessment, which was able to capture some essential 

fine motor abilities of the student that are transferable and have been 

utilized in the clinical setting. Notwithstanding the relatively limited sample 

and the small scale of this study, the finding that successful practice on 

Simodont® translate into improved performance clinically, make it 

reasonable to suggest that more time and effort should be invested into 

well-planned VR training sessions early in the dental curriculum. Our 

finding is the first in the dental literature to report the predictive utility of 

haptic dental simulator for clinical performance.  

On the other hand, the potential enhancement of learning process, albeit 

subtle, can be recognized from our stereopsis investigation findings 

(chapter 5) and from the proposed curriculum model (chapter 7) as an 

approach to learning process enhancement via pedagogically informed 

implementation.  

Chapter 5, which investigated the role of stereopsis via two studies, shed 

light on human factors in virtual reality simulation – an infrequently 

researched area in the dental literature, despite its importance. 

Understanding the role of human factors in virtual reality simulators design 

and applications can profoundly influence its effective utility. Choosing to 

explore stereopsis was derived by the obvious significance of vision and 

depth perception in dentistry, in addition to the paucity of reported empirical 

evidence on this topic in the dental literature. Stereopsis is a visual quality 

that impacts the performance efficiency in virtual reality environment and 

can potentially contribute to the enhancement of the learning process by 
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identifying the features and best practices that influence the student 

simulation experience. Dental educators need to realize that effective utility 

of virtual reality simulators demand a qualitatively different approach than 

that needed for the physical phantom head simulator. Moreover, the factors 

that influence student performance using VR simulators are different, and 

need to be carefully identified and addressed. Otherwise, they could 

potentially be missed, leading to ineffectual utilization of the simulator and 

less than ideal learning experience. 

In chapter 7, the proposed model was an attempt to move away from an 

isolated view of the simulator as new pedagogical tool, to a more holistic 

view of the simulation experience within the broader dental education 

context, drawing upon theories from motor learning literature, educational 

psychology, and simulation-based medical education. Pedagogically 

informed implementation of the VR simulators into the curriculum has been 

identified as a key factor that will lead to effective simulation-based learning 

(Issenberg et al. 2005; LeBlanc et al. 2004; Plasschaert et al. 2007). 

8.2 Conclusions 

The findings from this thesis contribute to the growing body of literature on the 

utility of VR haptic dental simulators in undergraduate preclinical dental 

education.  

Generally, haptic simulators have promising potential as pedagogical tool in 

undergraduate dentistry that complements the existing simulation methods.  

More specifically and within the scope of the current thesis, the following can 

be concluded:  
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1. Simodont® has a good face and content validity when tested among 

dental postgraduate students. The participants believe that it is a 

valuable training tool to supplement, but not to replace, existing 

phantom head simulator.  

2. A significant correlation was found between VR haptic simulator 

performance and subsequent clinical full crown test performance among 

a group of undergraduate dental students, with a statistically significant 

predictive value. Simodont® performance explained 14.2% of the 

variation in the clinical crown performance. 

3. The performance of simulated tasks in Simodont® was optimized under 

stereoscopic 3D viewing condition. The presence of stereovision 

decreased the preparation depth-related errors but not the lateral errors. 

The data confirm that the participating dentists used stereopsis and its 

presence resulted in improved performance. These findings suggest an 

important role for stereopsis in dentistry and justify the design of 

simulators with 3D stereoscopic displays. 

4. The stereo acuity values of a sample of undergraduate dental students 

did not significantly correlate with their performance in preclinical 

operative dentistry course (using VR and phantom head simulators). 

The complexity of dental procedures demands a more focused 

approach to investigate the possible effect of stereoscopic acuity 

particularly at task level. 

5. The learning of basic manual dexterity skills was accelerated when 

trainees were provided with haptic device feedback in conjunction with 

feedback from an experienced dental instructor, relative to groups with 

access to the device only or instructor only feedback. This was 
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particularly beneficial for the retention of learned fine motor skills.  

6. Combining existing theory and evidence, a pedagogical model is 

presented that can be incorporated into an undergraduate dental 

curriculum according to the learning objectives of various training 

scenarios, with a specific application for operative dentistry and manual 

dexterity training.  

7. The utilization of haptic VR simulators require careful appraisal, robust 

validation, and pedagogically sound decisions about the best 

approaches that support the target learning outcomes in each context. 

8.3 Limitations 

There are some limitations of the current thesis that must be acknowledged: 

1- The studies in the current thesis are cross-sectional in design, which is 

inherently limited in time and scale, and provide only a snapshot of the 

potential impact of the simulators on various aspects of the learning 

experience that limit the generalizability of the findings. A randomized 

controlled trial or a longitudinal study would definitely allow for more in 

depth investigation and more generalizable findings. However, the 

choice of the study design was primarily dictated by the time allotted for 

this PhD project (3 years).  

2- The difficulty to recruit dental students to participate in a research study 

on undergraduate and postgraduate levels. This could possibly be 

attributed to their busy timetable and lack of motivation or interest. 

Although, I tried to improve the chances of participation (e.g. stereopsis 

study) by prior coordination with module leaders who were very helpful, 

and by clearly announcing the need for students participants via verbal, 
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email, and poster announcements that explain the importance of the 

investigation in simple terms. However, since it is based on self-

selection/volunteering, a very limited number of students actually 

participated (only 28), though I was aiming for the full cohort. Similarly, 

only 16 out of more than 40 postgraduate students participated. 

3- There are several administrative restrictions and ethical considerations 

that limit the possibilities for conducting a comparative study or 

randomized controlled trial in this particular educational setting 

(undergraduate dentistry). For example, I was interested to conduct a 

study with first year dental students by randomly assigning them to two 

training groups and compare the early training on Simodont® with early 

training on the phantom simulator on their motor skill acquisition. 

However, due to some potential ethical concerns, such as the variable 

effect of training, even if temporary, that may benefit or hinder some 

students compared to others, the study was not conducted. Although, 

both groups would ultimately use both simulators in their preclinical 

training. 

8.4 Recommendations for future work  

Opportunities for further research in the area of haptic VR simulation in 

dentistry are abundant.  

Based on the findings of this thesis and the detailed literature review, the 

following lines of research could potentially be fruitful:   

1- Long-term impact of haptic VR training: predicated on our finding that 

early haptic simulator training predicted early clinical performance, it is 

recommended to conduct longitudinal studies and well-designed 
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randomized controlled trials among larger cohorts of dental students to 

empirically evaluate the long-term impact of dental skill acquisition and 

performance using Simodont® or other haptic dental simulators. 

2- Patient-specific simulations: future studies should explore the impact of 

using preoperative patient specific simulation rehearsals using 

Simodont® to warm-up and practice before certain clinical procedures, 

and determine how this approach would affect the real clinical 

performance on the patient.  

3- Stereoacuity: is an interesting area for future work; research can be 

designed to explore the effect of stereoacuity on dental performance at 

task-level particularly among larger cohorts of dental students. In 

addition to longitudinally explore how the stereo deficient students will 

thrive in dental school, and whether they find some procedures 

particularly difficult to perform. 

4- Deliberate practice: Simodont®, and other VR simulators, provide 

particularly unique research opportunity to explore the effect of 

deliberate practice (Ericsson 2004) on fine motor skill acquisition and 

refinement/maintenance among dental students and dentists. It is an 

important training framework that involves well-planned iterative practice 

and rigorous assessment in controlled simulation settings, yet it remains 

relatively unexplored concept in the dental education research. 

5- Haptic rendering of restorative materials: multidisciplinary research 

should address the feasibility of expanding the haptic library of 

Simodont® to include realistic modelling of some restorative materials, 

which is lacking in almost all currently available haptic dental simulators, 

due to the difficulty of haptic rendering of the complex physical 



 
 

210 

parameters of these materials. Although students must ultimately work 

with real restorative materials in the preclinical laboratory, however, the 

addition of virtual restorative materials to the VR training is assumed to 

be of great benefit to learn the basic principles of their handling and the 

detailed steps needed for their application. 
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Appendix A  

 

 Simodont® online user experience questionnaire  

 
I. General  

1) Age ______________ 

2) Gender     

a. Male  

b. Female 

3) Dental Specialty _______________________________________ 

4) Years of dental practice (How long have you been practicing dentistry?) 

a. 1-2 years  

b. 3-5 years  

c. 6-10 years  

d. More than 10 years 

 

II. Simulator Realism 

 

1) How realistic is the visual representation (visual realism) of the following in 

the Simodont : 

A. Teeth 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

B. Handpiece  

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

C. Dental burs 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

D. Dental mirror 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

E. Other instruments  

• Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

 

2) the sound of the handpiece (auditory realism) 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

3) Haptic Realism 

a. I found the Hardness, texture and tactile feedback (feeling) of enamel, 

sound dentin and carious dentin 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 
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b. The cutting efficiency of the handpiece, manipulation of the instruments 

(excavator, probe , etc) 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

c. The indirect vision (mirror vision) exercise was 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

4) Stereopsis Realism: the depth of the virtual scenery (the 3 D representation) 

* Very realistic  __ *Realistic  __*Neutral  __ *Not realistic  __ *Not realistic at all 

 

III. Simulator Usability 

1. I found the simulator unnecessarily complex 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

2. I thought the simulator was difficult to use 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

3. I think that I would need the support of a technical person to be able to 

use this simulator 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

4. I would imagine that most students would learn to use this simulator 

very quickly 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

5. I found the device very cumbersome to use 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

6. I felt very confident using Simodont simulator. 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

7. I believe that I would be a better dentist now if I had received Simodont 

training during my undergraduate training 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

8. Simodont would be a useful educational tool in preclinical dental 

training. 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

9. Simodont would be a useful tool in early dental skill training 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

10. Simodont would be a useful tool in advanced dental skill training 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

11. The indirect vision exercise in the Simodont was very useful for 

practicing mirror vision skills 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 
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agree_ do not know 

12. The indirect vision exercise experience in the Simodont approximate the 

phantom head exercise experience 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

13. I believe that the Simodont can replace the traditional dental simulators 

(e.g. phantom head simulator) 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

14. I believe that the Simodont can supplement traditional dental training 

(e.g. using phantom head simulators) 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 

15. Overall, my practical experience with Simodont was 

• Negative_ Not satisfactory_ Satisfactory _Positive 

16. I recommend the use of Simodont to new dental trainee 

• Strongly disagree_ Disagree_ Neither agree nor disagree_  Agree_  Strongly 

agree_ do not know 
 

IV. Further Comments  

 

 

Thank you for your Time  

Your participation is greatly appreciated! 
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 Chapter 4 (Predictive validity)   

A.2.1 Dichotomous distinction into high and low performance 

 Low performance  

grade range 

High performance 

grade range 

VR Simodont 60 - 70.99 71 - 86 

Spotter test 45 - 60 61- 80 

Preclinical Crown  40 - 69 70 - 89 

Clinical Crown 50 - 79.99 80 - 100 
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Appendix B  

 Information sheet ( Stereopsis - section one) 

 

Version no.1           

09/11/2015 

   

 

Participant Information Sheet 1 

Title of Study  

The relation between stereopsis and dental performance in undergraduate 
students 

 

Dear participant  

We would like you to take part in the above named study, but before you decide, 

please read the following information.  

 

What is the purpose of this study? 

The aim of this study is: 

To measure the level of stereoacuity in a cohort of dental students in their 3rd year 

and compare the measurements to their dental performance test results in 

preclinical (phantom and simodont lab) and clinical assessments.  

 

Who is doing the study?  

This study is conducted by a group of researchers in the School of Dentistry and the 

Institute of Psychological Sciences (Prof. Michael Manogue, Prof. Mark Mon-Williams, 

Dr. Faisal Mushtaq, Dr.Loulwa AlSaud).  

It is part of a PhD project about the effects of haptic dental simulation on students 

learning by PhD student (Loulwa AlSaud) at the School of Dentistry, University of 

Leeds. 

 

Why have I been asked to participate? 

We are aiming to recruit undergraduate students who had been previously assessed 

in 3 settings: Phantom laboratory, Simodont laboratory, and operative dentistry clinic. 

 

What will be involved if I take part in this study? 

Undergraduate dental students: You will be asked to take a test to measure your 3d 

perception (stereopsis) using an iPad application while wearing 3d stereoscopic 

glasses (red-green). The test will take about 2-3minutes to complete. 

The results from your practical examinations will be accessed and compared to your 

stereopsis test results. 

School of Dentistry 
Worsley Building  

Clarendon Way 
        Leeds 

    LS2 9LU 
+44 (0)113 343…. 
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What are the advantages and disadvantages of taking part? 

There is no disadvantage by participation in this study. Your participation in this study 

will allow us to further understand how the level of stereoacuity is related to the 

practical dental performance. The entire study is independent of your academic 

studies and as such, participation is entirely voluntary.  

 

Can I withdraw from the study at any time?  

Yes. You are free to withdraw from the study at any point in time without 

consequences. You may stop participation during the testing period, or contact a 

member of the research team to request that your data be destroyed at a later date 

(you will be provided with contact details before the experiment). All related 

information will be discarded and will not be used in data analysis or in future studies. 

 

Will the information obtained in the study be confidential?  

Any information you provide that can be traced back to you will remain strictly 

confidential, and will be disclosed only with your permission or as required by law. If 

information collected in this study is published in scientific journals, where necessary, 

participants will be referred to by an anonymous code only. The terms of the data 

protection Act 1988 will be adhered to and information will be securely stored.  

 

What will happen to the results of the study? 

The results of the study will be analysed and published in a scientific peer reviewed 

journal. 

The results of this study as well as a copy of the final paper can be provided to you 

upon request.  

 

Who has reviewed this study? 

This study was reviewed by DREC (Dental Research Ethics Committee), University of 

Leeds. (REF 230915/LA/178). 

 

Thank you  

for taking the time to read this information sheet 
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 Information sheet (Stereopsis - section two) 

 

Version no.1           

09/11/2015 

   

 

Participant Information Sheet 2 

Title of Study  

The relation between stereopsis and dental performance in postgraduate 

students 

Dear participant  

We would like you to take part in the above named study, but before you decide, 

please read the following information.  

 

What is the purpose of this study? 

The aim of this study is: 

To measure the level of stereoacuity (3D perception) of postgraduate dental 

students and compare the results to their performance on the haptic simulator 

Simodont.  

 

Who is doing the study?  

This study is conducted by a group of researchers in the School of Dentistry and the 

Institute of Psychological Sciences (Prof. Michael Manogue, Prof. Mark Mon-Williams, 

Dr. Faisal Mushtaq, Dr.Loulwa AlSaud).  

It is part of a PhD project about the effects of haptic dental simulation on students 

learning by PhD student (Loulwa AlSaud) at the School of Dentistry, University of 

Leeds. 

 

Why have I been asked to participate? 

We are aiming to recruit dental postgraduate students and dentists with no prior 

experience in using Simodont, haptic dental simulator. 

 

What will be involved if I take part in this study? 

You will be asked to attend a single session (30 minutes) at the Simodont skill 

laboratory, School of Dentistry.  

1- Practice on Simodont dental simulator (4 different exercise with different 

stereopsis manipulation) 

2- Test stereoacuity (using iPad application: 2-3 min) 

3- Answer an online questionnaire. 

 

 

School of Dentistry 
Worsley Building  

Clarendon Way 
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What are the advantages and disadvantages of taking part? 

There is no disadvantage by participation in this study. Your participation in this study 

will allow us to further understand how the level of stereoacuity is related to the 

practical dental performance. The entire study is independent of your academic 

studies and as such, participation is entirely voluntary.  

 

Can I withdraw from the study at any time?  

Yes. You are free to withdraw from the study at any point in time without 

consequences. You may stop participation during the testing period, or contact a 

member of the research team to request that your data be destroyed at a later date 

(you will be provided with contact details before the experiment). All related 

information will be discarded and will not be used in data analysis or in future studies. 

 

Will the information obtained in the study be confidential?  

Any information you provide that can be traced back to you will remain strictly 

confidential, and will be disclosed only with your permission or as required by law. If 

information collected in this study is published in scientific journals, where necessary, 

participants will be referred to by an anonymous code only. The terms of the data 

protection Act 1988 will be adhered to and information will be securely stored.  

 

What will happen to the results of the study? 

The results of the study will be analysed and published in a scientific peer reviewed 

journal. 

The results of this study as well as a copy of the final paper can be provided to you 

upon request.  

 

Who has reviewed this study? 

This study was reviewed by DREC (Dental Research Ethics Committee), University of 

Leeds. (REF 230915/LA/178). 

 
Thank you  

for taking the time to read this information sheet 
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Appendix C  - (Chapter 6 – Feedback study) 

 

 Information sheet  

 

Version no.1           

12/02/2015 

   

Participant Information Sheet  

Title of Study 

The effect of Haptic dental simulator’s feedback on students’ performance 

Dear student  

We would like you to take part in the above named study, but before you decide, 

please read the following information.  
 

What is the purpose of this study? 

Augmented feedback has an important role during training and learning of motor 

skills. This study explores the effect of various forms of feedback (from haptic device 

and instructor or from haptic feedback alone) on skill acquisition and performance 

during dental preclinical training.  
 

Who is doing the study?  

This study is conducted by a group of researchers in the school of dentistry and the 

Institute of Psychological Sciences (Prof. Michael Manogue (Supervisor), Prof. Mark 

Mon-Williams (Supervisior), Dr. Faisal Mushtaq, Dr.Loulwa AlSaud). It is part of a PhD 

project about the effects of haptic dental simulation on students learning by PhD 

student (Loulwa AlSaud) at the school of dentistry, University of Leeds. 
 

Why have I been asked to participate? 

We are aiming to recruit undergraduate students with no previous experience in 

dentistry. 
 

What will be involved if I take part in this study? 

You will be asked to attend a total of 3 days, at the Development action laboratory, 

School of Psychology.  

Day 1 (50 min.) : fine motor skills assessment using the Clinical Kinematic 

Assessment tool CKAT. Afterwards, you will be asked to answer the latest version of 

the VARK questionnaire (version 7.8). 

You will be introduced to Simodont haptic training device & to the virtual dental task to 

be performed. Followed by training on that task. 

Day 2 (15min): one week later - task performance where you will be asked to perform 

a specific virtual dental task. 

Day 3 (15min): one month later - task performance where you will be asked to 

perform a specific virtual dental task. 

 

 

School of Dentistry 
Worsley Building  
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What are The CKAT and the Simodont devices? 

• CKAT (Clinical Kinematic Assessment Tool) is a portable and powerful method 

to objectively measure detailed hand movements. In the context of this 

research project, the CKAT will be used for the objective assessment of your 

psychomotor skill prior to the start of the experiments. 

• Simodont is a virtual reality haptic dental simulator. It is designed to train 

dental students on basic dental procedures using virtual dental instruments. 

Specialised software is integrated in the device, which provide wide range of 

dental procedures and cases with varying degrees of complexity to choose 

from depending on the student level. 

What are the advantages and disadvantages of taking part? 

You will receive £20 for participating time in all three sessions of this experiment.  

Additionally, your participation in this study will allow us to further understand the 

effect of haptic feedback on skill acquisition and performance.  

This will help to enhance dental education research especially in the area of how best 

to educate dental students. 

The entire study will have no bearing on your practical examination marks and the 

project is independent of your academic studies and as such, participation is entirely 

voluntary. There is no disadvantage by participation in this study.  

Can I withdraw from the study at any time?  

Yes. You are free to withdraw from the study at any point in time without 

consequences. You may stop participation during the testing period, or contact a 

member of the research team to request that your data be destroyed at a later date 

(you will be provided with contact details before the experiment). All related 

information will be discarded and will not be used in data analysis or in future studies. 

Will the information obtained in the study be confidential?  

Any information you provide that can be traced back to you will remain strictly 

confidential, and will be disclosed only with your permission or as required by law. If 

information collected in this study is published in scientific journals, where necessary, 

participants will be referred to by an anonymous code only. The terms of the data 

protection Act 1988 will be adhered to and information will be securely stored.  

What will happen to the results of the study? 

The results of the study will be analysed and published in a scientific peer reviewed 

journal. The results of this study as well as a copy of the final paper can be provided 

to you upon request.  

Who has reviewed this study? 

This study was reviewed by the School of Psychology Ethics Committee, University of 

Leeds. Ethical approval number 15-0039. 

 

Thank you  

for taking the time to read this information sheet 
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 A Priori Power Analysis  

 

 

 

F t est s - ANOVA:  Repeat ed measur es, bet ween f act or s 
 
Anal ysi s:  A pri ori : Co mput e r equi r ed sa mpl e si ze  
I nput:   Ef f ect si ze f                  = 0. 5125214 

   α err pr ob                     = 0. 05 

   Po wer ( 1- β err pr ob)           = 0. 80 

   Nu mber of gr oups               = 3 
   Nu mber of measur e ment s         = 4 
   Corr a mong r ep measur es        = 0. 5 

Out put:   Noncent r al it y par a met er λ      = 11. 3476976 

   Cri ti cal  F                     = 3. 4028261 
   Nu mer at or df                   = 2. 0000000 
   Deno mi nat or df                 = 24. 0000000 
   Tot al  sa mpl e si ze              = 27 
   Act ual  power                   = 0. 8149115 
 

 
A statistical power analysis was performed for sample size estimation, based 

on data from a previous study (Wierinck et al. 2005) about the effect of 

augmented feedback on performance. The original sample size reported in 

their study was 42 reduced to 36 after dropouts, and the actual sample size 

became (N= 36). The effect size (ES) of the study was not reported so we 

calculate it (using G*Power 3.1 software (Faul et al. 2007; Erdfelder et al. 

1996)) from the mean scores of each group (control, no feedback, and 

feedback) across test sessions.  The calculated ES = 0.512 [medium effect 
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size according to Cohen's (1988) criteria], Alpha level α = 0.05, and power 

=.80.  

The projected sample size needed was calculated and is approximately N = 

27, with actual power=. 8149, which means that there is 81.49% chance of 

correctly rejecting the null hypothesis of no difference between the 3 groups 

with a total of 27 participants. Thus, our proposed sample size of 63 (per group 

n=21) will be more than adequate for the main objective of this study and 

should allow for expected attrition as well as variation in our experimental 

design from the previous studies. 
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 CKAT data  

 

ID Date Hand Battery 
score 

Rescaled 
battery 

1 20/04/15 Right -0.42 80.42 

2 13/04/15 Right -0.35 78.03 

3 28/04/15  2.14 0.21 

4 30/04/15 Right -0.69 88.60 

5 15/04/15 Right 0.35 56.28 

6 28/04/15 Right 0.15 62.58 

7 21/04/15 Right -0.32 77.08 

8 16/04/15 Right -0.26 75.21 

9 23/04/15 Right -0.24 74.79 

10 28/04/15 Right -0.62 86.62 

11 16/04/15 Right -0.08 69.60 

12 08/05/15 Right -0.30 76.64 

13 06/05/15 Left 0.59 48.56 

14 11/05/15 Right 0.15 62.43 

15 15/04/15 Right -0.28 75.76 

16 17/04/15 Left -0.35 77.94 

17 21/04/15 Right -0.23 74.23 

18 30/04/15 Right 0.10 64.04 

19 17/04/15 Right -0.54 83.90 

20 16/04/15 Right -0.63 86.89 

21 11/05/15 Right 0.33 56.64 

22 24/04/15 Right -0.07 69.20 

23 22/04/15 Left 0.71 44.98 

24 23/04/15 Right -0.21 73.68 

25 30/04/15 Left 0.38 55.12 

26 11/05/15 Right -0.91 95.49 

27 08/05/15 Right -0.36 78.33 

28 08/05/15 Right -1.05 100.00 

29 24/04/15 Left 2.14 0.00 

30 16/04/15 Left -0.60 85.79 

31 15/04/15 Right -0.18 72.89 

32 22/04/15 Right 0.08 64.65 

33 08/05/15 Right -0.62 86.50 

34 29/04/15 Right -0.55 84.24 

35 27/04/15 Right -0.80 92.23 

36 22/04/15 Right -0.91 95.51 

37 27/04/15 Right 0.37 55.61 

38 26/03/15 Right -0.55 84.40 
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39 20/04/15 Right 0.08 64.67 

40 20/03/15 Right -0.48 82.01 

41 27/04/15 Right 0.78 42.58 

42 08/05/15 Right 1.38 23.96 

43 13/04/15  -0.67 88.27 

44 28/04/15 Right 1.68 14.39 

45 23/04/15 Right 0.82 41.51 

46 16/04/15 Right -0.58 85.33 

47 15/04/15 Right -0.30 76.62 

48 23/04/15 Right 0.72 44.66 

49 20/04/15 Right -0.24 74.75 

50 08/05/15 Right 0.05 65.68 

51 15/04/15 Right -0.79 92.00 

52 11/05/15 Right 0.13 62.94 

53 17/04/15 Right 1.27 27.24 

54 23/04/15 Right -0.64 87.20 

55 11/05/15 Right -0.16 72.08 

56 27/04/15 Right 1.60 17.01 

57 15/04/15 Right -0.36 78.55 

58 23/04/15 Right 1.32 25.62 

59 13/04/15 Right 0.47 52.33 

60 11/05/15 Right -0.67 87.97 

61 17/04/15 Right -0.32 77.15 

62 20/04/15 Right -0.47 81.98 

63 23/04/15 Right -0.64 78.00 
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