305 research outputs found

    Real-time embedded sensor processing for an autonomous helicopter

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 123).by Chin San Han.M.Eng

    Space station automation of common module power management and distribution, volume 2

    Get PDF
    The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD

    Space station automation of common module power management and distribution

    Get PDF
    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment

    The design and implementation of a prototype exokernel operating system

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 99-106).by Dawson R. Engler.M.S

    DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC WELDING PROCESS

    Get PDF
    The Quasi-Keyhole plasma arc welding (PAW) process is a relatively simple concept, which provides a basis for controlling the weld quality of a subject work piece by cycling the arc current between a static base and variable peak level. Since the weld quality is directly related to the degree of penetration and amount of heat that is generated and maintained in the system, the Non-Linear Interval Control Algorithm provides a methodology for maintaining these parameters within acceptable limits by controlling the arc current based upon measured peak current times. The Texas Instruments TMS320VC5416 DSK working in conjunction with Signalwares AED-109 Data Converter provides a hardware solution to implement this control algorithm. This study outlines this configuration process and demonstrates its validity

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    A Practical Hardware Implementation of Systemic Computation

    Get PDF
    It is widely accepted that natural computation, such as brain computation, is far superior to typical computational approaches addressing tasks such as learning and parallel processing. As conventional silicon-based technologies are about to reach their physical limits, researchers have drawn inspiration from nature to found new computational paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a bio-inspired model of computation. It incorporates natural characteristics and defines a massively parallel non-von Neumann computer architecture that can model natural systems efficiently. This thesis investigates the viability and utility of a Systemic Computation hardware implementation, since prior software-based approaches have proved inadequate in terms of performance and flexibility. This is achieved by addressing three main research challenges regarding the level of support for the natural properties of SC, the design of its implied architecture and methods to make the implementation practical and efficient. Various hardware-based approaches to Natural Computation are reviewed and their compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs are identified as the most appropriate implementation platform through critical evaluation and the first prototype Hardware Architecture of Systemic computation (HAoS) is presented. HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism of an FPGA and the highly efficient matching capability of a Ternary Content Addressable Memory. It provides basic processing capabilities in order to minimize time-demanding data transfers, while the optional use of a CPU provides high-level processing support. It is optimized and extended to a practical hardware platform accompanied by a software framework to provide an efficient SC programming solution. The suggested platform is evaluated using three bio-inspired models and analysis shows that it satisfies the research challenges and provides an effective solution in terms of efficiency versus flexibility trade-off

    論理シミュレーションとハードウェア記述言語に関する研究

    Get PDF
    京都大学0048新制・論文博士工学博士乙第7496号論工博第2471号新制||工||842(附属図書館)UT51-91-E273(主査)教授 矢島 脩三, 教授 津田 孝夫, 教授 田丸 啓吉学位規則第5条第2項該当Kyoto UniversityDFA
    corecore