

UNIVERSITY COLLEGE LONDON

A Practical Hardware Implementation of

Systemic Computation

by

Christos Sakellariou

A thesis submitted in partial fulfilment for the

degree of Doctor of Engineering

in the

Faculty of Engineering

Department of Computer Science

December 2013

2

Declaration of Authorship

I, Christos Sakellariou, declare that this thesis A Practical Hardware Implementation of

Systemic Computation and the work presented in it are my own. I confirm that:

 This work was done wholly or mainly while in candidature for a research degree

at University College London.

 Where any part of this thesis has previously been submitted for a degree or any

other qualification at University College London or any other institution, this has

been clearly stated.

 Where I have consulted the published work of others, this is always clearly

attributed.

 Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

 I have acknowledged all main sources of help.

 Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

3

Abstract

Faculty of Engineering, Department of Computer Science

UNIVERSITY COLLEGE LONDON

Doctor of Engineering

by Christos Sakellariou

It is widely accepted that natural computation, such as brain computation, is far superior

to typical computational approaches addressing tasks such as learning and parallel

processing. As conventional silicon-based technologies are about to reach their physical

limits, researchers have drawn inspiration from nature to found new computational

paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a

bio-inspired model of computation. It incorporates natural characteristics and defines a

massively parallel non-von Neumann computer architecture that can model natural

systems efficiently.

This thesis investigates the viability and utility of a Systemic Computation hardware

implementation, since prior software-based approaches have proved inadequate in terms

of performance and flexibility. This is achieved by addressing three main research

challenges regarding the level of support for the natural properties of SC, the design of

its implied architecture and methods to make the implementation practical and efficient.

Various hardware-based approaches to Natural Computation are reviewed and their

compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs

are identified as the most appropriate implementation platform through critical

evaluation and the first prototype Hardware Architecture of Systemic computation

(HAoS) is presented.

HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism

of an FPGA and the highly efficient matching capability of a Ternary Content

Addressable Memory. It provides basic processing capabilities in order to minimize

time-demanding data transfers, while the optional use of a CPU provides high-level

processing support. It is optimized and extended to a practical hardware platform

accompanied by a software framework to provide an efficient SC programming solution.

The suggested platform is evaluated using three bio-inspired models and analysis shows

that it satisfies the research challenges and provides an effective solution in terms of

efficiency versus flexibility trade-off.

4

Acknowledgements

I sincerely believe I could not have been luckier when I first emailed Peter Bentley about

five years ago on the prospect of working under his supervision towards a doctoral

degree. I am extremely thankful to him for his tremendous level of support during these

five years. I hugely appreciate all his help along this journey and clearly acknowledge

that this thesis would not have been possible without his guidance and encouragement. I

enjoyed the fact the he is a person that I could talk to freely and count on being listened

every single time. I am grateful to consider him as a friend from whom I learned a lot.

I also wish to thank the other researchers of my research group. Special thanks go to

Erwan Le Martelot for sharing with me early drafts of his thesis when I started my

studies. Further thanks go to Hooman Shayani, Arturo Araujo and Marjan Rouhipour for

sharing parts of their work on Systemic Computation that greatly helped me move

forward. I would also like to thank other colleagues at UCL: my second supervisor Prof.

Steve Hailes and Prof. Izzat Darwazeh for their guidance during the reviews of my progress

reports. I also would like to express my thanks to my industrial sponsor Toumaz Technology

and especially to my industrial supervisor Alison Burdett for her invaluable support on the

initial application towards my doctorate degree and the financial support along its duration. I

further wish to acknowledge the EPSRC, the EngD VEIV doctoral centre and the department

of Computer Science in UCL for their financial support and for hosting me along my s tudies.

I would like to thank all my friends that supported me during happy and rough times during

these last five years (thank you so much guys for endless coffees and nights in and out!!): my

good friends from Greece Psilos, Spirakos, Thomas and Giannakis, my good Toumaz friend

Andrikos, my Physics friends Thiseas and Thanos, my soton friend Giannis, my UCL friends

Melinos, Dimitris, Theo, Tim and Alexis, my weekend ciccilones friends Pippo, Adrian,

Vero and Andreea, my Reading friends Stamo and Dia, my neighbours Bogo and Stella, my

childhood friends Sakis, Nantia, Zetta, Stelios and Panagiotakis, my Imperial friend Dimos,

all my dear cousins and so many more that need to be here and aren't due to my long-lasting

sleep deprivation.. :)

Of course I want to thank my family for their continuous support before, along and beyond

my studies. Special thanks to my parents, Aspasia and Thomas, and my little sister Kleiw for

their unconditional love. Further thanks to all my extended family (grandparents, uncles,

aunts and cousins) for helping me become who I am. Last but not least, I'd like to express my

gratitude to my loving partner Marilia for always being there for me along these years,

following and supporting me on every step of the way.

5

Table of Contents

Abstract ... 3

Acknowledgements .. 4

List of Figures ... 10

List of Tables .. 14

List of Listings .. 16

List of Algorithms ... 16

Chapter 1 Introduction ... 17

1.1 Introduction to Natural Computation ... 17

1.2 Introduction to Systemic Computation .. 20

1.3 Systemic Computation in Practice ... 21

1.4 Hypothesis .. 23

1.5 Objectives ... 25

1.6 Publications .. 26

1.7 Thesis Organization .. 27

Chapter 2 Background ... 29

2.1 Approaches to Natural Computation .. 30

2.1.1 Software Approaches ... 31

2.1.2 Alternative Paradigms ... 32

2.2 Hardware-based Approaches to Natural Computation 33

2.2.1 Conventional Hardware Approaches .. 33

2.2.2 Unconventional Hardware Approaches .. 38

2.2.3 Other silicon-based designs ... 55

2.2.4 Hardware Approaches Summary .. 62

6

2.3 Systemic Computation .. 63

2.4 Prior Systemic Computation Implementations ... 68

2.4.1 Original SC Implementation .. 68

2.4.2 High-level SC Implementation ... 70

2.4.3 GPU SC Implementation ... 71

2.5 Summary .. 72

Chapter 3 Designing a Suitable Hardware Architecture for SC 77

3.1 Potential Architectures .. 77

3.1.1 Virtual SC ... 78

3.1.2 Fundamental Processing Element ... 79

3.1.3 Reconfigurable Predetermined Processing Elements Array 80

3.1.4 SC2HDL ... 82

3.1.5 GPUplusFPGA .. 83

3.1.6 Summary ... 84

3.2 Design Analysis of the SC Architecture .. 85

3.2.1 Local Knowledge & Scope Definition Method 86

3.2.2 Scopes Support .. 86

3.2.3 Valid Triplet Generation & Schemata Matching 87

3.2.4 Threshold Matching ... 89

3.2.5 Systems Representation & Coding Method .. 89

3.2.6 The Compiler .. 91

3.2.7 Interactions Order .. 91

3.2.8 SC Architectural Features Summary .. 93

3.3 HAoS Instruction Set .. 94

7

3.4 HAoS Architecture ... 98

3.5 The Control Unit ... 99

3.6 The SC Core ... 100

3.6.1 The Core Memory Elements .. 101

3.6.2 The Random Selection Logic ... 102

3.7 Programming HAoS .. 108

3.8 Initial Testing ... 113

3.8.1 Functional Verification .. 113

3.8.2 Implementation Statistics ... 117

3.9 Summary .. 117

Chapter 4 The HAoS Programming Platform ... 119

4.1 HAoS-CPU Communication Interface Investigation 119

4.2 CPU Subsystem Integration .. 127

4.3 Optimizations and Enhancements .. 128

4.3.1 Refining the Random Selection Logic .. 128

4.3.2 Minimizing the Schemata-Matching Overhead 129

4.3.3 Further Addressing I/O Efficiency ... 130

4.3.4 Further Addressing User-Friendliness with a Functional Model 132

4.3.5 Further Addressing Programmability ... 133

4.3.6 Refinements Results .. 137

4.4 Addressing Scalability for Single-Chip Implementations 138

4.5 HAoS Model Development Methodology .. 140

4.6 Summary .. 143

Chapter 5 Verification and Evaluation ... 144

8

5.1 A Genetic Algorithm Optimization of the Binary Knapsack Problem 145

5.1.1 The Binary Knapsack Problem ... 145

5.1.2 Applying a Genetic Algorithm to the Binary Knapsack Problem 146

5.1.3 Systemic Analysis ... 148

5.1.4 SC Binary Knapsack Model Implementation .. 150

5.1.5 Results .. 153

5.1.6 Analysis .. 154

5.2 Simulation of a Biochemical Process with HAoS: the MAPK Signalling

Cascade ... 157

5.2.1 The MAPK Signalling Cascade .. 157

5.2.2 Systemic Analysis ... 158

5.2.3 SC MAPK Signalling Cascade Model Implementation 162

5.2.4 Results .. 165

5.2.5 Analysis .. 167

5.3 Modelling the Effect of Chromosome Missegregation and Typical Cancer

Therapy Approaches in Tumour Evolution with HAoS ... 168

5.3.1 The Cancer Model ... 170

5.3.2 Systemic Analysis ... 174

5.3.3 SC Cancer Model Implementation ... 187

5.3.4 Results .. 193

5.3.5 Analysis .. 201

5.4 Summary .. 210

Chapter 6 Conclusion .. 212

6.1 Summary of Work Revisiting the Objectives ... 212

6.2 Contributions .. 216

9

6.3 Critical Evaluation .. 217

6.4 Future Work ... 220

6.5 Closing Words .. 223

References ... 226

Appendix A. SC Example Test Programs Source Code .. 245

Appendix B. CPU Subsystem Integration Details ... 248

Appendix C. RSL Optimisations Details .. 250

Appendix D. Revising the TCAM Design .. 253

Appendix E. Provided HAoS API .. 255

Appendix F. File Types used along HAoS Model Development 256

Appendix G. Cancer Models SC Source Code .. 257

Appendix H. HAoS Binary-To-ASCII Conversion Resulting Text File Format 262

10

List of Figures

Figure 1.1. Comparison in flexibility and efficiency of prior software SC

implementations .. 22

Figure 1.2. Breakdown and organisation of thesis investigation 25

Figure 2.1. Example organisation of a computer cluster ... 36

Figure 2.2. Anatomy of a WSN node. .. 40

Figure 2.3. Hardware Evolution using a Genetic Algorithm. .. 45

Figure 2.4. The three organizational layers of the POEtic tissue. 47

Figure 2.5. Overview of the POEtic tissue architecture. ... 48

Figure 2.6. Organisation of the Ubichip architecture. ... 50

Figure 2.7. SpiNNaker CMP chip organisation... 56

Figure 2.8. Organic System Architecture. .. 59

Figure 2.9. SC notation and systems representation .. 64

Figure 2.10. Illustration of a sum operation on a pool of data systems using SC notations.

 .. 65

Figure 2.11. SC calculation of PRINT((A1-A2)*(A3-A4)). .. 67

Figure 2.12. SC calculation of the linear expression ((((A1-A2)*A3)+A4)/A5). 68

Figure 2.13. System representation, schemata decoding scheme and scope table of the

original SC version. ... 69

Figure 2.14. Visualisation of a SC model using SCoPE .. 70

Figure 2.15. Overview of the task and data flows in GPU SC 72

Figure 3.1. Virtual SC architecture simplified block diagram 79

Figure 3.2. SC Fundamental Processing Element architecture simplified block diagram 80

Figure 3.3. SC Reconfigurable Predetermined Processing Elements Array architecture

simplified block diagram ... 81

11

Figure 3.4. GPUplusFPGA architecture simplified block diagram 83

Figure 3.5. The suggested hybrid design .. 85

Figure 3.6. Typical RAM and TCAM usage ... 88

Figure 3.7. HAoS TCAM usage ... 89

Figure 3.8. HAoS Systems Representation ... 90

Figure 3.9. HAoS Top-Level Architecture ... 98

Figure 3.10. HAoS Program Control Flow ... 100

Figure 3.11. HAoS Core basic building blocks ... 101

Figure 3.12. The TCAM contents ... 102

Figure 3.13. Parallel Bit Count Example .. 103

Figure 3.14. Shift-and-Add implementation of the parallel bit-count mechanism 104

Figure 3.15. HAoS Divider based on a modular approach. ... 105

Figure 3.16. 16-bit Fibonacci and Galois type LFSRs .. 106

Figure 3.17. Human-readable HAoS Assembly Code ... 110

Figure 3.18. HAoS Sample Output ... 111

Figure 3.19. The three verification example SC programs .. 116

Figure 4.1. Revised Triplet Memory Map and Write-Detection Mechanism 131

Figure 4.2. HAoS driver flow diagram ... 135

Figure 4.3. HAoS programming toolchain and software framework 136

Figure 4.4. Linearity on area utilization as the number of maximum supported systems is

increased ... 140

Figure 4.5. HAoS model development methodology .. 141

Figure 5.1. 16-Element Binary Knapsack Problem ... 146

Figure 5.2. Representation of the optimal solution for the Binary Knapsack Problem . 147

12

Figure 5.3. Standard genetic operators: Binary Mutation, One-Point and Uniform

Crossover .. 148

Figure 5.4. The binary knapsack SC model. ... 150

Figure 5.5. Binary knapsack problem experimental results across a range of number of

systems .. 154

Figure 5.6. Binary knapsack experiments HAoS normalised performance compared to

the sequential and GPU implementations ... 155

Figure 5.7. Simplified biochemical description of the MAPK signalling cascade ignoring

phosphate groups ... 158

Figure 5.8. The HAoS MAPK model in SC graphical notation. 161

Figure 5.9. Traversing the MAPK signalling cascade ... 166

Figure 5.10. MAPK cascade experiment HAoS normalised performance compared to the

SPiM and SCoPE simulators .. 168

Figure 5.11. The reference cancer model. ... 171

Figure 5.12. The three genetic configurations, employing different gene chromosomal

linkage .. 171

Figure 5.13. Initial SC cancer model .. 175

Figure 5.14. Revised SC cancer model with tissue and two-step cell death and division

processes ... 176

Figure 5.15. Therapy-Enabled SC cancer model ... 178

Figure 5.16. Time-Enabled (Tic-Toc) SC cancer model ... 181

Figure 5.17. Optimized SC cancer model ... 186

Figure 5.18. SC cancer model data systems and their contents 189

Figure 5.19. Non-therapy cancer models comparison for gene distribution A 195

Figure 5.20. Non-therapy cancer models comparison for gene distribution B 196

Figure 5.21. Non-therapy cancer models comparison for gene distribution C 197

13

Figure 5.22. Therapy-enabled cancer models comparison near cancer diagnosis for gene

distribution B... 198

Figure 5.23. Therapy-enabled cancer models comparison near cancer diagnosis for gene

distribution C... 199

Figure 5.24. Non-therapy cancer time-supporting models results differences for gene

distribution A .. 203

Figure 5.25. Non-therapy cancer time-supporting models results differences for gene

distribution B... 204

Figure 5.26. Non-therapy cancer time-supporting models results differences for gene

distribution C... 205

Figure 5.27. Differences on apoptosis-to-division ratio between the therapy-enabled

time-supporting cancer models for gene distribution B ... 206

Figure 5.28. Differences on apoptosis-to-division ratio between the therapy-enabled

time-supporting cancer models for gene distribution C ... 207

Figure 5.29. Cancer growth experiment HAoS normalised performance against the

dedicated c++ implementation ... 209

Figure 5.30. Performance Evaluation Results Summary ... 211

Figure 6.1. Comparison in flexibility and efficiency provided by the HAoS programming

platform ... 225

Figure B.1. The AXI4-Lite based HAoS-MicroBlaze communication link 248

Figure B.2. Top-level On-Chip HAoS Platform Block Diagram 249

Figure C.1. Critical path of initial HAoS design based on static timing analysis 250

Figure C.2. The Revised RSL module .. 251

Figure D.1. The SRL16E-based building block of the base HAoS TCAM 253

Figure H.1. Annotated HAoS ASCII program example .. 262

14

List of Tables

Table 1.1. Properties that differentiate natural from conventional computation 19

Table 2.1. Approaches to Natural Computation and alternative paradigms 30

Table 2.2. Features of the original SC implementation ... 69

Table 2.3. Detailed evaluation of the reviewed hardware-based approaches 75

Table 3.1. HAoS Compression Code .. 91

Table 3.2. Implementation-specific features of HAoS and prior implementations 93

Table 3.3. HAoS Instruction Fields .. 95

Table 3.4. HAoS Instruction Set .. 95

Table 3.5. Simulated SC test programs... 114

Table 3.6. HAoS Prototype (64 systems) Implementation Statistics on Virtex-6 LX240T

FPGA .. 117

Table 4.1. Commonly used interfaces for off-board communication and their nominal

raw bandwidths ... 121

Table 4.2. Sustainable Bandwidth Results for various practical configurations

implementing common communication interfaces on FPGAs 123

Table 4.3. Indicative Collection of Available Soft Processors 125

Table 4.4. Benchmark timing improvements reflecting various architectural

optimizations ... 137

Table 4.5. HAoS platform implementations statistics as the number of maximum systems

increases .. 139

Table 5.1. Summary of the Knapsack SC model functions ... 152

Table 5.2. The HAoS MAPK model interactions in SC calculus notation. 162

Table 5.3. Summary of the MAPK SC model functions .. 164

Table 5.4. Performance of the HAoS, SPiM (v1.13) and SCoPE simulators based on

simulation duration .. 167

15

Table 5.5. Time-Enabled (Tic-Toc) cancer SC model interactions 182

Table 5.6. Timeless and Approximate Time cancer SC models interactions 184

Table 5.7. Optimized Approximate Time cancer SC model interactions 186

Table 5.8. Biological representation of the systems of the SC cancer models 188

Table 5.9. Absolute and normalized average execution times for all simulated cancer

scenarios ... 200

Table 5.10. Statistical comparison of the time-enabled cancer models to the reference

one in terms of mean error (ME), standard deviation (STD) and correlation (COR) 208

Table E.1. Summary of the provided functions (simplified) in the HAoS API 255

Table F.1. Summary of file types used along HAoS model development 256

16

List of Listings

Listing 3.1. HAoS Source Code Example ... 109

Listing 3.2. Selected output from the 3 example SC test programs verifying the

functionality of HAoS by simulation .. 115

Listing 5.1. Binary Knapsack SC model source code .. 151

Listing 5.2. Verification environment output for Binary Knapsack SC model 153

Listing 5.3. MAPK Signalling Cascade SC model source code 163

Listing A.1. Addition in Multiple Scopes (Test1 Example) Source Code 245

Listing A.2. Subtraction-escape and then multiply and print (Test2 Example) Source

Code .. 246

Listing A.3. Context Adapting (Test3 Example) Source Code 247

Listing G.1. Time-Enabled Cancer Model SC Source Code .. 257

Listing G.2. Timeless Cancer Model SC Source Code .. 258

Listing G.3. Approximate-time Cancer Model SC Source Code 259

Listing G.4. Optimized Approximate-time Cancer Model SC Source Code 260

List of Algorithms

Algorithm 5.1. The reference cancer model algorithm .. 173

Algorithm 5.2. The reference cancer model algorithm written in a ―systemic way‖ 191

17

Chapter 1

Introduction

1.1 Introduction to Natural Computation

It has been claimed that everything computes [1], [2]. Biological systems appear to be

superb at performing something that resembles computation, although they accomplish

that by using methods fundamentally different from those used to perform conventional

computation [3], [4]. Supercomputers strive to simulate a microsecond of protein folding

[5], yet biology scales from molecules to cells, then to organisms, then to species and so

on to more complex structures.

Complex tasks, like DNA synthesis and sequencing, have been shown to outpace

Moore’s law [6]. Although the semiconductor industry has been making continuous

leaps in the past half century, silicon-based approaches seem weak in delivering more

raw power, as the physical limitations of this technology appeared quite some time ago

[7]. While engineers are left to devise workarounds to these issues (cache memory,

branch prediction, out-of-order execution, multi-core chips), modern computers seem to

be inefficient and too slow to model biological processes. This incompetence is not

surprising, since, although the advances in microprocessor technologies have been

numerous, the fundamental design principles have remained unchanged for almost a

century. The vast majority of computing devices today follow the design pattern revealed

in 1945 by John von Neumann [8]. This is a completely centralized partitioning,

comprising of a set of main building blocks: the Central Arithmetic (CA) unit, the

Central Control (CC) unit, the Memory (M) and Input/Output (I/O) devices. Von

Neumann believed that those ―distinctions suggest themselves immediately‖ [8] and until

today the majority of those in the scientific community and the consumer industry agree

with this. However nature does not.

While computation in a conventional electronic computer is the outcome of a program,

which is a set of defined instructions that are sequentially executed, the rules are quite

different in nature. Nature seems to work in a massively parallel fashion instead. Natural

systems, viewed in different levels of abstraction, have a common characteristic. A

Chapter 1. Introduction 18

massive number of subtasks are carried out at any given moment in order to accomplish

an operation. This operation can be any biological process. For example, under different

contexts, the process of photosynthesis from a leaf in a tree involves chemical reactions

among complex biochemical systems in order to convert carbon dioxide in organic

compounds [9]. This process is happening through all the leaves of the tree, and it is

vital for the tree itself. The tree comprises a system of leaves, branches and roots and

each is playing its role in accomplishing the survival of the tree. At the same time,

photosynthesis is not only vital for the tree but for all flora in the ecosystem, and in turn

for any living organism on the planet relying on oxygen for survival.

The human brain is another example. It is composed of billions of neurons which

continuously interact [10] with each other. The brain is just one of the organs that build

the nervous system, which in turn along with other systems compose the human body.

Groups of people form societies and all the societies, joined, build mankind.

Numerous examples like the ones mentioned above can be given: a herd of deer, an ant

colony, our planetary system, the immune system, a school of fish and even the Dow

Jones Index. All of them are composed from fundamental building blocks but also,

combined with others, constitute more complex structures. The underlying processes

seem to work without any centralised control method but with the coexistence and

interaction of their structural elements.

The observation of the success of nature in coping with such complex systems had a

significant impact in modern science, giving birth to several biologically inspired

research fields [11]: Evolutionary Computing (EC) [12], Artificial Neural Networks

(ANN) [13], Artificial Immune Systems (AIS) [14], Swarm Intelligence (SI) [15],

Particle Swarm Optimization (PSO) [16], Cellular Automata (CA) [17], L-systems[18],

Artificial Life (ALife) [19], DNA computing [20] and Quantum Computing (QC) [21]

are some of them. According to [11], these fields form three groups: the first five are

inspired by nature, the next two (CA and L-systems) simulate and emulate nature by

means of computing, while the rest use natural materials for computation. They are all

influenced/inspired by nature, serving computation and modelling purposes and hence

they constitute a super-group: Natural Computation [11], [22], [23].

Characteristics, embedded in natural systems, have been a rich source of inspiration for

the scientific community since it is commonly accepted that nature can outperform any

manmade device on factors like complexity, homoeostasis, self-organization, self-

replication, self-adaptation and fault-tolerance.

Chapter 1. Introduction 19

Table 1.1. Properties that differentiate natural from conventional computation

Property

Type

Natural

Computation

Conventional

Computation

Computational

Stochastic Deterministic

Asynchronous Synchronous

Parallel Serial

Distributed Centralized

Continuous Batch

Approximate Precise

Embodied Isolated

Local Knowledge Global Knowledge

Circular causality Linear causality

Behavioural

Self-organised
Explicitly

Organised

Fault tolerant Fault intolerant

Open-ended Limited

Complex Simple

Autonomous Human-reliant

Homoeostatic Heterostatic

Robust Brittle

Various opposing properties that highlight the distinction between natural and

conventional computation as they are separated in [22], [24] are given in Table 1.1.

Therefore, natural computation in general is/has [22]:

 Stochastic: The behaviour of natural systems is non-deterministic and their

interactions are randomised.

 Asynchronous: Mostly
1
, behaviour is not synchronized. There are no clock

signals which determine the timing of every behaviour akin to our processors.

 Parallel: Interactions are usually concurrent among all systems.

 Distributed: Computation is spread and allocated across several systems to

achieve the result.

 Continuous: Natural systems are designed to keep working for as long as

possible; their behaviours are designed to work continuously for the lifetime of

each organism.

 Approximate: The notion of an exact number or quantity is meaningless.

1
 There can be approximate synchronization to solar or lunar cycles or seasons.

Chapter 1. Introduction 20

 Embodied: A natural system and its environment constantly affect each other.

 Local Knowledge: Knowledge is not stored in a centralised archive or library. An

interaction can occur among two systems at the same hierarchical level which are

within range of each other, implying scopes of interaction.

 Circular causality: Two interacting natural systems affect each other during

interaction.

 Self-organised: Natural systems define their own organization and architecture

without external interventions.

 Fault-tolerant: Natural systems are tolerant to partial failures and usually able to

also self-heal.

 Open-ended: Systems in nature are able to adapt and constantly evolve.

 Complex: Natural systems are organized over numerous hierarchical levels in a

bottom-up manner. Starting with basic elements at the lowest level, they built

successively more complex systems at the higher levels.

 Autonomous: Natural systems are self-reliant and independent of any external

authority.

 Homoeostatic: A natural system preserves the inner stability of its state(s) by

internal feedback mechanisms.

 Robust: Natural systems can handle and adapt to unforeseeable situations.

Influenced by the importance of those properties, a novel computation model was

conceived by Bentley [24]. The new model, systemic computation (SC), was proven to

be Turing complete [25] and attempts to embody the much sought characteristics of

biological systems found in nature as listed in the left column of Table 1.1
2
. Turing

completeness was proved by implementing a rule 110 cellular automata algorithm [17],

[26], [27], stating the equivalence of SC to any other computation model.

1.2 Introduction to Systemic Computation

Systemic computation, further discussed in section 2.3, has its roots on the work of Jean-

Louis Le Moigne’s [28] on General System Theory [29]. The core notion that was

adopted by systemic computation can be found in the second percept [28] of Le

2
 In this work the focus will be on the computational properties.

Chapter 1. Introduction 21

Moigne’s systemic method – interaction – as opposed to the corresponding percept on

Descartes’ analytical method [30] – reduction. Reductionism can be traced back to

ancient Greece [31]. It states that a complex system is a sum of its parts but it is known

to have limitations [32]. Holism on the contrary argues that a complex system is more

than the sum of its constituents.

Systemic computation adopts a holistic analysis approach of systems embracing the

significant importance of the interactions of their fundamental elements and their

environment. Its intention is to resemble natural computation in order to simulate

biological processes effectively. To accomplish this, it follows the conventions listed

below [24] :

 Everything is a system.

 Systems may comprise or share other nested systems.

 Systems can be transformed but never destroyed.

 Interaction between systems may cause transformation of those systems, where

the nature of that transformation is determined by a contextual system.

 All systems can potentially act as context and affect the interactions of other

systems, and also all systems can potentially interact in some context.

 The transformation of systems is constrained by the scope of systems.

 Computation is transformation.

According to these conventions, it is implied that in order to perform any computation in

SC, two main tasks are always involved:

 Identify the interacting systems and

 Transform the interacting systems according to the interaction determined by the

contextual system in the scope that this interaction is defined.

1.3 Systemic Computation in Practice

While the Systemic Computation paradigm has been designed to feature all the

properties of Natural Computation, as they are given in Table 1.1, a practical platform to

support SC has yet to be devised. Its highly unconventional nature makes the

implementation of such a platform very challenging, since it radically differs from the

notion of computation, as we have grown to perceive it. The validity of the concept has

Chapter 1. Introduction 22

been proven in previous work [22], but in order to take advantage of its potential,

applying SC in a practical and efficient way is essential.

Three SC implementations have been developed so far (Original Sequential SC

Implementation [24], High-level SC Implementation [22] and the GPU SC

Implementation [34]). However, since their conventional design does not denote a

natural way of implementing the SC paradigm, they are just low and high level

simulations of a systemic computer, with only the latest implementation succeeding in

obtaining satisfactory results in terms of speed. As shown later, in section 2.4, these

software approaches are largely inappropriate to implement a SC platform, mainly due to

the conventional sequential nature of their underlying architecture which is incompatible

with the SC paradigm. As illustrated in Figure 1.1, there is no current implementation

that combines flexibility with efficiency. Consequently there is a clear need for a new

SC programming platform that is both efficient and flexible.

Figure 1.1. Comparison in flexibility and efficiency of prior software SC implementations . A

practical hardware-based implementation is expected to provide a balanced SC

programming solution

As previous work has demonstrated the incompatibility of conventional hardware for SC,

it seems likely that the most practical, viable and usable platform which addresses this

need would be a novel hardware-based implementation.

It is thus vital to investigate the trade-offs of available implementation platforms in order

to identify the substrate that a practical SC platform can be based on and then explore

how the practical features of conventional computation can be combined with the

Original High-Level GPU

Flexibility

Efficiency

Chapter 1. Introduction 23

unconventional properties of natural computation and architectural features of SC. In

order to properly evaluate such a controversial design, it is required to identify the

requirements that define a practical platform for SC and the degree that each of them can

be satisfied.

1.4 Hypothesis

The hypothesis of this thesis is:

It is possible to implement a practical Systemic Computation hardware architecture

that is viable and useful.

The thesis will provide evidence to support this hypothesis through an investigation of

the viability and utility of a SC practical implementation. Yet, the unconventional nature

of SC may itself be proven to be partially incompatible with the practicality aspect of the

implementation, as practicality partially implies a conventional way of thinking and

undertaking well-studied and proven techniques to accomplish a feasible and usable

means to perform Systemic Computation.

In essence, this collision of the definitions of unconventionality and practicality, in a

computational context, formulates the main investigation that this work attempts to

tackle. It is suggested that investigating the features, advantageous and disadvantageous,

that modern hardware implementation platforms offer while exploring potential suitable

architectures for Systemic Computation, will result in a satisfactory compromise

combining the benefits of the inherent natural properties of SC with the usability and

utility provided by a practical platform.

This work will investigate the viability of a practical SC implementation and the trade-

offs between encompassing naturals properties against the feasibility and constraints of

the hardware taking into consideration flexibility, performance and scalability. The

supported programming model should provide a user-friendly interface to the underlying

architecture, which should be optimized in terms of speed and area while being able to

easily scale in size.

A practical SC hardware implementation is required because software approaches do not

seem to be able to efficiently handle the complexity or properly address the implied non-

conventional architecture of the SC paradigm (see sections 2.1, 2.4.1 and 2.4.2), since

they solely rely on conventional processors. The utility of such a custom hardware

design will be demonstrated by showing that natural processes can be modelled in a

Chapter 1. Introduction 24

more native way by addressing these limitations and mapping more efficiently and

accurately the SC architectural features.

The outcome of this work should be a practical hardware implementation in order to be

easily reproduced and also be, at least partially, compatible with conventional

architectures, in terms of communications. This will enable reusability and enhance

flexibility in order to achieve a broader user community which in return can improve the

architecture and expand its functionality. This implies that the suggested implementation

should also address availability (meaning that a user should be able to relatively easily

access the selected enabling technology). Thus it should be based on a mature

technology, possibly using Commercial Off-The-Shelf (COTS) [33] components, with a

rich knowledge base which is broadly used both in academia and industry.

This work provides evidence to support its hypothesis by proving a proof of concept via

a realisation of a novel SC hardware implementation. Building on the discussion of the

three previous sections, it accomplishes this by focusing on three main research

challenges:

Chg1: How can a hardware platform support the natural properties that are

central to SC?

Specifically this challenge focuses on the inherent to SC natural properties of Table 1.1.

An ideal platform would be able to support a hardware implementation that would be

stochastic, asynchronous, parallel, continuous, distributed, approximate (in a high level)

and embodied while it would show circular causality and have only local knowledge.

Incorporating these properties, the SC implementation would be self-organized, fault-

tolerant, (at least virtually) open-ended, complex, autonomous, homoeostatic and robust.

Chg2: How can a hardware platform support the underlying architecture of SC?

Specifically this challenge focuses on the compatibility of the platform with the inherent

features of the implied SC architecture: systems, scopes, contexts and interactions among

systems should be able to be represented in a manner that allows efficient modelling of

systems interactions.

The first two research challenges refer to the viability of a SC implementation. It is

suggested that investigating the trade-offs of implementing and attempting to combine

the desired natural properties with the architectural features of SC will sufficiently

Chapter 1. Introduction 25

explore how viable such an implementation is. The third challenge addresses the utility

and practicality of the suggested design and the way of realizing it:

Chg3: How can a hardware platform meet the first two challenges while also being

practical and efficient?

Specifically this challenge focuses on the support of features to result in a practical

platform: the resulting solution should be user-friendly, taking into consideration

flexibility and adaptability, and efficient in terms of performance and required resources

which in extent will prove its utility.

Thus, this thesis proves its hypothesis by addressing its three research challenges. We

break down the investigation of the hypothesis and the three sub-challenges into a set of

objectives, listed in the next section. This is illustrated in Figure 1.2.

Figure 1.2. Breakdown and organisation of thesis investigation. A set of objectives address

three main research challenges which provide evidence to support the hypothesis

1.5 Objectives

The main objectives for this research work can be identified as:

1. Review the work done on Natural Computation to date with a focus on hardware-

based approaches.

2. Review and assess the work done on Systemic Computation (theory and

implementations) to date.

Hypothesis

Research Challenges

Chg1 Chg2 Chg3

Objectives

Chapter 1. Introduction 26

3. Investigate the suitability of available hardware implementation platforms for SC

by evaluating them in terms of their ability to support the natural properties of

SC (Chg1), the implied SC architecture (Chg2), and practicality/efficiency

(Chg3) and select the most appropriate.

4. Analyse the SC architectural features and create a prototype hardware

implementation designed to support the SC architecture.

5. Create a complete and standalone practical SC programming platform with the

ability to meet the three challenges.

6. Analyse and address the limitations of the hardware prototype by means of

optimizations and enhancements taking into consideration the research

challenges.

7. Evaluate the ability of the prototype SC platform to meet the research challenges

by simulating natural models against alternative solutions.

1.6 Publications

The work presented in chapter 3 has been awarded the Best Paper Award in the

international Annual Doctoral Workshop on Mathematical and Engineering Methods in

Computer Science (MEMICS 2011) and was published in the Lecture Notes for

Computer Science (LNCS) proceedings of the workshop. Overall this thesis resulted in

the refereed publication of two international conference papers, two international journal

papers, a book chapter and a research poster, listed below:

 C. Sakellariou and P. Bentley, ―Introducing the FPGA-Based Hardware

Architecture of Systemic Computation (HAoS)‖, in Mathematical and

Engineering Methods in Computer Science, Lecture Notes in Computer

Science (LNCS) vol. 7119, Z. Kotásek, J. Bouda, I. Cerná, L. Sekanina, T.

Vojnar, and D. Antoš, Eds. Springer Berlin / Heidelberg, 2012, pp. 179–190.

 C. Sakellariou and P. Bentley, ―Describing the FPGA-Based Hardware

Architecture of Systemic Computation (HAoS)‖, Journal of Computing And

Informatics, vol. 31, no. 3, pp. 485–505, 2012.

 C. Sakellariou and P. Bentley, ―Extending the Hardware Architecture of

Systemic Computation to a Complete Programming Platform‖, in IEEE

International Conference on Evolvable Systems (ICES 2013) - IEEE

Symposium Series on Computational Intelligence (SSCI 2013), Singapore,

April 2013.

Chapter 1. Introduction 27

 C. Sakellariou and P. Bentley, ―Demonstrating the performance, flexibility

and programmability of the Hardware Architecture of Systemic Computation

modelling cancer growth‖, submitted to International Journal of Bio-Inspired

Computation, Special Issue on Bio-inspired Hardware, 2013.

 C. Sakellariou and P. Bentley, ―Computing Nature at the Intersection with

Chemistry: Innovative Architectures‖, Book Chapter to appear in Genesis

Engines: Computation and Chemistry in the Quest for Life's Origins, Springer,

2013.

 C. Sakellariou and P. Bentley, ―Building a Bio-Inspired Computer: The

Hardware Architecture of Systemic Computation (HAoS)‖, in Frontiers of

Natural Computing Workshop, York, 2012.

1.7 Thesis Organization

The thesis comprises six chapters, four lists (including list of figures, tables, listings and

algorithms), an extensive reference list and eight appendices. Chapter 2 reviews the

literature on the field of Natural Computation, critically focusing on hardware-based

approaches, and describes the SC theory, as it was introduced by Bentley [24]. It

illustrates how SC can perform computation and presents the three prior SC

implementations: Original SC Implementation, High-level SC Implementation and the

GPU SC Implementation. Furthermore, it identifies the most appropriate SC hardware

implementation platform among the various hardware-based approaches to Natural

Computation. Chapter 3 introduces the first FPGA-based Hardware Architecture of

Systemic computation (HAoS), discusses the functionality of its structural elements,

justifies the design decisions which result in this prototype design, outlines the applied

optimizations and details a programming example. It also gives implementation statistics

of the suggested design on the intended FPGA development board and explains the

verification methodology used to confirm its functionality. Chapter 4 investigates

suitable approaches for the implementation of the communication interface between

HAoS and the CPU, revisits parts of the design providing enhancements taking into

consideration performance, I/O efficiency, user-friendliness and programmability. The

HAoS base design is combined with an embedded soft processor to provide a standalone

platform while a methodology for HAoS models development is suggested. Chapter 5

verifies and evaluates the functionality of the platform by illustrating how HAoS can be

used to simulate three natural models of increasing complexity: a genetic algorithm

optimization implementation solving the binary knapsack problem, a well -studied

Chapter 1. Introduction 28

biochemical process involving enzyme-based protein activation and a more challenging

biological model simulating the effect of genetic anomalies and typical treatment

approaches to cancer growth. The provided models are given as SC model development

examples and the acquired results are compared against previous SC implementations

and other conventional programming approaches. The time complexity of the HAoS

schemata matching mechanism is also evaluated. Finally, chapter 6 summarizes the

thesis, states its contributions, provides a critical evaluation and discusses future work.

29

Chapter 2

Background

The notion of natural computation [35] resulted in significant advances on research in

the field of natural computing [11], [23]. Adleman after successfully solving a seven-

point Hamiltonian Path problem [36] using DNA sequences in 1994 [20], concludes his

article:

―Biology and computer science —life and computation— are related. I am confident that

at their interface great discoveries await those who seek them.‖

Leonard Adleman [20]

This chapter discusses various methods attempting to approach natural computation,

starting with a broad perspective and increasingly focussing on work more closely

related to the topic of this thesis. Section 2.1 provides an overview of some of the major

works in this area, and specifically in terms of software-based approaches and alternative

paradigms. Section 2.2 gives a critical review of literature related to hardware

approaches to natural computation. Conventional and unconventional ways and some

related hardware designs are presented in this section and initially assessed regarding

their compatibility with the Systemic Computation concept (a thorough analysis is given

in the next chapter). Their potential to become the basis of, or inspire the features and

requirements of a SC hardware implementation is discussed, as implied by the three

research challenges (section 1.4 - supporting natural properties and the SC architecture

and being able to facilitate an efficient and practical implementation). Section 2.3

elaborates on the SC paradigm as it was introduced by Bentley [24]. Finally, the three

prior SC implementations are overviewed in section 2.4.

Part of the work presented in this chapter has been accepted for publication in [37]. Also,

part of this work has been previously submitted for the degree of Master of Research as

part of the Doctor of Engineering degree in UCL.

Chapter 2. Background 30

2.1 Approaches to Natural Computation

The Natural Computation research field is quite broad. Kari and Rozenberg, attempting

to provide a complete review on the field in [23], separate its individual fields and

computing paradigms in three groups using the role of nature as the differentiating

factor: nature as inspiration, nature as implementation substrate and nature as

computation. Especially for the last group, computation can both refer to quantitative

algorithms and qualitative approaches that investigate natural processes taking into

consideration communications and interactions [23].

Table 2.1. Approaches to Natural Computation and alternative paradigms

Software Approaches

Conventional

Exception

handling

Recovery

blocks

N-version

programming

Expert

systems

Multi-agent

systems

Nature-

inspired

Evolutionary

algorithms

Artificial

neural

networks

Swarm

intelligence
3

Artificial

immune

systems

Artificial

Life

Fractal

Geometry

(Cellular

automata-

L-systems)

Computational Paradigms

Maths,

physics &

technology

inspired

CGPs
4

π-calculus

Asynchronous

π-calculus

Stochastic

π-calculus

Ambient

calculus

Petri nets

Statecharts
5

Bigraphs

Ons algebra

Nature-

Inspired

BioAmbient

calculus

Membrane

computing

Brane calculi

CLS
6

Bio-graphs

Systemic

computation

Hardware Approaches

Conventional Nature-inspired

Multi-core /

Multi-CPU

Ubiquitous

computing

High-

availability

cluster

Reaction-

diffusion

computing

Beowulf

cluster

Speckled

computing

GPU FPGA / ASIC

Grid / Cloud

computing

Evolvable

hardware

Pure

Peer-to-peer

POEtic /

Ubichip

Load-

balancing

cluster

Wireless Sensor

Network

Collision-

based computing

Super-

computers

Molecular

(DNA)

computing

Organic

Computing

 Bacterial

Computing

Quantum

computing

3 Ant colonies (ACO), Particle Swarm Optimization (PSO)

4 Constrained Generating Procedures

5 Just a flow graphical tool, not a computational paradigm

6 Calculus of Looping Sequences

Chapter 2. Background 31

The various approaches to date on natural computation, which for this work are

separated into software-based methods, alternative paradigms to computation and

hardware-based methods are illustrated in Table 2.1. An extensive literature review can

be found in [11], [22], [23]. While the focus of this thesis lies on the hardware-based

approaches (discussed in the next sections), a summary (informed by [22]) regarding the

related software-based approaches and alternative concepts of Table 2.1 is provided

below.

2.1.1 Software Approaches

Computation based on software approaches is quite common since they provide great

flexibility and ease of use. Conventional software approaches, usually, do not take into

consideration natural properties while conventional hardware approaches consider them

by simulating them.

Conventional approaches address issues like reliability, robustness and autonomy.

Exception handling [38] provides a mechanism of controlling the execution flow in case

of foreseeable special cases. Recovery blocks [39] (the same programmer writes multiple

versions of some parts of a program – blocks of code) and N-version programming [40]

(multiple versions of a whole program are written by different programming teams)

exploit code redundancy in order to overcome failures and minimize errors. Expert [41]

and multi-agent [42] systems are used to perform autonomous tasks, the former by

performing an analysis on a given problem and providing answers, the latter by

diverging information and/or interests.

Computer scientists, inspired from nature, expanded on unconventional methods,

adapting their programs to create or simulate natural properties like self -organization,

self-adaptation and fault-tolerance. A Genetic Algorithm [12] (described in section 2.2.2

in the context of Evolvable systems) is a global heuristic search method and provides

distributed, parallel, local and autonomous computation. Artificial Neural Networks [13]

is a field inspired by biological neural mechanisms and shows distributed knowledge and

self-organization. Swarm Intelligence [15] mimics concepts, inspired by insect

civilizations, and based on their collective behaviour obtains self-organization and self-

adaptation. Those properties are also observed in Artificial Immune Systems [14], which

derive inspiration by (mostly) the adaptive and (less) the innate responses of biological

immune systems, and Artificial Life [19] which is a field of study (and an associated

form of art [43]) that employs a synthetic approach to the study and creation of life [11]

(typical subjects of this study are termites, flocks, herds, evolution and artificial

Chapter 2. Background 32

chemistries). Fractal Geometry [11] deals with non-Euclidean objects of non-integer

dimensions which are characterized by self-similarity and infinite detail. In a

computational context, Fractal Geometry includes the fields of Cellular Automata [44],

[45], systems that are discrete in both time and space, showing properties like self-

replication and autonomy, and L-systems [18], a formalism to simulate the development

of multi-cellular organisms [11] employing parallel rewriting systems (able to modify an

existing word and generate new ones by applying various rewriting rules to its characters

in parallel) [23].

2.1.2 Alternative Paradigms

In order to further understand and exploit natural processes, new paradigms of

computation were developed, since conventional languages were not well suited for

effectively simulating nature [22]. Inspiration was derived by conventional sciences

(maths, physics and technology) and from nature.

CGPs [46] are finite state machines that can analyse complex systems by reducing them

(breaking them down) in mechanisms and constraints of interactions. π-calculus [47] and

its extensions (asynchronous π-calculus [48] and stochastic π-calculus [49]) are process

calculi used or adapted for biological systems simulation. Ambient calculus [50] is also a

process calculus which was developed to describe concurrent systems that include

mobility. Petri nets [51] are a graphical tool, with a corresponding mathematical theory,

that describes concurrent processes. Originally they were targeting chemical processes.

Statecharts [52] are commonly used to describe the data and control flow of state

machines in communication and, in general, hardware systems. Bigraphs [53] provide a

well defined form of concurrent computations and a graphical notation, that exploits

topographical and communication ideas, which is well suited for a number of the

aforementioned calculi. Systemic computation can be seen as equivalent to bigraphs

while the two paradigms share a similar graphical formalism. Ons algebra [54] is an

algebraic formalism attempting to reach the foundations of physical rules development

by using, in a metaphorical way, only two elementary particles, the particle of time and

the particle of space.

BioAmbients Calculus [55] was designed to allow modelling of biological systems,

having biological compartments as a central idea. Membrane computing [56] deals with

distributed and parallel computing models of systems (P systems), that use the analogy

of the organization of a cell being compartmented by membranes, creating this way

hierarchies. Brane calculus [57] identifies the importance of the membrane itself and

Chapter 2. Background 33

gives it an active role on computation. The Calculus of Looping Sequences [58] and its

variants is another formalism that allows the description of biological membranes,

biomolecular systems and proteins interaction. Bio-graphs [59] were designed to model

biological systems in a molecular level and include a corresponding graphical notation.

Since the hypothesis of this work focuses on a hardware-based implementation of SC,

the reader is redirected to the work of Le Martelot [22] for a detailed description and a

critical review which compares SC with the software approaches and the computational

paradigms listed in Table 2.1. The various hardware approaches are described in the next

sections.

2.2 Hardware-based Approaches to Natural Computation

While computer applications become ever more computationally demanding, the

traditional Von Neumann [8] architecture, after serving humanity for more than half a

century, appears inadequate [2], [60], [61] when extremely complex tasks are involved

(brain function modelling, protein folding). Although refurbished designs keep

consumers happy, hardware designers and researchers realised that alternative

approaches should be followed for ground-breaking efficiency and performance

improvement.

As explained in the previous sections, researchers found inspiration in nature. This is

reflected in various hardware-based approaches. In this section, both conventional

(subsection 2.2.1) and unconventional (subsection 2.2.2) hardware-based approaches are

described
7
. In the context of this thesis, unconventional approaches do not conform to

the conventional von Neumann architecture or use standard technologies (and are usually

inspired by nature). Relevant silicon-based designs are discussed in subsection 2.2.3.

Each paragraph is concluded with a short discussion on the compatibility of each

approach to a practical SC implementation.

2.2.1 Conventional Hardware Approaches

Conventional hardware-based approaches to natural computation include multi-core

chips, supercomputers, computer clusters, peer-to-peer networks and GPUs. They are

usually based on some variation of the von Neumann architecture, except GPUs which

fall in this category since they are widely used in consumer desktops and laptops, and are

7
 It is noted that because of different definitions for various technologies or for clarity reasons

there is some overlap between the technologies and methods described in next sections.

Chapter 2. Background 34

attempts to provide more processing power using various design approaches explained

below.

Chip Multi-Processors

Chip Multi-Processor (CMP) [62] systems were the response of the semiconductor

industry, to the consumer market, when around 2003 the clock frequency of uniprocessor

systems reached the limits imposed by the physics of their underlying technology. CMPs

take advantage of the limited parallelism that multiple processors provide, often being

able to execute more than one instruction thread simultaneously each. The l imitation of

CMPs to provide natural computation is evident, as their sequential architecture is

incompatible with any natural property (except maybe parallelism, but that is true only

when they are compared with their predecessor uniprocessor architectures).

CMPs are based on the conventional von Neumann architecture [62]. They are based on

the most widely used hardware implementation approach to computation, since their

deterministic sequential processors are highly flexible and easily programmable. Their

technology is more mature than any other. As such, there is a plethora of tools,

specifically designed for them. However, their flexibility comes at the expense of

performance, as their generic architecture cannot compete with custom designs,

optimized for specific applications. The nature of their architecture makes them

incompatible with almost any natural property (maybe except parallelism, since they

provide limited support), therefore they are unsuitable for a SC implementation. As

shown later in sections 2.4.1 and 2.4.2, CMPs were used for the first two SC

implementations, revealing the inefficiency of such an approach, as these

implementations could only simulate a systemic computer. Although the high-level SC

implementation provided programming flexibility, performance limitations make it

inadequate for modelling complex systems.

Supercomputers and Computer Clusters

While CMPs are targeted to the consumers, supercomputers [63] are used for

computationally super-demanding tasks, such as modelling climate change, nuclear

reactions and molecular interactions [63]. They were introduced by Seymour Cray in the

1960s. Modern supercomputer designs often consist of a cluster of Multiple Instruction

stream - Multiple Data stream (MIMD) multiprocessors, which have Single Instruction -

Multiple Data (SIMD) processors as building elements. The SIMD processors execute

the same instruction on different sets of data while the MIMD processors function

asynchronously, enabling the underlying SIMD units to perform different operations on

Chapter 2. Background 35

different sets of data. According to Flynn’s ―very high speed computing systems‖

(supercomputers) taxonomy [64], which dates back to 1966 there are also MISD and

SISD supercomputers. According to a more modern dichotomy there are SIMD,

multiprocessor (all the processors under the same instance of operating system - OS) and

cluster computers (each processor under a different instance of the OS).

Supercomputers may appear as a possible SC implementation, although gaining access to

a modern supercomputer can be limited and that would mean that only privileged users

could use the SC paradigm. The code is usually specially written for such processors, in

order to be highly optimised, resulting in limited portability.

Computer clusters are a supercomputer type. While relying on sequential processors for

instruction execution, they follow a network structure resulting in a parallel architecture

that shows signs of fault-tolerance and distributed operation, as a failure in one of the

nodes will not terminate the operation of the cluster. The Commodity-of-the-shelf

(COTS) clusters [65] can be built from consumer parts but rely heavily on software to

deliver performance. A collection of representative projects on COTS can be found at

[66].

Other classifications of clusters are based upon their functionality. High-availability

clusters [67] use duplicates to survive individual computer failures. Computers provide

feedback to each other to detect failure. However, the detection scheme is susceptible to

failures as well. Beowulf clusters [35] use a one-server-multiple-clients organization to

achieve high performance but suffer from the centralized control that resembles the

multiprocessor architecture. Load-balancing clusters [68] adopt the server-client

approach as well but, additionally, they distribute the workload among them through

software. Server farms are load-balancing clusters where all the nodes are servers. Grid

computing is also a cluster based approach, although the nodes seem autonomous. The

user gains access to the processing power supply just by joining the network. Cloud

computing is very similar to grid computing. The main difference is that cloud

computing provides on-demand resource (and services) provisioning.

Chapter 2. Background 36

Figure 2.1. Example organisation of a computer cluster

Supercomputers provide vast levels of parallelism [63]. They provide great performance

for specific applications tailored to their specialized hardware architecture. Computer

clusters, which are a type of supercomputer, appear to be strong candidates for a SC

hardware implementation as they show a level of asynchronous (in the cluster level) and

distributed computation, by forming a network of cooperating conventional synchronous

computers. Load-balancing clusters, in particular, show a low level of self-organization

(by using specialized software for task distribution), while high-availability clusters

provide fault-tolerance by having duplicate nodes for the same task. Computer clusters

are usually easily scalable, since nodes can join the network dynamically.

It appears that the vast number of computational resources, provided by a

supercomputer, would be sufficient for a SC implementation. However, their availability

can be very limited and their building blocks are based on conventional architectures

using centralized control making them incompatible with the SC paradigm, since it

provides limited support for natural properties. This limited support mainly derives (in

computer clusters) from their organization in a network pattern. Thus, this feature may

be employed by the SC implementation.

Pure Peer-to-Peer

Peer-to-Peer (P2P) networks [69] originally referred to networks that consisted of

identical nodes, lacking administrative elements. Pure P2P networks refer to networks of

Internet

Login

Node

Users,

submitting jobs

Compute

Nodes

Switch

Chapter 2. Background 37

peers that exchange resources and execute operations in a decentralized manner. All

nodes can act both as a server and a client. Increasing the number of peers in a pure P2P

network increases its efficiency.

Pure P2P networks show the higher level of support for natural properties among the

evaluated conventional approaches. The peers can be regarded as autonomous nodes in

the network, relying in local knowledge and being organized in a decentralized manner.

A P2P network can provide asynchronous (at the network level), parallel and distributed

computation while it can show a high-level of robustness. A P2P network, as the

previous conventional approaches, is constituted by conventional synchronous hardware.

As such, it can be programmed, using traditional programming languages. The nodes of

a P2P network can correspond to SC systems, while they can interact through

exchanging information and performing computation. The notion of scopes could be

embedded in the communication (e.g. by the number of maximum hops). Thus, a P2P SC

implementation would be viable. Care would be required designing the networking

architecture following this approach as the numerous peers' communications in such a

platform would probably pose a performance bottleneck.

Graphics Processing Units (GPUs)

Using GPUs for general-purpose computation has lately become a trend since they offer

affordably significant gains in terms of speed for computationally intensive tasks [70].

Responsible for the speedup is their architecture that exploits applications parallelism.

Originally GPUs targeted only image rendering operations, yet the revolutionary change

was made when manufacturers made GPUs programmable and thus GPUs entered the

computing mainstream [71]. Evident for their success is the fact that GPU design was

adapted in order to improve their programmability and enhance their general-purpose

computation capabilities [34]. General-purpose GPU (GPGPU) languages [70] were

developed, reflecting the need of support for user-defined applications.

GPUs offer a great level of parallelism [70] at a (relatively) low cost. The vast parallel

power given by the multiple stream processors of a GPU is a property highly sought by a

SC implementation. In contrast with the previous approaches, they do not use the

conventional von Neumann architecture. However, the use of a CPU is obligatory to

provide centralized control. GPUs do not provide inherent support for other natural

properties (except for a limited form of local knowledge, at the level of its internal

parallel processing units). The development of GPGPUs provided flexibility to GPU

users. Further advancements in GPU architectures and performance are certain, since the

Chapter 2. Background 38

main use of GPUs lies in the gaming industry which is ever-more demanding. The great

success of the general-purpose use of GPUs indicates that more advanced and optimized

programming languages will be created, while more tools will become available in the

future to ease application development. The first GPU SC implementation [34] is

described in section 2.4.3. Its performance proves that GPUs can support the SC

architecture efficiently. Scalability issues can be resolved by using the GPGPU

functionality on a computer cluster. Thus, a future SC hardware implementation could

exploit the great performance potential of a GPU cluster.

2.2.2 Unconventional Hardware Approaches

Nature has lately been the source for inspiration for designers since natural systems,

while being extremely complex, simply work. Usually they show high levels of stability

while remarkable properties like self-organisation, self-replication and fault-tolerance

are inherent to them. The next subsections describe emergent and promising

technologies, which do not follow conventional approaches and broadly-used paradigms,

and usually draw inspiration from nature.

Ubiquitous Computing

Ubiquitous computing [72] aims at a different human-computer interaction paradigm

than the one of the desktop user. Numerous interconnected devices (pocket-size tabs and

page-size pads) while providing various services appear effectively invisible to the user.

Waiser uses the term ―embodied virtuality‖ [72] to describe the idea of computing

ubiquity. Pervasive computing [73] is another term similar to ubiquitous computing.

Traditional input devices, wireless mobile devices and smart devices form the pervasive

computing model that aims to build sensitive and adaptive digital environments. An

example would be a wireless health monitor, like the one presented in [74], which could

communicate the health status of a patient on-line with a hospital server that can detect

abnormalities.

Ambient Intelligence (AmI) [75] extends at ubiquitous and pervasive computing and

takes under consideration intelligent systems, context awareness and objects interactions

to build human-responsive environments that facilitate everyday life. An indicative

example would be the smart house. It is notable that AmI initially attracted criticism [76]

since its anticipatory and adaptive nature raised societal and cultural concerns.

Ubiquitous computing can be implemented by emergent technologies as Speckled

Computing introduced in 2004 by Arvind and Wong [77]. Specks are semiconductor

Chapter 2. Background 39

grains which are connected wirelessly to form a vast parallel sensing and processing

network (Specknet). Numerous specks can be sprayed on any surface to convert them to

computational resources. The prototype in [77] consisted of programmable specks over

Zigbee radio.

Although more objects get interconnected nowadays, moving the Internet of Things [78]

closer to reality, further progress needs to be done in order for practical implementations

to be incorporated to everyday life. As Shadbolt concludes in [75], numerous

independent electronic devices form an ubiquitous clutter in the majority of living

rooms, which is far from the disappearance of computers in the background.

The Ubiquitous Computing paradigm is compatible with natural properties as

asynchrony, parallelism and should be able to provide distributed, continuous and

embodied computation. Ambient Intelligence and speckled computing should provide

systems that show self-organising, autonomous and homoeostatic behaviour. Ubiquitous

computing is an emergent field of research with great potential [72]. However, a

practical SC implementation could not be based on it since the technology is not yet

mature and basic practical requirements like programmability and design-friendliness are

not satisfied.

Wireless Sensor Networks

Wireless sensor networks (WSNs) [79] are an outcome of advances in wireless

networking, micro-fabrication and integration. They comprise numerous sensor nodes

which are heavily resource-constrained since they are usually required to function for

long terms on a finite on-board battery. Typically, sensor nodes, commonly referred as

motes, operate autonomously and are equipped with a low-end microprocessor and

limited amount of memory for local processing. Communication bandwidth is also

usually limited. Network abstractions have to be designed in order to reduce power

consumption and improve performance. Limited support is provided for software

development.

Initially, WSN research was military based. This led WSNs to be defined as large-scale,

ad-hoc, multihop networks of tiny, fixed-location (after initial placement), homogeneous

motes [80]. This definition changed with civilian WSNs applications (environmental and

species monitoring, agriculture, production, delivery and healthcare [80] – a more

specific collection of applications like vital sign monitoring, power monitoring and

rescue of avalanche victims among others can also be found in [80]). Mobile and

heterogeneous motes can form WSNs as well. The classification of a given WSN can

Chapter 2. Background 40

vastly vary depending on its specific application. This is shown by the number of

different network topologies (star, ring, bus, tree, fully connected, mesh),

communications protocols, routing mechanisms, power management schemes, network

structures and multiple developed standards [81].

Sensors for various measurands [81] (pressure, temperature, humidity and position to

name a few) have been developed. The sensing elements can either be fixed on a mote or

able to be replaced by others (of the same or different type). The anatomy of a

commercial WSN node is illustrated in Figure 2.2 (taken from [82]). Compatibility

among sensors (of various types and different manufacturers) and the rest infrastructure

on a mote, along with communication interfaces to network those devices, is ensured by

the IEEE 1451 Family of Standards [83].

Figure 2.2. Anatomy of a WSN node. From [82]

WSNs, comprise spatially distributed can provide an autonomous, parallel, distributed

and asynchronous (to some extent) form of computation. They can be responsive to the

environment and extract information from it through their sensing elements. The network

itself defines a system of nodes, each with some limited processing power performance

(since they are heavily resource-constrained), yet combined they can form a powerful,

asynchronous (at the system level), distributed and highly parallel computing machine

Chapter 2. Background 41

[84]. The system can be easily programmed, since a microprocessor is always part of the

node configuration. Groups of autonomous nodes can show a level of self-organization.

Using the wireless link, the network can be easily expanded, while using the inputs of

the embedded sensors, it can show homoeostatic behaviour. These statements reveal the

compatibility of WSNs with the requirements of a systemic computer architecture.

The idea of WSNs as a possible hardware implementation platform for SC was

introduced in [84]. The author suggests that motes can be treated as systems, while their

resources can be treated as subsystems. Sensor inputs can provide environmental

feedback, which can be used either to evolve the systemic structure or as a fitness

function in a genetic algorithm [12], which is used to adapt the architecture in case of

damage or unforeseeable changes and to sustain functionality and optimize performance.

Systems, in the form of binary data, would be exchanged between motes, while the

network would dynamically be expanded or shrunk as new motes join it or fail. As motes

usually run some lightweight operating system, extensions to the existing

communication protocols, probably layered over the underlying communication stack,

would need to be designed in order to accommodate the systemic functionality. Some of

the tasks to be considered are the maintenance of the scope tables, systems interaction

within a mote, the mutual system exchange protocol between motes and supported

transformation function set [84].

It is concluded from the above that a WSN SC implementation would be viable. It was

shown that fault-tolerance could be accomplished with the aid of sensor input feedback.

Self-organization can also be accomplished, subject to cleverly written middleware

communication layers. Decentralized and leaderless computation is highly compatible

with the SC paradigm. The wireless link provides some scalability. Thus, WSNs are

strong candidates as a SC implementation platform in the future.

Field-Programmable Gate Arrays (FPGAs)

Although combining the high performance of a hardware implementation with the

flexibility of a circuit that can be programmable may have been conceived as early as

1967 [85], the idea was commercialized and patented [86] around two decades later by

Freeman, co-founder of Xilinx. FPGAs are reconfigurable integrated circuits. Generally,

hardware description languages, such as VHDL and Verilog, are used to provide the

source code which is then translated to a binary bitstream through specialized software,

which in turn is downloaded to the FPGA and programs it (enabling, disabling and

configuring accordingly its reprogrammable components) to behave as the target circuit.

Chapter 2. Background 42

As opposed to Application-Specific Integrated Circuits (ASICs), which are fixed-

function circuits tailored for definite operations, they provide more flexibility, shorter

time to market and lower costs (when accounting for fabrication costs) and sometimes

power consumption. Lately, the semiconductor evolution and the advantages mentioned

above lead system designers to prefer FPGAs on an increasing amount of commercial

products.

The inner structure of modern FPGAs is similar for different vendors. They consist of a

great number of programmable logic cells and a reconfigurable interconnect network.

Commonly, logic cells include a Look-Up-Table (LUT) that can implement any logic

function (subject to the number of inputs of the LUT – typically 4 or 6), some memory

elements (a number of flip-flops) and some simple logic (a full adder and carry

propagation logic). The design is usually hierarchical, with a number of logic cells

forming logic blocks
8
. A set of modern FPGAs, called Platform FPGAs, also provide

other functional blocks, like multipliers, blocks for digital signal processing (DSPs) and

big chunks of RAM memory to optimize designs. Some high-end models even include

embedded processors, high-speed communication interfaces and/or simple analog

features. Special Input/Output cells (I/O pads) are used at the chip boundaries.

The versatile nature of FPGA-based systems led to their use in a plethora of fields. A

collection of applications for FPGAs is given in [87] and includes among others: multi-

mode implementations, various algorithms implementations (especially ones that can

exploit the provided fine-grain parallelism), multi-FPGA systems, mathematics

applications (as modular multiplication), physics applications (as real-time recognition

in high-energy physics), genetic optimization algorithms and genetic database searches,

stereo matching for stereo vision and Laplace equation solvers. A digital neuron model

for evolving spiking neural networks is presented in [88]. One of the applications with

great potential is logic emulation [87]. It provides considerable acceleration compared to

software simulation, lowering the time and cost of custom chip (ASIC) prototyping. A

complete and functional implementation
9
 of a circuit can be available in seconds, once

the design has been adapted to be mapped on the FPGA.

FPGAs can also be added to standard computer systems as attached processing units,

coprocessors or even internal processing units, in the form of add-on cards, on-board or

8
 The naming varies among different vendors: logic cells are called Configurable Logic Blocks

(CLBs for Xilinx) or Logic Array Blocks (LABs for Altera)
9
 Performance validation and timing constraints cannot be assessed using logic emulation

Chapter 2. Background 43

on-chip respectively. Add-on cards are used in the NetFPGA project [89] that enables

researchers to build high-performance networking systems in hardware. Extensive work

has also been done in the field of neural networks. As each of their basic elements needs

to be configured for a given problem [87], FPGAs provide an optimal implementation

platform. Modern FPGA families allow part of the circuit to be reconfigured during

normal operation (Dynamically Reconfigurable or Run-Time Reconfiguration) which

gave birth to Evolvable Hardware, described in the next subsection.

FPGAs can exploit fine-grain and coarse-grain parallelism because of their adaptive

nature [90]. The reconfigurability of the hardware liberates the designer to implement

new architectures, optimized for specific applications. This flexibility has shown that

properties as fault-tolerance [91], self-replication and self-repair [92] can be

accomplished on FPGAs. Asynchronous circuits have also been successfully simulated

on FPGAs [91]. Therefore, considering that FPGAs is a mature technology and that they

provide an intermediate trade-off between flexibility and performance, pose a strong

candidacy for a SC hardware implementation. Again, a cluster of FPGAs, probably

utilizing a crossbar [90] or a systolic chain [93] connecting the FPGAs, would be a

viable solution to accommodate any size of SC programs, thus design expandability

could be accomplished. The implementation could either comprise a systemic processor,

that would be able to run systemic programs, or following a totally different design

approach, a different circuit could be downloaded on the FPGA, according to the

systemic program, which would be highly optimized for the specific program. The latter

approach would require a SC-to-HDL translator program (a high-level SC synthesis tool)

to be written.

FPGAs are unique in the sense that they combine the flexibility of software on a

hardware medium, since they can be reconfigured and implement a different custom

circuit every time. A number of natural properties, mentioned above, can be

implemented using this feature. They can provide a medium for parallel and distributed

computation, while they can also implement sequential logic. The ability to self-

reconfigure is very important since it can be used to provide circuits that are adaptive

and robust. Various tools and standard design methodologies exist for FPGA-based

design. Thus, it is apparent that FPGAs are highly suitable for a SC hardware

implementation.

Chapter 2. Background 44

Evolvable/Evolved Hardware

Evolvable hardware is defined in [94] as ―a scientific field that integrates evolutionary

computation [12] and reconfigurable hardware devices‖ while similarly in the context of

a recent comprehensive review of the field [95], it is defined as ―the design or

application of evolutionary and bio-inspired algorithms for the specific purpose of

creating physical devices and novel or optimised physical designs‖ [95]. Evolvable

hardware devices reconfigure themselves dynamically in an autonomous manner by

interacting with their environment, without human intervention, to sustain functionality

and increase performance. Two lines of research are identified in [94] on the subject, the

first involves self-reproduction and self-repair of existing circuits while the second

utilizes genetic algorithms [12] for autonomous reconfiguration leading to altered

circuits. Some indicative applications are human-competitive analog design, Micro-

Electro-Mechanical System (MEMS) fine-tuning and evolvable antennas for space

missions [94]. Hardware evolution has been applied to digital, analog and mechanical

systems resulting sometimes in human-competitive designs [94].

A central notion on evolutionary computation is a genetic algorithm (GA) [12]. A GA is

a search technique which tries to find a solution to a problem (exploring a search space)

in an incremental way. There is no need for a priori knowledge about the problem. The

process involves the preparation of a pool of candidate solutions (chromosomes), the

definition of an evaluation (or fitness) function and the search process. A solution is

selected to continue to the next evolution stage depending on its comparison with the

output of the evaluation function. During this process, an evolution cycle, giving a new

generation, is executed iteratively until some termination criteria are met
10

. Solutions can

be evaluated by simulation (extrinsic evolution) or by physical realization (intrinsic

evolution). Each cycle involves generating a new chromosome, evaluating it according

to the fitness function and selecting the chromosomes to form the next generation

(usually the ones with higher fitness function, for example, roulette wheel selection).

Typical methods of generating new chromosomes, further explained later in section

5.1.2, are selective reproduction (genetic material from each parent create an offspring),

crossover (exchange of genetic material between chromosomes) and mutation (a bit, or

group of successive bits, is randomly chosen and flipped). The evolution process

described above, applied in the field of evolvable hardware, is illustrated in Figure 2.3

[96].

10

 A fitness threshold value is reached or a loop count limit is reached

Chapter 2. Background 45

Figure 2.3. Hardware Evolution using a Genetic Algorithm. Reproduced with permission

from [96].

For evolvable hardware, the bits in the configuration bitstream of an FPGA are regarded

as the chromosomes for GAs. If the fitness function is defined to map the behaviour of

the target circuit, then the GA, by continuously downloading altered configurations to

the FPGA, will ultimately produce a design that will match in some degree the required

functionality. A collection of research work on the field of evolvable hardware using

GAs is given in [94] and includes among others: a myo-electric hand control chip,

simple arithmetic circuits capable of built-in self-test, a clock-timing adjusting technique

and an evolvable image filter.

Under the evolvable circuits category, apart from the GA-based designs, [94] provides a

collection of bio-inspired projects that target fault-tolerant, self-replicating and self-

repairing evolvable circuits like the Embryonics project [92], a multi-cellular universal

Turing machine [97] and one of its applications, the BioWatch [98], defining a cellular

and molecular architecture of a giant artificial organism. The Embryonics project drew

Chapter 2. Background 46

inspiration from Ontogenesis, which is one of the three axes of bio-inspiration [99],

discussed in the next section in the context of the POEtic/PERPLEXUS projects, which

combined all three axes to provide circuitry designed to develop and adapt its

functionality through evolution, growth and learning [92].

An important difference is noted in [100] between evolved and evolvable circuits. An

evolved circuit is the outcome of continuous refinement, by using evolutionary methods,

but the architecture remains static once a satisfactory solution-design is identified.

Evolvable systems, on the contrary, can dynamically and autonomously be self-

reconfigured possibly throughout their existence [100]. They should be able to adapt

their structure according to environment changes, thus they are more tolerant to faults

and failures and more probable to optimize their performance according to these

changes.

Evolvable hardware shows natural properties such as fault tolerance, self-repair and self-

replication. It provides autonomous circuits that can potentially be parallel and provide

distributed computation. Therefore, evolvable systems would be a potential SC hardware

implementation platform. However, the definition of a representative fitness function

would not be trivial for such a complex design, using the GA approach.

POEtic/PERPLEXUS Projects

The three major axes of bio-inspiration, in analogy to nature, are Phylogenesis,

Ontogenesis and Epigenesis according to the POE model [99] of bio-inspired computing.

The phylogenetic axis involves the evolution of the species through time based on

alterations of the genetic code. The ontogenetic axis refers to the development (or

growth) of a single multi-cellular organism. This is accomplished through cellular

division (a mother cell, or zygote, divides, the resulting cells divide as well and the

process continues – each new cell contains a copy of the whole genetic material, or the

genome) and cellular differentiation (new cells acquire different functionality depending

on surroundings). Cells are continuously destroyed and generated in an organism. Self -

healing is based on this property [101]. The epigenetic axis involves the learning

processes during the lifetime of an individual organism and allows it to increase in

complexity as it grows.

The ―Reconfigurable POEtic tissue‖ project [101] (or POEtic) targeted all three POE

axes. The goal of the project was the development of a multi-cellular, self-contained,

flexible and physical computational substrate, inspired by the evolutionary,

developmental and learning phases in biological systems, designed to interact with its

Chapter 2. Background 47

dynamic environment, develop, adapt its functionality and self-repair [94], [101]. The

POEtic tissue was designed as a structure consisted of three layers [101] and it is

illustrated in Figure 2.4 (the layers are represented here next to each other):

 The Genotype Layer: Corresponds to the phylogenetic model processes. Each

cell contains the genome of the tissue. It consists of a set of operators, which

defines all the functions a cell can execute, and a differentiation table, which is

used to determine which operators each cell will use.

 The Mapping Layer: Corresponds to the ontogenetic model, implementing

cellular differentiation and growth. Self-repair functionality is also involved in

the layer. The selection of the operators to be used occurs in this layer as well.

 The Phenotype Layer: Corresponds to the epigenetic model, modifying the

operation of the organism during its operation. It consists of an execution unit, a

set of application-specific resources, and a communication unit to handle the

connectivity of the cells.

Figure 2.4. The three organizational layers of the POEtic tissue. Based on [101]

Upon a given problem, the user can chose the required layers to be implemented. Cells

are implemented on a molecular substrate (programmable logic) to provide adaptability.

The chosen architecture is compatible with the three axes of biological organization

[101] and includes an input/output interface that permits each cell to modify its

environment.

A practical POEtic system architecture is described by [102]. The tissue is divided in

three main components illustrated in Figure 2.5 [103] :

 The environment subsystem, which manages the interactions with the

environment (using sensors and actuators) and implements processes related to

the phylogenetic axis. A microprocessor, which provides centralized control at

OPERATORS

DIFFERENTIATION TABLE

INTERPRETER

DIFFERENTIATION

LOGIC
COMMUNICATION UNIT

EXECUTION

 UNIT

GENOTYPE LAYER MAPPING LAYER PHENOTYPE LAYER

PHYLOGENESIS ONTOGENESIS EPIGENESIS

Chapter 2. Background 48

the organism level and executes evolutionary algorithms, is part of this

subsystem.

 The organic subsystem which manages the behavioural operation and learning

methods of the tissue by determining how ontogenetic and epigenetic processes

are physically realized. It consists of two layers: a 2-dimensional array of basic

programmable elements, the molecules, which can be configured to 8 different

modes of operation and enable various functionalities, and a dynamic routing

algorithm implementation for the creation of connection paths between

molecules.

 The system interface, which provides the communication channel between the

two subsystems and mechanisms (interface bus, one active ―master‖ environment

subsystem for multichip configurations, automatic coordinate propagation) that

permit the tissue to be scalable without constraining the number of POEtic chips

that can be employed. From a user perspective, a multi-chip POEtic tissue has

got one environment and one organic subsystem.

Figure 2.5. Overview of the POEtic tissue architecture. Reproduced with permission from

[103].

Moreno et al. [102] demonstrated that real-time emulation of large-scale spiking neural

network models can be accomplished using the aforementioned design. Other

applications of the POEtic tissue include self-repairing hardware [104] (utilizing the

dynamic routing mechanisms of the environment subsystem), circuits that show fault -

tolerance [105] (in the form of error detection and recovery through dynamic routing,

reconfiguration and on-chip reprogramming), [106] (using hardware Gene Regulatory

Chapter 2. Background 49

Networks) and an interactive artistic installation, called the POEtic-Cubes [107]

(autonomous robots controlled by POEtic chips).

The successor to POEtic was the PERPLEXUS project [108]. The goal of PERPLEXUS

was ―to develop a scalable hardware platform made of custom bio-inspired

reconfigurable devices that will enable the simulation of large-scale complex systems

and the study of emergent complex behaviours in a virtually unbounded wireless

network of computing modules‖ [109]. At the heart of these ubiquitous computing

modules, ubidules, is a custom-designed reconfigurable chip, the ubichip [108], capable

of implementing bio-inspired mechanisms such as growth, learning and evolution. The

ubidule can be customized to use a set of peripherals (such as USB, SD card, Wi-Fi), to

satisfy the requirements of a given application, as modularity was a key design

consideration. The overall architecture is illustrated in Figure 2.6. The project targeted,

but was not bounded, to three applications: neurobiological modelling, culture

dissemination modelling and cooperative collective robots.

The limitations of the POEtic architecture were identified [103] and improved [108] in

the PERPLEXUS framework:

 The POEtic dynamic routing algorithm required long-distance combinatorial

links. The new algorithm better exploited existing paths, used an 8-neighborhood

approach to reduce congestion risk and allowed path destruction, allowing

unused connections removal.

 Further scalability: the wireless link combined with the Address Event

Representation (AER) scheme [111], which involves encoding/decoding a

sequence of events to/from a sequence of addresses to overcome communication

issues, caused by massively interconnected components, provides virtually

unbounded scalability.

 The partial self-reconfiguration in the POEtic chips allowed partial replication of

the circuit while they needed to be pre-programmed (preconfigured configuration

paths and reconfiguration units loaded by the microprocessor). PERPLEXUS

allows real self-replication employing the THESEUS mechanism [112], through

self-inspection (recovering the configuration bitstream, the genome, from the

replicator) and built-in reconfiguration-aiding units.

 Neural networks friendliness: The structure of the reconfigurable cells, called

Macrocells, in the ubichip, was defined around four 4-LUTs which could be

Chapter 2. Background 50

configured as any four 4-input function or as a 4-bit ALU. The ALU, which was

provided with a neural-oriented instruction set, allowed the implementation of

basic neural processing elements and could be scaled to form a neural SIMD

multiprocessor.

Figure 2.6. Organisation of the Ubichip architecture. Each ubichip contains an array of

reconfigurable cells called Macrocells. Each Macrocell consists of a pair of self-replication

(SR) and dynamic routing (DR) units associated with four ubicells. The ubicells are

composed of three switchboxes (for input, output and flag signals) establishing configurable

communication paths with their neighbours and a dedicated LUT/Memory section for each

4-bit configurable ALU. Reproduced with permission based on [108][110].

The POEtic and PERPLEXUS projects were collaborative attempts on implementing

hardware that can mimic natural properties on all three bio-inspirations axes. They

provide the most complete solutions in terms of circuits that embody a lot of the natural

properties of Table 1.1. They can provide vastly parallel autonomous systems, which can

be self-organised and tolerant to faults. Their architecture is distributed and partially

decentralized, as the cells show self-configuration abilities, yet a microprocessor is used

to provide control at the system level. They presented a refined, scalable and bio-friendly

solution. The architecture defines an array of reconfigurable blocks which may be used

individually as fine-grain logic functions or collectively as a parallel SIMD machine.

Chapter 2. Background 51

Thus, the Ubichip would be a suitable platform for a SC hardware implementation.

However, the PERPLEXUS project was not continued after the introduction of the

architecture, so access to the final ASIC chip, including 100 Macrocells [110], would be

limited. An alternative solution would be to implement the design on an FPGA in order

to further take advantage of the additional design flexibility. Taking into consideration

that an array of 4 Macrocells required the equivalent of 25K logic cells [110][157] only

around 30 Macrocells would fit in a mid-range modern FPGA device
11

. Assuming that

each Macrocell would represent ideally 4 systems (mapping one system per Ubicell), we

would get less than 100 systems if we accounted for the additional requirements of the

SC architecture (scopes and matching functionality). This would imply that we would

need a network of FPGA devices to prototype any practical application following this

approach, increasing the cost of our research project. In addition, the ideal SC hardware

architecture would have to compete in terms of performance with alternatives

approaches, e.g. a modern GPU-based system or a high-end conventional CPU. Time-

multiplexing has been used in [102] to enhance the performance of the architecture while

emulating in real-time a 10000-neuron spiking neural network but this resembles the way

conventional CPUs implement parallelism. Nevertheless, the compatibility of the

Ubichip with the SC paradigm is evident.

Organic/Autonomic Computing Paradigm

Organic Computing (OC) is a research field which explores the feasibility of controlled

emergence [113]. The objective of OC is the technical usage of principles observed in

natural systems. Organic systems are independent, flexible, adaptive and autonomous

while they show natural properties like self-organization, self-configuration, self-

healing, self-protection, context-awareness and self-explanation (in order to inspect the

results of self-organization). Organic systems follow the observer/controller paradigm,

which observes the functional system and the environment and controls the parameters

of the functional system according to the observations, while a guard system prevents

illegal actions.

A collection of promising ongoing research projects on OC can be found at [114]. An

indicative project is ―Digital on-demand Computing Organism (DodOrg): Stability and

Robustness‖ which is overviewed in the next section.

11

 Assuming 75% utilization in the mid-range Xilinx Virtex-6 LX240T FPGA device with 240K

equivalent logic cells [161]

Chapter 2. Background 52

It is noted that Autonomic Computing (AC) [115], which was introduced by IBM

initially targeting IT systems, shares the same requirements and objectives with OC. The

two terms are used both in conjunction (AC/OC) and interchangeably.

AC shows a high level of compatibility with SC, in terms of the natural properties the

two paradigms target. AC only provides design aims by describing a vision. SC also has

a corresponding architecture. AC research projects target software and hardware

implementations. A SC hardware implementation could possibly draw inspiration from

designs provided by AC/OC projects if they shared the same implementation platform.

Computing with Unconventional Materials

Almost any electronic circuit nowadays is silicon-based. Researchers lately identified the

need to find its successor. As every broadly-used technology in the past (relays, valves,

transistors [11]), it will reach its limitations and will eventually need to be replaced.

Their research focuses on computation implementations on new physical substrates,

exploiting computational properties of various physical, chemical and biological media.

It comes under the broader field of non-classical, unconventional computation [3].

Computing based on unconventional material and methods shows great potential for

future developments. The majority of the approaches, described below, show promising

results and usually provide great performance gains. As most of them are either nature -

inspired or nature-based, they show inherent natural properties, so they can provide

massively parallel, distributed, autonomous and asynchronous computation. However,

they have a limited, if any, set of specialized applications and show several limitations

(for instance in flexibility, programmability and availability) when a practical hardware

implementation is concerned.

Thus, a SC hardware implementation based on an unconventional medium would not be

a viable approach (in the context of this thesis). It has to be noted that, since this section

sums up the current research trends on alternative media, it is possible that at least one of

those will become conventional in the future.

DNA or Molecular Computing

DNA computing [20] involves data encoded as biomodules, such as DNA strands, and

uses molecular biology tools to imitate operations on those data. The structure of the

genetic material provides vast data-parallelism, thus problems that can be adapted to this

method can be efficiently solved. As mentioned in section 2.1, Adelman was the first to

solve an NP-complete [116] problem in the lab [20], by using DNA molecules and

Chapter 2. Background 53

biomolecular techniques to manipulate DNA. Based on this experiment, it was concluded

that any problem in NP (set of problems that can be verified in polynomial time) could

be efficiently solved with DNA computing [11]. A collection of DNA computing

applications (like graph coloring, protein conformation, matrix multiplication and

cryptography) is given in [11].

Quantum Computing

Atoms and molecules do not follow classical mechanics laws. Quantum physics explains

these non-classical behaviours of atomic-scale objects. Information representation in

quantum computers [11], [21], [23] is in the form of quantum bits, or qubits, in analogy

with bits in conventional computers. A qubit can hold any superposition of the two

classical states, 0 and 1. Thus, a set of n ordered qubits (a length-n quantum register) can

hold information equivalent with any superposition of 2
n
 quantum states. Measurements

and manipulations alter the contents of a qubit and can be modelled as matrix

multiplications. Quantum gates are used for qubits manipulation, which translates to

quantum state transformations. Each type of gate implements a basic quantum algorithm.

Quantum computers are able to provide tremendous speed-up in solving problems

compared to their classical counterparts. Typical quantum applications are cryptography,

database search and combinatorial optimization problems [23]. Various methods have

been used for practical quantum computer implementations [23]: superconductors,

liquid-state nuclear magnetic resonance techniques and ion-traps to name a few, with the

latest practical designs reaching the capacity of 512-qubits [117].

Chemical Computing

Dittrich [118] defines chemical computing as computing with real molecules (real

chemical computing), as well as programming electronic devices using principles taken

from chemistry (chemical computing metaphor). Following this definition, molecular

computing is entwined with chemical computing. Along with molecule-based

approaches, this field includes computation achieved with chemical mediums like light -

sensitive chemical waves [119] (applied to image processing with the possibility of

realizing associative memories), a fluorescein dye [120] (capable of performing a full

scale of elementary addition and subtraction operations) and protein molecules which are

able to perform a variety of logical or computational operations [121]. The chemical

computing metaphor has inspired new architectures [118], such as computers based on

reaction-diffusion media [122]. Reaction-diffusion computers are regarded as massively

parallel devices, where tiny portions of the chemical media act as elementary processors

and information is stored and manipulated by means of local disturbances of

Chapter 2. Background 54

concentrations. A set of logic gates and simple combinatorial logic based on chemical

compounds is presented in [123].

Bacterial Computing

A data storage and retrieval method, based on sequence alignment of the DNA of living

organisms, was introduced in [124]. Building upon that, the DNA computing paradigm

was extended in bacteria, to give birth to bacterial computing [125]. Bacteria can be

genetically programmed to execute various operations, forming bacterial computers,

which can be autonomous, responsive and self-reproducing [125]. The highly parallel

nature of this approach (each bacterium is a basic processing unit) allowed the solution

[125] of a Hamiltonian Path Problem [36], similar to the one solved by Adleman using

DNA computing. In vivo computing is a similar research field [23] with studies on the

computational capabilities of gene assembly in unicellular organisms.

Other Unconventional Media

A set of other computation media are reported in the literature. Collision-based

computing involves mobile self-localizations, travelling in space and executing

computation when colliding to each other [126]. An example implementation, introduced

in [126], uses fusion gates as collision points which were inspired by the above-

mentioned reaction-diffusion paradigm. In [127], a non-conventional paradigm is

introduced, where the logic values are carried by independent stochastic noise processes

(electronic noises) implying greatly reduced energy consumption. In [128], the authors

use computer controlled evolution to manipulate liquid crystals to evolve logic gates.

Other unconventional materials for implementations with computational purposes

proposed in the literature include molten metals and soft solids [129], carbon nano-tubes

and carbon nano-wires [130].

SC based on Unconventional Media

The implementation approaches which are based on unconventional material are more

compatible to natural properties than any other. The reason is really simple. The

implementation media that they use are natural. The disadvantage with these approaches

is that their underlying technologies are not mature. There are no design methodologies,

supporting tools and generic input/output interfaces yet. They would require specialized

knowledge from fields usually away from computer science and would entail access to a

modern scientific lab. This in turn would imply a more limited user space and an

elevated cost of development. Thus, while all of unconventional material approaches

Chapter 2. Background 55

seem greatly promising, they could not be considered for a practical SC implementation

at the moment.

2.2.3 Other silicon-based designs

Silicon is arguably the most widely-used substrate for designs with computational

purposes. While current research attempts to identify other promising materials with

superior physical and chemical characteristics (an example that currently attracts

increased interest would be the carbon allotrope graphene [131]), suitable for integrated

circuits implementation, (processed) silicon is still the preferred material due to its

tolerance to high temperatures and electrical powers.

Using silicon as their base substrate, a vast number of relevant research papers attempt to

break conventional design patterns and, using various approaches, try to incorporate

natural properties. In this section, an indicative set of them was chosen to be overviewed

in order to designate relevant design techniques, from which inspiration can be drawn

provided that a silicon-based approach will be selected for the SC hardware

implementation.

SpiNNaker

The SpiNNaker Massively Parallel Computing System [132], [133] was mainly designed

for neural networks modelling. It will consist of a vast number of processing cores

(scheduled to exceed 1 million, distributed across 57600 chips with 18 cores each),

arranged in independently functional and identical power-aware ARM-based chip

multiprocessors to achieve parallel, robust and distributed computing [134]. Each core is

self-sufficient in terms of storage (it has a local ―Tightly-Coupled Memory‖ (TCM)

[132]), while there is a shared off-chip memory, among the cores – connected to them

through a DMA controller with the help of an asynchronous Network-on-Chip (NoC), in

the CMP level. The off-chip memory is virtually local to each processor since it is

segmented into discrete regions and each processor has exclusive access to one region, a

specific address range, only. The organisation of each 18-core (16 application cores, 1

monitor and 1 spare) SpiNNaker CMP chip is shown in Figure 2.7 [133].

Chapter 2. Background 56

Figure 2.7. SpiNNaker CMP chip organisation. Reproduced with permission from [133].

The system was provided with sufficient hardware resources redundancy, thus the

processing and communication infrastructure can show a high-level of fault tolerance. A

configurable asynchronous packet-switching routing network, based on a custom

designed on-chip multicast router, was used to support the high degree of

interconnection at the chip and system levels. Communication between processors was

based on Address-Event Representation [111] (as in the PERPLEXUS project).

Generating an interrupt, which is issued to the processor when it receives a new packet,

allows different clock domains for each processor eliminating the need of

synchronization, thus making the system virtually asynchronous (Globally Asynchronous

Locally Synchronous - GALS). The system can be reconfigured on the communications

side, by changing the routing table of the on-chip router, and on the processing side, by

changing the running code (altering the data part of the TCM). Its configuration is made

through an on-chip Ethernet link by a Host system (a personal computer) while board-to-

Chapter 2. Background 57

board communication is realized with high-speed serial (3Gbps SATA) connections with

their communication interfaces implemented on Spartan-6 FPGAs [135].

The SpiNNaker project envisions a library-based development system which allows the

high-level description of a model and uses an automated design flow to create silicon

implementations, which are predesigned custom chips. This approach is interesting from

a SC point of view. The idea could not be directly mapped on a SC hardware

implementation, but a SC language (similar to those introduced in [24], [136]) could be

used in an automated design flow to create highly-optimized hardware SC

implementations dynamically on reconfigurable media.

The SpiNNaker architecture defines is a high-performance, low-power application-

specific platform optimized for neuroscience applications [133]. Essentially being a

massively parallel computing machine made from conventional CPUs, SpiNNaker

addresses mainly communication and power consumption challenges. As such, the

architecture may be suitable for exploration of unconventional computing paradigms that

require raw parallelism, thus making the platform a good candidate of a hardware SC

implementation. While the underlying architecture of the building nodes of this power -

aware ―computer cluster in a box‖ would not be compatible with much of the required

natural properties of SC, regarding SpiNNaker as a whole might be useful in modelling

processes with asynchronous processing (yet locally synchronous) elements interacting

in a parallel fashion. However, the SpiNNaker platform is still on a development phase,

with prototypes gradually increasing the number of available cores an order at a time
12

 as

part of the ongoing Biologically Inspired Massively Parallel Architecture (BIMPA)

research project
13

. Thus, the completed architecture may be a suitable candidate for a

future SC implementation, especially if its benefits could be combined with the added

flexibility provided by reconfigurable hardware to better map the underlying

architectural features of SC.

12

 The project defines 10N milestone machine designations (where 10N stands for approximately

10
N
 supported cores). 101, 102 and 103 machines have been sampled where 104, 105 and finally

the 106 machine are yet to be implemented.

13
 A scalable custom 64-FPGA machine, Bluehive [248], targeting also Neural Network

Simulation was developed under the BIMPA project, as an FPGA-based alternative architecture

to be used for evaluating the spiNNaker platform

Chapter 2. Background 58

Molen

Molen [137] is a reconfigurable processor, following the tightly coupled co-processor

paradigm. It features a general-purpose fixed processor core (GPP) enhanced by user-

defined commands executed on reconfigurable hardware. Molen addresses issues like

opcode space explosion, modularity and limitations on the number of parameters for

operations mapped on FPGA [137]. It identifies blocks of software code that can be

efficiently mapped on reconfigurable hardware and replaces them with their hardware

equivalent executed on reconfigurable media. This is accomplished by the use of special

microcode (termed ρμ-microcode), which differentiates from traditional microcode,

since instead of being executed on fixed hardware, it is executed on custom hardware

that itself designs to operate on [137]. The reconfigurable co-processor, which is

consisted of the ρμ-microcode unit and the custom computing unit (CCU), is configured

by the general-purpose core. Therefore, it can be tailored to a different application each

time.

Molen exploits GPP-FPGA co-execution. It embeds application-specific functionality

without altering the GPP architecture. The architecture is essentially based on a

conventional CPU with the ability to off-load computation to the reconfigurable fabric of

an FPGA. While the nature of the sequential part of the design would be unsuitable to

perform SC background tasks in a parallel fashion (further explained in section 3.2.3),

the ability to enable user-defined hardware-supported instructions would be quite useful

(and is in fact suggested in section 3.1.3). Another interesting feature in this design is the

micro-programmable nature of the CCU reconfiguration that increases flexibility and

allows automation.

DodOrg

DodOrg (Digital On-demand Computing Organism) [138] is a bio-inspired self-

organizing architecture, which exploits parallel heterogeneous systems. It is an adaptive

system which is bound to natural self-x [138] properties (like self-adapting, self-healing

and self-configuring). DodOrg is organized in three levels: the cell, the organ and the

brain.

At the cell level, organic processing cells (OPCs) with various resources

Chapter 2. Background 59

(microprocessor, DSP core, FPGA, FPFA
14

), announce their suitability (based on

monitoring system metrics like performance, network load and energy consumption) for

processing tasks. At the organ level, virtual organs are created using ―organic‖

middleware, which implements decentralized closed control loops, in order to

accomplish decentralized and fault-tolerant task distribution. Organs are formed by a

number of neighbour cells with cooperating tasks, which exchange accelerator and

suppressor messages to handle task execution (this technique implements a variation of

the observer/controller paradigm). At the brain level, a software architecture uses input

and feedback from the environment to implement the targeted application, which is a

real-time control system for robot-based manufacturing. This hierarchy can be further

extended to groups of organisms (self-organizing robot swarm) [138], forming dynamic

societies.

Figure 2.8. Organic System Architecture. Suggested in [138]

DodOrg is an indicative example of an organic computing hardware implementation. It is

interesting, from a SC viewpoint, since the two paradigms, as stated earlier in the OC

section, share very similar aims and target nearly the same fundamental natural

properties. The similarities extend also in the hierarchical approach DodOrg adopts to

organize its control system, which are compatible with the systems hierarchy in SC.

The project defines the organization of an architecture supporting many bio-inspired

properties. While this layered approach (see Figure 2.8) is compatible with the SC

paradigm, the project focuses more on an organic control robot and specifically on robot -

14

 Field-Programmable-Function-Arrays. Introduced as part of the Chameleon [246] System-on-

Chip, FPFAs are word-level reconfigurable datapaths consisting of multiple processor cores.

Each core includes 5 custom ALUs.

Organic Middleware

Virtual Organ

Application

Processing

Cell
Processing

Cell

Virtual Organ

Application

Processing

Cell
Processing

Cell

Brain Level

Organ Level

Cell Level

Chapter 2. Background 60

based manufacturing. Decentralized hardware components are communicating over the

organic middleware and the individual autonomous robots can form a self-organising

robot swarm. Evidently, this specific level of abstraction is not suitable for a system

modelling low-level natural processes, as required by SC. In terms of organisation,

DodOrg moves towards the software domain as it scales up (middleware at the organ

level, software at the organism level). However, this approach may not be as distant from

the final SC implementation, since some high-level tasks (systems on the highest

hierarchy levels that realize advanced instructions) may need to be in the software

domain, in order to increase flexibility and programmability.

IBM Cell processor

The IBM Cell processor (or Cell Broadband Engine – Cell BE) [139] is a single-chip

multiprocessor based design which aims at high performance by exploiting parallelism at

all levels of the system: data-level (SIMD support), instruction-level, thread-level,

memory-level and compute-transfer-level. Workload is offloaded from the main

processor (PowerPC architecture), which mainly handles control tasks, onto the (eight)

Synergistic Processor Elements (SPEs – dual-issue in-order SIMD cores), thus the

system is heterogeneous. The SPE architecture focuses on data processing (wide

datapaths, more and wider registers, single use privilege level). The SPEs interconnect

network consists of four data ring buses, thus multiple concurrent transfers can be

handled. Computation and data transfer operations are executed concurrently, while

concurrent memory accesses from different cores are allowed to exploit memory-level

parallelism. The Cell BE is widely known for being used in a games console, yet it has

also been used in HDTVs, home servers, game servers and even, as a building element,

in supercomputers [140].

Larabee and the Intel MIC

The Intel Many Integrated Core (MIC) architecture [141] uses multiple in-order

(program execution stalls until the operands of an instruction are available) x86 CPU

cores extending previous work during the Larrabbee [142] project. The choice of in-

order CPUs is justified by the fact that one of the main design considerations was to

achieve a great level of parallelism
15

. It uses a bi-directional ring network to handle

inter-chip communication between the various cores. Scalability is accomplished with

15

 Out-of-order architectures have improved performance since they explore instruction

parallelism but their die utilization factor is higher than their performance factor (1.5x-1.7x on

performance corresponds to 2x-3x on size [142]). Thus, those architectures are better suited for

single-stream performance aware designs.

Chapter 2. Background 61

multiple short-linked rings. Routing is simplified by following a simple convention: a

message is accepted by an agent (logic block connected to the ring network) from one

direction on odd clocks and from the other direction on even clocks.

Larrabbee initially targeted visual computing, essentially being a hi-end GPU with

extended programmability features, since it adopted a familiar programming model (with

some alterations) based on the traditional x86 architecture. While Larrabbee never

became a commercial product, its derivative, the MIC architecture, targets high-

performance computing and promises great gains for highly parallel applications, largely

reusing existing parallel code. The first MIC PCI-Express prototype board featured 32

in-order Aubrey Isle CPUs while its next revision, branded as the Xeon Phi, offers up to

61 cores with 244 threads, 256-bit vector units supporting 512 SIMD-instructions, on a

single chip [143].

SARC

The Scalable computer ARChitecture (SARC) project [144] is a research project with

aim to develop a general-purpose scalable integrated architecture, explore design and

compilers creation automation and develop new programming models compatible with

future architectures. According to [145], the SARC architecture will be a multi-node

heterogeneous architecture, very similar to the Cell BE. The main difference is that

SARC will consist of multiple cores and, instead of identical SPEs, application hardware

accelerators, each of which can be optimized for a different application.

SyNAPSE

SyNAPSE [146] is the acronym for Systems of Neuromorphic Adaptive Plastic Scalable

Electronics. SyNAPSE is a research project that aims to ―investigate innovative

approaches that enable revolutionary advances in neuromorphic electronic devices that

are scalable to biological levels‖ [146]. It identifies the limitations of traditional

approaches to computation and seeks to break the programmable machine paradigms by

using neuromorphic [147] devices, which are based on adaptive analog circuitry

principles. The final deliverable of the project is a multi-chip neural system of ~10
8

neurons and instantiate it into a robotic platform, which then should be an autonomous

entity and show indications of abilities like perception, cognition and response [147].

CPU-GPU Hybrids

The advantages and disadvantages of CPUs and GPUs are outlined in section 2.2.1.

While graphics applications became more intensive, communication between the two

Chapter 2. Background 62

components was provided with more bandwidth and lower latency (AGP to PCI-E

connections). Current design trends for consumer applications involve the integration of

CPUs and GPUs on a single chip. AMD recently presented the AMD Fusion architecture,

calling the CPU-GPU hybrid Accelerated Processing Unit (APU) [148].

This can be an important design, since if APUs (and later Intel-based hybrids), become

the conventional architecture of the near future, they will have native on-chip

parallelism, becoming more compatible with a vast number of applications, including

SC.

2.2.4 Hardware Approaches Summary

The explosive growth of technology in the last century enabled the conception, design

and fabrication of what we consider today conventional computer architectures.

However, from the very early stages of this revolution, pioneers in the field realised that

there is more than one ways to approach the definition and implementation of

computation. This is evident by the late work of one of the architects of the conventional

computer architecture, von Neumann, who after devising the sequential and centralized

design [8] which (with various optimizations and enhancements) became the basis for

virtually every contemporary computing device, started exploring the potential and

relation of biology to computation (and specifically between the computer and the

human brain [149]). Similarly one of the designers of the hugely successful ARM

processor - Steve Furber - now leads SpiNNaker [133].

While the conventional approaches have addressed the constantly increasing

computational needs for commercial, research and even more specialized purposes, with

designs and architectures also evolving and getting optimized and tailored to adapt to

these changing demands, they eventually reached their limitations, resulting in new

approaches and computational concepts being emerged. This section discussed how

conventional approaches attempted to provide more computational power and how

unconventional approaches, using nature as both inspiration and alternative

implementation substrate attempt to address natural features as parallel, decentralized

and distributed computation to name a few.

GPUs, chip-multiprocessors and supercomputers provide parallelism with different

levels of granularity, from the chip level to the cluster level while peer-to-peer networks

come closer to the natural computing paradigm providing a decentralized network of

cooperating nodes. Ubiquitous computing and wireless sensor networks define parallel

Chapter 2. Background 63

and distributed systems of usually self-contained and adaptive interconnected devices,

with the ability to show self-organization and fault tolerance. FPGAs combining the

great flexibility, from the ability of being reprogrammed, with the performance, provided

by the fine-grained parallelism on the hardware level, became a useful tool for numerous

projects overviewed above to implement evolutionary and bio-inspired designs.

Alternative materials (molecules, chemical compounds, bacteria) show great potential in

a computational context but, still being at a proof-of-concept stage, are not ready yet for

a broad range of practical applications making silicon the norm when it comes to digital

circuitry.

The various approaches and paradigms of this chapter are presented in a Systemic

Computation context, taking into consideration that SC was designed to incorporate the

various natural properties in a more complete way. The next sections give more insight

in the SC paradigm and its three implementations prior to this work.

2.3 Systemic Computation

Systemic computation is designed to be a model of natural behaviour and, at the same

time, a model of computation. This approach was based on the generally accepted, but

still intuitive notion that natural systems are able to perform some form of computation

[24]. It is a computational model with characteristics similar to biological systems and

processes.

The link between biology and computer science under the SC prism can be found in the

last convention of SC (computation is transformation - section 1.2), enabling us to

identify a common denominator between them [22]. In SC, everything is regarded as a

system. This implies the notion of the inherent hierarchy in nature and enables SC

analysis in different levels of abstraction. Also, SC is designed to operate using any

system, meaning that, provided that the interaction pattern is the same, systems of

different levels of abstraction can perform the same calculation. Systems can never be

destroyed, reflecting the fundamental principle of conservation of energy (first law of

thermodynamics [150]). As a result, systemic computations imply metabolism and

ecology, since new systems need to be transformed and unwanted computation remnants

need to be removed, meaning that the ―waste‖ of one program will have to be recycled as

―food‖ for another [24].

The interaction of two systems can be described by the systems themselves and a third

―contextual‖ system which denotes how/if the interacting systems are transformed after

Chapter 2. Background 64

their interaction [24]. The scope here, as in nature, is an important factor. The scope of a

system defines the neighbourhood (which can be other than spatial) in which the system

can interact with other systems in a certain way. SC attempts to capture the

characteristics of natural scopes by enabling partial or fuzzy memberships and scope

alteration after system interaction.

In order to represent a system in a modern computer, the choice of a binary format is

compulsory. For the first systemic implementation [24], Bentley used binary strings to

describe systems. Other descriptions [24] (π-calculus, bigraphs, brane calculus, Petri

nets, calculus of looping sequences and other emergent technologies [22], [24] like

speckled computing, DNA computing, membrane computing) were also considered but

they could not provide practical implementation platforms compatible with traditional

digital resources.

Bentley [24] used the notions of schemata and transformation function to describe

interacting systems and the way the systems are transformed through interaction. Thus,

each system comprises of three parts, two schemata and one function (see Figure 2.9),

also called a triplet. Both schemata may change after an interaction, which implies

circular causality (each system may affect the other). The model may support

interactions among more than two systems, since an n-ary interaction may be reduced to

n-1 binary interactions [24].

(d)

0111

(a)
C

0000

0110

SYS
(b)

(c)

S1 S2

S1' S2'

System

schemata1 transformation function schemata 2

00110aab 0110

Figure 2.9. SC notation and systems representation: (a) a data system revealing its binary

contents; its transformation function is zero (b) alternative notation for a data system called

SYS (c) Systems S1 and S2 interact according to the function of the context C; the notation

may optionally include the resulting systems S1' and S2' (d) The 3 elements of a system.

Reproduced with permission from [24]

A system in SC is represented as illustrated in Figure 2.9. The two interacting systems

(schemata 1 and 2) are positioned in the receptors and set the possibility (through

matching against the schemata of other systems) of the system to interact with them in

its context. The transformation function determines the outcome of the interaction. Data

Chapter 2. Background 65

systems do not define an interaction, thus their transformation function is always zero.

The key notion of interaction here differentiates SC from conventional approaches since

it is not a sequential operation, as a set of instructions executed in a conventional

computer, but rather the sum of events that occur in a massively parallel and stochastic

fashion – implied by the constant simultaneous transformations of systems.

A simple demonstration of the computation of the sum over a pool of data systems is

given in [34]. Given a set of inert systems that can interact, but not act as context, with a

transformation function which replaces data in the one of the systems with the sum of

data of the two systems and zeroes the other system, and provided that enough time is

available, only one system will remain containing the sum of all systems while all the

rest will be zero. The operation is illustrated, using SC notations, similar to bigraphs, in

Figure 2.10.

Figure 2.10. Illustration of a sum operation on a pool of data systems using SC notations.

Based on [34]

In more detail, the only contextual system SUM (the only one with a non-zero

transformation function) defines a way that other systems may interact. The definition of

Data1

Data3

3

A

5

A

Data2

1

A

SUM

A0x

Data4

7

B
A0x

Data1

Data3

0

0

5

A

Data2

4

A

SUM

A0x

Data4

7

B
A0x

Data1

Data3

0

0

9

A

Data2

0

0

SUM

A0x

Data4

7

B
A0x

Step 1 Step 2

Step 3

Chapter 2. Background 66

this interaction involves providing a valid transformation function (in this case addition)

and also identifying two systems that will interact according to its schemata. In order to

qualify as possible interacting systems, these systems will need to match the templates

defined in the schemata of the context system. In this case (Figure 2.10), both schemata

of the SUM context define a template requesting a data system (its transformation

function should be zero - implied by the zero in the template A0x) of type A (its left

schema should correspond to type A - implied by the A in the template A0x) while it can

have any value on its right schema (denoted by the "don't care" x value in the template

A0x). In the first interaction (at step 1 of Figure 2.10), two A systems (here systems

Data1 and Data2) will be chosen and one of them (Data2) will hold the sum while the

other (Data2) will be reset (as shown at step 2). The resulting system (Data2) will

interact with the third type A data system (Data3), the resulting sum will be again stored

in one of them (Data3) and the other (Data2) will be reset. The type B data system

(Data4) will never be part of an interaction in this example as it does not match any of

the schemata of the context SUM (since it only defines interactions between data

systems of type A).

The progression of a simple program which performs a nested parallel calculation is

shown in Figure 2.11 (A-C) [24]. The program calculates the expression ((A1-A2)*(A3-

A4)) and prints it. At first, the initial systems belong to scopes in different hierarchy

levels. Next, the subtract-escape context systems ―-e‖ transform the pairs (A1, A2) and

(A3, A4) of data systems by means of subtraction (in their respective scopes c1 and c2)

and change their scope one level higher in the hierarchy (effectively one of the

interacting systems ―escapes‖ from the scope it belongs to), leaving calculation ―waste‖

in the initial scopes (c1 and c2), as no system can be destroyed. It is noted the (A1-A2) is

correctly performed, (instead of A2-A1). This is accomplished by a mechanism called

schemata matching, described in section 2.4.1, which identifies an appropriate

interacting system to each interacting position. A1 is selected here as the first interacting

system (the minuend) and A2 is selected as the second (the subtrahend).

Chapter 2. Background 67

Figure 2.11. SC calculation of PRINT((A1-A2)*(A3-A4)). Reproduced with permission from

[24], [34]

Eventually, systems are transformed by the multiply function. Overlapping scopes which

share systems can be used for more compact representations of the same calculation (as

shown in Figure 2.11D [24]). The parallel nature of SC dictates that all the systems

interact continuously (function ―print‖ will print the correct result upon completion of

the program but it will also print intermediate results at earlier stages). Thus, the tree of

scope memberships (Figure 2.11E) enables the correct calculation of complex

expressions. An example of how overlapping scopes can be used to accomplish linear

execution of such an expression is given in Figure 2.12 [24], with intermediate results

escaping to their outer scope until the expression is fully evaluated.

Chapter 2. Background 68

Figure 2.12. SC calculation of the linear expression ((((A1-A2)*A3)+A4)/A5). Reproduced with

permission from [24]

2.4 Prior Systemic Computation Implementations

In [24], Bentley, along with introducing SC, provided a corresponding virtual computer

architecture and its first (software) implementation. This attempt included a basic

instruction set, an assembly language, a compiler and its resulting machine code.

However this implementation was merely a simulation of a systemic computer, although

it was a satisfactory proof-of-concept. To date, there are two more SC implementation

attempts. The first provides a complete SC platform (language, compiler, virtual

machine and visualization tools) [136]. However, it is also a SC simulation, although

based on high-level language. The second [34] is yet another PC-based implementation,

utilizing the inherent parallelism of graphics processors (GPUs) with considerable gains

(of the order of one hundred) in terms of speed compared to previous attempts. The

performance improvement is justified since this is the first implementation with a

hardware constituent (GPU cores) and the first step towards a real systemic computer.

2.4.1 Original SC Implementation

The original implementation was a low-level simulation of a systemic computer,

compatible with consumer processors. A more detailed description along with various

SC applications can be found in [24]. The various features of the design are presented

below.

Chapter 2. Background 69

Figure 2.13. System representation, schemata decoding scheme and scope table of the

original SC version. Reproduced with permission from [24]

As illustrated in Figure 2.13, characters ` to z where used to encode triplets of string

systems. Partial matches were accomplished by enriching the binary {0,1} set with an

wildcard (? – matching both a 0 and a 1), while the matching precision could be adjusted

by using thresholds.

Table 2.2. Features of the original SC implementation

Feature Original SC implementation

Word-length
16-character word length

(systems consist of 48 characters)

Coding Method characters of alphabet 29

Transformation Function Set Thirty basic functions

Schemata Matching Method Partial matching against thresholds

Interactions Order
Random (Biased – Prioritizes

recently changed systems)

Scope Definition Method Global Scope Table

Matching was based on the Hamming distance (number of different characters) between

the schemata of the context and the systems. The transformation function, along with an

identifier (analogous to the opcode of conventional architectures instructions), and the

two matching thresholds (one for each system), also includes a NOT operator to set the

matching polarity.

Chapter 2. Background 70

The membership of a system, set by the index of the respective column of the scope

table, in the scope of another system, set by the index of the respective row, was set by

the value at the corresponding position of the table (0 : not in scope, 1: fully in scope, 0

< value < 1 : partially in scope).

Figure 2.13 illustrates the graphical representation of a context system, with ADD as its

transformation function. The schemata are decoded based on the decode table to match

the schemata of other systems with thresholds of 6 and 1 for systems 1 and 2

respectively. If the schemata is matched, the addition is not executed since the polarity is

negative (NOT is true). According to the scopetable, systems 3 and 4 are in the scope of

system 1. System 2 is partially in system 3.

2.4.2 High-level SC Implementation

The extensive work of Le Martelot on SC [136], [151], [152], [153], [154], [155], [156]

(which can be found collectively in [22]) provides outcomes in formalization, a complete

platform, natural-inspired models implementation, analysis of native SC features and a

description of the developed visualization tools. The implementation platform, called

―Systemic Computation Platform and Environment‖ (SCoPE), includes a full definition

for the SC programming language, a compiler and a virtual machine, the SC runtime

environment and the visualization framework (see Figure 2.14) [22].

Figure 2.14. Visualisation of a SC model using SCoPE. Reproduced with permission from [22]

Some differences are identified in this implementation as opposed to the original one

[22]: Recursive scopes, with a system containing itself, are supported. Fuzzy scopes are

not supported, since they would add overhead in the implementation for a feature that

was not critical and, thus, overlapping scopes are not supported either. Partial and

threshold matching are not supported for the same reason. There is always a supersystem

Chapter 2. Background 71

– at the top of the hierarchy – called the universe. An active context can only change

during the current interaction only in cases that this action will provide significant

simulation gains. Also, unaltered interacting systems have a higher probability to interact

next.

The main difference is that this implementation is higher level, fully programmable and

more flexible than the original one. While the transformation function set, the string

length and the alphabet are fixed in the original version, they all can be customized by

the user for each model simulation in SCoPE. The flexibility is clearly reflected in the

corresponding SC language which uses the original one as ground and expands its

functionality and ease of use. Naturally, this flexibility comes in expense of execution

speed. User-defined functions are implemented as C++ plugins and loaded as dynamic

libraries at simulation initialisation and called for every function reference in the code.

Also, the scopes are not held in a global table, but every system stores locally, along

with its triplet, all the systems it contains and it is contained in.

2.4.3 GPU SC Implementation

The third SC implementation is GPU-based [34]. A GPU-based approach is completely

justified since the fundamental property of SC, parallelism, is an inherent GPU

architectural characteristic. While the first two implementations where just simulating

SC, the third one is much closer to an actual SC architecture since there is now native

hardware support. GPUs are well-suited for applications with numerous threads running

in parallel over a set of shared data. Here, the shared data are the systems.

The GPU implementation follows the original SC model in terms of specification. Only

implementation-specific minor differences (optimisation technicalities) differentiate

them. The parts of the original algorithm that could be parallelized were identified and

they are executed in the GPU cores, called devices, while the sequential parts are left to

be executed in the CPU, called the host [34]. So, this is a hybrid approach which utilizes

the advantages of both the sequential and the parallel domain.

Chapter 2. Background 72

Figure 2.15. Overview of the task and data flows in GPU SC

The architecture developed in [34] is as follows: Two threads, which reflect the two

main parts of SC, run in parallel in the host. These are called the producer and the

consumer. The producer finds triplets with systems that match the schemata of a

contextual system and belong to the same scope, called valid triplets. It consists of six

successive steps which run sequentially on the host. Three of them are offloaded to the

GPU. The consumer consumes the valid triplets, by executing the transformation

function of the context, with the two interacting systems as the arguments. Valid triplets

are chosen completely randomly (without prioritization). Triplet validity is rechecked

before the interaction, since a previous transformation might have changed the systems

scheduled to interact. An overview of the GPU SC implementation is illustrated in

Figure 2.15.

2.5 Summary

This chapter provides a detailed discussion on various approaches to Natural and

Systemic Computation. It summarizes software approaches and alternative

computational paradigms and further critically focuses on conventional and

unconventional hardware approaches on Natural Computation with an initial assessment

Initializing

Updating

Finding Matched

Triplets

Prefix Sum

List Matched Triplets

List Matched Triplets

Producer

Consumer

Systems Interact if

Random Triplet is Valid

Other Parallel Tasks

Shared Buffer

Flags

CPU GPU

Task Flow

Data Flow

Chapter 2. Background 73

of their compatibility with SC. Moreover, an overview of the SC architecture, as it was

introduced in [24], is given and the work performed to date on SC is reviewed and

assessed. This work involves three software implementations, a simple proof-of-concept

sequential design with limited functionality and performance, a high-level fully-

parameterizable sequential design with limited performance but extensive modelling

capabilities and a hybrid design with increased performance, taking advantage of the

vastly parallel computational ability of a GPU, but limited features.

It is highlighted throughout the chapter that widely-adopted computational paradigms

and techniques are inherently incompatible with Natural Computation while mainly

unconventional approaches are generally best suited to model nature in a more native

way. Systemic Computation has been designed to be compatible with those

differentiating properties that can be noticed in computation happening in nature, thus a

SC implementation is expected to model those natural systems natively. Software

implementations of such an unconventional paradigm, being sequential in nature, fail to

properly map SC so they just simulate a systemic computer.

A custom hardware design, exploiting the freedom of tailoring its architecture away from

conventional approaches, is expected to more closely match the underlying SC

architectural properties. Thus, an investigation should be performed at first to determine

the most appropriate hardware implementation platform for such a design to be realized

on. Numerous alternative platforms, having been presented critically in a SC context

above, can now be compared and indicate the most suitable among them for a practical

SC implementation.

The ideal implementation platform should ideally be compatible with the natural

properties of Table 1.1. However, there are some limitations, as many of the hardware

approaches in Table 2.1 represent emergent fields of research and would not be suitable

for a practical implementation. In order to identify the most appropriate among them, the

suitability of each approach for a SC hardware implementation must be evaluated.

Therefore, the features incorporated in a practical SC hardware implementation should

be identified. After examining the SC paradigm and its corresponding architecture and

taking into consideration the hypothesis of this work and its research challenges,

focusing on the utility and viability of a hardware system computer, it was concluded

that these features, in the hardware domain, should be:

Chapter 2. Background 74

 Compatibility with as many as possible of the natural properties central to SC

(research challenge Chg1).

 Compatibility with inherent architectural features of the SC (research challenge

Chg2).

And addressing the practicality and efficiency of the implementation (research challenge

Chg3):

 Efficiency of Input/Output Functionality: sufficient to result in a standalone

platform.

 Programmability: an (at least basic) instruction set should be provided.

 Design friendliness: the implementation platform should be supported by standard

design methodologies, tools and documentation to accelerate the design period,

decrease error-proneness and enable efficient design verification.

 Technology Maturity: the implementation platform should be based on a mature

technology in order to be able to provide a practical implementation. Furthermore, if

a rich literature exists on designs based on the technology, inspiration can be derived

from it while existing design methods can be improved to increase performance and

efficiency.

 Scalability: the implementation platform should be able to be efficiently scaled to

support modelling of large-scale natural systems.

Along with the hardware-related requirements, there are also some design considerations

in the software domain:

 Compiler Support: a compiler should either be available or created to enhance

programmability.

 Support for more advanced instructions/functions: in order to enhance flexibility and

programmability.

 Backwards-compatibility with at least one of the earlier SC versions: this would

allow reusability of functional code (including a compiler).

An ideal hardware implementation platform would satisfy all the above-mentioned

requirements and considerations. However, as discussed in this chapter and summarized

in Table 2.3, finding a platform that fully satisfies all of them is not realistic.

Chapter 2. Background 75

Table 2.3. Detailed evaluation of the reviewed hardware-based approaches against the

implementation requirements implied by the research challenges. No dot represents the

absence of support for the requirement, while three dots indicate full support

 Hardware Implementation Platforms

 C
h

ip
 M

u
lt

i-
P

ro
c
e
ss

o
r

 H
ig

h
-a

v
a
il

a
b

il
it

y
 C

lu
st

e
r

 B
e
o

w
u

lf
 C

lu
st

e
r

 L
o

a
d

-B
a
la

n
c
in

g
 C

lu
st

e
r

 G
ri

d
/C

lo
u

d
 C

o
m

p
u

ti
n

g

 P
u

re
 P

e
e
r-

to
-P

e
e
r

n
e
tw

o
rk

s

 G
P

U
s

 U
b

iq
u

it
o

u
s

C
o

m
p

u
ti

n
g

 W
ir

e
le

ss
 S

e
n

so
rs

 F
P

G
A

s

 P
O

E
ti

c
/P

E
R

P
L

E
X

U
S

 S
p

iN
N

a
k

e
r

 E
v

o
lv

a
b

le
 H

a
rd

w
a
re

 D
N

A
 C

o
m

p
u

ti
n

g

 Q
u

a
n

tu
m

 C
o

m
p

u
ti

n
g

 B
a
c
te

ri
a
l

C
o

m
p

u
ti

n
g

C
h

e
m

ic
a
l

C
o

m
p

u
ti

n
g

Im
p

le
m

e
n

ta
ti

o
n

 P
la

tf
o

rm
 R

e
q

u
ir

e
m

e
n

ts

S
C

 N
a
tu

ra
l

P
ro

p
e
rt

ie
s

(C
h

g
1

)

C
o

m
p

u
ta

ti
o

n
a
l

Stochastic

•

 • ••• •• ••• •••

Asynchronous

• • • • ••

•• •• • • •

••• •• ••• •••

Parallel • •• •• •• •• •• •• •• •• ••• •• ••• • ••• ••• ••• •••

Distributed

•• •• •• •• •• • •• •• •• •• •• • ••• • ••• •••

Continuous

•

•• ••

••• • ••• •••

Approximate

••• •• ••• •••

Embodied

••

••• ••• •••

Circular causality

••• ••• •••

Local Knowledge

• • •• • •• • • • • • ••• • ••• •••

B
e
h

a
v

io
u

ra
l

Self-organised

•

••

•• • •• • • •• ••• • ••• •••

Fault tolerant

••

••

•• • • • • • ••• ••• •••

Open-ended

• • •

Complex

•• •• •• •• ••

•• •• •• •• •• •• ••• • ••• •••

Autonomous

•

••

• • • •• •• • •• ••

Homoeostatic

•

• • •

• • • •

Robust

•

••

••

• ••

S
C

A
rc

h
it

e
c
tu

re

F
e
a
tu

re
s

(C
h

g
2

)

Systems • • • • • • ••• •• ••• ••• •• •• ••• • • • •

Scopes • • • • • • ••• •• ••• ••• •• •• ••• • • • •

Contexts • • • • • • ••• •• ••• ••• ••• ••• ••• • • • •

Interactions • • • • • • ••• •• ••• ••• ••• ••• ••• • • • •

S
C

Im
p

le
m

e
n

ta
ti

o
n

F
e
a
tu

re
s

(C
h

g
3

)

I/O Efficiency ••• ••• ••• ••• ••• •• ••• •• ••• ••• ••• ••• •••

Programmability ••• •• • • • ••• •• • •• ••• •• •• •••

Design-

Friendliness
••• ••• ••• ••• ••• ••• ••• • ••• ••• • •• •••

Technology

Maturity
••• ••• ••• ••• ••• ••• ••• • ••• ••• •• • ••

Scalability •• •• ••• ••• ••• ••• •• ••• •• •• ••• ••• •• ••• •• ••• ••

Chapter 2. Background 76

According to Table 2.3, three entries are more suitable for a practical SC implementation

than the others according to existing technologies, approaches and platforms. These are:

 Wireless Sensor Networks: WSNs appear to be one of the most suitable hardware

implementation platforms. The variety of supported natural properties, the

compatibility with the SC architecture, the maturity of the technology and the

satisfactory scalability offered by the wireless link are the advantages. Their main

disadvantage is the underlying fixed conventional architecture of their processor and

their restriction in terms of resources and computational power.

 FPGAs: FPGAs have the unique advantage of external reconfiguration and self -

reconfiguration. The limitation is really left to the designer to exploit all their

potential to implement various natural properties. There is also the advantage of the

big number of FPGA-based projects on the field of Natural Computation, where

useful ideas can be adopted and extended. Scalability issues may be addressed using

an FPGA cluster or with the addition of wireless connectivity on the FPGA board.

 GPUs: GPUs are among the most suitable implementation platforms without great

support for natural properties since it has already been proven that they provide great

performance. Additionally, their performance is certainly going to improve as new

GPU models are released, since GPU development is driven by the games industry.

However, the solution we have at present is a compromise that parallelises only some

parts of the SC process. GPUs are dependent upon a CPU for centralized control.

The only implementation platform among the three that does not solely depend on the

existence of a conventional von Neumann architecture CPU in the system is the FPGA

platform. FPGAs are the only platform that provides the flexibility to design and

implement a custom and dedicated hardware design from the very beginning until the

system level, in order to highly optimise it for the selected application (in our case the

Systemic Computation), and at the same time not compromise on performance. In

addition, taking into consideration that FPGAs would be practical in terms of the number

of systems they can support and also able to provide an easily-accessible standalone

platform leads us to decide that:

The selected hardware platform for the first practical hardware-based

implementation of systemic computation is the FPGA platform.

The next chapter further discusses the SC architecture properties and presents the first

(FPGA-based) hardware architecture of Systemic Computation.

77

Chapter 3

Designing a Suitable Hardware Architecture for SC

This chapter focuses on the investigation of a hardware design to support the underlying

architecture of SC (research challenge Chg2, section 1.4) and suggests the first Hardware

Architecture of Systemic computation (HAoS), taking into consideration the natural

properties of SC (research challenge Chg1, section 1.4) and at the same time attempts to

provide an efficient, practical and user-friendly solution (research challenge Chg3,

section 1.4).

Various potential architectures are initially reviewed (section 3.1), while then the SC

architecture properties are analyzed and discussed in the context of a hardware

implementation (section 3.2). This discussion leads to the suggested design (sections 3.4

- 3.6) which is presented along with the proposed extendable instruction set (section 3.3)

and a basic programming model (section 3.7). This base design is initially verified in

section 3.8 and is used in the next chapter as the basis of the complete HAoS

programming platform.

Part of the work presented in this chapter has been published in [158],[159] and [160].

3.1 Potential Architectures

The optimal solution for the hardware implementation of SC would be highly flexible

and at the same time highly efficient. The user would be able to write SC programs in an

unrestricted manner (following just the SC language rules). The key SC notion of

parallelism should be implemented for both functional and background system tasks

(systems update and storage, scopes update and storage, systems comparison and

communication). A number of candidate architectures (given that the implementation

platform is an FPGA), taking into account the implementation feasibility and viability,

were considered before concluding to the final design. These are overviewed below:

 Virtual SC: offloading functional computation to the CPU.

Chapter 3. Designing a Suitable Hardware Architecture for SC 78

 Fundamental Processing Element: SC performed solely on the FPGA but providing

support for an extremely restricted instruction set that will be implemented by

elementary processing elements.

 Reconfigurable Predetermined Processing Elements Array: Providing a more rich

instruction set but assuming low reconfiguration frequency.

 SC2HDL: Translate the SC code into hardware, using a tool that takes source code

written in the SC language as input and performs translation in a Hardware

Description language (HDL)
16

, synthesis and Place-And-Route (PAR) in an

automated way.

 GPUplusFPGA: preserve the functionality of the GPU version (background

parallelizable tasks performed on the GPU) and offload computation to the FPGA

(by means of an predefined instruction set realized on hardware or a dynamic

instruction set by use of the SC2HDL tool).

3.1.1 Virtual SC

It is evident (see section 2.3) that the use of a conventional CPU is not compatible with

SC. However, the power of a custom design which is highly optimized to perform the

background SC system tasks, as they are mentioned above, could take advantage of the

flexibility and performance provided by a CPU.

Provided that a modern FPGA is used, an estimation of the highest frequency of an on-

chip implementation could be claimed to be in the order of 600MHz [161]. For the

purposes of this analysis, we may assume that the final design may achieve 1/3 of the

maximum frequency (200 MHz). Assuming 10 on-chip flexible processing elements and

taking into account any delays caused by off-chip communication, it would be safe to

claim that a conventional single-core CPU could cope with the computational load,

provided that the communication interface is able to cope with the communication load.

While the background system tasks will optimally run on hardware, the functional tasks

will be executed on ―virtual‖ on-chip processing elements, simulated by the CPU.

Extending this strategy, a modern multi-core multi-threaded processor with 4 cores and 2

threads for each core could provide the computational equivalent of up to approximately

a hundred processing elements (assuming a 2-3GHz frequency for each core) by

16

 Most probably VHDL.

Chapter 3. Designing a Suitable Hardware Architecture for SC 79

consuming on-chip resources just for the communication infrastructure. Nevertheless, it

is noted that the communication overhead could become substantial for a large number

of systems.

Embedding a sequential processor aside, the disadvantage of this approach is its

resemblance with the GPU implementation (see section 2.4.3). Modern GPUs are

becoming more powerful, embedding typically hundreds or even thousands17 of

processing elements but yet preserving a more centralized architecture than the one that

a custom FPGA design can provide. However, the GPU architecture still needs to be

fairly generic in order to support any parallelized task. This can be avoided with a highly

optimized FPGA design.

Despite of the above-mentioned disadvantages, the virtual SC architecture, shown in

Figure 3.1, could be considered as an entry-level design that is focused on realizing the

background system tasks on hardware and emulate the functional subsystem in the CPU.

Figure 3.1. Virtual SC architecture simplified block diagram

3.1.2 Fundamental Processing Element

In contrast with the previous approach, instead of offloading computation to the CPU,

this implementation severely restricts flexibility by keeping functional complexity to a

minimum but keeps computation on-chip. The instruction set is limited to basic functions

that can be realized in a combinatorial way. Sequential processing elements are avoided

as they are not compatible with the SC paradigm. Also, basic functions realizations have

lower area requirements and thus a larger number of them may be implemented on-chip.

Restricting all SC functionality on-chip makes communication interfaces on the chip

boundaries obsolete, with the exception of possible chip-to-chip interfaces that will

17

 The NVIDIA GeForce GTX TITAN GPU has 2688 CUDA cores while the AMD Radeon HD

7990 GPU has 4096 stream processors.

Dedicated Hardware

Performs SC

Background Tasks

CPU

INTERFACE

CPU

Executes

Transformation

Functions

Chapter 3. Designing a Suitable Hardware Architecture for SC 80

enable expanding the functionality on multiple chips. A simplified block diagram of the

architecture is given in Figure 3.2.

Figure 3.2. SC Fundamental Processing Element architecture simplified block diagram

The limitation of this approach is obviously its restricted functionality. Nevertheless, it

could be argued that it could serve as an intermediate step towards the final design.

Provided that the background system tasks are developed for the Virtual SC design, they

could be reused for this implementation. The functional difference of the two designs is

the supported flexibility and the relative location of performing the computation. In

essence, the extended functionality of the Virtual SC design is traded with the ability of

having a standalone design that complies with the non-sequential rule of the SC

paradigm.

3.1.3 Reconfigurable Predetermined Processing Elements Array

Having moved computation on-chip in the previous approach severely limited

functionality. To address this issue a reconfigurable predetermined processing elements

array
18

 can be used, essentially meaning that each transformation function can be pre-

mapped to custom logic and loaded on the reconfigurable logic on-demand. Since, after

the SC source code is compiled, the initial required functional elements are known, those

can be realized in a chosen on-chip area that is configured to perform the required form

of computation. Provided that the required instructions do not imply a restrictive area

overhead, this design can potentially support any predefined processing element. The set

18

 Analogous to the approach followed in the Molen reconfigurable processor (section 2.2.3) and

a similar design providing an Algorithm-on-Demand implementation (relying on a host CPU,

thus provided in a co-processor form) suggested in [249].

SC Core

Performs SC

Background Tasks

(Fixed)

Processing Units

FPGA

Chapter 3. Designing a Suitable Hardware Architecture for SC 81

of supported functions can be optimized for hardware implementation and can either be

statically realized on chip or dynamically chosen from a pool of functions, stored either

on-chip or off-chip (depending on size) in the form of configuration bitstreams. The

architecture is shown in Figure 3.3.

Figure 3.3. SC Reconfigurable Predetermined Processing Elements Array architecture

simplified block diagram

The limitations of this implementation are the area overhead due to the functional

elements and the design complexity. Restricting the supported instruction set and the

number of on-chip instances of processing elements could reduce the required on-chip

area. The use of partial chip reconfiguration will inevitably lead to following vendor -

specific design methodologies that will restrict the design to a vendor-specific

implementation (the vendor being the chosen FPGA platform supplier). The

reconfiguration time highly depends on the size of the partial bitstream being loaded to

the FPGA and the selected configuration mode
19

 and it can vary greatly (from the order

of 10 μs down to the order of 100 ms) [162]. Thus, a low reconfiguration frequency must

be assumed for this implementation to be functional.

Another consideration is that a predefined array implies that a functional element can

only be altered to become another already existing block in the provided function pool.

19

 For example, if a Xilinx Virtex FPGA is chosen, the maximum provided configuration

bandwidth is 3.2 Gbps for the vendor-specific ICAP mode, and 100 Mbps and 66 Mbps for the

more common Serial and JTAG modes, respectively [162].

SC Core

Performs SC

Background Tasks

Reconfigurable

Processing Units

FPGA

A
D F

B
N G

K C E

Bitstreams for Processing Units

A B C D E F G H I J K L M N

Chapter 3. Designing a Suitable Hardware Architecture for SC 82

Assuming a limited number of different types of functions being realized for any given

SC program, functions being changed during execution (as shown in [151] with the

genetic operator adapter) is not essentially supported. Along with having a prearranged

set of functions, a predetermined area of the chip will need to be pre-allocated in order to

realize the partial reconfiguration functionality. This implies that, depending on the

functions being realized, part of the reserved hardware resources may need to be unused.

This design could potentially be the base of the final SC hardware implementation. The

majority of the aforementioned limitations are bound to the restrictions imposed by the

chip size. Further improvements will have to address chip-to-chip communication to

resolve this issue. Any high level SC instructions will have to be mapped to hardware

processing elements by a translation step on the software side that decomposes those

instructions to basic instructions supported by the hardware instruction set.

3.1.4 SC2HDL

A SC to HDL tool would translate a SC program to a circuit that would be optimized to

execute this program only. Effectively, this approach could maximize the on-chip

hardware resources utilization. Also, it could be applied either for a predefined set of

instructions (following the first SC implementation) or, targeting a more generic and

flexible approach, it could be developed as a high-level SC synthesis tool (following the

SCoPE implementation). It is noted that following this approach, every SC program

would result in a different custom design.

This implementation would probably be the most flexible and area-aware. The size is

again the limiting factor. This approach assumes that the user has acquired a license for

the required tools that will manage the backend realization process (synthesis and PAR).

The development process will require a conventional microprocessor to download the

circuit on the FPGA. Extra care should be taken when developing the SC2HDL
20

 tool

since, while the FPGA-vendor tools have been developed to make the backend tasks

automated, user feedback input is typically required before having a fully-functional

implementation.

In order to realize any function, and thus get maximum flexibility, the high-level source

code will have to be translated to an HDL. However, none of the SC language versions

20

 SC2FPGA might be more clear in describing the whole flow. SC2FPGA would insist of the

SC2VHDL tool for the front-end and vendor-specific tools for synthesis and PAR.

Chapter 3. Designing a Suitable Hardware Architecture for SC 83

to date provide inherently the ability to describe new functions, but rather, those are

described by means of a software high-level language (C/C++) (either predefined in the

code or dynamically created as plugins). This implies the need of a C2HDL compiler. A

few C2HDL compiler attempts have already been made and the majority of them are

commercially available [163], [164]. A viable solution for an SC2HDL tool would be to

incorporate one of the available compilers and combine this with the vendor-specific

tools. The main disadvantage of this approach would be the limited control of the

resulting HDL. A possible solution to this issue would be to develop an intermediate tool

that accepts the automatically extracted HDL code and alter it in a way that it is

synthesizable and ensure that the backend tools will not encounter any problems, taking

always into consideration the development speed of such an approach. Yet, this may be

an infeasible task since further (especially automated) optimizations may be prohibited

depending on the level of abstraction.

3.1.5 GPUplusFPGA

This is a rather novel approach. Since the power of a GPU performing background SC

system tasks has been demonstrated in [165], the idea of reusing the advantages of this

implementation is highly appealing. The GPU will still be used as a co-processor, but the

place of the sequential processor will be taken by a pool of processing elements

implementing on the FPGA. Various attempts can be found in the literature that use both

FPGAs and GPUs as coprocessors [166], [167], even combining them on the same board

[168], suggesting transferring the GPU logic on the FPGA [169], communicating directly

through a PCI-Express switch [170] and translating directly a GPU programming

language (CUDA or OpenCL) on FPGA resources [171][172]. Yet, all these attempts

rely on a host CPU. Offloading computation on an FPGA that acts as a host for the GPU,

illustrated in Figure 3.4, could be a potential solution for the SC hardware

implementation but probably it would not be trivial.

Figure 3.4. GPUplusFPGA architecture simplified block diagram

GPU

Performs SC

Background tasks

Custom

Interface

FPGA

Control Tasks &

Transformation

functions

Chapter 3. Designing a Suitable Hardware Architecture for SC 84

The main disadvantage would be the lack of supported tools for an implementation like

this and the need for development of drivers for the GPU. The idea is to emulate the

control flow provided by the CPU on a typical CPU-GPU system on the FPGA.

Inevitably, the GPU-FPGA interface would have to be sequential and might even cancel

the benefits of avoiding using a CPU when considering the development effort, FPGA

required resources and limited flexibility due to lack of programming and debugging

tools for a configuration like this.

3.1.6 Summary

The hardware systemic processor could potentially be implemented on an FPGA

following one or more of the aforementioned ways. It is noted that combining more than

one of those approaches (e.g. the first three) can result in a more modular design process.

In contrast, the last two approaches can be considered as standalone solutions.

Nevertheless, it should be underlined that there are overlapping design elements for all

approaches (the hardware realization of the SC background system tasks is required for

all approaches except the last one while the SC2HDL tool could potentially be used for

the Predefined Elements Array or the GPUplusFPGA approach).

The main advantages and limitations of each approach are outlined in the preceding

sections. It can be claimed that the most modular solution of going through the first three

approaches is more feasible based on the required work load against the available time

frame of this research project. The addition of the SC2HDL tool (or part of it - with

support for a predefined set of instructions) can be reconsidered in the future as an

expansion to this work. The last approach may not yet be feasible due to the lack of

support tools.

A fully non-sequential SC hardware implementation would not be practical since, even if

the majority of on-chip logic could be combinatorial, the nature of the memory elements

and the interfaces with the off-chip resources will have to be sequential. Also, chip size

imposes limitations to the hardware resources that can be utilized in order to implement

the required functionality of a SC program. The sequential alternative may need to be

used (especially for a single-chip SC hardware implementation) in such cases.

As a result of the analysis above, an appropriate solution would combine the Virtual SC

and the Fundamental Processing Element approaches by embedding dedicated processing

elements on-chip but also providing the option of work-load offloading to an (internal or

external) CPU in order to handle the functional (data-processing) system tasks. The

Chapter 3. Designing a Suitable Hardware Architecture for SC 85

background system tasks are executed natively on-chip. The suggested hybrid design is

illustrated in Figure 3.5 and detailed throughout the rest of this chapter.

Background SC tasks

&

Dedicated Processing

Elements

CPU

INTERFACE

FPGA
EMBEDDED

CPU

EXTERNAL

CPU

Figure 3.5. The suggested hybrid design

3.2 Design Analysis of the SC Architecture

The proposed Hardware Architecture of Systemic computation (HAoS) attempts to

satisfy the basic SC requirements, taking into consideration the desired features of a

practical implementation: programmability, design friendliness, technology maturity, I/O

functionality efficiency, advanced processing features, compiler support and scalability.

It preserves partial backwards compatibility with the original SC implementation in

order to take advantage of the available compiler but expands on the supported

functionality by adding new features. Thus, SC source code targeting the original

implementation (and the GPU-based version) can be natively executed on HAoS.

The SC concept dictates that any three systems are eligible to form a valid triplet. A fully

parallel implementation would generate a valid triplet of systems, in a random manner,

for all contexts, in all scopes during an iteration of a SC program. In addition, all

interactions would happen instantaneously, provided that adequate parallel processing

resources were available. Resource limitations forbid a practical implementation of this

approach on an FPGA. It is evident that the main two tasks that would ideally be

executed in parallel are valid triplet generation (finding triplets of interacting systems)

and system transformation (the actual data processing).

This section mainly addresses research challenge Chg2, as it discusses various features

of the SC architecture, and analyses their respective design decisions. Related natural

Chapter 3. Designing a Suitable Hardware Architecture for SC 86

properties are also discussed (research challenge Chg1), where applicable, while as

shown below practicality and efficiency are major decision factors (research challenge

Chg3).

3.2.1 Local Knowledge & Scope Definition Method

One of the assumptions (and supported natural properties) of the SC paradigm is that

systems have ―local knowledge‖. This can both refer to local storage of the internal state

of each system and awareness in terms of its membership within other systems' scopes.

However, local knowledge is a feature that cannot be efficiently mapped on on-chip

logic. The system bit representation and the scopes it belongs to could potentially be

stored in registers which do not reside in the same area of the chip. Yet, storing this

information in local registers was not adopted but it was decided that the proposed

design should store it in system RAM instead. The use of a RAM in this design is

justified by the fact that RAM storage volumes are greater than those provided by

registers in modern FPGAs and since no more fabric would need to be consumed for

address decoding logic. Moreover, only a finite number of systems can be stored on a

single RAM, which defines a neighbourhood for its systems, while the total number of

systems can be spread over multiple RAMs. As a result, a potential failure in one of the

RAMs would leave the rest of systems of the program unaffected.

Apart from its binary contents, every system can belong to any number of scopes defined

by other systems. In SCoPE [22], local knowledge is correctly simulated as each system

holds a list of all its parents (the scopes it belongs to). In order to fully support this

feature, HAoS would need to locally store the parents' information in registers, which

would result in a considerable increase in the number of required on-chip registers as the

number of maximum supported systems scaled up. It was decided that it is more

important to preserve scalability (research challenge Chg3) than fully support local

knowledge (research challenge Chg1), so the global scopetable approach was selected as

the scope definition method, with the parents of each system stored in RAMs.

3.2.2 Scopes Support

In the original SC implementation (see section 2.4.1), scopes are infinitely recursive;

they have fuzzy boundaries and may overlap. Recursive scopes may contain themselves

and other systems which in turn contain themselves and other systems and so on. Fuzzy

scopes enable partial membership of a system into another system while overlapping

scopes partially belong to each other.

Chapter 3. Designing a Suitable Hardware Architecture for SC 87

In this work, a system containing itself is supported but fuzzy or overlapping scopes are

not. This decision was made in order to reduce the amount of required storage for the

program scopetable. Enabling fuzzy or overlapping scopes would require a fractional

value to be stored in the scopetable, increasing the number of bits to represent the scope

membership. This would enable a more accurate control of interaction probabilities;

however multiplying the size of the scopetable would limit scalability (research

challenge Chg3). Thus, a one-bit representation was preferred, denoting that a system

can either belong to a scope as a whole or not belong at all. The interaction possibility

control can either be embedded in the implementation of the transformation function of

the executed instruction (as shown in [22]) or by appropriately setting the number of

identical systems in the scope (assuming all individual systems share the same

interaction possibility).

In SCoPE [22], the notion of the universe is also introduced to define a super-scope

which includes all other systems in the SC program. The notion of universe here is

analogous to the ―main‖ function of a typical conventional C program. This super-scope

is indirectly supported and used in all HAoS programs to include all used systems of a

HAoS SC model (yet allowing floating systems - systems that do not belong in any

scope). The universe system can also have a physical meaning in future work, as it can

be used to describe all the systems that are stored on a single FPGA device. For a multi-

FPGA configuration, each universe can correspond to one FPGA device, each with its

own scopetable and systems. Then, all universes would belong to a root scope or

―multiverse‖ (forming a multi-FPGA SC program) enabling communication between

them with the form of mutual systems exchange.

3.2.3 Valid Triplet Generation & Schemata Matching

One of the main limitations of the software-based implementations was the way valid

triplets were generated. The common strategy was to randomly select three systems (one

of which acted as context) in a scope and then check triplet validity (by examining if the

operand systems matched the schemata of the context). In [34], this task is assigned to

the GPU which handles it in parallel, resulting in great performance gains.

The most straightforward hardware implementation for the valid triplet generation

mechanism would be a sequential design with an optimized comparator iteratively trying

to match the templates defined by the schemata of the context system to all valid systems

in the selected scope. This approach would result in minimal area utilization, as the same

comparator would be reused for all comparisons, and possibly a very fast circuit as the

Chapter 3. Designing a Suitable Hardware Architecture for SC 88

required combinatorial logic would be minimal too. However, the overall latency of such

a sequential design would be increased proportionally to the number of systems and

would prove impractical for SC programs involving a big number of systems.

Thus, a parallel schemata matching mechanism is crucial for the design, if we want to

minimize latency and handle valid triplet generation optimally (research challenge

Chg3). In addition, as parallelism is one of the desirable natural properties, employing a

parallel design would also address research challenge Chg1. Thus, in order to identify

which systems may interact during each iteration of the systemic program, a parallel

binary matching mechanism, matching the templates of context systems against the

schemata of all interaction candidates, would be the most suitable solution. This

essentially implies the use of a comparator which, given a binary input, has the ability to

match this input (the template) against the contents of an array of elements (storing the

systems) in a parallel fashion. In addition, it should also support full and partial

matching, meaning that some parts may need to be ignored during comparison.

These requirements for optimal valid triplet generation are fully satisfied by exploiting

the inherent parallelism of a Ternary Content Addressable Memory (TCAM). While

traditionally used Random Access Memories (RAMs), when provided with an address

return the data stored in this address, CAMs compare their input data with the data which

they store and provide all matching addresses in parallel. This is illustrated in Figure 3.6.

Moreover, CAMs can be efficiently implemented on modern FPGAs, utilizing on-chip

memory resources [173].

Figure 3.6. Typical RAM and TCAM usage

Prior implementations compared each character of the given template of a context (see

Figure 3.8) to the corresponding character of a candidate system separately, yet HAoS,

by using a CAM, compares the given template as a whole (all its characters) with all the

Address In Data Out
0x00

0x01

0x26

0x27

0x28

0x27

0x01

0x23

0x45

0x67

0x89

0x67

Data In
0x00

0x01

0x04

0x05

0x06

00X01101

10101001
Addresses Out

11001011

00101101

10111011

10000010

00001001

11101011

00001101

10101110

0

0

1

0

0

0

0

1

0

0x02

0x03

0x07

0x08

010000100

RAM TCAM

Chapter 3. Designing a Suitable Hardware Architecture for SC 89

systems that the program defines and gives all the matching systems in parallel (see

Figure 3.7). Moreover, TCAMs have the ability to perform ternary comparisons,

meaning that both the input and stored data can include ―don't care‖ bits. As shown in

Figure 3.6, data stored in both addresses 0x02 and 0x07 of the TCAM match the input

binary data word 00X01101 as its ―don't care‖ bit, written as an ―X‖ wildcard, can match

both a 0 and a 1 bit. These features allow parallel partial schemata matching which

enables a guaranteed match of systems to the schemata of the given context, provided

there are such systems in the scope of the context.

Figure 3.7. HAoS TCAM usage

3.2.4 Threshold Matching

As mentioned in section 2.4.1, the original SC implementation, along with partial

matching, defines threshold-based matching in order to control the schemata matching

precision by comparing the Hamming distance between the two schemata against the

matching threshold. Effectively, this means that systems similar to the ones indicated by

the schemata template can be selected to interact (the threshold adjusts the similarity).

Since schemata matching is performed as a parallel operation in this design, as explained

above, supporting this functionality would require an array of Hamming distance

hardware blocks equal to the maximum number of supported systems instead of using

the highly efficient and more compact solution of the TCAM.

Thus, in order to minimize the area requirement of the circuit (research challenge Chg3),

the TCAM was chosen instead, disabling threshold matching for HAoS. However, the

user can use fixed-position wildcards in order to partially adjust the similarity (by setting

the position in which the systems may be different but nevertheless match).

3.2.5 Systems Representation & Coding Method

As explained in section 2.3, the SC paradigm defines interactions between any two

systems according to the transformation function of a third contextual system. Thus,

HAoS supports three types of systems, as shown in Figure 3.8: (a) data systems,

comprised of two schemata (with 16 effective bits each) and a zero (32-bit) function

HAoS

TCAM
System

Template

Matching

Systems

Chapter 3. Designing a Suitable Hardware Architecture for SC 90

part, (b) context systems, comprised of a (32-bit) transformation function and two

schemata templates (used for matching with data systems and thus occupying the size of

a whole data system, 64-bits, each but with zero transformation functions) and (c)

context adapter systems which have the same structure with context systems (but each of

their templates can match a data system or a context). Since all the systems have the

same size, each bit in a schema of a data system is padded with three zero bits to form a

4-bit element or character.

Figure 3.8. HAoS Systems Representation

While the word length of the schemata (system templates) and transformation function is

equal (16 one-byte characters) in the original implementation, as shown in Figure 2.13, it

was decided that HAoS should adopt a different approach in order to optimize the

required size of representing each system. Since a system template has to indicate a

prototype for a whole system to match, it should have a size equal to the effective bits

(which are the bits used for matching purposes) of this system. If schemata and

transformation function had the same size, this would imply a compression scheme

(compression of a whole data system, in order to have the same size with the template,

by using only the effective bits of each schema) with compression ratio 3:1. This, then

would denote that each character (or element) of the template should have at least three

bits in order to be compressed into the minimum storage space (one bit). However, four

bits per character were selected instead, in order to resolve any byte-alignment issues

that a choice of three bits might cause, simplify the control logic and, by providing a 4:1

compression ratio, enable the use of a greater transformation function size. This allows

more distinct instruction opcodes and provides more space for future uses (for example a

variable part, see Table 3.3).

32 bits zero

transformation function

16 bits

schemata2

16 bits

schemata1

32 bits zero

transformation function

16 bits

schemata2

16 bits

schemata1

32 bits

context function

 System 1 Template System 2 Template

16 elements/effective bits
32 zero bits

transformation function

 Data System Template 1 Data System Template 2

000 b

4bits per

element

16 elements/effective bits

(a) A Data System

(b) A Context System

 32 bits non-zero

transformation function

16 bits

schemata2

16 bits

schemata1

 32 bits non-zero

transformation function

16 bits

schemata2

16 bits

schemata1

32 bits

context adapter function

 System 1 Template System 2 Template

(c) A Context Adapter System

Chapter 3. Designing a Suitable Hardware Architecture for SC 91

Table 3.1. HAoS Compression Code. Each HAoS assembly code ASCII character (C) is

compressed internally into a 4-element ternary value (Val). Each element is composed of 2

bits representing 0, 1 and (?) ternary bits (tbits)

Val C Val C Val C Val C Val C Val C Val C Val C Val C

0000 ! 0100 / 0?00 : 1000 @ 1100 I 1?00 R ?000 ` ?100 i ??00 r

0001 # 0101 2 0?01 ; 1001 A 1101 J 1?01 S ?001 a ?101 j ??01 s

000? % 010? 3 0?0? < 100? B 110? K 1?0? T ?00? b ?10? k ??0? t

0010 & 0110 4 0?10 = 1010 C 1110 L 1?10 U ?010 c ?110 l ??10 u

0011 * 0111 5 0?11 > 1011 D 1111 M 1?11 V ?011 d ?111 m ??11 v

001? + 011? 6 0?1? [101? E 111? N 1?1? W ?01? e ?11? n ??1? w

00?0 , 01?0 7 0??0] 10?0 F 11?0 O 1??0 X ?0?0 f ?1?0 o ???0 x

00?1 - 01?1 8 0??1 ^ 10?1 G 11?1 P 1??1 Y ?0?1 g ?1?1 p ???1 y

00?? . 01?? 9 0??? _ 10?? H 11?? Q 1??? Z ?0?? h ?1?? q ???? z

In order to support this four bits per character compression scheme a different code table

is used (given in Table 3.1) from the one used in the original SC implementation (shown

in Figure 2.13). This code table is used to compress the SC assembly code which is

generated from the SC compiler (in ASCII format) into a ternary format using 0, 1 and

ternary (?) bits (matching both 0 and 1) to give machine code for the HAoS digital

architecture. Each ternary bit is represented internally with two binary bits.

3.2.6 The Compiler

The SC compiler of the original SC version was written in C [24]. Targeting practicality

and efficiency (research challenge Chg3), the compiler was updated to support the extra

functionality that HAoS offers (context adapters, signed numbers), efficiently handle

memory management for programs with a big number of systems and support the

required compression code of Table 3.1. As the compiler program needs to be executed

on a machine which is able to run compiled C code, the use of a conventional CPU is

inevitable if this architecture is to remain backwards compatible with earlier versions.

Once the SC source code is compiled in HAoS human-readable assembly code, the

assembly code which corresponds to the systems which are defined in the HAoS

program must be compressed (according to the HAoS compression code) into a

representation which is tailored to the underlying hardware architecture (optimized

HAoS machine code) and loaded on on-chip memory (see section 3.6.1).

3.2.7 Interactions Order

One of the fundamental properties of natural systems that SC supports is that they are

stochastic (see section 1.1), denoting that interactions happen in a random order. All

previous SC versions attempt to implement this property by randomly selecting the next

Chapter 3. Designing a Suitable Hardware Architecture for SC 92

interacting systems, but result in just simulating the process. This is because the random

selection should be combined with parallel execution of interactions or, even more

accurately, there should be no selection but just random parallel interactions to truly

implement the stochastic property. However, in practice, the random selection process is

inevitable, as it is a means of controlling the systems interaction flow. This implies the

requirement for a source of randomness and some associated circuitry (this random

selection logic is presented later in section 3.6.2) to implement this process.

This requirement for on-chip randomness denotes the implementation of a random

number generation (RNG) scheme. RNG on FPGAs has been extensively addressed in

the literature with approaches targeting pseudo-random numbers sequences (PRNG)

[174], [175], usually involving some post-processing logic if non-linearity is required,

true RNG (TRNG), which relies on some source of natural randomness (as thermal input

or jitter from on on-board or on-chip ring-oscillators [176], [177]) and Quasi-RNG

(QRNG) which covers some multi-dimensional space uniformly (usually used for

Monte-Carlo simulations).

Since typically more randomness quality involves more complex circuitry, a Linear

Feedback Shift Register (LFSR) pseudo-random generator is assumed to be sufficient for

random selection in HAoS, as it provides a well-balanced solution in terms of utilization,

throughput and randomness [178] for non-security applications, especially as a starting

point for the suggested prototype implementation. The implementation of the PRNG

block may be revised, should increased randomness quality is required, and replaced

with one of the more advanced approaches mentioned above.

Prior SC implementations used priority queues that either gave priority to systems that

had recently interacted [24] (in order to increase execution efficiency by enabling a

diffusion effect for subsequent interactions involving the same system) or had not

recently interacted [136] (ensuring a more ―fair‖ interaction allocation since all systems

share the same interaction probability). HAoS also uses a pseudo-random number

generator to randomly identify valid triplets but this operation is not biased by previous

interactions. All matching systems have the same interaction probability (resulting in

reduced control logic complexity) while, as explained above, the use of the TCAM

ensures maximum matching efficiency. While future work may target parallel processing

capabilities, true parallel interaction is currently not supported by HAoS, since writing to

the TCAM is limited to one system at a time in order to improve its area and enable

Chapter 3. Designing a Suitable Hardware Architecture for SC 93

ternary comparisons (assuming that parallel interactions would transform the interacting

system simultaneously).

A fully asynchronous design might enable the true implementation of the stochastic

property, but such an implementation would require that all systems, matching and

control circuitry and interconnections would be realized in combinatorial logic which

would pose a great area requirement and increase the possibility of timing hazards [179].

However, it is noted that ongoing research is been carried on providing practical

asynchronous FPGAs [180][181], conversion methodologies from synchronous designs

to their functional asynchronous equivalents [182] and hybrid approaches like Globally

Asynchronous Locally Synchronous [183] circuits.

3.2.8 SC Architectural Features Summary

The SC architectural features to be implemented by HAoS, and discussed in the previous

sections, are summarized in Table 3.2 along with the corresponding solutions used by

prior implementations. The analysis above addresses research challenge Chg2 by

explaining how HAoS will support the underlying architecture of SC.

Table 3.2. Implementation-specific features of HAoS and prior implementations

Feature Original SCoPE GPU HAoS

Implementation

Platform

Software

(CPU),

written in C

Software (CPU),

written in C++

Software (CPU),

hardware-

accelerated

(GPU), written

in CUDA

Hardware (FPGA),

written in VHDL,

supporting software

(CPU) extensions

(C/C++)

Word-length

16-character

word length,

1

byte/character

(systems

consist of 48

characters)

variable length

(1 byte/character),

customizable for

each program

16-character

word length,

1 byte/ character

(systems consist

of 48 characters)

16 4-bit characters

schemata length,

32 1-bit characters

function length

(systems consist

of 64 characters)

Coding Method

characters of

alphabet 29

(ASCII

characters 0,1

and ' to z)

customizable for

each program

(default is ASCII

characters # and

a to z)

characters of

alphabet 29

(ASCII

characters 0,1

and ' to z)

81 (3
4
)

(4 ternary bits each,

3 values each tbit)

ASCII characters

! to z excluding

characters 0 and 1

Transformation

Function Set

Thirty basic

functions

customizable for

each program,

functions defined

as C++ plugins

(DLLs)

Thirty basic and

seven hardcoded

application-

specific

functions

Basic, hardcoded

application-

specific and user-

defined functions

support

Chapter 3. Designing a Suitable Hardware Architecture for SC 94

Table 3.2.(Continued) Implementation-specific features of HAoS and prior implementations

Feature Original SCoPE GPU HAoS

Schemata

Matching

Method

Partial matching

against thresholds
Partial matching

Partial matching

against

thresholds

Parallel Partial

matching

Interactions

Order

Pseudo-Random

(Biased –

Prioritizes

recently changed

systems)

Pseudo-Random

(Biased –

Prioritizes

recently

unchanged

systems)

Pseudo-Random

(Biased –

Prioritizes

recently changed

systems)

Pseudo-

Random

(Unbiased)

Scope Definition

Method

Global Scope

Table

Local Scope

Simulation

(scopes

including a

system are part

of its definition)

Global Scope

Table

Global Scope

Table

As indicated by the design choices of the last column of Table 3.2, explained throughout

this chapter, HAoS attempts to optimize the efficiency versus flexibility trade-off,

providing the user with a flexible architecture which takes into consideration

performance and programmability in order to provide a practical solution, addressing in

this way research challenge Chg3.

3.3 HAoS Instruction Set

It is necessary to provide an instruction set for HAoS, and the solution proposed here is

to use an on-chip hardware-supported RISC-like set of simple functions. Furthermore, in

order to enhance flexibility, this core instruction set can be further extended by both

extra hardware-supported application-specific instructions or software-implemented

functions (see section 3.4). It is noted that a HAoS instruction does not share the

definition of an instruction found in a conventional ISA but rather expresses the type of

transformation that systems undergo when they interact. These interactions happen in a

random manner; the execution probability of each SC interaction depends solely in the

number and types of systems in the SC program.

The instructions are given by the transformation function (middle) part of a system (see

Figure 3.8). Their respective fields are explained in Table 3.3. In this prototype HAoS

implementation, the transformation function is given by a 32-bit field. The first (LSB) 22

bits give the function identifier, the next bit (at position ESC_BIT_POS) enables the

hardware-supported escaping functionality (to be explained later) which can be executed

in parallel with any instruction except the CAPTURE instructions (also to be explained

later), the next 8 bits are reserved (they may be used to store variables as part of the

Chapter 3. Designing a Suitable Hardware Architecture for SC 95

instruction) while the MSB enables the NOT functionality which reverses the matching

requirement of an instruction (when enabled, the systems that do not match the provided

schemata are selected).

Table 3.3. HAoS Instruction Fields

Bits Meaning

FUNCTIONID-2..0 (21..0) Function Identifier

ESC_BIT_POS (22) If Set Then system also escapes from parent scope

FUNCTIONSIZE-2..ESC_BIT_POS+1(30..23) Reserved (variable part)

FUNCTIONSIZE-1 (31) If Set then the matching requirement is reversed

The prototype implementation of HAoS supports the instruction set given in Table 3.4. It

is noted that this is an example instruction set, as more instructions can be supported

according to user requirements. Table 3.4 comprises three sections: the SC Core

hardware instructions which are supported natively from HAoS Function Unit (these

were supported in software by the prior fixed instruction-set SC implementations

[24][34]), SC Extra instructions, which are also implemented on-chip but can be

application-specific or realized outside the FU (e.g. on dynamically reconfigurable fabric

or DSP blocks) and software-based instructions implemented on the (on-chip or off-chip)

CPU (these instructions are defined to have an opcode above a predetermined threshold

in order to simplify HAoS control logic).

Table 3.4. HAoS Instruction Set

Mnemonic Code(hex) Short Description

Context

Adapter

Flag

Operation

SC Core HW Functions

NOP 0000000F No Interaction -
(Non-zero to differentiate from data

systems)

ESCAPE 0040000F

System escapes from parent scope

to all scopes the parent scope

belongs to

- Scopetable manipulation

ADD 00000001
Add schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 + sys2.sch2;

sys2.sch2 = 0;

SUBTRACT 00000002
Subtract schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 - sys2.sch2;

sys2.sch2 = 0;

MULT 00000003
Multiply schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 * sys2.sch2;

sys2.sch2 = 1;

DIV 00000004
Divide schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 / sys2.sch2;

sys2.sch2 = 1;

MOD 00000005
Modulo of schematas of

interacting systems
-

sys1.sch2 = sys1.sch2 % sys2.sch2;

sys2.sch2 = 1;

ISZERO 00000006
Check if schemata of system is

zero
-

if sys1.sch2 = 0 =>

SET sys1.sch1[schematasize-1]

AND 00000007
AND schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 AND sys2.sch2;

sys2.sch2 = sys1.sch2 AND sys2.sch2;

Chapter 3. Designing a Suitable Hardware Architecture for SC 96

Table 3.4. (Continued) HAoS Instruction Set

Mnemonic Code(hex) Short Description

Context

Adapter

Flag

Operation

SC Core HW Functions

OR 00000008
OR schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 OR sys2.sch2;

sys2.sch2 = sys1.sch2 OR sys2.sch2;

XOR 00000009
XOR schematas of interacting

systems
-

sys1.sch2 = sys1.sch2 XOR sys2.sch2;

sys2.sch2 = sys1.sch2 XOR sys2.sch2;

COPY 0000000A Copy parts of interacting systems

00
sys1.sch1 = sys2.sch1;

sys1.sch2 = sys2.sch2;

01 sys1.function = (sys2.sch2,sys2.sch1);

10 sys2.function = (sys1.sch2,sys1.sch1);

11 sys1.function = sys2.function;

ZERO 0000000B Zero parts of interacting systems

00
sys1.sch1 = 0; sys1.sch2 = 0;

sys2.sch1 = 0; sys2.sch2 = 0;

01 sys1.sch1 = 0; sys1.sch2 = 0;

10 sys1.sch1 = 0; sys1.sch2 = 0;

11
sys1.function = 0;

sys2.function = 0;

CAPTURE 0000000C

System is removed from parent

scope and captured to capturing

scope

- Scopetable manipulation

SC Extra HW Functions

ADDxc 00000011 Add schematas & exchange -
sys1.sch2 = sys1.sch2 + sys2.sch2;

sys2.sch2 = sys1.sch2;

ADDuc2 00000012
Add schematas but keep the second

unchanged
- sys1.sch2 = sys1.sch2 + sys2.sch2;

SC Example CPU Functions (Above SC_SW_THRESHOLD=512)

XESCAPE 00000200
Software emulation of ESCAPE

task
- Scopetable manipulation

XCAPTURE 00000201
Software emulation of CAPTURE

task
- Scopetable manipulation

PRINT 00000202 Print system in standard output - -

POWER 00000203 Exponentiation - sys1.sch2 = math.pow(sys1.sch2,sys2.sch2)

ROOT 00000204 Arithmetic root -
sys1.sch2 =

math.pow(sys1.sch2,(1.0/sys2.sch2))

KNAPSACK* 00000280
Knapsack Problem Related

Functions
- -

For each instruction, its mnemonic (codename), opcode (in hexadecimal notation), a

short description of the interaction they represent based on the Context Adapter Flag

(discussed below) and its operation (their effect on the state, data and scope of the

interacting systems) are given in the respective columns of Table 3.4. For example, the

Multiply instruction has MULT as a mnemonic, its opcode is 0x00000003 while schema

Chapter 3. Designing a Suitable Hardware Architecture for SC 97

2 of system 1 (sys1.sch2) gets the product of the multiplication of the schemata 2 of both

systems (sys1.sch2 * sys2.sch2) while schema 2 of system 2 is set to 1 (sys2.sch2 = 1).

Various systems parts are altered after an interaction according to the Operation column.

For some instructions there is the option to define a different type of interaction

depending on the type of the two interacting systems. This option is controlled by the

Context Adapter Flag - CAF (4th column). The CAF is a 2-bit field which states the

types (data or context) of the interacting systems. Each bit corresponds to one of the

system templates of a context adapter system (see Figure 3.8c). The LSB corresponds to

template 1 while the MSB corresponds to template 2. A set bit in the CAF implies a

context system template while a zero bit implies a data system template.

Thus, a context system is essentially a context adapter system with both its system

templates representing data systems (CAF = 00). When CAF is 01 or 10, the context

adapter system is in mixed mode with a data system interaction with a context system

and vice versa respectively, while when CAF is 11 two context systems interact.

Two instructions are SC-specific and perform scopetable manipulation meaning that they

alter the relationship or membership [24] of one system to another. These two

instructions are ESCAPE and CAPTURE and are both optimized to be executed natively

in HAoS.

The ESCAPE instruction moves the escaping system (which, by convention, is the

system that matches template 1) one level up in the membership hierarchy by removing

it from its parent scope (which is the active scope for the interaction) and then inserts it

to all the scopes that the parent scope belongs to (or parent scopes of its parent scope or

in short the grandparents). The grandparents are conveniently provided in parallel (as a

bus of length equal to the maximum number of scopes with set bits at the positions of the

grandparents), as a part of the scopetable (SCOPES OF SYSTEM - see Figure 3.11). The

ESCAPE task is further optimized by avoiding looping through all the possible scopes to

identify the grandparents but rather only the positions of set bits are selected (using

BITPOSSEL, see section 3.6.2) resulting in great performance gain.

The CAPTURE instruction, as the name implies, is the reverse of the ESCAPE task

where the captured system is removed from its parent scope and added in the scope of

the capturing system(s) which are selected based on matching template 2 of the

CAPTURE system. A less efficient software implementation of the scopetable

manipulation tasks is also provided to the user as an option (see Table 3.4).

Chapter 3. Designing a Suitable Hardware Architecture for SC 98

3.4 HAoS Architecture

Having provided an overview of the HAoS design and justified the choices with respect

to the research challenges, this section provides more detail of the implementation of the

architecture. HAoS consists of the SC core (CORE), the Control Unit (CU), the

Functional Unit (FU) and a set of configuration and data registers (REG BANK) for

communication with the optional CPU (see Figure 3.9).

Figure 3.9. HAoS Top-Level Architecture

The CORE contains the optimized logic for the parallel schemata matching and the

memory elements. The CU handles the execution sequence of the SC program and the

communication with the optional CPU. The REG BANK provides a control and debug

interface between the CPU and the local registers of the SC sub-modules. The FU

provides basic local processing functionality. A set of simple instructions is supported to

avoid expensive data transfers between the REG BANK and the CPU. The prototype

implementation includes only one FU, but future implementations can take advantage of

the plethora of DSP processing cores which are available on the FPGA, and give the

option to be used as a simple ALU each, to provide multiple parallel processing

resources.

The CPU is provided to the system in order to make more complex high-level functions

available. This functionality was available only in SCoPE [136], since the other

implementations had a fixed instruction set. This hardware architecture increases

flexibility by letting the user define new instructions, when this is necessary, in an

unrestricted way. The SC compiler, which preserves backwards compatibility with the

CORE

CU
FU

REG BANK

CONF/DATA REGS

CONF/DATA

REGS

CONTROL

FSM PROCESSING

UNITS

CPU

INTERFACE

CONF/DATA

REGS

FPGA

EMBEDDED

CPU

EXTERNAL

CPU

Chapter 3. Designing a Suitable Hardware Architecture for SC 99

compiler presented in [24], is written in C and translates SC source code in SC assembly.

Apart from the extra usability, the CPU in the prototype design is used to load the SC

assembly code into the memory elements of the CORE during initialization or in the case

of a hardware reset. A possible enhancement would be to provide the option for

assembly loading through an external memory card, thus making the CPU link

completely optional, depending on the high-level functionality requirements of the user.

The CPU can reside either on the FPGA, with the form of a soft IP processor

communicating with the design using a shared internal FPGA bus, or be an external

conventional processor connecting to the design through a standard communication

interface, as illustrated in Figure 3.9. Since the main SC program runs on the FPGA, the

CPU is used as a co-processor in HAoS.

A further performance and flexibility boost could be achieved if we take advantage of

the reconfigurability capabilities provided by the FPGA (see section 3.1.3). A set of user

defined pre-synthesized hardware functions can be stored on an external memory and

dynamically loaded when needed. This technique could be applied for applications that

do not frequently change the function part of contexts as reconfigurability speeds are

quite low and would require the use of an embedded CPU to handle the reconfiguration

of a reserved area on the FPGA.

3.5 The Control Unit

The CU handles the flow of the user-defined SC program. As systems can never be

destroyed, the program runs in theory indefinitely, although practically it halts when

systems become stable and no further interaction is possible
21

. The main control flow for

each iteration of the program can be seen in Figure 3.10.

Upon a hardware reset, the SC assembly code is loaded into the core. For each iteration

of the SC program, four consecutive steps are performed. A scope is randomly selected,

and then a valid triplet of systems is randomly chosen, the selected systems are retrieved

from memory, they interact (the actual computation is performed) and then the outcome

of the interaction (the computation results) is written back to memory (the random

system selection logic is described in the next section). At the end of each iteration, the

user is granted access to pause execution. This optional step is mainly provided in order

to facilitate the extraction of debug information. All the optimized low-level SC micro-

21

 This implies a closed system. The halting mechanism may be disabled for a SC program with

an open system which might receive input or communications from an external source.

Chapter 3. Designing a Suitable Hardware Architecture for SC 100

routines (for scope and memory manipulation) are available to ensure maximum

flexibility.

Figure 3.10. HAoS Program Control Flow : HAoS enters an infinite computation loop after

the SC program is loaded, which involves finding valid triplets and transforming the

selected systems

Various optimizations have been applied in order to ensure optimal performance. When

the selected context system gives a mismatch, meaning that both its schemata do not

match any two systems in the scope, it gets disabled and becomes an invalid context for

this scope to prevent future mismatches (see next section). Moreover, once a scope is

selected, if it contains less than three systems or of it does not contain any valid contexts

(any contexts that have not recently given a mismatch), it also gets disabled and becomes

an invalid scope until a new system is added to it. If all scopes have been disabled, no

further transactions can occur and the program halts.

3.6 The SC Core

The CORE is mainly responsible for the efficiency of the design due to the way it

handles the task of schemata matching. Its main components are the various memory

elements including the TCAM, the system memories, the scopetable memories, the

system status registers and the random selection logic, as illustrated in Figure 3.11.

Hardware

Reset

Select Context in Scope

Compare Schemata 1

Compare Schemata 2

All Systems

Stable?

Y

N

Context Found?

Y

N

Match?

Y

N

Match?

Y

N

CPU Access

Initialization

Load

Program

Compute

Infinite

Loop

Get Valid

Triplet

Store

Triplet

Transform

Write

Result

Select Valid

Scope
Halt

Chapter 3. Designing a Suitable Hardware Architecture for SC 101

Figure 3.11. HAoS Core basic building blocks

3.6.1 The Core Memory Elements

The full contents of a system are stored in two separate RAMs, one of them holds the

binary part while the other stores the ternary part (the ―don't care‖ bits). Since the

function part of a system is always binary, it is not stored in the ternary RAM. The

various parts of a system are located in the same address in all memories in order to

simplify the required address-decoding logic.

The global scopetable information is stored in three RAM-based structures. One of them

stores the systems that belong in each scope at the corresponding to the scope address,

the second stores the scopes that each system belongs to at the corresponding to the

system address while the third stores a mask for all the invalid contexts in a scope. The

first two structures, although effectively storing the same information, provide parallel

access to two different aspects of the scopetable (systems in scope and parent scopes of a

system).

The TCAM is loaded with the regions of the systems, which may be compared (see

Figure 3.12), during initialization. For data systems, the function part is always zero, so

only the binary representation of their two schemata may be compared while for context

systems only their function part (which is double the size of a schema) may be

compared. This implies that context systems can interact with other context systems or

SYSTEMS

IN SCOPE

SCOPETABLE

SCOPES

OF SYSTEM

MASK

BINARY

RAM

TERNARY

RAM

COUNTONES

LFSRDIVIDER

BITPOSSEL

RANDOM SELECTION LOGIC

M

U

X

SCH1

SCH2

ISDATA

ISCONTEXT

ISADAPTER

SYSTEM STATUS REGS

TCAM

VALID

SCOPES

SCOPES

WITH

CONTEXTS

CONTEXTS

L

O

G

I

C
SCOPES

L

O

G

I

C

CONF/DATA

REGISTERS

INVALID

CONTEXTS

IN SCOPE

L

O

G

I

C

Chapter 3. Designing a Suitable Hardware Architecture for SC 102

data systems, which greatly enhances functionality since it denotes that context adapting

(where context systems can interact with other systems and be changed) is supported (a

feature only supported previously in the highly flexible SCoPE implementation). Context

adapter systems may not interact with other systems in HAoS. The restriction of

comparing only parts of a system is posed by the fact that the TCAM resource

requirements increase really fast when the maximum number of supported systems is

scaled up.

Figure 3.12. The TCAM contents: Filled with the systems' regions that may be compared

3.6.2 The Random Selection Logic

The random selection logic (RSL) accepts a bus as an input and returns the address of a

randomly selected set bit. It consists of an optimized module that counts the set bits of

the bus, a maximal-length Linear Feedback Shift Register (LFSR) for pseudo-random

number generation, a combinatorial divider (which also performs integer division when

required in the Transform state - see Figure 3.10) and a module (BITPOSSEL) that given

a bus and the rank of a set bit of this bus (the position of the set bit with rank 2 is 3 in

01001101 - when rank starts from 0 and position 0 is the rightmost one), it returns its

position (inspired from an optimized implementation found in [184], combining a

parallel bit count and branchless selection method). A random number, provided by the

LFSR, is divided by the sum of the set bits of the bus. The remainder of this division is

used as the rank of the random set bit that is given to BITPOSSEL in order to identi fy its

position.

Counting the Set Bits

The COUNTONES block design implements a counter of the set bits of the input bus

(also known as sideways sum or population count [185]) using a divide-and-conquer

approach (inspired by a low-level software optimization presented in [184]). The parallel

bit-count is performed in log2N steps for an N-bit wide input bus (where N is a power of

two). In each step, the sum of adjacent groups of bits is calculated - the length of the

32bits

context (adapter) function

16 bits

 Schemata 1 Schemata 2

16 bits

(a) Data System

(b) Context / Context Adapter System

Chapter 3. Designing a Suitable Hardware Architecture for SC 103

groups of the first level is 2 and is doubled for every successive step. In the final step,

the total set bits sum is accumulated on the least significant bits of the bus.

This parallel bit count mechanism is illustrated in Figure 3.13 for an example 16-bit

input bus. Adjacent bits are summed to formulate the 2-bit fields in step 1. The resulting

pairs of bits are then summed to formulate the 4-bit bit-groups is step 2 which are in turn

summed to give the 8-bit sums of step 3. This is repeated until the final step 4, when the

final sum of set bits of the input bus (6 in this example) has been accumulated in the

LSBs of the output.

Figure 3.13. Parallel Bit Count Example. Adjacent bit groups are summed in successive

steps until the sum of all set bits is accumulated in the LSBs of the output. Using the partial

sums enables positioning a set bit given its rank (counting from right to left and starting

from 0)

The summation of the adjacent bit groups is implemented by first masking the right

group of bits in each bit group pair, then right shifting the bus by a number of bits equal

to the length of each bit group for the specific step and then masking the shifted version

and adding the two values.

This mask-and-shift approach is illustrated in Figure 3.14 explaining how the adjacent

bit-groups are summed in the first two steps of the example of Figure 3.13. Each step has

an associated mask (to isolate the target bit-group) and a related shifting constant. For

step 1, the mask follows the pattern 0x0505 and the shifting constant is 1. The two

versions of the input bus which are added to get the output of step 1 are obtained: one by

ANDing it with the mask and the other by shifting it by the shifting constant (1) and then

Input Bus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000000000000110

Step 1

Step 2

Step 3

Step 4

001 0100100000 111

0001010101 1000 00

0001001000100001

0000001100000011

Chapter 3. Designing a Suitable Hardware Architecture for SC 104

masking it. The same actions are performed in each step. As shown in Figure 3.14, in

step 2 the mask follows the pattern 0x0303 and the shifting constant is 2.

Figure 3.14. Shift-and-Add implementation of the parallel bit-count mechanism (only two

steps shown). A mask and a shifting constant correspond to each step. Two versions of the

input of each step are obtained and added: one by masking it and the other by first shifting

it and then masking it

Effectively with this method we position the left bit group in each adjacent bit group pair

under the right one in order to perform the addition of their set bits. The approach is

scalable to any input bus width. However, the implied adder tree for long input buses

will increase the latency of the unit when implemented in a purely combinatorial way.

However, this does not impose a problem, as the critical path of the COUNTONES block

can be refined using pipelining later, being fine-tuned according to the critical path of

the whole design.

The Divider

The hardware divider implements a slightly modified restoring division algorithm.

Restoring division algorithms [186] compare part of the dividend with the divisor and

when that specified part of the dividend is greater than the divisor (their difference is

positive), they set the corresponding bit in the quotient and pass the difference in the

next stage. If the difference is negative, the result is restored to the value of the partial

dividend prior to the subtraction before being passed in the next stage. In the hardware

Input BusP O N M L K J I H G F E D C B A

Step 1 OutputA+BC+DE+FG+HO+P K+LM+N I+J

A+B+C+DE+F+G+HI+J+K+LM+N+O+P

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 M 0 K 0 I 0 G 0 E 0 C 0 A

P 0 N 0 L 0 J 0 H 0 F 0 D 0 B0

O

+

1100110000 0011 11

A+B00E+F0000 00M+N I+J

C+D00G+HO+P K+L00 00+ 00

Step 1 Mask

Masked Input Bus

Shifted (by 1) & then

Masked Input Bus

Step 2 Output

Step 2 Mask

Masked Step 1

Output

Shifted (by 2) & then

Masked Step 1 Output

Chapter 3. Designing a Suitable Hardware Architecture for SC 105

divider of the RSL, both the comparison and the subtraction are performed by the same

logic. Left-shifted versions of the divisor are given as input to the successive (16 in this

prototype) stages of the division logic, each stage being responsible for generating one

bit of the quotient. The remainder of the division is the (positive) comparison result of

the last stage. Where typical restoring division implementations add the divisor back to a

negative comparison result in order to restore a negative intermediate result to a positive

value (as only positive values are propagated to the next stage), in this design a

multiplexer is used instead. A block diagram of the divider (excluding some logic

handling signed numbers), its individual stages and their corresponding inputs are given

in Figure 3.15.

Figure 3.15. HAoS Divider based on a modular approach. Each stage gives one bit of the

quotient. The design essentially unrolls the loop of the classic shift-and-subtract method and

can be further fine-tuned to balance its latency and throughput

As opposed to restoring division algorithms, non-restoring algorithms waive the

restriction of accepting only positive partial remainders, saving the restoring step.

However these algorithms need an additional step in the final stage to restore a possible

St15

Ri+1

Li

Ri

Qi

32

32

32

1

R(16:0) - L(16:0)

L(31:16) == 0

diff(16:0)
diff(16) == 0

1

0

M

U

X

ZeroExtend17

17

32

17

32

1

R16

L15

R15

L14

R14

Q14

R13

Q13

R1

L0

R0

Q0

St14 St0

Q15

L13

0151631

A00...0 R16

L000...0 B

L1 = L0 << 100...0 B 0

L2 = L0 << 200...0 B 00

00...0B

00...00 B

L15 = L0 << 15

L14 = L0 << 14

Division Stage
Division Stage Inputs

16-bit Divider made by 16 identical stages

St13

Rem

A B

<<ZeroExtend

Chapter 3. Designing a Suitable Hardware Architecture for SC 106

negative final remainder. Both restoring and non-restoring algorithms belong in the digit

recurrence family of algorithms [186] which generally rely on subtraction to perform

division. Other approaches involving pre-normalization of the division operands (SRT

algorithms) and/or use of higher radixes to give multiple quotient bits in each step are

also commonly found in the literature along with division algorithms based on

multiplication (division by convergence or reciprocation using Taylor series expansion

and Newton-Raphson or Goldschmit approximation) [187][188]. The non-restoring

algorithm was selected to implement the required divisions in HAoS due to its

simplicity, scalability and the ability to easily fine-tune its critical path according to the

overall latency of the complete design at a later stage.

Random Number Generation

The choice of using an LFSR for random number generation is discussed in section

3.2.7. The implementation of the LFSR is straight-forward as it typically involves a shift

register either with a feedback line to one of its most or least significant bits, resulting by

XORing some of its bits, called taps, for external feedback (Fibonacci LFSRs), or

XORing the bits in the tap positions with the serial output resulting this way in internal

feedback (Galois LFSRs) [174]. The arrangements of the taps correspond in finite field

arithmetic to a polynomial mod 2 (its coefficients may be 0 or 1). The LFSR will be

maximal-length (with maximum period before the output repeats) for a set of well-

defined primitive polynomials [189]. HAoS uses a Fibonacci LFSR and its design

ensures the maximal-length property for any number of maximum supported systems as

it always implements an appropriate primitive polynomial.

Figure 3.16. 16-bit Fibonacci and Galois type LFSRs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

001 0100100000 111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

001 0100100110 01

Fibonacci LFSR

Galois LFSR

0

Chapter 3. Designing a Suitable Hardware Architecture for SC 107

Finding the position of a set bit given its rank

The BITPOSSEL block returns the position of a set bit of its input bus given its rank

again based on a divide-and-conquer approach, similar to the one discussed above for

counting the set bits. Using Figure 3.13 to explain the operation of BITPOSSEL for an

example input bus of 16 bits, we again perform a parallel bit count keeping all the

intermediate steps. As seen in Figure 3.13 the input value is 0100110010011000. As

previously mentioned, the desired rank is the remainder of the division of a random

number from the LFSR with the sum of set bits from COUNTONES. For this particular

example, we will suppose that the desired rank is 3 (starting counting from 0).

Since the partial sums are known for each step in Figure 3.13 (the selected bit-groups in

the following analysis are highlighted with a bold outline), starting from bottom up

(from the last step), we set a virtual pointer (which will hold the position of the desired

bit according to the rank in the end) at position 0 and then the desired rank is compared

with the total number of set bits. Since the rank is less than the total sum, we move to the

previous step (if it was greater or equal, that would imply that there would not be a set

bit corresponding to the requested rank). Looking at step 3 of Figure 3.13, three set bits

(00000011) exist on the left half of the bus and another three on the right half. If the

requested rank is less than the bit sum of the right group, it means that the targeted set

bit is part of that group. In this case we would select that group and leave the virtual

pointer unchanged. However, since for our example the desired rank is 3, this implies

that the requested bit lies on the left half. When the desired rank is greater or equal to the

sum of the right (least significant) bit group, we select the left group, we move the

virtual pointer at the middle (add to it a value equal to the length of each bit group at the

current step - at step 3 the length is 8) and subtract the bit sum of the right half from the

rank. So, now the virtual pointer gets the value old virtual pointer + bit-group length = 0

+ 8 = 8 and the rank becomes old rank - right group sum = 3 - 3 = 0.

Following the same methodology, moving to the previous step (step 2), the rank (now 0)

is less than the bit sum of the right part (which is equal to 2), so the right part is selected

and both the rank and the virtual pointer remain unchanged (rank = 0, pointer = 8). In the

next step up (step 1 with bit-group length 2), the rank is equal to the sum of the right part

(which is 0), so the left part is selected, the rank becomes old rank - right group sum = 0

- 0 = 0 and the virtual pointer gets the value old virtual pointer + bit-group length = 8 +

2 = 10. In the last step examining the input bus, the rank (0) is less than the right bit (1),

so that bit is selected and the virtual pointer remains unaltered giving its position (10).

Chapter 3. Designing a Suitable Hardware Architecture for SC 108

As easily noticed, this bit is the targeted bit with rank 3 and the virtual bit position

pointer contains its location (counting from right to left the bit with rank 0 is at position

3, the bit with rank 1 is at position 4 and bit with rank 2 is at position 7).

RSL functionality

The function of the RSL (the result of the selection) is controlled by a multiplexer

(MUX) which feeds the RSL with one out of five possible input buses (see Figure 3.11).

When we need to choose a system that matches the first schema of the context , the input

bus (SCH1) is generated by ANDing the output of the TCAM with valid SYSTEMS IN

SCOPE (which of them are valid depends on the type of the context system and is

identified based on the SYSTEM STATUS REGS). The same bus is used for the second

schema match (SCH2) after masking out the selected system for SCH1 (a system may

not interact with itself). When a random scope is needed the input bus (SCOPES) is the

result of ANDing valid scopes (scopes with more than two systems) with scopes with

contexts (scopes that are not disabled at that time). Finally, when we need to randomly

identify a context in a previously selected scope, the input bus of the SRL is generated

by ANDing the contexts in the scope (ISCONTEXT status register AND SYSTEMS IN

SCOPE) with INVALID CONTEXTS IN SCOPE (in order to mask out previously used

contexts that resulted in a mismatch). The fifth input of the MUX serves a low-level

optimization for the ESCAPE task, as mentioned in section 3.3.

3.7 Programming HAoS

The HAoS programming model is based on the one of the original implementation [24].

This decision was made in order to retain backwards compatibility with prior

implementations and take advantage of the available SC language definition and

accompanying compiler. The SCoPE platform [190] was also considered, but it was

decided that the original version was more suitable for the prototype HAoS architecture

due to its simplicity and more hardware-suitable resulting assembly code. However,

some functionality of the SCoPE platform (like high-level function plugins generation) is

supported by HAoS to increase its user-friendliness and flexibility. The SC source code

(see Listing 3.1) of the simple PRINT((A1-A2)*(A3-A4)) program that was discussed in

section 2.3 (Figure 2.11A-C) is given below as a programming example.

The user should first state the transformation functions which are embedded in the

context and context adapter systems of the program. This is done by using the keyword

―function‖, the name of the function and its 32-bit binary opcode (Listing 3.1, lines 4-6).

Chapter 3. Designing a Suitable Hardware Architecture for SC 109

1. #systemic start

2.

3. // define the functions

4. #function SUBTRACTe %b01000000000000000000001000000000

5. #function MULT %b11000000000000000000000000000000

6. #function PRINT %b01000000010000000000000000000000

7.

8. // define some useful labels

9. #label dontcare %b????????????????

10. #label num1 %b1000000000000000

11. #label num2 %b0100000000000000

12. #label num3 %b1100000000000000

13. #label num4 %b0010000000000000

14. #label scp %b1111111111111111

15.

16. #label zero %b00000000000000000000000000000000

17.

18. // and the program begins here:

19. main (scp %d0 %d0) // system 0

20. // system 1

21. minus ([num1 zero dontcare] SUBTRACTe(0,0) [num2 zero dontcare])

22.

23. c1 (scp %d0 %d1) // system 2

24. data1 (num1 %d0 %d10) // system 3

25. data2 (num2 %d0 %d3) // system 4

26.

27. #scope c1

28. {

29. data1

30. data2

31. minus // 10-3=7

32. }

33.

34. c2 (scp %d0 %d2) // system 5

35. data3 (num1 %d0 %d16) // system 6

36. data4 (num2 %d0 %d4) // system 7

37.

38. #scope c2

39. {

40. data3

41. data4

42. minus // 16-4=12

43. }

44.

45. // system 8: 12*7=84

46. times ([num1 zero dontcare] MULT(0,0) [num1 zero dontcare])

47. output ([num1 zero dontcare] PRINT(0,0) [num1 zero dontcare]) //sys 9

48.

49. #scope main

50. {

51. c1

52. c2

53. times

54. output

55. }

56.

57. #systemic end

Listing 3.1. HAoS Source Code Example: PRINT((10-3)*(16-4))

Then the user can optionally define labels (Listing 3.1, lines 9-16), equivalent to

constants of conventional programming languages, which can be used instead of

Chapter 3. Designing a Suitable Hardware Architecture for SC 110

frequently used immediate values. Then, the systems and scopes are defined. Data

systems are defined by their name and the values of their schemata while their function

part is always zero (Listing 3.1, lines 19, 23-25, 34-36). Context systems define their

schematas either by using the data system definition method (Listing 3.1, lines 21, 46-

47) or by referencing other data systems.

// number of functions

3

// number of systems

10

// scope table

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

// function definitions

SUBTRACTe 01000000000000000000001000000000

MULT 11000000000000000000000000000000

PRINT 01000000010000000000000000000000

// system definitions

1111111111111111 00000000000000000000000000000000 0000000000000000

@!!!!!!!!!!!zzzz 01000000000000000000001000000000 /!!!!!!!!!!!zzzz

1111111111111111 00000000000000000000000000000000 1000000000000000

1000000000000000 00000000000000000000000000000000 0101000000000000

0100000000000000 00000000000000000000000000000000 1100000000000000

1111111111111111 00000000000000000000000000000000 0100000000000000

1000000000000000 00000000000000000000000000000000 0000100000000000

0100000000000000 00000000000000000000000000000000 0010000000000000

@!!!!!!!!!!!zzzz 11000000000000000000000000000000 @!!!!!!!!!!!zzzz

@!!!!!!!!!!!zzzz 01000000010000000000000000000000 @!!!!!!!!!!!zzzz

Figure 3.17. Human-readable HAoS Assembly Code for PRINT((10-3)*(16-4)) Example

Program

Their transformation function is defined by referencing one of the declared functions.

Context adapter systems are defined as context systems do, but their schemata can also

be a context system prototype (having a non-zero function). Two numeric fields (in

parentheses) follow the function of a system. These were used in the original version to

define the matching thresholds and are preserved here for backwards compatibility. All

functions support the (matching polarity) NOT functionality (see section 3.3) by having

an exclamation mark following the parentheses. By convention, all functions that include

the ESCAPE functionality (see end of section 3.3) have the suffix -e (SUBTRACTe

denotes the ESCAPE-enabled SUBTRACT function).

Chapter 3. Designing a Suitable Hardware Architecture for SC 111

A scope is defined by the ―scope‖ keyword and the systems that belong to it in brackets

(Listing 3.1, lines 27-32, 38-43 and 49-55). It is noted that all systems, regardless of

their type, have a scope, meaning the ability of including other systems within them. If

the scope of a system is not defined in the program, then this system does not contain

any other system, and all its corresponding entries in the scopetable are zero.

When the source code of Listing 3.1 is compiled, the annotated HAoS assembly

language of Figure 3.17 is generated. As mentioned in the compiler related discussion of

section 3.2, the parts of the assembly code that are loaded on HAoS are the global

scopetable and system definitions. The scopetable, which contains a number of rows and

columns equal to the maximum number of supported systems (equal to 64 for this

prototype HAoS implementation), is partially shown in Figure 3.17 as the remaining

entries are all zero. Context schemata are compressed according to the mapping given in

Table 3.1.

SUBTRACTe {HAoS}:

sys1@3(sch1:1,k:0,sch2:10) - sys2@4(sch1:2,k:0,sch2:3) =>

sys1(sch1:1,k:0,sch2:7),sys2(sch1:2,k:0,sch2:0) <sc:2,cxt:1,it:1>

SUBTRACTe{HAoS}:ESC:sys(3) from scope(2) to scope(s)(pos:0)

<sc:2,cxt:1,it:1>

SUBTRACTe {HAoS}:

sys1@6(sch1:1,k:0,sch2:16) - sys2@7(sch1:2,k:0,sch2:4) =>

sys1(sch1:1,k:0,sch2:12),sys2(sch1:2,k:0,sch2:0) <sc:5,cxt:1,it:2>

SUBTRACTe {HAoS}: ESC : sys(6) from scope(5) to scope(s)(pos:0)

<sc:5,cxt:1,it:2>

PRINT {CPU}: sys2@6{12:-:1}, sys1@3{7:-:1} <sc:0,cxt:9,it:3>

PRINT {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:4>

PRINT {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:5>

PRINT {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:6>

PRINT {CPU}: sys2@6{12:-:1}, sys1@3{7:-:1} <sc:0,cxt:9,it:7>

MULT {HAoS}: sys1@6(sch1:1,k:0,sch2:12)* sys2@3(sch1:1,k:0,sch2:7)

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1) <sc:0,cxt:8,it:8>

PRINT {CPU}: sys2@6{84:-:1}, sys1@3{1:-:1} <sc:0,cxt:9,it:9>

PRINT {CPU}: sys2@6{84:-:1}, sys1@3{1:-:1} <sc:0,cxt:9,it:10>

MULT {HAoS}: sys1@6(sch1:1,k:0,sch2:84)* sys2@3(sch1:1,k:0,sch2:1)

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1) <sc:0,cxt:8,it:11>

MULT {HAoS}: sys1@6(sch1:1,k:0,sch2:84)* sys2@3(sch1:1,k:0,sch2:1)

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1) <sc:0,cxt:8,it:12>

Figure 3.18. HAoS Sample Output from the Simulation Environment for the PRINT((10-

3)*(16-4)) Example Program

Chapter 3. Designing a Suitable Hardware Architecture for SC 112

Finally, a sample of the output (with extended debugging information obtained by the

verification environment - section 3.8.1) of the example program, discussed above, is

shown in Figure 3.18. The annotations from Figure 3.18 and Listing 3.1 are given in

different font without parentheses in the analysis below for clarity.

At iteration 1 it:1, the system defined at position 1 (indexes start at 0), called from now

on system 1 for simplicity, is selected as context cxt:1 in the scope of the system at

position 2, called from now scope 2, sc:2. System 1 is the second system under

―systems definitions‖ in Figure 3.17 and corresponds to the system which is called minus

and defined at line 21 of Listing 3.1. Once the context and active scope systems are

selected HAoS performs a number of actions, listed below:

 Two data systems are selected according to the schemata of the minus context.

 System 3 is selected as the first interacting system sys1@3 because its definition

data1 (num1 %d0 %d10), Listing 3.1, line 24 - also found as

(sch1:1,k:0,sch2:10) in Figure 3.18 - matches the prototype which is defined

by schema 1 of the minus context [num1 zero2 dontcare], Listing 3.1, line 21.

 System 4 is selected as the second interacting system sys2@4 because its

definition, data2 (num2 %d0 %d3), Listing 3.1, line 25 - shown as

(sch1:2,k:0,sch2:3) in Figure 3.18, matches the prototype which is defined

by schema 2 of the minus context [num2 zero2 dontcare], Listing 3.1, line 21.

 After the subtraction (10-3=7), the result is stored in the first interacting system

=> sys1(sch1:1,k:0,sch2:7) while the second interacting system gets value

zero sys2(sch1:2,k:0,sch2:0) according to the operation of SUBTRACT

instruction in Table 3.4.

 However, since the transformation function is SUBTRACTe, the first interacting

system, which is system 3 (ESC:sys(3)), escapes from the active scope, which

for this iteration is scope 2 from scope(2) to the scope(s) that the active scope

belongs to (see Figure 2.11B). According to the third line of the scopetable (see

Figure 3.17), this is scope 0 to scope(s)(pos:0) because there is only one bit

set in this line, which is the line which corresponds to the scope of system 2, and

this bit is at position 0. If more than one bit were set, this would indicate that the

active scope would belong to more than one scope, and it would escape to all of

them.

 Finally, since system 3 has escaped from scope 2, or scope c1 (Listing 3.1, line

27), this scope now contains only two systems (data2 and minus) which cannot

Chapter 3. Designing a Suitable Hardware Architecture for SC 113

define a triplet and, thus, no interaction can happen in it. HAoS detects this and

disables scope 2.

In a similar way, skipping the detailed analysis, during iteration 2 it:2, system 6

sys1@6(sch1:1,k:0,sch2:16) interacts with system 7 sys2@7(sch1:2,k:0,sch2:4)

by means of subtraction, and the result (16-4=12) is stored in system 6

=>sys1(sch1:1,k:0,sch2:12) while system 6 also escapes from the active scope 5 ESC

: sys(6) from scope(5) to scope 0. Scope 5 now contains only two systems, so it is

disabled.

Since scopes 2 and 5 have been disabled, interactions can only occur in scope 0. While

the two previous SUBTRACTe interactions were executed on HAoS ({HAoS}: in Figure

3.18), the next five are PRINT interactions, which just show the contents of the

interacting systems, are executed on the CPU ({CPU}:). Each system is printed according

to interacting system @ position (schemata2 : transformation function (-

if zero) : schemata 1. Eventually the times context (Listing 3.1, line 46) is selected,

system 6 interacts with system 3 and the expected product (12*7=84) is stored in system

6 (see Figure 2.11C). From then on, the systems in scope 0 continue interacting for ever

without further noteworthy changes to their contents.

3.8 Initial Testing

Before the final design is implemented and tested in silicon, it is possible to verify its

functional behaviour and assess its performance by using standard industry EDA tools.

The selected FPGA evaluation board to implement HAoS is the Xilinx ML605 board.

HAoS was described in VHDL and synthesized targeting the on-board Virtex-6 LX240T

FPGA device by using the Xilinx ISE v13.3 design suite. The verification environment

was written in SystemVerilog and Mentor Graphics QuestaSim was used for simulation.

3.8.1 Functional Verification

In order to achieve system-level functional coverage closure, a series of SC programs

were designed to test and stress the design in various ways. The collection of these SC

test programs is given in Table 3.5. As shown, basic (the core transformation functions

and scope handling) and more advanced (context adapting, sequential flow emulation,

high-level user-defined functions) functionality is verified, targeting mainly research

challenge Chg2 (SC architecture support).

Chapter 3. Designing a Suitable Hardware Architecture for SC 114

An indicative set of test programs is further explained below and their SC source code is

given in Appendix A (the source code for all test programs can be found in the official

HAoS webpage [191]). For each reviewed test program, an excerpt from the verification

environment output, validating the functional correctness of the design, and their

corresponding SC graphical notations are given in Listing 3.2 and Figure 3.19

respectively. The three test programs, selected as verification examples here, are:

Table 3.5. Simulated SC test programs

Systems Description of the SC Test Program Functions Used

20 Additions in 4 different scopes ADD

20
Dummy program testing all basic non-escape transformation functions in one

scope. Eventually all systems are killed (zeroed)

All non-escaping core HW

functions

20
Dummy program testing basic escape transformation functions. Systems interact

and escape from various scopes into the same and then, they are printed

ADDe, MULTe, MODe,

SUBe, DIVe, PRINT

20 Systems escape from scope. Then multiplied & result printed ESCAPE, MULT, PRINT

20 Systems subtract & escape from scope. Then multiplied & result printed SUBe, MULT, PRINT

9 Incrementing counter example (testing capture functionality)
ADDe, PRINT,

CAPTURE, OR

6 Optimized incrementing counter using scopes to control the sequential flow ADDuc2e, CAPTURE

4 Extra optimized incrementing counter using just one context ADDuc2

12 Systems escape and multiplied based on NOT functionality ESCAPE, MULT, PRINT

24
Two systems subtract-escape from different scopes to main scope and then

they are recaptured back in the same initial sub-scopes

SUBe, CAPTURE,

MULT, PRINT, ESCAPE

24 Same as above but also testing a scope included in itself same as above

25
Subtraction context systems are transformed to addition context systems by a
COPY context adapter

ADD, SUB, COPY

37
Subtraction-escape context systems are transformed to addition systems by

COPY context adapter
ADD, SUBe, COPY

39
Subtraction systems are transformed to addition systems by a context adapter

and then they are killed (transformed to NOP)
ADD, SUB, COPY

41
Subtraction systems are transformed to addition systems by a context adapter

and then they are transformed back to subtraction systems
ADD, SUB, COPY

37
Mixed-mode context adapter transforms subtraction contexts to data systems

which interact with other data systems
ADD, SUB, COPY

37
Mixed-mode context adapter transforms subtraction contexts to data systems

and then retransforms the data systems back to context systems

ADD, SUB,

COPY, ZERO

33
Part of schemata 1 of a context is changed. This change makes it match

(previously unmatching) data systems
ADD, ZERO

12 Fibonacci numbers generator (using a special add-and-exchange context)
ADDxce, COPY, PRINT,
CAPTURE

58 A 16-element binary knapsack problem solver based on a genetic algorithm22

user-defined: INIT,

OUTPUT,

CROSSOVER,
MUTATE

22

 Further explained in section 5.1

Chapter 3. Designing a Suitable Hardware Architecture for SC 115

 Test1: Tests simple interactions in multiple scopes (using systems in 4 different

scopes). The expected sums are 1024, 1155, 1187 and 1200 for scopes 0, 1, 2 and 3

respectively.

 Test2: Tests interactions involving escaping. Systems resulting after subtraction in

scopes c1 (10-3=7) and c2 (16-4=12) escaping to the parent scope main and get

multiplied to give 84 as a final result.

 Test3: Tests context adapting - transformation of context systems through a context

adapter. Here, a COPY adapter transforms subtraction contexts into addition by

performing binary copy of their contents, so after all the transformations only

addition interactions are possible.

Selected Output from Test1:
#431820ns :: PRINT {CPU}: sys2@17{1024:-:1}, sys1@16{0:-:1} <sc:0,cxt:19,it:19>

#489260ns :: PRINT {CPU}: sys2@9{1187:-:1}, sys1@10{0:-:1} <sc:2,cxt:19,it:32>

#611340ns :: PRINT {CPU}: sys2@7{1200:-:1}, sys1@5{0:-:1} <sc:3,cxt:19,it:61>

#789420ns :: PRINT {CPU}: sys2@15{1155:-:1}, sys1@14{0:-:1} <sc:1,cxt:19,it:104>

Selected Output from Test2:
#427580ns ::SUBTRACTe{SCC}: sys1@11(sch1:1,k:0,sch2:16) SUB sys2@12(sch1:2,k:0,sch2:4)

=> sys1(sch1:1,k:0,sch2:12),sys2(sch1:2,k:0,sch2:0) <sc:10,cxt:9,it:1>

#427580 ns ::SUBTRACTe{SCC}: ESC : sys(11) from scope(10) <sc:10,cxt:9,it:1>

...

#436620ns ::SUBTRACTe{SCC}: sys1@2(sch1:1,k:0,sch2:10) SUB sys2@3(sch1:2,k:0,sch2:3) =>

sys1(sch1:1,k:0,sch2:7),sys2(sch1:2,k:0,sch2:0) <sc:1,cxt:9,it:4>

#436620ns ::SUBTRACTe{SCC}: ESC : sys(2) from scope(1) <sc:1,cxt:9,it:4>

...

#443420ns ::MULT {SCC}: sys1@2(sch1:1,k:0,sch2:7) TIMES sys2@11(sch1:1,k:0,sch2:12) =>

sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1) <sc:0,cxt:18,it:7>

#468940 :: PRINT {CPU}: sys2@2{1:-:1}, sys1@11{84:-:1} <sc:0,cxt:19,it:14>

Selected Output from Test3:
#602540ns ::SUBTRACT {SCC}: sys1@13(sch1:3,k:0,sch2:1030) SUB sys2@5(sch1:3,k:0,sch2:110)

=> sys1(sch1:3,k:0,sch2:920),sys2(sch1:3,k:0,sch2:0) <sc:0,cxt:19,it:1>

606220ns ::SUBTRACT {SCC}: sys1@6(sch1:3,k:0,sch2:120) SUB

sys2@12(sch1:3,k:0,sch2:1020) => sys1(sch1:3,k:0,sch2:-900),sys2(sch1:3,k:0,sch2:0)

<sc:0,cxt:21,it:2>

...

#656us ::COPY{SCC}:sys1@22(sch1:61441,k:2,sch2:61441) CP

sys2@23(sch1:61441,k:1,sch2:61441) =>

sys1(sch1:61441,k:1,sch2:61441),sys2(sch1:61441,k:1,sch2:61441) <sc:0,cxt:24,it:17>

#687us ::COPY{SCC}:sys1@19(sch1:61441,k:2,sch2:61441) CP

sys2@22(sch1:61441,k:1,sch2:61441) =>

sys1(sch1:61441,k:1,sch2:61441),sys2(sch1:61441,k:1,sch2:61441) <sc:0,cxt:24,it:27>

...

#749260ns ::ADD {SCC}: sys1@12(sch1:3,k:0,sch2:0) PLUS sys2@13(sch1:3,k:0,sch2:940) =>

sys1(sch1:3,k:0,sch2:940),sys2(sch1:3,k:0,sch2:0) <sc:0,cxt:21,it:46>

#752940ns ::ADD {SCC}: sys1@7(sch1:3,k:0,sch2:0) PLUS sys2@11(sch1:3,k:0,sch2:0) =>

sys1(sch1:3,k:0,sch2:0),sys2(sch1:3,k:0,sch2:0) <sc:0,cxt:23,it:47>

#755980ns ::ADD {SCC}: sys1@5(sch1:3,k:0,sch2:0) PLUS sys2@12(sch1:3,k:0,sch2:940) =>

sys1(sch1:3,k:0,sch2:940),sys2(sch1:3,k:0,sch2:0) <sc:0,cxt:17,it:48>

Listing 3.2. Selected output from the 3 example SC test programs verifying the functionality

of HAoS by simulation. Refer to section 3.7 to be reminded how to extract all the

information from the output of the verification environment. In this listing, the parts that

verify the functionality of the design according to the expected results, as they are given in

the bullet descriptions of the test programs above, are emboldened: (Test1) the expected

final result is printed in each correct scope, (Test2) the expected subtractions (16 SUB 4 =>

12 and 10 SUB 3 => 7) and escapes (ESC) lead to the correct multiplication (7 TIMES 12 =>

84) and the expected result (84) is printed (PRINT), (Test3) While initially only subtractions

(SUBTRACT) are performed, the transformation function of addition (k:1) is copied (CP) in all

subtraction contexts (k:2), so in the end only additions happen (ADD)

Chapter 3. Designing a Suitable Hardware Architecture for SC 116

Figure 3.19. The three verification example SC programs

ADD

1000

130

130

130

13

ADD

1000

25

130 32

ADD

1000

25

130

ADD

25

130Scope 0

Scope 1

Scope 2

Scope 3

SUBe

140

110

130

3

10

MULT

Scope c1

150

120

0

7

SUBe

1040

1010

1030

4

16

Scope c2

1050

1020

0

12

84

PRINT

SUB

120

10

1010

140

130

ADD

1050

4

110

1030

COPY

150

1040

16

SUB

1020

3
ADD

Test1

Test2

Test3

Chapter 3. Designing a Suitable Hardware Architecture for SC 117

It is also noted that the equivalent of a conventional program (like a counter) can be

executed by HAoS (sequential flow emulation). However, as the architecture is designed

to model parallel systems, it can just simulate such sequential programs (experimental

results show that although the prototype runs at approximately 1% of the speed of a

modern Intel i7 core clocked at 2GHz, counts up in average 500 times slower).

Successful simulation results, similar to the ones given in Listing 3.2, have been

obtained for all test programs of Table 3.5. Thus, the system passed all the functional

verification tests, proving this way the validity of the design.

3.8.2 Implementation Statistics

Xilinx design tools provide accurate area and timing implementation statistics. Thus, we

can present precise performance metrics before downloading the design on the FPGA.

As shown in Table 3.6, the prototype design occupies just 15% of available slices (10%

of slice LUTs and 1% of slice registers), 23% of available I/O blocks and just 1% of

available RAM. HAoS is divided into two clock domains : the REG BANK, which is

connected to the CPU INTERFACE (see Figure 3.9), runs on a higher clock rate (100

MHz) in order to provide faster read/write operations to the CPU, while the rest of the

design is clocked in a (8 times) slower rate. The performance of the design of this initial

stage is increased later by various enhancements and optimizations (detailed in the next

chapter).

Table 3.6. HAoS Prototype (64 systems) Implementation Statistics on Virtex-6 LX240T

FPGA. Excludes the CPU interface and the optional on-chip CPU

 Used Available %

Slices 5759 37680 15

Slice LUTs 15487 150720 10

Slice Registers 6019 301440 1

I/O Blocks 143 600 23

RAMs 5 416 1

DSP Blocks 1 768 1

3.9 Summary

In this chapter, the first Hardware Architecture of Systemic computation (HAoS) was

introduced. An investigation was presented on how a hardware design can practically

encompass the architectural properties of SC, addressing research challenge Chg2, while

the support for several of the natural properties of Table 1.1 are also discussed,

addressing Chg1. A number of FPGA-based potential architectures were initially

Chapter 3. Designing a Suitable Hardware Architecture for SC 118

considered while section 3.2 explained the design decisions that lead to the base HAoS

system and instruction set, presented in sections 3.3-3.6.

HAoS is a custom but generic computer architecture implementing the SC paradigm. In

contrast to conventional architectures that sequentially execute a set of instructions, it

defines a pool of operands and operations, which in SC terms are systems and

transformation functions, and detects in a parallel fashion which of them may result in an

operation, or SC interaction, based on enabling patterns, or SC schemata, embedded in

the operands. HAoS accomplishes this parallel detection by using a Ternary Content

Addressable Memory, which matches templates of potential interacting systems to the

available systems defined by the SC program.

A basic programming model was presented in section 3.7 while the functional behaviour

of the first systemic processor is verified using a set of test programs, covering various

scenarios, presented in section 3.8 along with initial implementation estimates. The base

HAoS system is optimized and extended to a complete SC programming platform in the

next chapter, resulting to an increase in efficiency and user-friendliness, and thus making

our solution more practical and viable.

119

Chapter 4

The HAoS Programming Platform

Having verified the core functionality of the base design by simulation in section 3.8.1,

the next steps are to investigate the most suitable, considering current technologies,

implementation for the communication interface to the optional CPU, further optimize

the performance of HAoS and complete the design by providing the CPU, its interface to

HAoS and supporting development software in order to have a complete, viable and

practical standalone SC programming solution.

Following those steps, this chapter addresses research challenges Chg2 (SC specific

architecture support) and Chg3 (targeting a practical and efficient implementation),

focusing mainly on Chg3, as special attention is given to the efficiency of the

communication interface, the HAoS logic attached to it and various other blocks of the

base design while the implementation of some of the architectural features of SC

(schemata matching and random system selection) are revised. A set of software tools

were developed to ease programmability and increase user-friendliness.

Part of the work presented in this chapter has been published in [159] and [192].

4.1 HAoS-CPU Communication Interface Investigation

As mentioned in section 3.4, the use of the CPU after the SC program is loaded is

optional for the HAoS prototype and depends on the user processing requirements. Since

HAoS on-chip processing capabilities are limited by the basic instruction set in Table

3.4, it is safe to assume that the CPU may be useful for a wide range of practical user

applications. Thus, addressing the design practicality and overall system efficiency

(Chg3), an investigation of the implementation of the communication interface between

HAoS and the CPU, given below, is important in order to avoid having a communication

overhead as the performance bottleneck.

The main design requirements for the communication link are high throughput, low

latency and user-friendliness, meaning that it should be based on a widely used interface

in order to minimize user effort. Since the maximum supported clock rate of our

Chapter 4. The HAoS Programming Platform 120

prototype is estimated at 100 MHz (based on the implementation statistics given by the

Xilinx development tools) on the CPU INTERFACE boundary (see Figure 3.9), if we

assume for simplicity that only single-byte data accesses are supported, a minimum data

rate requirement of 100 MB/s is posed on the communication link in order to have full

utilization. Latency is also crucial, as some off-chip communication interfaces may

provide adequate bandwidth but nevertheless pose an unacceptable latency constraint.

We should further consider that the selected communication interface will determine the

use of either an external more powerful CPU (using a commonly used but slower

communication protocol) or a less powerful embedded (on-chip or on-board) CPU, using

a relatively faster local bus. For a more realistic performance estimate, we should not

only consider the maximum performance potential of the hardware but we should

combine this with the actual response times caused by the software (operating system,

drivers and user application programming interface implementation).

Another significant consideration is that the HAoS-CPU communication will comprise

quite small packets. Typically these will be less than 10 bytes for control instructions

(low-level accesses of HAoS control registers which will be frequently used by the

driver and also offered as part of the API to the user to enhance accessibility) and

considerably less than 100 bytes for data exchange (input and output arguments of the

transform task, see Figure 3.10). The availability of IP cores to support these interfaces

and the effort required for drivers development is also important. Finally, the selected

interface should be supported by the available FPGA development board (in our case, the

Xilinx ML605).

The external CPU option seems more appropriate since modern CPUs run more than one

order of magnitude faster than embedded ones (the Intel i7 range runs typically at

frequencies of 2-3GHz while the maximum frequency for a modern on-chip CPU, e.g.

the Xilinx MicroBlaze, is 100-250 MHz [193]). The most commonly used

communication interfaces for modern computers are USB, PCI-Express and Ethernet

(see Table 4.1). All of them are mature technologies which are constantly revised to

support greater bandwidths. While Hi-Speed USB (or USB 2.0) is currently the most

widely adopted interface, it specifies a maximum bandwidth of 480 Mbits/s [194]. Its

successor, SuperSpeed USB (or USB 3.0) specifies a maximum theoretical full -duplex

communication rate of 5 Gbits/s [194]. PCI-Express, featuring a point-to-point topology

with separate full-duplex byte streams (1-32 lanes) connecting the device to a root

complex [195], has had four revisions that gradually increased bandwidth (the theoretical

Chapter 4. The HAoS Programming Platform 121

maximum per lane is [195]: 250 MB/s for the older Gen1, 500 MB/s for the widely used

Gen2, 1GB/s for the more recent Gen3 and 2 GB/s for the recently announced Gen4).

Gigabit Ethernet is the last option supporting 1 Gb/s while higher bandwidths (10G

recently got more industrial interest, while 40G, 100G and 400G solutions are also

currently sampled) are also supported for specialized network devices (usually using

optical mediums).

Table 4.1. Commonly used interfaces for off-board communication and their nominal raw

bandwidths

USB PCI-Express (per lane) Ethernet

Revision 2.0 3.0 1.0 2.0 3.0 4.0 Gigabit

Nominal Max

Raw Bandwidth

60

MB/s

625

MB/s
250 MB/s 500 MB/s 1 GB/s 2 GB/s 125 MB/s

The theoretical maximum bandwidth that the most recent versions of all the

aforementioned interfaces provide appears to be sufficient for the HAoS-CPU data rate

requirement. However, their sustained performance in a working system can be

considerably less due to various software and hardware sources of overhead. An

quantitative example is given in [196], where a bus mastering design (implemented on a

Virtex-5 FPGA) over PCI Express is measured on a Windows system. Sustained

software performance can be nearly 17 times slower than the theoretical maximum for a

PCI Express Gen1 x1 link [196], mainly due to the very slow interrupt response rate of

the operating system and the fact that transaction requests wait for transaction

completions. Although techniques for minimizing those overheads (use of a linked list or

a circular buffer of transaction descriptors for interrupts and employing a parallel

transaction handling state machine) are suggested in [196] and implemented in [197],

[198], [199], there is still an inevitable deviation from the theoretical maximum.

While USB 2.0 would be the most convenient option from the viewpoint of the user, it

does not satisfy our bandwidth requirement. USB 3.0 provides adequate bandwidth, but

it has not yet been widely adopted, so FPGA development boards with this feature are

still rare and, moreover, a USB 3.0 device IP is not offered with standard industrial

design tools (while designing such a complex core would require considerable effort).

An implementation of the Gigabit Ethernet approach as a PC-FPGA communication

interface, sending UDP datagrams over IP, is given in [200] and refined in [201]. The

design leaves reliability to be implemented at the user level but combines a Look Up

Table (LUT), which stores all the static fields that need to keep being resent during

communication, with hardware-aware optimizations which make it more attractive than

Chapter 4. The HAoS Programming Platform 122

alternative reliable, but more complex, full TCP/IP implementations which require an

embedded CPU [200].

However, even such a light-weight protocol suffers from a big overhead when really

small packets are frequently sent. These small packets carry HAoS control -related

information and may not be grouped together to form larger contiguous blocks (in order

to provide a flexible API to the user). Even sending minimally-sized raw Ethernet

packets, considering that their minimum size is 64 bytes (accounting for header and

framing bytes - preamble, start of frame, MAC destination and source, ethertype, frame

check sequence and interfame gap), results in more than 85% overhead for control

packets (typically less than 10 bytes). While they are slightly smaller, similar protocol

overheads exist for the other external communications interfaces mentioned above. PCI

Express Gen1 and Gen2 specify a 20% overhead due to their 8b/10b symbol encoding

scheme (used for clock recovery), consume 20-28 bytes for their header and framing and

also suffer from traffic, link and flow control protocol overheads [202]. Due to these

overheads, latency is increased (practically 20-30us for a Gen1 x8 4-byte transfer [197])

while the actual throughput is decreased, negating the performance advantage of external

interfaces for typically-sized data traffic.

Table 4.2 gives examples of the sustainable bandwidth of the interfaces discussed in this

section for various configurations. It is noted that the final real system bandwidth is the

result of various factors, including protocol selection and overheads but also

implementation choices, system integration, software support and optimizations.

In order to minimize protocol overheads, the alternative is to use a local communication

interface, placing the CPU on-board. While FPGA development boards that provide an

off-chip hard processor cores are not new, another approach (recently commercially

available at the time of writing) attempts to overcome overheads caused by off -chip

communications by combining relatively powerful hard (ARM-based) CPUs and

programmable logic on the same die [206], [207]. This is a quite promising approach, as

it is the first step towards practical low-latency embedded applications. While still in its

infancy, the power of the processors used are still limited and the cost of

reprogrammable logic comparatively high. Moving to smaller fabrication processes in

the future can make revisions of this hybrid technology a very strong candidate for truly-

optimized heterogeneous processing.

Chapter 4. The HAoS Programming Platform 123

Table 4.2. Sustainable Bandwidth Results for various practical configurations implementing

common communication interfaces on FPGAs

Protocol /

Interface
USB 2.0 PCI-Express 1.0 x1

Reference [203] [199]

E
x

p
e
ri

m
e
n

ta
l

C
o

n
fi

g
u

ra
ti

o
n

Xilinx

SpartanII-E
through

CY7C68001

USB controller
on Windows.

Write to FPGA

File size:
400MB

Altera Stratix IV
GX to Intel X58

Chipset on
Windows.

Full-Duplex

File size: 100KB

Max Payload:

Read 256b, Write

512b

Altera Arria II

GX to Intel X58
Chipset on

Windows.

Full-Duplex

File size:

100KB

 Max Payload:
Read 256b,

Write 512b

Altera Stratix II
GX to Dell 490

5000X on
Windows.

Full-Duplex

 File size: 100KB

Max Payload:

Read 64b, Write

256b

Altera Stratix II
GX to Nvidia

CK804 on
Windows.

Full-Duplex

File size: 100KB

Max Payload:

Read 64b, Write

128b

Sustainable

Bandwidth

54 (W)

MB/s

219(R)/211(W)

MB/s

217(R)/204(W)

MB/s

162(R)/224(W)

MB/s

185(R)/207(W)

MB/s

Protocol /

Interface

UDP/IP over

Gigabit Ethernet
PCI-Express 2.0 x1 PCI-Express 2.0 x4

Reference [200], [201] [199] [198] [199] [198]

E
x

p
e
ri

m
e
n

ta
l

C
o

n
fi

g
u

ra
ti

o
n

 Xilinx Virtex-5
SX95-1 on

HTG-V5-PCIE

board to Dell
Latitude e4300

on Linux.

Full-Duplex

Payload: 1472

bytes

Success Rate:
~99%

Altera Stratix IV

GX to Intel X58

Chipset on
Windows.

 Full-Duplex

File size: 100KB

 Max Payload:

Read 256b, Write

512b

Xilinx Virtex-5
on ML555 board

to Dell Power

Edge with Intel
E5000P Chipset

on Windows

Full-Duplex.

File Size: 32KB

Max Payload:

Read 64b, Write
128b

Altera Stratix IV

GX to Intel X58

Chipset on
Windows.

 Full-Duplex

File size: 100KB

 Max Payload:

Read 256b,

Write 512b

Xilinx Virtex-5
on ML555 board

to Dell Power

Edge with Intel
E5000P Chipset

on Windows

Full-Duplex.

File Size: 32KB

Max Payload:

Read 64b, Write
128b

Sustainable

Bandwidth

113.11(R) /

111.67(W)

MB/s

438(R) / 425(W)

MB/s

164(R) / 222(W)

MB/s

1691(R) /

1631(W)

MB/s

680(R) / 864(W)

MB/s

Protocol /

Interface
PCI-Express 2.0 x8 AXI4 AXI4-Lite

Reference [199] [198] [204] [205]

E
x

p
e
ri

m
e
n

ta
l

C
o

n
fi

g
u

ra
ti

o
n

Altera Stratix IV

GX to Intel X58
Chipset on

Windows.

 Full-Duplex

File size: 100KB

 Max Payload:

Read 256b,

Write 512b

Xilinx Virtex-6

on ML605

board to Intel
X38 Chipset on

Windows

Full-Duplex.

File Size:

512KB

Max Payload:

Read 64b, Write

128b

Xilinx Virtex-6

on ML605

board to Intel
X58 Chipset on

Windows

Full-Duplex.

File Size:

512KB

Max Payload:

Read 128b,

Write 256b

Xilinx Kintex-7 on
KC705 board.

From 16 on-chip

1080p video
sources

32bits/pixel @
75Hz

To off-chip

memory and on-
chip video IP

Data Width:

512bits running @
200 MHz

Xilinx Kintex-7
on KC705

board.

Interconnect
handling 32

slaves during

video
demonstration

Data Width:

32bits running
@ 100 MHz

Sustainable

Bandwidth

2956(R) /

2955(W)

MB/s

1686(R) /

1691(W)

MB/s

3297(R) / 3297

(W)

MB/s

9492 (R)

MB/s

180(R) / 180

(W)

MB/s

Chapter 4. The HAoS Programming Platform 124

The other option is to use an embedded soft CPU. While this approach has minimal

overheads, since all communications are happening at wire speed, part of the available

programmable resources is occupied by the relatively low-performance soft processor.

Advantages of this approach are that the design tools provide full support on embedded

design, the processor can be customized to include only the features that are required

(optimizing speed and area) and that bare-metal applications are also supported, since an

operating system is optional, depending on user requirements. An indicative collection of

soft processor architectures, appropriate to be embedded on an FPGA is given in Table

4.3. It is noted that some of the metrics below are given for reference as they are highly

dependent on the device being used and the revision of the implementation tools.

Considering the available area and performance figures below, LEON4 and MicroBlaze

are the most dominant choices. While the former is an open-source solution, the inherent

compatibility of MicroBlaze with the Xilinx toolchain makes it a more favourable option

for the prototype HAoS implementation.

Out of the supported on-chip interconnect interfaces [208], the Processor Local Bus

(PLB) mainly targets PowerPC processors and is now outdated while the Fast Simplex

Link (FSL) is a point-to-point FIFO-like interface; thus they are both inappropriate for

the MicroBlaze memory-mapped control register interface for HAoS. The other options

are the three variations of the Advanced eXtensible Interface (AXI) of the ARM AMBA

v4.0 interconnect protocol specification (in short AXI4).

The three types of AXI4 are [225]: (a) AXI4 for burst-enabled memory-mapped

communication, (b) AXI4-Lite for simple memory-mapped communication ideally to

and from control and status registers and (c) AXI-Stream for high-speed streaming data.

Considering the mainly controlling nature of the HAoS interface, the small size of the

data to be communicated to and from the CPU and the substantially greater area

footprint of the AXI4 interface compared to AXI4-Lite while providing adequate

bandwidth (supporting a 32-bit interface running up to 200MHz on Virtex-6) and

minimizing latency, it was decided that the latter was the optimal option. It is noted that,

as AXI protocols are the industry standard for FPGA interconnect interfaces, choosing

this option makes the design more future-proof (the hybrid approach in [207] also

employs an AXI interface to connect its hard dual-core ARM CPUs with the

programmable fabric).

Chapter 4. The HAoS Programming Platform 125

Table 4.3. Indicative Collection of Available Soft Processors. CPI: Cycles Per Instruction,

MMU: Memory Management Unit, MUL: Hardware Multiplier, FPU: Floating Point Unit,

Area: given for specific family and corresponding metric, DMIPS/MHz: Dhrystone Millions

of Instructions per Second Per MHz, (MHz): Max Frequency for family stated in Area

column

Soft Core

[Reference]
Architecture Bits License

Pipeline

Depth
CPI MMU MUL FPU

Area

Family

Metric

DMIPS

/MHz

(MHz)

Comments

Sirocco

S1

[209]

SPARC-v9 64

Open-

source

(GPL)

6 1 + + +

60K(EE)

40K(SE)

37K(ME)

Virtex5 LUTs

-

Single-core

version of

UltraSPARC T1

LEON3

&[210]

LEON4

SPARC-v8 32

Open-

source

(GPL)

7 1 + + +

3.5K & 4K

Virtex5

LUTs

1.4(125)

1.7(150)

OpenRISC
1200

[211]

OpenRISC

1000
32

Open-
source

(LGPL)

5 1 + + -

2.4K to
4K

Virtex5

Slices

(60-

125)

MicroBlaze

[193]
MicroBlaze 32 Proprietary 3, 5 1 opt opt opt

546 to 1201

Virtex6 LUTs

1.03-

1.38

(100-
250)

Limited to Xilinx

devices,

Zero-cost for
limited version

aeMB

[212]
MicroBlaze 32

Open-

source

(LGPL)

3 1 - opt -

1268

Virtex4

Slices

(88-

136)

Open-source

clones of

MicroBlaze

OpenFire

[213]
MicroBlaze 32

Open-

source

(MIT)

3 1 - opt -

641

VirtexII-Pro

Slices

0.58

(100)

Nios II/f

[214]
Nios II 32 Proprietary 6 1 + + opt

1020

StratixIII

ALUTs

1.183

(290)

Limited to Altera

devices

Nios II/s

[214]
Nios II 32 Proprietary 5 1 - + opt

1030

StratixIII

ALUTs

0.611

(230)

Limited to Altera

devices

Nios II/e

[214]
Nios II 32 Proprietary no 6 - - opt

500

StratixIII

ALUTs

0.138

(340)

Limited to Altera

devices

MP32

[215]
MIPS 2.0 32

Open-

source

OpenCore+

6 1 + + +

5444

StratixIII

ALUTs

1.21

(252)

Limited to Altera

devices

Lattice

Mico32

[216]

Lattice

Mico32
32

Open-

source
6 1 - opt -

2370

Lattice

LUTs

(115)
Not limited to

Lattice devices

Cortex-M1
[217]

ARMv6 32 Proprietary 3 1 - + -
2600

CycloneIII

LEs

0.8
(100)

Diamond

106Micro
[218]

Tensilica
Xtensa

32
Proprietary,

ReadyIP
1 5 - + - -

1.22
(180)

Zero-cost for

Synplicity
Synplify Users

Freescale V1

Coldfire

[219]

Coldfire

16

32

48

Proprietary,

zero-cost
2 1 - - -

5000

CycloneIII

LEs (32bits)

(80)

Zero-cost to

Altera devices

only

DSPuva16

[220]
DSPuva16 16

Open-

source
no 4 - + -

635

SpartanII

Logic Cells

(40) DSP-oriented

hyperARM

[221]
ARMv4 32

Open-

source

(AL/GPL)

3 1 - - -

2953

VirtexII-Pro

Slices

(63)

PicoBlaze

[222]
PicoBlaze 8

Proprietary,

zero-cost
no 2 - - -

26

Virtex6-3

Slices

(238)
Limited to Xilinx

devices

PacoBlaze

[223]
PicoBlaze 8

Open-

source

(BSD)

no 2 - - -

200

SpartanII

Slices

(46)

An open-source

clone of

PicoBlaze

Lattice Mico8
[224]

LatticeMico8 8
Open-
source

no 2 - - -

181

Cyclone
LFE2-5

Slices

(99.2)
Not limited to
Lattice devices

Chapter 4. The HAoS Programming Platform 126

Following the analysis above, the embedded soft CPU interface appears to be one of the

most dominant candidates for the implementation of the HAoS-CPU communication

link. It is noted that this is a recommendation, rather than a definite conclusion

(considering the requirements stated in the beginning of this section and currently

available technologies) and it depends on the processing requirements of the user

application and the flexibility of the provided API (control packets could be potentially

eliminated if all the software driver logic was mapped on hardware, effectively

eliminating the API since the user would be provided with just one function

(transform()) to interface to hardware).

For applications that utilize heavy-weight functions, the function processing time may

overrule the communication overhead, thus making an external CPU interface preferable.

This can either be the latest revision of PCI Express (due to the lower overhead and

higher bandwidth), if compatible hardware (motherboard, development board) is

available or a custom Ethernet-based interface implementing a custom light-weight

protocol and a Network Interface Card capable of supporting such a protocol or USB 3.0

(subject to availability) or a future FPGA development board featuring a high-end

processor.

The two options may further be combined in a ―smart‖ system that offloads computation

to the appropriate CPU depending on the required processing workload. Implementing

such a configuration would involve a manual, or ideally automated, computation

dispatching mechanism that would assign low-level processing, supported by the

hardware-accelerated part of the HAoS instruction set (upper part of Table 3.4), to the

built-in on-chip FU, high-level functions of low complexity to the low-end on-chip

embedded processor and computation-intensive tasks to the off-board high-end CPU.

High-level tasks would be assigned to the appropriate CPU depending on the comparison

between the actual computation latency and the communication overhead according to:

If Instruction Supported on Hardware Select HAoS FU

If Lon + Oon < Loff + Ooff Select On-Chip CPU

If Lon + Oon > Loff + Ooff Select Off-Chip CPU

where L and O would be the computation latency and communication overhead,

respectively, for on-chip (embedded) and off-chip (and probably off-board) processor,

accounting for the trade-off between the computational performance and the

communication latency of the two solutions.

Chapter 4. The HAoS Programming Platform 127

In summary, the systemic computer is designed for highly parallel software, that

resembles natural systems. For such a computer to be practical it must also support

sequential operations (e.g. longer mathematical expressions) and thus needs the support

of a conventional CPU. The analysis here shows that current communication protocols

are largely unsuitable for the task of linking a SC hardware architecture to a CPU. There

is a clear need for a more integrated solution for development purposes. An FPGA board

with a high-end on-board processor may be one such suitable option in the future

(extending the processing capabilities in [207]). For now an embedded soft CPU

provides the ability to prototype the HAoS-CPU interface. An optimal solution would be

an ASIC, combining HAoS and a hi-speed CPU on-chip, which will minimise the

bottlenecks caused by existing technologies.

4.2 CPU Subsystem Integration

Building on the discussion of the previous section, the soft Xilinx MicroBlaze processor

was connected, using Xilinx development tools (Embedded Development Kit - EDK and

Xilinx Platform Studio - XPS), through one of its available communication interfaces to

the base HAoS architecture to result in the first practical hardware Systemic

Computation platform.

The available tools enable great flexibility as virtually all the features of the MicroBlaze

soft processor are user-defined, letting the user tailor a balanced embedded CPU design

in terms of frequency, area and performance. The configuration of the processor

embedded in the HAoS platform maximizes the performance of the soft CPU with the

inclusion of dedicated hardware blocks (a barrel shifter, a floating-point unit (FPU) also

supporting type conversions and square root, 64-bit integer multiplier and divider and a

pattern comparator), instruction and data caches (64 KB each) with stream buffers (for

instruction prefetching), saved cache victims (faster fetching of recently evicted cache

lines) and write-back storage policy (data are not written back to memory immediately

but only when needed), and math (FPU and integer divide) exceptions. A hardware

debug module was also included, enabling breakpoints and memory address watchpoints,

to ease debugging. A dedicated Memory Management Unit (MMU) was not added in the

system as it would increase significantly its size and because its provided features, as

virtual memory and memory protection, are more useful when an operating system is

used. As discussed later in section 4.3.5, an operating system will not be used in the

HAoS programming platform as it would run inefficiently on an embedded processor and

negatively impact the latency of SC applications.

Chapter 4. The HAoS Programming Platform 128

After the architecture of the MicroBlaze CPU was configured to suit the requirements of

the HAoS platform, the custom HAoS logic was connected to the CPU through its AXI4-

Lite interface as a peripheral. The connection was implemented using standard Xilinx-

provided IP blocks. The MicroBlaze is connected to the AXI4 Interconnect core (IC),

which implements the required AXI4-Lite protocol and uses a crossbar topology to route

traffic between the various masters and slaves of the bus. Further details on the CPU

subsystem integration are given Appendix B.

4.3 Optimizations and Enhancements

Focusing on research challenges Chg2 and Chg3 regarding supporting the implied SC

architecture and addressing the efficiency and practicality of HAoS respectively, various

optimizations and enhancements were made, both into the hardware and the software

domain, to the initial design (presented in the previous chapter) in order to increase its

performance and also make the prototype more user-friendly and flexible, towards a

more practical and viable design.

4.3.1 Refining the Random Selection Logic

The most obvious performance optimization for HAoS, as for any clock-based circuit,

was to increase its operating frequency. After analysis of the critical path of the design,

the longest combinatorial path was, as expected, in the Random Selection Logic (see

Figure 3.11 and section 3.6.2). The RSL was redesigned to incorporate resource sharing

along with pipelining.

As mentioned in section 3.6, the BITPOSSEL module of the RSL, combines a parallel

bit count with a branchless selection method. The parallel bit count is used to provide

partial sums which are then appropriately masked and passed through a barrel -shifter to

provide the position of a bit with a given rank in the input bus, resulting in a divide -and-

conquer technique. The COUTNONES and BITPOSSEL modules of the RSL are now

merged, as the parallel sum-of-bits counter in COUNTONES is reused for the generation

of the partial sums during the identification of the position of the selected bit. The length

of the barrel shifter is equal to the size of the longest input bus to the RSL which is in

turn equal to the number of maximum supported systems. Thus, when this number is

increased, the number of logic levels required for the barrel shifter implementation have

a considerable impact to the delay along the critical path. For this reason, the

conventional barrel shifter is replaced with a parallelized and pipelined version which

instead uses an array of multiplexers with registered pre-shifted (by the required pre-

Chapter 4. The HAoS Programming Platform 129

calculated number of bits) versions of only the possible subset of shifting combinations

of the input buses. While this results in a slightly higher resource utilization as the

number of maximum supported systems increases, it provides the ability to minimize its

latency and moreover make it independent of the maximum number of systems, making

its performance deterministic.

Moreover, since registering the inputs of the RSL or the output of its input selection

multiplexer would not further noticeably decrease the critical path, as the combinatorial

logic from the TCAM to the input of the RSL adds minimal timing overhead, these

registers were not included in the design saving Number of RSL Input Buses x Input Bus

Length bits (for 512 maximum supported systems: up to 5x512=2560 registers).

The critical path delay of the RSL was also greatly affected by the combinatorial divider.

Thus, the divider was pipelined (one-level deep), dividing its 16-stage structure (see

Figure 3.15), in two groups of 8 stages each with registered inputs and outputs.

After the changes mentioned above were implemented, a static timing analysis revealed

that other parts of the design (the TCAM and the Function Unit) also had latencies in the

range of 15-20 ns. Thus, since the level of pipelining throughout the RSL achieved to

match the critical path outside the RSL, it was decided that a latency of 20ns (which

translates to 50MHz of operating frequency) was adequate for the prototype, as deeper

pipelining, although possible, would require considerable changes in the control logic

and would probably affect resource utilization in order to achieve timing closure. Further

details on the optimisations of the RSL are given in Appendix C.

4.3.2 Minimizing the Schemata-Matching Overhead

Standard FPGA CAM design techniques include registered-based, RAM-based and

Look-Up- Table-based approaches [173], [226]. Moreover, Xilinx provides a reference

design which combines the LUT technique with the optimized shift-register blocks

(SRL16E) found in its FPGAs [173]. Although RAM-based CAMs are the most efficient

in terms of resource utilization [173], they do not support the ternary mode required for

partial schemata matching in SC.

The base HAoS design used the suggested (by Xilinx) SRL16E-based approach which,

according to [173], provides efficiency in terms of the trade-off between required area

and operating frequency. It was noticed, that as the number of entries for the TCAM

increased, depending on the number of maximum supported systems, for deep TCAM

implementations (>128 entries) the area footprint of the LUT-based approach was not

Chapter 4. The HAoS Programming Platform 130

substantially smaller from the one of the simple register-based design (15%-25% area

overhead depending on size) while the two implementations has similar operating

frequency (up to ~100MHz). Thus, since the size difference was not prohibitive, the

much simpler register-based TCAM structure was preferred. Further details on the

TCAM design revision are provided in Appendix D.

The main advantage of this optimization
23

 was the reduction of the overall latency of the

matching mechanism resulting in increasing the efficiency of valid triplet generation.

Since the TCAM is written every time a system is altered during an interaction, replacing

the SRL16E-based TCAM with an array of registers and comparators, provided single-

clock read and write operations, saving 15 clock cycles for every interaction which

changed one system and 30 clock cycles when both systems are changed.

4.3.3 Further Addressing I/O Efficiency

The investigation of the capabilities and limitations of various communication interfaces

between HAoS and a CPU, discussed in section 4.1, makes evident the crucial role of the

performance of the design on the I/O boundary. Various optimizations have been made

in order to obtain faster CPU accesses and minimize the overhead of extracting real-time

(during the execution of a SC program) logging information.

As shown in Figure B., the registers in the REG BANK are accessed by the CPU through

the AXI4-Lite communication link to, among other functionality, read the active triplet

and write back any system which is changed by the current interaction (see Figure 3.10).

As the parts of an active triplet that will be used during an interaction depend on the

transformation function, HAoS makes available to the user its full contents (shown in

Figure 3.8) along with some more useful information (addresses of systems, active scope

and active context). In the initial design all this user data are read from and written back

to the REG BANK, and then the CU handles updating the local memories and the TCAM

with the changed systems.

Looking for a more efficient way, the mechanism that is used when the program is

loaded to the local memories was slightly changed in order to enable the CPU to directly

write changed systems to HAoS memories. However, since writing a triplet to the

memories is performed in one clock cycle, to reduce latency, the whole user data would

23

 Practically here we traded area for performance, choosing the bigger but faster registered -based

TCAM.

Chapter 4. The HAoS Programming Platform 131

have to be updated when a change was made. Enabling the option of independently

writing parts of the triplet would greatly increase the control logic complexity and the

required area footprint.

Further addressing this communication challenge, a write-detection mechanism was

devised, inspired by the ―dirty-bit‖ scheme commonly used in page replacement and data

caches [227]. As mentioned above, since all user data are available in the beginning of

an interaction, the user may read only the parts of the triplet that are going to be used in

his custom transformation function. The great enhancement comes when writing the

transformed triplet back to the memories.

SCH1 SCH2 FUNCTION ADDR

SCH1-BYTE-ARRAY

0 2 4 8 10 18 26 34 40

TEMPL-BIN-SCH2 TEMPL-TER-SCH2

SCH2-BYTE-ARRAY

SYS1

TEMPL-BIN-SCH1 TEMPL-TER-SCH1

0

TRANSFORMATION

FUNCTION
SYS2

ACTIVE

SCOPE

ADDR

ACTIVE

CONTEXT

ADDR

40 44 84 86 88

ACTIVE TRIPLET

READ-ONLY USER DATA

CONTROL UNIT

&

LOCAL

MEMORIES

TRANSFORMED TRIPLET

READ-WRITE USER DATA

CPU

INTERFACE

REG

BANK

HAoS

WRITE-DETECTION

LOGIC
Write Addr Flags

Figure 4.1. Revised Triplet Memory Map and Write-Detection Mechanism. In the upper

part, the revised registers organization for each system in a triplet shown along with the

sizes (in bytes) for each field. Fields from left to right: schemata 1 & 2 (for data system),

transformation function, system address, binary and ternary parts for each schemata of a

context system share the same address space with a byte-array formatted version of the

respective schemata of a data system. All fields have an associated write-detection flag

(shown here with a dot) which is set when a field is modified. In the middle, the two systems

along with the active interaction function, scope and context addresses form the user data.

In the bottom, when writing-back the transformed triplet after an interaction, the write

address from the CPU is used to update only those fields that have actually been changed

while the rest are copied over from the local copy (active triplet), minimizing the required

CPU I/O operations

Chapter 4. The HAoS Programming Platform 132

Each field of the transformed triplet is now associated with a write-detection flag. This

flag array is reset when an interaction is assigned to the CPU. The address of the

registers that hold each individual field of the transformed triplet (see Figure 4.1) is

already given in the predetermined memory map of the CPU (the memory management

subsystem of the CPU accesses the REG BANK as any other memory location). While in

―Transform‖ state (see Figure 3.10), when each such field is altered by the CPU, the

decoded write address from the memory subsystem is matched against each field address

and sets its respective flag. At the end of the ―Transform‖ state, the active triplet (user

data before interaction) is copied to the transformed triplet (user data after interaction)

address space, updating at the same time only the fields that were actually changed by

the CPU. Using this relatively simple write-detection approach, the need of accessing

individual fields when writing the triplet is avoided, preserving the low area footprint of

the HAoS memories writing logic, but also minimizing the required user accesses to

enable the write-back of the interaction result.

In order to further minimize the user effort while manipulating the HAoS user data,

taking into account that each SC schema (16-bit in this implementation) may be used as

a whole (e.g. a 16-bit number) or as a bit-array (e.g. a 16-element chromosome), each

schema can be accessed (read/written) in both modes (2-byte value and 16-byte array

with one effective bit each). This provides the user with the flexibility of being able to

avoid time-consuming bit-manipulation through bit-masking while processing the data

by operating on an array and also saving bit-to-byte software conversions as this is

handled by hardware.

Furthermore, the parts of a compressed template of a context system (see Figure 3.8)

were carefully re-arranged from SCH1-FUNCTION-SCH2 to SCH1-SCH2-FUNCTION

to get more compact memory utilization and faster accesses as the respective registers in

the REG BANK were also re-arranged in order to overcome any compiler byte-

alignment restrictions. This way, the whole template can be accessed by 2 consecutive 4-

byte memory read operations rather than three separate ones (one for each of the three

fields).

4.3.4 Further Addressing User-Friendliness with a Functional Model

While the developed simulation environment provides extended debugging capabilities ,

it requires access and expertise on electronic design tools which should not be a

requirement for developing SC models to run on HAoS. Furthermore, such low-level

system simulations can be extremely time-consuming. Thus, in order to expedite natural

Chapter 4. The HAoS Programming Platform 133

SC models development, a software equivalent functional model of the suggested HAoS

architecture (a high-level simulator of the HAoS circuitry) was built, making possible to

quickly verify the functional behaviour of a SC program even without the need of having

the hardware platform.

The HAoS functional model is based on the original implementation in [24], but

provides a software interface to develop abstract high-level interaction behaviours,

similar to the (C/C++) plug-in approach in SCoPE. Once the functionality of the required

contextual behaviour is verified, the user can easily reuse the plug-in (with minimal

implementation-specific changes) in the compatible HAoS development flow.

4.3.5 Further Addressing Programmability

In order to also enhance the user experience and further address the programmability of

HAoS, the challenge of loading the program to the platform, being able to extract debug

information during runtime and storing this log information for post-processing were

carefully examined taking into consideration that it would be preferable if HAoS was a

stand-alone self-contained solution.

As discussed in section 3.7, SC models are first developed using the SC language (see

Listing 3.1). The compiler has been updated to incorporate abstract transformation

functions in order to enhance flexibility by supporting high-level processing through the

CPU, resulting in human-readable assembly code (see Figure 3.17). However, this

format is not optimal for the program to be loaded to HAoS. Thus, a post-compiler tool

was developed to transform the human-readable assembly code to binary format with

minimum size in order to minimize the amount of data to be transferred to the HAoS

local memories and the processing time during program loading.

This SC binary generator tool effectively assigns one bit for each element of the

scopetable, while cleverly separates data from context systems as the former can be

further compressed while the latter may not, since system templates of contexts carry

already compressed information. Therefore, each line of the scopetable (see Figure 3.17)

requires the number of systems contained in the program to be divided by 8 and rounded

up to the closest integer amount of bytes, the transformation function is always 4 bytes

as it can never have a ternary part, each schemata of data systems is compressed to 2

bytes while each template of a context system requires 16 bytes, 8 for its binary part and

8 for its ternary part. The transformation function information is not included in the

binary SC format, as all interactions supported natively by HAoS have a predetermined

Chapter 4. The HAoS Programming Platform 134

opcode while all CPU-supported interactions can be checked for validity during runtime

through the software backend.

After the SC binary file, containing all required information, is prepared, the program

should be loaded to HAoS memories. The most straight-forward solution would be to

store the SC program on either the on-chip Block-RAM or the on-board DDR3 RAM

memory resources of the soft CPU. While the first option would enable the fastest

loading time, this would reduce the already limited available on-chip memory resources.

While this size limitation could be resolved by using the bigger on-board RAM memory,

a connection of the platform with a conventional computer would still be implied and

required in order to transfer the developed program to HAoS.

Thus, in order to enhance flexibility and make HAoS a standalone platform, it was

decided that the program should be stored on and loaded from a form of non-volatile

memory. Since the selected FPGA development board featured a Compact Flash card

controller (a common feature for development boards), this was chosen to be used as the

main storage of the prototype, since when it is FAT-formatted, it can also support a basic

file system.

Using the Compact Flash card and its file system, also addresses another very important

programmability aspect. This is the ability to efficiently log runtime information in a

console-like manner. Although access to a real-time console is possible during live

hardware debugging (using Xilinx tools), this results in excessive run times as all text is

communicated to a separate computer through a high-latency UART channel. For SC

applications which require that results are logged throughout the execution of the

program, just the data-logging overhead can account for the majority of the run time.

Storing any output data on the onboard CF card drastically reduces the required runtime

due to logging and again results in a standalone platform.

It is noted that in order to ease development, SC programs with low size requirements

can be hardcoded in software and loaded on HAoS on-chip memories along with the

accompanying low-level driver. A tool converting the SC binary file to ASCII text (in

order to be embedded in the user code) was developed to enable this functionality which

can be very useful during the first stages of development of a SC model, as initially a

lightweight version of the model can be more easily and quickly verified through

multiple revisions of the code until the desired behaviour is achieved. An example of the

resulting translated SC binary to ASCII is given in Appendix H for the example SC

program discussed in section 3.7 (see Figure 3.17).

Chapter 4. The HAoS Programming Platform 135

As explained in section 4.1, having decided that a soft processor will be used in the

HAoS prototype platform, using the Xilinx MicroBlaze processor was the most straight-

forward decision as this offers a complete solution which is supported by the available

Xilinx design tools out of the box, in contrast with other open source and proprietary

alternatives. As the overhead of a complete operating system would have a high impact

on the performance of the platform, especially on such a low-performance processor, it

was decided that SC high-level interaction processing should be run as a bare-metal

application (referred to as ―standalone‖ operating system option by Xilinx), which is a

set of low-layer software modules used to access processor specific functions. Therefore,

a low-level driver had to be developed in order to achieve communication between the

MicroBlaze and HAoS.

Figure 4.2. HAoS driver flow diagram

The HAoS driver handles all required background functionality. Its flow diagram is

given in Figure 4.2. It resets HAoS at the beginning, initialises any used communication

interfaces and loads the program either externally, from the CF card, or internally, from

the embedded user code, and then the loaded SC program starts executing. Then the

driver waits for an interrupt from HAoS, by constantly reading the predetermined HAoS

status register, to either pass control to the user code to perform some high-level

interaction or halt the system in case all systems have become stable or the user-defined

maximum number of interactions has been reached or a user-defined condition has been

satisfied. At the end of the execution, it also optionally gives some useful statistics

(execution time, percentages of aborted iterations due to either schemata mismatches or

reset()

user_init()

check_status()

comms_init()

user_finish()

print_stats()

load_program()

load_program_from_CF()

load_hardcoded_program()

transform()

halt() if stable or

user limit reached

OR

OR

If Interrupt

Detected

Chapter 4. The HAoS Programming Platform 136

unavailable matching contexts in the selected scope, executed transformation functions,

number of interactions and average execution times). Effectively, all these background

processes are transparent to the user, which only has to define the transformation

functions that are defined in the SC source code and are supposed to be executed on the

CPU.

The HAoS software framework is completed by a basic but comprehensive API, in order

to enhance the flexibility of the platform and the accessibility of the user to the internal

state of HAoS. The API among others, provides the user with read and write access to

any HAoS memory-mapped control register, and also offers optimized low-level access

routines to the schemata byte-arrays, scopetable manipulation, direct access to the full

contents of the HAoS local memories (TCAM and system RAMs) and the high-precision

(10ns resolution) HAoS real-time counter while it gives to the user the option of

executing initialization and termination code, respectively, before and after the execution

of the main SC program. A summary of the functions provided by the API is given in

Appendix E while more detailed information can be found on the official HAoS webpage

[191].

Figure 4.3. HAoS programming toolchain and software framework illustrating the complete

suggested programming platform

The discussion above is summarized in Figure 4.3. The provided toolchain to convert the

SC source to the final HAoS binary is shown in the upper part, while the lower part gives

an overview of the software framework (and its association to the partitions of the

hardware platform), where the program is loaded from either the CF or part of the user

code, the driver handles background processes while the user just focuses on writing the

Compact Flash

Card

Compact Flash

Card

SC source (.sc)
Compiler

SC human readable

assembly (.scp)

Post-Compiler

Binary Generator

HAoS Binary (.scb)

Driver

HAoS

API

User

Code

MicroBlaze

FPGA

Development Board

Conventional Computer

SW Update &

Debug I/O

DDR

Memory

Chapter 4. The HAoS Programming Platform 137

high-level implementations of the required interaction transformation functions,

communicating, when needed, with HAoS through the provided API.

4.3.6 Refinements Results

Various optimizations made to the prototype HAoS architecture are discussed in the

previous sections. These enhancements are made to address mainly research challenge

Chg3 (see section 1.4), in order to increase performance, in terms of latency and

operating frequency, and I/O efficiency but also improve qualitative aspects as user-

friendliness and programmability.

Table 4.4. Benchmark timing improvements reflecting various architectural optimizations,

using the 64-system base configuration with MicroBlaze running at 200MHz. Results given

are averaged over 10 runs. Reported timing for each row is obtained using optimizations

stated in all rows preceding it. On average, the CPU consumes ~40ms for the

transformation functions and ~15ms for the low-level driver functionality.

Optimization Description
Benchmark

Timing (ms)

No Optimization - CPU Writes Back the Triplet to HAoS Memories in consecutive writes

Writing logging information (20 ASCII characters) to off-board terminal through debug

UART and USB

768.213

CPU Writes Back the Triplet to HAoS Memories in consecutive writes -

Writing logging information (20 ASCII characters) to on-board Compact Flash card
186.315

CPU Writes the Triplet to HAoS Registers - HAoS then writes it back to memories 176.613

CPU reads/writes only what is needed since Hardware Write-Detection is enabled 135.928

HAoS offers byte-aligned schematas in software-aware formatted registers for optimized

CPU access
121.428

Enable hardware random numbers from the LFSR instead of using standard PRNG

software functions
109.431

Optimised read/write functions using full data width for CPU schemata access 105.877

Minimized schemata-matching overhead using a register-based TCAM (single clock

write latency)
101.704

Replaced barrel-shifter in BITPOSSEL with parallel pipelined shifter and multiplexers

fed with pre-calculated constants accounting for every possible shifting combination
98.704

Increased HAoS operating frequency from 12.5MHz to 50MHz. Merged COUNTONES

with BITPOSSEL to form RSL and optimized its critical path
82.934

In order to quantify the performance improvements, a classic computational problem (the

binary knapsack problem solved using a genetic algorithm optimization - see section 5.1)

is used here as a benchmark and the performance of the 64-systems HAoS is measured in

Chapter 4. The HAoS Programming Platform 138

terms of the duration of the execution of the program until 10000 interactions have been

reached. In this configuration the MicroBlaze runs at 200MHz while accurate (±10ns)

timing measurements are obtained by the dedicated real-time counter on HAoS. The

optimizations results are given in Table 4.4.

As shown above, while all optimizations have a positive contribution to overall system

performance, the ones that provide the most major improvements are the Hardware

Write-Detection mechanism (see section 4.3.3) and the optimizations on the critical path

of the RSL (see section 4.3.1) that allowed a higher operating frequency. Furthermore,

printing logging information on an off-board terminal (e.g. a laptop connected to the

board through USB), would heavily impact the performance of the system due to the

increased latency of the UART while disabling logging would negatively impact the user

experience. The solution of storing real-time information locally on the SD card enables

logging with a minimal impact to performance (compared to the terminal approach).

Further addressing Chg3, ease-of-use is improved by the functional model which enables

users to start developing and verify the basic functionality of SC programs without the

need of the hardware platform, while a complete software framework is also provided to

improve programmability and forms the base for the formal HAoS model development

methodology, introduced in the next section, to enhance user-friendliness and support the

utility and viability of the HAoS prototype platform.

4.4 Addressing Scalability for Single-Chip Implementations

It is important to note that depending on the number of systems required for a SC model,

the HAoS architecture can be easily scaled to accommodate any number of systems as

long as the design area can fit on the selected FPGA device (assuming a single-FPGA

implementation). HAoS has been written in highly-parameterized VHDL code. Thus,

scaling the design is a matter of changing a single parameter, the length of the address

bus (which is equal to the base-2 logarithm of the number of maximum supported

systems). In this way, the size of the SC model, in terms of systems, is limited solely by

the size of the available FPGA device.

As mentioned in section 3.8, the available Xilinx ML605 development board, features

the Virtex-6 LX240T FPGA which is a mid-range 40-nm based device, with high-end

devices built on 28-nm processes offering even 10 times more reprogrammable fabric

real estate and significant performance potential [228]. Table 4.5 shows the

implementation statistics of the available variations of the HAoS platform of Figure B.2,

Chapter 4. The HAoS Programming Platform 139

scaling the number of systems, including also the case of the area footprint of the

platform without HAoS (number of systems equals zero, just the MicroBlaze subsystem -

18% of available slices). These figures are in agreement with the initial estimates of

Table 3.6 and give the utilization of slices, LUTs, registers, Input/Output ports and DSP

blocks for designs ranging from 32 to 1024 systems.

Table 4.5. HAoS platform implementations statistics as the number of maximum systems

increases. Figures based on Virtex-6 LX240T utilization. The MicroBlaze subsystem

including all peripherals except HAoS requires approximately 18% of available area.

Numbers of slices, LUTs, registers, I/Os, RAMs and DSP blocks with respective percentages

used are given for designs supporting 32-1024 systems (1024-systems configuration does not

include the latest design changes)

Maximum

Systems
0 32 64 128 256 512 1024*

Total Used % Used % Used % Used % Used % Used % Used %

Slices 37680 6841 18 12235 32 13492 35 15525 41 18269 48 24882 66 34522 91

Slice

LUTs
150720 14283 9 27636 18 29972 19 34338 22 43146 28 61481 40 98511 65

Slice

Registers
301440 15061 4 22733 7 25400 8 30818 10 41727 13 63768 21 108361 35

I/O

Blocks
600 193 32 193 32 193 32 193 32 193 32 193 32 193 32

RAMs 416 56 13 58 13 61 14 64 15 70 16 106 25 148 35

DSP

Blocks
768 6 1 7 1 7 1 7 1 7 1 7 1 7 1

It is interesting to note that the size of the design appears to scale linearly (considering

the limits imposed by a single-chip implementation) as the number of systems increases,

as illustrated in Figure 4.4.

This implies that, assuming availability (and affordability) of the largest modern FPGA

device (Virtex-7 2000T with 305400 slices), SC models with up to 8196 systems may be

efficiently modelled with the single-FPGA HAoS platform (based on a projection of the

number of slices required according to the linear regression equation for the used slices

of Figure 4.4).

While the performance of HAoS will be identical for designs supporting different

maximum number of systems, fine-tuning the size of the design for a particular

application may permit more functions to be hardware-accelerated, increasing overall

performance. If such an addition is not required, the design featuring the greatest number

of systems may always be used.

Chapter 4. The HAoS Programming Platform 140

Figure 4.4. Linearity on area utilization as the number of maximum supported systems is

increased. Linear regression lines and determination coefficients given for slices, LUTs,

registers and RAMs

It is also noted that while the MicroBlaze processor of the hardware platform is clocked

at 100MHz, higher operating frequencies are achievable and have in fact been tested to

be fully operational, running at 200MHz, near the lower bound of the design sizes. This

is expected as, when the area utilization is low, the implementation tools have more

flexibility and achieving timing closure is more feasible. However, the lower 100MHz

CPU frequency has been selected for the evaluation purposes of this section in order to

have a uniform performance along all the size variations of the platform.

The discussion above makes evident that the specification (number of maximum

systems, performance of the soft processor, operating frequency of the HAoS subsystem)

of the HAoS platform strongly depends on the characteristics of the FPGA device it is

implemented on and that the prototype is merely an example of what a mid-range device

can accomplish. It is expected that as new FPGA technologies emerge, the custom HAoS

logic, having been written in completely vendor-agnostic fully-synthesizable code, can

be adopted with minimal effort to achieve greater performance.

4.5 HAoS Model Development Methodology

Building upon the discussion of previous sections and further focusing on the practical

aspect of using the platform, a methodology for developing natural models targeting

y = 86.353x + 19786
R² = 1

7

12

17

22

27

32

37

20

40

60

80

100

0 200 400 600 800 1000

%# (K)

Number of Systems

Registers

y = 0.0935x + 53.09
R² = 0.9868

13

18

23

28

33

55

75

95

115

135

0 200 400 600 800 1000

%#

Number of Systems

RAMs

y = 71.418x + 25184
R² = 0.9999

13

23

33

43

53

63

20

40

60

80

100

0 200 400 600 800 1000

%
(K)

Number of Systems

LUTs

y = 22.28x + 12,334.65
R² = 0.9928

27

37

47

57

67

77

87

97

10

15

20

25

30

35

0 200 400 600 800 1000

%# (K)

Number of Systems

Slices

Chapter 4. The HAoS Programming Platform 141

HAoS is suggested in this section and illustrated in Figure 4.5 with a layered format to

separate the distinct development phases.

Figure 4.5. HAoS model development methodology (* implies user input)

Assuming that an existing natural system or process needs to be simulated, it is

important to first understand its behavioural dynamics and identify its quantitative

characteristics in order to conceptualize it (Conceptual Layer). At this stage, a systemic

analysis is necessary to identify the interacting systems, the interactions among them

(any contextual behaviour defining their transformation functions) and their organisation

(using scopes). The SC calculus notation can be used to describe the interactions, while

the SC model may be visualized using the SC graphical notation (see Figure 2.9). Having

a proper SC graphical notation of the model can make writing of the SC source code

Model Conception

A

B

C

D

E

G

F
H

SC Graphical Notation

Identify Interactions,

Contexts & Maximum

Number of Systems

 A}-C-{B E D

B}-D-{E G F

F}-H-{G E B

SC Calculus Notation

SC source

(model.sc)
Compiler

SC human readable

assembly (model.scp)

//number of

3

//number of

#function H

9

//scopetabl

100000000

Functionally

Equivalent

HAoS

Program
Context Transformation

Functions Plugins

C/C++

Select One of the Available HAoS Configuration Bitstreams Based on Number of Systems

Post-Compiler

Binary Generator

+

Executable

(model.elf)

CF

model.scb

model.log

HAoS.bit

+
model.elf

Control &

Debug I/O

C
o

n
c
e

p
tu

a
l

L
a

y
e

r
A

p
p

lic
a

ti
o

n

L
a

y
e

r

P
h

y
s
ic

a
l

L
a

y
e

r

L
in

k

L
a

y
e

r

*

*

*
*

*

*
#systemic st

#function C

#function D

#function H

#label X

#label Y

#scope S1

User Code

C/C++

Driver

C/C++

HAoS Binary

(model.scb)

001011010010

100100011001

001011101100

110101011110

000111011101

010101110010

*

API-Aware

Modifications

Binary-to-ASCII

Converter

To be hardcoded

in user code

(model.txt)

0x03,0x00,

0x09,0x00,

0x01,0x00,0x0

0x01,0x00,0x0

0x01,0x00,0x0

0x01,0x00,0x0

0x01,0x00,0x0

Chapter 4. The HAoS Programming Platform 142

(*.sc - see Listing 3.1) quite trivial as each element in the SC graph corresponds directly

to a specific part of the code. This fact implies that source code extraction from SC

graphs can be automated in the future, enabling building SC models by using a high-

level SC graph tool. This direct mapping also extends in the SC calculus notation making

the transition from the Conceptual Layer to the next layer, the Application Layer, fully

automated once these SC high-level tools are developed.

The Application and Link Layers form the software framework discussed in sections

4.3.4 and 4.3.5. In the Application Layer, the SC source code is translated to human-

readable assembly code (*.scp), which is then used as input to the HAoS functional

model along with the high-level processing plugins, implied by transformation functions

not supported natively by HAoS (not included in the HAoS instruction set - see Table

3.4). The source code and plugins are then revised until the desired behaviour is

accomplished. The Link Layer is the back-end phase were the SC binary (*.scb) is

generated by the post-compiler and, depending on how the program is going to be

loaded, it is either transferred to the Compact Flash Card or converted to ASCII text

(*.txt) to be embedded to the user code. Slight modifications may be needed at this point

to the interaction plugins prepared in the Application Layer to account for low-level

communication to HAoS through the provided API. Finally, the user code is linked with

the HAoS driver (using the Xilinx Software Development Kit) to generate the bare-metal

executable (*.elf) which will run on the MicroBlaze processor.

At the Physical Layer, the HAoS platform is implemented on the target FPGA board.

Based on the number of systems of the SC model, the appropriate configuration

bitstream (*.bit) is selected and combined with the output executable of the Link Layer

to form the final bitstream to program the FPGA device. The SC model simulation starts

by asserting the on-board hardware reset. The CF card acts as the storage unit of the

platform, storing the HAoS binary program (*.scb) and runtime log information (*.log).

A summary of the various file types used along the suggested HAoS model development

framework is given in Appendix F.

Before the final deployment of the SC model, live hardware debugging is also supported

through the Xilinx Software Development Kit (SDK) [225] following a typical

debugging flow in an Eclipse-based environment. The choice of the MicroBlaze

processor (section 4.1) ensured that software development is seamlessly integrated in the

HAoS embedded system design flow, as the complete architecture can be exported from

the hardware environment directly to the software environment. The SDK tools take

Chapter 4. The HAoS Programming Platform 143

advantage of this compatibility and configure the compiler and the debugger according

to the underlying hardware design in an automated way while the memory mapping of

the various peripherals is configured by auto-generated linker scripts. The maturity of

the tools and the inclusion of the specialized hardware Xilinx MicroBlaze Debug Module

in the system enable full source-level debugging capabilities as all typical debugging

features (like setting breakpoints and watchpoints, examining program variables and the

contents of system memory, stepping through program execution and viewing the call

stack) are supported. During debugging, access to the internal state of the HAoS custom

logic is obtained through reading the appropriate registers of the REG_BANK using the

provided API functions (see Appendix E) while the host computer running the SDK

communicates with the FPGA development board through the UART of the embedded

system using a standard USB cable.

4.6 Summary

In this chapter, the base HAoS system is extended to a practical hardware platform

accompanied by a software framework to provide a complete SC programming platform.

A thorough investigation of potential communication interfaces is provided in section

4.1. The analysis suggests that current technologies and protocols are widely

inappropriate for the real low-latency high-bandwidth solution required for linking the

SC architecture to a hi-end CPU. Thus, the suggested design makes a compromise based

on the latency-bandwidth trade-off that current technologies support, and it is concluded

that the ideal configuration would involve a high-performance CPU and the

reprogrammable logic on the same die, communicating at wire speed (acknowledging the

fact that current industrial trends have started adopting this approach).

The rest of the chapter addresses Chg2 (SC architecture support), by revising the

random-selection and schemata-matching hardware blocks, and Chg3 detailing

optimizations and enhancements that increase the efficiency of the design in terms of

latency and area, quantifying the results in sections 4.3.6 and 4.4. Combining the

updated hardware design with a complete software framework, developed mainly to

enhance user-friendliness and programmability, a HAoS model development

methodology is then formulated in 4.5 and demonstrated in the next chapter, giving

examples of simulating a natural process from conception to obtaining the final results .

The time complexity of the schemata matching mechanism is evaluated in section 5.1.5

and reveals that the optimized architecture achieves the task in near constant time.

144

Chapter 5

Verification and Evaluation

Low-level simulations of the hardware design have previously (section 3.8.1) verified

the functional behaviour of the base HAoS design testing various simple scenarios.

However, system-level verification is also important to stress the architecture and ensure

that the complete platform (including the embedded CPU subsystem and communication

interface) is behaving as expected. Since the hardware platform is available, live testing

(SC programs executed on hardware) can be much faster than the extremely time-

consuming RTL simulations, enabling the testing of more advanced functionality and

more complex SC models. System-level hardware verification addresses research

challenge Chg2 as it validates the support of the underlying SC architecture from the

suggested design.

Furthermore, executing more complex SC models on the final hardware platform can

also be used to evaluate HAoS against alternative simulators, in terms of efficiency -

addressing this way research challenge Chg3. Thus, after successfully executing the

simple test programs of Table 3.5 on hardware, three practical bio-inspired models,

presented in this chapter, are simulated with our prototype platform, and the results are

compared with the outcome of alternative simulation environments confirming that

HAoS can be used as a practical simulation solution (addressing the second requirement

of Chg3).

The selected models attempt to cover a wide range of possible SC applications. First, a

genetic algorithm optimization of the binary knapsack problem gives an example of how

evolutionary methods can be implemented with SC to solve a classic synthetic

computational problem. Then, moving to a more practical application, we model a well-

studied biochemical process, the MAPK signalling cascade. Finally, increasing

significantly the complexity, a SC application modelling the effect of chromosome

missegregation during cellular division and typical treatment approaches on cancer

growth is presented. All the models presented below, have been previously introduced

targeting different platforms and are reused for a thorough verification and evaluation of

Chapter 5. Verification and Evaluation 145

HAoS. The first two models are based on previously developed SC applications,

retargeted here to the HAoS platform, while the cancer SC application has been

developed from scratch.

Part of the work presented in this chapter has been published in [37], [160] and

submitted for publication in [230].

5.1 A Genetic Algorithm Optimization of the Binary Knapsack

Problem

The most complex test case among the initial verification scenarios of Table 3.5 is the

genetic algorithm (GA) optimization of the binary knapsack problem [231]. The

knapsack (or rucksack) problem is a classical example of combinatorial optimization

[232] which involves finding an optimal object in a finite set of objects, essentially

exploring a search space for the best solution to a given problem. Other typical examples

in this category of problems are the Travelling Salesman Problem, Minimum Spanning

Tree Problem and Job Assignment Problem [232] having in common that an optimum

instance is required, but examining all the possible permutations to identify it is not

usually desirable or feasible.

For this reason, alternative approaches and numerous algorithms can be found in the

literature [232] addressing the various types of combinatorial problems. Among them, a

Genetic Algorithm (described earlier in the context of Evolvable systems, section 2.2.2)

is a well-suited method for solving the binary knapsack problem, as it uses evolutionary

search techniques to identify a sufficiently good solution. The SC model presented below

follows the approach introduced in [34], running on the GPU-based SC implementation,

in order to directly compare the performance results obtained by HAoS to prior SC

implementations.

5.1.1 The Binary Knapsack Problem

In the general knapsack problem, there are n types of items. Each type i, has an

associated non-negative value vi and weight wi. The maximum combined weight of items

that can fit in the knapsack is W. The binary (or 0-1) knapsack problem also poses a

restriction on the number xi of copies of each type of object to zero or one. The problem

is mathematically formulated as:

Maximize 


n

i

ii xv
1

where Wxw
n

i

ii 
1

 and  1,0ix

Chapter 5. Verification and Evaluation 146

Figure 5.1. 16-Element Binary Knapsack Problem where W = 80kg

The configuration of the specific test case for the binary knapsack problem is shown in

Figure 5.1 with W = 80 kg, n =16 (i = 0→15) and various randomly selected

combinations of weight and value for the available items.

5.1.2 Applying a Genetic Algorithm to the Binary Knapsack Problem

In order to solve a problem with a GA-based approach, a population of candidate

solutions is evolved by altering a set of properties for each candidate. For the binary

knapsack problem, each solution may or may not include one copy of each available

item. Each solution is represented by an n-bit binary string, where n is the number of

available items and each bit represents if a specific item is (if the bit is set) or is not (if

the bit is cleared) selected to be part of the solution. Thus, the string, or chromosome,

holds the binary decisions making up each distinct solution for the given problem.

This representation is illustrated in Figure 5.2, giving as an example the optimal solution

of the 16-element binary knapsack problem of Figure 5.1. The position of each bit in the

chromosome corresponds to the distinct type of each item (shown at its top facet in

Figure 5.1). The weight and value for each solution, according to its chromosome, is

1 kg£12

2 kg£17

15 kg£20

20 kg£14

17 kg£6

£5 8 kg

10 kg£4

£1 11 kg

3 kg£9

19 kg£11

7 kg£15

4 kg£2

£19 5 kg

£3 9 kg

16 kg£7

18 kg£13

80 kg

8

7

6

5

3

0

1

42

9

10

11

12

14

13

15

Chapter 5. Verification and Evaluation 147

calculated by summing the weights and values of the items at the corresponding

positions with set bits. For the configuration of Figure 5.1, the optimal chromosome

gives a maximum value of 124 for a total weight of 79.

Figure 5.2. Representation of the optimal solution for the Binary Knapsack Problem

Following a classical GA methodology, a set (or population) of solutions is initialized

with random values for each bit in their chromosomes. Then, a set of genetic operators is

used to alter the genetic material of each solution. For simplicity, only three standard

genetic operators, illustrated in Figure 5.3, are applied to the candidate solutions of the

Binary Knapsack Problem
24

: Binary (or Single Point) Mutation which performs a random

bit flip, One-Point Crossover that swaps the genetic content of the two parents around a

randomly selected point and Uniform Crossover where each bit of the resulting solution

may come from each parent with a 50% probability.

The selection of solutions to propagate to the next generation is straightforward as the

fitness function in this case simply gives the weight of the chromosome, so valid

solutions with greater weight are fitter. However, it is noted that as the genetic

alterations are random, the resulting offspring may become invalid if its total weight

exceeds the predetermined threshold W. For this reason, each genetic operation also

includes a guarding functionality to prevent invalid solutions by selectively decreasing

the weight of an unacceptable chromosome until its weight is below W.

24

 It is noted that other types of mutation (as boundary, uniform and Gaussian) and crossover (as

two-point, cut-and-slice and half-uniform) are also commonly used. Moreover, other genetic

operators (as regrouping, colonization-extinction and migration) are also suggested in the

literature [250]

Position - Type15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1

9 4 18 5 10 19 11 17 16 2 8 3 1 20 15

15 2 13 19 4 11 1 6 7 17 5 9 12 14 203

7

Optimal

Chromosome

Weight (79)

Value (124)

Chapter 5. Verification and Evaluation 148

Figure 5.3. Standard genetic operators: Binary Mutation, One-Point and Uniform

Crossover

5.1.3 Systemic Analysis

Having described the genetic optimization approach of the binary knapsack problem in

the previous sections, a systemic analysis is required in order to identify the systems, the

interactions among them and the scopes they belong to before building the corresponding

SC model (implementing the conceptual layer of the suggested model development

methodology, see Figure 4.5).

9 8 7 6 5 4 3 2 1 014 13 12 11 1015
Parents

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

Crossover Point

Children

9 8 7 6 5 4 3 2 1 014 13 12 11 1015 Parent

9 8 7 6 5 4 3 2 1 014 13 12 11 1015 Child

Random Bit-Flip

9 8 7 6 5 4 3 2 1 014 13 12 11 1015
Parents

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

9 8 7 6 5 4 3 2 1 014 13 12 11 1015

Children

(A) Binary Mutation

(B) One-Point Crossover

(C) Uniform Crossover

Chapter 5. Verification and Evaluation 149

In this case, associating the data systems with the candidate solutions is a

straightforward choice, as the similarity of the binary representation of a chromosome

(see Figure 5.2) with the representation of a HAoS data system (see Figure 3.8a) is

evident. Thus, the genetic content of each chromosome is stored in one of the schemata

of a SC system. This implies that as the size of each schema is set to 16 bits in this

HAoS implementation, a restriction of a maximum of 16 items is posed to this knapsack

problem.

As systems are initialized to random values after the beginning of the program, the SC

model should initially include only non-initialized solutions. Moreover, the fittest

solution should be uniquely stored in a different type of system, which will be updated

only when required (only when a fitter solution than the previously fittest solution has

been found). Thus, three distinct types of data systems, stored in the second schema of

each data system, are required to represent all possible solution: non-initialized,

initialized and fittest.

The obvious context systems needed, defining interactions between the parent solution

systems, correspond to the three genetic operators used in our problem (see Figure 5.3).

Additionally, following the discussion above, a context handling the initialization of

solutions (an ―initializer‖ context) is also required, setting the bits of the chromosome-

representing schema randomly to 1 or 0 (with 50% probability each) and changing their

type-representing schema from non-initialized to initialized. Moreover, another ―output‖

context should be responsible for updating the fittest solution, by comparing its weight

with the weight of a randomly chosen initialized system and updating it when a new

maximum weight is found.

Considering the required scopes of interaction, since the main transformation activities

of this SC model are performed by the genetic operator contexts on initialized solutions,

a dedicated ―computation‖ scope is defined to separate them from the secondary tasks of

initialization and output. This implies that non-initialized solutions can be part of the

root (or ―main‖) scope but they need to be moved in the computation scope when

initialized by the initializer context. The output context (along with the fittest solution)

can also be contained in the root scope. However, since interacting systems must be in

the same scope, and since the fittest solution belongs to the root scope, initialized

solutions should also be part of the main scope (in order to be able to interact with the

final solution during updating). This denotes that initialized solutions are part of both the

Chapter 5. Verification and Evaluation 150

computation and the main scopes. The genetic optimization binary knapsack SC model,

according to the systemic analysis above is summarized in Figure 5.4.

Figure 5.4. The binary knapsack SC model. Non-initialized solutions are initialized by the

initializer context and added into the computation scope where they are transformed

through genetic operations. The output context updates, if necessary, the fittest solution.

5.1.4 SC Binary Knapsack Model Implementation

The HAoS binary knapsack model (and the two other bio-inspired models presented later

in this chapter) has been implemented applying the suggested development

methodology
25

 of section 4.5. The systemic analysis performed at the Conceptual Layer,

resulting in laying out the model on SC graphical notation, makes the development of the

25

 The low level details of the implementation of the Application, Link and Physical Layers will

be omitted here. All source code and configuration bitstrings can be found in the official HAoS

webpage [191].

Uniform

Crossover Initialized

Solution

Initialized

Solution

Binary

Mutation

One-Point

Crossover

Non-

Initialized

Solution

Initialized

Solution

Initialized

Solution

Initialized

Solution

Non-

Initialized

Solution

Non-

Initialized

Solution

Non-

Initialized

Solution

Initializer

Initialized

Solution

Initialized

Solution

Initialized

Solution

Initialized

Solution

Initialized

Solution

Non-

Initialized

Solution

Non-

Initialized

Solution

Non-

Initialized

Solution

Non-

Initialized

SolutionNon-

Initialized

Solution

Non-

Initialized

Solution

Computation

main

Output

Fittest

Solution

Non-

Initialized

Solution
Non-

Initialized

Solution

Chapter 5. Verification and Evaluation 151

SC source code straightforward. In order to show this, the source code of the binary

knapsack model is given in Listing 5.1. Its direct mapping to Figure 5.4 is evident as,

after the functions and some useful labels are defined, the data systems, contexts and

scopes are defined exactly as represented graphically. A description of the SC contexts

functionality is given in Table 5.1.

Listing 5.1. Binary Knapsack SC model source code (50 solutions)

#systemic start

// define the functions

#function Output %b00000001010000000000000000000000

#function Initialize %b10000001010000000000000000000000

#function UniformCrossover %b01000001010000000000000000000000

#function OnePointCrossover %b11000001010000000000000000000000

#function BinaryMutation %b00100001010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label comp %b1111111100000000

#label Sol %b1000000000000000 // Initialized Solution System Type

#label nonInitSol %b0100000000000000 // Non-Initialized Solution System Type

#label FittestSol %b1100000000000000 // Fittest Solution System Type

#label zero2 %b00000000000000000000000000000000

// declare the scopes

main (%d0 %d0 %d0)

computation (comp %d0 comp)

// data systems

OutSolution (zero %d0 FittestSol) // Fittest Solution

[1:50]solution (zero %d0 nonInitSol) // Non-Initialized Solutions

// context systems

// The initializer context defines an interaction between a non-initialized

// solution and the computation scope

initializer ([zero zero2 nonInitSol] Initialize(0,0) [comp zero2 comp])

// The output context defines an interaction between an initialized solution

// and the fittest solution

output ([dontcare zero2 Sol] Output(0,0) [dontcare zero2 FittestSol])

// The genetic operator contexts define interactions between initialized solutions

uniformCross ([dontcare zero2 Sol] UniformCrossover(0,0) [dontcare zero2 Sol])

onePointCross ([dontcare zero2 Sol] OnePointCrossover(0,0) [dontcare zero2 Sol])

binMutation ([dontcare zero2 Sol] BinaryMutation(0,0) [dontcare zero2 Sol])

// set up the scopes

#scope main

{

 OutSolution

 [1:50]solution

 initializer

 output

 computation

}

#scope computation

{

 uniformCross

 onePointCross

 binMutation

}

 #systemic end

Chapter 5. Verification and Evaluation 152

Table 5.1. Summary of the Knapsack SC model functions. All functions run on the CPU.

Function Name Description

Initialize
Initializes an non-initialized solution with random bit values, transforms

it to initialized and inserts it also in the computation scope

UniformCrossover

Performs Uniform Crossover (each child bit can come from any of the

parents with 50% probability - see Figure 5.3) using two initialized

solutions as parents

OnePointCrossover

Performs One-Point Crossover (the child is produced by two

consecutive parts, one from each parent, while the point that defines the

length of the parts is chosen randomly - see Figure 5.3) using two

initialized solutions as parents

BinaryMutation

Performs Uniform Crossover (a random bit-flip is performed to the

parent to result in the child - see Figure 5.3) using one initialized

solution as parent

Output
Compares a random solution with the fittest and updates the fittest if

needed

Experiment Setup

The setup of the binary knapsack experiment replicates the configuration presented in

[34], and shown earlier in Figure 5.1, in order to enable a direct comparison and

evaluation of the performance of HAoS against prior SC implementations. In particular,

identical copies
26

 of the SC source code are used to run the experiment on HAoS, the

original sequential (section 2.4.1) and the GPU-based (section 2.4.3) implementations.

SCoPE (section 2.4.2) is excluded here, as it uses a different SC language and compiler.

It is noted that the CPU is heavily used in this case, as the available low-level hardware-

supported HAoS instructions are not suitable for the required high-level GA tasks.

The experiment involves running the 16-item SC binary knapsack model using 50, 100,

200, 400, 800 and 1000 solutions. As the time of convergence to the optimal

chromosome can vary greatly for different runs and since this metric is mainly affected

by the sequence of the selected genetic operations applied to the candidate solutions, it

was decided that the three platforms would be evaluated based on reaching a certain

amount of interactions, set in this experiment at 10000 (following the setup in [34]). An

Intel® Core™ i7 950 CPU at 3.06GHz with 4 GB of RAM running on 32-bit Windows 7

and an NVIDIA GeForce GTX 260 GPU with 192 CUDA cores where used for the

sequential and GPU versions. HAoS, as mentioned in sections 4.2 and 4.3.6, uses a

26

 The source code was not optimized for HAoS in order to enable a more fair comparison.

Chapter 5. Verification and Evaluation 153

MicroBlaze processor with 64KB of RAM running at 100 MHz while the custom logic is

clocked at 50MHz.

5.1.5 Results

The binary knapsack problem was one of the initial verification tests (see Table 3.5) that

validated the functionality of HAoS by simulation. The verification environment lacked
27

precise timing information, as the CPU INTERFACE (see Figure 3.9) was emulated by a

generic register-based mechanism implementing a handshake protocol and the timing of

functions running on the processor was estimated by averaging the results of intrusive

software-based profiling. Thus, timing results presented in this chapter will be solely

based on live testing on the hardware platform.

However, in order to show that the verification environment can be used, if required

(mostly for debugging purposes), even for such a high-level model, an excerpt from its

output near the end of the simulation is given in Listing 5.2 showing that the optimal

chromosome, with right weight and value (see Figure 5.2), is correctly identified (also

noting the relatively long run time).

Listing 5.2. Verification environment output for Binary Knapsack SC model

#Time 52093085ns :: KSBINMUTATE{CPU}: (22591,22591) => (6207,22591)

[((sys1.sch1),(sys2.sch1)) => ((sys1.sch1),(sys2.sch1))] <sc:0,cxt:53,it:9998>

#Time 52097645ns :: KSOUTPUT {CPU}: IF DIFF THEN BETTER (22587,22591) =>

(22587,22591) (sys1@51,sys2@1) [sys1.sch2:1=>1,

sys2.sch2:3=>3][((sys1.sch1),(sys2.sch1)) => ((sys1.sch1),(sys2.sch1))]

<sc:0,cxt:53,it:9999>

#Time 52098245ns :: SC Top Test finished..

#Time 52098245ns :: The SC program was loaded at 2613975.

#Binary Knapsack Problem Solution is 0101100000111111 (found at iter. 2259

<@13929180ns>)

#It has a weight of 79.000000 and a value of 124.000000

#Aborted 11 times due to schemata mismatch out of 10000 iterations.

#Aborted/Successful CAM compare Ratio : 0.11%

#Process time 305.01 seconds (simulation real time duration)

The comparison results for the different experiment configurations in terms of number of

systems are given in Figure 5.5 as a semi-log graph (left) in order include the

exponential growth of runtimes for the sequential implementation, while on the right

27

 Applies for behavioural (RTL) simulations. Precise and very precise timing can be obtained in

the verification environment by running post-synthesis and post-place-and-route simulations

including the processor subsystem but this results in excessive run times.

Chapter 5. Verification and Evaluation 154

HAoS performance is compared only with the GPU-based version. All the

implementations eventually identify the correct solution.

Figure 5.5. Binary knapsack problem experimental results across a range of number of

systems comparing the sequential, GPU and HAoS SC implementations (left - semi-log) -

zoomed in (right)

5.1.6 Analysis

Since the code implementing the transformation functions of the SC model is

intentionally identical to the code running in the other implementations, the comparison

results mainly represent the efficiency difference of the three platforms on valid triplet

generation, affected mainly by the implementation of the schemata matching mechanism.

As the number of system increases, the sequential implementation struggles as it handles

schemata matching with an inefficient loop-based approach resulting in time complexity

of O(n
2
), while the GPU version, by utilizing multiple stream processors, parallelizes

part of this loop and achieves to decrease it in O(n) [34] (shown in Figure 5.5 if the

minimal highest orders factors are ignored). The truly parallel nature of the TCAM is the

differentiating feature for HAoS since schemata matching is executed in constant time

(one clock cycle ‒ implying O(1)), shown in Figure 5.5.

As more clearly shown in Figure 5.6 (illustrating the normalised performance of HAoS

in relation with the sequential and GPU SC versions), the superiority of the HAoS

platform against prior implementations is evident as HAoS performs more than 1000x

better than the sequential solution in the best case and approximately 8x-9x when

compared with the GPU implementation.

y = 0.0002x3 - 0.0107x2 + 47.228x - 1250.8

y = 0.0003x2 + 0.0483x + 880.45

y = 0.002x + 130.13

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0 200 400 600 800 1000

sequential(ms) GPU(ms) HAoS(ms)

Systems

time(ms)

y = 0.0003x2 + 0.0483x + 880.45

y = 0.002x + 130.13

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0 200 400 600 800 1000
GPU(ms) HAoS(ms)

Systems

time(ms)

Chapter 5. Verification and Evaluation 155

Figure 5.6. Binary knapsack experiments HAoS normalised performance compared to the

sequential and GPU implementations

Moreover, it is important to be noted that, these results do not apply only in the problem

class which the knapsack experiment belongs in, but they can be generalized to any

problem that may be solved with SC given that HAoS provides sufficient computational

resources when compared to alternatives. This is attributed to the importance of the

schemata matching mechanism. The performance during the simulation of any natural

system under the SC paradigm always rely on valid triplet generation (finding the two

systems to interact according to the schemata templates of a, third, context system) and

the actual computation which changes the systems according to the transformation

function of the context system. Being able to perform the computational part, by

executing code written in some well-established high-level language, is essential in order

to achieve a generic and practical architecture not limited to the complexity of the

computation. However, attempting to also simulate the schemata matching step, which is

highly-parallel in nature, to the same sequential logic results in the findings of Figure 5.5

when compared to the suggested HAoS architecture for ascending number of systems,

due to the inherent parallelism of the employed TCAM.

The schemata matching task can be viewed as a lookup in a 3-dimensional search space

for each scope, where each dimension represents the indexes of each system in the valid

triplet (s1 for first interacting system axis, s2 for second interacting system axis and c for

context axis), or a 4-dimensional search space with the fourth dimension (s) representing

0.01%

0.1%

1%

10%

100%

50 100 200 400 800 1000

N
o

rm
al

is
ed

 H
A

o
S

P
er

fo
rm

an
ce

Fa

ct
o

r
O

ve
r

C
o

m
p

et
it

io
n

Systems

sequential

GPU

HAoS

Chapter 5. Verification and Evaluation 156

the scopes of each system. In the current configuration the coordinates on s and c axes

(valid scope and active context) are chosen randomly, as explained in section 3.5, and

then HAoS locates the appropriate coordinates on axes s1 and s2 by performing two

consecutive lookups using the TCAM to identify the interacting systems, and thus

pinpoint the next valid triplet. Using a second TCAM, would enable the identification of

both interacting systems at the same time, while using such a double TCAM structure (or

effectively a dual-port TCAM) for each context system would enable a one clock cycle

latency of finding all active triplet points in the 3-dimensional search space for each

scope.

Extending this thought, again multiplying the number of TCAMs with the number of

scopes would allow a truly parallel schemata matching mechanism that would give all

interacting systems pairs for all contexts in all scopes at once. Such a structure would

increase the number of required TCAM storage exponentially. Whereas the TCAM in the

current prototype requires (N is the number of maximum supported systems):

SizeTCAM = (LengthTCAM) * (WidthTCAM) = (2 * SizeSchemata)* (N) = (2 * 16) * 1024 = 4KB

in the hypothetical 4-dimensional TCAM scenario it would require :

SizeTCAM4d = 2 * N * N * SizeTCAM = 4 * SizeSchemata * N
3

= 8GB

which is an enormous size when considering on-chip distributed memory today but may

become feasible in the future or using an alternative TCAM implementation approach,

e.g. an external TCAM configuration. The HAoS prototype, in this context, is a

compromise between the inefficient sequential approach and the truly parallel but

currently infeasible 4d approach for schemata matching.

Apart from the encouraging evaluation results, it should be noticed that the knapsack

problem here acts as more than an example of a common synthetic computational

problem being solved. Implementing a genetic algorithm in such a native way implies

that the design encompasses, to some level, a lot of the natural properties of Table 1.1,

addressing research challenge Chg1. As it has been shown in [22], such a system can

present behavioural natural properties as self-adaptation, self-organization, fault-

tolerance and self-maintenance while also implementing a stochastic, distributed and

approximate computational model. Moreover, the successful execution of this first high-

level SC model confirms the support of the suggested design for the underlying

architecture of SC, addressing research challenge Chg2. The results additionally address

research challenge Chg3 by verifying the efficiency of HAoS against prior SC

implementations.

Chapter 5. Verification and Evaluation 157

5.2 Simulation of a Biochemical Process with HAoS: the MAPK

Signalling Cascade

Enzymes regulate various cellular functions by catalyzing chemical reactions among

biological molecules. One of the enzymes known to be responsible for gene expression

and cell fate induction is the protein kinase which adds phosphate groups to proteins (a

process called phosphorylation). Extracellular stimuli (mitogens) can activate protein

kinases (Mitogen Activated Protein Kinases - MAPK) and start a chain reaction known

as the MAPK signalling cascade [233], resembling the behaviour of a biological

ultrasensitive switch which can bring the cell to discrete states.

The MAPK cascade model presented in this section was introduced by Huang and Ferrell

in [233]. The authors give estimated results based on the numerical solution of rate

differential equations derived by the involved biochemical reactions which are in

accordance with in vitro experimental results presented in the same paper. The same

model was used later in [234] as an application for their stochastic π-calculus simulator

and in [22] as a case study to demonstrate the visualization framework of the high-level

SCoPE implementation (see section 2.4.2 - Figure 2.14 actually represents a MAPK

cascade model).

5.2.1 The MAPK Signalling Cascade

During the process involved in the MAPK signalling cascade, mitogens activate a

MAPKKK (mitogen-activated protein kinase kinase kinase or MAPKKK or for

simplicity here KKK) which in turn phosphorylates a MAPKK (mitogen-activated

protein kinase kinase or MAPKK or KK) which itself phosphorylates a MAPK (mitogen-

activated protein kinase or MAPK or K). The product of the first step, the activated

KKK, is denoted as KKK*. In the next steps, one or two phosphate groups (P) are added

to K and KK and result in single (KP and KKP) and double (KPP and KKPP)

phosphorylated kinases.

The cascade can return to its initial state with the addition of phosphatase enzymes

(KKPase and KPase) which remove a phosphate group from its substrate (this reverse

process is called dephosphorylation). The phosphorylation and dephosphorylation

processes along with their associated chemical reactions are illustrated in Figure 5.7.

Chapter 5. Verification and Evaluation 158

Figure 5.7. Simplified biochemical description of the MAPK signalling cascade ignoring

phosphate groups. The cascade is traversed forwards during phosphorylation (lower half,

left-to-right) to result in a high concentration of activated kinases KKK*, KKPP and KPP

and backwards during dephosphorylation (upper half, right-to-left) to return to its initial

state. E1 and E2 represent the mitogens which activate KKKs and deactivate KKK*s,

respectively. The intermediate product of each reaction (written here as the reactants

connected by a hyphen) may either give the final products or be transformed back to the

initial reactants
28

.

5.2.2 Systemic Analysis

Taking into consideration the chemical reactions of the cascade (see Figure 5.7), a

systemic analysis of the model is performed to identify the systems to interact and the

form of the interactions between them. Since this is a biochemical model involving

enzyme activity, selecting the level of abstraction of the SC model at the enzyme level is

a straightforward decision.

Considering first the phosphorylation process, looking at the bottom half of Figure 5.7,

since the addition of the mitogens E1 performs the activation of proteins KKK and

transforms them in activated proteins KKK*, it is evident that the mitogens act as

context systems, defining the interaction of a data system KKK with an implied free

phosphate group (PF) resulting either on the KKK binding the PF and becoming KKK*

with a bound phosphate group (PB) or no system being transformed. This binding of a

28

 To be more exact, the intermediate products are in chemical equilibrium state with the

reactants, meaning that no real transformation can happen between them as both reactants and

products are present at concentrations which have no further tendency to change with time.

Products ← Reactants
Reactants → Products
⇌ : Chemical Equilibrium

KKK+E1 ⇌ KKK*-E1 → KKK*+E1

KKK+E2 ← KKK-E2 ⇌ KKK*+E2

KK+KKK* ⇌ KK-KKK* → KKK*+KKP⇌ KKK*-KKP → KKK*+KKPP

← KKPP-KKPase ⇌ KKPP+KKPaseKK+KKPase ← KKP-KKPase ⇌ KKP+KKPase

K+KKPP ⇌ K-KKPP → KKPP+KP⇌ KKPP-KP → KKPP+KPP

← KPP-KPase ⇌ KPase+KPPK+KPase ← KP-KPase ⇌ KP+KPase

P
h

o
sp

h
o

ry
la

ti
o

n

D
e
p

h
o

sp
h

o
ry

la
ti

o
n

Chapter 5. Verification and Evaluation 159

PF and its transformation to a PB is implied for every reaction during the

phosphorylation process and will not be repeated in the following analysis.

Moving in the next pair of reactions, a KKK* may transform a KK into a KKP and if this

reaction is performed, the KKK* may also further transform the product KKP into a

KKPP. Thus KKK* acts as a context, defining interactions between KK or KKP data

systems and the implied PFs. It should be noted that while KKK is a data system, it is

transformed to a context system (KKK*) when activated by E1 in the previous step. This

implies that the context adapting functionality (discussed in section 3.6.1 and tested in

section 3.8.1) is required by this SC model.

Looking at the last set of reactions, the product of the previous reaction KKPP (which

has resulted from data system KKP) acts as a context, defining interactions between K or

KP data systems and the implied PFs. The possible products of these interactions are

respectively KP or KPP data systems. Thus the data system KKP is transformed to the

context system KKPP. As shown in the bottom right part of Figure 5.7, KKPP and KPP

are the last products of the phosphorylation process, so monitoring their concentration

can give the state of the MAPK signalling cascade biological switch (the two distinct

states of the switch are represented by either very high or very low concentration of

these products) during an experiment using this model.

Using the same thought process and the chemical reactions of the top half of Figure 5.7,

a systemic analysis can also be performed for dephosphorylation. For each reaction

during this process, an unbinding of a bound phosphate group PB and its transformation

to a free phosphate group PF is implied. Skipping the detailed explanation, the

phosphatase enzymes KPase and KKPase and the mitogen E2 act as contexts. KPase may

transform data systems KPP and KP to data systems KP and K, respectively. KKPase

may transform data systems KKP to data systems KK but may also transform context

systems KKPP to data systems KKP. This dual functionality cannot be represented by

one system. Thus, a context should be used to model the former behaviour of KKPase,

while a context adapter system should be used to model the later. Finally, context

adapter E2 may transform KKK* contexts back to data systems KKK.

After identifying the systems involved in the SC MAPK cascade model above, the last

part of the systemic analysis is with regards to the required scopes of interaction. An

exact representation of the model would require that once a phosphate group P, modelled

as a separate system, is bound by a protein kinase during phosphorylation, this P could

not be able to be re-bound by another kinase. Furthermore when this specific kinase

Chapter 5. Verification and Evaluation 160

would interact during dephosphorylation, it would need to unbind the specific P that had

bound before. This functionality, representing the physical location in a real biochemical

system could be implemented using scopes. However, it would add considerable

complexity to the SC model.

Since the main focus of this MAPK model lies on the concentrations of the activated

kinases, representing the phosphate groups as a distinct system each is not a fi rm

requirement. The total of Ps can also be modelled as a container system holding in its

schemata counters for the number of the free groups PF and of the ones bound to a

kinase PB. Furthermore, this model assumes that an adequate number of Ps is available,

equal or greater than |KKK|+2*(|KK|+|K|) (as one P can be bound by a KKK and two Ps

can be bound by KKs and Ks), which would be enough to phosphorylate all kinases.

Thus, the way Ps are modelled becomes irrelevant as it would only have an effect on the

outcome of the model only in the case of having a shortage of P, since this would disable

some reactions. So, in order to avoid adding unnecessary complexity to the SC model, all

phosphate groups can be modelled by a single system taking part in all interactions or

even be safely ignored, as long as the contexts appropriately alter the kinase systems.

Following this approach, the number of total required systems is drastically decreased

and also no additional scopes are needed, apart from the root scope.

In order to make the systemic analysis more clear, the systems and interactions of the

HAoS MAPK model are described in SC calculus notation [22] in Table 5.2. The

designations (P[F]) and (P[B]) as the second interacting system denotes that a free or

bound phosphate group, respectively, would be used if each P was represented by a

separate system while all interactions would involve the same P system if all Ps were

represented by a container system. The parenthesis reminds us that the P system may

even be ignored (in that case, the second template would match with any system). The

simplified SC model discussed above is given in SC graphical notation in Figure 5.8.

Chapter 5. Verification and Evaluation 161

Figure 5.8. The HAoS MAPK model in SC graphical notation. During phosphorylation, E1

mitogens activate KKKs, which become KKK*s and phosphorylate KKs, which, when

double phosphorylated, become KKPPs and phosphorylate Ks. This process is reversed

during dephosphorylation with KPase and KKPase phosphatases and E2 mitogens bringing

the cascade to its initial state. Systems with the same colour or connected with a dotted line

may represent the same system (redrawn here for clarity). Phosphate groups may be

modelled as separate systems including information about their binding ([F]:free,

[B]:bound) or as one counter system representing all of them (P) or may even safely ignored

as they do not have an impact on the behaviour of the model.

E1

KKK
(P[F])

KKK*(P[B])

E2

(P[F]) KK

(P[B]) KKP

KKPase

KKP (P[F])

(P[B])

KKPase

(P[F])
K

(P[B]) KP

KPase

KP
(P[F])

KPP (P[B])

KPase

STEP A

STEP B STEP C

STEP D

STEP E

Phosphorylation Steps:
A→B→C→D→E

Dephosphorylation Steps:
E→D→C→B→A

KKK* KKK*

KKPP

KKPP KKPP

Chapter 5. Verification and Evaluation 162

Table 5.2. The HAoS MAPK model interactions in SC calculus notation. The notation S1 }-

C -{ S2 indicates that the systems S1 and S2 match the schemata of a context system C and

they interact in the scope of C according to its transformation function, while the | symbol

separates different outcomes that an interaction may have. During phosphorylation a free

phosphate group (PF) becomes bound (PB) to a kinase, while it is released during

dephosphorylation when phosphate groups are included in the model. The different types of

systems according to the systemic analysis are represented as follows here: Bold for

contexts, italic for context adapters and normal for data

P
h

o
sp

h
o

ry
la

ti
o

n

Interacting Systems

 Result

 KKK }- E1 -{ (P[F])

 KKK* (P[B]) | KKK (P[F])

 KK }- KKK* -{ (P[F])

 KKP (P[B]) | KK (P[F])

 KKP }- KKK* -{ (P[F])

 KKPP (P[B]) | KKP (P[F])

 K }- KKPP -{ (P[F])

 KP (P[B]) | K (P[F])

 KP }- KKPP -{ (P[F])

 KPP (P[B]) | KP (P[F])

D
e
p

h
o

sp
h

o
ry

la
ti

o
n

Interacting Systems

 Result

 KPP }- KPase -{ (P[B])

 KP (P[F]) | KPP (P[B])

 KP }- KPase -{ (P[B])

 K (P[F]) | KP (P[B])

 KKPP }- KKPase -{ (P[B])

 KKP (P[F]) | KKPP (P[B])

 KKP }- KKPase -{ (P[B])

 KK (P[F]) | KKP (P[B])

 KKK* }- E2 -{ (P[B])

 KKK (P[F]) | KKK* (P[B])

5.2.3 SC MAPK Signalling Cascade Model Implementation

Following the systemic analysis of the previous section, the MAPK HAoS model

includes all types of supported systems: data, context and context adapters. Observing

the systemic interactions of Table 5.2, data systems are differentiated by the number of

protein kinases (Ks) and phosphate groups (Ps). So a straightforward approach to

represent this information is to assign one bit for each K and each P in each data system.

If separate phosphate groups are included in the model, another pair of bits can be used

to represent the P data system type and its binding state. Furthermore, noting that

contexts KKK*, KKPP and KPase can define interactions performing the same

transformation on two different types of data systems (KKK* can select KKK or KK,

KKPP can select K or KP and KPase can select KPP or KP), these interactions can be

grouped together. Ternary bits (denoted with a question mark: ?) can be used in the data

template defined in the schemata of these contexts, so that both possible data system

Chapter 5. Verification and Evaluation 163

types can be selected during schemata matching. This is shown in the labels section of

the SC source code of the model, given in Listing 5.3.

Listing 5.3. MAPK Signalling Cascade SC model source code

#systemic start

// define the functions needed according to the systemic interactions

#function PHOSPH_E1 %b00000010010000000000000000000000 // Phosphorylation E1

#function PHOSPH_KKK %b10000010010000000000000000000000 // Phosphorylation KKK*

#function PHOSPH_KKPP %b01000010010000000000000000000000 // Phosphorylation KKPP

#function DEPHOSP_E2 %b11000010010000000000000000000000 // Dephosphorylation E2

#function DEPHOSPH_KKPASE %b00100010010000000000000000000000 // Dephosphoryl. KKPase

#function DEPHOSPH_KPASE %b10100010010000000000000000000000 // Dephosphoryl. KPase

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label zero2 %b00000000000000000000000000000000

//// #label phosfree %b0000001000000000 // uncomment to include phosphate groups

//// #label phosbound %b0000001100000000 // uncomment to include phosphate groups

#label kkk %b1110000000000000

#label kk %b1100000000000000

#label k %b1000000000000000

#label kkp %b1100100000000000

#label kp %b1000100000000000

#label kpp %b1000110000000000

#label kkORkkp %b1100?00000000000 // using ternary bit to match both kk and kkp

#label kkpORkkpp %b11001?0000000000 // using ternary bit to match both kkp and kkpp

#label kpORkpp %b10001?0000000000 // using ternary bit to match both kp and kpp

#label kORkp %b1000?00000000000 // using ternary bit to match both k and kp

main (%d0 %d0 %d0) // declare the main scope

// data systems

[0:9]kkk (zero %d0 kkk)

[0:99]kk (zero %d0 kk)

[0:99]k (zero %d0 k)

//// [0:409]phosphate (zero %d0 phosfree)

// uncomment commented contexts and comment the line above them to include Ps

// context systems

// Phosphorylation

e1 ([dontcare zero2 kkk] PHOSPH_E1(0,0) [dontcare zero2 dontcare])

//// e1 ([dontcare zero2 kkk] PHOSPH_E1(0,0) [dontcare zero2 phosfree])

kkkst ([dontcare zero2 kkORkkp] PHOSPH_KKK(0,0) [dontcare zero2 dontcare])

//// kkkst ([dontcare zero2 kkORkkp] PHOSPH_KKK(0,0) [dontcare zero2 phosfree])

kkpp ([dontcare zero2 kORkp] PHOSPH_KKPP(0,0) [dontcare zero2 dontcare])

//// kkpp ([dontcare zero2 kORkp] PHOSPH_KKPP(0,0) [dontcare zero2 phosfree])

// Dephosphorylation

e2 ([kkkst] DEPHOSP_E2(0,0) [dontcare zero2 dontcare])

//// e2 ([kkkst] DEPHOSP_E2(0,0) [dontcare zero2 phosbound])

kpase ([dontcare zero2 kpORkpp] DEPHOSPH_KPASE(0,0) [dontcare zero2 dontcare])

//// kpase ([dontcare zero2 kpORkpp] DEPHOSPH_KPASE(0,0) [dontcare zero2 phosbound])

kkpasekkp ([dontcare zero2 kkp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 dontcare])

//// kkpasekkp ([dontcare zero2 kkp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 phosbound])

kkpasekkpp ([kkpp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 dontcare])

//// kkpasekkpp ([kkpp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 phosbound])

#scope main // set up the main scope

{

 e1

 e2

 kpase

 kkpasekkp

 kkpasekkpp

 [0:9]kkk

 [0:99]kk

 [0:99]k

 //// [0:409]phosphate

}

 #systemic end

Chapter 5. Verification and Evaluation 164

Table 5.3. Summary of the MAPK SC model functions. All functions run on the CPU.

Function Name Description

PHOSPH_E1
Represents the functionality of enzyme E1, transforming KKK to

KKK* or leaving them unchanged

PHOSPH_KKK

Represents the functionality of activated kinases KKK*,

transforming KK and KKP to KKP and KKPP respectively, or

leaving them unchanged

PHOSPH_KKPP

Represents the functionality of activated kinases KKPP,

transforming K and KP to KP and KPP respectively, or leaving them

unchanged

DEPHOSP_E2
Represents the functionality of enzyme E2, transforming KKK* to

KKK or leaving them unchanged

DEPHOSPH_KPASE
Represents the functionality of phosphatases KPase, transforming

KPP and KP to KP and K respectively, or leaving them unchanged

DEPHOSPH_KKPASE

Represents the functionality of phosphatases KKPase, transforming

KKPP and KKP to KKP and KK respectively, or leaving them

unchanged

Context adapter systems e2 and kkpasekkpp, which respectively transform kkkst

(KKK*) and kkpp contexts back to data systems, match the context systems according

only to their transformation function, so the name of the systems to be matched are used

in the SC source code instead of separate templates. Finally, not all defined systems need

to be part of the main scope at the beginning of the SC program, as contexts KKK* and

KKPP are products of interactions which occur along the execution of the model.

As discussed in the previous section, the MAPK model used in this experiment is a

simplified
29

 version, in terms of the representation of the phosphate groups. While this

version ignores Ps, the SC source code given in Listing 5.3 includes for completeness the

changes (in comments) that would be needed to include Ps in the model
30

.

29

 If the simplification of the model (resulting in decreasing the overall number of required

systems) was not possible, the size of the model would be restrictive for execution on the

implemented prototype HAoS platform, which after the last revisions of the design officially

supports models involving up to 511 systems.

30
 The inclusion of a data system representing all phosphate groups would also be quite simple as

this system would need to be defined and included in the main scope. Moreover, a single

matching label (e.g. "phos") corresponding to the type of this phosphate system would replace

Chapter 5. Verification and Evaluation 165

On the high-level software development side of the model, context transformation

functions plugins (Application Layer, Figure 4.5) were developed to implement the

transformation activity of each interaction. These functions, running on the embedded

processor, mainly handle the required systems' type alterations (see Table 5.2 and Table

5.3) and the logging of the output from the model (concentration, represented by the

number of systems, of the final products of the chemical reactions) on the SD card. It is

noted that in the case of context adapting the software should notify the hardware

(through appropriately setting a configuration register) that a system has changed its type

(from data to context or vice versa).

Experiment Setup

The MAPK signalling cascade model has been previously simulated with the Stochastic

Pi Machine (SPiM) simulator in [234] and with the high-level SC implementation

(SCoPE) in [22]. Thus, modelling the MAPK cascade with HAoS using the same

configuration and initial conditions previously used in the experiments presented in

[234] and [22] enables the direct comparison and evaluation of our prototype platform

against these alternative simulators in terms of quality of results and performance (based

on execution speed).

The common configuration used in all three modelling environments, in accordance with

the experiment in [234], involves 10 KKKs, 100 KKs and 100 Ks kinases, 1 E1 and 1

E2 enzymes, and 1 KKPase and 1 KPase phosphatases. All protein kinases are initialized

to a non-phosphorylated state. All chemical reaction rates (which in this model are

translated to interaction probabilities) are set to a nominal value of 1. This implies that

since every interaction may either change the interacting systems or leave them

unchanged, each outcome has a probability of 0.5.

5.2.4 Results

Since the results of the SPiM simulator, modelling the cascade, have been shown in

[234] to be in agreement with the actual response of this signalling network, observed in

a wet lab, we can use them as a reference to validate the functionality of HAoS. As

illustrated in Figure 5.9, the simulated behaviour of the cascade is shown to be in

all "phosfree" and "phosbound" labels in all context definitions, as all interactions would involve

this single P data system.

Chapter 5. Verification and Evaluation 166

agreement for all three used simulation environments ((a) SPiM, (b) SCoPE and (c)

HAoS).

However, while all three simulators capture the functional behaviour of the cascade

correctly, their simulation running times vary significantly. Simulating biological

processes was the key consideration for their design but their performance depends

heavily on their implementation. While, as previously discussed, SCoPE is a high-level

software (C++) implementation of SC, the SPiM simulator is a functional programming

[235] (F#) software implementation of the SPiM language, developed by Microsoft

Research, which is based on stochastic π-calculus [49] and standard kinetic theory of

physical chemistry [234]. HAoS being a hardware-based implementation, it benefits

from the inherent parallelism of the TCAM and low-level hardware latency-aware

optimizations. As seen in Table 5.4, HAoS outperforms the alternative software-based

simulators: SPiM by a factor of 17.3 and SCoPE by a factor of 11323.6 in the case of the

MAPK cascade.

Figure 5.9. Traversing the MAPK signalling cascade with (a) SPiM, (b) SCoPE and (c)

HAoS with initial state: 10 KKKs, 100 KKs, 100 Ks, 1 E1, 1 E2, 1 KKPase and 1 KPase

0

20

40

60

80

100

0 10 20 30 40 50

N
u

m
b

e
r

o
f

A
ct

iv
at

e
d

 K
in

as
e

s

Time (s)

KKK*

KKPP

KPP

0

20

40

60

80

100

0 10 20 30 40 50

N
u

m
b

e
r

o
f

A
ct

iv
at

e
d

 K
in

as
e

s

Time (s)

KKK*

KKPP

KPP

0

20

40

60

80

100

0 10 20 30 40 50

N
u

m
b

e
r

o
f

A
ct

iv
at

e
d

 K
in

as
e

s

Time (s)

KKK*

KKPP

KPP

HAoS

SCoPE SPiM

(a) (b)

(c)

Chapter 5. Verification and Evaluation 167

Table 5.4. Performance of the HAoS, SPiM (v1.13) and SCoPE simulators based on

simulation duration, simulating 50 seconds of the MAPK cascade evolution, with initial

conditions as stated in Figure 5.9. Values shown are the average over 20 runs acquired

using PowerShell on Windows 7 64-bit, Core i7 Q840 CPU with 8 GB RAM for the

software-based simulators, while HAoS is implemented on a Xilinx Virtex-6 FPGA utilizing

a MicroBlaze soft processor running at 100MHz with 64KB of dedicated memory.

 HAoS SPiM SCoPE

msec 58.1 1004.9 657902.5

factor 1 17.3 11323.6

5.2.5 Analysis

As shown in Figure 5.9, the behaviour of the MAPK signalling cascade as a biological

switch that can bring the cell in discrete states is captured by all three used modelling

environments, as all instances of KK and K kinases are double phosphorylated and result

in KKPP and KPP respectively. However, minor differences can be observed in the

output of the three simulators regarding the signal response sensitivity of the model in

terms of the rate of KPP production as a result of KKPP activations near both states and

especially as the concentrations reach the total number of the available kinases plateau.

It is noticed that the SPiM simulator reflects more accurately the decrease in available

kinases, resulting in reaching the final state (after a decrease in the activation rate) in a

more gradual manner presenting a more rounded sigmoidal finish. Both SC simulators

present a more abrupt finish as the chemical rates are translated to interaction

probabilities in the software level, resulting in a less sensitive behaviour as fine-tuning

their values is also affected by the interaction order mechanism employed in the

implementation.

The timing results of Table 5.4, also illustrated as the performance factor provided by

HAoS against SPiM and SCoPE (after normalisation) in Figure 5.10, reveal the low

efficiency of the high-level SCoPE implementation, as a result of its increased provided

flexibility and the ineffective brute-force schemata matching mechanism which iterates

through random triplets of systems until one that can define an interaction is identified.

The SPiM simulator, while running on a conventional CPU, achieves a considerably

better performance due to its optimized implementation of stochastic π-calculus. It

models the various interactions with separate processes communicating through

predetermined channels with dynamically adjusted interaction rates, affected by the

number of possible combinations of inputs and outputs on each channel [234]. It is

important to notice that while the SC models set the level of abstraction at the enzyme

Chapter 5. Verification and Evaluation 168

level, modelling each kinase as an individual entity, the SPiM model simulates all

instances of the same type of kinases in a separate unified group, resulting in a reduced

simulation complexity and increased performance.

Figure 5.10. MAPK cascade experiment HAoS normalised performance compared to the

SPiM and SCoPE simulators

Yet, in spite of this relative difference in the implementation of the MAPK model, HAoS

still achieves to outperform SPiM due to its highly parallel nature and low-level

optimizations which implement the implied SC architecture efficiently. Thus, these

results confirm that research challenges Chg2 and Chg3 have been adequately addressed

since the suggested platform provides support for the architectural features of SC while

achieving this with efficiency. This is shown by the capacity of HAoS outperforming not

only prior SC implementations, as SCoPE, but also rival simulators, as SPiM.

5.3 Modelling the Effect of Chromosome Missegregation and

Typical Cancer Therapy Approaches in Tumour Evolution

with HAoS

Medical research is given a high priority amongst all research activity, mainly because it

usually addresses issues that may have a profound role in the course of human life. A

cure for cancer may be called the ―holy grail‖ of medical research on life-threatening

diseases, due to the increasing levels of cancer-related mortality being observed during

the last decades. Cancer is a group of diseases, having in common irregular cell growth,

0.001%

0.01%

0.1%

1%

10%

100%

MAPK Cascade

N
o

rm
al

is
ed

 H
A

o
S

P
er

fo
rm

an
ce

Fa

ct
o

r
O

ve
r

C
o

m
p

et
it

io
n

SCoPE

SPiM

HAoS

Chapter 5. Verification and Evaluation 169

which are commonly associated with multiple external factors but without a registered

common cause [236]. The ultimate goal of cancer research is to provide an effective way

of prevention, diagnosis and therapy for the large number of individual cancer diseases,

but in order to accomplish that, researchers should first gain understanding of the

complex underlying tumour development pathways. The explosive technological

advancements of the past century have been enabling this by means of wet lab

experiments but also by more efficient computational models (in silico) to assist and

sometimes guide in vivo (in living biological organisms) and in vitro (in a test tube)

experimental research.

While there is a wide range of types of cancers, usually classified according to the organ

developing unregulated cell growth, most of them have been linked to a variety of

genetic irregularities along the development of the tumour [237]. Whether this

abnormalities play a causal and initiatory role or if they are just consequences of cancer

is still an open question [237]. An example of such a genetic anomaly is aneuploidy -

defined as a cellular state of having an abnormal number of chromosomes [238]. One of

the mechanisms associated with this lack or excess of chromosomes in cells is

chromosome missegregation - the erroneous duplication of chromosomal genetic

material during cell division [238], resulting in a change in the number of chromosomes

in daughter cells, also known as aneuploid cells.

This section presents a reimplementation of a model encapsulating the role of

chromosome missegregation in the development of a tumour. In order to further show

the modelling capabilities of SC and HAoS, we are not limiting the biological model in

just simulating the interactions between the cells in a tissue, but also demonstrate that

external stimuli can also be integrated in it, by means of human-induced changes in the

internal state of the tissue - caused by typical cancer treatment approaches,

chemotherapy and surgery. The chromosome missegregation reference model is

presented in [238] and is implemented optimally in a high-level software programming

language (C++). This test case attempts to show how we may approach the

implementation of such a high-level model using SC and the HAoS development tools

presented earlier and evaluates the functionality and performance of HAoS and its high-

level functional model (essentially the HAoS functional simulator) against an optimal

high-level software implementation. The selected reference biological model is not

demonstrated just as a real-world application but it was specifically chosen as a worst-

case scenario, as explained later, in terms of performance comparison with a rival

Chapter 5. Verification and Evaluation 170

software implementation approach in order to stress the HAoS programming platform to

its computational limits.

5.3.1 The Cancer Model

The reference cancer model, drawn from [238], is an agent-based model. An agent, in a

computer-based simulation context, is defined as a self-contained entity with a set of

pre-defined initial characteristics, according to a number of base behavioural rules, and

with the potential of being self-adaptable - adjusting its behaviour by learning from

experience and altering its base rules [238]. The agents are chosen according to the

selected level of abstraction of the model, and in this case the agents are the cells of an

organ or biological tissue.

Description of the Reference Model

The behaviour of the tissue is regulated by the intrinsic characteristics of the population

of cells. Each cell initially contains two sets of identical chromosomes with a set of

regulatory genes, each responsible to control a specific cellular process. A pair of each

type of gene is distributed among the pair of chromosomes to reflect the nature of the

simulated diploid genome. The key cellular processes modelled and regulated by the

genes are [238]:

 Cellular Division: The biological process where a cell duplicates its DNA and

then separates the two copies giving birth, to two genetically identical daughter

cells, replacing the parent cell.

 Cellular Apoptosis: The process of regulated cellular death to prevent excess

growth and maintain a homeostatic state - preserving a stable cell number and

tissue structure.

 Chromosome Segregation: The process of redistributing genetic material (DNA)

between daughter cells during the mitotic step of division. Errors during this

process may result in an asymmetrical distribution of chromosomes - commonly

known as missegregation. Genes regulating this process are known to increase

fidelity when present.

Cellular division genes are an abstraction of proliferation controlling genes, known as

proto-oncogenes, apoptosis genes are an abstraction of tumour suppressor genes while

chromosome segregation regulatory genes represent genes that control reliable

segregation [238]. Following this brief introduction, the reference cancer model as

described above is illustrated in Figure 5.11.

Chapter 5. Verification and Evaluation 171

Gene

X

Chr. 1a

Gene

Y

Gene

X

Chr. 1b

Gene

Y

Gene

Z

Chr. 2a

Gene

Z

Chr. 2b

Cells in Tissue Chromosomes in a Cell

Figure 5.11. The reference cancer model. (Left) Abstract cells in a biological tissue are used

as agents. (Right) Each cell includes a pair of chromosomes; each of them initially has the

same genetic content - number of genes. Each gene controls a specific cellular process:

Division, Apoptosis and Chromosome Segregation

In addition, in order to explore the effects of the initial genetic configuration and gene

linkage (genes being part of the same chromosome) in cell growth and genetic diversity,

three different chromosomal gene distributions are used. Initially, each chromosome pair

has two copies of the gene or genes it contains. The segregation regulatory genes are

always part of the second chromosome pair. Division genes are genetically linked with

apoptosis genes (both being part of the first chromosome pair) in Chromosome

Distribution A. In Distribution B, apoptosis genes are contained in the first chromosome

pair while division genes are part of the second chromosome pair. In distribution C these

positions are reversed (division genes in the first pair and apoptosis genes in the second).

The three chromosomal distributions are illustrated in Figure 5.12.

Figure 5.12. The three genetic configurations, employing different gene chromosomal

linkage, are used to explore the effect of the initial genetic distribution in the overall tissue

growth and behaviour

Div.

Gene

Chrom.

Pair 1

Apopt.

Gene

Seg.

Gene

Chromosome

Distribution A

Chrom.

Pair 2

Chrom.

Pair 1

Apopt.

Gene

Chromosome

Distribution B

Chrom.

Pair 2

Chromosome

Distribution C

Div.

Gene

Seg.

Gene

Chrom.

Pair 1

Div.

Gene

Chrom.

Pair 2

Apopt.

Gene

Seg.

Gene

Chapter 5. Verification and Evaluation 172

The reference model also investigates the response of the simulated tissue in typical

cancer treatments. Thus, four therapy-related scenarios are examined for each

chromosome distribution simulated:

 Therapy Scenario A: No therapies

 Therapy Scenario B: Surgery only - localized tumour removal

 Therapy Scenario C: Chemotherapy only - drug or radiation based attack on

excessively dividing cells, usually using bio-markers

 Therapy Scenario D: Both therapies - a combination of surgery followed by

chemotherapy

Implementation of the Reference Model

The specific mechanics of the reference model, as it was implemented in [238], are

described in Algorithm 5.1.

For each iteration of the simulation (which implements a separate experiment), and

according to the simulated chromosome distribution, the regulatory genes control the

fate of each cell in the tissue. The corresponding process for each gene is executed

according to a probability p proportional to the number of copies N of the specific

regulatory gene in the chromosome, and in extent in the specific cell, and a fixed

parameter r associated with the empirical rate of the process, derived from relative

literature and experiments performed in a lab environment. The probabilities of

apoptosis pap, division pdiv and missegregation pmsg (pmsg is adjusted to the number of

different chromosomes to be selected, in this case 4: chr1a, chr1b, chr2a, chr2b) are

given according to Equations 5.1.

pap = rap Nap

 pdiv = rdiv Ndiv (5.1)

pmsg = rmsg (4-Nmsg)

Thus, the selected reference model, with behaviour of considerable complexity, will

serve as a realistic demonstration application modelling a biological system taking into

consideration a multitude of factors, constraints and abstractions. Evidently, agent-based

models are suitable candidates for a SC implementation, as the notion of an agent aligns

well with the notion of the fundamental SC element, the system. While interactions

between cells are not modelled, the fate of the tissue is determined by the behaviour of

each cell, controlled by genetic and external stimuli.

Chapter 5. Verification and Evaluation 173

Algorithm 5.1. The reference cancer model algorithm [238]. Different experiments are

executed in sequence. Each experiment runs until the tissue has reached a threshold size in

number of cells (THEND) or a maximum number of generations. During each generation (or

timeslot), each living cell in the tissue may die, divide (and missegregate or not) or remain

unchanged according to the corresponding probabilities.

Initialize the model with random seed

Set the carrying capacity of the tissue to a fixed number

for all experiments do

 Create tissue with an initial population of cells, each with two diploid chromosomes.

 Each chromosome in each cell is given one or two genes based on chromosome distribution

 repeat

 for all cells in tissue do

 if during surgery then

 Kill current cell if tissue size (total cells) exceeds its initial size

 else if no chromosomes in the cell (mitotic checkpoint) then

 kill current cell

 else if total cells > tissue capacity and apoptosis probability pap satisfied then

 kill current cell

 else if division probability pdiv satisfied then

 if during chemotherapy (lasts fixed number of timeslots after cancer detection) then

 kill current cell

 else

 Add mitotic cell (birth of new daughter cell, identical to current parent cell)

 if missegregation probability pmsg satisfied then

 randomly select r : one of the four chromosomes in the cell

 perform asymmetrical division instead (increment daughter r, decrement parent r)

 end if

 end if

 else

 current cell remains unchanged

 end if

 go to next cell

 end for

 Update number of cells

 if number of cells > cancer detection threshold (THDET) and no previous therapy then

 initiate therapy (surgery and/or chemotherapy)

 end if

 Increment timeslot t (generation counter - abstract time)

 until reached maximum number of generations or cells (End Threshold - THEND)

 print output results

end for

The reference model is constructed in [238] as a linked list with each of its elements

representing a cell, making traversing through all cells during each generation, or

Chapter 5. Verification and Evaluation 174

timeslot of simulation, trivial and optimal. In contrast with previous test cases, the

reference model does not require that a search space is explored for potential

interactions, but only that each cell function, during each abstract time step, may have an

outcome according to the nested-if statement of Algorithm 5.1. However, in order to

implement the model in SC, the interactions among cells and the tissue should be

explicitly defined, thus a systemic analysis of the model is required, given in the next

section. It is noted that, since the agents (cells) are selected in a sequential manner (just

by visiting the next node of the linked list), their selection process is a best -case

scenario, making the model a worst-case scenario in terms of comparison for HAoS.

5.3.2 Systemic Analysis

Following the suggested model development methodology in section 4.5, the previous

paragraph describing the reference cancer model corresponds to the initial conceptual

layer, since a thorough understanding of an existing model to be implemented in SC is

crucial prior to any development effort. As with the previous models presented in this

chapter, the next step is a comprehensive systemic analysis to identify the level of

abstraction, systems and the contextual interactions among them.

As mentioned before, working on an agent-based model simplifies this task as the level

of abstraction and most interacting systems are given as the agents. However, it is

important to analyze the dynamics among them to define an optimal way to represent

their interactions, which can commonly be an iterative process. Due to the increased

complexity of the cancer model, a detailed description of the thought process and

decisions leading to a number of possible suitable SC model variations is presented

below.

This systemic analysis will result in four SC cancer model alternatives, implemented and

compared with the reference model later in this chapter. In order to reach these four final

SC models, the analysis will begin with a set of intermediate steps which will add the

specific features of the reference model gradually.

SC Cancer Model Development Step 1: The Base SC Cancer Model

Starting with Algorithm 5.1, and retaining the level of abstraction at the cellular level, it

is quickly noticed that a pool of data systems is required to represent the living cells. The

obvious cellular functions that can act as transformation functions in contextual systems

are cell death and cell division. Considering initially therapy scenario N (no therapies),

Chapter 5. Verification and Evaluation 175

a cell may die at the mitotic checkpoint (when no chromosomes are left in it) or when the

tissue has grown over its carrying capacity and the apoptosis probability is satisfied.

The death context mainly tries to identify a living cell and kills it under the conditions

mentioned above, where initially the second interacting system may be any other cell

(since this is unaffected - death examines a cell at a time). SC rules explicitly state that

systems can be transformed but never destroyed so a living cell is transformed to a dead

one (or waste system) by the death context if killed.

The divider context, in contrast to death, may affect both interacting systems. The notion

of division implies that a new cell will be created, which will ideally be reproduced as an

identical copy of the parent cell. As this new cell cannot be created from nothing, the

divider will define an interaction between a living cell representing the parent and a

waste system that may be transformed to a new living cell through division, representing

the daughter cell. The notion of waste systems (possibly previously killed cells) being

transformed to living cells is biologically plausible as during the division process the

parent cell consumes energy acquired by nutrients in its environment. This initial SC

cancer model is illustrated in Figure 5.13.

Figure 5.13. Initial SC cancer model. A death context transforms living cells to non-living

ones while non-living cells act as daughter cells in division interactions, transformed in

living cells by a division context.

SC Cancer Model Development Step 2: Integrating the Tissue

The next step is to integrate the notion of the tissue to our SC model. As the total of the

cells makes up the tissue, another data system is needed to represent the tissue which has

in its scope all the cell systems. The size of the tissue, in terms of cells, is an important

Death

Living

Cell

Living

Cell

Non-

Living

Cell

Living

Cell

Living

Cell

(Parent)

Living Cell

(Daughter)

Living

Cell

Non-

Living

Cell

Division

Living

Cell

Living

Cell

Living

Cell

Living

Cell

Living

Cell

Living

Cell
Living

Cell

Living

CellNon-

Living

Cell

Non-

Living

Cell

Non-

Living

Cell

Chapter 5. Verification and Evaluation 176

metric for the model. While the total number of cells could be stored in a global variable

in the user code portion of the HAoS program, in order to comply with the SC feature of

systems having local knowledge, it is instead stored locally in one of the schemata of the

tissue data system. Thus, a mechanism for updating the size of the tissue should be added

to the SC model - incrementing the total number of living cells with every division and

decrementing it with every cell death. Furthermore, while each living cell belongs to

(meaning it is in) the scope of the tissue, every non-living cell (either dead or nutrient

cell) should be out of its scope. Thus, the processes of cell death and division are broken

in two steps: (a) perform the process and (b) update the total number of cells in the tissue

and the scope memberships of the interacting systems.

Figure 5.14. Revised SC cancer model with tissue and two-step cell death and division

processes. During death a living cell is transformed to a non-living one which is then

discarded from the tissue. During division, a non-living cell is absorbed in the tissue and

then it is transformed to a living one, becoming the daughter cell

For this reason, two contextual systems are added to the model to handle the tissue size

and scopes updating. For each possible cell division, a non-living cell interacts with the

tissue through an ―absorb‖ context and if the probability of division is satisfied, it is

transferred from the tissue external environment inside its scope changing its type to

being (yet) undivided resulting to the size of the tissue being incremented. This

undivided cell then interacts with a living cell through the division context in the scope

of the tissue and acts as the division daughter cell - becoming a copy of the parent living

Death

Living

Cell

Non-

Living

Cell

Living

Cell

(Parent)

Undivided

Cell

(Daughter)

Living

Cell

Division

Discard

Non-

Living

Cell

Living

Cell

Living

Cell

Living

Cell

Non-

Living

Cell

Non-

Living

Cell

Non-

Living

Cell

Absorb

Living Cell

(Daughter)

Living

Cell

Living

Cell

Living

Cell

Living

Cell

Non-

Living

Cell

Non-

Living

Cell

Tissue

Chapter 5. Verification and Evaluation 177

cell. Cell death is performed in a similar two-step process. A living cell interacts with

the tissue through the death context and if the death conditions (from Algorithm 5.1) are

satisfied, it is transformed to a dead (non-living) cell. This non-living cell then interacts

with the tissue through a ―discard‖ context and it is transferred back to the external

environment of the tissue (outside the tissue scope), becoming a nutrient non-living cell

(and a valid candidate for division). This discard context also decrements the si ze of the

tissue. Following these thoughts, the updated SC cancer model is shown in Figure 5.14.

As noticed in Figure 5.14, missegregation is not explicitly controlled by a context. This

was decided as segregation is part of the division process (happening when the genetic

content of the parent cell is copied to the undivided daughter cell to become a new living

cell), and as such this functionality is integrated in the division context. Also, while it

seems visually suitable to have only living cells as part of the tissue and non-living ones

making up its environment, it is reminded that non-living cells are used here as an

abstraction for energy consumed or released by the tissue during cell division and death.

Taking into consideration that the implied scope manipulation (cells constantly changing

scopes as they are discarded from or absorbed into the tissue) may have a considerable

computational impact, degrading the (timing) performance of the model, and since this

membership does not have an active biological role for the model, it was decided that all

systems may be part of the tissue. This way, meaningless scope alterations are avoided

as all systems belong to the scope of the tissue.

SC Cancer Model Development Step 3: Integrating the Cancer Therapies

Returning to Algorithm 5.1 and as mentioned in the previous section, the reference

model also includes human-induced interference in terms of common cancer treatments,

surgery and chemotherapy. Therapies are applied to the tissue following cancer detection

- when the number of living cells reaches a predetermined detection threshold (THDET in

Algorithm 5.1). Surgery is performed during one timeslot, immediately after detection

and removes a number of living cells, bringing the tissue back to its initial size.

Chemotherapy is performed during a fixed duration of timeslots (9 in our experiments , in

accordance to [238]), either after detection (therapy scenario C) or after surgery (therapy

scenario D). During chemotherapy, cells that are meant to divide, instead die. Thus, cell

death during chemotherapy is included in the division process while surgery requires

effectively the same functionality by the death context but is executed only during the

surgery timeslot. This also implies that the surgery context has priority over all other

contexts during surgery if the number of living tissue cells exceeds its initial size.

Chapter 5. Verification and Evaluation 178

In order to control the therapy processes, the therapy state of the tissue is embedded, as

corresponding flags, in one of its schemata. This is sufficient for controlling

chemotherapy (being integrated in division) but not for controlling surgery. The reason

is that the division context already defines two interacting cell systems, the parent cell

and another one to become the daughter cell, so the state of the tissue cannot be used to

block divisions while it is in surgery state, as required by the reference model. Thus an

additional intermediate (preparatory) step is needed, defining an interaction between the

parent cell and the tissue, in order to be decided if this cell can proceed to division

depending on the tissue state. This is accomplished with another ―fertilizer‖ context,

which transforms a living cell to a parent cell if the therapy state of the tissue is not in -

surgery. The parent cell then interacts with a nutrient cell (the non-living cell to be used

during division as a daughter cell) and both cells are transformed by the division context:

the parent cell to a living cell and the daughter cell to a divided cell. The divided cell,

being the product of the division process, then interacts with the tissue and is finally

transformed to a living cell by the absorb context which also updates the size of the

tissue. Thus, division is now a three-step process. The therapy-enabled cancer SC model,

described above, is shown in Figure 5.15.

Figure 5.15. Therapy-Enabled SC cancer model. The therapy state of the tissue is locally

stored in its data system to enable controlling the surgery and chemotherapy processes.

Division is executed in three steps: (i) fertilize a living cell to become a parent, (ii) perform

division and segregation of this parent cell to produce a divided cell (iii) the tissue absorbs

the divided cell which becomes living and the tissue size is updated

Death

Living

Cell

Dead

Cell

Divided

Cell

(Daughter)

Parent

Cell
Division

Discard

Nutrient

CellLiving

Cell

Living

Cell

Nutrient

Cell

Nutrient

Cell

Nutrient

Cell

Fertilizer

Living

Cell

Living

Cell

Living

Cell

Living

Cell

Nutrient

Cell

Nutrient

Cell

Tissue

Absorb

Living

Cell

Nutrient

Cell

Living

Cell

Living

Cell

Surgery

Living

Cell

Chapter 5. Verification and Evaluation 179

SC Cancer Model Development Step 4: Integrating the Notion of Time

The last consideration before we have a complete SC cancer model reflecting the

reference one is integrating the notion of simulated time. The reference model uses

abstract time, counted in abstract time units called generations or, during this analysis,

timesteps or timeslots. A generation has finished when the main loop in Algorithm 5.1

has visited all living cells and decided their individual fate. It is importance to notice that

the model does not use any feedback from this time variable affecting its behaviour. The

abstract time is mainly used for convenience as an index when logging simulation output

data.

The way the list of living cells is traversed in the reference model is completely different

from the approach used in HAoS. As the living cells are stored in a linked list in the

software implementation, the list is traversed in the same relative order. This traversal

order changes slightly with the local addition of new nodes (daughter cells are placed

immediately after parent cells during division) and the removal of nodes (during cell

death). In HAoS, the order of the selected cells to be evaluated against the available

genetic processes is random, as all matching systems to the template defined by the

schemata of the active context system have the same probability of being selected to

interact. Evaluation of a cell here stands for the evaluation of the probability of this cell

interacting through one of the given context systems and according to this interaction, it

might get transformed during one of the genetic processes or remain unaltered. The

inherent randomness of HAoS is desirable as the goal of the experiment is to model a

stochastic biological system.

However, this means that there is not a convenient way to ensure that all cells are

selected before any of them is re-selected. Thus, this functionality needs to be

implemented on the SC model level. In order to accomplish this, a dual-phase approach

was devised, called here a tic-toc approach. During each phase, the execution follows the

flow shown in Figure 5.15 with a main difference. The products of each genetic process

are marked (the current phase state of each cell is stored locally in its schemata) and can

only interact in the next phase. In essence, all the context systems of the SC model of

Figure 5.15 are duplicated, with each of their two copies being able to define an

interaction only during one of the two distinct phases.

In this way, the two phases of the model create two ―virtual‖ scopes which are

implemented by using the phase state of each system during valid triplet generation.

Chapter 5. Verification and Evaluation 180

Ensuring that all living cells are selected during each phase and then the phase finishes is

accomplished by storing the current phase state in the tissue system along with a counter

which is set equal to the number of total living cells of the tissue in the beginning of

each timeslot and is decremented after each cell is evaluated. Essentially, this counter

monitors the number of remaining living cells to be evaluated in the current timeslot,

ensuring that the timeslot can finish and the phase can change only when it reaches zero.

SC Cancer Model 1: Time-Enabled Model

According to the discussion above the functionality of the time-enabled SC cancer model

is summarized as follows: All living systems and the tissue are initialized in the tic

phase. The tic-marked contexts can only define interactions when the tissue is on the tic

phase. Thus, all tic-marked contexts are enabled and all toc-marked contexts are

disabled. Division is executed in three steps as in the therapy-enabled model of Figure

5.15 (intermediate products are also tic-marked) but its final products, the new living cell

(daughter cell in division) created by the absorb context and the living cell (parent cell in

division) transformed by the division context are marked as toc, disabling any further

interactions during this tic phase. In the case of cell death, the dying cell also gets toc-

marked in order to be disabled for the current phase. However, since the final product of

cell death is a nutrient cell, which can be used in both phases, it does not need to get

phase-marked. It is noticed, that interacting cells are always phase-marked in the first

step of any genetic process, even if the associated probability with this process is not

satisfied

This means that any cell that is evaluated is changing phase, even if it remains

unchanged, to avoid interacting twice during the same phase and ensure the remaining

living cells counter is correctly updated. After the last tic-marked cell has been

evaluated, all living cells should be toc-marked and the remaining living cells counter

should be zero. At this point, the counter is updated to the number of total cells and the

tissue changes its phase state to toc. All toc-marked contexts are now enabled while all

tic-marked contexts get disabled as they can no longer define interactions as the tissue is

now toc-marked. A mirror process to the one described above (toc instead of tic) is

executed until the toc phase ends, and tic phase begins again. The time-enabled (tic-toc)

model is illustrated using SC graphical notations in Figure 5.16.

.

Chapter 5. Verification and Evaluation 181

Figure 5.16. Time-Enabled (Tic-Toc) SC cancer model. Two mutually-exclusive phases are

used to ensure all cells are evaluated exactly once before advancing to the next timeslot.

Both phases are part of the tissue scope, yet the phase state of the tissue determines which

one is enabled at each timeslot

When an interaction results in intermediate products of a genetic operation, these

products remain in the same phase until they are consumed. A cell changes phase when

the resulting system is the final result of a genetic operation or if the initiating context of

cell death or division (death or fertilizer contexts respectively) leaves the evaluated cell

unchanged (meaning that the respective death or division probability is not satisfied). All

contexts involving the tissue except the division context may change the phase of the

Tic

Death

Tic

Living

Cell

Tic

Dead

Cell

Tic

Divided

(Daughter)

Cell

Tic

Parent

Cell

Tic
Division

Tic

Discard

Nutrient

CellTic

Living

Cell

Tic

Living

Cell

Nutrient

Cell

Nutrient

Cell

Nutrient

Cell

Tic

Fertilizer

Tic

Living

Cell

Tic

Living

Cell

Tic

Living

Cell

Tic

Living

Cell

Nutrient

Cell

Nutrient

Cell

Tic

Absorb

Tic

Living

Cell

Nutrient

Cell

Toc

Living

Cell

Toc

Living

Cell

Tic

Surgery
Tic

Living

Cell

Toc

Death

Toc

Living

Cell

Toc

Dead

Cell

Toc

Divided

(Daughter)

Cell

Toc

Parent

Cell

Toc

Division

Toc

Discard

Nutrient

CellToc

Living

Cell

Toc

Living

Cell

Nutrient

Cell

Nutrient

Cell

Nutrient

Cell

Toc

Fertilizer

Toc

Living

Cell

Toc

Living

Cell

Toc

Living

Cell

Toc

Living

Cell

Nutrient

Cell

Tissue

Toc

Absorb

Toc

Living

Cell

Nutrient

Cell

Tic

Living

Cell

Tic

Living

Cell

Toc

Surgery
Toc

Living

Cell

Tic

Phase

Toc

Phase

Chapter 5. Verification and Evaluation 182

tissue after the last cell in a timeslot is evaluated. This implies that the fertilizer and

death contexts can change the tissue phase when the evaluated (last) living cell remains

unaltered while absorb and discard contexts may change it when they consume the last

intermediate result (divided and dead cell respectively).

Table 5.5. Time-Enabled (Tic-Toc) cancer SC model interactions

 Interacting Systems

Results

T
ic

 P
h

a
se

Tic Living Cell }- Tic Fertilizer -{ Tic Tissue

(Toc Living Cell | Tic Parent Cell | Tic Dead Cell)
(Toc Tissue | Tic Tissue)

Tic Parent Cell }- Tic Division -{ Nutrient Cell

(Toc Living Cell) (Tic Divided Cell)

Tic Divided Cell }- Tic Absorb -{ Tic Tissue

(Toc Living Cell)

(Tic Tissue | Toc Tissue)

Tic Living Cell }- Tic Death -{ Tic Tissue

(Toc Living Cell | Tic Dead Cell)
(Tic Tissue | Toc Tissue)

Tic Dead Cell }- Tic Discard -{ Tic Tissue

(Nutrient Cell)

(Tic Tissue | Toc Tissue)

Tic Living Cell }- Tic Surgery -{ Tic Tissue

(Toc Living Cell | Tic Dead Cell)

(Tic Tissue | Toc Tissue)

T
o

c
 P

h
a
se

Toc Living Cell }- Toc Fertilizer -{ Toc Tissue

(Tic Living Cell | Toc Parent Cell | Toc Dead Cell)
(Tic Tissue | Toc Tissue)

Toc Parent Cell }- Toc Division -{ Nutrient Cell

(Tic Living Cell) (Toc Divided Cell)

Toc Divided Cell }- Toc Absorb -{ Toc Tissue

(Tic Living Cell)

(Toc Tissue | Tic Tissue)

Toc Living Cell }- Toc Death -{ Toc Tissue

(Tic Living Cell | Toc Dead Cell)

(Toc Tissue | Tic Tissue)

Toc Dead Cell }- Toc Discard -{ Toc Tissue

(Nutrient Cell)
(Toc Tissue | Tic Tissue)

Toc Living Cell }- Toc Surgery -{ Toc Tissue

(Tic Living Cell | Toc Dead Cell)

(Tic Tissue | Toc Tissue)

In more detail, a fertilizer context may leave the type of the interacting living cell

unaltered (changing only its phase) or change it to a parent cell with the same phase in

case of the first step of normal division or kill it (change it to a dead cell) also with same

phase, in case of division during chemotherapy. As mentioned above, it may also change

the phase of the tissue at a timeslot transition. The division context always transforms

the parent interacting cell to a living cell changing its phase and also changes the

interacting nutrient cell to a divided cell (setting its phase to the current one). The absorb

context, in the last step of division, changes the divided cell to a living cell with different

phase while it may also change the phase of the tissue. Death and surgery contexts

change the phase of the interacting living cell when they do not kill it, while they leave

its phase unchanged when they do (changing its type to dead). They may also alter the

Chapter 5. Verification and Evaluation 183

tissue phase when changing timeslot. Finally, the discard context always transforms the

dead interacting cell to a nutrient cell and may also change the tissue phase. The calculus

notation of the time-enabled SC cancer model representing its behaviour in terms of SC

interactions, as it is explained above is given in Table 5.5.

SC Cancer Model 2: Timeless Model

The time-enabled SC cancer model of Figure 5.16 satisfies all the requirements and

features all the characteristics of the original model. However, in order to accurately

model its abstract time, the complexity of the model was considerably increased. Taking

into consideration that time, although convenient for logging output information, should

not otherwise greatly affect the model behaviour, a timeless variation of the cancer

model was also implemented to determine the level of this effect. The timeless model is

equivalent in terms of SC graphical notation with the therapy-enabled model, illustrated

in Figure 5.15, and overcomes the problem of sampling the internal state of the tissue

(total number of cells and number of chromosomes) by continuously monitoring and

storing all changes in the relevant internal variables immediately after each alteration is

caused by any genetic process (instead of only sampling it at the end of the timeslot).

In the case of the timeless SC cancer model, the systemic interactions are similar to the

ones of the time-enabled model excluding any phase-related features. The calculus

notation of the timeless model is given in Table 5.6, making this similarity obvious when

compared to Table 5.5.

SC Cancer Model 3: Approximate Time Model

In order to further explore the effect of abstract time and reduce the complexity of the

time-enabled model of Figure 5.16, a hybrid model in terms of time was also

implemented. This ―approximate time‖ model waives the restriction of all cells being

evaluated at each time-step but keeps the remaining living cells counter functionality to

keep track of approximate time. Essentially, it ensures that a number of cells equal to the

size of the tissue are evaluated before advancing to the next time timeslot. As living

interacting cells are selected on a purely random manner with the same probability, it is

expected that the behaviour of the model will remain concise - while not all cells may be

evaluated during a single time-step, all of them will interact with the same probability

and approximately the same frequency over the duration of the experiment. Thus, the

main difference of this model compared to the timeless one is that it keeps the notion of

the timeslot (implying that an adequate number of cells are evaluated before advancing

time), but it uses a less strict mechanism to achieve this (since not every cell is evaluate

Chapter 5. Verification and Evaluation 184

exactly once in each timeslot). In terms of the SC graphical notation, this hybrid model,

attempting to address the trade-off between complexity and functionality, is also

represented by Figure 5.15. Additionally, since no change has been made to the

approximate time model in the way systems interact with each other, when compared to

the timeless model, the calculus notation is the same for both models.

Table 5.6. Timeless and Approximate Time cancer SC models interactions

Interacting Systems

Results

Living Cell }- Fertilizer -{ Tissue

(Living Cell | Parent Cell | Dead Cell)

(Tissue)

Parent Cell }- Division -{ Nutrient Cell

(Living Cell) (Divided Cell)

Divided Cell }- Absorb -{ Tissue

(Living Cell) (Tissue)

Living Cell }- Death -{ Tissue

(Living Cell | Dead Cell)

(Tissue)

Dead Cell }- Discard -{ Tissue

(Nutrient Cell) (Tissue)

Living Cell }- Surgery -{ Tissue

(Living Cell | Dead Cell)

(Tissue)

SC Cancer Model 4: Optimized Approximate Time Model

While developing a SC model, ensuring that it behaves correctly (in this case, in a

similar way to the reference model) is crucial. However, the SC model developer should

take into consideration the performance of the model as well. In an attempt to

demonstrate example optimizations that can be made on the SC model side, an optimized

version of the approximate time model was also developed.

The most evident way to optimize a SC model is to ensure that valid triplet generation is

performed in an optimal way. This means that HAoS should be able to identify triplets of

interacting systems without (or, more realistically, without numerous) mismatches (see

section 3.5). The hardware ensures that even in cases that only one pair of systems can

match the templates defined by the schemata of the context, this pair will be efficiently

identified, if such a pair exists. If a pair does not exist, this results in a schemata

mismatch and another context is selected. Effectively, while the hardware attempts to

find triplets, from an interaction (or processing) point of view, mismatches result in idle

time as no interactions are performed. The SC model should take this fact into

consideration and try to minimize mismatches, in order to increase efficiency and

consequently overall performance.

Taking a closer look at Figure 5.15 and according to the discussion integrating therapies

in the cancer model, we notice that the surgery context performs the exact same task

Chapter 5. Verification and Evaluation 185

with the death context in a different occasion. However, while the death context can

define interactions along the course of the simulation, the surgery context is only

functional during the surgery timeslot. This implies that, as the surgery context is

randomly chosen with the same probability as every other context during the execution

of the HAoS cancer program, it produces mismatches on the majority of the times it is

selected. Thus, embedding the surgery task in the death context increases the efficiency

of the SC program.

In addition, an extra optimization can be made with regards to the transition from a

timeslot to the next one. After all the cells have been evaluated in any timeslot, there

may be outstanding interactions to be made in order for intermediate products of the two

main genetic operations (cell division and death) to be consumed (dead cells in the case

of death or parent and divided cells in the case of division - see Figure 5.15). This

ensures that each genetic operation finishes in the timeslot it was initiated and the total

number of cells is reported correctly for each timeslot. Effectively, once the remaining

living cells counter reaches zero, the fertilizer and death contexts do not define any

further interactions until the next timeslot commences, waiting for the division, absorb

and discard contexts to consume the cells produced in the intermediate cells. Thus, in

order to reduce mismatches in this case, an extra flag, stored in the tissue system, is used

to disable the selection of the fertilizer and death contexts when no more interactions

initiating division or death may be performed in the current timeslot. This way, we

achieve optimal timeslot transitions in terms of performance.

Another observation regarding to the optimal flow of the SC program can be made when

we take a higher-level view on the execution of tasks in terms of interactions. A high-

level task is broken down in more than one interaction in two cases. Either the task

requires that more than two systems must interact under a single context to accomplish

the expected functionality or a succession of steps should be performed, implying a

number of contexts being selected sequentially, to implement a chain of events.

Supporting a context type that could define interactions among multiple systems would

be impractical form an implementation point of view as it would increase the size of

such context systems (an extra schema would be added to such contexts, to define a

template for matching systems, for every extra supported system). However, the two

cases could be merged, as multiple interacting systems could be selected by subsequent

contexts.

Chapter 5. Verification and Evaluation 186

Nevertheless, as the selection of contexts happens in a random manner to reflect the

stochastic behaviour of natural systems, breaking down a task in elementary steps will

usually result in suboptimal performance. While the subsequent contexts will eventually

be selected, the implied sequence of interactions defines a pipeline which stalls until the

next context (the next step in the correct order along the desired chain of events) is

randomly chosen. Thus, having a way to control the selection of contexts in the case of

chained interactions, effectively implementing micro-interactions (analogous to micro-

instructions in micro-programmable control units), would greatly increase efficiency.

Figure 5.17. Optimized SC cancer model. The surgery functionality is now embedded in the

death context while the contexts implementing the two main genetic operations, death and

division, are now chained

Table 5.7. Optimized Approximate Time cancer SC model interactions

Interacting Systems

Results

Living Cell }- Fertilizer -{ Tissue

(Living Cell | Parent Cell | Dead Cell)

(Tissue)

Parent Cell }- Division -{ Nutrient Cell

(Living Cell) (Divided Cell)

Divided Cell }- Absorb -{ Tissue

(Living Cell) (Tissue)

Living Cell }- Death -{ Tissue

(Living Cell | Dead Cell)

(Tissue)

Dead Cell }- Discard -{ Tissue

(Nutrient Cell) (Tissue)

Divided

Cell

(Daughter)

Parent

Cell

Division

Nutrient

Cell

Living

Cell

Living

Cell

Nutrient

Cell

Fertilizer

Living

Cell

Living

Cell

Living

Cell

Nutrient

Cell

Tissue

Absorb

Living

Cell

Nutrient

Cell

Living

Cell

Discard

Death

Living

Cell

Dead

Cell

Nutrient

Cell

Cell

Death

Chain

Nutrient

Cell

Cell

Division

Chain

Chapter 5. Verification and Evaluation 187

Returning to the cancer model, the two main genetic operations involved, cell division

and death, are broken down to three and two steps respectively. If context chaining was

supported, cell division would be defined as a fertilizer-divider-absorb context chain

while cell death would be implemented as a death-discard context chain. As described in

the next paragraph, the context-chaining feature was added in HAoS, realized mainly in

the user software domain, to showcase this functionality. The optimized approximate-

time cancer SC model (integrating the surgery functionality in the death context,

implementing optimal interaction transitions and context chaining) is shown in Figure

5.17. Its calculus notation is given in Table 5.7. In terms of SC interactions, its main

differences with the previous models are the omission of the surgery context and the

inclusion of context chains (implied by the vertical arrows).

Systemic Analysis Summary

To sum up, as in traditional software programming, there is more than one way to build a

SC model representing a natural system. This section has demonstrated this, taking a

complex biological model, a tissue developing cancer caused by genetic defects - and

provided a thorough explanation of the thought process while building such a SC model.

In this case, four candidate cancer SC models are presented: a time-enabled model, a

timeless model, an approximate time model and an optimized approximate time model.

The building elements in these resulting SC models have distinct biological meanings

representing, in the form of SC systems, biological structures or processes, shown in

Table 5.8. The next section focuses on the implementation of those models while the

comparison experimental results are presented later in this chapter.

5.3.3 SC Cancer Model Implementation

Following the discussion of the previous paragraph, the four resulting cancer SC models

attempt to explore the trade-off between functionality, performance and convenience.

Before presenting the results evaluating these metrics in the next section, some

implementation-specific topics need to be addressed. These include some considerations

to be made before developing the final SC source code and performing the setup of the

cancer experiments.

Developing the SC source code

While using SC graphical notations to present the four suggested cancer models is

visually appealing and straightforward, using their SC calculus notations, to describe

their systemic interactions, can greatly expedite the development of the SC source code.

Chapter 5. Verification and Evaluation 188

Table 5.8. Biological representation of the systems of the SC cancer models

SC

System
Biological Representation (Analogous to)

Living

Cell
A cell of the biological tissue.

Death

Context

Death is the context in which a living cell interacts with the tissue; it combines

pressure for space, apoptosis and therapeutical interventions in one abstract form

and may result in the living cell becoming a dead cell, representing the Programmed

Cell Death (PCD) [239] biological process.

Discard

Context

Discard is a context in which a dead cell interacts with the tissue; representing the

biological mechanism (termed as efferocytosis [240]) which is responsible for the

removal of apoptotic bodies (dead cells), by special cells, called phagocytes, that

engulf and consume the dead ones. Phagocytes, using special receptors in their

surface, identify dead cells by recognising special molecules which are placed to

their cell surface in the last stages of cell death [240]. Matching the phagocytes

receptors with these compatible special molecules is similar to the schemata

matching mechanism of SC, with systems matching their schemata to the templates

of context systems. This process releases energy to the environment, represented

here in the form of a nutrient cell.

Dead

Cell

The result of cell death; a cell showing organized degradation of cellular organelles

which is finally broken into (several) apoptotic bodies [240]

Nutrient

Cell

Nutrient cells represent the energy and nutrients in the tissue environment that may

be released by cell death and may also be used to make new cells during division

Fertilizer

Context

Fertilizer is the context in which a living cell interacts with the tissue; representing

the preparatory step for division, known as the interphase
31

 [241], making the parent

able to initiate the mitosis process. Errors during this phase may kill the cell.

Division

Context

Division is the context in which a living (parent) cell interacts with a nutrient cell;

representing the mitotic phase of division [241], resulting in two daughter
32

 cells

with identical genetic information if no errors occur or different genetic information

in the case of missegregation (resulting in aneuploid cells).

The SC calculus notations of the cancer models, shown in Tables 5.5 (time-enabled

model), 5.6 (timeless and approximate time model) and 5.7 (optimized approximate time

model), define their respective interactions and in addition include information about the

phase of systems (in the case of the tic-toc model) and the type of interacting cells.

However, in order to write the final SC source code, some additional information must

be included in order to correctly implement the selection of appropriate cells in the

therapy cases (surgery and chemotherapy). As explained in the previous section this is

accomplished with the inclusion of flags regarding the therapy state of the tissue in its

31

 The first part of this phase, called G1, is regulated by the MAPK cascade [241], presented in

section 5.2.

32
 However, only one of the resulting cells is tagged as daughter in this SC model.

Chapter 5. Verification and Evaluation 189

schemata. The format of the bit-fields stored in the data systems of the SC cancer models

is illustrated in Figure 5.18.

Figure 5.18. SC cancer model data systems and their contents. Bit 13 of schemata 2 defines

the system as tissue or cell. The tissue size and cell age are stored in the respective schemata

1. Their 32-bit transformation function (TF) is zero. Schemata 2 holds the remaining non-

evaluated cells counter, the surgery state (S), the chemotherapy state (C) and the phase

state (tic-toc, TT) in case of the time-enabled model or the optimal timeslot ending flag (TE)

in the case of the optimized approximate-time model. For cell systems, it stores the number

of the different chromosome types of the cell and also the cell type (living, parent, dead,

nutrient or divided along with its phase in the case of the time enabled model).

The proper system selection for the model is accomplished by appropriately using ―don't

care‖ bits in the respective therapy state bits in the templates defined by the schemata of

each context. According to this, since the fertilizer context may initiate division during

either a non-therapy timeslot or a chemotherapy timeslot, the tissue will be selected (and

thus a fertilizing interaction can be defined) if its surgery bit (S) is set to 0 (since it is not

in surgery) and for any value of its chemotherapy state bit (as it may or may not be in

chemotherapy).

In a similar fashion, the absorb context may not consume divided cells only during

surgery, so in this case: S is set to ―don't care‖ (or ―X‖) and C is set to 0. The same

principle is applied to the rest of the contexts. The death context will not kill living cells

during surgery if the surgery functionality is not embedded to it. In this case, the surgery

may kill living cells only during the surgery state while their total number exceeds the

initial tissue size (see Algorithm 5.1). If the surgery and death functionalities have been

merged, then the death context, similarly to the discard context (as cells may die at any

time point), can interact with the tissue in any therapy state (both C and S are set to

―X‖). The complete SC code of the cancer models, according to the discussion above, is

given for reference in Appendix G.

SC Models' Parameters Setup

In the reference cancer model experiments, as they are presented in [238], two

parameters of the model (introduced in section 5.3.1, Algorithm 5.1) representing

Tissue

System
00...00 TT1 S CTissue Size (Total Living Cells)

Cell

System
00...00Age Chr 1a

Number
Chr 1b
Number

Chr 2a
Number

Chr 2b
Number

Remaining Non-Evaluated
Living Cells in Timeslot

Cell
Type

 Schemata 1 Schemata 2 TF

0

TE

0 15 32 0 4 7 10 13 15Bit

Chapter 5. Verification and Evaluation 190

number of cells thresholds, THEND (the end of the simulation threshold) and THDET (the

cancer detection threshold), are set higher than the systems capacity of our HAoS

prototype. For this reason these two parameters have been scaled down during our

experiments. This, however, does not have an impact in the model behaviour as these

parameters just define checkpoints in time for those two specific events. Thus, the main

difference observed with the original simulations is with regards to the timeslot which

cancer is detected (the tissue reaches a cancerous state as the total number of cells

exceeds THDET) and the duration of the simulation (which runs until the tissue size

exceeds THEND). Since the first change implies just a shift of the cancer detection time

and as the model does not change its behaviour towards the end of the simulation, these

modifications are assumed to be acceptable.

While the parameters mentioned above have a minimal impact on the model behaviour,

the parameters setting the intrinsic rates of apoptosis r ap, division rdiv and chromosome

missegregation rmsg (see Equations 5.1) have a major effect on the model, as they affect

the respective genetic operations probabilities and in extent the cell population of the

tissue. The nested-if structure in Algorithm 5.1 implies that each cell may result in the

outcome of any of the possible cases but importantly also implies a selection priority.

Obviously this does not apply in systemic interactions, which happen in a stochastic

way. Due to the complex nature of the algorithm and mainly because of the conditional

feedback mechanisms (the probabilities are affected by the number of chromosomes

which are affected by the probabilities), deriving the intrinsic rate constants r with an

analytical way was avoided and a brute-force approach was followed instead.

Thus, in order to derive the adjusted values of the intrinsic rate constants r to be used in the

four SC cancer models, the original algorithm was altered to reflect the different nature of

interactions when these are implemented in a systemic way (the resulting “systemic style”

algorithm is given in

Algorithm 5.2). The main changes to the original algorithm involved the removal of any

priority in the selection of the genetic operation that may be performed on the cell and

also taking into consideration the number of context systems involved. Since the rate

constant for apoptosis should always be equal to the rate constant for division, to

preserve the homeostatic behaviour of the tissue, the goal was to find a pair of constants

rap/div - rmsg (apoptosis/division and missegregation rate constants) to result in a similar

behaviour to the one given by the reference model.

Chapter 5. Verification and Evaluation 191

Algorithm 5.2. The reference cancer model algorithm written in a “systemic way” in order

to derive adjusted values for the parameters setting the intrinsic rates of the genetic

operations due to the difference on probability mechanics between all four SC models and

the reference one. The priority selection of the original model is broken. Interactions that

may initiate cell death / division have the same probability.

Initialize the model with random seed

Set the carrying capacity of the tissue to a fixed number

for all experiments do

 Create tissue with an initial population of cells, each with two diploid chromosomes.

 Each chromosome in each cell is given one or two genes based on chromosome

distribution

 repeat

 for all cells in tissue do

 if during surgery then

 Kill current cell if tissue size (total cells) exceeds its initial size

 else

 if context that may initiate cell death is selected then

 if total cells > tissue capacity and apoptosis probability pap satisfied then

 kill current cell

 else

 current cell remains unchanged

 end if

 else if context that may initiate cell division is selected then

 if division probability pdiv satisfied then

 if during chemotherapy then

 kill current cell

 else

 Add mitotic cell (birth of new daughter cell, identical to current parent cell)

 if missegregation probability pmsg satisfied then

 randomly select r : one of the four chromosomes in the cell

 perform asymmetrical division instead(increment daughter r,decrement parent r)

 if no chromosomes left in parent cell (mitotic checkpoint) then

 kill parent cell

 end if

 end if

 end if

 else

 current cell remains unchanged

 end if

 go to next cell

 else

 re-evaluate current cell (until a genetic operation is attempted)

 end if

 end for

 Update number of cells

 if number of cells > cancer detection threshold (THDET) and no previous therapy then

 initiate therapy (surgery and/or chemotherapy)

 end if

 Increment timeslot t (generation counter - abstract time)

 until reached maximum number of generations or cells (End Threshold - THEND)

 print output results

end for

Chapter 5. Verification and Evaluation 192

A series of simulations using the altered algorithm were executed for a range of different

rap/div - rmsg pairs, comparing the similarity to the reference algorithm based on metrics

relevant with the constants: mean number of generations run until simulation finish,

mean number of missegregations per generation and mean cancer detection (or

diagnosis) generation. The qualifying pair was the one with the minimum value for the

root mean square of the differences of the corresponding values to these metrics between

the altered and the original algorithm.

The ―systemic‖ variation of the reference model thus enabled the discovery of the

parameters to be used by all models. For the final setup of all the experiments, the end of

the simulation threshold (THEND) was set at 200 generations, the initial size of the tissue

was set at 100 cells, the cancer diagnosis threshold was set at 200 cells and the tissue

carrying capacity was set at 150 cells. For the original cancer model the genetic

operation constants for apoptosis, division and chromosome missegregation were set at

[238]:

rap = rdiv =0.045, rmsg = 0.02

while for the SC cancer models, using the methodology mentioned above, they were set

respectively at:

rap = rdiv =0.09, rmsg = 0.02

Experiments Setup

In order to get a fair comparison in terms of both functionality and performance, the

same methodology presented in [238] was followed to obtain the results of each batch of

simulations.

Due to the complexity of the experiment, it was decided that this test case is also ideal

for the evaluation of the functionality of the developed HAoS functional model

(functional model of the hardware circuitry, not to be mistaken with the simulated

biological models) which is essentially a high-level HAoS simulator. All SC cancer

models were tested both live on hardware with HAoS and using its simulator.

As discussed in the cancer model presentation section, three gene distributions (see

Figure 5.12) with different gene chromosomal linkage and four therapy scenarios

(with/without surgery and/or chemotherapy) are examined. In total, ten cancer models

are involved in the experiments: the four SC cancer models described in the previous

section (time-enabled, timeless, approximate-time and its optimized variation) running

Chapter 5. Verification and Evaluation 193

both on hardware and on the HAoS simulator
33

, the reference model from [238] and, for

completeness, its altered variation (coded in a systemic-aware way). Each of these ten

models was executed in batches of 20 experiments
34

 for each possible gene distribution

and therapy scenario combination and the mean of those simulations is used to represent

the final results.

Due to the high number of possible comparison metrics, a set of indicative selections

were made to compare the cancer models for the multitude of simulated configurations.

The behavioural features compared along the duration of the simulations were the tissue

size (in cells) and the number of regulatory genes for each genetic operation (division,

apoptosis and segregation) in the case of the non-therapy scenario. For the therapy

scenarios, the models were compared based on the average apoptosis-to-division gene

ratio, which is characteristic of the model behaviour according to [238].

Following the methodology in [238], for each batch of experiments, the output from the

models (tissue size and number of genes) was stored in separate text files for each

simulation. These log files were then used for post-processing (using Mathematica),

transforming the results in a form more suitable for statistical analysis (analyzed then

with Excel).

5.3.4 Results

The comparison results are given below for all the cancer models: the original one from

[238], the original recoded in a systemic style (OriginalSystemicStyle) and the time-

enabled (TicToc), timeless (noTime) and approximate time (ApproxTime) with and

without optimizations (opt and nopt) for both the HAoS simulator (simHAoS) and the

hardware platform itself (HAoS).

In the case of the models simulating a therapy scenario, the results are re-aligned taking

the diagnosis time as a common reference time point to make the comparison more

comprehensive. Also in the case of the timeless SC cancer models, since the notion of

time is missing, a direct comparison of the genetic evolution of the tissue with the other

33

 While a model runs on the HAoS hardware platform and its software simulator unaltered, it is

expected to give slightly different results in terms of behaviour and quite different results in

terms of performance. Thus, it is accounted as two separate models in the context of this analysis.

34
 Each experiment here is a simulation of one of the resulting cancer models for a specific pair of

gene configuration - therapy scenario.

Chapter 5. Verification and Evaluation 194

models is not possible. For this reason, the number of the main genetic operations (in the

form of tissue interactions) is used to monitor their growth instead of time. In order to

enable their visual comparison, the results from the timeless models are plotted along

with the ones acquired by the other models - appropriately scaling the respective axes.

Point-to-Point Model Behaviour Comparison Results

The point-to-point comparison results, giving simulation results for all ten cancer models

in the same graph for each experiment configuration, are presented in Figures 5.19 -

5.23. Figures 5.19 - 5.21 give the output of the models when no therapy is used for all

chromosome distributions comparing the resulting average number of cells and all three

types of genes. Figures 5.22 - 5.23 compare the apoptosis-to-division gene ratio only for

chromosome distributions B and C (as distribution A shows a homeostatic tissue

behaviour which does not require treatment) for therapy scenarios B, C and D involving

surgery, chemotherapy and both therapies, respectively.

As seen in Figures 5.19 - 5.23, the behaviour of the tissue is correctly captured by the SC

cancer models, since the results are quite similar in most cases. Especially in the

experiments without therapies involved (Figures 5.19 - 5.21), the similarity regarding the

tissue size and numbers of regulatory genes is evident, as all models converge on the

same results. A slight difference is observed only in the case of the number of cells for

gene distribution A. Since all simulations carry on until the maximum number of

generations, the tissue shows the expected homeostatic behaviour but the inherent

randomness in SC causes a wider oscillation in the evolution of the number of total cells,

resulting in the tissue converging in a slightly higher number of cells.

Same observations can be made for the therapy-enabled results (see 5.22 - 5.23)

comparing the apoptosis-to-division gene ratio since there is a high degree of correlation

between the SC cancer series and the reference one.

Chapter 5. Verification and Evaluation 195

Figure 5.19. Non-therapy cancer models comparison for gene distribution A. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution A.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

120

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

To

ta
l C

el
ls

Time

Gene Distribution A

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

D

iv
si

o
n

 G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

A

p
o

p
to

si
s

G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

Se

gr
eg

at
io

n
 G

en
es

Time

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 196

Figure 5.20. Non-therapy cancer models comparison for gene distribution B. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution B.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

120

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

To

ta
l C

el
ls

Time

Gene Distribution A

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

D

iv
si

o
n

 G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

A

p
o

p
to

si
s

G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

Se

gr
eg

at
io

n
 G

en
es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

120

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140

Tissue Interactions

Time

Gene Distribution B

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 197

Figure 5.21. Non-therapy cancer models comparison for gene distribution C. The results

shown give the average from 20 runs taken by each of the ten models for the tissue size in

cells (first row), division genes (second row), apoptosis genes (third row) and segregation

genes (fourth row) for gene distribution C.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

120

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

To

ta
l C

el
ls

Time

Gene Distribution A

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

D

iv
si

o
n

 G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

A

p
o

p
to

si
s

G
en

es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

A
ve

ra
ge

Se

gr
eg

at
io

n
 G

en
es

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

120

140

160

180

200

220

240

260

280

300

0 20 40 60 80 100 120 140

Tissue Interactions

Time

Gene Distribution C

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120 140

Tissue Interactions

Time

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 198

Figure 5.22. Therapy-enabled cancer models comparison near cancer diagnosis for gene

distribution B. The results shown give the average from 20 runs taken by each of the ten

models for the ratio of the number of apoptosis regulatory genes to the number of division

regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy -

second row) and D (both therapies - third row) for gene distribution B. The results are

plotted from 25 timeslots before until 25 timeslot after cancer detection for models

supporting time and from 750 tissue interactions before until 750 interactions after

detection for the timeless models.

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

A
p

o
p

to
si

s-
to

-D
iv

is
io

n

G
e

n
e

 R
at

io

(S
u

rg
e

ry
)

Time

Gene Distribution B

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

A
p

o
p

to
si

s-
to

-D
iv

is
io

n

G
e

n
e

 R
at

io

(C
h

e
m

o
th

e
ra

p
y)

Time

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

A
p

o
p

to
si

s-
to

-D
iv

is
io

n

G
e

n
e

 R
at

io

(S
u

rg
e

ry
&

C
h

e
m

o
th

e
ra

p
y)

Time

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 199

Figure 5.23. Therapy-enabled cancer models comparison near cancer diagnosis for gene

distribution C. The results shown give the average from 20 runs taken by each of the ten

models for the ratio of the number of apoptosis regulatory genes to the number of division

regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy -

second row) and D (both therapies - third row) for gene distribution C. The results are

plotted from 25 timeslots before until 25 timeslot after cancer detection for models

supporting time and from 750 tissue interactions before until 750 interactions after

detection for the timeless models.

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions
A

p
o

p
to

si
s-

to
-D

iv
is

io
n

G

e
n

e
 R

at
io

(S

u
rg

e
ry

)

Time

Gene Distribution B

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

A
p

o
p

to
si

s-
to

-D
iv

is
io

n

G
e

n
e

 R
at

io

(C
h

e
m

o
th

e
ra

p
y)

Time

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

A
p

o
p

to
si

s-
to

-D
iv

is
io

n

G
e

n
e

 R
at

io

(S
u

rg
e

ry
&

C
h

e
m

o
th

e
ra

p
y)

Time

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

Time

Gene Distribution C

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

Time

-750 -600 -450 -300 -150 0 150 300 450 600 750

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Tissue Interactions

Time

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 200

Performance Comparison Results

While all suggested cancer models have been able to give results similar to the expected

ones, their performance is the differentiating factor that will enable us to select the most

optimal implementation. The average absolute and normalized (in terms of each

generation) execution times for all cancer models, gene distributions and applied

therapies are given in Table 5.9.

Table 5.9. Absolute and normalized average execution times for all simulated cancer

scenarios

Absolute Execution Time (ms)

Gene Distribution Distr. A Distribution B Distribution C

Therapies None None Surgery Chemo Both None Surgery Chemo Both

Original 1192.1 336.8 460.2 478.2 362.0 328.4 457.4 463.4 345.6

OriginalSystemicStyle 1648.7 353.2 393.0 405.0 398.0 366.1 363.4 359.6 378.7

simHAoS-TicToc 81862.0 19536.0 40969.0 20000.2 18013.0 16646.0 18194.0 39619.0 41590.0

simHAoS-ApproxTime-nopt 25880.0 4387.0 4965.0 5243.0 5622.0 4106.0 4890.0 4765.0 5195.0

simHAoS-ApproxTime-opt 7362.0 2182.0 2234.0 2338.0 2407.0 3239.0 2006.0 2262.0 2599.0

HAoS-TicToc 422.6 146.6 146.0 167.3 155.3 136.7 139.8 139.9 156.0

HAoS-ApproxTime-nopt 384.5 126.7 136.1 148.3 149.7 124.4 125.6 145.4 136.9

HAoS-ApproxTime-opt 328.5 112.3 111.6 139.9 135.3 105.3 104.9 122.0 137.2

simHAoS-noTime 29218.0 19084.0 18438.0 20625.0 19362.0 11272.0 11878.0 13281.0 15077.0

HAoS-noTime 310.7 172.0 177.2 187.0 378.0 160.2 167.8 182.5 170.0

Normalized Execution Time (Per Generation)

Gene Distribution Distr. A Distribution B Distribution C

Therapies None None Surgery Chemo Both None Surgery Chemo Both

Original 3.97 4.33 5.14 4.49 3.28 4.30 5.19 4.73 3.15

OriginalSystemicStyle 5.50 4.33 4.25 3.75 3.48 4.58 4.17 3.60 3.50

simHAoS-TicToc 284.39 302.65 523.23 225.74 190.31 261.52 259.54 481.98 439.87

simHAoS-ApproxTime-nopt 86.30 70.93 70.58 61.21 60.22 69.36 68.01 60.58 59.88

simHAoS-ApproxTime-opt 24.46 29.37 27.50 24.07 24.45 44.22 26.55 25.70 26.07

HAoS-TicToc 2.10 2.23 2.08 1.88 1.77 2.18 2.06 2.08 1.74

HAoS-ApproxTime-nopt 1.91 2.11 1.95 1.76 1.65 2.03 1.92 1.75 1.61

HAoS-ApproxTime-opt 1.63 1.49 1.29 1.46 1.38 1.44 1.43 1.35 1.47

Normalized Execution Time (Per Tissue Interaction)

simHAoS-noTime 5.84 7.24 6.83 7.36 6.84 4.80 4.42 5.12 5.60

HAoS-noTime 0.06 0.06 0.07 0.07 0.13 0.06 0.07 0.07 0.07

Chapter 5. Verification and Evaluation 201

5.3.5 Analysis

Model Behaviour

As observed in all charts, the apoptosis genes gradually become less than the division

genes (the ratio is always below 1). The reason is that the cancer model implies a

positive feedback on division genes growth. This means that as the number of genes

grows, the probability of division grows as well (as this probability is proportional to the

number of genes) resulting in cells with at least the same number of division genes

(since genetic material gets written from the parent to the daughter cell). However, in the

case of death, when the number of apoptosis genes grows, the probability of the cell

dying grows as well, meaning its genes are lost and not carried in the next generation, as

in the case of division. As seen in the therapy related results, the SC models tend to

overestimate the gene ratio compared to the original one - implying that the positive

division gene feedback in the SC models is weaker, mainly due to the lack of priority in

selecting the genetic operation to each cell.

Another, less noticeable difference, is that the reference series tend to have a greater

change in the gene ratio at the time of therapy from the SC model ones, especially for

therapies involving surgery. This is an artefact of the structural design of the original

cancer model as daughter cells (new nodes in the linked list) are positioned next to

parent cells creating locally elevated concentrations of division genes, due to the positive

feedback mechanism. While cells are evaluated as the linked list is traversed, surgery

removes a range of cells adjacent to each other in the reference model, making it more

probable that all the cells of such clusters of higher division genes will remain or be

removed from the tissue after surgery. In the SC models however this does not happen as

the selection of cells created during division and killed during surgery happens in a

random manner.

Finally, a notable difference between the models supporting the notion of time and the

timeless ones can be found on the way the various metrics are monitored and illustrated

in the figures above. As mentioned earlier, the values for each metric are sampled in the

end of each timeslot for the models supporting timeslots while they are continuously

sampled in the timeless models. This is most evident in the surgery timeslot where a big

number of cells are killed, changing considerably the genetic state of the tissue. While

for the time-supporting models the surgery happens in one timeslot and is plotted as a

sudden change of the tissue, for the timeless models the surgery operation is unravelled

as a big number of subsequent cell deaths that are shown in the resulting figures.

Chapter 5. Verification and Evaluation 202

Since a stochastic biological model is simulated, some variation in the results is naturally

expected. To compare the level of behavioural similarity of the SC cancer models to the

reference one in a more clear way, the differences of the averages of all time-supporting

models to the values of the original one are plotted in Figures 5.24 - 5.28 while their

respective mean error, standard deviation and correlation are given in Table 5.10. The

timeless models are excluded from these comparisons as a point-to-point comparison

between timeslot and tissue interactions would not be beneficial. To further support the

fact that some level of variation is natural and acceptable, a second batch of experiments

using the reference model (Original2) was conducted and their difference to the

reference simulations is also included in the analysis below.

As seen in Figures 5.24 - 5.28, a clear pattern cannot be identified in the behaviour of

each model when compared to the original one due to the stochastic nature of this cancer

model and the variability of the intermediate states due to its complexity. In general, the

second batch of experiments using the reference model gave, as expected, results that are

more similar to the original ones. However, notably this was not always the case (when

taking into consideration the results from all the different scenarios). This is also

confirmed by the statistical comparison results of Table 5.10.

This test case has stressed the simulating abilities of both the HAoS functional simulator

and the hardware platform itself. As shown in Figures 5.19 - 5.28 and Table 5.10 the

developed high-level HAoS simulator succeeds on modelling the behaviour of the

platform, capturing within an acceptable statistical error the results given simulating a

complex biological model.

Following the discussion above, we can conclude that HAoS (and its accompanying

simulator) can adequately model a fairly complex biological system. As in traditional

programming, more than one ways can be used to describe such a system. While

capturing the functionality of such a model is essential, its performance in terms of

execution speed is also usually critical.

Chapter 5. Verification and Evaluation 203

Figure 5.24. Non-therapy cancer time-supporting models results differences for gene

distribution A against the reference model on tissue size and regulatory genes

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

To
ta

l C
e

lls

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

Gene Distribution A

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

D
iv

is
io

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

A
p

o
p

to
si

s
G

en
es

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Se
gr

e
ga

ti
o

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

-100100

OriginalSystemicStyle

-100100

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

Original2

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 204

Figure 5.25. Non-therapy cancer time-supporting models results differences for gene

distribution B against the reference model on tissue size and regulatory genes

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

To
ta

l C
e

ll
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

Gene Distribution A

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

Time

Gene Distribution B

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

D
iv

is
io

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

A
p

o
p

to
si

s
G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Se
gr

e
ga

ti
o

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

Time

Gene Distribution B

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-100100

OriginalSystemicStyle

-100100

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

Original2

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 205

Figure 5.26. Non-therapy cancer time-supporting models results differences for gene

distribution C against the reference model on tissue size and regulatory genes

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

To
ta

l C
e

ll
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time

Gene Distribution A

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

Time

Gene Distribution B

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

D
iv

is
io

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60 80 100 120 140

A
p

o
p

to
si

s
G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Se
gr

e
ga

ti
o

n
 G

e
n

e
s

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Time
-0.15

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100 120 140

Time

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140

Time

Gene Distribution C

-0.2

-0.15

-0.1

-0.05

0

0.05

0 20 40 60 80 100 120 140

Time

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100 120 140

Time

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100 120 140

Time

-100100

OriginalSystemicStyle

-100100

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

Original2

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 206

Figure 5.27. Differences on apoptosis-to-division ratio between the therapy-enabled time-

supporting cancer models for gene distribution B against the reference one around

diagnosis timeslot

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -20 -15 -10 -5 0 5 10 15 20 25

A
p

o
p

t.
/D

iv
.

R
at

io
(D

if
fe

re
n

ce
 o

n
 A

ve
ra

ge
)

Su
rg

e
ry

Time

Gene Distribution B

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -20 -15 -10 -5 0 5 10 15 20 25

A
p

o
p

t.
/D

iv
. R

at
io

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

C
h

em
o

th
er

ap
y

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -20 -15 -10 -5 0 5 10 15 20 25

A
p

o
p

to
si

s/
D

iv
is

io
n

 R
at

io
(D

if
fe

re
n

ce
 o

n
 A

ve
ra

ge
)

B
o

th
 T

h
er

ap
ie

s

Time

-100100

OriginalSystemicStyle

-100100

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

Original2

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 207

Figure 5.28. Differences on apoptosis-to-division ratio between the therapy-enabled time-

supporting cancer models for gene distribution C against the reference one around

diagnosis timeslot

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -15 -5 5 15 25

A
p

o
p

t.
/D

iv
. R

at
io

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

Su
rg

er
y

Time

Gene Distribution C

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -15 -5 5 15 25

A
p

o
p

t.
/D

iv
.

R
a

ti
o

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

C
h

em
o

th
e

ra
p

y

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-25 -15 -5 5 15 25

A
p

o
p

t.
/D

iv
. R

at
io

(D
if

fe
re

n
ce

 o
n

 A
ve

ra
ge

)

B
o

th
 T

h
er

ap
ie

s

Time

-100100

OriginalSystemicStyle

-100100

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

Original2

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Original

OriginalSystemicStyle

simHAoS-TicToc

simHAoS-ApproxTime-nopt

simHAoS-ApproxTime-opt

HAoS-TicToc

HAoS-ApproxTime-nopt

HAoS-ApproxTime-opt

simHAoS-noTime

HAoS-noTime

Chapter 5. Verification and Evaluation 208

Table 5.10. Statistical comparison of the time-enabled cancer models to the reference one in

terms of mean error (ME), standard deviation (STD) and correlation (COR)

Total Cells

Distr. A Distr. B Distr. C

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -41.097 19.962 0.407 -5.413 4.913 0.981 -3.426 3.663 0.991

simHAoS-TicToc -22.118 14.377 0.639 -15.150 11.645 0.948 -16.714 16.597 0.931

simHAoS-ApproxTime-nopt -32.314 15.975 0.443 -17.253 15.534 0.939 -20.041 21.199 0.892

simHAoS-ApproxTime-opt -15.489 9.433 0.548 -8.120 7.975 0.985 -11.090 9.118 0.964

HAoS-TicToc -27.836 15.299 0.560 -19.570 18.229 0.964 -16.166 15.406 0.937

HAoS-ApproxTime-nopt -21.457 11.770 0.623 -25.431 26.779 0.935 -17.555 17.025 0.916

HAoS-ApproxTime-opt -27.597 16.510 0.537 -7.084 5.607 0.992 -7.827 7.664 0.982

Original2 0.143 2.738 0.900 2.220 4.362 0.992 -1.036 3.311 0.994

Average Division Genes

Distr. A Distr. B Distr. C

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -0.175 0.135 -0.743 0.032 0.022 0.997 0.007 0.008 0.999

simHAoS-TicToc -0.038 0.022 0.830 -0.011 0.017 0.997 -0.014 0.018 0.998

simHAoS-ApproxTime-nopt -0.190 0.105 0.341 -0.013 0.014 0.998 -0.047 0.047 0.998

simHAoS-ApproxTime-opt -0.132 0.117 0.410 0.020 0.012 0.991 0.006 0.006 0.998

HAoS-TicToc -0.066 0.053 0.732 0.000 0.016 0.992 -0.021 0.024 0.997

HAoS-ApproxTime-nopt -0.094 0.078 -0.791 -0.027 0.037 0.995 -0.018 0.026 0.995

HAoS-ApproxTime-opt -0.081 0.061 0.433 -0.009 0.013 0.999 0.006 0.012 0.990

Original2 -0.028 0.031 0.977 0.004 0.007 0.997 0.009 0.007 0.998

Average Apoptosis Genes

Distr. A Distr. B Distr. C

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -0.175 0.135 -0.743 -0.041 0.047 0.993 -0.036 0.030 0.998

simHAoS-TicToc -0.038 0.022 0.830 -0.001 0.004 0.998 0.011 0.025 0.995

simHAoS-ApproxTime-nopt -0.190 0.105 0.341 0.002 0.010 0.996 0.016 0.022 0.998

simHAoS-ApproxTime-opt -0.132 0.117 0.410 -0.002 0.008 0.997 0.017 0.022 0.997

HAoS-TicToc -0.066 0.053 0.732 -0.005 0.007 0.998 0.020 0.030 0.997

HAoS-ApproxTime-nopt -0.094 0.078 -0.791 0.021 0.022 0.997 0.025 0.028 0.999

HAoS-ApproxTime-opt -0.081 0.061 0.433 -0.039 0.039 0.998 0.004 0.007 0.998

Original2 -0.028 0.031 0.977 -0.024 0.026 0.997 0.026 0.032 0.999

Average Segregation Genes

Distr. A Distr. B Distr. C

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -0.033 0.038 -0.241 0.032 0.022 0.997 -0.036 0.030 0.998

simHAoS-TicToc -0.060 0.046 -0.862 -0.011 0.017 0.997 0.011 0.025 0.995

simHAoS-ApproxTime-nopt -0.037 0.034 -0.350 -0.013 0.014 0.998 0.016 0.022 0.998

simHAoS-ApproxTime-opt -0.085 0.043 -0.340 0.020 0.012 0.991 0.017 0.022 0.997

HAoS-TicToc -0.050 0.029 -0.382 0.000 0.016 0.992 0.020 0.030 0.997

HAoS-ApproxTime-nopt -0.026 0.025 0.158 -0.027 0.037 0.995 0.020 0.025 0.999

HAoS-ApproxTime-opt -0.025 0.013 0.826 -0.009 0.013 0.999 0.004 0.007 0.998

Original2 -0.037 0.022 0.150 0.004 0.007 0.997 0.026 0.032 0.999

Average Apoptosis to Division Ratio (Gene Distribution B)

Surgery Chemotherapy Both Therapies

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -0.086 0.035 0.996 -0.090 0.022 0.982 -0.068 0.029 0.996

simHAoS-TicToc -0.093 0.024 0.995 -0.080 0.011 0.987 -0.136 0.035 0.972

simHAoS-ApproxTime-nopt -0.134 0.031 0.980 -0.106 0.021 0.907 -0.079 0.030 0.974

simHAoS-ApproxTime-opt -0.096 0.024 0.998 -0.084 0.019 0.973 -0.070 0.029 0.987

HAoS-TicToc -0.059 0.013 0.988 -0.094 0.014 0.975 -0.102 0.031 0.989

HAoS-ApproxTime-nopt -0.085 0.017 0.984 -0.087 0.009 0.990 -0.100 0.041 0.911

HAoS-ApproxTime-opt -0.097 0.033 0.987 -0.056 0.013 0.975 -0.114 0.031 0.954

Original2 -0.028 0.020 0.996 -0.005 0.014 0.978 -0.036 0.029 0.975

Average Apoptosis to Division Ratio (Gene Distribution C)

Surgery Chemotherapy Both Therapies

ME STD COR ME STD COR ME STD COR

OriginalSystemicStyle -0.039 0.013 0.988 -0.138 0.033 0.994 -0.067 0.021 0.948

simHAoS-TicToc -0.013 0.024 0.994 -0.129 0.021 0.998 -0.043 0.006 0.973

simHAoS-ApproxTime-nopt -0.066 0.010 0.995 -0.095 0.006 0.996 -0.053 0.008 0.971

simHAoS-ApproxTime-opt -0.029 0.016 0.994 -0.095 0.011 0.990 -0.044 0.011 0.978

HAoS-TicToc -0.049 0.019 0.985 -0.093 0.046 0.863 -0.071 0.007 0.973

HAoS-ApproxTime-nopt -0.043 0.023 0.986 -0.120 0.024 0.991 -0.049 0.015 0.944

HAoS-ApproxTime-opt -0.051 0.018 0.992 -0.073 0.012 0.998 -0.030 0.015 0.951

Original2 0.034 0.014 0.996 -0.006 0.014 0.979 0.053 0.026 0.967

Chapter 5. Verification and Evaluation 209

Model Performance

As seen on the top portion of Table 5.9, simulations are lengthier for gene distribution A

as the models reach the maximum number of generations (since the homeostatic

behaviour of the tissue keeps its size well under the maximum cells threshold). As

expected, the execution times for the software implementations are similar (10-15%

variation). The HAoS simulator needs considerable more time to identify interacting

systems triplets. Comparing the (normalized) results from the cancer models executed on

HAoS, the time-enabled model requires additional time to implement the tic-toc time

phase mechanism. The timeless model cannot be directly compared (its timing is

provided in Table 5.9 for reference) as it is normalized against tissue interactions rather

than timeslots and also logs more output information as it monitors more events. The

approximate time models are faster than the time-enabled, while as expected the few

optimizations of its optimized variation (HAoS-ApproxTime-opt) result in it having the

best execution times.

While HAoS still outperforms the reference cancer simulation program, the

outperforming factor (relative difference in the performance) is smaller than the ones

achieved in the previous sections (knapsack problem and MAPK cascade). This is

however expected as the cancer model was a corner case, comparing the simulation

capabilities of HAoS with a dedicated software implementation running on a high-end

desktop computer and identifying interacting systems in a trivial way. Yet, as shown in

Figure 5.29, HAoS achieved on average more than 60% performance incresase.

Figure 5.29. Cancer growth experiment HAoS normalised performance against the

dedicated c++ implementation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
al

is
ed

 H
A

o
S

P
er

fo
rm

an
ce

Fa

ct
o

r
O

ve
r

C
o

m
p

et
it

io
n

Dedicated
C++ Impl.

HAoS

Chapter 5. Verification and Evaluation 210

Moreover, further profiling the optimized SC cancer model running on hardware,

showed that an additional performance increase can be achieved with a purely-hardware

implementation of context-chaining. Since the current context-chaining approach relies

on the user to explicitly define the next context to be executed in the chain by software,

this results in many time-consuming and execution-blocking memory accesses which

may be avoided by a smart implementation preloading the possible (or permitted) chains

in the HAoS memories along with the SC program loading. However, this implies that

several changes would be required in the hardware, driver and compiler code and, thus

the more simplistic current approach was preferred for our prototype.

The complexity of this high-level cancer model and its successful execution on the

HAoS platform confirms that the implied SC architecture (systems, scopes, contexts,

schemata matching) is effectively supported, meeting this way research challenge Chg2.

The cancer experiments proved that HAoS can compete with dedicated solutions on

modelling real-world biological models, confirming that research challenge Chg3 has

also been adequately met, in terms of both practicality and efficiency.

5.4 Summary

This chapter presented the implementation of three bio-inspired models, using the

developed prototype HAoS programming platform, in order to verify its functionality

and evaluate its performance against alternative solutions. The three models were

carefully selected to represent verification test cases of increasing complexity, testing all

aspects of the suggested architecture, both in the hardware and the software domain.

These demonstration HAoS applications were developed using the suggested

development methodology of section 4.5. Each of the preceding sections provides an

introduction to the bio-inspired model, followed by a systemic analysis, details on the

model implementation, the experimental setup and the obtained results.

First, a SC application implementing a genetic algorithm optimization of the binary

knapsack problem showed the suitability and compatibility of the SC hardware

architecture with standard evolutionary methods. This test case was used to evaluate the

performance of HAoS against the original sequential and the GPU-based

implementations of SC. The results showed the superiority of HAoS, mainly based on

the fine-grained parallelism of the TCAM, even when compared with a powerful GPU.

The next application modelled a well-studied biochemical process, the MAPK signalling

cascade. Being more complex in nature, it tested more advanced functionality like

Chapter 5. Verification and Evaluation 211

context adapting and enabled the evaluation of HAoS against the flexible high-level

SCoPE SC implementation and a stochastic π-calculus simulator written using functional

programming. HAoS again matched the behaviour of the alternative simulators providing

a considerable performance gain.

The last HAoS application modelled the effect of genetic abnormalities and therapeutic

approaches on cancer growth. In this test case, a comprehensive analysis on the thought

process required to build a considerably complex SC model was provided, along with

examples of optimizations that can be made at the SC source code and transformation

function plugin level to take full advantage of the underlying hardware architecture . The

notion of context chaining was introduced as a means of controlling SC interactions that

define a chain of events. Additionally, this model was used to validate the functionality

of the developed high-level HAoS simulator (a program with functional behaviour

similar to the circuitry). The performance of HAoS was evaluated against an optimized

dedicated software implementation and showed a competitive advantage, considering

that this case represented a worst-case scenario in terms of comparison, due to the

straightforward selection of the agents.

Figure 5.30. Performance Evaluation Results Summary

Analysis for all three HAoS applications showed that research challenges Chg2 and

Chg3 have been met, as the suggested programming platform successfully simulated a

range of SC models of increasing complexity, confirming the support for the implied SC

architecture. The evaluation results, as collectively shown in Figure 5.30, show that

HAoS consistently outperformed the rival simulators in all cases, confirming it shows

the capacity to be used as an efficient and practical simulation solution alternative.

0.001%

0.01%

0.1%

1%

10%

100%

N
o

rm
al

is
ed

 H
A

o
S

P
er

fo
rm

an
ce

Fa
ct

o
r

O
ve

r
C

o
m

p
et

it
io

n

Binary Knapsack
Genetic Optimisation

MAPK Cascade

Cancer Growth

All Experiments

212

Chapter 6

Conclusion

This final chapter summarises and concludes the thesis. At first, a summary of the work

presented in this thesis is provided while revisiting its objectives. Then the contributions

of the thesis are listed, followed by a critical evaluation of the research outcomes. Future

work is suggested for further investigation and development of the HAoS programming

platform. The thesis finishes by describing how the contributions address the three main

research challenges and provide evidence to support its hypothesis.

6.1 Summary of Work Revisiting the Objectives

This thesis focuses on the practical hardware implementation of the Systemic

Computation paradigm. The objectives of this work, identified and listed in section 1.5,

are reviewed below summarising the work presented in this study.

1. Review the work done on Natural Computation with a focus on hardware-based

approaches.

An introduction to Natural Computation was given in section 1.1. The computational and

behavioural properties of Natural Computation were listed, against the opposing

properties of conventional computation, in Table 1.1 (page 19), and they were outlined at

the end of the same section. Understanding the concept of those properties is very useful

because, in essence, they define natural computation.

Chapter 2 provided a thorough literature review on several approaches to Natural

Computation. Various, software and hardware, approaches and computational paradigms

on Natural Computation were listed in Table 2.1 (page 30). The software approaches and

the computational paradigms were briefly discussed in section 2.1, while conventional

(Chip Multiprocessors, supercomputers, pure peer-to-peer networks and GPUs) and

unconventional (ubiquitous computing, wireless sensor networks, FPGAs, computing

with unconventional materials) hardware-based approaches to natural computation were

critically described in section 2.2. An overview of a set of indicative projects (POEtic,

Chapter 6. Conclusion 213

PERPLEXUS, SpiNNaker, Molen, DodOrg) was also given to show how various

approaches are applied to accomplish, model or mimic natural computation.

2. Review and assess the work done on Systemic Computation (theory and

implementations) to date.

A brief introduction on the SC theory was provided in section 1.2 giving its roots. In

addition, the conventions followed by SC in order to model biological processes

effectively, were listed. In essence, those conventions define the SC paradigm. SC was

further described in section 2.3, as it was introduced in the original paper by Bentley.

The SC conventions were discussed and the SC graph notation and systems

representation was illustrated. A simple demonstration of computation and the

progression of a simple SC program were also given to illustrate how SC can be used.

The three prior SC implementations were discussed in section 2.4. The original SC

implementation was a low-level simulation of a systemic computer and provided a proof-

of-concept for the SC theory. It provided a basic instruction set, an assembly language

and corresponding compiler. The second SC implementation was a high-level simulation

of a systemic computer and provided flexibility with a high-level SC programming

language, a compiler and a virtual machine, a complete runtime environment and

visualization tools. The third implementation used the power and parallelism of a GPU,

to accelerate SC programs execution with great success, compared to the two previous

attempts, since the acceleration factor was in the order of one hundred.

3. Investigate the suitability of available hardware implementation platforms for SC by

evaluating them in terms of their ability to support the natural properties of SC

(Chg1), the implied SC architecture (Chg2), and practicality/efficiency (Chg3) and

select the most appropriate.

In order to evaluate and investigate the suitability of the available implementation

platforms, the features that should be incorporated by a practical SC hardware

implementation platform, taking into consideration the research challenges, were

determined in section 2.5. These included the compatibility of the platform with the SC

natural properties (section 1.1) and the SC architecture features (systems, scopes,

contexts and interactions), and also I/O efficiency, programmability, design friendliness,

technology maturity and scalability.

Signifying and understanding the advantages and disadvantages of each available

hardware implementation approach to natural computation in Chapter 2 was crucial to

identify which of them could be used as a suitable implementation platform for SC. For

Chapter 6. Conclusion 214

this reason, a critical discussion concluded the description of each approach, with regard

to their compatibility with the SC paradigm, and those that could define a SC hardware

implementation platform were evaluated against the identified implementation

requirements. The summary of the evaluation was given in Table 2.3 which was used to

discard the less suitable platforms for a SC implementation. FPGAs were finally selected

among the two other candidates, GPUs and wireless sensor networks.

4. Analyse the SC architectural features and create a prototype hardware

implementation designed to support the SC architecture.

The first Hardware Architecture of Systemic computation (HAoS) was introduced in

Chapter 3. The main SC architectural features, focusing more on the computational

rather than the behavioural aspects of Natural Computation (see Table 1.1), were

depicted and discussed in section 3.2, while potential architectures had been listed earlier

in section 3.1. HAoS is a novel custom digital design, which addresses the SC

architecture parallelism requirement by exploiting the inbuilt parallelism of an FPGA

and by using the highly efficient matching capability of a Ternary Content Addressable

Memory (TCAM). Basic processing capabilities were embedded in HAoS, in order to

minimize time-demanding data transfers, while the optional use of a CPU provides high-

level processing support. The suggested architecture was detailed and its underlying

building blocks were discussed in sections 3.4 - 3.6. The CPU interface (see Figure 3.9)

was only simulated at this point.

The functional simulation-based verification methodology along with a set of test

programs was given in section 3.8.1. Since the target development board had been

identified (based on the supported functionality and maturity of the FPGA device family

it includes) to be the Xilinx ML605 board, accurate implementation estimates of HAoS

for the on-board Virtex-6 LX240T FPGA device were acquired through Xilinx

developments tools and summarized in Table 3.6 (section 3.8.2). This first HAoS

implementation supported a maximum number of 64 systems.

5. Create a complete and standalone practical SC programming platform with the

ability to meet the three challenges.

After a thorough investigation of the most suitable implementation approach for the

HAoS-CPU communication interface in section 4.1, it was decided that a soft embedded

processor, implemented on the reconfigurable logic, minimized the communication

overhead and provided the ability to prototype the communication link. The CPU

subsystem, along with various peripherals, was integrated to the HAoS initial design (in

Chapter 6. Conclusion 215

section 4.2) through an AXI4-Lite based interface, which was well-suited to handle

communications involving control and status registers, as the ones in the register bank of

HAoS.

After the custom design was combined with the on-chip soft processor, the Compact

Flash Card interface was added to the platform to enable SC programs loading and

runtime information logging, making the prototype a standalone solution for simulating

natural processes. The initial design was expanded to support the maximum number of

systems, being limited only by the size of the target FPGA device while scaling became

a matter of changing a single parameter as fully-parameterizable code was used

throughout the system. The usability and viability of the platform was also greatly

enhanced by the accompanying software framework and the suggested model

development methodology.

The prototype has the potential of adding great educational value in the academic

community as it combines practical aspects of hardware and software engineering with

an unconventional computational paradigm focusing on natural systems modelling.

6. Analyse and address the limitations of the hardware prototype by means of

optimizations and enhancements taking into consideration the research challenges.

Various optimizations applied in the initial HAoS architecture in terms of speed and area

were discussed in section 4.3. The optimizations included refining the Random Selection

Logic by pipelining and careful resource sharing, minimizing the schemata matching

overhead by using a register-based TCAM which features a single-clock cycle read and

write latency and further addressing I/O efficiency by devising a write-detection

mechanism. These optimizations enabled the increase of the operating frequency and

throughput and the decrease of the overall latency compared to the initial design.

Timing-based verification was conducted to validate the optimizations before the design

was implemented on hardware (downloaded on the FPGA). The enhancements included

addressing user-friendliness, by providing a HAoS functional simulator to expedite and

ease SC models development, and programmability by introducing a complete HAoS

programming toolchain and an accompanying software framework, which were then

used to formulate a HAoS model development methodology (in section 4.5).

7. Evaluate the ability of the prototype SC platform to meet the three challenges by

simulating natural models against alternative solutions.

An initial evaluation against prior SC implementations was provided in section 5.1,

where the same SC source code solving a typical genetic algorithm optimization

Chapter 6. Conclusion 216

problem, the binary knapsack problem, was executed by the original SC implementation,

the GPU SC implementation and HAoS. SCoPE was excluded from this evaluation since

it uses a different version of the SC language but it can be safely assumed that its

performance would be similar to the original version (both being purely software

implementations relying solely on conventional hardware architectures). Experimental

results showed that HAoS provides an effective solution in terms of efficiency versus

flexibility trade-off and can potentially outperform prior implementations.

A well-studied biochemical process, the MAPK signalling cascade, was the second SC

model, developed using the methodology of section 4.5 and presented in section 5.2,

simulated with the HAoS prototype platform. Although this experiment was used as a

means of verification and evaluation of the platform against alternative high-level

simulators, SCoPE and SPiM, it also provided an example of simulating a highly

stochastic and approximated model.

The third and most complex SC model, out of the models presented in this thesis,

examined the role of chromosome missegregation, a cellular anomaly of genetic origin,

in the development of a tumour. External stimuli were also modelled in the form of

typical cancer therapies, chemotherapy and surgery. In contrast with the other models,

presented in the first two sections of Chapter 5, which retargeted previously introduced

SC models to the HAoS programming platform, the cancer SC model was developed

from scratch in the context of this thesis. For this reason and due to the increased

complexity of this model, a thorough explanation and a detailed systemic analysis were

provided before reaching the alternative ways of approaching and implementing such a

model. Thus four variations of this SC model were presented, all representing the

functionality of the reference model, trying to identify a balanced choice in terms of

accuracy and efficiency. This test case was also used to evaluate the correctness of the

HAoS functional simulator. The results showed that HAoS can outperform the optimized

C++ reference model while correctly modelling its complex behaviour.

6.2 Contributions

This work contributes to the fields of systemic computation, natural computation and, in

general, computer science by providing:

 A critical review of hardware-based approaches to systemic and natural

computation and identification of the requirements of an implementation

platform, in order to support a practical SC hardware implementation.

Chapter 6. Conclusion 217

 Critical analysis of natural computation implementation platforms with respect to

SC and the derived requirements.

 Determination of the most appropriate hardware implementation platform for a

practical SC implementation.

 Design of the first hardware SC architecture taking into consideration the

flexibility and performance trade-off.

 Introduction of a complete and practical standalone platform to simulate natural

systems, accompanied by

o a programming toolchain,

o a software framework and

o a model development methodology

 A custom hardware write-detection mechanism used to decrease CPU accesses to

a local resister file.

 A custom random selection circuit that selects a set bit from a given bus and

returns its position.

 Introduction of the concept of context chaining in SC applications.

 SC programming examples executed on hardware showcasing efficient natural

systems modelling.

 Introduction of a SC cancer model focusing on chromosome missegregation and

including genetic and external stimuli.

6.3 Critical Evaluation

The various design decisions and choices involved in the development of the resulting

prototype, from the selection of hardware implementation platform to the layout of the

hardware architecture and then the development of its accompanying software, have

been explained throughout chapters 2 to 4. These decisions have been primarily based on

finding a balance between efficiency and flexibility and were driven by currently

available technologies and design methodologies. Yet, it has been evident from the

analysis given before any decision was made, that there was usually no single correct

answer to each design challenge faced along this work.

Chapter 6. Conclusion 218

Implementation Platform Selection

According to the analysis of section 2.5, FPGAs were selected as the most suitable

platform for a hardware implementation of SC. While this decision was made due to

maturity of the FPGA technology and its great potential for fine-grained parallelism,

advancements in emerging technologies as Quantum and DNA computing may enable

the implementation of SC in a more natural substrate in the future.

Regarding the other strong candidates for realizing SC, from the discussion of section

2.5, both Wireless Sensor Nodes and GPUs provide advantages that would make them

suitable candidates. The comparison between the FPGA-based HAoS prototype and the

GPU SC implementation using the binary knapsack test case (section 5.1) reveals the

superiority of a dedicated hardware architecture over the power of a GPU. However,

while FPGAs are widely used having a plethora of commercial applications, GPU design

advancements are mainly driven by the power-hungry and ever-demanding gaming

industry. Thus, the two fields should continue evolving with the same pace for the FPGA

platform to continue being the most favourable option. A quantitative comparison

between the FPGA-based and a WSN-based approach was not possible as such an

implementation is not available yet. Thus, since the features of a WSN network are well-

aligned with the natural properties of SC, a WSN SC implementation may still prove

useful to realize.

Hardware Architecture

As stated in section 1.2, the two main tasks implied by SC are the identification of the

interacting systems and then the transformation of those systems. The competitive

advantage of the suggested hardware architecture lies on the efficiency of the TCAM

performing schemata matching in a parallel manner, regarding the first implied task, and

the low-latency communication with the embedded CPU, regarding the second.

However, it is clear that there is still great performance gain potential regarding the

parallelization of the transformation task which may be addressed by using on-chip

available resources or additional off-chip processing elements.

The rationale behind choosing the soft processor in section 4.1 is the extremely low

communication overhead which can however be negligible when the runtime of a task

increases. While the embedded processor approach was proven sufficient to prototype

the suggested hardware architecture (according to its evaluation against alternative

simulators in Chapter 5), more computationally intensive natural models may require

more raw processing power which may be addressed by the computation-offloading

Chapter 6. Conclusion 219

hybrid approach suggested in section 4.1 and further low-level hardware optimizations

and enhancements.

While the suggested hardware architecture was designed to implement the SC paradigm

in an efficient and practical way, it is acknowledged that it does not fully support all the

natural properties that are implied by SC. Evidently, the focus of this work was more

towards the computational rather than the behavioural properties supported by the SC

concept in theory. The FPGA platform was selected for the increased level of support it

can provide for these implied properties and some of them like parallelism and stochastic

interactions have been implemented on the hardware level. The behavioural properties

are left to be simulated by the SC applications running natively on the HAoS platform,

e.g. self-adaptation and fault-tolerance can be sufficiently demonstrated using a genetic

algorithm [22] which being greatly compatible with SC, it can be easily simulated and

efficiently mapped to the underlying architecture of HAoS as shown in section 5.1.

Prototype Implementation

The suggested hardware design has been written in highly-parameterized VHDL code,

enabling its effortless migration to any FPGA device. The selected FPGA development

board featured a midrange FPGA device in terms of size and included a rich set of

features
35

. As FPGA technology evolves and modern devices provide more efficient

reprogrammable solutions, HAoS is not constrained to a specific vendor, it can be easily

scaled just by changing a single parameter in the source code (as long as the design fits

to the target device) and is fairly future-proof as it uses an industry-standard

communication interface to its embedded CPU. Using this flexibility, the number of

maximum supported systems using a single device may be adequate to simulate fairly

complex natural systems. However, scaling the architecture further than a single FPGA

device, realizing a distributed architecture of HAoS nodes, may be beneficial for real-

world modelling scenarios.

SC Model Development and HAoS Programming

The three SC models presented in Chapter 5 attempted to cover a wide
36

 range of SC

applications with varying levels of behaviour complexity. The suggested model

35

 As various communication interfaces (PCI Express Gen2, USB 2.0, Gigabit Ethernet and

DDR3 memory interface) and on-board peripherals (FMC expansion connectors, SD card

controller and an LED screen).

36
 Wide in the context of a research thesis.

Chapter 6. Conclusion 220

development methodology can facilitate further exploring new models while the

provided programming toolchain and software framework can assist in making HAoS

programming straightforward for potential SC programmers, familiar with conventional

programming methodologies and techniques. However, an understanding of the main

concepts of SC, the basic mechanics of the underlying hardware and software

development for an embedded processor is encouraged for efficient HAoS model

development.

6.4 Future Work

Although the current prototype has been proven to be fully functional, there are several

further improvements that could be made to increase its efficiency. The following

suggestions address the deficiencies of the HAoS platform, identified in the critical

evaluation section above.

Hardware Architecture

In order to maximize the utilization of on-chip resources, the vast number of available

DSP building blocks can be used as discrete parallel processing elements and any

remaining FPGA fabric can be used as a dynamically reconfigurable area for

predetermined hardware-supported functions. As FPGAs provide the flexibility to

partially reconfigure the device to implement a different circuit every time on a

predetermined area of the available fabric, a different circuit could be downloaded on the

FPGA, according to the requirements of a systemic program, which then would highly

optimize the performance of the system. The supported reconfigurable function set could

either include only predetermined hardware functions or any supported function by a

high-level synthesis tool or C-to-HDL compiler [164], [242], [243]. Essentially this

feature would imply that instead of having a fixed instruction set supported by the FU

(see Figure 3.9), the FU would be itself reconfigurable and tailored to the specific SC

application, maximizing this way resources utilization.

Another enhancement to the suggested hardware architecture would be the addition of an

extra communication interface on the platform to provide the possibility of HAoS

offloading computationally-intensive tasks to a conventional CPU through a PCI-Express

link. The motivation behind this is the acknowledgement that a low-performance soft

processor can be a poor choice if a heavy computational task is required. A smart

solution would execute hardware supported tasks within the HAoS FU, low-demanding

general-purpose processing tasks to the low-latency low-throughput on-chip processor

and computationally expensive processing tasks to the high-latency high-throughput off-

Chapter 6. Conclusion 221

chip conventional CPU. Thus, adding this option to the platform, would give the user the

choice between having a standalone solution and fine-tuning the system performance

according to the processing requirements of the given application.

More low-level enhancements that would increase the efficiency and flexibility of the

architecture are also possible. Some examples would be supporting variable parts next to

the transformation function section of a system holding auxiliary program information,

an efficient implementation of context chaining supported inherently by hardware and

also further increasing the size of the schemata of a number of systems in order to be

able to hold more local information.

Prototype Implementation

Naturally, the raw performance of the platform may also be increased by retargeting the

HAoS architecture to the latest FPGA family, using a bigger and faster FPGA device to

enable more systems to be modelled (using a single device) and the operating frequency

of the custom logic to be increased without further architectural changes to the design.

Also the operating frequency of the processor may also be increased by an order of

magnitude, if the selected FPGA device makes use of a powerful hard CPU, instead of

the low-end soft CPU of the HAoS prototype, implemented next to the reconfigurable

logic (as it is the case for the recently commercialized Xilinx Zynq
37

 Extensible

Processing Platform [202] and the recently announced Altera Stratix 10 FPGA platform

which includes a quad-core A53 64-bit ARM processor fabricated on an Interl 14-nm 3D

Trigate Transistor process, as discussed in section 4.1). This approach would maintain

the low-latency communication advantages of the suggested design. A migration to such

a platform would not impose altering the suggested communication interface, as the

selected AXI4 based communication protocol (being an industry standard) used by

HAoS, is readily supported by such modern solutions. However, minor changes would

be required on the software side.

37

 The configurable logic provided by these devices is still limited since a full dual -core ARM

CPU is also implemented on the same chip. The largest currently available Zynq device (Z-7100)

provides 444K reconfigurable logic cells while the midrange Virtex-6 FPGA used for

implementing HAoS includes 241K cells. However, with FPGA manufacturers moving to smaller

technology nodes (currently announced down to 14-16nm), these limitations will be more

efficiently addressed as the technology matures. The highest operating frequency for the ARM

Cortex-9 CPU in the Zynq family is currently 1GHz (Z-7045-3 device) [202].

Chapter 6. Conclusion 222

An investigation on the scaling of the HAoS platform beyond the single-FPGA

implementation is also suggested. This could be accomplished with using an external

CAM configuration in order to address the increasing number of systems requirement.

This approach would have a performance penalty but it would enable a broader range of

SC applications. As the on-chip CAM is the most area-consuming block of HAoS, its

absence will provide a high number of maximum supported systems, even when only one

FPGA device is used. Moreover, external TCAMs can easily be incorporated to an

FPGA-based design through dedicated or generic communication interfaces and also be

scaled by cascading multiple devices [244][245]. A second approach that could address

the scalability of the HAoS architecture is an FPGA cluster [93], with each FPGA

defining a separate scope or part of a scope and system transfers/exchanges happening

between the discrete FPGA nodes. Taking into consideration budget limitations of a

hardware realization of this approach, the functionality may be simulated and tested on a

configuration initially using a small number of FPGAs. A network interface will

probably have to be designed at the bounds of each chip. A shared bus topology or a

wireless link may help addressing the communication-related scalability issues. Address-

Event Representation [111] may also be considered to be adopted by the design in order

to compensate for the limitation of the I/O pins of the FPGAs.

SC Natural Models Development and HAoS Programming

A natural extension of this work would involve exploring more natural models and

developing SC applications which would fully exploit the efficiency of the suggested

programming platform. Specifically, SC applications showing the level of support for the

behavioural properties of Natural Computation would be especially interesting, using the

work presented in [22] (exploiting self-adaptation, robustness, fault-tolerance,

homoeostasis and self-organisation) as a starting point.

The HAoS programming framework could also be greatly enhanced by further

automating parts of the Conceptual and Application Layer (see Figure 4.5) with the

addition of a high-level SC graph tool which would translate the graphical notation of a

SC model to calculus notation and the corresponding SC source code.

Implementation Platform

As noted in the previous section, it would be interesting to also explore additional

suitable implementation platforms and evaluate their performance and compatibility with

the SC paradigm. An obvious candidate would be a WSN-based [79] approach while

Chapter 6. Conclusion 223

alternatively a SpiNNaker-based [132] implementation would also be appealing once the

final platform is available.

6.5 Closing Words

The hypothesis of this thesis was to prove the viability and utility of a practical SC

hardware implementation. In order to accomplish this, an overview was first given on the

fields of Natural and Systemic Computation to introduce their base concepts and non-

conventional nature. Then, in order to provide evidence to support the hypothesis, three

research challenges had to be addressed:

Chg1: How can a hardware platform support the central SC natural properties?

Acknowledging the fact that the implementation of a hardware platform that fully

supports all the SC inherent natural properties is not yet realistic, this thesis attempted to

identify a compromise based on the various trade-offs provided by current technologies

and design techniques. A critical analysis of hardware-based approaches to natural

computation was presented, followed by the identification of the key requirements for an

implementation platform which would provide sufficient support for as many as possible

of the implied natural properties of SC, focusing more on the computational part. The

investigation of the compatibility of the various available implementation platforms with

the desired properties led to the selection of FPGAs as the most suitable choice to

implement the first Hardware Architecture of Systemic computation (HAoS). The natural

properties were also taken into consideration along the design of the custom hardware

and its accompanying software. After analysis of the available options, constraints and

trade-offs, a few of the properties (as stochastic execution and parallelism) were

incorporated to the suggested hardware platform, while the rest remained to be supported

on a software level (e.g. by using a genetic algorithm).

Chg2: How can a hardware platform support the underlying architecture of SC?

In order to support the underlying SC architecture, a hardware platform should be

implemented on a substrate which is compatible with the specific features of SC:

systems, scopes, contexts and interactions
38

. For this reason, the compatibility with these

features was also considered in the implementation platform investigation. Since the

FPGA platform was selected, a design analysis concluded that systems and scopes would

be stored on system RAM to optimize area utilization, while register-based constructs

38

 Including schemata matching and random selection

Chapter 6. Conclusion 224

would provide parallel access to performance-critical status information. A new, more

hardware-friendly, systems representation and coding method was devised in order to

optimally map the architecture to the hardware resources. A Ternary Content

Addressable Memory was selected to handle the demanding task of schemata matching

to implement valid triplet generation in a purely parallel manner. An optimized and

dedicated hardware state-machine was implemented to control the interaction flow. In

addition, a custom circuit was designed to handle the random selection task, which was

used to randomly identify a valid scope among all scopes in the SC program, a context

among all contexts in a scope and a pair of interacting systems among all matching

systems. The support for the SC architecture was further revised with low-level

optimizations and it was also evaluated and verified using high-level bio-inspired SC

models running live on the suggested hardware platform.

Chg3: How can a hardware platform meet the first two challenges while also being

practical and efficient?

Practicality and efficiency were also considered during the investigation of the most

appropriate technology/substrate, which would be used to implement HAoS. The

requirements regarding this challenge were identified to be I/O efficiency,

programmability, design-friendliness, technology maturity and scalability. After the

selection of the implementation platform and the introduction of the base HAoS

architecture, the design effort was focused on optimizations and enhancements targeting

a more practical and efficient simulation platform. A critical analysis regarding the

HAoS-CPU communication interface led to the selection of an embedded CPU due to the

minimal communication latency. Low-level optimizations in the RSL, the TCAM and the

I/O boundary increased significantly the efficiency of the platform. Additionally, the

user experience and the level of practicality where substantially enhanced by the

functional model of the design (HAoS simulator), the programming toolchain, the

software framework and the programming methodology, which greatly expedited SC

models development targeting HAoS. The efficiency of the platform was evaluated by

simulating natural models and it was validated by outperforming prior SC

implementations and alternative simulation environments.

To sum up, this thesis met all three research challenges since the resulting prototype was

realized on the most compatible to the desired natural properties implementation

platform (Chg1) and implemented the SC paradigm and its implied architecture (Chg2)

in a practical way, employing widely-used programming techniques and methodologies

Chapter 6. Conclusion 225

(using C/C++ for transformation functions implementation) on a mature technology

(FPGAs combined with embedded processing). Additionally, the efficiency of the

platform (Chg3) was shown through evaluation, as HAoS has been shown to have the

capacity of outperforming competing solutions proving the viability and utility of the

suggested design (illustrated in Figure 6.1). Thus, by meeting the research challenges,

this thesis provides compelling evidence to support the hypothesis that it is possible to

implement a practical Systemic Computation hardware architecture that is viable and

useful.

Figure 6.1. Comparison in flexibility and efficiency provided by the HAoS programming

platform, contributed by the work presented in this thesis, against to prior SC

implementations. The suggested practical hardware-based implementation provide a

balanced SC programming solution

Throughout this study, it has been highlighted that nature seems to work in a massively

parallel fashion. The creation of new computer architectures better suited to model

natively natural systems is the dream of many hardware engineers. This thesis is a

stepping stone towards that goal.

Original High-Level GPU HAoS

Flexibility

Efficiency

226

References

[1] P. J. Bentley, ―Everything Computes,‖ in Paper accompanying Keynote Seminar

in Proceedings of Third Iteration, the Third International Conference on

Generative Arts, 2003, pp. 15–24.

[2] G. Păun, ―From Cells to (Silicon) Computers, and Back,‖ in New computational

paradigms: changing conceptions of what is computable , B. Cooper, B. Lowe,

and A. Sorbi, Eds. Springer Verlag, ISBN: 978-0387360331, 2008, pp. 343–371.

[3] S. Stepney, S. Braunstein, J. Clark, A. Tyrrell, A. Adamatzky, R. Smith, T. Addis,

C. Johnson, J. Timmis, P. Welch, R. Milner, and D. Partridge, ―Journeys in non-

classical computation I: A grand challenge for computing research,‖ International

Journal of Parallel, Emergent and Distributed Systems , vol. 20, no. 1, pp. 5–19,

Mar. 2005.

[4] S. Stepney, S. L. Braunstein, J. A. Clark, A. Tyrrell, A. Adamatzky, R. E. Smith,

T. Addis, C. Johnson, J. Timmis, P. Welch, R. Milner, and D. Partridge,

―Journeys in non-classical computation II: initial journeys and waypoints,‖

International Journal of Parallel, Emergent and Distributed Systems, vol. 21, no.

2, pp. 97–125, Apr. 2006.

[5] H. Markram, ―The blue brain project,‖ Nature Reviews Neuroscience, vol. 7, no.

2, pp. 153–160, 2006.

[6] R. Carlson, ―The pace and proliferation of biological technologies,‖ Biosecurity

and Bioterrorism: Biodefense Strategy, Practice, and Science, vol. 1, no. 3, pp.

203–214, 2003.

[7] M. Schulz, ―The end of the road for silicon,‖ Nature, vol. 399, no. 6738, pp. 729–

730, 1999.

[8] J. von Neumann, ―First draft of a report on the EDVAC,‖ IEEE Annals of the

History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[9] R. E. Blankenship, Molecular mechanisms of photosynthesis. Blackwell Science

Oxford, ISBN: 0632043210, 2002, p. 321.

[10] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science.

McGraw-Hill, ISBN: 0838580688, 2000.

[11] L. N. de Castro, ―Fundamentals of natural computing: an overview,‖ Physics of

Life Reviews, vol. 4, no. 1, pp. 1–36, 2007.

[12] J. H. Holland, Adaptation in natural and artificial systems. MIT press Cambridge,

MA, ISBN: 978-0-262-08213-6, 1992.

[13] M. H. Hassoun, Fundamentals of artificial neural networks. The MIT Press,

ISBN: 978-0262082396, 1995, p. 511.

 227

[14] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational

Intelligence Approach. London: Springer-Verlag, ISBN: 978-1-85233-594-6,

2002, p. 380.

[15] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to

artificial systems. New York, NY, USA: Oxford University Press, ISBN:

0195131592, 1999, p. 307.

[16] J. Kennedy, R. C. Eberhart, and others, ―Particle swarm optimization,‖ in

Proceedings of IEEE international conference on neural networks , 1995, vol. 4,

pp. 1942–1948.

[17] S. Wolfram, A New Kind of Science. Wolfram Media, Inc., ISBN: 1-57955-008-8,

2002.

[18] A. Lindenmayer, ―Mathematical models for cellular interaction in development,

Part 1 and 2,‖ Journal of Theoretical Biology, vol. 18, no. 3, pp. 280–315, 1968.

[19] C. G. Langton, Artificial life: An overview. Cambridge Ma.: The MIT Press,

ISBN: 0-262-62112-6, 1997, p. 352.

[20] L. M. Adleman, ―Computing with DNA,‖ Scientific American, vol. 279, no. 8, pp.

34–41, 1998.

[21] C. Bennett and D. DiVincenzo, ―Quantum information and computation,‖ Nature,

vol. 404, no. 6775, pp. 247–255, Mar. 2000.

[22] E. Le Martelot, ―Investigating and Analysing Natural Properties Enabled by

Systemic Computation within Nature-inspired Computer Models.‖ EngD Thesis,

Department of Electrical & Electronic Engineering, UCL, London, p. 363, 2010.

[23] L. Kari and G. Rozenberg, ―The many facets of natural computing,‖

Communications of the ACM, vol. 51, no. 10, pp. 72–83, 2008.

[24] P. J. Bentley, ―Systemic computation: A model of interacting systems with

natural characteristics,‖ International journal of parallel, emergent and

distributed systems, vol. 22, no. 2, pp. 103–121, 2007.

[25] A. M. Turing, ―On computable numbers, with an application to the

Entscheidungsproblem,‖ Proceedings of the London Mathematical Society, vol. 2,

no. 1, p. 230, 1937.

[26] S. Wolfram, Theory and applications of cellular automata. World Scientific,

ISBN: 978-9971501235, 1986.

[27] M. Cook, ―Universality in Elementary Cellular Automata,‖ Complex Systems, vol.

15, pp. 1–40, 2004.

[28] D. Eriksson, ―A principal exposition of Jean-Louis Le Moigne’s systemic theory,‖

Cybernetics and Human Knowing, vol. 4, no. 2–3, pp. 33–77, 1997.

 228

[29] L. Von Bertalanffy, General system theory: Foundations, development,

applications. G. Braziller New York, ISBN: 978-0807604533, 1968.

[30] R. Descartes, ―Discourse on the method, trans. J. Cottingham, R. Stoothoff, and

D. Murdoch, The Philosophical Writings of Descartes, vol. 2.‖ Cambridge

University Press.(Original published in 1637.), 1984.

[31] R. Fuenmayor, ―The roots of reductionism: A counter-ontoepistemology for a

systems approach,‖ Systemic Practice and Action Research, vol. 4, no. 5, pp.

419–448, 1991.

[32] P. W. Anderson, ―More is different,‖ Science, vol. 177, no. 4047, pp. 393–396,

1972.

[33] B. Boehm and C. Abts, ―COTS integration: plug and pray?,‖ Computer, vol. 32,

no. 1, pp. 135–138, Jan. 1999.

[34] M. Rouhipour, P. J. Bentley, and H. Shayani, ―Systemic Computation using

Graphics Processors,‖ in Proc. of 9th International Conference on Evolvable

Systems - From Biology to Hardware, 2010.

[35] W. A. Richards, Natural computation. Cambridge, MA, USA: Mit Press, ISBN:

0262680556, 1988, p. 480.

[36] Y. Gurevich and S. Shelah, ―Expected computation time for Hamiltonian path

problem,‖ SIAM Journal on Computing, vol. 16, no. 3, pp. 486–502, 1987.

[37] C. Sakellariou and P. J. Bentley, ―Computing Nature at the Intersection with

Chemistry: Innovative Architectures,‖ to appear in Genesis Engines: Computation

and Chemistry in the Quest for Life’s Origins, 1st ed., B. Damer, R. Gordon, and

J. Seckbach, Eds. Springer, 2013.

[38] J. B. Goodenough, ―Exception handling: issues and a proposed notation,‖

Communications of the ACM, vol. 18, no. 12, pp. 683–696, Dec. 1975.

[39] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, ―A Program

Structure for Error Detection and Recovery,‖ in Operating Systems, Proceedings

of an International Symposium, 1974, vol. 16, pp. 171–187.

[40] A. Avizienis, ―The N-Version Approach to Fault-Tolerant Software,‖ IEEE

transactions on software engineering, vol. SE-11, pp. 1491–1501, 1985.

[41] J. C. Giarratano and G. D. Riley, Expert Systems: Principles and Programming,

4th ed. Course Technology, ISBN: 978-0534950538, 2004, p. 856.

[42] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, ISBN: 978-

0521899437, 2008, p. 504.

[43] ―Biotica.‖ Online : http://www.mimetics.com/vur/biotica.html, Accessed: August,

2013.

 229

[44] S. Ulam, ―On Some Mathematical Problems Connected with Patterns of Growth

and Figures,‖ in American Mathematical Society Proceedings of Symposia in

Applied Mathematics, 1962, vol. 14, pp. 215–224.

[45] J. von Neumann, Theory of Self-Reproducing Automata. Champain, IL, USA:

University of Illinois Press, ISBN: 9780252727337, 1966.

[46] J. H. Holland, Emergence: From Chaos to Order. Oxford University Press, ISBN:

978-0192862112, 2000.

[47] R. Milner, ―The Polyadic pi-Calculus: A Tutorial.‖ Technical Report, Laboratory

for Foundations of Computer Science, Computer Science Department, University

of Edinburgh, 1991.

[48] G. Boudol, ―Asynchrony and the Pi-calculus.‖ Technical Report: Rapports de

Recherche, No 1702, Unite de Recherche, Inria-Sophia Antipolis, p. 15, 1992.

[49] C. Priami, ―Stochastic π-Calculus,‖ The Computer Journal, vol. 38, no. 7, pp.

578–589, Jul. 1995.

[50] L. Cardelli and A. D. Gordon, ―Mobile Ambients,‖ in Proceedings of the First

International Conference on Foundations of Software Science and Computation

Structure, 1998, pp. 140–155.

[51] C. A. Petri, ―Communication with Automata.‖ Applied Data Research Inc,

Princeton NJ, 1966.

[52] D. Harel, ―Statecharts: A visual formalism for complex systems,‖ Science of

Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[53] R. Milner, ―Bigraphical Reactive Systems,‖ in Proceedings of the 12th

International Conference on Concurrency Theory (CONCUR 2001), 2001, pp.

16–35.

[54] B. Goertzel, ―Multiboundary Algebra as Pregeometry,‖ Electronic Journal of

Theoretical Physics, vol. 4, no. 16(II), pp. 173–186, 2007.

[55] A. Regev, ―BioAmbients: an abstraction for biological compartments,‖

Theoretical Computer Science, vol. 325, no. 1, pp. 141–167, Sep. 2004.

[56] G. Păun, ―Introduction to membrane computing,‖ in Applications of membrane

computing, G. Ciobanu, M. J. . Pérez-Jiménez, and G. Paun, Eds. (Eds),

Heidelberg: Springer, ISBN: 978-3-540-25017-3, 2006, pp. 1–42.

[57] L. Cardelli, ―Brane Calculi. Interactions of biological membranes,‖ in

Proceedings of Computational Methods in System Biology 2004 (CMSB 2004),

2005, pp. 257–280.

[58] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina, ―The calculus of

looping sequences for modeling biological membranes,‖ in Proceedings of the 8th

international conference on Membrane computing, 2007, pp. 54–76.

 230

[59] L. Cardelli, ―Bioware languages,‖ in Computer Systems: Theory, Technology and

Applications, A. Herbert and K. Sparck Jones, Eds. (Eds), Springer-Verlag, ISBN:

978-0387201702, 2004, pp. 59–65.

[60] C. Hewitt and H. Lieberman, ―Design Issues in Parallel Architecture for Artificial

Intelligence,‖ Artficial Intelligence Memo - No. 750, 1983.

[61] A. N. Afuah and J. M. Utterback, ―The emergence of a new supercomputer

architecture,‖ Technological Forecasting and Social Change, vol. 40, no. 4, pp.

315–328, 1991.

[62] L. Hammond, B. A. Nayfeh, and K. Olukotun, ―A Single-Chip Multiprocessor,‖

Computer, vol. 30, no. 9, pp. 79–85, 1997.

[63] S. L. Graham, M. Snir, and C. A. Patterson, Getting up to speed: The future of

supercomputing. National Academy Press, ISBN: 978-0-309-09502-0, 2005, p.

308.

[64] M. J. Flynn, ―Very high-speed computing systems,‖ Proceedings of the IEEE,

vol. 54, no. 12, pp. 1901–1909, 1966.

[65] M. Baker and R. Buyya, ―Cluster computing: the commodity supercomputer,‖

Software: Practice and Experience, vol. 29, no. 6, pp. 551–576, 1999.

[66] ―Computer Cluster Links.‖ Online: http://www.tu-

chemnitz.de/informatik/RA/cchp/, Accessed: August, 2013.

[67] E. Marcus and H. Stern, Blueprints for High Availability: Designing Resilient

Distributed Systems. John Wiley & Sons, ISBN: 978-0471356011, 2000, p. 368.

[68] M. Yevmenkin, D. Fullagar, C. Newton, and J. G. Koller, ―Load-Balancing

Cluster.‖ US Patent App. 12,390,560, Google Patents, United States, p. 8, 2009.

[69] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.

Rollins, and Z. Xu, ―Peer-to-peer computing,‖ Tech. Rep. HPL-2002-57, Citeseer,

HP Labs, Palo Alto, 2002.

[70] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and

T. J. Purcell, ―A survey of general-purpose computation on graphics hardware,‖

in Computer Graphics Forum, 2007, vol. 26, no. 1, pp. 80–113.

[71] M. Macedonia, ―The GPU enters computing’s mainstream,‖ Computer, vol. 36,

no. 10, pp. 106–108, 2003.

[72] M. Weiser, ―The Computer for the Twenty-First Century,‖ Scientific American,

vol. 265, no. 3, pp. 94–104, 1991.

[73] D. Saha and A. Mukherjee, ―Pervasive computing: a paradigm for the 21st

century,‖ Computer, vol. 36, no. 3, pp. 25–31, 2003.

[74] A. C. W. Wong, D. McDonagh, O. Omeni, C. Nunn, M. Hernandez-Silveira, and

A. J. Burdett, ―Sensium: an ultra-low-power wireless body sensor network

 231

platform: Design & application challenges,‖ in Engineering in Medicine and

Biology Society, 2009. EMBC 2009. Annual International Conference of the

IEEE, 2009, pp. 6576–6579.

[75] N. Shadbolt, ―Ambient intelligence,‖ IEEE Intelligent Systems, vol. 18, pp. 2–3,

2003.

[76] D. Wright, S. Gutwirth, M. Friedewald, E. Vildjiounaite, and Y. Punie,

Safeguards in a world of ambient intelligence. Springer-Verlag New York Inc,

ISBN: 978-1-4020-6661-0, 2008.

[77] D. K. Arvind and K. J. Wong, ―Speckled computing: Disruptive technology for

networked information appliances,‖ in IEEE International Symposium on

Consumer Electronics, 2004, pp. 219–223.

[78] N. Gershenfeld, R. Krikorian, and D. Cohen, ―The Internet of Things.,‖ Scientific

American, vol. 291, no. 4, pp. 76–81, 2004.

[79] F. Zhao and L. Guibas, ―Wireless sensor networks,‖ in Communications

Engineering Desk Reference, 1st Editio., Academic Press, ISBN: 978-

0123746481, 2009, p. 247.

[80] K. Romer and F. Mattern, ―The design space of wireless sensor networks,‖

Wireless Communications, IEEE, vol. 11, no. 6, pp. 54–61, 2004.

[81] F. L. Lewis, ―Wireless sensor networks,‖ in Smart environments: technologies,

protocols, and applications, D. J. Cook and S. K. Das, Eds. Wiley-Interscience,

2004, pp. 1–18.

[82] Moteiv Corporation, ―Tmote Sky Datasheet v1.0.4.‖ Online:

http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf,

Accessed: August, 2013.

[83] E. Y. Song and K. Lee, ―Understanding IEEE 1451-Networked smart transducer

interface standard - What is a smart transducer?,‖ Instrumentation Measurement

Magazine, IEEE, vol. 11, no. 2, pp. 11–17, 2008.

[84] P. J. Bentley, ―Designing Biological Computers: Systemic Computation and

Sensor Networks,‖ in Bio-Inspired Computing and Communication, 2008, pp.

352–363.

[85] M. Bolton, ―Introduction and PGA bibliography,‖ Microprocessors and

Microsystems, vol. 13, no. 5, pp. 299–303, 1989.

[86] R. H. Freeman, ―Configurable electrical circuit having configurable logic

elements and configurable interconnects.‖ US Patent 4,870,302, Google Patents,

USA, 1989.

[87] S. Hauck, ―The roles of FPGA’s in reprogrammable systems,‖ Proceedings of the

IEEE, vol. 86, no. 4, pp. 615–638, 1998.

 232

[88] H. Shayani, P. J. Bentley, and A. M. Tyrrell, ―An FPGA-based Model suitable for

Evolution and Development of Spiking Neural Networks,‖ in Symposium A

Quarterly Journal In Modern Foreign Literatures, 2008, pp. 23–25.

[89] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous, R.

Raghuraman, and J. Luo, ―NetFPGA--An Open Platform for Gigabit-Rate

Network Switching and Routing,‖ in Microelectronic Systems Education, 2007.

MSE ’07. IEEE International Conference on, 2007, pp. 160–161.

[90] K. Bondalapati and V. K. Prasanna, ―Reconfigurable computing systems,‖

Proceedings of the IEEE, vol. 90, no. 7, pp. 1201–1217, 2002.

[91] A. H. Jackson and A. M. Tyrrell, ―Implementing asynchronous embryonic circuits

using AARDVArc,‖ Proceedings 2002 NASA/DoD Conference on Evolvable

Hardware, pp. 231–240, 2002.

[92] G. Tempesti, D. Mange, P.-A. Mudry, J. Rossier, and A. Stauffer, ―Self-

Replicating Hardware for Reliability: The Embryonics Project,‖ ACM Journal on

Emerging Technologies in Computing Systems (JETC), vol. 3, no. 2, p. 9, 2007.

[93] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong, and P. H.

W. Leong, ―Cube: A 512-fpga cluster,‖ in Programmable Logic, 2009. SPL. 5th

Southern Conference on, 2009, pp. 51 – 57.

[94] T. Higuchi, Y. Liu, and X. Yao, Evolvable hardware. ISBN: 978-0387243863,

Springer, 2006, p. 224.

[95] P. C. Haddow and A. M. Tyrrell, ―Challenges of evolvable hardware: past,

present and the path to a promising future,‖ Genetic Programming and Evolvable

Machines, vol. 12, no. 3, pp. 183–215, Sep. 2011.

[96] H. Shayani, ―A Practical Investigation into Achieving Bio-Plausibility in Evo-

Devo Neural Microcircuits Feasible in an FPGA.‖ EngD Thesis, Department of

Computer Science, UCL, London, p. 343, 2013.

[97] H. Restrepo and D. Mange, ―An Embryonics implementation of a self-replicating

universal Turing machine,‖ Evolvable Systems: From Biology to Hardware, pp.

74–87, 2001.

[98] A. Stauffer, D. Mange, G. Tempesti, and C. Teuscher, ―BioWatch: A giant

electronic bio-inspired watch,‖ in 2001. Proceedings. The Third NASA/DoD

Workshop on Evolvable Hardware., 2001, p. 185.

[99] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Pérez-Uribe, and A. Stauffer,

―Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for

softening hardware,‖ in Lecture Notes In Computer Science; Vol. 1259.

Proceedings of the First International Conference on Evolvable Systems: From

Biology to Hardware, 1996, pp. 33–54.

[100] G. W. Greenwood and A. M. Tyrrell, Introduction to Evolvable Hardware: A

Practical Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, ISBN:

0471719773, 2006.

 233

[101] A. M. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J. M. Moreno, J.

Rosenberg, and A. E. P. Villa, ―Poetic tissue: An integrated architecture for bio-

inspired hardware,‖ in Proceedings of the 5th international conference on

Evolvable systems: from biology to hardware, 2003, pp. 129–140.

[102] J. M. Moreno, Y. Thoma, E. Sanchez, J. Eriksson, J. Iglesias, and A. Villa, ―The

poetic electronic tissue and its role in the emulation of large-scale biologically

inspired spiking neural networks models,‖ Complexus, vol. 3, no. 1–3, pp. 32–47,

2006.

[103] A. Upegui, Y. Thoma, and J. M. Moreno, ―Bio-Inspired Features Of The

Ubichip.‖ PERPLEXUS Project Technical Report, Online:

http://www.perplexus.org/project/ results/assets/Deliverable_2.1.pdf, Accessed:

August, 2010.

[104] Y. Thoma, G. Tempesti, E. Sanchez, and J.-M. M. Arostegui, ―POEtic: an

electronic tissue for bio-inspired cellular applications.,‖ Bio Systems, vol. 76, no.

1–3, pp. 191–200, 2004.

[105] W. Barker, D. M. Halliday, Y. Thoma, E. Sanchez, G. Tempesti, and A. M.

Tyrrell, ―Fault Tolerance Using Dynamic Reconfiguration on the POEtic Tissue,‖

Evolutionary Computation, IEEE Transactions on, vol. 11, no. 5, pp. 666–684,

2007.

[106] A. Koopman, Hardware-Friendly Genetic Regulatory Networks in POEtic tissue.

M. Sc. thesis. Institute for Information and Computing Sciences, Utrecht

University, 2004.

[107] R. Paricio and J. M. Moreno, ―POEtic-cubes: acquisition of new qualia through

apperception using a bio-inspired electronic tissue,‖ in MULTIMEDIA ’05:

Proceedings of the 13th annual ACM international conference on Multimedia ,

2005, pp. 783–789.

[108] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, J. Madrenas,

and G. Sassatelli, ―The perplexus bio-inspired hardware platform: A flexible and

modular approach,‖ International Journal of Knowledge-based and Intelligent

Engineering Systems, vol. 12, no. 3, pp. 201–212, 2008.

[109] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma, J. M. Moreno, A. Napieralski,

A. Villa, G. Sassatelli, H. Volken, and E. Lavarec, ―PERPLEXUS: Pervasive

Computing Framework for Modeling Complex Virtually-Unbounded Systems,‖ in

Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA Conference

on, 2007, pp. 587–591.

[110] J. M. Moreno and J. Madrenas, ―A reconfigurable architecture for emulating

large-scale bio-inspired systems,‖ in Evolutionary Computation, 2009. CEC ’09.

IEEE Congress on, 2009, pp. 126–133.

[111] K. A. Boahen, ―Point-to-point connectivity between neuromorphic chips using

address events,‖ IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, vol. 47, no. 5, pp. 416–434, 2000.

 234

[112] Y. Thoma, A. Upegui, A. Perez-Uribe, and E. Sanchez, ―Self-replication

mechanism by means of self-reconfiguration,‖ in Workshop proceedings at the

20th International Conference on Architecture of Computing Systems (ARCS 07) ,

2007, p. 8.

[113] C. Müller-Schloer, ―Organic computing: on the feasibility of controlled

emergence,‖ in CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis ,

2004, pp. 2–5.

[114] ―DFG SPP 1183: Organic Computing.‖ Online : http://www.organic-

computing.de/spp, Accessed: August, 2013.

[115] IBM, ―Autonomic Computing: IBM’s Perspective on the State of Information

Technology, 2001.‖ Online : http://researchweb.watson.ibm.com/autonomic/

manifesto/autonomic_computing.pdf, Accessed: August, 2010.

[116] S. A. Cook, ―The complexity of theorem-proving procedures,‖ in Proceedings of

the third annual ACM symposium on Theory of computing, 1971, p. 158.

[117] ―D-Wave Two Vesuvius Quantum Computer.‖ Online:

http://www.dwavesys.com/, Accessed: August, 2013.

[118] P. Dittrich, ―Chemical Computing,‖ in Unconventional Programming Paradigms,

International Workshop UPP 2004, Le Mont Saint Michel, France, September 15-

17, 2004, Revised Selected and Invited Papers, vol. 3566, J.-P. Banatre, P. Fradet,

J.-L. Giavitto, and O. Michel, Eds. Springer Berlin / Heidelberg, ISBN: 978-3-

540-27884-9, 2005, pp. 19–32.

[119] L. Kuhnert, K. I. Agladze, and V. I. Krinsky, ―Image processing using light-

sensitive chemical waves,‖ Nature, vol. 337, pp. 244–247, 1989.

[120] D. Margulies, G. Melman, and A. Shanzer, ―Fluorescein as a model molecular

calculator with reset capability,‖ Nature materials, vol. 4, no. 10, pp. 768–771,

2005.

[121] D. Bray, ―Protein molecules as computational elements in living cells,‖ Nature,

vol. 376, no. 6538, pp. 307–312, 1995.

[122] A. Adamatzky, B. D. L. Costello, and T. Asai, Reaction-Diffusion Computers.

New York, NY, USA: Elsevier Science Inc, ISBN: 978-0-444-52042-5, 2005, p.

348.

[123] V. Balzani, A. Credi, and M. Venturi, ―Molecular logic circuits,‖

ChemPhysChem, vol. 4, no. 1, pp. 49–59, 2003.

[124] N. Yachie, K. Sekiyama, J. Sugahara, Y. Ohashi, and M. Tomita, ―Alignment-

based approach for durable data storage into living organisms,‖ Biotechnology

progress, vol. 23, no. 2, pp. 501–505, 2007.

[125] J. Baumgardner, K. Acker, O. Adefuye, S. T. Crowley, W. DeLoache, J. O.

Dickson, L. Heard, A. T. Martens, N. Morton, M. Ritter, and others, ―Solving a

 235

Hamiltonian Path Problem with a bacterial computer,‖ Journal of biological

engineering, vol. 3, no. 1, p. 11, 2009.

[126] A. Adamatzky, From utopian to genuine unconventional computers. Adamatzky

A. and Teuscher C. (Eds.), Luniver Press, ISBN: 978-0955117091, 2006.

[127] L. B. Kish, ―Noise-based logic: Binary, multi-valued, or fuzzy, with optional

superposition of logic states,‖ Physics Letters A, vol. 373, no. 10, pp. 911–918,

2009.

[128] S. L. Harding and J. F. Miller, ―Evolution in Materio: Evolving Logic Gates in

Liquid Crystal,‖ Journal of Unconventional Computing, vol. 3, no. 4, pp. 243–

257, 2007.

[129] J. C. Rainwater, D. G. Friend, H. J. M. Hanley, A. H. Harvey, C. D. Holcomb, A.

Laesecke, J. W. Magee, and C. Muzny, ―Report on Forum 2000: Fluid Properties

for New Technologies-Connecting Virtual Design with Physical Reality,‖ Journal

of Chemical & Engineering Data, vol. 46, no. 5, pp. 1002–1006, 2001.

[130] R. Hiremane, ―From Moore’s law to Intel innovation—prediction to reality,‖

Technology@Intel Magazine, p. 9, 2005.

[131] A. K. Geim and K. S. Novoselov, ―The rise of graphene,‖ Nature materials, vol.

6, no. 3, pp. 183–191, 2007.

[132] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber, ―Scalable

event-driven native parallel processing: the SpiNNaker neuromimetic system,‖ in

Proceedings of the 7th ACM international conference on Computing frontiers ,

2010, pp. 21–30.

[133] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.

Lester, A. D. Brown, and S. B. Furber, ―SpiNNaker: A 1-W 18-Core System-on-

Chip for Massively-Parallel Neural Network Simulation,‖ Solid-State Circuits,

IEEE Journal of, vol. 48, no. 8, pp. 1–11, 2013.

[134] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and S. B.

Furber, ―SpiNNaker: Mapping neural networks onto a massively-parallel chip

multiprocessor,‖ in Neural Networks, 2008. IEEE International Joint Conference

on, 2008, pp. 2849–2856.

[135] K. J. Dugan, J. S. Reeve, and A. D. Brown, ―SpinLink: An interconnection system

for the SpiNNaker biologically inspired multi-computer,‖ in UK Electronics

Forum, 2012, pp. 52–58.

[136] E. Le Martelot, P. J. Bentley, and R. B. Lotto, ―A Systemic Computation Platform

for the Modelling and Analysis of Processes with Natural Characteristics,‖ in

Proceedings of Genetic and Evolutionary Computation Conference (GECCO

2007), 2007, pp. 2809–2816.

[137] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, ―The molen media processor:

Design and evaluation,‖ in Proceedings of the International Workshop on

Application Specific Processors, WASP 2005, 2005, pp. 26–33.

 236

[138] J. Becker, K. Brändle, U. Brinkschulte, J. Henkel, W. Karl, T. Köster, M. Wenz,

and H. Wörn, ―Digital on-demand computing organism for real-time systems,‖ in

Workshop Proceedings of the 19th International Conference on Architecture of

Computing Systems (ARCS’06), 2006, vol. 81, pp. 230–245.

[139] M. Gschwind, ―The cell broadband engine: Exploiting multiple levels of

parallelism in a chip multiprocessor,‖ International Journal of Parallel

Programming, vol. 35, no. 3, pp. 233–262, 2007.

[140] ―The Cell project at IBM Research.‖ Online :

http://researchweb.watson.ibm.com/cell/, Accessed: August, 2013.

[141] K. Skaugen, ―Petascale to exascale: extending Intel’s HPC commitment,‖ in

Keynote in Int. Supercomputing Conference (ISC’10), 2010.

[142] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, and others, ―Larrabee: a many-core x86

architecture for visual computing,‖ in ACM SIGGRAPH, 2008, p. 18.

[143] G. Chrysos, ―Knights Corner, Intel’s first Many Integrated Core (MIC)

Architecture Product,‖ in Hot Chips: A Symposium on High Performance Chips,

2012.

[144] ―SARC : The Scalable computer ARChitecture Project.‖ Online : http://www.sarc-

ip.org, Accessed: August, 2013.

[145] D. Ludovici and G. N. Gaydadjiev, ―SARC Power Estimation Methodology,‖ in

Proceedings of the 18th Annual Workshop on Circuits, Systems and Signal

Processing. ProRisc 2007, 2007.

[146] ―Systems of Neuromorphic Adaptive Plastic Scalable Electronics.‖ Broad Agency

Announcement, Defense Advanced Research Projects Agency, USA. Online:

https://www.fbo.gov/utils/view?id=0b62b2149395d4bd8a28dff1b9046944,

Accessed: August, 2013.

[147] C. Mead, ―Neuromorphic electronic systems,‖ Proceedings of the IEEE, vol. 78,

no. 10, pp. 1629–1636, 1990.

[148] AMD, AMD Fusion
TM

 Family of APUs. Online : http://sites.amd.com/us/

Documents/48423B_fusion_whitepaper_WEB.pdf, Accessed: August, 2013.

[149] J. von Neumann, The Computer and the Brain. New Haven, CT, USA: Yale

University Press, ISBN: 9780300007930, 1958, p. 96.

[150] E. Fermi, Thermodynamics. New York: Dover Publications, ISBN: 978-

0486603612, 1956, p. 160.

[151] E. Le Martelot and P. J. Bentley, ―Modelling Biological Processes Naturally using

Systemic Computation: Genetic Algorithms, Neural Networks, and Artificial

Immune Systems,‖ in Nature-Inspired Informatics for Intelligent Applications

and Knowledge Discovery: Implications in Business, Science and Engineering , R.

Choing, Ed. IGI Global, 2008, pp. 204–241.

 237

[152] E. Le Martelot and P. J. Bentley, ―On-Line Systemic Computation Visualisation

of Dynamic Complex Systems,‖ in Proceedings of the 2009 International

Conference on Modeling, Simulation and Visualization Methods (MSV’09) , 2009,

pp. 10–16.

[153] E. Le Martelot and P. J. Bentley, ―Metabolic Systemic Computing: Exploiting

Innate Immunity within an Artificial Organism for On-line Self-Organisation and

Anomaly Detection,‖ Journal of Mathematical Modelling and Algorithms , vol. 8,

no. 2, pp. 203–225, Mar. 2009.

[154] E. Le Martelot, P. J. Bentley, and R. B. Lotto, ―Crash-Proof Systemic Computing:

A Demonstration of Native Fault-Tolerance and Self-Maintenance,‖ in

Proceedings of the Fourth IASTED International Conference on Advances in

Computer Science and Technology (ACST 2008), 2008, pp. 49–55.

[155] E. Le Martelot, P. J. Bentley, and R. B. Lotto, ―Eating Data is Good for Your

Immune System: An Artificial Metabolism for Data Clustering using Systemic

Computation,‖ in Proceedings of the Seventh International Conference on

Artificial Immune Systems (ICARIS 2008), 2008, pp. 412–423.

[156] E. Le Martelot, P. J. Bentley, and R. B. Lotto, ―Exploiting Natural Asynchrony

and Local Knowledge within Systemic Computation to Enable Generic Neural

Structures,‖ in Natural Computing. Proceedings of 2nd International Workshop

on Natural Computing (IWNC 2007), 2007, vol. 1, pp. 122–133.

[157] Xilinx, ―Spartan-3 FPGA Family Data Sheet DS099 (v3.1).‖ p. 272, 2013.

[158] C. Sakellariou and P. J. Bentley, ―Introducing the FPGA-Based Hardware

Architecture of Systemic Computation (HAoS),‖ in Mathematical and

Engineering Methods in Computer Science, Lecture Notes in Computer Science

(LNCS), vol. 7119, Z. Kotásek, J. Bouda, I. Cerná, L. Sekanina, T. Vojnar, and D.

Antoš, Eds. Springer Berlin Heidelberg, 2012, pp. 179–190.

[159] C. Sakellariou and P. J. Bentley, ―Describing The FPGA-Based Hardware

Architecture of Systemic Computation (HAoS),‖ Journal of Computing and

Informatics, vol. 31, no. 3, pp. 485–505, 2012.

[160] C. Sakellariou and P. J. Bentley, ―Building a Bio-Inspired Computer: The

Hardware Architecture of Systemic Computation (HAoS),‖ in Frontiers of

Natural Computing Workshop, York, 2012.

[161] Xilinx, ―Virtex-6 Product Brief.‖ Online:

http://www.xilinx.com/publications/prod_mktg/Virtex6_Product_Brief.pdf,

Accessed: September, 2013.

[162] Xilinx, ―Partial Reconfiguration User Guide,‖ vol. UG702. 2013.

[163] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and A. D. George,

―Survey of C-based application mapping tools for reconfigurable computing,‖ in

Proceedings of the 8th International Conference on Military and Aerospace

Programmable Logic Devices (MAPLD’05), 2005.

 238

[164] P. P. Berdychowski and W. M. Zabolotny, ―C to VHDL compiler,‖ in Photonics

Applications in Astronomy, Communications, Industry, and High-Energy Physics

Experiments 2010, 77451F, 2010, vol. 7745.

[165] M. Rouhipour, P. Bentley, and H. Shayani, ―Fast Bio-Inspired Computation using

a GPU-based Systemic Computer,‖ Special Issue on Parallel Computing Systems

& Applications, in Journal of Parallel Computing, Parallel Architectures and

Bioinspired Algorithms, vol. 36, no. 10–11, pp. 591–617, 2010.

[166] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, and

W. Hwu, ―QP: A heterogeneous multi-accelerator cluster,‖ in Int. Conf. on High-

Performance Cluster Computing, 2009.

[167] K. H. Tsoi and W. Luk, ―Axel: a heterogeneous cluster with FPGAs and GPUs,‖

in Proceedings of the 18th annual ACM/SIGDA international symposium on Field

programmable gate arrays, 2010, pp. 115–124.

[168] R. Brennan, M. Manzke, K. O’Conor, J. Dingliana, and C. O’Sullivan, ―A

scalable and reconfigurable shared memory graphics cluster architecture,‖ in

Proceedings of the 2007 International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA 2007), 2007, pp. 284–290.

[169] M. Dutton and D. Keezer, ―An architecture for graphics processing in an FPGA

(abstract only),‖ in Proceedings of the 18th annual ACM/SIGDA international

symposium on Field programmable gate arrays, 2010, p. 283.

[170] R. Bittner and E. Ruf, ―Direct GPU/FPGA Communication via PCI Express,‖ in

Parallel Processing Workshops (ICPPW), 2012 41st International Conference on ,

2012, pp. 135–139.

[171] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-M. W.

Hwu, ―FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs,‖

in Application Specific Processors, 2009. SASP ’09. IEEE 7th Symposium on,

2009, pp. 35–42.

[172] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J.

Wong, P. Yiannacouras, and D. P. Singh, ―From opencl to high-performance

hardware on FPGAS,‖ in Field Programmable Logic and Applications (FPL),

2012 22nd International Conference on, 2012, pp. 531–534.

[173] K. Locke, ―Parameterizable Content-Addressable Memory.‖ Xilinx Application

Note XAPP1151, 2011.

[174] L. Shu, K. Song, and Y. Wang, ―The Implementation and Research on Pseudo

Random Number Generators with FPGA,‖ Journal of Circuits and Systems, vol.

3, no. 8, pp. 121–124, 2003.

[175] D. B. Thomas, L. Howes, and W. Luk, ―A comparison of CPUs, GPUs, FPGAs,

and massively parallel processor arrays for random number generation,‖ in

Proceedings of the ACM/SIGDA international symposium on Field programmable

gate arrays, 2009, pp. 63–72.

 239

[176] K. Wold and C. H. Tan, ―Analysis and enhancement of random number generator

in FPGA based on oscillator rings,‖ Int. Journal of Reconfigurable Computing,

vol. 2009, pp. 1–8, Jan. 2009.

[177] M. Dichtl and J. Golic, ―High-Speed True Random Number Generation with

Logic Gates Only,‖ in Cryptographic Hardware and Embedded Systems - CHES

2007, vol. 4727, P. Paillier and I. Verbauwhede, Eds. Springer Berlin /

Heidelberg, 2007, pp. 45–62.

[178] S. Konuma and S. Ichikawa, ―Design and Evaluation of Hardware Pseudo-

Random Number Generator MT19937,‖ IEICE Transactions, pp. 2876–2879,

2005.

[179] S. M. Qasim, S. A. Abbasi, and B. Almashary, ―A review of FPGA-based design

methodology and optimization techniques for efficient hardware realization of

computation intensive algorithms,‖ in Multimedia, Signal Processing and

Communication Technologies, 2009. IMPACT ’09. International, 2009, pp. 313–

316.

[180] R. Manohar, ―Reconfigurable Asynchronous Logic,‖ in Custom Integrated

Circuits Conference, 2006. CICC ’06. IEEE, 2006, pp. 13–20.

[181] D. Shang, F. Xia, and A. Yakovlev, ―Asynchronous FPGA architecture with

distributed control,‖ in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE

International Symposium on, 2010, pp. 1436–1439.

[182] M. Simlastik and V. Stopjakova, ―Automated Synchronous-to-Asynchronous

Circuits Conversion: A Survey,‖ in Integrated Circuit and System Design. Power

and Timing Modeling, Optimization and Simulation, vol. 5349, L. Svensson and J.

Monteiro, Eds. Springer Berlin / Heidelberg, 2009, pp. 348–358.

[183] M. Krstic, E. Grass, F. K. Gurkaynak, and P. Vivet, ―Globally Asynchronous,

Locally Synchronous Circuits: Overview and Outlook,‖ Design Test of

Computers, IEEE, vol. 24, no. 5, pp. 430–441, 2007.

[184] S. E. Anderson, ―Bit Twiddling Hacks.‖ Online:

http://graphics.stanford.edu/~seander/bithacks.html, Accessed: September, 2013.

[185] H. Lipmaa and S. Moriai, ―Efficient algorithms for computing differential

properties of addition,‖ in Fast Software Encryption, 2002, pp. 336–350.

[186] J.-P. Deschamps, G. D. Sutter, and E. Cantó, Guide to fpga implementation of

arithmetic functions. Springer Verlag, ISBN: 9789400729865, 2012, p. 508.

[187] M. J. Flynn and S. S. Oberman, Advanced computer arithmetic design. John

Wiley & Sons, Inc., ISBN: 9780471412090, 2001, p. 344.

[188] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative

approach. Morgan Kaufmann, ISBN: 9780123838728, 2011, p. 856.

[189] R. W. Ward and T. C. A. Molteno, Table of Linear Feedback Shift Registers.

Electronics Group, University of Otago, New Zealand, 2012.

 240

[190] E. Le Martelot, P. J. Bentley, and R. B. Lotto, ―A systemic computation platform

for the modelling and analysis of processes with natural characteristics,‖

Proceedings of the 2007 GECCO conference companion on Genetic and

evolutionary computation - GECCO ’07, p. 2809, 2007.

[191] C. Sakellariou, ―The FPGA-Based Hardware Architecture of Systemic

Computation.‖ Online: http://www0.cs.ucl.ac.uk/staff/C.Sakellariou/HAoS/sw/,

Accessed: September, 2013.

[192] C. Sakellariou and P. J. Bentley, ―Extending the Hardware Architecture of

Systemic Computation to a Complete Programming Platform,‖ in IEEE

International Conference on Evolvable Systems (ICES 2013), part of the IEEE

Symposium Series on Computational Intelligence (SSCI 2013), Singapore, April

2013.

[193] ―MicroBlaze Soft Processor Core.‖ Online:

http://www.xilinx.com/tools/feature/csi/microblaze.htm, Accessed: August, 2013.

[194] ―USB Implementers Forum Specifications.‖ Online:

http://www.usb.org/developers/docs/, Accessed: August, 2013.

[195] ―PCI Special Interest Group.‖ Online: http://www.pcisig.com/, Accessed: August,

2013.

[196] R. Bittner, ―Bus mastering PCI express in an FPGA,‖ in Proceeding of the

ACM/SIGDA international symposium on Field programmable gate arrays, 2009,

pp. 273–276.

[197] R. Bittner, ―Speedy Bus Mastering PCI Express,‖ in 22nd International

Conference on Field Programmable Logic and Applications, 2012.

[198] J. Wiltgen and J. Ayer, ―Bus Master DMA Performance Demonstration Reference

Design for the Xilinx Endpoint PCI Express® Solutions.‖ Application Note 1052,

Xilinx, 2010.

[199] Altera, ―PCI Express High Performance Reference Design.‖ Application Note

AN-456-1.5, 2010.

[200] N. Alachiotis, S. A. Berger, and A. Stamatakis, ―Efficient PC-FPGA

Communication over Gigabit Ethernet,‖ in Computer and Information

Technology, IEEE 10th International Conference on, 2010, pp. 1727–1734.

[201] N. Alachiotis, S. A. Berger, and A. Stamatakis, ―A Versatile UDP / IP based PC

↔ FPGA Communication Platform,‖ in Reconfigurable Computing and FPGAs

(ReConFig), 2012 International Conference on, 2012, pp. 1–6.

[202] A. Goldhammer and J. Ayer, ―Understanding Performance of PCI Express

Systems,‖ Memory, vol. 350. Xilinx, pp. 1–18, 2008.

[203] F. A. Jolfaei, N. Mohammadizadeh, M. S. Sadri, and F. FaniSani, ―High Speed

USB 2.0 Interface for FPGA Based Embedded Systems,‖ in Embedded and

 241

Multimedia Computing, 2009. EM-Com 2009. 4th International Conference on,

2009, pp. 1–6.

[204] S. R. Jonnalagada and V. Krishna, ―Designing High-Performance Video Systems

in 7 Series FPGAs with the AXI Interconnect.‖ Xilinx Application Note

XAPP741 (v1.1), 2012.

[205] Xilinx, ―AXI Interface Based KC705 Embedded Kit MicroBlaze Processor

Subsystem Data Sheet.‖ Datasheet SD669 (v1.1), 2012.

[206] Altera, ―SoC FPGA Product Overview.‖ Advance Information Brief, AIB-01017-

1.3, 2012.

[207] Xilinx, ―Zynq-7000 Extensible Processing Platform Summary.‖ User Guide 804

(v1.1), 2011.

[208] Xilinx, ―MicroBlaze Processor Reference Guide.‖ User Guide UG081 (v14.1),

2012.

[209] ―Simply RISC S1 Core.‖ Online:http://www.srisc.com, Accessed: August, 2013.

[210] ―Leon Processors.‖ Online: http://gaisler.com/index.php/products/processors,

Accessed: August, 2013.

[211] ―OpenRISC 1200 Processor.‖ Online:

http://opencores.org/or1k/FPGA_Development_Boards, Accessed: August, 2013.

[212] S. T. Ser Ngiap, ―AEMB 32-bit Microprocessor Core.‖

Online:http://www.aeste.my/aemb, Accessed: August, 2013.

[213] ―OpenFire Processor.‖ Online: http://openfirefpga.sourceforge.net/, Accessed:

August, 2013.

[214] ―Altera Nios II processor.‖ Online:

http://www.altera.com/devices/processor/nios2/, Accessed: August, 2013.

[215] ―MP32 Processor.‖ Online:

http://www.altera.com/devices/processor/mips/mp32/proc-mp32.html, Accessed:

August, 2013.

[216] ―Lattice Mico32 Processor.‖ Online:

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProper

ty/IPCore/IPCores02/LatticeMico32.aspx, Accessed: August, 2013.

[217] ―Cortex-M1 Processor.‖ Online:

http://www.altera.com/devices/processor/arm/cortex-m1/m-arm-cortex-m1.html,

Accessed: August, 2013.

[218] ―106Micro RISC Controller Core.‖ Online:

http://www.tensilica.com/uploads/pdf/106Micro_fpga.pdf, Accessed: August,

2013.

 242

[219] ―Freescale V1 Coldfire Processor.‖ Online: http://www.ip-

extreme.com/corestore/, Accessed: August, 2013.

[220] S. de Pablo, J. Cebrián, L. C. Herrero, and A. B. Rey, ―A soft fixed-point Digital

Signal Processor applied in Power Electronics,‖ in FPGAworld Conference 2005,

2005.

[221] ―hyperARM.‖ Online: http://code.google.com/p/arm-cpu-core/, Accessed:

August, 2013.

[222] K. Chapman, ―PicoBlaze for Spartan-6, Virtex-6 and 7-Series (KCPSM6).‖ Xilinx

User Guide, 2012.

[223] ―PacoBlaze.‖ Online: http://bleyer.org/pacoblaze/, Accessed: August, 2013.

[224] ―LatticeMico8 Open, Free 8-bit Soft Microcontroller.‖ Online:

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProper

ty/IPCore/IPCores02/Mico8.aspx, Accessed: August, 2013.

[225] Xilinx, ―EDK Concepts, Tools and Techniques,‖ UG683(v13.4), 2012.

[226] J. L. Brelet, ―An overview of multiple cam designs in virtex family devices.‖

Xilinx Application Note XAPP1151, 1999.

[227] M. Cekleov and M. Dubois, ―Virtual-address caches. Part 1: problems and

solutions in uniprocessors,‖ Micro, IEEE, vol. 17, no. 5, pp. 64–71, 1997.

[228] Xilinx, ―7 Series FPGAs,‖ White Paper WP373, 2012.

[229] Xilinx, ―Embedded System Tools Reference Manual.‖ User Guide UG111

(v14.3), 2012.

[230] C. Sakellariou and P. J. Bentley, ―Modelling Cancer with the Hardware

Architecture of Systemic Computation (HAoS) programming platform,‖

submitted to International Journal of Bio-Inspired Computation, Special Issue on

Bio-inspired Hardware, 2013.

[231] S. Khuri, T. Bäck, and J. Heitkötter, ―The zero/one multiple knapsack problem

and genetic algorithms,‖ in Proceedings of the 1994 ACM symposium on Applied

computing, 1994, pp. 188–193.

[232] B. B. H. Korte and J. Vygen, Combinatorial optimization: Theory and

Algorithms, vol. 21. Springer, ISBN: 9784431100218, 2009, p. 739.

[233] C.-Y. F. Huang and J. E. Ferrell, ―Ultrasensitivity in the mitogen-activated

protein kinase cascade,‖ Proceedings of the National Academy of Sciences of the

United States of America, vol. 93, no. 19, pp. 10078–10083, 1996.

[234] A. Phillips, L. Cardelli, and G. Castagna, ―A Graphical Representation for

Biological Processes in the Stochastic pi-calculus,‖ in Transactions on

Computational Systems Biology VII, 2006, pp. 123–152.

 243

[235] T. Petricek and J. Skeet, Real World Functional Programming: With Examples in

F# and C#, 1st ed. Greenwich, CT, USA: Manning Publications Co., ISBN:

9781933988924, 2010.

[236] R. A. Weinberg, The biology of cancer, vol. 1. Garland Science, New York, 2013,

p. 960.

[237] B. A. A. Weaver and D. W. Cleveland, ―Aneuploidy: instigator and inhibitor of

tumorigenesis,‖ Cancer research, vol. 67, no. 21, pp. 10103–10105, 2007.

[238] A. Araujo, ―Modelling Chromosome Missegregation in Tumour Evolution.‖ PhD

Thesis, Department of Computer Science, UCL, London, p. 251, 2013.

[239] H. Engelberg-Kulka, S. Amitai, I. Kolodkin-Gal, and R. Hazan, ―Bacterial

Programmed Cell Death and Multicellular Behavior in Bacteria,‖ PLoS Genet,

vol. 2, no. 10, p. e135, 2006.

[240] R. W. Vandivier, P. M. Henson, and I. S. Douglas, ―Burying the dead*: The

impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory

lung disease,‖ CHEST Journal, vol. 129, no. 6, pp. 1673–1682, 2006.

[241] H. Lodish, A. Berk, and S. Zipursky, ―Overview of the Cell Cycle and Its

Control,‖ in Molecular Cell Biology, 4th ed., New York: Freeman, W H, ISBN:

9780716740827, 2000.

[242] G. Martin and G. Smith, ―High-Level Synthesis: Past, Present, and Future,‖

Design Test of Computers, IEEE, vol. 26, no. 4, pp. 18–25, 2009.

[243] A. Virginia, Y. D. Yankova, and K. Bertels, ―An empirical comparison of ANSI-

C to VHDL compilers: SPARK, ROCCC and DWARV,‖ in Annual Workshop on

Circuits, Systems and Signal Processing, ProRISC, 2007, pp. 388–394.

[244] Renesas Inc., ―20Mbit QUAD-Search Content Addressable Memory.‖ Datasheet

Number: R10PF0001EU0100, Online:

http://www.renesas.eu/products/memory/TCAM/, Accessed: August, 2010.

[245] Broadcom, ―Ayama
TM

 LA-1 Processor.‖ Part Number: 20512A, Online:

http://www.broadcom.com/products/Knowledge-Based-Processors/Layers-2---

4/Ayama-20512A, Accessed: August, 2013.

[246] G. Smit, P. Havinga, L. Smit, P. Heysters, and M. Rosien, ―Dynamic

reconfiguration in mobile systems,‖ Field-Programmable Logic and Applications:

Reconfigurable Computing Is Going Mainstream, pp. 171–181, 2002.

[247] G. De Michell and R. K. Gupta, ―Hardware/software co-design,‖ Proceedings of

the IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997.

[248] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and A. Mujumdar,

―Bluehive - A field-programable custom computing machine for extreme-scale

real-time neural network simulation,‖ in Field-Programmable Custom Computing

Machines (FCCM), 2012 IEEE 20th Annual International Symposium on , 2012,

pp. 133–140.

 244

[249] R. Pradeep, S. Vinay, S. Burman, and V. Kamakoti, ―FPGA based Agile

Algorithm-On-Demand Co-Processor,‖ in Proceedings of the conference on

Design, Automation and Test in Europe - Volume 3, 2005, pp. 82–83.

[250] R. Akbari and K. Ziarati, ―A multilevel evolutionary algorithm for optimizing

numerical functions,‖ International Journal of Industrial Engineering

Computations, vol. 2, no. 2, pp. 419–430, 2011.

 245

Appendix A. SC Example Test Programs Source Code

Listing A.1. Addition in Multiple Scopes (Test1 Example) Source Code

#systemic start

// define the functions

#function ADD %b10000000000000000000000000000000

#function PRINT %b01000000010000000000000000000000

// define some useful labels

#label num %b1000000000000000

#label zero %b0000000000000000

#label dontcare %b????????????????

#label printnum %b??????????1?????

#label zero2 %b00000000000000000000000000000000

// and the program begins here:

// declare the scopes

scope0 (%d0 %d0 %d0)

scope1 (%d0 %d0 %d0)

scope2 (%d0 %d0 %d0)

scope3 (%d0 %d0 %d0)

// data systems

data01 (num %d0 %d1000)

data02 (num %d0 %d24)

data11 (num %d0 %d1000)

data12 (num %d0 %d130)

data13 (num %d0 %d25)

data21 (num %d0 %d1000)

data22 (num %d0 %d130)

data23 (num %d0 %d25)

data24 (num %d0 %d32)

data31 (num %d0 %d1000)

data32 (num %d0 %d130)

data33 (num %d0 %d25)

data34 (num %d0 %d32)

data35 (num %d0 %d13)

// context systems

sum ([num zero2 dontcare] ADD(0,0) [num zero2 dontcare])

output ([num zero2 zero] PRINT(0,0) [num zero2 printnum])

// set up the scopes

#scope scope0

{

 data01

 data02

 sum

 output // should print 1024

}

#scope scope1

{

 data11

 data12

 data13

 sum

 output // should print 1155

}

#scope scope2

{

 data21

 data22

 data23

 data24

 sum

 output // should print 1187

}

#scope scope3

{

 data31

 data32

 data33

 246

 data34

 data35

 sum

 output // should print 1200

}

#systemic end

Listing A.2. Subtraction-escape and then multiply and print (Test2 Example) Source Code

#systemic start

// define the functions

#function SUBTRACTe %b01000000000000000000001000000000

#function MULT %b11000000000000000000000000000000

#function PRINT %b01000000010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label num1 %b1000000000000000

#label num2 %b0100000000000000

#label num3 %b1100000000000000

#label num4 %b0010000000000000

#label scp %b1111111111111111

#label zero2 %b00000000000000000000000000000000

// and the program begins here:

main (scp %d0 %d0)

// Scope c1

c1 (scp %d0 %d1)

data1 (num1 %d0 %d10)

data2 (num2 %d0 %d3)

datax1 (num3 %d0 %d110) // dummy - does not match

datax2 (num3 %d0 %d120) // dummy - does not match

datax3 (num3 %d0 %d130) // dummy - does not match

datax4 (num4 %d0 %d140) // dummy - does not match

datax5 (num4 %d0 %d150) // dummy - does not match

minus ([num1 zero2 dontcare] SUBTRACTe(0,0) [num2 zero2 dontcare])

#scope c1

{

 data1

 data2

 minus // 10-3=7

 datax1

 datax2

 datax3

 datax4

 datax5

}

// Scope c2

C2 (scp %d0 %d2)

data3 (num1 %d0 %d16)

data4 (num2 %d0 %d4)

datay1 (num3 %d0 %d1010) // dummy - does not match

datay2 (num3 %d0 %d1020) // dummy - does not match

datay3 (num3 %d0 %d1030) // dummy - does not match

datay4 (num4 %d0 %d1040) // dummy - does not match

datay5 (num4 %d0 %d1050) // dummy - does not match

minus ([num1 zero2 dontcare] SUBTRACTe(0,0) [num2 zero2 dontcare])

#scope c1

{

 data3

 data4

 minus // 16-4=12

 datay1

 datay2

 datay3

 datay4

 datay5

}

 247

// Scope main

times ([num1 zero2 dontcare] MULT(0,0) [num1 zero2 dontcare]) // 12*7=84

output ([num1 zero2 dontcare] PRINT(0,0) [num1 zero2 dontcare])

#scope main

{

 c1

 c2

 times

 output

}

#systemic end

Listing A.3. Context Adapting (Test3 Example) Source Code

#systemic start

// define the functions

#function SUBTRACT %b01000000000000000000000000000000

#function ADD %b10000000000000000000000000000000

#function COPY %b01010000000000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label num3 %b1100000000000000

#label scp %b1111111111111111

#label zero2 %b00000000000000000000000000000000

// and the program begins here:

main (scp %d0 %d0) // main scope

// data systems

datax1 (num3 %d0 %d110)

datax2 (num3 %d0 %d120)

datax3 (num3 %d0 %d130)

datay1 (num3 %d0 %d1010)

datay2 (num3 %d0 %d1020)

datay3 (num3 %d0 %d1030)

// context systems

minusadapt ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt1 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt2 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt3 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt4 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt5 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

minusadapt6 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare])

addadapt ([num3 zero2 dontcare] ADD(0,0) [num3 zero2 dontcare])

// context adapter system: transforms subtraction systems to

// additions ones by copying the contents of add to sub systems

killminus ([minusadapt] COPY(0,0) [addadapt])

#scope main

{

 minusadapt

 minusadapt1

 minusadapt2

 minusadapt3

 minusadapt4

 minusadapt5

 minusadapt6

 addadapt

 killminus

 datax1

 datax2

 datax3

 datay1

 datay2

 datay3

}

#systemic end

 248

Appendix B. CPU Subsystem Integration Details

The custom HAoS logic connects to the IC through a point-to-point bidirectional slave

interface block, the user IP Interface (IPIF) which in addition to the data and address

buses provides a set of standardized control signals (like chip select, chip enable, byte

enable and acknowledgements). A simplified block diagram of the HAoS CPU

communication link (the CPU INTERFACE of Figure 3.9) is shown in Figure B.1.

Figure B.1. The AXI4-Lite based HAoS-MicroBlaze communication link

A slight modification was required to the IPIF logic as the Xilinx AXI4-Lite interface

natively supports up to only 32 4-byte registers. In order to waive this restriction, the

default read/write address decoding logic (the register address would be decoded to give

a one-hot 32-bit bus with the set bit at the position of the register to be read/written) and

the 32 register-array was replaced by an interface to the HAoS REG BANK providing

just the exact access address. This address is then decoded in the REG BANK to give

access to any set of the HAoS control registers, depending on the size of the data to be

accessed (1-, 2- and 4-byte accesses supported here as the Xilinx AXI4-Lite bus has a

width of 4 bytes) and importantly without the requirement of data being aligned on 4-

byte words. This results in a slightly increased size of the decoder due to the bigger

number of multiplexers needed, but it can enable a more compact usage of the registers

since non-word aligned memory accesses of the HAoS register space are now also

supported.

Apart from the soft CPU and the communication interface, the hardware platform is

completed with some other useful peripherals, shown in Figure B.2. From top to bottom,

we have the local Block-RAM based instruction and data memories (64KB), the

MicroBlaze processor with its various communication interfaces, the AXI4 interface and

its associated bus connecting the processor with the external DDR3 memory (512MB)

and the AXI4-Lite interface and its bus to all other peripherals. These are an Ethernet

AXI4-Lite

Interconnect

(IC)

AXI4-Lite

IP Interface

(IPIF)

MicroBlaze

(Master)

HAoS

(Slave)

Other Masters

Other Slaves

REG

BANK

 249

Controller, on-board switches and push-buttons and LEDs control blocks, the on-board

LCD controller, the Flash EEPROM configuration memory controller, the interrupt

controller, the Compact Flash card controller, a timer and the UART control block. It is

noted that, from the processor point of view, HAoS is just another peripheral in terms of

connectivity and accessibility, as it uses a specific address space of the processor

memory map.

Figure B.2. Top-level On-Chip HAoS Platform Block Diagram

 250

Appendix C. RSL Optimisations Details

The critical path was identified by performing static timing analysis using standard

Xilinx tools (PlanAhead). The longest path was implementing valid triplet generation

and originated from the TCAM (context template matching result to identify interacting

systems), entered the RSL through the input MUX and then it passed from the

COUNTONES block to count the number of set bits of the bus. Since the sum of the set

bits is used as the divisor of the random number from the LFSR to give the rank of the

randomly selected set bit, the critical path then passes from the 16-stage divider to the

BITPOSSEL. There the rank is translated to the address of the randomly selected system

and the critical path finishes at the memories (binary and ternary RAMs) where this

address is used to obtain the interacting system. The critical path, before the

optimizations listed below, is illustrated in Figure C.1.

Figure C.1. Critical path of initial HAoS design based on static timing analysis

As mentioned in section 3.6.2, the BITPOSSEL module of the RSL, combines a parallel

bit count with a branchless selection method. The parallel bit count is used to provide

partial sums which are then appropriately masked and passed through a barrel -shifter to

provide the position of a bit with a given rank in the input bus, resulting in a divide-and-

conquer technique. As seen in Figure C.2, the COUTNONES and BITPOSSEL modules

of the RSL are merged, as the parallel sum-of-bits counter in COUNTONES is reused for

the generation of the partial sums during the identification of the position of the selected

bit.

SYSTEMS

IN SCOPE

SCOPETABLE

SCOPES

OF SYSTEM

MASK

BINARY

RAM

TERNARY

RAM

LFSRDIVIDER

RANDOM SELECTION LOGIC

M

U

X

SCH1

SCH2

ISDATA

ISCONTEXT

ISADAPTER

SYSTEM STATUS REGS

TCAM

VALID

SCOPES

SCOPES WITH

CONTEXTS

CONTEXTS

L

O

G

I

C
SCOPES

L

O

G

I

C

CONF/DATA

REGISTERS

INVALID

CONTEXTS

IN SCOPE

L

O

G

I

C

SC CORE

ADDER

TREE~80ns

COUNTONES

BITPOSSEL

ADDER

TREE
BARREL

SHIFTER

 251

Figure C.2. The Revised RSL module. P stands for pipeline registers. COUNTONES and

BITPOSSEL modules have been merged to share the adder tree. The RSL has been

carefully pipelined having in mind the trade-off between minimizing latency and excessive

resource utilization reducing the critical path from 80ns to 20ns

The length of the barrel shifter is equal to the size of the longest input bus to the RSL

which in turn is equal to the number of maximum supported systems. Thus, when this

number is increased, the number of logic levels required for the barrel shifter

implementation has a considerable impact to the delay along the critical path. For this

reason, the conventional barrel shifter is replaced with a parallelized and pipelined

version which instead uses an array of multiplexers with registered pre-shifted (by the

required pre-calculated number of bits) versions of only the possible subset of shifting

combinations of the input buses. Referring back to Figure 3.13 and the discussion of

section 3.6.2 regarding finding the position of a set bit given its rank, the BITPOSSEL

LFSR
REVISED

RANDOM SELECTION LOGIC

M

U

X

P

TCAM

L

O

G

I

C

STATUS

REGS

SCOPES

ADDER

TREE

PIPELINED MERGED

COUNTONES & BITPOSSEL
DIVIDER

P

P

P

P

P

P

P

P

P RANK

Pre-Shifted

Registered

Partial Sums

>>

>>

>>

>>

>>

>>

>>

>>

D

D

D

D

D

D

D

D

D

R

R

R

R

R

R

R

R

R

Intermediate

Differences (D),

Ranks (R) &

Addresses (A)

A

A

A

A

A

A

A

A

A

M

U

X

PARTIAL RANK - PARTIAL SUM < 0

PARTIAL RANK

PARTIAL SUM

M

U

X

ADDER TREE SUM

PARTIAL RANK

PARTIAL RANK - PARTIAL SUM

M

U

X

ADDRESS

ADDRESS+GROUP LENGTH

NEXT PARTIAL RANK

NEXT LEVEL ADDRESS

NEXT PARTIAL SUM

SUM

S

S

S

S

S

S

S

S

P

S

S

S

S

S

S

S

S

8
 S

ta
g

e
s

8
 S

ta
g

e
s

REGISTERED SUM

ADDRESS To MEMORIES

<20ns

<20ns

<20ns

<20ns

P>> LOW HALF

ADDER TREE SUM P>> HIGH HALF

 252

includes an array of comparators (comparing the intermediate rank to the remaining sum

of bits or partial sum of each level, implemented with subtraction) and multiplexers

selecting appropriate values for the position (or address) virtual pointer and rank

depending on the result of the comparison (middle and bottom part of Figure C.2).

However, for each level, only a subset of shifting combinations of the partial sums is

possible (according to the bit-group length of a given level). By replacing the barrel

shifter with an array of multiplexers along with using pre-shifted versions of the

intermediate sums of the adder tree, we obtain all inputs to the array of units in the

BITPOSSEL in parallel (see Figure C.2). Registering those inputs, breaks the critical

path after the adder tree and before the comparator tree of the BITPOSSEL, giving the

same depth and a latency of less than 20 ns.

 253

Appendix D. Revising the TCAM Design

Each SRL16E primitive is implemented by a LUT and can effectively store one

matchable 4-bit data value by driving its output with a set bit only for the corresponding

input value (out of the 16 possible permutations). When the SRL16E-based CAM is

written, the data input is compared against the output of a counter that cycles through all

16 possible values, and when a match occurs, a '1' is shifted in the SRL16E while zeroes

are shifted when the values do not match [173]. Thus, since this design is effectively

constructed by a chain of parallel 16-bit shift registers, each write operation, shifting

data in, one bit at a time, requires 16 clock cycles. The read operation (which in a CAM

is equivalent to a comparison with its input) is performed in a single clock as the data

input is partitioned in 4-bit chunks and the chunks are fed as addresses to an array of

cascaded SRL16E blocks. Each SRL16E gives a match (a set bit at its output) if its input

corresponds to a location that stores a set bit.

Figure D.1. The SRL16E-based building block of the base HAoS TCAM. The SRL16Es and

their associated logic are cascaded using the carry chain between the FPGA slices as a wide

AND gate to form wider CAMs. The ternary encoder (using a custom encoding mapping

[173]) is used in both read and write operations. Write operation require that all states of a

4-bit counter are “compared” with the encoded value, resulting in a 16 clock cycles write

latency

In addition, ternary CAMs support more input combinations as some of the input bits

may be ―don't care‖ (X) bits. This implies that the data need to be encoded at the 4-bit

input of the SRL16E where data (or binary) bits are combined with mask (or ternary) bits

to give a 2-bit ternary-encoded value. Also, the addition of ternary bits also implies that

SRL16
ABCD OUT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

Ternary

Encoder

(custom encoding)

Data=10

Mask=01

Ternary

Comparator

OUT = (Cnt3•A) + (Cnt2•B) + (Cnt1•C) + (Cnt0•D)

4-bit

Counter

Read Operation

Write Operation

“1X”
ABCD = 0011

Match

Cnt

 254

more than one set bits may be stored in an SRL16E as more than one entry may give a

match to a ternary value. The SRL16E-based design is summarized in Figure D.1.

The revised design includes a register array which has two partitions, one to hold the

data bits and another to store the mask bits. Using registers, write operations are now

performed in a single clock cycle. The result of a CAM read operation is available

immediately as all comparisons are performed in parallel according to:

Match_bus(i) = and_reduce (data_in xnor binary_regs(i)) or mask_in or ternary_regs(i)

Match_bus is the resulting bus carrying one 1-bit matching flag for each word, i is the

position of the word, and_reduce is a wide AND gate since all the individual bits of the

comparison result should be set (a set bit implies a match at that position in the word) in

order to have a word match and data_in is the input binary word which is tested for

bitwise equality against the binary word stored in position i of the register array

(binary_regs(i)). A bit in a word can still be flagged as matched even if the

corresponding binary bits do not match if any of the (input - mask_in or locally stored -

ternary_regs(i)) ternary bits are set. An extra benefit of using such a parallelized

structure for the ternary comparison is that its latency is independent of the depth of the

CAM.

 255

Appendix E. Provided HAoS API

Table E.1. Summary of the provided functions (simplified) in the HAoS API

Function Name Description

scReadX() Read a HAoS register. X can be 8, 16 or 32 for 1-, 2- or 4-byte read operation

scWriteX()
Write a HAoS register. X can be 8, 16 or 32 for 1-, 2- or 4-byte write

operation

readSysXScYArr()
Optimised (uses maximal-length memory access and unrolls the access loop)

function to read schema Y of system X where X and Y can be 1 or 2

writeSysXScYArr()
Optimised function to write schema Y of system X where X and Y can be 1 or

2

writeScope() Write Entry or Entries in HAoS scopetable

loadSumReg() Write HAoS scopetable sum - Number of systems in a scope

camWrite() Write Entry in HAoS Ternary Content Addressable Memory

camRead()
Reads System from the RAMs that hold the full contents of the TCAM

systems

displayBeats()
Stores Execution Time. May display number of real timer (@100MHz) ticks

since it was last reset. Also supports time units

resetRealTimer() Resets HAoS real time counter

setSwReset() Asserts HAoS Software Reset

clearSwReset() Clears HAoS Software Reset

displayStats()
Displays program execution statistics as duration, number of interactions and

number of abortions due to context or schemata mismatch

uSleep() The CPU waits for a user-defined number of us.

lcdPrintString() Write the lines of the On-board LCD display

printHAoSConstants() Print all constants defined in the code

encodeSchemata()
Encodes (decompresses) schemata to the appropriate format in order to be

written to on-chip memory

readValidTriplet()

Reads the valid triplet, that is the matching systems, transformation function,

active scope and context address, and extracts the various user-accessible

fields in the triplet driver data structure

writeBackTriplet() Writes transformed triplet back to HAoS memories

haveTripletWrittenBack()
Transfers transformed triplet back to HAoS registers and lets the hardware do

the write-back to the memories.

loadIniSim() Software Simulation of loading the Initialisation File (for debugging only)

sysAceFReadSim() Software Simulation of reading the Compact Flash Card

schemataPartToI() Transforms l bits of binary schemata, starting from bit s, to integer

iToSchemataPart()
Transforms integer into binary with length l and places it in schema starting at

bit s

 256

Appendix F. File Types used along HAoS Model Development

Table F.1. Summary of file types used along HAoS model development

File

Type
Generated by Description Format

.sc User

HAoS model source code written in the SC

language defining transformation functions,

systems and scopes

Listing 3.1,

Section 3.7

.scp HAoS Compiler
SC human-readable assembly code corresponding

to .sc file

Figure 3.17,

Section 3.7

.scb
Post-Compiler

Binary Generator

Size optimized binary representation of the .scp

file. The exact contents of this file are loaded to

HAoS memories

Binary .txt

Equivalent,

Section 4.3.5

.txt
Binary-to-ASCII

Converter

ASCII file, replacing each bit of the .scb file with a

'0' or '1' ASCII character. The resulting string can

be embedded in the user code, loading the SC

program to the HAoS memories directly from

MicroBlaze Block RAMs (achieves minimum SC

program loading time, convenient for debugging)

Same with .scb

but in ASCII,

Section 4.3.5,

Appendix H

.elf

Xilinx SDK

MicroBlaze GNU

Compiler &

Linker

The HAoS program executable, including the

driver and any code if high level functions are

used, executed by MicroBlaze

Standardized

[229]

.bit

Xilinx ISE

Implementation

Tools

FPGA configuration bit-string. The reconfigurable

logic of the FPGA is programmed according to this

file which represents an image of the hardware

circuit to be implemented

Proprietary

(Xilinx)

.log HAoS executable
A log storing any text output while the HAoS

program runs
N/A

 257

Appendix G. Cancer Models SC Source Code

Listing G.1. Time-Enabled Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL %b10001000010000000000000000000000

#function DIVIDECELL %b01001000010000000000000000000000

#function ABSORBCELL %b11001000010000000000000000000000

#function DISCARDCELL %b00101000010000000000000000000000

#function FERTILIZE %b10101000010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label zero2 %b00000000000000000000000000000000

#label dontcare2 %b????????????????????????????????

// must embed initial cell population number in tissue

// initial living cells : 100(dec) :

// 001100100(binary) : 001001100(binary-reversed)

#label tissue %b0010011000001000

#label tissuet %b????????????1???

#label cellt %b????????????0???

#label tic_normaltissuet %b????????????1000

#label tic_surgerytissuet %b????????????1100

#label tic_maysurgerytissuet %b????????????1?00

#label tic_chemotissuet %b????????????1010

#label tic_maychemotissuet %b????????????10?0

#label tic_anytissuet %b????????????1??0

#label toc_normaltissuet %b????????????1001

#label toc_surgerytissuet %b????????????1101

#label toc_maysurgerytissuet %b????????????1?01

#label toc_chemotissuet %b????????????1011

#label toc_maychemotissuet %b????????????10?1

#label toc_anytissuet %b????????????1??1

#label tic_livingcellt %b????????????0100

// initial chromosome values are((1,1),(1,1)):100100100100

#label tic_livingcell %b1001001001000100

#label tic_parentcellt %b????????????0010

#label tic_parentcell %b1001001001000010

#label deadcellt %b????????????0110

#label deadcell %b1001001001000110

#label nutrientcellt %b????????????0001

#label nutrientcell %b1001001001000001

#label toc_livingcellt %b????????????0101

#label toc_livingcell %b1001001001000101

#label toc_parentcellt %b????????????0011

#label toc_parentcell %b1001001001000011

#label dividedcellt %b????????????0111

#label dividedcell %b1001001001000111

// and the program begins here:

main (%d0 %d0 %d0)

organic_tissue (%d100 %d0 tissue)

[0:99]tissueCells (zero %d0 tic_livingcell)

[0:299]environmentCells (zero %d0 nutrientcell)

// account for extra living tissue cells in the end

[0:79]spareEnvironmentCells (zero %d0 nutrientcell)

// tic phase

[0:2]tic_fertilizer ([dontcare zero2 tic_livingcellt] FERTILIZE(0,0)

[dontcare zero2 tic_maychemotissuet])

tic_divider ([dontcare zero2 tic_parentcellt] DIVIDECELL(0,0)

[dontcare zero2 nutrientcellt])

tic_absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0)

[dontcare zero2 tic_maysurgerytissuet])

[0:2]tic_death ([dontcare zero2 tic_livingcellt] KILLCELL(0,0)

[dontcare zero2 tic_maychemotissuet])

tic_discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 tic_anytissuet])

tic_surgery ([dontcare zero2 tic_livingcellt] KILLCELL(0,0)

[dontcare zero2 tic_surgerytissuet])

 258

// toc phase

[0:2]toc_fertilizer ([dontcare zero2 toc_livingcellt] FERTILIZE(0,0)

[dontcare zero2 toc_maychemotissuet])

toc_divider ([dontcare zero2 toc_parentcellt] DIVIDECELL(0,0) [dontcare zero2

nutrientcellt])

toc_absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0)

[dontcare zero2 toc_maysurgerytissuet])

[0:2]toc_death ([dontcare zero2 toc_livingcellt] KILLCELL(0,0)

[dontcare zero2 toc_maychemotissuet])

toc_discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 toc_anytissuet])

toc_surgery ([dontcare zero2 toc_livingcellt] KILLCELL(0,0)

[dontcare zero2 toc_surgerytissuet])

// set up the scopes

#scope main

{

 organic_tissue

}

#scope organic_tissue

{

 organic_tissue

 [0:99]tissueCells

 [0:299]environmentCells

 [0:79]spareEnvironmentCells

 [0:2]tic_fertilizer

 tic_divider

 tic_absorb

 [0:2]tic_death

 tic_discard

 tic_surgery

 [0:2]toc_fertilizer

 toc_divider

 toc_absorb

 [0:2]toc_death

 toc_discard

 toc_surgery

}

#systemic end

Listing G.2. Timeless Cancer Model SC Source Code

#systemic start

#function KILLCELL %b10001000010000000000000000000000

#function DIVIDECELL %b01001000010000000000000000000000

#function ABSORBCELL %b11001000010000000000000000000000

#function DISCARDCELL %b00101000010000000000000000000000

#function FERTILIZE %b10101000010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label zero2 %b00000000000000000000000000000000

#label dontcare2 %b????????????????????????????????

// must embed initial cell population number in tissue

// initial living cells : 100(dec) :

// 001100100(binary) : 001001100(binary-reversed)

#label tissue %b0010011000001000

#label tissuet %b????????????1???

#label cellt %b????????????0???

#label normaltissuet %b????????????100?

#label surgerytissuet %b????????????110?

#label maysurgerytissuet %b????????????1?0?

#label chemotissuet %b????????????101?

#label maychemotissuet %b????????????10??

#label anytissuet %b????????????1???

 259

#label livingcellt %b????????????0100

// initial chromosome values are((1,1),(1,1)):100100100100

#label livingcell %b1001001001000100

#label parentcellt %b????????????0010

#label parentcell %b1001001001000010

#label deadcellt %b????????????0110

#label deadcell %b1001001001000110

#label nutrientcellt %b????????????0001

#label nutrientcell %b1001001001000001

#label dividedcellt %b????????????0111

#label dividedcell %b1001001001000111

// and the program begins here:

main (%d0 %d0 %d0)

organic_tissue (%d100 %d0 tissue)

[0:99]tissueCells (zero %d0 livingcell)

[0:299]environmentCells (zero %d0 nutrientcell)

// account for extra living tissue cells in the end

[0:79]spareEnvironmentCells (zero %d0 nutrientcell)

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2 maychemotissuet])

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt])

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet])

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet])

[0:1]discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet])

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet])

// set up the scopes

#scope main

{

 organic_tissue

}

#scope organic_tissue

{

 organic_tissue

 [0:99]tissueCells

 [0:299]environmentCells

 [0:79]spareEnvironmentCells

 fertilizer

 divider

 absorb

 death

 [0:1]discard

 surgery

}

#systemic end

Listing G.3. Approximate-time Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL %b10001000010000000000000000000000

#function DIVIDECELL %b01001000010000000000000000000000

#function ABSORBCELL %b11001000010000000000000000000000

#function DISCARDCELL %b00101000010000000000000000000000

#function FERTILIZE %b10101000010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label zero2 %b00000000000000000000000000000000

#label dontcare2 %b????????????????????????????????

// must embed initial cell population number in tissue

// initial living cells : 100(dec) : 001100100(binary) : 001001100(binary-reversed)

#label tissue %b0010011000001000

#label tissuet %b????????????1???

#label cellt %b????????????0???

#label normaltissuet %b????????????100?

 260

#label surgerytissuet %b????????????110?

#label maysurgerytissuet %b????????????1?0?

#label chemotissuet %b????????????101?

#label maychemotissuet %b????????????10??

#label anytissuet %b????????????1???

#label livingcellt %b????????????0100

// initial chromosome values are((1,1),(1,1)):100100100100

#label livingcell %b1001001001000100

#label parentcellt %b????????????0010

#label parentcell %b1001001001000010

#label deadcellt %b????????????0110

#label deadcell %b1001001001000110

#label nutrientcellt %b????????????0001

#label nutrientcell %b1001001001000001

#label dividedcellt %b????????????0111

#label dividedcell %b1001001001000111

// and the program begins here:

main (%d0 %d0 %d0)

organic_tissue (%d100 %d0 tissue)

[0:99]tissueCells (zero %d0 livingcell)

[0:299]environmentCells (zero %d0 nutrientcell)

// account for extra living tissue cells in the end

[0:79]spareEnvironmentCells (zero %d0 nutrientcell)

[0:2]fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2

maychemotissuet])

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt])

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2

maysurgerytissuet])

[0:2]death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet])

discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet])

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet])

// set up the scopes

#scope main

{

 organic_tissue

}

#scope organic_tissue

{

 organic_tissue

 [0:99]tissueCells

 [0:299]environmentCells

 [0:79]spareEnvironmentCells

 [0:2]fertilizer

 divider

 absorb

 [0:2]death

 discard

 surgery

}

#systemic end

Listing G.4. Optimized Approximate-time Cancer Model SC Source Code

#systemic start

// define the functions

#function KILLCELL %b10001000010000000000000000000000

#function DIVIDECELL %b01001000010000000000000000000000

#function ABSORBCELL %b11001000010000000000000000000000

#function DISCARDCELL %b00101000010000000000000000000000

#function FERTILIZE %b10101000010000000000000000000000

// define some useful labels

#label zero %b0000000000000000

#label dontcare %b????????????????

#label zero2 %b00000000000000000000000000000000

#label dontcare2 %b????????????????????????????????

// must embed initial cell population number in tissue

 261

// initial living cells : 100(dec) :

// 001100100(binary) : 001001100(binary-reversed)

#label tissue %b0010011000001000

#label tissuet %b????????????1???

#label cellt %b????????????0???

#label normaltissuet %b????????????100?

#label surgerytissuet %b????????????110?

#label maysurgerytissuet %b????????????1?0?

#label chemotissuet %b????????????101?

#label noendmaychemotissuet %b????????????10?0

#label noendanytissuet %b????????????1??0

#label anytissuet %b????????????1???

#label livingcellt %b????????????0100

// initial chromosome values are((1,1),(1,1)):100100100100

#label livingcell %b1001001001000100

#label parentcellt %b????????????0010

#label parentcell %b1001001001000010

#label deadcellt %b????????????0110

#label deadcell %b1001001001000110

#label nutrientcellt %b????????????0001

#label nutrientcell %b1001001001000001

#label dividedcellt %b????????????0111

#label dividedcell %b1001001001000111

// and the program begins here:

main (%d0 %d0 %d0)

organic_tissue (%d100 %d0 tissue)

[0:99]tissueCells (zero %d0 livingcell)

[0:299]environmentCells (zero %d0 nutrientcell)

// account for extra living tissue cells in the end

[0:79]spareEnvironmentCells (zero %d0 nutrientcell)

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2

noendmaychemotissuet])

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt])

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet])

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 noendanytissuet])

discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet])

// set up the scopes

#scope main

{

 organic_tissue

}

#scope organic_tissue

{

 organic_tissue

 [0:99]tissueCells

 [0:299]environmentCells

 [0:79]spareEnvironmentCells

 fertilizer

 death

}

#systemic end

 262

Appendix H. HAoS Binary-To-ASCII Conversion Resulting Text
File Format

Figure H.1. Annotated HAoS ASCII program example, corresponding to the SC program of

section 3.7. The exact representation of the binary file is written in ASCII, separated in

bytes (hex form)

0x03, 0x00,

0x0A, 0x00,

0x00, 0x00,

0x24, 0x00,

0x01, 0x00,

0x04, 0x00,

0x04, 0x00,

0x01, 0x00,

0x20, 0x00,

0x20, 0x00,

0x01, 0x00,

0x01, 0x00,

0x00,

0xFF, 0xFF, 0x00, 0x00,

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x02, 0x00, 0x40, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F,

0x00,

0xFF, 0xFF, 0x01, 0x00,

0x00,

0x01, 0x00, 0x0A, 0x00,

0x00,

0x02, 0x00, 0x03, 0x00,

0x00,

0xFF, 0xFF, 0x02, 0x00,

0x00,

0x01, 0x00, 0x10, 0x00,

0x00,

0x02, 0x00, 0x04, 0x00,

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F,

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x02, 0x02, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F

Number of Functions

Number of Systems

Scopetable (1 bit/entry)

S
y
s
te

m
 T

y
p

e

Data System
0x02, 0x00, 0x03, 0x00,

Schemata 1 Schemata 2

Context

System

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

0x02, 0x02, 0x00, 0x00,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

Binary PartTernary Part

Transformation Function

Interacting System 1

Transformation Function
Schemata 1

Interacting System 1

Interacting System 2

Schemata 2

Transformation FunctionSchemata 1

Interacting System 1

Interacting System 2

Schemata 2

Interacting System 2

Transformation Function
Schemata 1 Schemata 2

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F

 263

	Abstract
	Chapter 1 Introduction
	1.1 Introduction to Natural Computation
	1.2 Introduction to Systemic Computation
	1.3 Systemic Computation in Practice
	1.4 Hypothesis
	1.5 Objectives
	1.6 Publications
	1.7 Thesis Organization

	Chapter 2 Background
	2.1 Approaches to Natural Computation
	2.1.1 Software Approaches
	2.1.2 Alternative Paradigms

	2.2 Hardware-based Approaches to Natural Computation
	2.2.1 Conventional Hardware Approaches
	Chip Multi-Processors
	Supercomputers and Computer Clusters
	Pure Peer-to-Peer
	Graphics Processing Units (GPUs)

	2.2.2 Unconventional Hardware Approaches
	Ubiquitous Computing
	Wireless Sensor Networks
	Field-Programmable Gate Arrays (FPGAs)
	Evolvable/Evolved Hardware
	POEtic/PERPLEXUS Projects
	Organic/Autonomic Computing Paradigm
	Computing with Unconventional Materials
	DNA or Molecular Computing
	Quantum Computing
	Chemical Computing
	Bacterial Computing
	Other Unconventional Media
	SC based on Unconventional Media

	2.2.3 Other silicon-based designs
	SpiNNaker
	Molen
	DodOrg
	IBM Cell processor
	Larabee and the Intel MIC
	SARC
	SyNAPSE
	CPU-GPU Hybrids

	2.2.4 Hardware Approaches Summary

	2.3 Systemic Computation
	2.4 Prior Systemic Computation Implementations
	2.4.1 Original SC Implementation
	2.4.2 High-level SC Implementation
	2.4.3 GPU SC Implementation

	2.5 Summary

	Chapter 3 Designing a Suitable Hardware Architecture for SC
	3.1 Potential Architectures
	3.1.1 Virtual SC
	3.1.2 Fundamental Processing Element
	3.1.3 Reconfigurable Predetermined Processing Elements Array
	3.1.4 SC2HDL
	3.1.5 GPUplusFPGA
	3.1.6 Summary

	3.2 Design Analysis of the SC Architecture
	3.2.1 Local Knowledge & Scope Definition Method
	3.2.2 Scopes Support
	3.2.3 Valid Triplet Generation & Schemata Matching
	3.2.4 Threshold Matching
	3.2.5 Systems Representation & Coding Method
	3.2.6 The Compiler
	3.2.7 Interactions Order
	3.2.8 SC Architectural Features Summary

	3.3 HAoS Instruction Set
	3.4 HAoS Architecture
	3.5 The Control Unit
	3.6 The SC Core
	3.6.1 The Core Memory Elements
	3.6.2 The Random Selection Logic
	Counting the Set Bits
	The Divider
	Random Number Generation
	Finding the position of a set bit given its rank
	RSL functionality

	3.7 Programming HAoS
	3.8 Initial Testing
	3.8.1 Functional Verification
	3.8.2 Implementation Statistics

	3.9 Summary

	Chapter 4 The HAoS Programming Platform
	4.1 HAoS-CPU Communication Interface Investigation
	4.2 CPU Subsystem Integration
	4.3 Optimizations and Enhancements
	4.3.1 Refining the Random Selection Logic
	4.3.2 Minimizing the Schemata-Matching Overhead
	4.3.3 Further Addressing I/O Efficiency
	4.3.4 Further Addressing User-Friendliness with a Functional Model
	4.3.5 Further Addressing Programmability
	4.3.6 Refinements Results

	4.4 Addressing Scalability for Single-Chip Implementations
	4.5 HAoS Model Development Methodology
	4.6 Summary

	Chapter 5 Verification and Evaluation
	5.1 A Genetic Algorithm Optimization of the Binary Knapsack Problem
	5.1.1 The Binary Knapsack Problem
	5.1.2 Applying a Genetic Algorithm to the Binary Knapsack Problem
	5.1.3 Systemic Analysis
	5.1.4 SC Binary Knapsack Model Implementation
	Experiment Setup

	5.1.5 Results
	5.1.6 Analysis

	5.2 Simulation of a Biochemical Process with HAoS: the MAPK Signalling Cascade
	5.2.1 The MAPK Signalling Cascade
	5.2.2 Systemic Analysis
	5.2.3 SC MAPK Signalling Cascade Model Implementation
	Experiment Setup

	5.2.4 Results
	5.2.5 Analysis

	5.3 Modelling the Effect of Chromosome Missegregation and Typical Cancer Therapy Approaches in Tumour Evolution with HAoS
	5.3.1 The Cancer Model
	Description of the Reference Model
	Implementation of the Reference Model

	5.3.2 Systemic Analysis
	SC Cancer Model Development Step 1: The Base SC Cancer Model
	SC Cancer Model Development Step 2: Integrating the Tissue
	SC Cancer Model Development Step 3: Integrating the Cancer Therapies
	SC Cancer Model Development Step 4: Integrating the Notion of Time
	SC Cancer Model 1: Time-Enabled Model
	SC Cancer Model 2: Timeless Model
	SC Cancer Model 3: Approximate Time Model
	SC Cancer Model 4: Optimized Approximate Time Model
	Systemic Analysis Summary

	5.3.3 SC Cancer Model Implementation
	Developing the SC source code
	SC Models' Parameters Setup
	Experiments Setup

	5.3.4 Results
	Point-to-Point Model Behaviour Comparison Results
	Performance Comparison Results

	5.3.5 Analysis
	Model Behaviour
	Model Performance

	5.4 Summary

	Chapter 6 Conclusion
	6.1 Summary of Work Revisiting the Objectives
	1. Review the work done on Natural Computation with a focus on hardware-based approaches.
	2. Review and assess the work done on Systemic Computation (theory and implementations) to date.
	3. Investigate the suitability of available hardware implementation platforms for SC by evaluating them in terms of their ability to support the natural properties of SC (Chg1), the implied SC architecture (Chg2), and practicality/efficiency (Chg3) an...
	4. Analyse the SC architectural features and create a prototype hardware implementation designed to support the SC architecture.
	5. Create a complete and standalone practical SC programming platform with the ability to meet the three challenges.
	6. Analyse and address the limitations of the hardware prototype by means of optimizations and enhancements taking into consideration the research challenges.
	7. Evaluate the ability of the prototype SC platform to meet the three challenges by simulating natural models against alternative solutions.

	6.2 Contributions
	6.3 Critical Evaluation
	Implementation Platform Selection
	Hardware Architecture
	Prototype Implementation
	SC Model Development and HAoS Programming

	6.4 Future Work
	Hardware Architecture
	Prototype Implementation
	SC Natural Models Development and HAoS Programming
	Implementation Platform

	6.5 Closing Words

	Appendix A. SC Example Test Programs Source Code
	Appendix B. CPU Subsystem Integration Details
	Appendix C. RSL Optimisations Details
	Appendix D. Revising the TCAM Design
	Appendix E. Provided HAoS API
	Appendix F. File Types used along HAoS Model Development
	Appendix G. Cancer Models SC Source Code
	Appendix H. HAoS Binary-To-ASCII Conversion Resulting Text File Format

