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Abstract 

Faculty of Engineering, Department of Computer Science  

UNIVERSITY COLLEGE LONDON 

Doctor of Engineering 

by Christos Sakellariou 

It is widely accepted that natural computation, such as brain computation, is far superior 

to typical computational approaches addressing tasks such as learning and parallel 

processing. As conventional silicon-based technologies are about to reach their physical 

limits, researchers have drawn inspiration from nature to found new computational 

paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a 

bio-inspired model of computation. It incorporates natural characteristics and defines a 

massively parallel non-von Neumann computer architecture that can model natural 

systems efficiently.   

This thesis investigates the viability and utility of a Systemic Computation hardware 

implementation, since prior software-based approaches have proved inadequate in terms 

of performance and flexibility. This is achieved by addressing three main research 

challenges regarding the level of support for the natural properties of SC, the design of 

its implied architecture and methods to make the implementation practical and efficient.   

Various hardware-based approaches to Natural Computation are reviewed and their 

compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs 

are identified as the most appropriate implementation platform through critical 

evaluation and the first prototype Hardware Architecture of Systemic computation 

(HAoS) is presented. 

HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism 

of an FPGA and the highly efficient matching capability of a Ternary Content 

Addressable Memory. It provides basic processing capabilities in order to minimize 

time-demanding data transfers, while the optional use of a CPU provides high-level 

processing support. It is optimized and extended to a practical hardware platform 

accompanied by a software framework to provide an efficient SC programming solution. 

The suggested platform is evaluated using three bio-inspired models and analysis shows 

that it satisfies the research challenges and provides an effective solution in terms of 

efficiency versus flexibility trade-off.  
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Chapter 1  

Introduction 

1.1 Introduction to Natural Computation 

It has been claimed that everything computes [1], [2]. Biological systems appear to be 

superb at performing something that resembles computation, although they accomplish 

that by using methods fundamentally different from those used to perform conventional 

computation [3], [4]. Supercomputers strive to simulate a microsecond of protein folding 

[5], yet biology scales from molecules to cells, then to organisms, then to species and so 

on to more complex structures.  

Complex tasks, like DNA synthesis and sequencing, have been shown to outpace 

Moore’s law [6]. Although the semiconductor industry has been making continuous 

leaps in the past half century, silicon-based approaches seem weak in delivering more 

raw power, as the physical limitations of this technology appeared quite some time ago 

[7]. While engineers are left to devise workarounds to these issues (cache memory, 

branch prediction, out-of-order execution, multi-core chips), modern computers seem to 

be inefficient and too slow to model biological processes. This incompetence is not 

surprising, since, although the advances in microprocessor technologies have been 

numerous, the fundamental design principles have remained unchanged for almost a 

century. The vast majority of computing devices today follow the design pattern revealed 

in 1945 by John von Neumann [8]. This is a completely centralized partitioning, 

comprising of a set of main building blocks: the Central Arithmetic (CA) unit, the 

Central Control (CC) unit, the Memory (M) and Input/Output (I/O) devices. Von 

Neumann believed that those ―distinctions suggest themselves immediately‖ [8] and until 

today the majority of those in the scientific community and the consumer industry agree 

with this. However nature does not. 

While computation in a conventional electronic computer is the outcome of a program, 

which is a set of defined instructions that are sequentially executed, the rules are quite 

different in nature. Nature seems to work in a massively parallel fashion instead. Natural 

systems, viewed in different levels of abstraction, have a common characteristic. A 
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massive number of subtasks are carried out at any given moment in order to accomplish 

an operation. This operation can be any biological process. For example, under different 

contexts, the process of photosynthesis from a leaf in a tree involves chemical reactions 

among complex biochemical systems in order to convert carbon dioxide in organic 

compounds [9]. This process is happening through all the leaves of the tree, and it is 

vital for the tree itself. The tree comprises a system of leaves, branches and roots and 

each is playing its role in accomplishing the survival of the tree. At the same time, 

photosynthesis is not only vital for the tree but for all flora in the ecosystem, and in turn 

for any living organism on the planet relying on oxygen for survival.    

The human brain is another example. It is composed of billions of neurons which 

continuously interact [10] with each other. The brain is just one of the organs that build 

the nervous system, which in turn along with other systems compose the human body. 

Groups of people form societies and all the societies, joined, build mankind.    

Numerous examples like the ones mentioned above can be given: a herd of deer, an ant 

colony, our planetary system, the immune system, a school of fish and even the Dow 

Jones Index. All of them are composed from fundamental building blocks but also, 

combined with others, constitute more complex structures. The underlying processes 

seem to work without any centralised control method but with the coexistence and 

interaction of their structural elements. 

The observation of the success of nature in coping with such complex systems had a 

significant impact in modern science, giving birth to several biologically inspired 

research fields [11]: Evolutionary Computing (EC) [12], Artificial Neural Networks 

(ANN) [13], Artificial Immune Systems (AIS) [14],  Swarm Intelligence (SI) [15], 

Particle Swarm Optimization (PSO) [16], Cellular Automata (CA) [17], L-systems[18], 

Artificial Life (ALife) [19], DNA computing [20] and Quantum Computing (QC) [21] 

are some of them. According to [11], these fields form three groups: the first five are 

inspired by nature, the next two (CA and L-systems) simulate and emulate nature by 

means of computing, while the rest use natural materials for computation. They are all 

influenced/inspired by nature, serving computation and modelling purposes and hence 

they constitute a super-group: Natural Computation [11], [22], [23].  

Characteristics, embedded in natural systems, have been a rich source of inspiration for 

the scientific community since it is commonly accepted that nature can outperform any 

manmade device on factors like complexity, homoeostasis, self-organization, self-

replication, self-adaptation and fault-tolerance. 
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Table 1.1. Properties that differentiate natural from conventional computation 

Property  

Type 

Natural 

Computation 

Conventional 

Computation 

Computational 

Stochastic Deterministic  

Asynchronous  Synchronous  

Parallel Serial 

Distributed Centralized 

Continuous  Batch  

Approximate  Precise  

Embodied Isolated 

Local Knowledge Global Knowledge 

Circular causality  Linear causality  

Behavioural 

Self-organised 
Explicitly 

Organised 

Fault tolerant  Fault intolerant  

Open-ended  Limited 

Complex Simple 

Autonomous  Human-reliant  

Homoeostatic  Heterostatic  

Robust Brittle 

Various opposing properties that highlight the distinction between natural and 

conventional computation as they are separated in [22], [24] are given in Table 1.1. 

Therefore, natural computation in general is/has [22]: 

 Stochastic: The behaviour of natural systems is non-deterministic and their 

interactions are randomised. 

 Asynchronous: Mostly
1
, behaviour is not synchronized. There are no clock 

signals which determine the timing of every behaviour akin to our processors. 

 Parallel: Interactions are usually concurrent among all systems. 

 Distributed: Computation is spread and allocated across several systems to 

achieve the result. 

 Continuous: Natural systems are designed to keep working for as long as 

possible; their behaviours are designed to work continuously for the lifetime of 

each organism.  

 Approximate: The notion of an exact number or quantity is meaningless.  

                                                      
1
 There can be approximate synchronization to solar or lunar cycles or seasons.  
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 Embodied: A natural system and its environment constantly affect each other. 

 Local Knowledge: Knowledge is not stored in a centralised archive or library. An 

interaction can occur among two systems at the same hierarchical level which are 

within range of each other, implying scopes of interaction. 

 Circular causality: Two interacting natural systems affect each other during 

interaction. 

 Self-organised: Natural systems define their own organization and architecture 

without external interventions. 

 Fault-tolerant: Natural systems are tolerant to partial failures and usually able to 

also self-heal. 

 Open-ended: Systems in nature are able to adapt and constantly evolve. 

 Complex: Natural systems are organized over numerous hierarchical levels in a 

bottom-up manner. Starting with basic elements at the lowest level, they built 

successively more complex systems at the higher levels. 

 Autonomous: Natural systems are self-reliant and independent of any external 

authority. 

 Homoeostatic: A natural system preserves the inner stability of its state(s) by 

internal feedback mechanisms. 

 Robust: Natural systems can handle and adapt to unforeseeable situations. 

Influenced by the importance of those properties, a novel computation model was 

conceived by Bentley [24]. The new model, systemic computation (SC), was proven to 

be Turing complete [25] and attempts to embody the much sought characteristics of 

biological systems found in nature as listed in the left column of Table 1.1
2
. Turing 

completeness was proved by implementing a rule 110 cellular automata algorithm [17], 

[26], [27], stating the equivalence of SC to any other computation model.  

1.2 Introduction to Systemic Computation 

Systemic computation, further discussed in section 2.3, has its roots on the work of Jean-

Louis Le Moigne’s [28] on General System Theory [29]. The core notion that was 

adopted by systemic computation can be found in the second percept [28] of Le 

                                                      
2
 In this work the focus will be on the computational properties.  
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Moigne’s systemic method – interaction – as opposed to the corresponding percept on 

Descartes’ analytical method [30] – reduction. Reductionism can be traced back to 

ancient Greece [31]. It states that a complex system is a sum of its parts but it is known 

to have limitations [32]. Holism on the contrary argues that a complex system is more 

than the sum of its constituents.  

Systemic computation adopts a holistic analysis approach of systems embracing the 

significant importance of the interactions of their fundamental elements and their 

environment. Its intention is to resemble natural computation in order to simulate 

biological processes effectively. To accomplish this, it follows the conventions listed 

below [24] : 

 Everything is a system. 

 Systems may comprise or share other nested systems. 

 Systems can be transformed but never destroyed. 

 Interaction between systems may cause transformation of those systems, where 

the nature of that transformation is determined by a contextual system. 

 All systems can potentially act as context and affect the interactions of other 

systems, and also all systems can potentially interact in some context. 

 The transformation of systems is constrained by the scope of systems. 

 Computation is transformation. 

According to these conventions, it is implied that in order to perform any computation in 

SC, two main tasks are always involved: 

 Identify the interacting systems and 

 Transform the interacting systems according to the interaction determined by the 

contextual system in the scope that this interaction is defined. 

 

1.3 Systemic Computation in Practice 

While the Systemic Computation paradigm has been designed to feature all the 

properties of Natural Computation, as they are given in Table 1.1, a practical platform to 

support SC has yet to be devised. Its highly unconventional nature makes the 

implementation of such a platform very challenging, since it radically differs from the 

notion of computation, as we have grown to perceive it. The validity of the concept has 
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been proven in previous work [22], but in order to take advantage of its potential, 

applying SC in a practical and efficient way is essential. 

Three SC implementations have been developed so far (Original Sequential SC 

Implementation [24], High-level SC Implementation [22] and the GPU SC 

Implementation [34]). However, since their conventional design does not denote a 

natural way of implementing the SC paradigm, they are just low and high level 

simulations of a systemic computer, with only the latest implementation succeeding in 

obtaining satisfactory results in terms of speed. As shown later, in section 2.4, these 

software approaches are largely inappropriate to implement a SC platform, mainly due to 

the conventional sequential nature of their underlying architecture which is incompatible 

with the SC paradigm. As illustrated in Figure 1.1, there is no current implementation 

that combines flexibility with efficiency. Consequently there is a clear need for a new 

SC programming platform that is both efficient and flexible.  

 

Figure 1.1. Comparison in flexibility and efficiency of prior software SC implementations . A 

practical hardware-based implementation is expected to provide a balanced SC 

programming solution 

As previous work has demonstrated the incompatibility of conventional hardware for SC, 

it seems likely that the most practical, viable and usable platform which addresses this 

need would be a novel hardware-based implementation. 

It is thus vital to investigate the trade-offs of available implementation platforms in order 

to identify the substrate that a practical SC platform can be based on and then explore 

how the practical features of conventional computation can be combined with the 

Original High-Level GPU

Flexibility

Efficiency
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unconventional properties of natural computation and architectural features of SC. In 

order to properly evaluate such a controversial design, it is required to identify the 

requirements that define a practical platform for SC and the degree that each of them can 

be satisfied.  

1.4 Hypothesis 

The hypothesis of this thesis is: 

It is possible to implement a practical Systemic Computation hardware architecture 

that is viable and useful. 

The thesis will provide evidence to support this hypothesis through an investigation of 

the viability and utility of a SC practical implementation. Yet, the unconventional nature 

of SC may itself be proven to be partially incompatible with the practicality aspect of the 

implementation, as practicality partially implies a conventional  way of thinking and 

undertaking well-studied and proven techniques to accomplish a feasible and usable 

means to perform Systemic Computation.  

In essence, this collision of the definitions of unconventionality and practicality, in a 

computational context, formulates the main investigation that this work attempts to 

tackle. It is suggested that investigating the features, advantageous and disadvantageous, 

that modern hardware implementation platforms offer while exploring potential suitable 

architectures for Systemic Computation, will result in a satisfactory compromise 

combining the benefits of the inherent natural properties of SC with the usability and 

utility provided by a practical platform. 

This work will investigate the viability of a practical SC implementation and the trade-

offs between encompassing naturals properties against the feasibility and constraints of 

the hardware taking into consideration flexibility, performance and scalability. The 

supported programming model should provide a user-friendly interface to the underlying 

architecture, which should be optimized in terms of speed and area while being able to 

easily scale in size.  

A practical SC hardware implementation is required because software approaches do not 

seem to be able to efficiently handle the complexity or properly address the implied non-

conventional architecture of the SC paradigm (see sections 2.1, 2.4.1 and 2.4.2), since 

they solely rely on conventional processors. The utility of such a custom hardware 

design will be demonstrated by showing that natural processes can be modelled in a 
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more native way by addressing these limitations and mapping more efficiently and 

accurately the SC architectural features. 

The outcome of this work should be a practical hardware implementation in order to be 

easily reproduced and also be, at least partially, compatible with conventional 

architectures, in terms of communications. This will enable reusability and enhance 

flexibility in order to achieve a broader user community which in return can improve the 

architecture and expand its functionality. This implies that the suggested implementation 

should also address availability (meaning that a user should be able to relatively easily 

access the selected enabling technology). Thus it should be based on a mature 

technology, possibly using Commercial Off-The-Shelf (COTS) [33] components, with a 

rich knowledge base which is broadly used both in academia and industry. 

This work provides evidence to support its hypothesis by proving a proof of concept via 

a realisation of a novel SC hardware implementation. Building on the discussion of the 

three previous sections, it accomplishes this by focusing on three main research 

challenges: 

Chg1: How can a hardware platform support the natural properties that are 

central to SC? 

Specifically this challenge focuses on the inherent to SC natural properties of Table 1.1. 

An ideal platform would be able to support a hardware implementation that would be 

stochastic, asynchronous, parallel, continuous, distributed, approximate (in a high level) 

and embodied while it would show circular causality and have only local knowledge. 

Incorporating these properties, the SC implementation would be self-organized, fault-

tolerant, (at least virtually) open-ended, complex, autonomous, homoeostatic and robust. 

Chg2: How can a hardware platform support the underlying architecture of SC?   

Specifically this challenge focuses on the compatibility of the platform with the inherent 

features of the implied SC architecture: systems, scopes, contexts and interactions among 

systems should be able to be represented in a manner that allows efficient modelling of 

systems interactions. 

The first two research challenges refer to the viability of a SC implementation. It is 

suggested that investigating the trade-offs of implementing and attempting to combine 

the desired natural properties with the architectural features of SC will sufficiently 
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explore how viable such an implementation is. The third challenge addresses the utility 

and practicality of the suggested design and the way of realizing it:  

Chg3: How can a hardware platform meet the first two challenges while also being 

practical and efficient?  

Specifically this challenge focuses on the support of features to result in a practical 

platform: the resulting solution should be user-friendly, taking into consideration 

flexibility and adaptability, and efficient in terms of performance and required resources 

which in extent will prove its utility. 

Thus, this thesis proves its hypothesis by addressing its three research challenges. We 

break down the investigation of the hypothesis and the three sub-challenges into a set of 

objectives, listed in the next section. This is illustrated in Figure 1.2. 

 

Figure 1.2. Breakdown and organisation of thesis investigation. A set of objectives address 

three main research challenges which provide evidence to support the hypothesis 

1.5 Objectives 

The main objectives for this research work can be identified as: 

1. Review the work done on Natural Computation to date with a focus on hardware-

based approaches. 

2. Review and assess the work done on Systemic Computation (theory and 

implementations) to date. 

Hypothesis

Research Challenges

Chg1 Chg2 Chg3

Objectives
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3. Investigate the suitability of available hardware implementation platforms for SC 

by evaluating them in terms of their ability to support the natural properties of 

SC (Chg1), the implied SC architecture (Chg2), and practicality/efficiency 

(Chg3) and select the most appropriate. 

4. Analyse the SC architectural features and create a prototype hardware 

implementation designed to support the SC architecture. 

5. Create a complete and standalone practical SC programming platform with the 

ability to meet the three challenges. 

6. Analyse and address the limitations of the hardware prototype by means of 

optimizations and enhancements taking into consideration the research 

challenges. 

7. Evaluate the ability of the prototype SC platform to meet the research challenges 

by simulating natural models against alternative solutions. 

1.6 Publications 

The work presented in chapter 3 has been awarded the Best Paper Award in the 

international Annual Doctoral Workshop on Mathematical and Engineering Methods in 

Computer Science (MEMICS 2011) and was published in the Lecture Notes for 

Computer Science (LNCS) proceedings of the workshop. Overall this thesis resulted in 

the refereed publication of two international conference papers, two international journal 

papers, a book chapter and a research poster, listed below: 

 C. Sakellariou and P. Bentley, ―Introducing the FPGA-Based Hardware 

Architecture of Systemic Computation (HAoS)‖, in Mathematical and 

Engineering Methods in Computer Science, Lecture Notes in Computer 

Science (LNCS) vol. 7119, Z. Kotásek, J. Bouda, I. Cerná, L. Sekanina, T. 

Vojnar, and D. Antoš, Eds. Springer Berlin / Heidelberg, 2012, pp. 179–190. 

 C. Sakellariou and P. Bentley, ―Describing the FPGA-Based Hardware 

Architecture of Systemic Computation (HAoS)‖, Journal of Computing And 

Informatics, vol. 31, no. 3, pp. 485–505, 2012. 

 C. Sakellariou and P. Bentley, ―Extending the Hardware Architecture of 

Systemic Computation to a Complete Programming Platform‖, in IEEE 

International Conference on Evolvable Systems (ICES 2013) - IEEE 

Symposium Series on Computational Intelligence (SSCI 2013), Singapore, 

April 2013. 
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 C. Sakellariou and P. Bentley, ―Demonstrating the performance, flexibility 

and programmability of the Hardware Architecture of Systemic Computation 

modelling cancer growth‖, submitted to International Journal of Bio-Inspired 

Computation, Special Issue on Bio-inspired Hardware, 2013. 

 C. Sakellariou and P. Bentley, ―Computing Nature at the Intersection with 

Chemistry: Innovative Architectures‖, Book Chapter to appear in Genesis 

Engines: Computation and Chemistry in the Quest for Life's Origins, Springer, 

2013.  

 C. Sakellariou and P. Bentley, ―Building a Bio-Inspired Computer: The 

Hardware Architecture of Systemic Computation (HAoS)‖, in Frontiers of 

Natural Computing Workshop, York, 2012. 

 

1.7 Thesis Organization  

The thesis comprises six chapters, four lists (including list of figures, tables, listings and 

algorithms), an extensive reference list and eight appendices. Chapter 2 reviews the 

literature on the field of Natural Computation, critically focusing on hardware-based 

approaches, and describes the SC theory, as it was introduced by Bentley [24]. It 

illustrates how SC can perform computation and presents the three prior SC 

implementations: Original SC Implementation, High-level SC Implementation and the 

GPU SC Implementation. Furthermore, it identifies the most appropriate SC hardware 

implementation platform among the various hardware-based approaches to Natural 

Computation. Chapter 3 introduces the first FPGA-based Hardware Architecture of 

Systemic computation (HAoS), discusses the functionality of its structural elements, 

justifies the design decisions which result in this prototype design, outlines the applied 

optimizations and details a programming example. It also gives implementation statistics 

of the suggested design on the intended FPGA development board and explains the 

verification methodology used to confirm its functionality. Chapter 4 investigates 

suitable approaches for the implementation of the communication interface between 

HAoS and the CPU, revisits parts of the design providing enhancements taking into 

consideration performance, I/O efficiency, user-friendliness and programmability. The 

HAoS base design is combined with an embedded soft processor to provide a standalone 

platform while a methodology for HAoS models development is suggested. Chapter 5 

verifies and evaluates the functionality of the platform by illustrating how HAoS can be 

used to simulate three natural models of increasing complexity: a genetic algorithm 

optimization implementation solving the binary knapsack problem, a well -studied 
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biochemical process involving enzyme-based protein activation and a more challenging 

biological model simulating the effect of genetic anomalies and typical treatment 

approaches to cancer growth. The provided models are given as SC model development 

examples and the acquired results are compared against previous SC implementations 

and other conventional programming approaches. The time complexity of the HAoS 

schemata matching mechanism is also evaluated. Finally, chapter 6 summarizes the 

thesis, states its contributions, provides a critical evaluation and discusses future work. 
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Chapter 2  

Background 

The notion of natural computation [35] resulted in significant advances on research in 

the field of natural computing [11], [23]. Adleman after successfully solving a seven-

point Hamiltonian Path problem [36] using DNA sequences in 1994 [20], concludes his 

article: 

 

―Biology and computer science —life and computation— are related. I am confident that 

at their interface great discoveries await those who seek them.‖ 

Leonard Adleman [20] 

 

 

This chapter discusses various methods attempting to approach natural computation, 

starting with a broad perspective and increasingly focussing on work more closely 

related to the topic of this thesis. Section 2.1 provides an overview of some of the major 

works in this area, and specifically in terms of software-based approaches and alternative 

paradigms. Section 2.2 gives a critical review of literature related to hardware 

approaches to natural computation. Conventional and unconventional ways and some 

related hardware designs are presented in this section and initially assessed regarding 

their compatibility with the Systemic Computation concept (a thorough analysis is given 

in the next chapter). Their potential to become the basis of, or inspire the features and 

requirements of a SC hardware implementation is discussed, as implied by the three 

research challenges (section 1.4 - supporting natural properties and the SC architecture 

and being able to facilitate an efficient and practical implementation). Section 2.3 

elaborates on the SC paradigm as it was introduced by Bentley [24]. Finally, the three 

prior SC implementations are overviewed in section 2.4.  

Part of the work presented in this chapter has been accepted for publication in [37]. Also, 

part of this work has been previously submitted for the degree of Master of Research as 

part of the Doctor of Engineering degree in UCL. 



Chapter 2. Background  30 

 

 

2.1 Approaches to Natural Computation 

The Natural Computation research field is quite broad. Kari and Rozenberg, attempting 

to provide a complete review on the field in [23], separate its individual fields and 

computing paradigms in three groups using the role of nature as the differentiating 

factor: nature as inspiration, nature as implementation substrate and nature as 

computation. Especially for the last  group, computation can both refer to quantitative 

algorithms and qualitative approaches that investigate natural processes taking into 

consideration communications and interactions [23].  

Table 2.1. Approaches to Natural Computation and alternative paradigms 

Software Approaches 

Conventional 

Exception 

handling 

Recovery 

blocks 

N-version 

programming 

Expert 

systems 

Multi-agent 

systems 

Nature-

inspired 

Evolutionary 

algorithms 

Artificial 

neural 

networks 

Swarm 

intelligence
3
 

Artificial 

immune 

systems 

Artificial 

Life 

Fractal 

Geometry 

(Cellular 

automata- 

L-systems) 

 

Computational Paradigms 

Maths, 

physics & 

technology 

inspired 

CGPs
4
 

π-calculus 

Asynchronous 

π-calculus 

Stochastic   

π-calculus 

Ambient 

calculus 

Petri nets 

Statecharts
5
 

Bigraphs 

Ons algebra 

Nature-

Inspired 

BioAmbient 

calculus 

Membrane 

computing 

Brane calculi 

CLS
6
 

Bio-graphs 

Systemic 

computation 

 

Hardware Approaches 

Conventional Nature-inspired 

Multi-core / 

Multi-CPU 

Ubiquitous 

computing 

High-

availability 

cluster 

Reaction- 

diffusion 

computing  

Beowulf 

cluster 

Speckled 

computing 

GPU FPGA / ASIC 

Grid / Cloud 

computing 

Evolvable 

hardware 

Pure  

Peer-to-peer 

POEtic /  

Ubichip 

Load-

balancing 

cluster 

Wireless Sensor 

Network 

Collision- 

based computing 

Super-

computers 

Molecular 

(DNA) 

computing 

Organic 

Computing 

 Bacterial 

Computing 

Quantum 

computing 
 

 

                                                      

3 Ant colonies (ACO), Particle Swarm Optimization (PSO) 

4 Constrained Generating Procedures 

5 Just a flow graphical tool, not a computational paradigm 

6 Calculus of Looping Sequences 
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The various approaches to date on natural computation, which for this work are 

separated into software-based methods, alternative paradigms to computation and 

hardware-based methods are illustrated in Table 2.1. An extensive literature review can 

be found in [11], [22], [23]. While the focus of this thesis lies on the hardware-based 

approaches (discussed in the next sections), a summary (informed by [22]) regarding the 

related software-based approaches and alternative concepts of Table 2.1 is provided 

below. 

2.1.1 Software Approaches 

Computation based on software approaches is quite common since they provide great 

flexibility and ease of use. Conventional software approaches, usually, do not take into 

consideration natural properties while conventional hardware approaches consider them 

by simulating them.  

Conventional approaches address issues like reliability, robustness and autonomy. 

Exception handling [38] provides a mechanism of controlling the execution flow in case 

of foreseeable special cases. Recovery blocks [39] (the same programmer writes multiple 

versions of some parts of a program – blocks of code) and N-version programming [40] 

(multiple versions of a whole program are written by different programming teams) 

exploit code redundancy in order to overcome failures and minimize errors. Expert [41] 

and multi-agent [42] systems are used to perform autonomous tasks, the former by 

performing an analysis on a given problem and providing answers, the latter by 

diverging information and/or interests. 

Computer scientists, inspired from nature, expanded on unconventional methods, 

adapting their programs to create or simulate natural properties like self -organization, 

self-adaptation and fault-tolerance. A Genetic Algorithm [12] (described in section 2.2.2 

in the context of Evolvable systems) is a global heuristic search method and provides 

distributed, parallel, local and autonomous computation. Artificial Neural Networks [13] 

is a field inspired by biological neural mechanisms and shows distributed knowledge and 

self-organization. Swarm Intelligence [15] mimics concepts, inspired by insect 

civilizations, and based on their collective behaviour obtains self-organization and self-

adaptation. Those properties are also observed in Artificial Immune Systems [14], which 

derive inspiration by (mostly) the adaptive and (less) the innate responses of biological 

immune systems, and Artificial Life [19] which is a field of study (and an associated 

form of art [43]) that employs a synthetic approach to the study and creation of life [11] 

(typical subjects of this study are termites, flocks, herds, evolution and artificial 
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chemistries). Fractal Geometry [11] deals with non-Euclidean objects of non-integer 

dimensions which are characterized by self-similarity and infinite detail. In a 

computational context, Fractal Geometry includes the fields of Cellular Automata [44], 

[45], systems that are discrete in both time and space, showing properties like self-

replication and autonomy, and L-systems [18], a formalism to simulate the development 

of multi-cellular organisms [11] employing parallel rewriting systems (able to modify an 

existing word and generate new ones by applying various rewriting rules to its characters 

in parallel) [23]. 

2.1.2 Alternative Paradigms 

In order to further understand and exploit natural processes, new paradigms of 

computation were developed, since conventional languages were not well suited for 

effectively simulating nature [22]. Inspiration was derived by conventional sciences 

(maths, physics and technology) and from nature. 

CGPs [46] are finite state machines that can analyse complex systems by reducing them 

(breaking them down) in mechanisms and constraints of interactions. π-calculus [47] and 

its extensions (asynchronous π-calculus [48] and stochastic π-calculus [49]) are process 

calculi used or adapted for biological systems simulation. Ambient calculus [50] is also a 

process calculus which was developed to describe concurrent systems that include 

mobility. Petri nets [51] are a graphical tool, with a corresponding mathematical theory, 

that describes concurrent processes. Originally they were targeting chemical processes. 

Statecharts [52] are commonly used to describe the data and control flow of state 

machines in communication and, in general, hardware systems. Bigraphs [53] provide a 

well defined form of concurrent computations and a graphical notation, that exploits 

topographical and communication ideas, which is well suited for a number of the 

aforementioned calculi. Systemic computation can be seen as equivalent to bigraphs 

while the two paradigms share a similar graphical formalism. Ons algebra [54] is an 

algebraic formalism attempting to reach the foundations of physical rules development 

by using, in a metaphorical way, only two elementary particles, the particle  of time and 

the particle of space. 

BioAmbients Calculus [55] was designed to allow modelling of biological systems, 

having biological compartments as a central idea. Membrane computing [56] deals with 

distributed and parallel computing models of systems (P systems), that use the analogy 

of the organization of a cell being compartmented by membranes, creating this way 

hierarchies. Brane calculus [57] identifies the importance of the membrane itself and 
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gives it an active role on computation. The Calculus of Looping Sequences [58] and its 

variants is another formalism that allows the description of biological membranes, 

biomolecular systems and proteins interaction. Bio-graphs [59] were designed to model 

biological systems in a molecular level and include a corresponding graphical notation.  

Since the hypothesis of this work focuses on a hardware-based implementation of SC, 

the reader is redirected to the work of Le Martelot [22] for a detailed description and a 

critical review which compares SC with the software approaches and the computational 

paradigms listed in Table 2.1. The various hardware approaches are described in the next 

sections. 

2.2 Hardware-based Approaches to Natural Computation 

While computer applications become ever more computationally demanding, the 

traditional Von Neumann [8] architecture, after serving humanity for more than half a 

century, appears inadequate [2], [60], [61] when extremely complex tasks are involved 

(brain function modelling, protein folding). Although refurbished designs keep 

consumers happy, hardware designers and researchers realised that alternative 

approaches should be followed for ground-breaking efficiency and performance 

improvement.  

As explained in the previous sections, researchers found inspiration in nature. This is 

reflected in various hardware-based approaches. In this section, both conventional 

(subsection 2.2.1) and unconventional (subsection 2.2.2) hardware-based approaches are 

described
7
. In the context of this thesis, unconventional approaches do not conform to 

the conventional von Neumann architecture or use standard technologies (and are usually 

inspired by nature). Relevant silicon-based designs are discussed in subsection 2.2.3. 

Each paragraph is concluded with a short discussion on the compatibility of each 

approach to a practical SC implementation. 

2.2.1 Conventional Hardware Approaches 

Conventional hardware-based approaches to natural computation include multi-core 

chips, supercomputers, computer clusters, peer-to-peer networks and GPUs. They are 

usually based on some variation of the von Neumann architecture, except GPUs which 

fall in this category since they are widely used in consumer desktops and laptops, and are 

                                                      
7
 It is noted that because of different definitions for various technologies or for clarity reasons 

there is some overlap between the technologies and methods described in next sections.  



Chapter 2. Background  34 

 

 

attempts to provide more processing power using various design approaches explained 

below. 

Chip Multi-Processors 

Chip Multi-Processor (CMP) [62] systems were the response of the semiconductor 

industry, to the consumer market, when around 2003 the clock frequency of uniprocessor 

systems reached the limits imposed by the physics of their underlying technology. CMPs 

take advantage of the limited parallelism that multiple processors provide, often being 

able to execute more than one instruction thread simultaneously each. The l imitation of 

CMPs to provide natural computation is evident, as their sequential architecture is 

incompatible with any natural property (except maybe parallelism, but that is true only 

when they are compared with their predecessor uniprocessor architectures).  

CMPs are based on the conventional von Neumann architecture [62]. They are based on 

the most widely used hardware implementation approach to computation, since their 

deterministic sequential processors are highly flexible and easily programmable. Their 

technology is more mature than any other. As such, there is a plethora of tools, 

specifically designed for them. However, their flexibility comes at the expense of 

performance, as their generic architecture cannot compete with custom designs, 

optimized for specific applications. The nature of their architecture makes them 

incompatible with almost any natural property (maybe except parallelism, since they 

provide limited support), therefore they are unsuitable for a SC implementation. As 

shown later in sections 2.4.1 and 2.4.2, CMPs were used for the first two SC 

implementations, revealing the inefficiency of such an approach, as these 

implementations could only simulate a systemic computer. Although the high-level SC 

implementation provided programming flexibility, performance limitations make it 

inadequate for modelling complex systems. 

Supercomputers and Computer Clusters 

While CMPs are targeted to the consumers, supercomputers [63] are used for 

computationally super-demanding tasks, such as modelling climate change, nuclear 

reactions and molecular interactions [63]. They were introduced by Seymour Cray in the 

1960s. Modern supercomputer designs often consist of a cluster of Multiple Instruction 

stream - Multiple Data stream (MIMD) multiprocessors, which have Single Instruction - 

Multiple Data (SIMD) processors as building elements. The SIMD processors execute 

the same instruction on different sets of data while the MIMD processors function 

asynchronously, enabling the underlying SIMD units to perform different operations on 
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different sets of data. According to Flynn’s ―very high speed computing systems‖ 

(supercomputers) taxonomy [64], which dates back to 1966 there are also MISD and 

SISD supercomputers. According to a more modern dichotomy there are SIMD, 

multiprocessor (all the processors under the same instance of operating system - OS) and 

cluster computers (each processor under a different instance of the OS).  

Supercomputers may appear as a possible SC implementation, although gaining access to 

a modern supercomputer can be limited and that would mean that only privileged users 

could use the SC paradigm. The code is usually specially written for such processors, in 

order to be highly optimised, resulting in limited portability.  

Computer clusters are a supercomputer type. While relying on sequential processors for 

instruction execution, they follow a network structure resulting in a parallel architecture 

that shows signs of fault-tolerance and distributed operation, as a failure in one of the 

nodes will not terminate the operation of the cluster. The Commodity-of-the-shelf 

(COTS) clusters [65] can be built from consumer parts but rely heavily on software to 

deliver performance. A collection of representative projects on COTS can be found at 

[66].  

Other classifications of clusters are based upon their functionality. High-availability 

clusters [67] use duplicates to survive individual computer failures. Computers provide 

feedback to each other to detect failure. However, the detection scheme is susceptible to 

failures as well. Beowulf clusters [35] use a one-server-multiple-clients organization to 

achieve high performance but suffer from the centralized control that resembles the 

multiprocessor architecture. Load-balancing clusters [68] adopt the server-client 

approach as well but, additionally, they distribute the workload among them through 

software. Server farms are load-balancing clusters where all the nodes are servers. Grid 

computing is also a cluster based approach, although the nodes seem autonomous. The 

user gains access to the processing power supply just by joining the network. Cloud 

computing is very similar to grid computing. The main difference is that cloud 

computing provides on-demand resource (and services) provisioning.  
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Figure 2.1. Example organisation of a computer cluster 

Supercomputers provide vast levels of parallelism [63]. They provide great performance 

for specific applications tailored to their specialized hardware architecture. Computer 

clusters, which are a type of supercomputer, appear to be strong candidates for a SC 

hardware implementation as they show a level of asynchronous (in the cluster level) and 

distributed computation, by forming a network of cooperating conventional synchronous 

computers. Load-balancing clusters, in particular, show a low level of self-organization 

(by using specialized software for task distribution), while high-availability clusters 

provide fault-tolerance by having duplicate nodes for the same task. Computer clusters 

are usually easily scalable, since nodes can join the network dynamically.  

It appears that the vast number of computational resources, provided by a 

supercomputer, would be sufficient for a SC implementation. However, their availability 

can be very limited and their building blocks are based on conventional architectures 

using centralized control making them incompatible with the SC paradigm, since it 

provides limited support for natural properties. This limited support mainly derives (in 

computer clusters) from their organization in a network pattern. Thus, this feature may 

be employed by the SC implementation. 

Pure Peer-to-Peer 

Peer-to-Peer (P2P) networks [69] originally referred to networks that consisted of 

identical nodes, lacking administrative elements. Pure P2P networks refer to networks of 
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peers that exchange resources and execute operations in a decentralized manner. All 

nodes can act both as a server and a client. Increasing the number of peers in a pure P2P 

network increases its efficiency.  

Pure P2P networks show the higher level of support for natural properties among the 

evaluated conventional approaches. The peers can be regarded as autonomous nodes in 

the network, relying in local knowledge and being organized in a decentralized manner. 

A P2P network can provide asynchronous (at the network level), parallel and distributed 

computation while it can show a high-level of robustness. A P2P network, as the 

previous conventional approaches, is constituted by conventional synchronous hardware. 

As such, it can be programmed, using traditional programming languages. The nodes of 

a P2P network can correspond to SC systems, while they can interact through 

exchanging information and performing computation. The notion of scopes could be 

embedded in the communication (e.g. by the number of maximum hops). Thus, a P2P SC 

implementation would be viable. Care would be required designing the networking 

architecture following this approach as the numerous peers' communications in such a 

platform would probably pose a performance bottleneck. 

Graphics Processing Units (GPUs)   

Using GPUs for general-purpose computation has lately become a trend since they offer 

affordably significant gains in terms of speed for computationally intensive tasks [70]. 

Responsible for the speedup is their architecture that exploits applications parallelism. 

Originally GPUs targeted only image rendering operations, yet the revolutionary change 

was made when manufacturers made GPUs programmable and thus GPUs entered the 

computing mainstream [71].  Evident for their success is the fact that GPU design was 

adapted in order to improve their programmability and enhance their general-purpose 

computation capabilities [34]. General-purpose GPU (GPGPU) languages [70] were 

developed, reflecting the need of support for user-defined applications. 

GPUs offer a great level of parallelism [70] at a (relatively) low cost. The vast parallel 

power given by the multiple stream processors of a GPU is a property highly sought by a 

SC implementation. In contrast with the previous approaches, they do not use the 

conventional von Neumann architecture. However, the use of a CPU is obligatory to 

provide centralized control. GPUs do not provide inherent support for other natural 

properties (except for a limited form of local knowledge, at the level of its internal 

parallel processing units). The development of GPGPUs provided flexibility to GPU 

users. Further advancements in GPU architectures and performance are certain, since the 
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main use of GPUs lies in the gaming industry which is ever-more demanding. The great 

success of the general-purpose use of GPUs indicates that more advanced and optimized 

programming languages will be created, while more tools will become available in the 

future to ease application development. The first GPU SC implementation [34] is 

described in section 2.4.3. Its performance proves that GPUs can support the SC 

architecture efficiently. Scalability issues can be resolved by using the GPGPU 

functionality on a computer cluster. Thus, a future SC hardware implementation could 

exploit the great performance potential of a GPU cluster. 

2.2.2 Unconventional Hardware Approaches  

Nature has lately been the source for inspiration for designers since natural systems, 

while being extremely complex, simply work. Usually they show high levels of stability 

while remarkable properties like self-organisation, self-replication and fault-tolerance 

are inherent to them. The next subsections describe emergent and promising 

technologies, which do not follow conventional approaches and broadly-used paradigms, 

and usually draw inspiration from nature. 

Ubiquitous Computing 

Ubiquitous computing [72] aims at a different human-computer interaction paradigm 

than the one of the desktop user. Numerous interconnected devices (pocket-size tabs and 

page-size pads) while providing various services appear effectively invisible to the user. 

Waiser uses the term ―embodied virtuality‖ [72] to describe the idea of computing 

ubiquity. Pervasive computing [73] is another term similar to ubiquitous computing. 

Traditional input devices, wireless mobile devices and smart devices form the pervasive 

computing model that aims to build sensitive and adaptive digital environments. An 

example would be a wireless health monitor, like the one presented in [74], which could 

communicate the health status of a patient on-line with a hospital server that can detect 

abnormalities.  

Ambient Intelligence (AmI) [75] extends at ubiquitous and pervasive computing and 

takes under consideration intelligent systems, context awareness and objects interactions 

to build human-responsive environments that facilitate everyday life. An indicative 

example would be the smart house. It is notable that AmI initially attracted criticism [76] 

since its anticipatory and adaptive nature raised societal and cultural concerns. 

Ubiquitous computing can be implemented by emergent technologies as Speckled 

Computing introduced in 2004 by Arvind and Wong [77]. Specks are semiconductor 
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grains which are connected wirelessly to form a vast parallel sensing and processing 

network (Specknet). Numerous specks can be sprayed on any surface to convert them to 

computational resources. The prototype in [77] consisted of programmable specks over 

Zigbee radio.  

Although more objects get interconnected nowadays, moving the Internet of Things [78] 

closer to reality, further progress needs to be done in order for practical implementations 

to be incorporated to everyday life. As Shadbolt concludes in [75], numerous 

independent electronic devices form an ubiquitous clutter in the majority of living 

rooms, which is far from the disappearance of computers in the background. 

The Ubiquitous Computing paradigm is compatible with natural properties as 

asynchrony, parallelism and should be able to provide distributed, continuous and 

embodied computation. Ambient Intelligence and speckled computing should provide 

systems that show self-organising, autonomous and homoeostatic behaviour. Ubiquitous 

computing is an emergent field of research with great potential [72]. However, a 

practical SC implementation could not be based on it since the technology is not yet 

mature and basic practical requirements like programmability and design-friendliness are 

not satisfied. 

Wireless Sensor Networks 

Wireless sensor networks (WSNs) [79] are an outcome of advances in wireless 

networking, micro-fabrication and integration. They comprise numerous sensor nodes 

which are heavily resource-constrained since they are usually required to function for 

long terms on a finite on-board battery. Typically, sensor nodes, commonly referred as 

motes, operate autonomously and are equipped with a low-end microprocessor and 

limited amount of memory for local processing. Communication bandwidth is also 

usually limited. Network abstractions have to be designed in order to reduce power 

consumption and improve performance. Limited support is provided for software 

development.  

Initially, WSN research was military based. This led WSNs to be defined as large-scale, 

ad-hoc, multihop networks of tiny, fixed-location (after initial placement), homogeneous 

motes [80]. This definition changed with civilian WSNs applications (environmental and 

species monitoring, agriculture, production, delivery and healthcare [80] – a more 

specific collection of applications like vital sign monitoring, power monitoring and 

rescue of avalanche victims among others can also be found in [80]). Mobile and 

heterogeneous motes can form WSNs as well. The classification of a given WSN can 
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vastly vary depending on its specific application. This is shown by the number of 

different network topologies (star, ring, bus, tree, fully connected, mesh), 

communications protocols, routing mechanisms, power management schemes, network 

structures and multiple developed standards [81]. 

Sensors for various measurands [81] (pressure, temperature, humidity and position to 

name a few) have been developed. The sensing elements can either be fixed on a mote or 

able to be replaced by others (of the same or different type).  The anatomy of a 

commercial WSN node is illustrated in Figure 2.2 (taken from [82]). Compatibility 

among sensors (of various types and different manufacturers) and the rest infrastructure 

on a mote, along with communication interfaces to network those devices, is ensured by 

the IEEE 1451 Family of Standards [83]. 

 

Figure 2.2. Anatomy of a WSN node. From [82] 

WSNs, comprise spatially distributed can provide an autonomous, parallel,  distributed 

and asynchronous (to some extent) form of computation. They can be responsive to the 

environment and extract information from it through their sensing elements. The network 

itself defines a system of nodes, each with some limited processing power performance 

(since they are heavily resource-constrained), yet combined they can form a powerful, 

asynchronous (at the system level), distributed and highly parallel computing machine 
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[84]. The system can be easily programmed, since a microprocessor is always part of the 

node configuration. Groups of autonomous nodes can show a level of self-organization. 

Using the wireless link, the network can be easily expanded, while using the inputs of 

the embedded sensors, it can show homoeostatic behaviour. These statements reveal the 

compatibility of WSNs with the requirements of a systemic computer architecture.  

The idea of WSNs as a possible hardware implementation platform for SC was 

introduced in [84]. The author suggests that motes can be treated as systems, while their 

resources can be treated as subsystems. Sensor inputs can provide environmental 

feedback, which can be used either to evolve the systemic structure or as a fitness 

function in a genetic algorithm [12], which is used to adapt the architecture in case of 

damage or unforeseeable changes and to sustain functionality and optimize performance. 

Systems, in the form of binary data, would be exchanged between motes, while the 

network would dynamically be expanded or shrunk as new motes join it or fail. As motes 

usually run some lightweight operating system, extensions to the existing 

communication protocols, probably layered over the underlying communication stack, 

would need to be designed in order to accommodate the systemic functionality. Some of 

the tasks to be considered are the maintenance of the scope tables, systems interaction 

within a mote, the mutual system exchange protocol between motes and supported 

transformation function set [84]. 

It is concluded from the above that a WSN SC implementation would be viable. It was 

shown that fault-tolerance could be accomplished with the aid of sensor input feedback. 

Self-organization can also be accomplished, subject to cleverly written middleware 

communication layers. Decentralized and leaderless computation is highly compatible 

with the SC paradigm. The wireless link provides some scalability. Thus, WSNs are 

strong candidates as a SC implementation platform in the future.  

Field-Programmable Gate Arrays (FPGAs) 

Although combining the high performance of a hardware implementation with the 

flexibility of a circuit that can be programmable may have been conceived as early as 

1967 [85], the idea was commercialized and patented [86] around two decades later by 

Freeman, co-founder of Xilinx. FPGAs are reconfigurable integrated circuits. Generally, 

hardware description languages, such as VHDL and Verilog, are used to provide the 

source code which is then translated to a binary bitstream through specialized software, 

which in turn is downloaded to the FPGA and programs it (enabling, disabling and 

configuring accordingly its reprogrammable components) to behave as the target circuit. 
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As opposed to Application-Specific Integrated Circuits (ASICs), which are fixed-

function circuits tailored for definite operations, they provide more flexibility, shorter 

time to market and lower costs (when accounting for fabrication costs) and sometimes 

power consumption. Lately, the semiconductor evolution and the advantages mentioned 

above lead system designers to prefer FPGAs on an increasing amount of commercial 

products. 

The inner structure of modern FPGAs is similar for different vendors. They consist of a 

great number of programmable logic cells and a reconfigurable interconnect network. 

Commonly, logic cells include a Look-Up-Table (LUT) that can implement any logic 

function (subject to the number of inputs of the LUT – typically 4 or 6), some memory 

elements (a number of flip-flops) and some simple logic (a full adder and carry 

propagation logic). The design is usually hierarchical, with a number of logic cells 

forming logic blocks
8
. A set of modern FPGAs, called Platform FPGAs, also provide 

other functional blocks, like multipliers, blocks for digital signal processing (DSPs) and 

big chunks of RAM memory to optimize designs. Some high-end models even include 

embedded processors, high-speed communication interfaces and/or simple analog 

features. Special Input/Output cells (I/O pads) are used at the chip boundaries.  

The versatile nature of FPGA-based systems led to their use in a plethora of fields. A 

collection of applications for FPGAs is given in [87] and includes among others: multi-

mode implementations, various algorithms implementations (especially ones that can 

exploit the provided fine-grain parallelism), multi-FPGA systems, mathematics 

applications (as modular multiplication), physics applications (as real-time recognition 

in high-energy physics), genetic optimization algorithms and genetic database searches, 

stereo matching for stereo vision and Laplace equation solvers. A digital neuron model 

for evolving spiking neural networks is presented in [88]. One of the applications with 

great potential is logic emulation [87]. It provides considerable acceleration compared to 

software simulation, lowering the time and cost of custom chip (ASIC) prototyping. A 

complete and functional implementation
9
 of a circuit can be available in seconds, once 

the design has been adapted to be mapped on the FPGA.  

FPGAs can also be added to standard computer systems as attached processing units, 

coprocessors or even internal processing units, in the form of add-on cards, on-board or 

                                                      
8
 The naming varies among different vendors: logic cells are called Configurable Logic Blocks 

(CLBs for Xilinx) or Logic Array Blocks (LABs for Altera) 
9
 Performance validation and timing constraints cannot be assessed using logic emulation  
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on-chip respectively. Add-on cards are used in the NetFPGA project [89] that enables 

researchers to build high-performance networking systems in hardware. Extensive work 

has also been done in the field of neural networks. As each of their basic elements needs 

to be configured for a given problem [87], FPGAs provide an optimal implementation 

platform. Modern FPGA families allow part of the circuit to be reconfigured during 

normal operation (Dynamically Reconfigurable or Run-Time Reconfiguration) which 

gave birth to Evolvable Hardware, described in the next subsection. 

FPGAs can exploit fine-grain and coarse-grain parallelism because of their adaptive 

nature [90]. The reconfigurability of the hardware liberates the designer to implement 

new architectures, optimized for specific applications. This flexibility has  shown that 

properties as fault-tolerance [91], self-replication and self-repair [92] can be 

accomplished on FPGAs. Asynchronous circuits have also been successfully simulated 

on FPGAs [91]. Therefore, considering that FPGAs is a mature technology and that they 

provide an intermediate trade-off between flexibility and performance, pose a strong 

candidacy for a SC hardware implementation. Again, a cluster of FPGAs, probably 

utilizing a crossbar [90] or a systolic chain [93] connecting the FPGAs, would be a 

viable solution to accommodate any size of SC programs, thus design expandability 

could be accomplished. The implementation could either comprise a systemic processor, 

that would be able to run systemic programs, or following a totally different design 

approach, a different circuit could be downloaded on the FPGA, according to the 

systemic program, which would be highly optimized for the specific program. The latter 

approach would require a SC-to-HDL translator program (a high-level SC synthesis tool) 

to be written.  

FPGAs are unique in the sense that they combine the flexibility of software on a 

hardware medium, since they can be reconfigured and implement a different custom 

circuit every time. A number of natural properties, mentioned above, can be 

implemented using this feature. They can provide a medium for parallel and distributed 

computation, while they can also implement sequential logic. The ability to  self-

reconfigure is very important since it can be used to provide circuits that are adaptive 

and robust. Various tools and standard design methodologies exist for FPGA-based 

design. Thus, it is apparent that FPGAs are highly suitable for a SC hardware 

implementation. 
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Evolvable/Evolved Hardware 

Evolvable hardware is defined in [94] as ―a scientific field that integrates evolutionary 

computation [12] and reconfigurable hardware devices‖ while similarly in the context of 

a recent  comprehensive review of the field [95], it is defined as ―the design or 

application of evolutionary and bio-inspired algorithms for the specific purpose of 

creating physical devices and novel or optimised physical designs‖ [95]. Evolvable 

hardware devices reconfigure themselves dynamically in an autonomous manner by 

interacting with their environment, without human intervention, to sustain functionality 

and increase performance. Two lines of research are identified in [94] on the subject, the 

first involves self-reproduction and self-repair of existing circuits while the second 

utilizes genetic algorithms [12] for autonomous reconfiguration leading to altered 

circuits. Some indicative applications are human-competitive analog design, Micro-

Electro-Mechanical System (MEMS) fine-tuning and evolvable antennas for space 

missions [94]. Hardware evolution has been applied to digital, analog and mechanical 

systems resulting sometimes in human-competitive designs [94]. 

A central notion on evolutionary computation is a genetic algorithm (GA) [12]. A GA is 

a search technique which tries to find a solution to a problem (exploring a search space) 

in an incremental way. There is no need for a priori knowledge about the problem. The 

process involves the preparation of a pool of candidate solutions (chromosomes), the 

definition of an evaluation (or fitness) function and the search process. A solution is 

selected to continue to the next evolution stage depending on its comparison with the 

output of the evaluation function. During this process, an evolution cycle, giving a new 

generation, is executed iteratively until some termination criteria are met
10

. Solutions can 

be evaluated by simulation (extrinsic evolution) or by physical realization (intrinsic 

evolution). Each cycle involves generating a new chromosome, evaluating it according 

to the fitness function and selecting the chromosomes to form the next generation 

(usually the ones with higher fitness function, for example, roulette wheel selection). 

Typical methods of generating new chromosomes, further explained later in section 

5.1.2, are selective reproduction (genetic material from each parent create an offspring), 

crossover (exchange of genetic material between chromosomes) and mutation (a bit, or 

group of successive bits, is randomly chosen and flipped). The evolution process 

described above, applied in the field of evolvable hardware, is illustrated in Figure 2.3 

[96].  

                                                      
10

 A fitness threshold value is reached or a loop count limit is reached 



Chapter 2. Background  45 

 

 

 

Figure 2.3. Hardware Evolution using a Genetic Algorithm. Reproduced with permission 

from [96]. 

For evolvable hardware, the bits in the configuration bitstream of an FPGA are regarded 

as the chromosomes for GAs. If the fitness function is defined to map the behaviour of 

the target circuit, then the GA, by continuously downloading altered configurations to 

the FPGA, will ultimately produce a design that will match in some degree the required 

functionality. A collection of research work on the field of evolvable hardware using 

GAs is given in [94] and includes among others: a myo-electric hand control chip, 

simple arithmetic circuits capable of built-in self-test, a clock-timing adjusting technique 

and an evolvable image filter. 

Under the evolvable circuits category, apart from the GA-based designs, [94] provides a 

collection of bio-inspired projects that target fault-tolerant, self-replicating and self-

repairing evolvable circuits like the Embryonics project [92], a multi-cellular universal 

Turing machine [97] and one of its applications, the BioWatch [98], defining a cellular 

and molecular architecture of a giant artificial organism. The Embryonics project drew 
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inspiration from Ontogenesis, which is one of the three axes of bio-inspiration [99], 

discussed in the next section in the context of the POEtic/PERPLEXUS projects, which 

combined all three axes to provide circuitry designed to develop and adapt its 

functionality through evolution, growth and learning [92]. 

An important difference is noted in [100] between evolved and evolvable circuits. An 

evolved circuit is the outcome of continuous refinement, by using evolutionary methods, 

but the architecture remains static once a satisfactory solution-design is identified. 

Evolvable systems, on the contrary, can dynamically and autonomously be self-

reconfigured possibly throughout their existence [100]. They should be able to adapt 

their structure according to environment changes, thus they are more tolerant to faults 

and failures and more probable to optimize their performance according to these 

changes. 

Evolvable hardware shows natural properties such as fault tolerance, self-repair and self-

replication. It provides autonomous circuits that can potentially be parallel and provide 

distributed computation. Therefore, evolvable systems would be a potential SC hardware 

implementation platform. However, the definition of a representative fitness function 

would not be trivial for such a complex design, using the GA approach.  

POEtic/PERPLEXUS Projects 

The three major axes of bio-inspiration, in analogy to nature, are Phylogenesis, 

Ontogenesis and Epigenesis according to the POE model [99] of bio-inspired computing. 

The phylogenetic axis involves the evolution of the species through time based on 

alterations of the genetic code. The ontogenetic axis refers to the development (or 

growth) of a single multi-cellular organism. This is accomplished through cellular 

division (a mother cell, or zygote, divides, the resulting cells divide as well and the 

process continues – each new cell contains a copy of the whole genetic material, or the 

genome) and cellular differentiation (new cells acquire different functionality depending 

on surroundings). Cells are continuously destroyed and generated in an organism. Self -

healing is based on this property [101]. The epigenetic axis involves the learning 

processes during the lifetime of an individual organism and allows it to increase in 

complexity as it grows. 

The ―Reconfigurable POEtic tissue‖ project [101] (or POEtic) targeted all three POE 

axes. The goal of the project was the development of a multi-cellular, self-contained, 

flexible and physical computational substrate, inspired by the evolutionary,  

developmental and learning phases in biological systems, designed to interact with its 
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dynamic environment, develop, adapt its functionality and self-repair [94], [101]. The 

POEtic tissue was designed as a structure consisted of three layers [101] and it is 

illustrated in Figure 2.4 (the layers are represented here next to each other): 

 The Genotype Layer: Corresponds to the phylogenetic model processes. Each 

cell contains the genome of the tissue. It consists of a set of operators, which 

defines all the functions a cell can execute, and a differentiation table, which is 

used to determine which operators each cell will use.   

 The Mapping Layer: Corresponds to the ontogenetic model, implementing 

cellular differentiation and growth. Self-repair functionality is also involved in 

the layer. The selection of the operators to be used occurs in this layer as well. 

 The Phenotype Layer: Corresponds to the epigenetic model, modifying the 

operation of the organism during its operation. It consists of an execution unit, a 

set of application-specific resources, and a communication unit to handle the 

connectivity of the cells. 

 

 

Figure 2.4.  The three organizational layers of the POEtic tissue. Based on [101] 

Upon a given problem, the user can chose the required layers to be implemented. Cells 

are implemented on a molecular substrate (programmable logic) to provide adaptability. 

The chosen architecture is compatible with the three axes of biological organization 

[101] and includes an input/output interface that permits each cell to modify its 

environment. 

A practical POEtic system architecture is described by [102]. The tissue is divided in 

three main components illustrated in Figure 2.5 [103] :  

 The environment subsystem, which manages the interactions with the 

environment (using sensors and actuators) and implements processes related to 

the phylogenetic axis. A microprocessor, which provides centralized control at 

OPERATORS

DIFFERENTIATION TABLE

INTERPRETER

DIFFERENTIATION 

LOGIC
COMMUNICATION UNIT

EXECUTION

 UNIT

GENOTYPE LAYER MAPPING LAYER PHENOTYPE LAYER

PHYLOGENESIS ONTOGENESIS EPIGENESIS



Chapter 2. Background  48 

 

 

the organism level and executes evolutionary algorithms, is part of this 

subsystem.   

 The organic subsystem which manages the behavioural operation and learning 

methods of the tissue by determining how ontogenetic and epigenetic processes 

are physically realized. It consists of two layers: a 2-dimensional array of basic 

programmable elements, the molecules, which can be configured to 8 different 

modes of operation and enable various functionalities, and a dynamic routing 

algorithm implementation for the creation of connection paths between 

molecules.  

 The system interface, which provides the communication channel between the 

two subsystems and mechanisms (interface bus, one active ―master‖ environment 

subsystem for multichip configurations, automatic coordinate propagation) that 

permit the tissue to be scalable without constraining the number of POEtic chips 

that can be employed. From a user perspective, a multi-chip POEtic tissue has 

got one environment and one organic subsystem. 

 

Figure 2.5. Overview of the POEtic tissue architecture. Reproduced with permission from 

[103]. 

Moreno et al. [102] demonstrated that real-time emulation of large-scale spiking neural 

network models can be accomplished using the aforementioned design. Other 

applications of the POEtic tissue include self-repairing hardware [104] (utilizing the 

dynamic routing mechanisms of the environment subsystem), circuits that show fault -

tolerance [105] (in the form of error detection and recovery through dynamic routing, 

reconfiguration and on-chip reprogramming), [106] (using hardware Gene Regulatory 
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Networks) and an interactive artistic installation, called the POEtic-Cubes [107] 

(autonomous robots controlled by POEtic chips). 

The successor to POEtic was the PERPLEXUS project [108]. The goal of PERPLEXUS 

was ―to develop a scalable hardware platform made of custom bio-inspired 

reconfigurable devices that will enable the simulation of large-scale complex systems 

and the study of emergent complex behaviours in a virtually unbounded wireless 

network of computing modules‖ [109]. At the heart of these ubiquitous computing 

modules, ubidules, is a custom-designed reconfigurable chip, the ubichip [108], capable 

of implementing bio-inspired mechanisms such as growth, learning and evolution. The 

ubidule can be customized to use a set of peripherals (such as USB, SD card, Wi-Fi), to 

satisfy the requirements of a given application, as modularity was a key design 

consideration. The overall architecture is illustrated in Figure 2.6. The project targeted, 

but was not bounded, to three applications: neurobiological modelling, culture 

dissemination modelling and cooperative collective robots. 

The limitations of the POEtic architecture were identified [103] and improved [108] in 

the PERPLEXUS framework: 

 The POEtic dynamic routing algorithm required long-distance combinatorial 

links. The new algorithm better exploited existing paths, used an 8-neighborhood 

approach to reduce congestion risk and allowed path destruction, allowing 

unused connections removal.   

 Further scalability: the wireless link combined with the Address Event 

Representation (AER)  scheme [111], which involves encoding/decoding a 

sequence of events to/from a sequence of addresses to overcome communication 

issues, caused by massively interconnected components, provides virtually 

unbounded scalability. 

 The partial self-reconfiguration in the POEtic chips allowed partial replication of 

the circuit while they needed to be pre-programmed (preconfigured configuration 

paths and reconfiguration units loaded by the microprocessor). PERPLEXUS 

allows real self-replication employing the THESEUS mechanism [112], through 

self-inspection (recovering the configuration bitstream, the genome, from the 

replicator) and built-in reconfiguration-aiding units.  

 Neural networks friendliness: The structure of the reconfigurable cells, called 

Macrocells, in the ubichip, was defined around four 4-LUTs which could be 
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configured as any four 4-input function or as a 4-bit ALU. The ALU, which was 

provided with a neural-oriented instruction set, allowed the implementation of 

basic neural processing elements and could be scaled to form a neural SIMD 

multiprocessor. 

 

Figure 2.6. Organisation of the Ubichip architecture. Each ubichip contains an array of 

reconfigurable cells called Macrocells. Each Macrocell consists of a pair of self-replication 

(SR) and dynamic routing (DR) units associated with four ubicells.  The ubicells are 

composed of three switchboxes (for input, output and flag signals) establishing configurable 

communication paths with their neighbours and a dedicated LUT/Memory section for each 

4-bit configurable ALU.  Reproduced with permission based on [108][110]. 

The POEtic and PERPLEXUS projects were collaborative attempts on implementing 

hardware that can mimic natural properties on all three bio-inspirations axes. They 

provide the most complete solutions in terms of circuits that embody a lot of the natural 

properties of Table 1.1. They can provide vastly parallel autonomous systems, which can 

be self-organised and tolerant to faults. Their architecture is distributed and partially 

decentralized, as the cells show self-configuration abilities, yet a microprocessor is used 

to provide control at the system level. They presented a refined, scalable and bio-friendly 

solution. The architecture defines an array of reconfigurable blocks which may be used 

individually as fine-grain logic functions or collectively as a parallel SIMD machine. 
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Thus, the Ubichip would be a suitable platform for a SC hardware implementation. 

However, the PERPLEXUS project was not continued after the introduction of the 

architecture, so access to the final ASIC chip, including 100 Macrocells [110], would be 

limited. An alternative solution would be to implement the design on an FPGA in order 

to further take advantage of the additional design flexibility. Taking into consideration 

that an array of 4 Macrocells required the equivalent of 25K logic cells [110][157] only 

around 30 Macrocells would fit in a mid-range modern FPGA device
11

. Assuming that 

each Macrocell would represent ideally 4 systems (mapping one system per Ubicell), we 

would get less than 100 systems if we accounted for the additional requirements of the 

SC architecture (scopes and matching functionality). This would imply that we would 

need a network of FPGA devices to prototype any practical application following this 

approach, increasing the cost of our research project. In addition, the ideal SC hardware 

architecture would have to compete in terms of performance with alternatives 

approaches, e.g. a modern GPU-based system or a high-end conventional CPU. Time-

multiplexing has been used in [102] to enhance the performance of the architecture while 

emulating in real-time a 10000-neuron spiking neural network but this resembles the way 

conventional CPUs implement parallelism. Nevertheless, the compatibility of the 

Ubichip with the SC paradigm is evident. 

Organic/Autonomic Computing Paradigm 

Organic Computing (OC) is a research field which explores the feasibility of controlled 

emergence [113]. The objective of OC is the technical usage of principles observed in 

natural systems. Organic systems are independent, flexible, adaptive and autonomous 

while they show natural properties like self-organization, self-configuration, self-

healing, self-protection, context-awareness and self-explanation (in order to inspect the 

results of self-organization). Organic systems follow the observer/controller paradigm, 

which observes the functional system and the environment and controls the parameters 

of the functional system according to the observations, while a guard system prevents 

illegal actions.  

A collection of promising ongoing research projects on OC can be found at [114]. An 

indicative project is ―Digital on-demand Computing Organism (DodOrg): Stability and 

Robustness‖ which is overviewed in the next section.  

                                                      
11

 Assuming 75% utilization in the mid-range Xilinx Virtex-6 LX240T FPGA device with 240K 

equivalent logic cells [161] 
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It is noted that Autonomic Computing (AC) [115], which was introduced by IBM 

initially targeting IT systems, shares the same requirements and objectives with OC. The 

two terms are used both in conjunction (AC/OC) and interchangeably.  

AC shows a high level of compatibility with SC, in terms of the natural properties the 

two paradigms target. AC only provides design aims by describing a vision. SC also has 

a corresponding architecture. AC research projects target software and hardware 

implementations. A SC hardware implementation could possibly draw inspiration from 

designs provided by AC/OC projects if they shared the same implementation platform.  

Computing with Unconventional Materials 

Almost any electronic circuit nowadays is silicon-based. Researchers lately identified the 

need to find its successor. As every broadly-used technology in the past (relays, valves, 

transistors [11]), it will reach its limitations and will eventually need to be replaced. 

Their research focuses on computation implementations on new physical substrates, 

exploiting computational properties of various physical, chemical and biological media. 

It comes under the broader field of non-classical, unconventional computation [3].  

Computing based on unconventional material and methods shows great potential for 

future developments. The majority of the approaches, described below, show promising 

results and usually provide great performance gains. As most of them are either nature -

inspired or nature-based, they show inherent natural properties, so they can provide 

massively parallel, distributed, autonomous and asynchronous computation. However, 

they have a limited, if any, set of specialized applications and show several limitations 

(for instance in flexibility, programmability and availability) when a practical hardware 

implementation is concerned.  

Thus, a SC hardware implementation based on an unconventional medium would not be 

a viable approach (in the context of this thesis). It has to be noted that, since this section  

sums up the current research trends on alternative media, it is possible that at least one of 

those will become conventional in the future.  

DNA or Molecular Computing  

DNA computing [20] involves data encoded as biomodules, such as DNA strands, and 

uses molecular biology tools to imitate operations on those data. The structure of the 

genetic material provides vast data-parallelism, thus problems that can be adapted to this 

method can be efficiently solved. As mentioned in section 2.1, Adelman was the first to 

solve an NP-complete [116] problem in the lab [20], by using DNA molecules and 
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biomolecular techniques to manipulate DNA. Based on this experiment, it was concluded 

that any problem in NP (set of problems that can be verified in polynomial time) could 

be efficiently solved with DNA computing [11]. A collection of DNA computing 

applications (like graph coloring, protein conformation, matrix multiplication and 

cryptography) is given in [11]. 

Quantum Computing 

Atoms and molecules do not follow classical mechanics laws. Quantum physics explains 

these non-classical behaviours of atomic-scale objects. Information representation in 

quantum computers [11], [21], [23] is in the form of quantum bits, or qubits, in analogy 

with bits in conventional computers. A qubit can hold any superposition of the two 

classical states, 0 and 1. Thus, a set of n ordered qubits (a length-n quantum register) can 

hold information equivalent with any superposition of 2
n
 quantum states. Measurements 

and manipulations alter the contents of a qubit and can be modelled as matrix 

multiplications. Quantum gates are used for qubits manipulation, which translates to 

quantum state transformations. Each type of gate implements a basic quantum algorithm. 

Quantum computers are able to provide tremendous speed-up in solving problems 

compared to their classical counterparts. Typical quantum applications are cryptography, 

database search and combinatorial optimization problems [23]. Various methods have 

been used for practical quantum computer implementations [23]: superconductors, 

liquid-state nuclear magnetic resonance techniques and ion-traps to name a few, with the 

latest practical designs reaching the capacity of 512-qubits [117]. 

Chemical Computing 

Dittrich [118] defines chemical computing as computing with real molecules (real 

chemical computing), as well as programming electronic devices using principles taken 

from chemistry (chemical computing metaphor). Following this definition, molecular 

computing is entwined with chemical computing. Along with molecule-based 

approaches, this field includes computation achieved with chemical mediums like light -

sensitive chemical waves [119] (applied to image processing with the possibility of 

realizing associative memories), a fluorescein dye [120] (capable of performing a full 

scale of elementary addition and subtraction operations) and protein molecules which are 

able to perform a variety of logical or computational operations [121]. The chemical 

computing metaphor has inspired new architectures [118], such as computers based on 

reaction-diffusion media [122]. Reaction-diffusion computers are regarded as massively 

parallel devices, where tiny portions of the chemical media act as elementary processors 

and information is stored and manipulated by means of local disturbances of 
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concentrations. A set of logic gates and simple combinatorial logic based on chemical 

compounds is presented in [123]. 

Bacterial Computing 

A data storage and retrieval method, based on sequence alignment of the DNA of living 

organisms, was introduced in [124]. Building upon that, the DNA computing paradigm 

was extended in bacteria, to give birth to bacterial computing [125]. Bacteria can be 

genetically programmed to execute various operations, forming bacterial computers, 

which can be autonomous, responsive and self-reproducing [125]. The highly parallel 

nature of this approach (each bacterium is a basic processing unit) allowed the solution 

[125] of a Hamiltonian Path Problem [36], similar to the one solved by Adleman using 

DNA computing. In vivo computing is a similar research field [23] with studies on the 

computational capabilities of gene assembly in unicellular organisms.   

Other Unconventional Media 

A set of other computation media are reported in the literature. Collision-based 

computing involves mobile self-localizations, travelling in space and executing 

computation when colliding to each other [126]. An example implementation, introduced 

in [126], uses fusion gates as collision points which were inspired by the above-

mentioned reaction-diffusion paradigm. In [127], a non-conventional paradigm is 

introduced, where the logic values are carried by independent stochastic noise processes 

(electronic noises) implying greatly reduced energy consumption. In [128], the authors 

use computer controlled evolution to manipulate liquid crystals to evolve logic gates. 

Other unconventional materials for implementations with computational purposes 

proposed in the literature include molten metals and soft solids [129], carbon nano-tubes 

and carbon nano-wires [130]. 

SC based on Unconventional Media 

The implementation approaches which are based on unconventional material are more 

compatible to natural properties than any other. The reason is really simple. The 

implementation media that they use are natural. The disadvantage with these approaches 

is that their underlying technologies are not mature. There are no design methodologies, 

supporting tools and generic input/output interfaces yet. They would require specialized 

knowledge from fields usually away from computer science and would entail access to a 

modern scientific lab. This in turn would imply a more limited user space and an 

elevated cost of development. Thus, while all of unconventional material approaches 
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seem greatly promising, they could not be considered for a practical SC implementation 

at the moment. 

2.2.3 Other silicon-based designs 

Silicon is arguably the most widely-used substrate for designs with computational 

purposes. While current research attempts to identify other promising materials with 

superior physical and chemical characteristics (an example that  currently attracts 

increased interest would be the carbon allotrope graphene [131]), suitable for integrated 

circuits implementation, (processed) silicon is still the preferred material due to its 

tolerance to high temperatures and electrical powers.  

Using silicon as their base substrate, a vast number of relevant research papers attempt to 

break conventional design patterns and, using various approaches, try to incorporate 

natural properties. In this section, an indicative set of them was chosen to be overviewed 

in order to designate relevant design techniques, from which inspiration can be drawn 

provided that a silicon-based approach will be selected for the SC hardware 

implementation.    

SpiNNaker  

The SpiNNaker Massively Parallel Computing System [132], [133] was mainly designed 

for neural networks modelling. It will consist of a vast number of processing cores 

(scheduled to exceed 1 million, distributed across 57600 chips with 18 cores each), 

arranged in independently functional and identical power-aware ARM-based chip 

multiprocessors to achieve parallel, robust and distributed computing [134]. Each core is 

self-sufficient in terms of storage (it has a local ―Tightly-Coupled Memory‖ (TCM) 

[132]), while there is a shared off-chip memory, among the cores – connected to them 

through a DMA controller with the help of an asynchronous Network-on-Chip (NoC), in 

the CMP level. The off-chip memory is virtually local to each processor since it is 

segmented into discrete regions and each processor has exclusive access to one region, a 

specific address range, only. The organisation of each 18-core (16 application cores, 1 

monitor and 1 spare) SpiNNaker CMP chip is shown in Figure 2.7 [133]. 
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Figure 2.7. SpiNNaker CMP chip organisation. Reproduced with permission from [133]. 

The system was provided with sufficient hardware resources redundancy, thus the 

processing and communication infrastructure can show a high-level of fault tolerance. A 

configurable asynchronous packet-switching routing network, based on a custom 

designed on-chip multicast router, was used to support the high degree of 

interconnection at the chip and system levels. Communication between processors was 

based on Address-Event Representation [111] (as in the PERPLEXUS project). 

Generating an interrupt, which is issued to the processor when it receives a new packet,  

allows different clock domains for each processor eliminating the need of 

synchronization, thus making the system virtually asynchronous (Globally Asynchronous 

Locally Synchronous - GALS). The system can be reconfigured on the communications 

side, by changing the routing table of the on-chip router, and on the processing side, by 

changing the running code (altering the data part of the TCM). Its configuration is made 

through an on-chip Ethernet link by a Host system (a personal computer) while board-to-
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board communication is realized with high-speed serial (3Gbps SATA) connections with 

their communication interfaces implemented on Spartan-6 FPGAs [135]. 

The SpiNNaker project envisions a library-based development system which allows the 

high-level description of a model and uses an automated design flow to create silicon 

implementations, which are predesigned custom chips. This approach is interesting from 

a SC point of view. The idea could not be directly mapped on a SC hardware 

implementation, but a SC language (similar to those introduced in [24], [136]) could be 

used in an automated design flow to create highly-optimized hardware SC 

implementations dynamically on reconfigurable media. 

The SpiNNaker architecture defines is a high-performance, low-power application-

specific platform optimized for neuroscience applications [133]. Essentially being a 

massively parallel computing machine made from conventional CPUs, SpiNNaker 

addresses mainly communication and power consumption challenges. As such, the 

architecture may be suitable for exploration of unconventional computing paradigms that 

require raw parallelism, thus making the platform a good candidate of a hardware SC 

implementation. While the underlying architecture of the building nodes of this power -

aware ―computer cluster in a box‖ would not be compatible with much of the required 

natural properties of SC, regarding SpiNNaker as a whole might be useful in modelling 

processes with asynchronous processing (yet locally synchronous) elements interacting 

in a parallel fashion. However, the SpiNNaker platform is still on a development phase, 

with prototypes gradually increasing the number of available cores an order at a time
12

 as 

part of the ongoing Biologically Inspired Massively Parallel Architecture (BIMPA) 

research project
13

. Thus, the completed architecture may be a suitable candidate for a 

future SC implementation, especially if its benefits could be combined with the added 

flexibility provided by reconfigurable hardware to better map the underlying 

architectural features of SC.  

                                                      
12

 The project defines 10N milestone machine designations (where 10N stands for approximately 

10
N
 supported cores). 101, 102 and 103 machines have been sampled where 104, 105 and finally 

the 106 machine are yet to be implemented.  

13
 A scalable custom 64-FPGA machine, Bluehive [248], targeting also Neural Network 

Simulation was developed under the BIMPA project, as an FPGA-based alternative architecture 

to be used for evaluating the spiNNaker platform  
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Molen 

Molen [137] is a reconfigurable processor, following the tightly coupled co-processor 

paradigm. It features a general-purpose fixed processor core (GPP) enhanced by user-

defined commands executed on reconfigurable hardware. Molen addresses issues like 

opcode space explosion, modularity and limitations on the number of parameters for 

operations mapped on FPGA [137]. It identifies blocks of software code that can be 

efficiently mapped on reconfigurable hardware and replaces them with their hardware 

equivalent executed on reconfigurable media. This is accomplished by the use of special 

microcode (termed ρμ-microcode), which differentiates from traditional microcode, 

since instead of being executed on fixed hardware, it is executed on custom hardware 

that itself designs to operate on [137]. The reconfigurable co-processor, which is 

consisted of the ρμ-microcode unit and the custom computing unit (CCU), is configured 

by the general-purpose core. Therefore, it can be tailored to a different application each 

time.  

Molen exploits GPP-FPGA co-execution. It embeds application-specific functionality 

without altering the GPP architecture. The architecture is essentially based on a 

conventional CPU with the ability to off-load computation to the reconfigurable fabric of 

an FPGA. While the nature of the sequential part of the design would be unsuitable to 

perform SC background tasks in a parallel fashion (further explained in section 3.2.3), 

the ability to enable user-defined hardware-supported instructions would be quite useful 

(and is in fact suggested in section 3.1.3). Another interesting feature in this design is the 

micro-programmable nature of the CCU reconfiguration that increases flexibility and 

allows automation.  

DodOrg  

DodOrg (Digital On-demand Computing Organism) [138] is a bio-inspired self-

organizing architecture, which exploits parallel heterogeneous systems. It is an adaptive 

system which is bound to natural self-x [138] properties (like self-adapting, self-healing 

and self-configuring). DodOrg is organized in three levels: the cell, the organ and the 

brain.  

At the cell level, organic processing cells (OPCs) with various resources 
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(microprocessor, DSP core, FPGA, FPFA
14

), announce their suitability (based on 

monitoring system metrics like performance, network load and energy consumption) for 

processing tasks. At the organ level, virtual organs are created using ―organic‖ 

middleware, which implements decentralized closed control loops, in order to 

accomplish decentralized and fault-tolerant task distribution. Organs are formed by a 

number of neighbour cells with cooperating tasks, which exchange accelerator and 

suppressor messages to handle task execution (this technique implements a variation of 

the observer/controller paradigm). At the brain level, a software architecture uses input 

and feedback from the environment to implement the targeted application, which is a 

real-time control system for robot-based manufacturing. This hierarchy can be further 

extended to groups of organisms (self-organizing robot swarm) [138], forming dynamic 

societies. 

 

Figure 2.8. Organic System Architecture.  Suggested in [138] 

DodOrg is an indicative example of an organic computing hardware implementation. It is 

interesting, from a SC viewpoint, since the two paradigms, as stated earlier in the OC 

section, share very similar aims and target nearly the same fundamental natural 

properties. The similarities extend also in the hierarchical approach DodOrg adopts to 

organize its control system, which are compatible with the systems hierarchy in  SC.  

The project defines the organization of an architecture supporting many bio-inspired 

properties. While this layered approach (see Figure 2.8) is compatible with the SC 

paradigm, the project focuses more on an organic control robot and specifically on robot -

                                                      
14

 Field-Programmable-Function-Arrays. Introduced as part of the Chameleon [246] System-on-

Chip, FPFAs are word-level reconfigurable datapaths consisting of multiple processor cores. 

Each core includes 5 custom ALUs. 
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based manufacturing. Decentralized hardware components are communicating over the 

organic middleware and the individual autonomous robots can form a self-organising 

robot swarm. Evidently, this specific level of abstraction is not suitable for a system 

modelling low-level natural processes, as required by SC. In terms of organisation, 

DodOrg moves towards the software domain as it scales up (middleware at the organ 

level, software at the organism level). However, this approach may not be as distant from 

the final SC implementation, since some high-level tasks (systems on the highest 

hierarchy levels that realize advanced instructions) may need to be in the software 

domain, in order to increase flexibility and programmability. 

IBM Cell processor 

The IBM Cell processor (or Cell Broadband Engine – Cell BE) [139] is a single-chip 

multiprocessor based design which aims at high performance by exploiting parallelism at 

all levels of the system: data-level (SIMD support), instruction-level, thread-level, 

memory-level and compute-transfer-level. Workload is offloaded from the main 

processor (PowerPC architecture), which mainly handles control tasks, onto the (eight) 

Synergistic Processor Elements (SPEs – dual-issue in-order SIMD cores), thus the 

system is heterogeneous. The SPE architecture focuses on data processing (wide 

datapaths, more and wider registers, single use privilege level). The SPEs interconnect 

network consists of four data ring buses, thus multiple concurrent transfers can be 

handled. Computation and data transfer operations are executed concurrently, while 

concurrent memory accesses from different cores are allowed to exploit memory-level 

parallelism. The Cell BE is widely known for being used in a games console, yet it has 

also been used in HDTVs, home servers, game servers and even, as a building element, 

in supercomputers [140].  

Larabee and the Intel MIC 

The Intel Many Integrated Core (MIC) architecture [141] uses multiple in-order 

(program execution stalls until the operands of an instruction are available) x86 CPU 

cores extending previous work during the Larrabbee [142] project. The choice of in-

order CPUs is justified by the fact that one of the main design considerations was to 

achieve a great level of parallelism
15

. It uses a bi-directional ring network to handle 

inter-chip communication between the various cores. Scalability is accomplished with 

                                                      
15

 Out-of-order architectures have improved performance since they explore instruction 

parallelism but their die utilization factor is higher than their performance factor (1.5x-1.7x on 

performance corresponds to 2x-3x on size [142]). Thus, those architectures are better suited for 

single-stream performance aware designs. 
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multiple short-linked rings. Routing is simplified by following a simple convention: a 

message is accepted by an agent (logic block connected to the ring network) from one 

direction on odd clocks and from the other direction on even clocks.  

Larrabbee initially targeted visual computing, essentially being a hi-end GPU with 

extended programmability features, since it adopted a familiar programming model (with 

some alterations) based on the traditional x86 architecture. While Larrabbee never 

became a commercial product, its derivative, the MIC architecture, targets high-

performance computing and promises great gains for highly parallel applications, largely 

reusing existing parallel code. The first MIC PCI-Express prototype board featured 32 

in-order Aubrey Isle CPUs while its next revision, branded as the Xeon Phi, offers up to 

61 cores with 244 threads, 256-bit vector units supporting 512 SIMD-instructions, on a 

single chip [143]. 

SARC 

The Scalable computer ARChitecture (SARC) project [144] is a research project with 

aim to develop a general-purpose scalable integrated architecture, explore design and 

compilers creation automation and develop new programming models compatible with 

future architectures. According to [145], the SARC architecture will be a multi-node 

heterogeneous architecture, very similar to the Cell BE. The main difference is that 

SARC will consist of multiple cores and, instead of identical SPEs, application hardware 

accelerators, each of which can be optimized for a different application.   

SyNAPSE 

SyNAPSE [146] is the acronym for Systems of Neuromorphic Adaptive Plastic Scalable 

Electronics. SyNAPSE is a research project that aims to ―investigate innovative 

approaches that enable revolutionary advances in neuromorphic electronic devices that 

are scalable to biological levels‖ [146]. It identifies the limitations of traditional 

approaches to computation and seeks to break the programmable machine paradigms by 

using neuromorphic [147] devices, which are based on adaptive analog circuitry 

principles. The final deliverable of the project is a multi-chip neural system of ~10
8
 

neurons and instantiate it into a robotic platform, which then should be an autonomous 

entity and show indications of abilities like perception, cognition and response [147].   

CPU-GPU Hybrids 

The advantages and disadvantages of CPUs and GPUs are outlined in section 2.2.1. 

While graphics applications became more intensive, communication between the two 
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components was provided with more bandwidth and lower latency (AGP to PCI-E 

connections). Current design trends for consumer applications involve the integration of 

CPUs and GPUs on a single chip. AMD recently presented the AMD Fusion architecture, 

calling the CPU-GPU hybrid Accelerated Processing Unit (APU) [148].  

This can be an important design, since if APUs (and later Intel-based hybrids), become 

the conventional architecture of the near future, they will have native on-chip 

parallelism, becoming more compatible with a vast number of applications, including 

SC. 

2.2.4 Hardware Approaches Summary  

The explosive growth of technology in the last century enabled the conception, design 

and fabrication of what we consider today conventional computer architectures. 

However, from the very early stages of this revolution, pioneers in the field realised that 

there is more than one ways to approach the definition and implementation of 

computation. This is evident by the late work of one of the architects of the conventional 

computer architecture, von Neumann, who after devising the sequential and centralized 

design [8] which (with various optimizations and enhancements) became the basis for 

virtually every contemporary computing device, started exploring the potential and 

relation of biology to computation (and specifically between the computer and the 

human brain [149]). Similarly one of the designers of the hugely successful ARM 

processor - Steve Furber - now leads SpiNNaker [133].  

While the conventional approaches have addressed the constantly increasing 

computational needs for commercial, research and even more specialized purposes, with 

designs and architectures also evolving and getting optimized and tailored to adapt to 

these changing demands, they eventually reached their limitations, resulting in new 

approaches and computational concepts being emerged. This section discussed how 

conventional approaches attempted to provide more computational power and how 

unconventional approaches, using nature as both inspiration and alternative 

implementation substrate attempt to address natural features as parallel, decentralized 

and distributed computation to name a few.  

GPUs, chip-multiprocessors and supercomputers provide parallelism with different 

levels of granularity, from the chip level to the cluster level while peer-to-peer networks 

come closer to the natural computing paradigm providing a decentralized network of 

cooperating nodes. Ubiquitous computing and wireless sensor networks define parallel 
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and distributed systems of usually self-contained and adaptive interconnected devices, 

with the ability to show self-organization and fault tolerance. FPGAs combining the 

great flexibility, from the ability of being reprogrammed, with the performance, provided 

by the fine-grained parallelism on the hardware level, became a useful tool for numerous 

projects overviewed above to implement evolutionary and bio-inspired designs. 

Alternative materials (molecules, chemical compounds, bacteria) show great potential in 

a computational context but, still being at a proof-of-concept stage, are not ready yet for 

a broad range of practical applications making silicon the norm when it comes to digital 

circuitry.  

The various approaches and paradigms of this chapter are presented in a Systemic 

Computation context, taking into consideration that SC was designed to incorporate the 

various natural properties in a more complete way. The next sections give more insight 

in the SC paradigm and its three implementations prior to this work. 

2.3 Systemic Computation 

Systemic computation is designed to be a model of natural behaviour and, at the same 

time, a model of computation. This approach was based on the generally accepted, but 

still intuitive notion that natural systems are able to perform some form of computation 

[24]. It is a computational model with characteristics similar to biological systems and 

processes. 

The link between biology and computer science under the SC prism can be found in the 

last convention of SC (computation is transformation - section 1.2), enabling us to 

identify a common denominator between them [22]. In SC, everything is regarded as a 

system. This implies the notion of the inherent hierarchy in nature and enables SC 

analysis in different levels of abstraction. Also, SC is designed to operate using any 

system, meaning that, provided that the interaction pattern is the same, systems of 

different levels of abstraction can perform the same calculation. Systems can never be 

destroyed, reflecting the fundamental principle of conservation of energy (first law of 

thermodynamics [150]). As a result, systemic computations imply metabolism and 

ecology, since new systems need to be transformed and unwanted computation remnants 

need to be removed, meaning that the ―waste‖ of one program will have to be recycled as 

―food‖ for another [24].  

The interaction of two systems can be described by the systems themselves and a third 

―contextual‖ system which denotes how/if the interacting systems are transformed after 
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their interaction [24]. The scope here, as in nature, is an important factor. The scope of a 

system defines the neighbourhood (which can be other than spatial) in which the system 

can interact with other systems in a certain way. SC attempts to capture the 

characteristics of natural scopes by enabling partial or fuzzy memberships and scope 

alteration after system interaction.  

In order to represent a system in a modern computer, the choice of a binary format is 

compulsory. For the first systemic implementation [24], Bentley used binary strings to 

describe systems. Other descriptions [24] (π-calculus, bigraphs, brane calculus, Petri 

nets, calculus of looping sequences and other emergent technologies [22], [24] like 

speckled computing, DNA computing, membrane computing) were also considered but 

they could not provide practical implementation platforms compatible with traditional 

digital resources. 

Bentley [24] used the notions of schemata and transformation function to describe 

interacting systems and the way the systems are transformed through interaction. Thus, 

each system comprises of three parts, two schemata and one function (see Figure 2.9), 

also called a triplet. Both schemata may change after an interaction, which implies 

circular causality (each system may affect the other). The model may support 

interactions among more than two systems, since an n-ary interaction may be reduced to 

n-1 binary interactions [24].  

(d)

0111

(a)
C

0000

0110

SYS
(b)

(c)

S1 S2

S1' S2'

System

schemata1 transformation function schemata 2

00110aab 0110

 

Figure 2.9. SC notation and systems representation: (a) a data system revealing its binary 

contents; its transformation function is zero (b) alternative notation for a data system called 

SYS (c) Systems S1 and S2 interact according to the function of the context C; the notation 

may optionally include the resulting systems S1' and S2' (d) The 3 elements of a system. 

Reproduced with permission from [24] 

A system in SC is represented as illustrated in Figure 2.9. The two interacting systems 

(schemata 1 and 2) are positioned in the receptors and set the possibility (through 

matching against the schemata of other systems) of the system to interact with them in 

its context. The transformation function determines the outcome of the interaction. Data 
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systems do not define an interaction, thus their transformation function is always zero. 

The key notion of interaction here differentiates SC from conventional approaches since 

it is not a sequential operation, as a set of instructions executed in a conventional 

computer, but rather the sum of events that occur in a massively parallel and stochastic 

fashion – implied by the constant simultaneous transformations of systems.  

A simple demonstration of the computation of the sum over a pool of data systems is 

given in [34]. Given a set of inert systems that can interact, but not act as context, with a 

transformation function which replaces data in the one of the systems with the sum of 

data of the two systems and zeroes the other system, and provided that enough time is 

available, only one system will remain containing the sum of all systems while all the 

rest will be zero. The operation is illustrated, using SC notations, similar to bigraphs, in 

Figure 2.10. 

 

Figure 2.10. Illustration of a sum operation on a pool of data systems using SC notations.  

Based on [34] 

In more detail, the only contextual system SUM (the only one with a non-zero 

transformation function) defines a way that other systems may interact. The definition of 
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this interaction involves providing a valid transformation function (in this case addition) 

and also identifying two systems that will interact according to its schemata. In order to 

qualify as possible interacting systems, these systems will need to match the templates 

defined in the schemata of the context system. In this case (Figure 2.10), both schemata 

of the SUM context define a template requesting a data system (its transformation 

function should be zero - implied by the zero in the template A0x) of type A (its left 

schema should correspond to type A - implied by the A in the template A0x) while it can 

have any value on its right schema (denoted by the "don't care" x value in the template 

A0x). In the first interaction (at step 1 of Figure 2.10), two A systems (here systems 

Data1 and Data2) will be chosen and one of them (Data2) will hold the sum while the 

other (Data2) will be reset (as shown at step 2). The resulting system (Data2) will 

interact with the third type A data system (Data3), the resulting sum will be again stored 

in one of them (Data3) and the other (Data2) will be reset. The type B data system 

(Data4) will never be part of an interaction in this example as it does not match any of 

the schemata of the context SUM (since it only defines interactions between data 

systems of type A). 

The progression of a simple program which performs a nested parallel calculation is 

shown in Figure 2.11 (A-C) [24]. The program calculates the expression ((A1-A2)*(A3-

A4)) and prints it. At first, the initial systems belong to scopes in different hierarchy 

levels. Next, the subtract-escape context systems ―-e‖ transform the pairs (A1, A2) and 

(A3, A4) of data systems by means of subtraction (in their respective scopes c1 and c2) 

and change their scope one level higher in the hierarchy (effectively one of the 

interacting systems ―escapes‖ from the scope it belongs to), leaving calculation ―waste‖ 

in the initial scopes (c1 and c2), as no system can be destroyed. It is noted the (A1-A2) is 

correctly performed, (instead of A2-A1). This is accomplished by a mechanism called 

schemata matching, described in section 2.4.1, which identifies an appropriate 

interacting system to each interacting position. A1 is selected here as the first interacting 

system (the minuend) and A2 is selected as the second (the subtrahend).  
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Figure 2.11. SC calculation of PRINT((A1-A2)*(A3-A4)). Reproduced with permission from 

[24], [34] 

Eventually, systems are transformed by the multiply function. Overlapping scopes which 

share systems can be used for more compact representations of the same calculation (as 

shown in Figure 2.11D [24]). The parallel nature of SC dictates that all the systems 

interact continuously (function ―print‖ will print the correct result upon completion of 

the program but it will also print intermediate results at earlier stages). Thus, the tree of 

scope memberships (Figure 2.11E) enables the correct calculation of complex 

expressions. An example of how overlapping scopes can be used to accomplish linear 

execution of such an expression is given in Figure 2.12 [24], with intermediate results 

escaping to their outer scope until the expression is fully evaluated. 
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Figure 2.12. SC calculation of the linear expression ((((A1-A2)*A3)+A4)/A5). Reproduced with 

permission from [24] 

 

2.4 Prior Systemic Computation Implementations 

In [24], Bentley, along with introducing SC, provided a corresponding virtual computer 

architecture and its first (software) implementation. This attempt included a basic 

instruction set, an assembly language, a compiler and its resulting machine code. 

However this implementation was merely a simulation of a systemic computer, although 

it was a satisfactory proof-of-concept. To date, there are two more SC implementation 

attempts. The first provides a complete SC platform (language, compiler, virtual 

machine and visualization tools) [136]. However, it is also a SC simulation, although 

based on high-level language. The second [34] is yet another PC-based implementation, 

utilizing the inherent parallelism of graphics processors (GPUs) with considerable gains 

(of the order of one hundred) in terms of speed compared to previous attempts. The 

performance improvement is justified since this is the first implementation with a 

hardware constituent (GPU cores) and the first step towards a real systemic computer. 

2.4.1 Original SC Implementation 

The original implementation was a low-level simulation of a systemic computer, 

compatible with consumer processors. A more detailed description along with various 

SC applications can be found in [24]. The various features of the design are presented 

below. 
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Figure 2.13. System representation, schemata decoding scheme and scope table of the 

original SC version. Reproduced with permission from [24] 

As illustrated in Figure 2.13, characters ` to z where used to encode triplets of string 

systems. Partial matches were accomplished by enriching the binary {0,1} set with an 

wildcard (? – matching both a 0 and a 1), while the matching precision could be adjusted 

by using thresholds.  

Table 2.2. Features of the original SC implementation 

Feature Original SC implementation 

Word-length  
16-character word length 

(systems consist of 48 characters)  

Coding Method characters of alphabet 29 

Transformation Function Set  Thirty basic functions  

Schemata Matching Method Partial matching against thresholds 

Interactions Order 
Random (Biased – Prioritizes  

recently changed systems) 

Scope Definition Method Global Scope Table 

Matching was based on the Hamming distance (number of different characters) between 

the schemata of the context and the systems. The transformation function, along with an 

identifier (analogous to the opcode of conventional architectures instructions), and  the 

two matching thresholds (one for each system), also includes a NOT operator to set the 

matching polarity.  
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The membership of a system, set by the index of the respective column of the scope 

table, in the scope of another system, set by the index of the respective row, was set by 

the value at the corresponding position of the table (0 : not in scope, 1: fully in scope, 0 

< value < 1 : partially in scope). 

Figure 2.13 illustrates the graphical representation of a context system, with ADD as its 

transformation function. The schemata are decoded based on the decode table to match 

the schemata of other systems with thresholds of 6 and 1 for systems 1 and 2 

respectively. If the schemata is matched, the addition is not executed since the polarity is 

negative (NOT is true). According to the scopetable, systems 3 and 4 are in the scope of 

system 1. System 2 is partially in system 3. 

2.4.2 High-level SC Implementation 

The extensive work of Le Martelot on SC [136], [151], [152], [153], [154], [155], [156] 

(which can be found collectively in [22]) provides outcomes in formalization, a complete 

platform, natural-inspired models implementation, analysis of native SC features and a 

description of the developed visualization tools. The implementation platform, called  

―Systemic Computation Platform and Environment‖ (SCoPE), includes a full definition 

for the SC programming language, a compiler and a virtual machine, the SC runtime 

environment and the visualization framework (see Figure 2.14) [22]. 

 

Figure 2.14. Visualisation of a SC model using SCoPE. Reproduced with permission from [22] 

Some differences are identified in this implementation as opposed to the original one 

[22]: Recursive scopes, with a system containing itself, are supported. Fuzzy scopes are 

not supported, since they would add overhead in the implementation for a feature that 

was not critical and, thus, overlapping scopes are not supported either. Partial and 

threshold matching are not supported for the same reason. There is always a supersystem 
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– at the top of the hierarchy – called the universe. An active context can only change 

during the current interaction only in cases that this action will provide significant 

simulation gains. Also, unaltered interacting systems have a higher probability to interact 

next. 

The main difference is that this implementation is higher level, fully programmable and 

more flexible than the original one. While the transformation function set, the string 

length and the alphabet are fixed in the original version, they all can be customized by 

the user for each model simulation in SCoPE. The flexibility is clearly reflected in the 

corresponding SC language which uses the original one as ground and expands its 

functionality and ease of use. Naturally, this flexibility comes in expense of execution 

speed. User-defined functions are implemented as C++ plugins and loaded as dynamic 

libraries at simulation initialisation and called for every function reference in the code. 

Also, the scopes are not held in a global table, but every system stores locally, along 

with its triplet, all the systems it contains and it is contained in.  

2.4.3 GPU SC Implementation 

The third SC implementation is GPU-based [34]. A GPU-based approach is completely 

justified since the fundamental property of SC, parallelism, is an inherent GPU 

architectural characteristic. While the first two implementations where just simulating 

SC, the third one is much closer to an actual SC architecture since there is now native 

hardware support. GPUs are well-suited for applications with numerous threads running 

in parallel over a set of shared data. Here, the shared data are the systems. 

The GPU implementation follows the original SC model in terms of specification. Only 

implementation-specific minor differences (optimisation technicalities) differentiate 

them. The parts of the original algorithm that could be parallelized were identified and 

they are executed in the GPU cores, called devices, while the sequential parts are left to 

be executed in the CPU, called the host [34]. So, this is a hybrid approach which utilizes 

the advantages of both the sequential and the parallel domain. 
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Figure 2.15. Overview of the task and data flows in GPU SC 

The architecture developed in [34] is as follows: Two threads, which reflect the two 

main parts of SC, run in parallel in the host. These are called the producer and the 

consumer. The producer finds triplets with systems that match the schemata of a 

contextual system and belong to the same scope, called valid triplets. It consists of six 

successive steps which run sequentially on the host. Three of them are offloaded to the 

GPU. The consumer consumes the valid triplets, by executing the transformation 

function of the context, with the two interacting systems as the arguments. Valid triplets 

are chosen completely randomly (without prioritization). Triplet validity is  rechecked 

before the interaction, since a previous transformation might have changed the systems 

scheduled to interact. An overview of the GPU SC implementation is illustrated in 

Figure 2.15. 

2.5 Summary 

This chapter provides a detailed discussion on various approaches to Natural and 

Systemic Computation. It summarizes software approaches and alternative 

computational paradigms and further critically focuses on conventional and 

unconventional hardware approaches on Natural Computation with an initial assessment 
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of their compatibility with SC. Moreover, an overview of the SC architecture, as it was 

introduced in [24], is given and the work performed to date on SC is reviewed and 

assessed. This work involves three software implementations, a simple proof-of-concept 

sequential design with limited functionality and performance, a high-level fully-

parameterizable sequential design with limited performance but extensive modelling 

capabilities and a hybrid design with increased performance, taking advantage of the 

vastly parallel computational ability of a GPU, but limited features.  

It is highlighted throughout the chapter that widely-adopted computational paradigms 

and techniques are inherently incompatible with Natural Computation while mainly 

unconventional approaches are generally best suited to model nature in a more native 

way. Systemic Computation has been designed to be compatible with those 

differentiating properties that can be noticed in computation happening in nature, thus a 

SC implementation is expected to model those natural systems natively. Software 

implementations of such an unconventional paradigm, being sequential in nature, fail to 

properly map SC so they just simulate a systemic computer.  

A custom hardware design, exploiting the freedom of tailoring its architecture away from 

conventional approaches, is expected to more closely match the underlying SC 

architectural properties. Thus, an investigation should be performed at first to determine 

the most appropriate hardware implementation platform for such a design to be realized 

on. Numerous alternative platforms, having been presented critically in a SC context 

above, can now be compared and indicate the most suitable among them for a practical 

SC implementation.  

The ideal implementation platform should ideally be compatible with the natural 

properties of Table 1.1. However, there are some limitations, as many of the hardware 

approaches in Table 2.1 represent emergent fields of research and would not be suitable 

for a practical implementation. In order to identify the most appropriate among them, the 

suitability of each approach for a SC hardware implementation must be evaluated.  

Therefore, the features incorporated in a practical SC hardware implementation should 

be identified. After examining the SC paradigm and its corresponding architecture and 

taking into consideration the hypothesis of this work and its research challenges, 

focusing on the utility and viability of a hardware system computer, it was concluded 

that these features, in the hardware domain, should be: 
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 Compatibility with as many as possible of the natural properties central to SC 

(research challenge Chg1). 

 Compatibility with inherent architectural features of the SC (research challenge 

Chg2). 

And addressing the practicality and efficiency of the implementation (research challenge 

Chg3): 

 Efficiency of Input/Output Functionality: sufficient to result in a standalone 

platform. 

 Programmability: an (at least basic) instruction set should be provided. 

 Design friendliness: the implementation platform should be supported by standard 

design methodologies, tools and documentation to accelerate the design period, 

decrease error-proneness and enable efficient design verification. 

 Technology Maturity: the implementation platform should be based on a mature 

technology in order to be able to provide a practical implementation. Furthermore, if 

a rich literature exists on designs based on the technology, inspiration can be derived 

from it while existing design methods can be improved to increase performance and 

efficiency. 

 Scalability: the implementation platform should be able to be efficiently scaled to 

support modelling of large-scale natural systems. 

Along with the hardware-related requirements, there are also some design considerations 

in the software domain: 

 Compiler Support: a compiler should either be available or created to enhance 

programmability. 

 Support for more advanced instructions/functions: in order to enhance flexibility and 

programmability. 

 Backwards-compatibility with at least one of the earlier SC versions: this would 

allow reusability of functional code (including a compiler). 

An ideal hardware implementation platform would satisfy all the above-mentioned 

requirements and considerations. However, as discussed in this chapter and summarized 

in Table 2.3, finding a platform that fully satisfies all of them is not realistic. 
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Table 2.3. Detailed evaluation of the reviewed hardware-based approaches against the 

implementation requirements implied by the research challenges. No dot represents the 

absence of support for the requirement, while three dots indicate full support  

 Hardware Implementation Platforms 
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According to Table 2.3, three entries are more suitable for a practical SC implementation 

than the others according to existing technologies, approaches and platforms. These are:  

 Wireless Sensor Networks: WSNs appear to be one of the most suitable hardware 

implementation platforms. The variety of supported natural properties, the 

compatibility with the SC architecture, the maturity of the technology and the 

satisfactory scalability offered by the wireless link are the advantages. Their main 

disadvantage is the underlying fixed conventional architecture of their processor and 

their restriction in terms of resources and computational power. 

 FPGAs: FPGAs have the unique advantage of external reconfiguration and self -

reconfiguration. The limitation is really left to the designer to exploit all their 

potential to implement various natural properties. There is also the advantage of the 

big number of FPGA-based projects on the field of Natural Computation, where 

useful ideas can be adopted and extended. Scalability issues may be addressed using 

an FPGA cluster or with the addition of wireless connectivity on the FPGA board.  

 GPUs: GPUs are among the most suitable implementation platforms without great 

support for natural properties since it has already been proven that they provide great 

performance. Additionally, their performance is certainly going to improve as new 

GPU models are released, since GPU development is driven by the games industry. 

However, the solution we have at present is a compromise that parallelises only some 

parts of the SC process. GPUs are dependent upon a CPU for centralized control.  

The only implementation platform among the three that does not solely depend on the 

existence of a conventional von Neumann architecture CPU in the system is the FPGA 

platform. FPGAs are the only platform that provides the flexibility to design and 

implement a custom and dedicated hardware design from the very beginning until the 

system level, in order to highly optimise it for the selected application (in our case the 

Systemic Computation), and at the same time not compromise on performance. In 

addition, taking into consideration that FPGAs would be practical in terms of the number 

of systems they can support and also able to provide an easily-accessible standalone 

platform leads us to decide that: 

The selected hardware platform for the first practical hardware-based 

implementation of systemic computation is the FPGA platform. 

The next chapter further discusses the SC architecture properties and presents the first 

(FPGA-based) hardware architecture of Systemic Computation. 
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Chapter 3  

Designing a Suitable Hardware Architecture for SC 

This chapter focuses on the investigation of a hardware design to support the underlying 

architecture of SC (research challenge Chg2, section 1.4) and suggests the first Hardware 

Architecture of Systemic computation (HAoS), taking into consideration the natural 

properties of SC (research challenge Chg1, section 1.4)  and at the same time attempts to 

provide an efficient, practical and user-friendly solution (research challenge Chg3, 

section 1.4).  

Various potential architectures are initially reviewed (section 3.1), while then the SC 

architecture properties are analyzed and discussed in the context of a hardware 

implementation (section 3.2). This discussion leads to the suggested design (sections 3.4 

- 3.6) which is presented along with the proposed extendable instruction set (section 3.3) 

and a basic programming model (section 3.7). This base design is initially verified in 

section 3.8 and is used in the next chapter as the basis of the complete HAoS 

programming platform.  

Part of the work presented in this chapter has been published in [158],[159] and [160]. 

3.1 Potential Architectures 

The optimal solution for the hardware implementation of SC would be highly flexible 

and at the same time highly efficient. The user would be able to write SC programs in an 

unrestricted manner (following just the SC language rules). The key SC notion of 

parallelism should be implemented for both functional and background system tasks 

(systems update and storage, scopes update and storage, systems comparison and 

communication). A number of candidate architectures (given that the implementation 

platform is an FPGA), taking into account the implementation feasibility and viability, 

were considered before concluding to the final design. These are overviewed below: 

 Virtual SC: offloading functional computation to the CPU. 



Chapter 3. Designing a Suitable Hardware Architecture for SC 78 

 

 

 Fundamental Processing Element: SC performed solely on the FPGA but providing 

support for an extremely restricted instruction set that will be implemented by 

elementary processing elements. 

 Reconfigurable Predetermined Processing Elements Array: Providing a more rich 

instruction set but assuming low reconfiguration frequency.  

 SC2HDL: Translate the SC code into hardware, using a tool that takes source code 

written in the SC language as input and performs translation in a Hardware 

Description language (HDL)
16

, synthesis and Place-And-Route (PAR) in an 

automated way.  

 GPUplusFPGA: preserve the functionality of the GPU version (background 

parallelizable tasks performed on the GPU) and offload computation to the FPGA 

(by means of an predefined instruction set realized on hardware or a dynamic 

instruction set by use of the SC2HDL tool). 

3.1.1 Virtual SC 

It is evident (see section 2.3) that the use of a conventional CPU is not compatible with 

SC. However, the power of a custom design which is highly optimized to perform the 

background SC system tasks, as they are mentioned above, could take advantage of the 

flexibility and performance provided by a CPU.  

Provided that a modern FPGA is used, an estimation of the highest frequency of an on-

chip implementation could be claimed to be in the order of 600MHz [161]. For the 

purposes of this analysis, we may assume that the final design may achieve 1/3 of the 

maximum frequency (200 MHz). Assuming 10 on-chip flexible processing elements and 

taking into account any delays caused by off-chip communication, it would be safe to 

claim that a conventional single-core CPU could cope with the computational load, 

provided that the communication interface is able to cope with the communication load. 

While the background system tasks will optimally run on hardware, the functional tasks 

will be executed on ―virtual‖ on-chip processing elements, simulated by the CPU. 

Extending this strategy, a modern multi-core multi-threaded processor with 4 cores and 2 

threads for each core could provide the computational equivalent of up to  approximately 

a hundred processing elements (assuming a 2-3GHz frequency for each core) by 

                                                      
16

 Most probably VHDL. 
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consuming on-chip resources just for the communication infrastructure. Nevertheless, it 

is noted that the communication overhead could become substantial for a large number 

of systems.  

Embedding a sequential processor aside, the disadvantage of this approach is its 

resemblance with the GPU implementation (see section 2.4.3). Modern GPUs are 

becoming more powerful, embedding typically hundreds or even thousands17 of 

processing elements but yet preserving a more centralized architecture than the one that 

a custom FPGA design can provide. However, the GPU architecture still needs to be 

fairly generic in order to support any parallelized task. This can be avoided with a highly 

optimized FPGA design.  

Despite of the above-mentioned disadvantages, the virtual SC architecture, shown in 

Figure 3.1, could be considered as an entry-level design that is focused on realizing the 

background system tasks on hardware and emulate the functional subsystem in the CPU. 

 

Figure 3.1. Virtual SC architecture simplified block diagram 

 

3.1.2 Fundamental Processing Element 

In contrast with the previous approach, instead of offloading computation to the CPU, 

this implementation severely restricts flexibility by keeping functional complexity to a 

minimum but keeps computation on-chip. The instruction set is limited to basic functions 

that can be realized in a combinatorial way. Sequential processing elements are avoided 

as they are not compatible with the SC paradigm. Also, basic functions realizations have 

lower area requirements and thus a larger number of them may be implemented on-chip. 

Restricting all SC functionality on-chip makes communication interfaces on the chip 

boundaries obsolete, with the exception of possible chip-to-chip interfaces that will 

                                                      
17

 The NVIDIA GeForce GTX TITAN GPU has 2688 CUDA cores while the AMD Radeon HD 

7990 GPU has 4096 stream processors. 
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enable expanding the functionality on multiple chips. A simplified block diagram of the 

architecture is given in Figure 3.2. 

 

Figure 3.2. SC Fundamental Processing Element architecture simplified block diagram 

The limitation of this approach is obviously its restricted functionality. Nevertheless, it 

could be argued that it could serve as an intermediate step towards the final design. 

Provided that the background system tasks are developed for the Virtual SC design, they 

could be reused for this implementation. The functional difference of the two designs is 

the supported flexibility and the relative location of performing the computation. In 

essence, the extended functionality of the Virtual SC design is traded with the ability of 

having a standalone design that complies with the non-sequential rule of the SC 

paradigm.  

3.1.3 Reconfigurable Predetermined Processing Elements Array 

Having moved computation on-chip in the previous approach severely limited 

functionality. To address this issue a reconfigurable predetermined processing elements 

array
18

 can be used, essentially meaning that each transformation function can be pre-

mapped to custom logic and loaded on the reconfigurable logic on-demand. Since, after 

the SC source code is compiled, the initial required functional elements are known, those 

can be realized in a chosen on-chip area that is configured to perform the required form 

of computation. Provided that the required instructions do not imply a restrictive area 

overhead, this design can potentially support any predefined processing element. The set 

                                                      
18

 Analogous to the approach followed in the Molen reconfigurable processor (section 2.2.3) and 

a similar design providing an Algorithm-on-Demand implementation (relying on a host CPU, 

thus provided in a co-processor form) suggested in [249]. 
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of supported functions can be optimized for hardware implementation and can either be 

statically realized on chip or dynamically chosen from a pool of functions, stored either 

on-chip or off-chip (depending on size) in the form of configuration bitstreams. The 

architecture is shown in Figure 3.3. 

 

Figure 3.3. SC Reconfigurable Predetermined Processing Elements Array architecture 

simplified block diagram 

The limitations of this implementation are the area overhead due to the functional 

elements and the design complexity. Restricting the supported instruction set and the 

number of on-chip instances of processing elements could reduce the required on-chip 

area. The use of partial chip reconfiguration will inevitably lead to following vendor -

specific design methodologies that will restrict the design to a vendor-specific 

implementation (the vendor being the chosen FPGA platform supplier). The 

reconfiguration time highly depends on the size of the partial bitstream being loaded to 

the FPGA and the selected configuration mode
19

 and it can vary greatly (from the order 

of 10 μs down to the order of 100 ms) [162]. Thus, a low reconfiguration frequency must 

be assumed for this implementation to be functional.  

Another consideration is that a predefined array implies that a functional element can 

only be altered to become another already existing block in the provided function pool. 

                                                      
19

 For example, if a Xilinx Virtex FPGA is chosen, the maximum provided configuration 

bandwidth is 3.2 Gbps for the vendor-specific ICAP mode, and 100 Mbps and 66 Mbps for the 

more common Serial and JTAG modes, respectively [162]. 
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Assuming a limited number of different types of functions being realized for any given 

SC program, functions being changed during execution (as shown in [151] with the 

genetic operator adapter) is not essentially supported. Along with having a prearranged 

set of functions, a predetermined area of the chip will need to be pre-allocated in order to 

realize the partial reconfiguration functionality. This implies that, depending on the 

functions being realized, part of the reserved hardware resources may need to be unused. 

This design could potentially be the base of the final SC hardware implementation. The 

majority of the aforementioned limitations are bound to the restrictions imposed by the 

chip size. Further improvements will have to address chip-to-chip communication to 

resolve this issue. Any high level SC instructions will have to be mapped to hardware 

processing elements by a translation step on the software side that decomposes those 

instructions to basic instructions supported by the hardware instruction set.  

3.1.4 SC2HDL 

A SC to HDL tool would translate a SC program to a circuit that would be optimized to 

execute this program only. Effectively, this approach could maximize the on-chip 

hardware resources utilization. Also, it could be applied either for a predefined set  of 

instructions (following the first SC implementation) or, targeting a more generic and 

flexible approach, it could be developed as a high-level SC synthesis tool (following the 

SCoPE implementation). It is noted that following this approach, every SC program 

would result in a different custom design. 

This implementation would probably be the most flexible and area-aware. The size is 

again the limiting factor. This approach assumes that the user has acquired a license for 

the required tools that will manage the backend realization process (synthesis and PAR). 

The development process will require a conventional microprocessor to download the 

circuit on the FPGA. Extra care should be taken when developing the SC2HDL
20

 tool 

since, while the FPGA-vendor tools have been developed to make the backend tasks 

automated, user feedback input is typically required before having a fully-functional 

implementation. 

In order to realize any function, and thus get maximum flexibility, the high-level source 

code will have to be translated to an HDL. However, none of the SC language versions 

                                                      
20

 SC2FPGA might be more clear in describing the whole flow. SC2FPGA would insist of the 

SC2VHDL tool for the front-end and vendor-specific tools for synthesis and PAR. 
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to date provide inherently the ability to describe new functions, but rather, those are 

described by means of a software high-level language (C/C++) (either predefined in the 

code or dynamically created as plugins). This implies the need of a C2HDL compiler. A 

few C2HDL compiler attempts have already been made and the majority of them are 

commercially available [163], [164]. A viable solution for an SC2HDL tool would be to 

incorporate one of the available compilers and combine this with the vendor-specific 

tools. The main disadvantage of this approach would be the limited control of the 

resulting HDL. A possible solution to this issue would be to develop an intermediate tool 

that accepts the automatically extracted HDL code and alter it in a way that it is 

synthesizable and ensure that the backend tools will not encounter any problems, taking 

always into consideration the development speed of such an approach. Yet, this may be 

an infeasible task since further (especially automated) optimizations may be prohibited 

depending on the level of abstraction. 

3.1.5 GPUplusFPGA 

This is a rather novel approach. Since the power of a GPU performing background SC 

system tasks has been demonstrated in [165], the idea of reusing the advantages of this 

implementation is highly appealing. The GPU will still be used as a co-processor, but the 

place of the sequential processor will be taken by a pool of processing elements 

implementing on the FPGA. Various attempts can be found in the literature that use both 

FPGAs and GPUs as coprocessors [166], [167], even combining them on the same board 

[168], suggesting transferring the GPU logic on the FPGA [169], communicating directly 

through a PCI-Express switch [170] and translating directly a GPU programming 

language (CUDA or OpenCL) on FPGA resources [171][172]. Yet, all these attempts 

rely on a host CPU. Offloading computation on an FPGA that acts as a host for the GPU, 

illustrated in Figure 3.4, could be a potential solution for the SC hardware 

implementation but probably it would not be trivial. 

 

Figure 3.4. GPUplusFPGA architecture simplified block diagram 
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The main disadvantage would be the lack of supported tools for an implementation like 

this and the need for development of drivers for the GPU. The idea is to emulate the 

control flow provided by the CPU on a typical CPU-GPU system on the FPGA. 

Inevitably, the GPU-FPGA interface would have to be sequential and might even cancel 

the benefits of avoiding using a CPU when considering the development effort, FPGA 

required resources and limited flexibility due to lack of programming and debugging 

tools for a configuration like this.  

3.1.6 Summary 

The hardware systemic processor could potentially be implemented on an FPGA 

following one or more of the aforementioned ways. It is noted that combining more than 

one of those approaches (e.g. the first three) can result in a more modular design process. 

In contrast, the last two approaches can be considered as standalone solutions. 

Nevertheless, it should be underlined that there are overlapping design elements  for all 

approaches (the hardware realization of the SC background system tasks is required for 

all approaches except the last one while the SC2HDL tool could potentially be used for 

the Predefined Elements Array or the GPUplusFPGA approach). 

The main advantages and limitations of each approach are outlined in the preceding 

sections. It can be claimed that the most modular solution of going through the first three 

approaches is more feasible based on the required work load against the available time 

frame of this research project. The addition of the SC2HDL tool (or part of it - with 

support for a predefined set of instructions) can be reconsidered in the future as an 

expansion to this work. The last approach may not yet be feasible due to the lack of 

support tools. 

A fully non-sequential SC hardware implementation would not be practical since, even if 

the majority of on-chip logic could be combinatorial, the nature of the memory elements 

and the interfaces with the off-chip resources will have to be sequential. Also, chip size 

imposes limitations to the hardware resources that can be utilized in order to implement 

the required functionality of a SC program. The sequential alternative may need to be 

used (especially for a single-chip SC hardware implementation) in such cases. 

As a result of the analysis above, an appropriate solution would combine the  Virtual SC 

and the Fundamental Processing Element approaches by embedding dedicated processing 

elements on-chip but also providing the option of work-load offloading to an (internal or 

external) CPU in order to handle the functional (data-processing) system tasks. The 
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background system tasks are executed natively on-chip. The suggested hybrid design is 

illustrated in Figure 3.5 and detailed throughout the rest of this chapter. 
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Figure 3.5. The suggested hybrid design 

 

3.2 Design Analysis of the SC Architecture 

The proposed Hardware Architecture of Systemic computation (HAoS) attempts to 

satisfy the basic SC requirements, taking into consideration the desired features of a 

practical implementation: programmability, design friendliness, technology maturity, I/O 

functionality efficiency, advanced processing features, compiler support and scalability.  

It preserves partial backwards compatibility with the original SC implementation in 

order to take advantage of the available compiler but expands on the supported 

functionality by adding new features. Thus, SC source code targeting the original 

implementation (and the GPU-based version) can be natively executed on HAoS. 

The SC concept dictates that any three systems are eligible to form a valid triplet. A fully 

parallel implementation would generate a valid triplet of systems, in a random manner, 

for all contexts, in all scopes during an iteration of a SC program. In addition, all 

interactions would happen instantaneously, provided that adequate parallel processing 

resources were available. Resource limitations forbid a practical implementation of this 

approach on an FPGA. It is evident that the main two tasks that would ideally be 

executed in parallel are valid triplet generation (finding triplets of interacting systems) 

and system transformation (the actual data processing).  

This section mainly addresses research challenge Chg2, as it discusses various features 

of the SC architecture, and analyses their respective design decisions. Related natural 
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properties are also discussed (research challenge Chg1), where applicable, while as 

shown below practicality and efficiency are major decision factors (research challenge 

Chg3). 

3.2.1 Local Knowledge & Scope Definition Method 

One of the assumptions (and supported natural properties) of the SC paradigm is that 

systems have ―local knowledge‖. This can both refer to local storage of the internal state 

of each system and awareness in terms of its membership within other systems' scopes. 

However, local knowledge is a feature that cannot be efficiently mapped on on-chip 

logic. The system bit representation and the scopes it belongs to could potentially be 

stored in registers which do not reside in the same area of the chip. Yet, storing this 

information in local registers was not adopted but it was decided that the proposed 

design should store it in system RAM instead. The use of a RAM in this design is 

justified by the fact that RAM storage volumes are greater than those provided by 

registers in modern FPGAs and since no more fabric would need to be consumed for 

address decoding logic. Moreover, only a finite number of systems can be stored on a 

single RAM, which defines a neighbourhood for its systems, while the total number of 

systems can be spread over multiple RAMs. As a result, a potential failure in one of the 

RAMs would leave the rest of systems of the program unaffected.  

Apart from its binary contents, every system can belong to any number of scopes defined 

by other systems. In SCoPE [22], local knowledge is correctly simulated as each system 

holds a list of all its parents (the scopes it belongs to). In order to fully support this 

feature, HAoS would need to locally store the parents' information in registers, which 

would result in a considerable increase in the number of required on-chip registers as the 

number of maximum supported systems scaled up. It was decided that it is more 

important to preserve scalability (research challenge Chg3) than fully support local 

knowledge (research challenge Chg1), so the global scopetable approach was selected as 

the scope definition method, with the parents of each system stored in RAMs. 

3.2.2 Scopes Support 

In the original SC implementation (see section 2.4.1), scopes are infinitely recursive; 

they have fuzzy boundaries and may overlap. Recursive scopes may contain themselves 

and other systems which in turn contain themselves and other systems and so on. Fuzzy 

scopes enable partial membership of a system into another system while overlapping 

scopes partially belong to each other.  
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In this work, a system containing itself is supported but fuzzy or overlapping scopes are 

not. This decision was made in order to reduce the amount of required storage for the 

program scopetable. Enabling fuzzy or overlapping scopes would require a fractional 

value to be stored in the scopetable, increasing the number of bits to represent the scope 

membership. This would enable a more accurate control of interaction probabilities; 

however multiplying the size of the scopetable would limit scalability (research 

challenge Chg3). Thus, a one-bit representation was preferred, denoting that a system 

can either belong to a scope as a whole or not belong at all. The interaction possibility 

control can either be embedded in the implementation of the transformation function of 

the executed instruction (as shown in [22]) or by appropriately setting the number of 

identical systems in the scope (assuming all individual systems share the same 

interaction possibility). 

In SCoPE [22], the notion of the universe is also introduced to define a super-scope 

which includes all other systems in the SC program. The notion of universe here is 

analogous to the ―main‖ function of a typical conventional C program. This super-scope 

is indirectly supported and used in all HAoS programs to include all used systems of a 

HAoS SC model (yet allowing floating systems - systems that do not belong in any 

scope). The universe system can also have a physical meaning in future work, as it can 

be used to describe all the systems that are stored on a single FPGA device. For a multi-

FPGA configuration, each universe can correspond to one FPGA device, each with its 

own scopetable and systems. Then, all universes would belong to a root scope or 

―multiverse‖ (forming a multi-FPGA SC program) enabling communication between 

them with the form of mutual systems exchange. 

3.2.3 Valid Triplet Generation & Schemata Matching 

One of the main limitations of the software-based implementations was the way valid 

triplets were generated. The common strategy was to randomly select three systems (one 

of which acted as context) in a scope and then check triplet validity (by examining if the 

operand systems matched the schemata of the context). In [34], this task is assigned to 

the GPU which handles it in parallel, resulting in great performance gains. 

The most straightforward hardware implementation for the valid triplet generation 

mechanism would be a sequential design with an optimized comparator iteratively trying 

to match the templates defined by the schemata of the context system to all valid systems 

in the selected scope. This approach would result in minimal area utilization, as the same 

comparator would be reused for all comparisons, and possibly a very fast circuit as the 
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required combinatorial logic would be minimal too. However, the overall latency of such 

a sequential design would be increased proportionally to the number of systems and 

would prove impractical for SC programs involving a big number of systems.  

Thus, a parallel schemata matching mechanism is crucial for the design, if we want to 

minimize latency and handle valid triplet generation optimally (research challenge 

Chg3). In addition, as parallelism is one of the desirable natural properties, employing a 

parallel design would also address research challenge Chg1. Thus, in order to identify 

which systems may interact during each iteration of the systemic program, a parallel 

binary matching mechanism, matching the templates of context systems against the 

schemata of all interaction candidates, would be the most suitable solution. This 

essentially implies the use of a comparator which, given a binary input, has the ability to 

match this input (the template) against the contents of an array of elements (storing the 

systems) in a parallel fashion. In addition, it should also support full and partial 

matching, meaning that some parts may need to be ignored during comparison.  

These requirements for optimal valid triplet generation are fully satisfied by exploiting 

the inherent parallelism of a Ternary Content Addressable Memory (TCAM). While 

traditionally used Random Access Memories (RAMs), when provided with an address 

return the data stored in this address, CAMs compare their input data with the data which 

they store and provide all matching addresses in parallel. This is illustrated in Figure 3.6. 

Moreover, CAMs can be efficiently implemented on modern FPGAs, utilizing on-chip 

memory resources [173]. 

 
Figure 3.6. Typical RAM and TCAM usage  

Prior implementations compared each character of the given template of a context (see 

Figure 3.8) to the corresponding character of a candidate system separately, yet HAoS, 

by using a CAM, compares the given template as a whole (all its characters) with all the 
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systems that the program defines and gives all the matching systems in parallel (see 

Figure 3.7). Moreover, TCAMs have the ability to perform ternary comparisons, 

meaning that both the input and stored data can include ―don't care‖ bits. As shown in 

Figure 3.6, data stored in both addresses 0x02 and 0x07 of the TCAM match the input 

binary data word 00X01101 as its ―don't care‖ bit, written as an ―X‖ wildcard, can match 

both a 0 and a 1 bit. These features allow parallel partial schemata matching which 

enables a guaranteed match of systems to the schemata of the given context, provided 

there are such systems in the scope of the context.  

 

Figure 3.7. HAoS TCAM usage 

3.2.4 Threshold Matching 

As mentioned in section 2.4.1, the original SC implementation, along with partial 

matching, defines threshold-based matching in order to control the schemata matching 

precision by comparing the Hamming distance between the two schemata against the 

matching threshold. Effectively, this means that systems similar to the ones indicated by 

the schemata template can be selected to interact (the threshold adjusts the similarity).   

Since schemata matching is performed as a parallel operation in this design, as explained 

above, supporting this functionality would require an array of Hamming distance 

hardware blocks equal to the maximum number of supported systems instead of using 

the highly efficient and more compact solution of the TCAM.  

Thus, in order to minimize the area requirement of the circuit (research challenge Chg3), 

the TCAM was chosen instead, disabling threshold matching for HAoS. However, the 

user can use fixed-position wildcards in order to partially adjust the similarity (by setting 

the position in which the systems may be different but nevertheless match).  

3.2.5 Systems Representation & Coding Method 

As explained in section 2.3, the SC paradigm defines interactions between any two 

systems according to the transformation function of a third contextual system. Thus, 

HAoS supports three types of systems, as shown in Figure 3.8: (a) data systems, 

comprised of two schemata (with 16 effective bits each) and a zero (32-bit) function 
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part, (b) context systems, comprised of a (32-bit) transformation function and two 

schemata templates (used for matching with data systems and thus occupying the size of 

a whole data system, 64-bits, each but with zero transformation functions) and (c) 

context adapter systems which have the same structure with context systems (but each of 

their templates can match a data system or a context). Since all the systems have the 

same size, each bit in a schema of a data system is padded with three zero bits  to form a 

4-bit element or character. 

 

Figure 3.8. HAoS Systems Representation 

While the word length of the schemata (system templates) and transformation function is 

equal (16 one-byte characters) in the original implementation, as shown in Figure 2.13, it 

was decided that HAoS should adopt a different approach in order to optimize the 

required size of representing each system. Since a system template has to indicate a 

prototype for a whole system to match, it should have a size equal to the effective bits 

(which are the bits used for matching purposes) of this system. If schemata and 

transformation function had the same size, this would imply a compression scheme 

(compression of a whole data system, in order to have the same size with the template, 

by using only the effective bits of each schema) with compression ratio 3:1. This, then 

would denote that each character (or element) of the template should have at least three 

bits in order to be compressed into the minimum storage space (one bit).  However, four 

bits per character were selected instead, in order to resolve any byte-alignment issues 

that a choice of three bits might cause, simplify the control logic and, by providing a 4:1 

compression ratio, enable the use of a greater transformation function size. This allows 

more distinct instruction opcodes and provides more space for future uses (for example a 

variable part, see Table 3.3). 
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Table 3.1. HAoS Compression Code. Each HAoS assembly code ASCII character (C) is 

compressed internally into a 4-element ternary value (Val). Each element is composed of 2 

bits representing 0, 1 and (?) ternary bits (tbits)  

Val C Val C Val C Val C Val C Val C Val C Val C Val C 

0000 ! 0100 / 0?00 : 1000 @ 1100 I 1?00 R ?000 ` ?100 i ??00 r 

0001 # 0101 2 0?01 ; 1001 A 1101 J 1?01 S ?001 a ?101 j ??01 s 

000? % 010? 3 0?0? < 100? B 110? K 1?0? T ?00? b ?10? k ??0? t 

0010 & 0110 4 0?10 = 1010 C 1110 L 1?10 U ?010 c ?110 l ??10 u 

0011 * 0111 5 0?11 > 1011 D 1111 M 1?11 V ?011 d ?111 m ??11 v 

001? + 011? 6 0?1? [ 101? E 111? N 1?1? W ?01? e ?11? n ??1? w 

00?0 , 01?0 7 0??0 ] 10?0 F 11?0 O 1??0 X ?0?0 f ?1?0 o ???0 x 

00?1 - 01?1 8 0??1 ^ 10?1 G 11?1 P 1??1 Y ?0?1 g ?1?1 p ???1 y 

00?? . 01?? 9 0??? _ 10?? H 11?? Q 1??? Z ?0?? h ?1?? q ???? z 

In order to support this four bits per character compression scheme a different code table 

is used (given in Table 3.1) from the one used in the original SC implementation (shown 

in Figure 2.13). This code table is used to compress the SC assembly code which is 

generated from the SC compiler (in ASCII format) into a ternary format using 0, 1 and 

ternary (?) bits (matching both 0 and 1) to give machine code for the HAoS digital 

architecture. Each ternary bit is represented internally with two binary bits. 

3.2.6 The Compiler 

The SC compiler of the original SC version was written in C [24]. Targeting practicality 

and efficiency (research challenge Chg3), the compiler was updated to support the extra 

functionality that HAoS offers (context adapters, signed numbers), efficiently handle 

memory management for programs with a big number of systems and support the 

required compression code of Table 3.1. As the compiler program needs to be executed 

on a machine which is able to run compiled C code, the use of a conventional CPU is 

inevitable if this architecture is to remain backwards compatible with earlier versions.   

Once the SC source code is compiled in HAoS human-readable assembly code, the 

assembly code which corresponds to the systems which are defined in the HAoS 

program must be compressed (according to the HAoS compression code) into a 

representation which is tailored to the underlying hardware architecture (optimized 

HAoS machine code) and loaded on on-chip memory (see section 3.6.1). 

3.2.7 Interactions Order 

One of the fundamental properties of natural systems that SC supports is that they are 

stochastic (see section 1.1), denoting that interactions happen in a random order. All 

previous SC versions attempt to implement this property by randomly selecting the next 
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interacting systems, but result in just simulating the process. This is because the random 

selection should be combined with parallel execution of interactions or, even more 

accurately, there should be no selection but just random parallel interactions to truly 

implement the stochastic property. However, in practice, the random selection process is 

inevitable, as it is a means of controlling the systems interaction flow. This implies the 

requirement for a source of randomness and some associated circuitry (this random 

selection logic is presented later in section 3.6.2) to implement this process.   

This requirement for on-chip randomness denotes the implementation of a random 

number generation (RNG) scheme. RNG on FPGAs has been extensively addressed in 

the literature with approaches targeting pseudo-random numbers sequences (PRNG) 

[174], [175], usually involving some post-processing logic if non-linearity is required, 

true RNG (TRNG), which relies on some source of natural randomness (as thermal input 

or jitter from on on-board or on-chip ring-oscillators [176], [177]) and Quasi-RNG 

(QRNG) which covers some multi-dimensional space uniformly (usually used for 

Monte-Carlo simulations).  

Since typically more randomness quality involves more complex circuitry, a Linear 

Feedback Shift Register (LFSR) pseudo-random generator is assumed to be sufficient for 

random selection in HAoS, as it provides a well-balanced solution in terms of utilization, 

throughput and randomness [178] for non-security applications, especially as a starting 

point for  the suggested prototype implementation. The implementation of the PRNG 

block may be revised, should increased randomness quality is required, and replaced 

with one of the more advanced approaches mentioned above.  

Prior SC implementations used priority queues that either gave priority to systems that 

had recently interacted [24] (in order to increase execution efficiency by enabling a 

diffusion effect for subsequent interactions involving the same system) or had not 

recently interacted [136] (ensuring a more ―fair‖ interaction allocation since all systems 

share the same interaction probability). HAoS also uses a pseudo-random number 

generator to randomly identify valid triplets but this operation is not biased by previous 

interactions. All matching systems have the same interaction probability (resulting in 

reduced control logic complexity) while, as explained above, the use of the TCAM 

ensures maximum matching efficiency. While future work may target parallel processing 

capabilities, true parallel interaction is currently not supported by HAoS, since writing to 

the TCAM is limited to one system at a time in order to improve its area and enable 



Chapter 3. Designing a Suitable Hardware Architecture for SC 93 

 

 

ternary comparisons (assuming that parallel interactions would transform the interacting 

system simultaneously).  

A fully asynchronous design might enable the true implementation of the stochastic 

property, but such an implementation would require that all systems, matching and 

control circuitry and interconnections would be realized in combinatorial logic which 

would pose a great area requirement and increase the possibility of timing hazards [179]. 

However, it is noted that ongoing research is been carried on providing practical 

asynchronous FPGAs [180][181], conversion methodologies from synchronous designs 

to their functional asynchronous equivalents [182] and hybrid approaches like Globally 

Asynchronous Locally Synchronous [183] circuits. 

3.2.8 SC Architectural Features Summary 

The SC architectural features to be implemented by HAoS, and discussed in the previous 

sections, are summarized in Table 3.2 along with the corresponding solutions used by 

prior implementations. The analysis above addresses research challenge Chg2 by 

explaining how HAoS will support the underlying architecture of SC. 

Table 3.2. Implementation-specific features of HAoS and prior implementations 

Feature Original  SCoPE GPU HAoS 

Implementation 

Platform 

Software 

(CPU), 

written in C 

Software (CPU), 

written in C++ 

Software (CPU), 

hardware-

accelerated 

(GPU), written 

in CUDA  

Hardware (FPGA), 

written in VHDL, 

supporting software 

(CPU) extensions 

(C/C++) 

Word-length  

16-character 

word length,  

1 

byte/character 

(systems 

consist  of 48 

characters)  

variable length 

(1 byte/character), 

customizable for 

each program 

16-character  

word length,  

1 byte/ character 

(systems consist 

of 48 characters) 

16 4-bit characters 

schemata length, 

32 1-bit characters 

function length 

(systems consist 

of 64 characters) 

Coding Method 

characters of 

alphabet 29  

(ASCII 

characters 0,1 

and ' to z) 

customizable for 

each program 

(default is ASCII 

characters # and 

a to z) 

characters of 

alphabet 29  

(ASCII 

characters 0,1 

and ' to z) 

81 (3
4
)  

(4 ternary bits each, 

3 values each tbit) 

ASCII characters  

! to z excluding 

characters 0 and 1 

Transformation 

Function Set  

Thirty basic 

functions  

customizable for 

each program, 

functions defined 

as C++ plugins 

(DLLs) 

Thirty basic and 

seven hardcoded 

application-

specific 

functions 

Basic, hardcoded 

application-

specific and user-

defined functions 

support 
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Table 3.2.(Continued) Implementation-specific features of HAoS and prior implementations 

Feature Original  SCoPE GPU HAoS 

Schemata 

Matching 

Method 

Partial matching 

against thresholds 
Partial matching  

Partial matching 

against 

thresholds 

Parallel Partial 

matching  

Interactions 

Order 

Pseudo-Random 

(Biased – 

Prioritizes  

recently changed 

systems) 

Pseudo-Random 

(Biased – 

Prioritizes  

recently 

unchanged 

systems) 

Pseudo-Random 

(Biased – 

Prioritizes  

recently changed 

systems) 

Pseudo-

Random  

(Unbiased) 

Scope Definition 

Method 

Global Scope 

Table 

Local Scope 

Simulation 

(scopes 

including a 

system are part 

of its definition) 

Global Scope 

Table 

Global Scope 

Table 

 

As indicated by the design choices of the last column of Table 3.2, explained throughout 

this chapter, HAoS attempts to optimize the efficiency versus flexibility trade-off, 

providing the user with a flexible architecture which takes into consideration 

performance and programmability in order to provide a practical solution, addressing in 

this way research challenge Chg3. 

3.3 HAoS Instruction Set 

It is necessary to provide an instruction set for HAoS, and the solution proposed here is 

to use an on-chip hardware-supported RISC-like set of simple functions. Furthermore, in 

order to enhance flexibility, this core instruction set can be further extended by both 

extra hardware-supported application-specific instructions or software-implemented 

functions (see section 3.4). It is noted that a HAoS instruction does not share the 

definition of an instruction found in a conventional ISA but rather expresses the type of 

transformation that systems undergo when they interact. These interactions happen in a 

random manner; the execution probability of each SC interaction depends solely in the 

number and types of systems in the SC program.  

The instructions are given by the transformation function (middle) part of a system (see  

Figure 3.8). Their respective fields are explained in Table 3.3. In this prototype HAoS 

implementation, the transformation function is given by a 32-bit field. The first (LSB) 22 

bits give the function identifier, the next bit (at position ESC_BIT_POS) enables the 

hardware-supported escaping functionality (to be explained later) which can be executed 

in parallel with any instruction except the CAPTURE instructions (also to be explained 

later), the next 8 bits are reserved (they may be used to store variables as part of the 
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instruction) while the MSB enables the NOT functionality which reverses the matching 

requirement of an instruction (when enabled, the systems that do not match the provided 

schemata are selected). 

Table 3.3. HAoS Instruction Fields 

Bits Meaning 

FUNCTIONID-2..0 (21..0) Function Identifier 

ESC_BIT_POS (22) If Set Then system also escapes from parent scope 

FUNCTIONSIZE-2..ESC_BIT_POS+1(30..23) Reserved (variable part) 

FUNCTIONSIZE-1 (31) If Set then the matching requirement is reversed 

The prototype implementation of HAoS supports the instruction set given in Table 3.4. It 

is noted that this is an example instruction set, as more instructions can be supported 

according to user requirements. Table 3.4 comprises three sections: the SC Core 

hardware instructions which are supported natively from HAoS Function Unit  (these 

were supported in software by the prior fixed instruction-set SC implementations 

[24][34]), SC Extra instructions, which are also implemented on-chip but can be 

application-specific or realized outside the FU (e.g. on dynamically reconfigurable fabric 

or DSP blocks) and software-based instructions implemented on the (on-chip or off-chip) 

CPU (these instructions are defined to have an opcode above a predetermined threshold 

in order to simplify HAoS control logic).  

Table 3.4. HAoS Instruction Set 

Mnemonic Code(hex) Short Description 

Context 

Adapter 

Flag 

Operation 

SC Core HW Functions 

NOP       0000000F No Interaction - 
(Non-zero to differentiate from data 

systems) 

ESCAPE    0040000F 

System escapes from parent scope 

to all scopes the parent scope 

belongs to  

- Scopetable manipulation 

ADD       00000001 
Add schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 + sys2.sch2; 

sys2.sch2 = 0; 

     

SUBTRACT  00000002 
Subtract schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 - sys2.sch2;  

sys2.sch2 = 0; 

     

MULT      00000003 
Multiply  schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 * sys2.sch2;  

sys2.sch2 = 1; 

DIV       00000004 
Divide  schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 / sys2.sch2;  

sys2.sch2 = 1; 

MOD       00000005 
Modulo of  schematas of 

interacting systems 
- 

sys1.sch2 = sys1.sch2 % sys2.sch2;  

sys2.sch2 = 1; 

     

ISZERO    00000006 
Check if schemata of system is 

zero 
- 

if sys1.sch2 = 0 =>  

SET sys1.sch1[schematasize-1] 

AND       00000007 
AND  schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 AND sys2.sch2;  

sys2.sch2 = sys1.sch2 AND sys2.sch2; 
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Table 3.4. (Continued) HAoS Instruction Set 

Mnemonic Code(hex) Short Description 

Context 

Adapter 

Flag 

Operation 

SC Core HW Functions 

OR        00000008 
OR  schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 OR sys2.sch2;  

sys2.sch2 = sys1.sch2 OR sys2.sch2; 

XOR       00000009 
XOR  schematas of interacting 

systems 
- 

sys1.sch2 = sys1.sch2 XOR sys2.sch2;  

sys2.sch2 = sys1.sch2 XOR sys2.sch2; 

COPY      0000000A Copy parts of interacting systems 

00 
sys1.sch1 = sys2.sch1;                   

sys1.sch2 = sys2.sch2; 

01 sys1.function = (sys2.sch2,sys2.sch1); 

10 sys2.function = (sys1.sch2,sys1.sch1); 

11 sys1.function = sys2.function; 

ZERO      0000000B Zero parts of interacting systems 

00 
sys1.sch1 = 0;   sys1.sch2 = 0;    

sys2.sch1 = 0;   sys2.sch2 = 0; 

01 sys1.sch1 = 0;   sys1.sch2 = 0; 

10 sys1.sch1 = 0;   sys1.sch2 = 0; 

11 
sys1.function = 0;   

sys2.function = 0; 

CAPTURE   0000000C 

System is removed from parent 

scope and captured to capturing 

scope  

- Scopetable manipulation 

SC Extra HW Functions 

ADDxc 00000011 Add schematas & exchange - 
sys1.sch2 = sys1.sch2 + sys2.sch2;  

sys2.sch2 = sys1.sch2; 

ADDuc2 00000012 
Add schematas but keep the second 

unchanged 
- sys1.sch2 = sys1.sch2 + sys2.sch2; 

SC Example CPU Functions (Above SC_SW_THRESHOLD=512) 

XESCAPE 00000200 
Software emulation of ESCAPE 

task 
- Scopetable manipulation 

XCAPTURE 00000201 
Software emulation of CAPTURE 

task 
- Scopetable manipulation 

PRINT 00000202 Print system in standard output - - 

POWER 00000203 Exponentiation - sys1.sch2 = math.pow(sys1.sch2,sys2.sch2) 

ROOT 00000204 Arithmetic root - 
sys1.sch2 = 

math.pow(sys1.sch2,(1.0/sys2.sch2)) 

KNAPSACK* 00000280 
Knapsack Problem Related 

Functions 
- - 

For each instruction, its mnemonic (codename), opcode (in hexadecimal notation), a 

short description of the interaction they represent based on the Context Adapter Flag 

(discussed below) and its operation (their effect on the state, data and scope of the 

interacting systems) are given in the respective columns of Table 3.4. For example, the 

Multiply instruction has MULT as a mnemonic, its opcode is 0x00000003 while schema 
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2 of system 1 (sys1.sch2) gets the product of the multiplication of the schemata 2 of both 

systems (sys1.sch2 * sys2.sch2) while schema 2 of system 2 is set to 1 (sys2.sch2 = 1). 

Various systems parts are altered after an interaction according to the Operation column. 

For some instructions there is the option to define a different type of interaction 

depending on the type of the two interacting systems. This option is controlled by the 

Context Adapter Flag - CAF (4th column). The CAF is a 2-bit field which states the 

types (data or context) of the interacting systems. Each bit corresponds to one of the 

system templates of a context adapter system (see Figure 3.8c). The LSB corresponds to 

template 1 while the MSB corresponds to template 2. A set bit in the CAF implies a 

context system template while a zero bit implies a data system template.  

Thus, a context system is essentially a context adapter system with both its system 

templates representing data systems (CAF = 00). When CAF is 01 or 10, the context 

adapter system is in mixed mode with a data system interaction with a context system 

and vice versa respectively, while when CAF is 11 two context systems interact.  

Two instructions are SC-specific and perform scopetable manipulation meaning that they 

alter the relationship or membership [24] of one system to another. These two 

instructions are ESCAPE and CAPTURE and are both optimized to be executed natively 

in HAoS.  

The ESCAPE instruction moves the escaping system (which, by convention, is the 

system that matches template 1) one level up in the membership hierarchy by removing 

it from its parent scope (which is the active scope for the interaction)  and then inserts it 

to all the scopes that the parent scope belongs to (or parent scopes of its parent scope or 

in short the grandparents). The grandparents are conveniently provided in parallel (as a 

bus of length equal to the maximum number of scopes with set bits at the positions of  the 

grandparents), as a part of the scopetable (SCOPES OF SYSTEM - see Figure 3.11). The 

ESCAPE task is further optimized by avoiding looping through all the possible scopes to 

identify the grandparents but rather only the positions of set bits are selected (using 

BITPOSSEL, see section 3.6.2) resulting in great performance gain.  

The CAPTURE instruction, as the name implies, is the reverse of the ESCAPE task 

where the captured system is removed from its parent scope and added in the scope of 

the capturing system(s) which are selected based on matching template 2 of the 

CAPTURE system. A less efficient software implementation of the scopetable 

manipulation tasks is also provided to the user as an option (see Table 3.4).  
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3.4 HAoS Architecture 

Having provided an overview of the HAoS design and justified the choices with respect 

to the research challenges, this section provides more detail of the implementation of the 

architecture. HAoS consists of the SC core (CORE), the Control Unit (CU), the 

Functional Unit (FU) and a set of configuration and data registers (REG BANK) for 

communication with the optional CPU (see Figure 3.9).  

 

Figure 3.9. HAoS Top-Level Architecture 

The CORE contains the optimized logic for the parallel schemata matching and the 

memory elements. The CU handles the execution sequence of the SC program and the 

communication with the optional CPU. The REG BANK provides a control and debug 

interface between the CPU and the local registers of the SC sub-modules. The FU 

provides basic local processing functionality. A set of simple instructions is supported to 

avoid expensive data transfers between the REG BANK and the CPU. The prototype 

implementation includes only one FU, but future implementations can take advantage of 

the plethora of DSP processing cores which are available on the FPGA, and give the 

option to be used as a simple ALU each, to provide multiple parallel processing 

resources. 

The CPU is provided to the system in order to make more complex high-level functions 

available. This functionality was available only in SCoPE [136], since the other 

implementations had a fixed instruction set. This hardware architecture increases 

flexibility by letting the user define new instructions, when this is necessary, in an 

unrestricted way. The SC compiler, which preserves backwards compatibility with the 
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compiler presented in [24], is written in C and translates SC source code in SC assembly. 

Apart from the extra usability, the CPU in the prototype design is used to load the SC 

assembly code into the memory elements of the CORE during initialization or in the case 

of a hardware reset. A possible enhancement would be to provide the option for 

assembly loading through an external memory card, thus making the CPU link 

completely optional, depending on the high-level functionality requirements of the user. 

The CPU can reside either on the FPGA, with the form of a soft IP processor 

communicating with the design using a shared internal FPGA bus, or be an external 

conventional processor connecting to the design through a standard communication 

interface, as illustrated in Figure 3.9. Since the main SC program runs on the FPGA, the 

CPU is used as a co-processor in HAoS. 

A further performance and flexibility boost could be achieved if we take advantage of 

the reconfigurability capabilities provided by the FPGA (see section 3.1.3). A set of user 

defined pre-synthesized hardware functions can be stored on an external memory and 

dynamically loaded when needed. This technique could be applied for applications that 

do not frequently change the function part of contexts as reconfigurability speeds are 

quite low and would require the use of an embedded CPU to handle the reconfiguration 

of a reserved area on the FPGA. 

3.5 The Control Unit 

The CU handles the flow of the user-defined SC program. As systems can never be 

destroyed, the program runs in theory indefinitely, although practically it halts when 

systems become stable and no further interaction is possible
21

. The main control flow for 

each iteration of the program can be seen in Figure 3.10. 

Upon a hardware reset, the SC assembly code is loaded into the core. For each iteration 

of the SC program, four consecutive steps are performed. A scope is randomly selected, 

and then a valid triplet of systems is randomly chosen, the selected systems are retrieved 

from memory, they interact (the actual computation is performed) and then the outcome 

of the interaction (the computation results) is written back to memory (the random 

system selection logic is described in the next section). At the end of each iteration, the 

user is granted access to pause execution. This optional step is mainly provided in order 

to facilitate the extraction of debug information. All the optimized low-level SC micro-

                                                      
21

 This implies a closed system. The halting mechanism may be disabled for a SC program with 

an open system which might receive input or communications from an external source. 
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routines (for scope and memory manipulation) are available to ensure maximum 

flexibility. 

 

Figure 3.10. HAoS Program Control Flow : HAoS enters an infinite computation loop after 

the SC program is loaded, which involves finding valid triplets and transforming the 

selected systems 

Various optimizations have been applied in order to ensure optimal performance. When 

the selected context system gives a mismatch, meaning that both its schemata do not 

match any two systems in the scope, it gets disabled and becomes an invalid context for 

this scope to prevent future mismatches (see next section). Moreover, once a scope is 

selected, if it contains less than three systems or of it does not contain any valid contexts 

(any contexts that have not recently given a mismatch), it  also gets disabled and becomes 

an invalid scope until a new system is added to it. If all scopes have been disabled, no 

further transactions can occur and the program halts.  

3.6 The SC Core 

The CORE is mainly responsible for the efficiency of the design due to the way it 

handles the task of schemata matching. Its main components are the various memory 

elements including the TCAM, the system memories, the scopetable memories, the 

system status registers and the random selection logic, as illustrated in Figure 3.11.  
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Figure 3.11. HAoS Core basic building blocks  

 

3.6.1 The Core Memory Elements 

The full contents of a system are stored in two separate RAMs, one of them holds the 

binary part while the other stores the ternary part (the ―don't care‖ bits). Since the 

function part of a system is always binary, it is not stored in the ternary RAM. The 

various parts of a system are located in the same address in all memories in order to 

simplify the required address-decoding logic. 

The global scopetable information is stored in three RAM-based structures. One of them 

stores the systems that belong in each scope at the corresponding to the scope address, 

the second stores the scopes that each system belongs to at the corresponding to the 

system address while the third stores a mask for all the invalid contexts in a scope. The 

first two structures, although effectively storing the same information, provide parallel 

access to two different aspects of the scopetable (systems in scope and parent scopes of a 

system). 

The TCAM is loaded with the regions of the systems, which may be compared (see 

Figure 3.12), during initialization. For data systems, the function part is always zero, so 

only the binary representation of their two schemata may be compared while for context 

systems only their function part (which is double the size of a schema) may be 

compared. This implies that context systems can interact with other context systems or 
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data systems, which greatly enhances functionality since it denotes that context adapting 

(where context systems can interact with other systems and be changed) is supported (a 

feature only supported previously in the highly flexible SCoPE implementation). Context 

adapter systems may not interact with other systems in HAoS. The restriction of 

comparing only parts of a system is posed by the fact that the TCAM resource 

requirements increase really fast when the maximum number of supported systems is 

scaled up. 

 

Figure 3.12. The TCAM contents: Filled with the systems' regions that may be compared  

 

3.6.2 The Random Selection Logic 

The random selection logic (RSL) accepts a bus as an input and returns the address of a 

randomly selected set bit. It consists of an optimized module that counts the set bits of 

the bus, a maximal-length Linear Feedback Shift Register (LFSR) for pseudo-random 

number generation, a combinatorial divider (which also performs integer division when 

required in the Transform state - see Figure 3.10) and a module (BITPOSSEL) that given 

a bus and the rank of a set bit of this bus (the position of the set bit with rank 2 is 3 in 

01001101 - when rank starts from 0 and position 0 is the rightmost one), it returns its 

position (inspired from an optimized implementation found in [184], combining a 

parallel bit count and branchless selection method). A random number, provided by the 

LFSR, is divided by the sum of the set bits of the bus. The remainder of this division is 

used as the rank of the random set bit that is given to BITPOSSEL in order to identi fy its 

position.  

Counting the Set Bits 

The COUNTONES block design implements a counter of the set bits of the input bus 

(also known as sideways sum or population count [185]) using a divide-and-conquer 

approach (inspired by a low-level software optimization presented in [184]). The parallel 

bit-count is performed in log2N steps for an N-bit wide input bus (where N is a power of 

two). In each step, the sum of adjacent groups of bits is calculated - the length of the 
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groups of the first level is 2 and is doubled for every successive step. In the final step, 

the total set bits sum is accumulated on the least significant bits of the bus.  

This parallel bit count mechanism is illustrated in Figure 3.13 for an example 16-bit 

input bus. Adjacent bits are summed to formulate the 2-bit fields in step 1. The resulting 

pairs of bits are then summed to formulate the 4-bit bit-groups is step 2 which are in turn 

summed to give the 8-bit sums of step 3. This is repeated until the final step 4, when the 

final sum of set bits of the input bus (6 in this example) has been accumulated in the 

LSBs of the output.  

 

Figure 3.13. Parallel Bit Count Example. Adjacent bit groups are summed in successive 

steps until the sum of all set bits is accumulated in the LSBs of the output. Using the partial 

sums enables positioning a set bit given its rank (counting from right to left and starting 

from 0) 

The summation of the adjacent bit groups is implemented by first masking the right 

group of bits in each bit group pair, then right shifting the bus by a number of bits equal 

to the length of each bit group for the specific step and then masking the shifted version 

and adding the two values.  

This mask-and-shift approach is illustrated in Figure 3.14 explaining how the adjacent 

bit-groups are summed in the first two steps of the example of Figure 3.13. Each step has 

an associated mask (to isolate the target bit-group) and a related shifting constant. For 

step 1, the mask follows the pattern 0x0505 and the shifting constant is 1. The two 

versions of the input bus which are added to get the output of step 1 are obtained: one by 

ANDing it with the mask and the other by shifting it by the shifting constant  (1) and then 
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masking it. The same actions are performed in each step. As shown in Figure 3.14, in 

step 2 the mask follows the pattern 0x0303 and the shifting constant is 2. 

 

Figure 3.14. Shift-and-Add implementation of the parallel bit-count mechanism (only two 

steps shown). A mask and a shifting constant correspond to each step. Two versions of the 

input of each step are obtained and added: one by masking it and the other by first shifting 

it and then masking it     

Effectively with this method we position the left bit group in each adjacent bit group pair 

under the right one in order to perform the addition of their set bits. The approach is 

scalable to any input bus width. However, the implied adder tree for long input buses 

will increase the latency of the unit when implemented in a purely combinatorial way. 

However, this does not impose a problem, as the critical path of the COUNTONES block 

can be refined using pipelining later, being fine-tuned according to the critical path of 

the whole design.  
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The hardware divider implements a slightly modified restoring division algorithm. 
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positive), they set the corresponding bit in the quotient and pass the difference in the 

next stage. If the difference is negative, the result is restored to the value of the partial 
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divider of the RSL, both the comparison and the subtraction are performed by the same 

logic. Left-shifted versions of the divisor are given as input to the successive (16 in this 

prototype) stages of the division logic, each stage being responsible for generating one 

bit of the quotient. The remainder of the division is the (positive) comparison result of 

the last stage. Where typical restoring division implementations add the divisor back to a 

negative comparison result in order to restore a negative intermediate result to a positive 

value (as only positive values are propagated to the next stage), in this design a 

multiplexer is used instead. A block diagram of the divider (excluding some logic 

handling signed numbers), its individual stages and their corresponding inputs are given 

in Figure 3.15.  

 

Figure 3.15. HAoS Divider based on a modular approach. Each stage gives one bit of the 

quotient. The design essentially unrolls the loop of the classic shift-and-subtract method and 

can be further fine-tuned to balance its latency and throughput 

As opposed to restoring division algorithms, non-restoring algorithms waive the 

restriction of accepting only positive partial remainders, saving the restoring step. 

However these algorithms need an additional step in the final stage to restore a possible 
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negative final remainder. Both restoring and non-restoring algorithms belong in the digit 

recurrence family of algorithms [186] which generally rely on subtraction to perform 

division. Other approaches involving pre-normalization of the division operands (SRT 

algorithms) and/or use of higher radixes to give multiple quotient bits in each step are 

also commonly found in the literature along with division algorithms based on 

multiplication (division by convergence or reciprocation using Taylor series expansion 

and Newton-Raphson or Goldschmit approximation) [187][188]. The non-restoring 

algorithm was selected to implement the required divisions in HAoS due to its 

simplicity, scalability and the ability to easily fine-tune its critical path according to the 

overall latency of the complete design at a later stage. 

Random Number Generation 

The choice of using an LFSR for random number generation is discussed in section 

3.2.7. The implementation of the LFSR is straight-forward as it typically involves a shift 

register either with a feedback line to one of its most or least significant bits, resulting by 

XORing some of its bits, called taps, for external feedback (Fibonacci LFSRs), or 

XORing the bits in the tap positions with the serial output resulting this way in internal 

feedback  (Galois LFSRs) [174]. The arrangements of the taps correspond in finite field 

arithmetic to a polynomial mod 2 (its coefficients may be 0 or 1). The LFSR will be 

maximal-length (with maximum period before the output repeats) for a set of well-

defined primitive polynomials [189]. HAoS uses a Fibonacci LFSR and its design 

ensures the maximal-length property for any number of maximum supported systems as 

it always implements an appropriate primitive polynomial. 

 
Figure 3.16. 16-bit Fibonacci and Galois type LFSRs 
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Finding the position of a set bit given its rank 

The BITPOSSEL block returns the position of a set bit of its input bus given its rank 

again based on a divide-and-conquer approach, similar to the one discussed above for 

counting the set bits. Using Figure 3.13 to explain the operation of BITPOSSEL for an 

example input bus of 16 bits, we again perform a parallel bit count keeping all the 

intermediate steps. As seen in Figure 3.13 the input value is 0100110010011000. As 

previously mentioned, the desired rank is the remainder of the division of a random 

number from the LFSR with the sum of set bits from COUNTONES. For this particular 

example, we will suppose that the desired rank is 3 (starting counting from 0).  

Since the partial sums are known for each step in Figure 3.13 (the selected bit-groups in 

the following analysis are highlighted with a bold outline), starting from bottom up 

(from the last step), we set a virtual pointer (which will hold the position of the desired 

bit according to the rank in the end) at position 0 and then the desired rank is compared 

with the total number of set bits. Since the rank is less than the total sum, we move to the 

previous step (if it was greater or equal, that would imply that there would not be a set 

bit corresponding to the requested rank). Looking at step 3 of Figure 3.13, three set bits 

(00000011) exist on the left half of the bus and another three on the right half. If the 

requested rank is less than the bit sum of the right group, it means that the targeted set 

bit is part of that group. In this case we would select that group and leave the virtual 

pointer unchanged. However, since for our example the desired rank is 3, this implies 

that the requested bit lies on the left half. When the desired rank is greater or equal to the 

sum of the right (least significant) bit group, we select the left group, we move the 

virtual pointer at the middle (add to it a value equal to the length of each bit group at the 

current step - at step 3 the length is 8) and subtract the bit sum of the right half from the 

rank. So, now the virtual pointer gets the value old virtual pointer + bit-group length = 0 

+ 8 = 8 and the rank becomes old rank - right group sum = 3 - 3 = 0.  

Following the same methodology, moving to the previous step (step 2), the rank (now 0) 

is less than the bit sum of the right part (which is equal to 2), so the right part is selected 

and both the rank and the virtual pointer remain unchanged (rank = 0, pointer = 8). In the 

next step up (step 1 with bit-group length 2), the rank is equal to the sum of the right part 

(which is 0), so the left part is selected, the rank becomes old rank - right group sum = 0 

- 0 = 0 and the virtual pointer gets the value old virtual pointer + bit-group length = 8 + 

2 = 10. In the last step examining the input bus, the rank (0) is less than the right bit (1), 

so that bit is selected and the virtual pointer remains unaltered giving its position (10). 



Chapter 3. Designing a Suitable Hardware Architecture for SC 108 

 

 

As easily noticed, this bit is the targeted bit with rank 3 and the virtual bit position 

pointer contains its location (counting from right to left the bit with rank 0 is at position 

3, the bit with rank 1 is at position 4 and bit with rank 2 is at position 7). 

RSL functionality 

The function of the RSL (the result of the selection) is controlled by a multiplexer 

(MUX) which feeds the RSL with one out of five possible input buses (see Figure 3.11). 

When we need to choose a system that matches the first schema of the context , the input 

bus (SCH1) is generated by ANDing the output of the TCAM with valid SYSTEMS IN 

SCOPE (which of them are valid depends on the type of the context system and is 

identified based on the SYSTEM STATUS REGS). The same bus is used for the second 

schema match (SCH2) after masking out the selected system for SCH1 (a system may 

not interact with itself). When a random scope is needed the input bus (SCOPES) is the 

result of ANDing valid scopes (scopes with more than two systems) with scopes with 

contexts (scopes that are not disabled at that time). Finally, when we need to randomly 

identify a context in a previously selected scope, the input bus of the SRL is generated 

by ANDing the contexts in the scope (ISCONTEXT status register AND SYSTEMS IN 

SCOPE) with INVALID CONTEXTS IN SCOPE (in order to mask out previously used 

contexts that resulted in a mismatch). The fifth input of the MUX serves a low-level 

optimization for the ESCAPE task, as mentioned in section 3.3. 

3.7 Programming HAoS 

The HAoS programming model is based on the one of the original implementation [24]. 

This decision was made in order to retain backwards compatibility with prior 

implementations and take advantage of the available SC language definition and 

accompanying compiler. The SCoPE platform [190] was also considered, but it was 

decided that the original version was more suitable for the prototype HAoS architecture 

due to its simplicity and more hardware-suitable resulting assembly code. However, 

some functionality of the SCoPE platform (like high-level function plugins generation) is 

supported by HAoS to increase its user-friendliness and flexibility. The SC source code 

(see Listing 3.1) of the simple PRINT((A1-A2)*(A3-A4)) program that was discussed in 

section 2.3 (Figure 2.11A-C) is given below as a programming example.  

The user should first state the transformation functions which are embedded in the 

context and context adapter systems of the program. This is done by using the keyword 

―function‖, the name of the function and its 32-bit binary opcode (Listing 3.1, lines 4-6).  
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1.  #systemic start 

2.   

3.  // define the functions 

4.  #function SUBTRACTe %b01000000000000000000001000000000 

5.  #function MULT      %b11000000000000000000000000000000 

6.  #function PRINT     %b01000000010000000000000000000000 

7.   

8.  // define some useful labels 

9.  #label dontcare   %b???????????????? 

10. #label num1       %b1000000000000000 

11. #label num2       %b0100000000000000 

12. #label num3       %b1100000000000000 

13. #label num4       %b0010000000000000 

14. #label scp        %b1111111111111111 

15.  

16. #label zero       %b00000000000000000000000000000000 

17.  

18. // and the program begins here: 

19. main (scp %d0 %d0) // system 0 

20. // system 1 

21. minus ([num1 zero dontcare] SUBTRACTe(0,0) [num2 zero dontcare])  

22.  

23. c1 (scp %d0 %d1)      // system 2 

24. data1 (num1 %d0 %d10) // system 3 

25. data2 (num2 %d0 %d3)  // system 4 

26.  

27. #scope c1 

28. { 

29.    data1 

30.    data2 

31.    minus    // 10-3=7 

32. } 

33.  

34. c2    (scp %d0 %d2)   // system 5 

35. data3 (num1 %d0 %d16) // system 6 

36. data4 (num2 %d0 %d4)  // system 7 

37.  

38. #scope c2 

39. { 

40.    data3 

41.    data4 

42.    minus      // 16-4=12 

43. } 

44.  

45. // system 8: 12*7=84 

46. times  ([num1 zero dontcare] MULT(0,0) [num1 zero dontcare])  

47. output ([num1 zero dontcare] PRINT(0,0) [num1 zero dontcare]) //sys 9 

48.  

49. #scope main 

50. { 

51.    c1 

52.    c2 

53.    times 

54.    output 

55. } 

56.  

57. #systemic end 
                                                    

 

Listing 3.1. HAoS Source Code Example: PRINT((10-3)*(16-4)) 

Then the user can optionally define labels (Listing 3.1, lines 9-16), equivalent to 

constants of conventional programming languages, which can be used instead of 
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frequently used immediate values. Then, the systems and scopes are defined.  Data 

systems are defined by their name and the values of their schemata while their function 

part is always zero (Listing 3.1, lines 19, 23-25, 34-36). Context systems define their 

schematas either by using the data system definition method (Listing 3.1, lines 21, 46-

47) or by referencing other data systems.  

// number of functions 

3 

// number of systems 

10 

// scope table 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

// function definitions 

SUBTRACTe 01000000000000000000001000000000 

MULT 11000000000000000000000000000000 

PRINT 01000000010000000000000000000000 

// system definitions 

1111111111111111 00000000000000000000000000000000 0000000000000000 

@!!!!!!!!!!!zzzz 01000000000000000000001000000000 /!!!!!!!!!!!zzzz 

1111111111111111 00000000000000000000000000000000 1000000000000000 

1000000000000000 00000000000000000000000000000000 0101000000000000 

0100000000000000 00000000000000000000000000000000 1100000000000000 

1111111111111111 00000000000000000000000000000000 0100000000000000 

1000000000000000 00000000000000000000000000000000 0000100000000000 

0100000000000000 00000000000000000000000000000000 0010000000000000 

@!!!!!!!!!!!zzzz 11000000000000000000000000000000 @!!!!!!!!!!!zzzz 

@!!!!!!!!!!!zzzz 01000000010000000000000000000000 @!!!!!!!!!!!zzzz 

 

Figure 3.17. Human-readable HAoS Assembly Code for PRINT((10-3)*(16-4)) Example 

Program 

Their transformation function is defined by referencing one of the declared functions. 

Context adapter systems are defined as context systems do, but their schemata can also 

be a context system prototype (having a non-zero function). Two numeric fields (in 

parentheses) follow the function of a system. These were used in the original version to 

define the matching thresholds and are preserved here for backwards compatibility. All 

functions support the (matching polarity) NOT functionality (see section 3.3) by having 

an exclamation mark following the parentheses. By convention, all functions that include 

the ESCAPE functionality (see end of section 3.3) have the suffix -e (SUBTRACTe 

denotes the ESCAPE-enabled SUBTRACT function). 
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A scope is defined by the ―scope‖ keyword and the systems that belong to it in brackets 

(Listing 3.1, lines 27-32, 38-43 and 49-55). It is noted that all systems, regardless of 

their type, have a scope, meaning the ability of including other systems within them. If 

the scope of a system is not defined in the program, then this system does not contain 

any other system, and all its corresponding entries in the scopetable are zero.  

When the source code of Listing 3.1 is compiled, the annotated HAoS assembly 

language of Figure 3.17 is generated. As mentioned in the compiler related discussion of 

section 3.2, the parts of the assembly code that are loaded on HAoS are the global 

scopetable and system definitions. The scopetable, which contains a number of rows and 

columns equal to the maximum number of supported systems (equal to 64 for this 

prototype HAoS implementation), is partially shown in Figure 3.17 as the remaining 

entries are all zero. Context schemata are compressed according to the mapping given in 

Table 3.1. 

    

SUBTRACTe {HAoS}:  

sys1@3(sch1:1,k:0,sch2:10) - sys2@4(sch1:2,k:0,sch2:3) =>  

sys1(sch1:1,k:0,sch2:7),sys2(sch1:2,k:0,sch2:0)  <sc:2,cxt:1,it:1> 

SUBTRACTe{HAoS}:ESC:sys(3) from scope(2) to scope(s)(pos:0)  

<sc:2,cxt:1,it:1> 

SUBTRACTe {HAoS}:  

sys1@6(sch1:1,k:0,sch2:16) - sys2@7(sch1:2,k:0,sch2:4) =>  

sys1(sch1:1,k:0,sch2:12),sys2(sch1:2,k:0,sch2:0)  <sc:5,cxt:1,it:2> 

SUBTRACTe {HAoS}: ESC : sys(6) from scope(5) to scope(s)(pos:0)  

<sc:5,cxt:1,it:2> 

PRINT     {CPU}: sys2@6{12:-:1}, sys1@3{7:-:1} <sc:0,cxt:9,it:3> 

PRINT     {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:4> 

PRINT     {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:5> 

PRINT     {CPU}: sys2@3{7:-:1}, sys1@6{12:-:1} <sc:0,cxt:9,it:6> 

PRINT     {CPU}: sys2@6{12:-:1}, sys1@3{7:-:1} <sc:0,cxt:9,it:7> 

MULT      {HAoS}: sys1@6(sch1:1,k:0,sch2:12)* sys2@3(sch1:1,k:0,sch2:7) 

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1)  <sc:0,cxt:8,it:8> 

PRINT     {CPU}: sys2@6{84:-:1}, sys1@3{1:-:1} <sc:0,cxt:9,it:9> 

PRINT     {CPU}: sys2@6{84:-:1}, sys1@3{1:-:1} <sc:0,cxt:9,it:10> 

MULT      {HAoS}: sys1@6(sch1:1,k:0,sch2:84)* sys2@3(sch1:1,k:0,sch2:1) 

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1)  <sc:0,cxt:8,it:11> 

MULT      {HAoS}: sys1@6(sch1:1,k:0,sch2:84)* sys2@3(sch1:1,k:0,sch2:1) 

=> sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1)  <sc:0,cxt:8,it:12> 

     

 

Figure 3.18. HAoS Sample Output from the Simulation Environment for the PRINT((10-

3)*(16-4)) Example Program 
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Finally, a sample of the output (with extended debugging information obtained by the 

verification environment - section 3.8.1) of the example program, discussed above, is 

shown in Figure 3.18. The annotations from Figure 3.18 and Listing 3.1 are given in 

different font without parentheses in the analysis below for clarity. 

At iteration 1 it:1, the system defined at position 1 (indexes start at 0), called from now 

on system 1 for simplicity, is selected as context cxt:1 in the scope of the system at 

position 2, called from now scope 2, sc:2. System 1 is the second system under 

―systems definitions‖ in Figure 3.17 and corresponds to the system which is called minus 

and defined at line 21 of Listing 3.1. Once the context and active scope systems are 

selected HAoS performs a number of actions, listed below: 

 Two data systems are selected according to the schemata of the minus context.  

 System 3 is selected as the first interacting system sys1@3 because its definition 

data1 (num1 %d0 %d10), Listing 3.1, line 24 - also found as 

(sch1:1,k:0,sch2:10) in Figure 3.18 - matches the prototype which is defined 

by schema 1 of the minus context [num1 zero2 dontcare], Listing 3.1, line 21.  

 System 4 is selected as the second interacting system sys2@4 because its 

definition, data2 (num2 %d0 %d3), Listing 3.1, line 25 - shown as 

(sch1:2,k:0,sch2:3) in Figure 3.18, matches the prototype which is defined 

by schema 2 of the minus context [num2 zero2 dontcare], Listing 3.1, line 21.  

 After the subtraction (10-3=7), the result is stored in the first interacting system 

=> sys1(sch1:1,k:0,sch2:7) while the second interacting system gets value 

zero sys2(sch1:2,k:0,sch2:0) according to the operation of SUBTRACT 

instruction in Table 3.4.  

 However, since the transformation function is SUBTRACTe, the first interacting 

system, which is system 3 (ESC:sys(3)), escapes from the active scope, which 

for this iteration is scope 2 from scope(2) to the scope(s) that the active scope 

belongs to (see Figure 2.11B). According to the third line of the scopetable (see 

Figure 3.17), this is scope 0 to scope(s)(pos:0) because there is only one bit 

set in this line, which is the line which corresponds to the scope of system 2, and 

this bit is at position 0. If more than one bit were set, this would indicate that the 

active scope would belong to more than one scope, and it would escape to all of 

them.  

 Finally, since system 3 has escaped from scope 2, or scope c1 (Listing 3.1, line 

27), this scope now contains only two systems (data2 and minus) which cannot 
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define a triplet and, thus, no interaction can happen in it. HAoS detects this and 

disables scope 2. 

In a similar way, skipping the detailed analysis, during iteration 2 it:2, system 6 

sys1@6(sch1:1,k:0,sch2:16) interacts with system 7 sys2@7(sch1:2,k:0,sch2:4) 

by means of subtraction, and the result (16-4=12) is stored in system 6 

=>sys1(sch1:1,k:0,sch2:12) while system 6 also escapes from the active scope 5 ESC 

: sys(6) from scope(5) to scope 0. Scope 5 now contains only two systems, so it is 

disabled. 

Since scopes 2 and 5 have been disabled, interactions can only occur in scope 0. While 

the two previous SUBTRACTe interactions were executed on HAoS ({HAoS}: in Figure 

3.18), the next five are PRINT interactions, which just show the contents of the 

interacting systems, are executed on the CPU ({CPU}:). Each system is printed according 

to interacting system @ position (schemata2 : transformation function (- 

if zero) : schemata 1. Eventually the times context (Listing 3.1, line 46) is selected, 

system 6 interacts with system 3 and the expected product (12*7=84) is stored in system 

6 (see Figure 2.11C). From then on, the systems in scope 0 continue interacting for ever 

without further noteworthy changes to their contents. 

3.8 Initial Testing 

Before the final design is implemented and tested in silicon, it is possible to verify its 

functional behaviour and assess its performance by using standard industry EDA tools. 

The selected FPGA evaluation board to implement HAoS is the Xilinx ML605 board. 

HAoS was described in VHDL and synthesized targeting the on-board Virtex-6 LX240T 

FPGA device by using the Xilinx ISE v13.3 design suite. The verification environment 

was written in SystemVerilog and Mentor Graphics QuestaSim was used for simulation.  

3.8.1 Functional Verification 

In order to achieve system-level functional coverage closure, a series of SC programs 

were designed to test and stress the design in various ways. The collection of these SC 

test programs is given in Table 3.5. As shown, basic (the core transformation functions 

and scope handling) and more advanced (context adapting, sequential flow emulation, 

high-level user-defined functions) functionality is verified, targeting mainly research 

challenge Chg2 (SC architecture support). 
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An indicative set of test programs is further explained below and their SC source code is 

given in Appendix A (the source code for all test programs can be found in the official 

HAoS webpage [191]). For each reviewed test program, an excerpt from the verification 

environment output, validating the functional correctness of the design, and their 

corresponding SC graphical notations are given in Listing 3.2 and Figure 3.19 

respectively. The three test programs, selected as verification examples here, are: 

Table 3.5. Simulated SC test programs 

Systems Description of the SC Test Program  Functions Used 

20 Additions in 4 different scopes  ADD 

20 
Dummy program testing all basic non-escape transformation functions in one 

scope. Eventually all systems are killed (zeroed) 

All non-escaping core HW 

functions 

20 
Dummy program testing basic escape transformation functions. Systems interact 

and escape from various scopes into the same and then, they are printed 

ADDe, MULTe, MODe, 

SUBe, DIVe, PRINT 

20 Systems escape from scope. Then multiplied & result printed ESCAPE, MULT, PRINT 

20 Systems subtract & escape from scope. Then multiplied & result printed SUBe, MULT, PRINT 

9 Incrementing counter example (testing capture functionality) 
ADDe, PRINT,  

CAPTURE, OR 

6 Optimized incrementing counter using scopes to control the sequential flow ADDuc2e, CAPTURE 

4 Extra optimized incrementing counter using just one context ADDuc2 

12 Systems escape and multiplied based on NOT functionality ESCAPE, MULT, PRINT 

24 
Two systems subtract-escape from different scopes to main scope and then 

they are recaptured back in the same initial sub-scopes 

SUBe, CAPTURE, 

MULT, PRINT, ESCAPE 

24 Same as above but also testing a scope included in itself same as above 

25 
Subtraction context systems are transformed to addition context systems by a 
COPY context adapter 

ADD, SUB, COPY 

37 
Subtraction-escape context systems are transformed to addition systems by 

COPY context adapter  
ADD, SUBe, COPY 

39 
Subtraction systems are transformed to addition systems by a context adapter  

and then they are killed (transformed to NOP)  
ADD, SUB, COPY 

41 
Subtraction systems are transformed to addition systems by a context adapter 

and then they are transformed back to subtraction systems 
ADD, SUB, COPY 

37 
Mixed-mode context adapter transforms subtraction contexts to data systems 

which interact with other data systems  
ADD, SUB, COPY 

37 
Mixed-mode context adapter transforms subtraction contexts to data systems 

and then retransforms the data systems back to context systems  

ADD, SUB,  

COPY, ZERO 

33 
Part of schemata 1 of a context is changed. This change makes it match 

(previously unmatching) data systems 
ADD, ZERO 

12 Fibonacci numbers generator (using a special add-and-exchange context) 
ADDxce, COPY, PRINT, 
CAPTURE 

58 A 16-element binary knapsack problem solver based on a genetic algorithm22 

user-defined: INIT, 

OUTPUT, 

CROSSOVER, 
MUTATE 

                                                      
22

 Further explained in section 5.1 
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 Test1: Tests simple interactions in multiple scopes (using systems in 4 different 

scopes). The expected sums are 1024, 1155, 1187 and 1200 for scopes 0, 1, 2 and 3 

respectively. 

 Test2: Tests interactions involving escaping. Systems resulting after subtraction in 

scopes c1 (10-3=7) and c2 (16-4=12) escaping to the parent scope main and get 

multiplied to give 84 as a final result. 

 Test3: Tests context adapting - transformation of context systems through a context 

adapter. Here, a COPY adapter transforms subtraction contexts into addition by 

performing binary copy of their contents, so after all the transformations only 

addition interactions are possible. 

              

Selected Output from Test1: 
#431820ns :: PRINT {CPU}: sys2@17{1024:-:1}, sys1@16{0:-:1} <sc:0,cxt:19,it:19> 

#489260ns :: PRINT {CPU}: sys2@9{1187:-:1}, sys1@10{0:-:1} <sc:2,cxt:19,it:32> 

#611340ns :: PRINT {CPU}: sys2@7{1200:-:1}, sys1@5{0:-:1} <sc:3,cxt:19,it:61> 

#789420ns :: PRINT {CPU}: sys2@15{1155:-:1}, sys1@14{0:-:1} <sc:1,cxt:19,it:104> 
 

Selected Output from Test2: 
#427580ns ::SUBTRACTe{SCC}: sys1@11(sch1:1,k:0,sch2:16) SUB sys2@12(sch1:2,k:0,sch2:4) 

=> sys1(sch1:1,k:0,sch2:12),sys2(sch1:2,k:0,sch2:0)  <sc:10,cxt:9,it:1> 

#427580 ns ::SUBTRACTe{SCC}: ESC : sys(11) from scope(10)  <sc:10,cxt:9,it:1>  

... 

#436620ns ::SUBTRACTe{SCC}: sys1@2(sch1:1,k:0,sch2:10) SUB sys2@3(sch1:2,k:0,sch2:3) => 

sys1(sch1:1,k:0,sch2:7),sys2(sch1:2,k:0,sch2:0)  <sc:1,cxt:9,it:4> 

#436620ns ::SUBTRACTe{SCC}: ESC : sys(2) from scope(1)  <sc:1,cxt:9,it:4> 

... 

#443420ns ::MULT {SCC}: sys1@2(sch1:1,k:0,sch2:7) TIMES sys2@11(sch1:1,k:0,sch2:12) => 

sys1(sch1:1,k:0,sch2:84),sys2(sch1:1,k:0,sch2:1)  <sc:0,cxt:18,it:7> 

#468940 :: PRINT  {CPU}: sys2@2{1:-:1}, sys1@11{84:-:1} <sc:0,cxt:19,it:14>  
 

Selected Output from Test3: 
#602540ns ::SUBTRACT {SCC}: sys1@13(sch1:3,k:0,sch2:1030) SUB sys2@5(sch1:3,k:0,sch2:110) 

=> sys1(sch1:3,k:0,sch2:920),sys2(sch1:3,k:0,sch2:0)  <sc:0,cxt:19,it:1> 

# 606220ns ::SUBTRACT {SCC}: sys1@6(sch1:3,k:0,sch2:120) SUB 

sys2@12(sch1:3,k:0,sch2:1020) => sys1(sch1:3,k:0,sch2:-900),sys2(sch1:3,k:0,sch2:0)  

<sc:0,cxt:21,it:2> 

... 

#656us ::COPY{SCC}:sys1@22(sch1:61441,k:2,sch2:61441) CP 

sys2@23(sch1:61441,k:1,sch2:61441) => 

sys1(sch1:61441,k:1,sch2:61441),sys2(sch1:61441,k:1,sch2:61441)  <sc:0,cxt:24,it:17> 

#687us ::COPY{SCC}:sys1@19(sch1:61441,k:2,sch2:61441) CP 

sys2@22(sch1:61441,k:1,sch2:61441) => 

sys1(sch1:61441,k:1,sch2:61441),sys2(sch1:61441,k:1,sch2:61441)  <sc:0,cxt:24,it:27> 

... 

#749260ns ::ADD  {SCC}: sys1@12(sch1:3,k:0,sch2:0) PLUS sys2@13(sch1:3,k:0,sch2:940) => 

sys1(sch1:3,k:0,sch2:940),sys2(sch1:3,k:0,sch2:0)  <sc:0,cxt:21,it:46> 

#752940ns ::ADD  {SCC}: sys1@7(sch1:3,k:0,sch2:0) PLUS sys2@11(sch1:3,k:0,sch2:0) => 

sys1(sch1:3,k:0,sch2:0),sys2(sch1:3,k:0,sch2:0)  <sc:0,cxt:23,it:47> 

#755980ns ::ADD  {SCC}: sys1@5(sch1:3,k:0,sch2:0) PLUS sys2@12(sch1:3,k:0,sch2:940) => 

sys1(sch1:3,k:0,sch2:940),sys2(sch1:3,k:0,sch2:0)  <sc:0,cxt:17,it:48>  
  

 

Listing 3.2. Selected output from the 3 example SC test programs verifying the functionality 

of HAoS by simulation. Refer to section 3.7 to be reminded how to extract all the 

information from the output of the verification environment. In this listing, the parts that 

verify the functionality of the design according to the expected results, as they are given in 

the bullet descriptions of the test programs above, are emboldened: (Test1) the expected 

final result is printed in each correct scope, (Test2) the expected subtractions (16 SUB 4 => 

12 and 10 SUB 3 => 7) and escapes (ESC) lead to the correct multiplication (7 TIMES 12 => 

84) and the expected result (84) is printed (PRINT), (Test3) While initially only subtractions 

(SUBTRACT) are performed, the transformation function of addition (k:1) is copied (CP) in all 

subtraction contexts (k:2), so in the end only additions happen (ADD) 
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Figure 3.19. The three verification example SC programs 
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It is also noted that the equivalent of a conventional program (like a counter) can be 

executed by HAoS (sequential flow emulation). However, as the architecture is designed 

to model parallel systems, it can just simulate such sequential programs (experimental 

results show that although the prototype runs at approximately 1% of the speed of a 

modern Intel i7 core clocked at 2GHz, counts up in average 500 times slower). 

Successful simulation results, similar to the ones given in Listing 3.2, have been 

obtained for all test programs of Table 3.5. Thus, the system passed all the functional 

verification tests, proving this way the validity of the design.  

3.8.2 Implementation Statistics 

Xilinx design tools provide accurate area and timing implementation statistics. Thus, we 

can present precise performance metrics before downloading the design on the FPGA. 

As shown in Table 3.6, the prototype design occupies just 15% of available slices (10% 

of slice LUTs and 1% of slice registers), 23% of available I/O blocks and just 1% of 

available RAM. HAoS is divided into two clock domains : the REG BANK, which is 

connected to the CPU INTERFACE  (see Figure 3.9), runs on a higher clock rate (100 

MHz) in order to provide faster read/write operations to the CPU, while the rest of the 

design is clocked in a (8 times) slower rate. The performance of the design of this initial 

stage is increased later by various enhancements and optimizations (detailed in the next 

chapter). 

Table 3.6. HAoS Prototype (64 systems) Implementation Statistics on Virtex-6 LX240T 

FPGA. Excludes the CPU interface and the optional on-chip CPU 

 Used Available % 

Slices 5759 37680 15 

Slice LUTs 15487 150720 10 

Slice Registers 6019 301440 1 

I/O Blocks 143 600 23 

RAMs 5 416 1 

DSP Blocks 1 768 1 

 

3.9 Summary 

In this chapter, the first Hardware Architecture of Systemic computation (HAoS) was 

introduced. An investigation was presented on how a hardware design can practically 

encompass the architectural properties of SC, addressing research challenge Chg2, while 

the support for several of the natural properties of Table 1.1 are also discussed, 

addressing Chg1. A number of FPGA-based potential architectures were initially 
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considered while section 3.2 explained the design decisions that lead to the base HAoS 

system and instruction set, presented in sections 3.3-3.6.  

HAoS is a custom but generic computer architecture implementing the SC paradigm. In 

contrast to conventional architectures that sequentially execute a set of instructions, it 

defines a pool of operands and operations, which in SC terms are systems and 

transformation functions, and detects in a parallel fashion which of them may result in an 

operation, or SC interaction, based on enabling patterns, or SC schemata, embedded in 

the operands. HAoS accomplishes this parallel detection by using a Ternary Content 

Addressable Memory, which matches templates of potential interacting systems to the 

available systems defined by the SC program.  

A basic programming model was presented in section 3.7 while the functional behaviour 

of the first systemic processor is verified using a set of test programs, covering various 

scenarios, presented in section 3.8 along with initial implementation estimates. The base 

HAoS system is optimized and extended to a complete SC programming platform in the 

next chapter, resulting to an increase in efficiency and user-friendliness, and thus making 

our solution more practical and viable. 
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Chapter 4  

The HAoS Programming Platform 

Having verified the core functionality of the base design by simulation in section 3.8.1, 

the next steps are to investigate the most suitable, considering current technologies, 

implementation for the communication interface to the optional CPU, further optimize 

the performance of HAoS and complete the design by providing the CPU, its interface to 

HAoS and supporting development software in order to have a complete, viable and 

practical standalone SC programming solution.  

Following those steps, this chapter addresses research challenges Chg2 (SC specific 

architecture support) and Chg3 (targeting a practical and efficient implementation), 

focusing mainly on Chg3, as special attention is given to the efficiency of the 

communication interface, the HAoS logic attached to it and various other blocks of the 

base design while the implementation of some of the architectural features of SC 

(schemata matching and random system selection) are revised. A set of software tools 

were developed to ease programmability and increase user-friendliness.   

Part of the work presented in this chapter has been published in [159] and [192]. 

4.1 HAoS-CPU Communication Interface Investigation  

As mentioned in section 3.4, the use of the CPU after the SC program is loaded is 

optional for the HAoS prototype and depends on the user processing requirements. Since 

HAoS on-chip processing capabilities are limited by the basic instruction set in  Table 

3.4, it is safe to assume that the CPU may be useful for a wide range of practical user 

applications. Thus, addressing the design practicality and overall system efficiency 

(Chg3), an investigation of the implementation of the communication interface between 

HAoS and the CPU, given below, is important in order to avoid having a communication 

overhead as the performance bottleneck. 

The main design requirements for the communication link are high throughput, low 

latency and user-friendliness, meaning that it should be based on a widely used interface 

in order to minimize user effort. Since the maximum supported clock rate of our 
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prototype is estimated at 100 MHz (based on the implementation statistics given by the 

Xilinx development tools) on the CPU INTERFACE boundary (see Figure 3.9), if we 

assume for simplicity that only single-byte data accesses are supported, a minimum data 

rate requirement of 100 MB/s is posed on the communication link in order to have full 

utilization. Latency is also crucial, as some off-chip communication interfaces may 

provide adequate bandwidth but nevertheless pose an unacceptable latency constraint.  

We should further consider that the selected communication interface will determine the 

use of either an external more powerful CPU (using a commonly used but slower 

communication protocol) or a less powerful embedded (on-chip or on-board) CPU, using 

a relatively faster local bus. For a more realistic performance estimate, we should not 

only consider the maximum performance potential of the hardware but we should 

combine this with the actual response times caused by the software (operating system, 

drivers and user application programming interface implementation).  

Another significant consideration is that the HAoS-CPU communication will comprise 

quite small packets. Typically these will be less than 10 bytes for control instructions 

(low-level accesses of HAoS control registers which will be frequently used by the 

driver and also offered as part of the API to the user to enhance accessibility) and 

considerably less than 100 bytes for data exchange (input and output arguments of the 

transform task, see Figure 3.10). The availability of IP cores to support these interfaces 

and the effort required for drivers development is also important. Finally, the selected 

interface should be supported by the available FPGA development board (in our case, the 

Xilinx ML605).  

The external CPU option seems more appropriate since modern CPUs run more than one 

order of magnitude faster than embedded ones (the Intel i7 range runs typically at 

frequencies of 2-3GHz while the maximum frequency for a modern on-chip CPU, e.g. 

the Xilinx MicroBlaze, is 100-250 MHz [193]). The most commonly used 

communication interfaces for modern computers are USB, PCI-Express and Ethernet 

(see Table 4.1). All of them are mature technologies which are constantly revised to 

support greater bandwidths. While Hi-Speed USB (or USB 2.0) is currently the most 

widely adopted interface, it specifies a maximum bandwidth of 480 Mbits/s [194]. Its 

successor, SuperSpeed USB (or USB 3.0) specifies a maximum theoretical full -duplex 

communication rate of 5 Gbits/s [194].  PCI-Express, featuring a point-to-point topology 

with separate full-duplex byte streams (1-32 lanes) connecting the device to a root 

complex [195], has had four revisions that gradually increased bandwidth (the theoretical 
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maximum per lane is [195]: 250 MB/s for the older Gen1, 500 MB/s for the widely used 

Gen2, 1GB/s for the more recent Gen3 and 2 GB/s for the recently announced Gen4). 

Gigabit Ethernet is the last option supporting 1 Gb/s while higher bandwidths (10G 

recently got more industrial interest, while 40G, 100G and 400G solutions are also 

currently sampled) are also supported for specialized network devices (usually using 

optical mediums). 

Table 4.1. Commonly used interfaces for off-board communication and their nominal raw 

bandwidths 

 
USB PCI-Express (per lane) Ethernet 

Revision 2.0 3.0 1.0 2.0 3.0 4.0 Gigabit 

Nominal Max  

Raw Bandwidth 

60 

MB/s 

625 

MB/s 
250 MB/s 500 MB/s 1 GB/s 2 GB/s 125 MB/s 

The theoretical maximum bandwidth that the most recent versions of all the 

aforementioned interfaces provide appears to be sufficient for the HAoS-CPU data rate 

requirement. However, their sustained performance in a working system can be 

considerably less due to various software and hardware sources of overhead. An 

quantitative example is given in [196], where a bus mastering design (implemented on a 

Virtex-5 FPGA) over PCI Express is measured on a Windows system. Sustained 

software performance can be nearly 17 times slower than the theoretical maximum for a 

PCI Express Gen1 x1 link [196], mainly due to the very slow interrupt response rate of 

the operating system and the fact that transaction requests wait for transaction 

completions. Although techniques for minimizing those overheads (use of a linked list or 

a circular buffer of transaction descriptors for interrupts and employing a parallel 

transaction handling state machine) are suggested in [196] and implemented in [197], 

[198], [199], there is still an inevitable deviation from the theoretical maximum.  

While USB 2.0 would be the most convenient option from the viewpoint of the user, it 

does not satisfy our bandwidth requirement. USB 3.0 provides adequate bandwidth, but 

it has not yet been widely adopted, so FPGA development boards with this feature are 

still rare and, moreover, a USB 3.0 device IP is not offered with standard industrial 

design tools (while designing such a complex core would require considerable effort). 

An implementation of the Gigabit Ethernet approach as a PC-FPGA communication 

interface, sending UDP datagrams over IP, is given in [200] and refined in [201]. The 

design leaves reliability to be implemented at the user level but combines a Look Up 

Table (LUT), which stores all the static fields that need to keep being resent during 

communication, with hardware-aware optimizations which make it more attractive than 
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alternative reliable, but more complex, full TCP/IP implementations which require an 

embedded CPU [200].  

However, even such a light-weight protocol suffers from a big overhead when really 

small packets are frequently sent. These small packets carry HAoS control -related 

information and may not be grouped together to form larger contiguous blocks (in order 

to provide a flexible API to the user). Even sending minimally-sized raw Ethernet 

packets, considering that their minimum size is 64 bytes (accounting for header and 

framing bytes - preamble, start of frame, MAC destination and source, ethertype, frame 

check sequence and interfame gap), results in more than 85% overhead for control 

packets (typically less than 10 bytes). While they are slightly smaller, similar protocol 

overheads exist for the other external communications interfaces mentioned above. PCI 

Express Gen1 and Gen2 specify a 20% overhead due to their 8b/10b symbol encoding 

scheme (used for clock recovery), consume 20-28 bytes for their header and framing and 

also suffer from traffic, link and flow control protocol overheads [202]. Due to these 

overheads, latency is increased (practically 20-30us for a Gen1 x8 4-byte transfer [197]) 

while the actual throughput is decreased, negating the performance advantage of external 

interfaces for typically-sized data traffic. 

Table 4.2 gives examples of the sustainable bandwidth of the interfaces discussed in this 

section for various configurations. It is noted that the final real system bandwidth is the 

result of various factors, including protocol selection and overheads but also 

implementation choices, system integration, software support and optimizations.  

In order to minimize protocol overheads, the alternative is to use a local communication 

interface, placing the CPU on-board.  While FPGA development boards that provide an 

off-chip hard processor cores are not new, another approach (recently commercially 

available at the time of writing) attempts to overcome overheads caused by off -chip 

communications by combining relatively powerful hard (ARM-based) CPUs and 

programmable logic on the same die [206], [207]. This is a quite promising approach, as 

it is the first step towards practical low-latency embedded applications. While still in its 

infancy, the power of the processors used are still limited and the cost of 

reprogrammable logic comparatively high. Moving to smaller fabrication processes in 

the future can make revisions of this hybrid technology a very strong candidate for truly-

optimized heterogeneous processing. 
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Table 4.2. Sustainable Bandwidth Results for various practical configurations implementing 

common communication interfaces on FPGAs 

Protocol / 

Interface 
USB 2.0 PCI-Express 1.0 x1 

Reference [203] [199] 

E
x

p
e
ri

m
e
n

ta
l 

C
o

n
fi

g
u

ra
ti

o
n

 

Xilinx 

SpartanII-E 
through 

CY7C68001 

USB controller 
on Windows. 

Write to FPGA 

File size: 
400MB  

Altera Stratix IV 
GX to Intel X58 

Chipset on 
Windows.  

Full-Duplex 

File size: 100KB  

Max Payload: 

Read 256b, Write 

512b  

Altera Arria II 

GX to Intel X58 
Chipset on 

Windows.  

Full-Duplex 

File size: 

100KB 

 Max Payload: 
Read 256b, 

Write 512b  

Altera Stratix II 
GX to Dell 490 

5000X on 
Windows.  

Full-Duplex 

 File size: 100KB  

Max Payload: 

Read 64b, Write 

256b 

Altera Stratix II 
GX to Nvidia 

CK804 on 
Windows.  

Full-Duplex  

File size: 100KB  

Max Payload: 

Read 64b, Write 

128b 

Sustainable 

Bandwidth 

54 (W) 

MB/s 

219(R)/211(W)  

MB/s 

217(R)/204(W) 

MB/s 

162(R)/224(W) 

MB/s 

185(R)/207(W)  

MB/s 

 

Protocol / 

Interface 

UDP/IP over 

Gigabit Ethernet 
PCI-Express 2.0 x1 PCI-Express 2.0 x4 

Reference [200], [201] [199] [198] [199] [198] 

E
x

p
e
ri

m
e
n

ta
l 

C
o

n
fi

g
u

ra
ti

o
n

 Xilinx Virtex-5 
SX95-1 on 

HTG-V5-PCIE 

board to Dell 
Latitude e4300 

on Linux.  

Full-Duplex 

Payload: 1472 

bytes 

Success Rate: 
~99%  

Altera Stratix IV 

GX to Intel X58 

Chipset on 
Windows. 

 Full-Duplex 

File size: 100KB 

 Max Payload: 

Read 256b, Write 

512b  

Xilinx Virtex-5 
on ML555 board 

to Dell Power 

Edge with Intel 
E5000P Chipset 

on Windows 

Full-Duplex. 

File Size: 32KB 

Max Payload: 

Read 64b, Write 
128b   

Altera Stratix IV 

GX to Intel X58 

Chipset on 
Windows. 

 Full-Duplex 

File size: 100KB 

 Max Payload: 

Read 256b, 

Write 512b  

Xilinx Virtex-5 
on ML555 board 

to Dell Power 

Edge with Intel 
E5000P Chipset 

on Windows 

Full-Duplex. 

File Size: 32KB 

Max Payload: 

Read 64b, Write 
128b   

Sustainable 

Bandwidth 

113.11(R) / 

111.67(W)  

MB/s 

438(R) / 425(W) 

MB/s 

164(R) / 222(W) 

MB/s 

1691(R) / 

1631(W) 

MB/s 

680(R) / 864(W) 

MB/s 

 

Protocol / 

Interface 
PCI-Express 2.0 x8 AXI4 AXI4-Lite 

Reference [199] [198] [204] [205] 

E
x

p
e
ri

m
e
n

ta
l 

C
o

n
fi

g
u

ra
ti

o
n

 

Altera Stratix IV 

GX to Intel X58 
Chipset on 

Windows. 

 Full-Duplex 

File size: 100KB 

 Max Payload: 

Read 256b, 

Write 512b  

Xilinx Virtex-6 

on ML605 

board to Intel 
X38 Chipset on 

Windows 

Full-Duplex. 

File Size: 

512KB 

Max Payload: 

Read 64b, Write 

128b   

Xilinx Virtex-6 

on ML605 

board to Intel 
X58 Chipset on 

Windows 

Full-Duplex. 

File Size: 

512KB 

Max Payload: 

Read 128b, 

Write 256b   

Xilinx Kintex-7 on 
KC705 board. 

From 16 on-chip 

1080p video 
sources 

32bits/pixel @ 
75Hz 

To off-chip 

memory and on-
chip video IP 

Data Width: 

512bits running @ 
200 MHz 

Xilinx Kintex-7 
on KC705 

board. 

Interconnect 
handling 32 

slaves during 

video 
demonstration 

Data Width: 

32bits running 
@ 100 MHz 

Sustainable 

Bandwidth 

2956(R) / 

2955(W) 

MB/s 

1686(R) / 

1691(W) 

MB/s 

3297(R) / 3297 

(W) 

MB/s 

9492 (R) 

MB/s 

180(R) / 180 

(W) 

MB/s 
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The other option is to use an embedded soft CPU. While this approach has minimal 

overheads, since all communications are happening at wire speed, part of the available 

programmable resources is occupied by the relatively low-performance soft processor. 

Advantages of this approach are that the design tools provide full support on embedded 

design, the processor can be customized to include only the features that are required 

(optimizing speed and area) and that bare-metal applications are also supported, since an 

operating system is optional, depending on user requirements. An indicative collection of 

soft processor architectures, appropriate to be embedded on an FPGA is given in Table 

4.3. It is noted that some of the metrics below are given for reference as they are highly 

dependent on the device being used and the revision of the implementation tools. 

Considering the available area and performance figures below, LEON4 and MicroBlaze 

are the most dominant choices. While the former is an open-source solution, the inherent 

compatibility of MicroBlaze with the Xilinx toolchain makes it a more favourable option 

for the prototype HAoS implementation. 

Out of the supported on-chip interconnect interfaces [208], the Processor Local Bus 

(PLB) mainly targets PowerPC processors and is now outdated while the Fast Simplex 

Link (FSL) is a point-to-point FIFO-like interface; thus they are both inappropriate for 

the MicroBlaze memory-mapped control register interface for HAoS. The other options 

are the three variations of the Advanced eXtensible Interface (AXI) of the ARM AMBA 

v4.0 interconnect protocol specification (in short AXI4).  

The three types of AXI4 are [225]: (a) AXI4 for burst-enabled memory-mapped 

communication, (b) AXI4-Lite for simple memory-mapped communication ideally to 

and from control and status registers and (c) AXI-Stream for high-speed streaming data. 

Considering the mainly controlling nature of the HAoS interface, the small size of the 

data to be communicated to and from the CPU and the substantially greater area 

footprint of the AXI4 interface compared to AXI4-Lite while providing adequate 

bandwidth (supporting a 32-bit interface running up to 200MHz on Virtex-6) and 

minimizing latency, it was decided that the latter was the optimal option. It is noted that, 

as AXI protocols are the industry standard for FPGA interconnect interfaces, choosing 

this option makes the design more future-proof (the hybrid approach in [207] also 

employs an AXI interface to connect its hard dual-core ARM CPUs with the 

programmable fabric). 
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Table 4.3. Indicative Collection of Available Soft Processors. CPI: Cycles Per Instruction, 

MMU: Memory Management Unit, MUL: Hardware Multiplier, FPU: Floating Point Unit, 

Area: given for specific family and corresponding metric, DMIPS/MHz: Dhrystone Millions 

of Instructions per Second Per MHz, (MHz): Max Frequency for family stated in Area 

column 

Soft Core 

[Reference] 
Architecture Bits License 

Pipeline 

Depth 
CPI MMU MUL FPU 

Area 

Family 

Metric  

DMIPS 

/MHz 

(MHz) 

Comments 

Sirocco  

S1 

[209] 

SPARC-v9 64 

Open-

source 

(GPL) 

6 1 + + + 

60K(EE) 

40K(SE) 

37K(ME) 

Virtex5 LUTs 

- 

Single-core 

version of 

UltraSPARC T1 

LEON3 

&[210] 

LEON4 

SPARC-v8 32 

Open-

source 

(GPL) 

7 1 + + + 

3.5K & 4K 

Virtex5 

LUTs 

1.4(125) 

1.7(150)  

OpenRISC 
1200 

[211] 

OpenRISC 

1000 
32 

Open-
source 

(LGPL) 

5 1 + + - 

2.4K to 
4K 

Virtex5 

Slices 

(60-

125)  

MicroBlaze 

[193] 
MicroBlaze 32 Proprietary 3, 5 1 opt opt opt 

546 to 1201 

Virtex6 LUTs 

1.03-

1.38 

(100-
250) 

Limited to Xilinx 

devices, 

Zero-cost for 
limited version 

aeMB 

[212] 
MicroBlaze 32 

Open-

source 

(LGPL) 

3 1 - opt - 

1268 

Virtex4 

Slices 

(88-

136) 

Open-source 

clones of 

MicroBlaze 

OpenFire 

[213] 
MicroBlaze 32 

Open-

source 

(MIT) 

3 1 - opt - 

641 

VirtexII-Pro 

Slices 

0.58 

(100)  

Nios II/f 

[214] 
Nios II 32 Proprietary 6 1 + + opt 

1020 

StratixIII 

ALUTs 

1.183 

(290) 

Limited to Altera 

devices 

Nios II/s 

[214] 
Nios II 32 Proprietary 5 1 - + opt 

1030 

StratixIII 

ALUTs 

0.611 

(230) 

Limited to Altera 

devices 

Nios II/e 

[214] 
Nios II 32 Proprietary no 6 - - opt 

500 

StratixIII 

ALUTs 

0.138 

(340) 

Limited to Altera 

devices 

MP32 

[215] 
MIPS 2.0 32 

Open-

source 

OpenCore+ 

6 1 + + + 

5444 

StratixIII 

ALUTs 

1.21 

(252) 

Limited to Altera 

devices 

Lattice 

Mico32 

[216] 

Lattice 

Mico32 
32 

Open-

source 
6 1 - opt - 

2370 

Lattice 

LUTs 

(115) 
Not limited to 

Lattice devices  

Cortex-M1 
[217] 

ARMv6 32 Proprietary 3 1 - + - 
2600 

CycloneIII 

LEs 

0.8 
(100)  

Diamond 

106Micro 
[218] 

Tensilica 
Xtensa 

32 
Proprietary, 

ReadyIP 
1 5 - + - - 

1.22 
(180) 

Zero-cost for 

Synplicity 
Synplify Users 

Freescale V1 

Coldfire 

[219] 

Coldfire 

16 

32 

48 

Proprietary, 

zero-cost 
2 1 - - - 

5000 

CycloneIII 

LEs (32bits) 

(80) 

Zero-cost to 

Altera devices 

only 

DSPuva16 

[220] 
DSPuva16 16 

Open-

source 
no 4 - + - 

635 

SpartanII 

Logic Cells 

(40) DSP-oriented 

hyperARM 

[221] 
ARMv4 32 

Open-

source 

(AL/GPL) 

3 1 - - - 

2953 

VirtexII-Pro 

Slices 

 

(63)  

PicoBlaze 

[222] 
PicoBlaze 8 

Proprietary, 

zero-cost 
no 2 - - - 

26 

Virtex6-3 

Slices 

(238) 
Limited to Xilinx 

devices 

PacoBlaze 

[223] 
PicoBlaze 8 

Open-

source 

(BSD) 

no 2 - - - 

200 

SpartanII 

Slices 

(46) 

An open-source 

clone of 

PicoBlaze 

Lattice Mico8 
[224] 

LatticeMico8 8 
Open-
source 

no 2 - - - 

181 

Cyclone 
LFE2-5 

Slices 

(99.2) 
Not limited to 
Lattice devices  
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Following the analysis above, the embedded soft CPU interface appears to be one of the 

most dominant candidates for the implementation of the HAoS-CPU communication 

link. It is noted that this is a recommendation, rather than a definite conclusion 

(considering the requirements stated in the beginning of this section and currently 

available technologies) and it depends on the processing requirements of the user 

application and the flexibility of the provided API (control packets could be potentially 

eliminated if all the software driver logic was mapped on hardware, effectively 

eliminating the API since the user would be provided with just one function 

(transform()) to interface to hardware).  

For applications that utilize heavy-weight functions, the function processing time may 

overrule the communication overhead, thus making an external CPU interface preferable. 

This can either be the latest revision of PCI Express (due to the lower overhead and 

higher bandwidth), if compatible hardware (motherboard, development board) is 

available or a custom Ethernet-based interface implementing a custom light-weight 

protocol and a Network Interface Card capable of supporting such a protocol or USB 3.0 

(subject to availability) or a future FPGA development board featuring a high-end 

processor.  

The two options may further be combined in a ―smart‖ system that offloads computation 

to the appropriate CPU depending on the required processing workload. Implementing 

such a configuration would involve a manual, or ideally automated, computation 

dispatching mechanism that would assign low-level processing, supported by the 

hardware-accelerated part of the HAoS instruction set (upper part of Table 3.4), to the 

built-in on-chip FU, high-level functions of low complexity to the low-end on-chip 

embedded processor and computation-intensive tasks to the off-board high-end CPU. 

High-level tasks would be assigned to the appropriate CPU depending on the comparison 

between the actual computation latency and the communication overhead according to: 

If Instruction Supported on Hardware Select HAoS FU 

If Lon + Oon  <  Loff + Ooff Select On-Chip CPU 

If Lon + Oon  >  Loff + Ooff Select Off-Chip CPU 

 

where L and O would be the computation latency and communication overhead, 

respectively, for on-chip (embedded) and off-chip (and probably off-board) processor, 

accounting for the trade-off between the computational performance and the 

communication latency of the two solutions. 
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In summary, the systemic computer is designed for highly parallel software, that 

resembles natural systems. For such a computer to be practical it must also support 

sequential operations (e.g. longer mathematical expressions) and thus needs the support 

of a conventional CPU. The analysis here shows that current communication protocols 

are largely unsuitable for the task of linking a SC hardware architecture to a CPU. There 

is a clear need for a more integrated solution for development purposes. An FPGA board 

with a high-end on-board processor may be one such suitable option in the future 

(extending the processing capabilities in [207]). For now an embedded soft CPU 

provides the ability to prototype the HAoS-CPU interface. An optimal solution would be 

an ASIC, combining HAoS and a hi-speed CPU on-chip, which will minimise the 

bottlenecks caused by existing technologies. 

4.2 CPU Subsystem Integration  

Building on the discussion of the previous section, the soft Xilinx MicroBlaze processor 

was connected, using Xilinx development tools (Embedded Development Kit - EDK and 

Xilinx Platform Studio - XPS), through one of its available communication interfaces to 

the base HAoS architecture to result in the first practical hardware Systemic 

Computation platform. 

The available tools enable great flexibility as virtually all the features of the MicroBlaze 

soft processor are user-defined, letting the user tailor a balanced embedded CPU design 

in terms of frequency, area and performance. The configuration of the processor 

embedded in the HAoS platform maximizes the performance of the soft CPU with the 

inclusion of dedicated hardware blocks (a barrel shifter, a floating-point unit (FPU) also 

supporting type conversions and square root, 64-bit integer multiplier and divider and a 

pattern comparator), instruction and data caches (64 KB each) with stream buffers (for 

instruction prefetching), saved cache victims (faster fetching of recently evicted cache 

lines) and write-back storage policy (data are not written back to memory immediately 

but only when needed), and math (FPU and integer divide) exceptions. A hardware 

debug module was also included, enabling breakpoints and memory address watchpoints, 

to ease debugging. A dedicated Memory Management Unit (MMU) was not added in the 

system as it would increase significantly its size and because its provided features, as 

virtual memory and memory protection, are more useful when an operating system is 

used. As discussed later in section 4.3.5, an operating system will not be used in the 

HAoS programming platform as it would run inefficiently on an embedded processor and 

negatively impact the latency of SC applications. 
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After the architecture of the MicroBlaze CPU was configured to suit the requirements of 

the HAoS platform, the custom HAoS logic was connected to the CPU through its AXI4-

Lite interface as a peripheral. The connection was implemented using standard Xilinx-

provided IP blocks. The MicroBlaze is connected to the AXI4 Interconnect core (IC), 

which implements the required AXI4-Lite protocol and uses a crossbar topology to route 

traffic between the various masters and slaves of the bus. Further details on the CPU 

subsystem integration are given Appendix B. 

4.3 Optimizations and Enhancements 

Focusing on research challenges Chg2 and Chg3 regarding supporting the implied SC 

architecture and addressing the efficiency and practicality of HAoS respectively, various 

optimizations and enhancements were made, both into the hardware and the software 

domain, to the initial design (presented in the previous chapter) in order to increase its 

performance and also make the prototype more user-friendly and flexible, towards a 

more practical and viable design. 

4.3.1 Refining the Random Selection Logic  

The most obvious performance optimization for HAoS, as for any clock-based circuit, 

was to increase its operating frequency. After analysis of the critical path of the design, 

the longest combinatorial path was, as expected, in the Random Selection Logic (see 

Figure 3.11 and section 3.6.2). The RSL was redesigned to incorporate resource sharing 

along with pipelining. 

As mentioned in section 3.6, the BITPOSSEL module of the RSL, combines a parallel 

bit count with a branchless selection method. The parallel bit count is used to provide 

partial sums which are then appropriately masked and passed through a barrel -shifter to 

provide the position of a bit with a given rank in the input bus, resulting in a divide -and-

conquer technique. The COUTNONES and BITPOSSEL modules of the RSL are now 

merged, as the parallel sum-of-bits counter in COUNTONES is reused for the generation 

of the partial sums during the identification of the position of the selected bit. The length 

of the barrel shifter is equal to the size of the longest input bus to the RSL which is in 

turn equal to the number of maximum supported systems. Thus, when this number is 

increased, the number of logic levels required for the barrel shifter implementation have 

a considerable impact to the delay along the critical path. For this reason, the 

conventional barrel shifter is replaced with a parallelized and pipelined version which 

instead uses an array of multiplexers with registered pre-shifted (by the required pre-
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calculated number of bits) versions of only the possible subset of shifting combinations 

of the input buses. While this results in a slightly higher resource utilization as the 

number of maximum supported systems increases, it provides the ability to minimize its 

latency and moreover make it independent of the maximum number of systems, making 

its performance deterministic. 

Moreover, since registering the inputs of the RSL or the output of its input selection 

multiplexer would not further noticeably decrease the critical path, as the combinatorial 

logic from the TCAM to the input of the RSL adds minimal timing overhead, these 

registers were not included in the design saving Number of RSL Input Buses x Input Bus 

Length bits (for 512 maximum supported systems: up to 5x512=2560 registers).  

The critical path delay of the RSL was also greatly affected by the combinatorial divider. 

Thus, the divider was pipelined (one-level deep), dividing its 16-stage structure (see 

Figure 3.15), in two groups of 8 stages each with registered inputs and outputs.  

After the changes mentioned above were implemented, a static timing analysis revealed 

that other parts of the design (the TCAM and the Function Unit) also had latencies in the 

range of 15-20 ns. Thus, since the level of pipelining throughout the RSL achieved to 

match the critical path outside the RSL, it was decided that a latency of 20ns (which 

translates to 50MHz of operating frequency) was adequate for the prototype, as deeper 

pipelining, although possible, would require considerable changes in the control logic 

and would probably affect resource utilization in order to achieve timing closure. Further 

details on the optimisations of the RSL are given in Appendix C. 

4.3.2 Minimizing the Schemata-Matching Overhead 

Standard FPGA CAM design techniques include registered-based,  RAM-based and 

Look-Up- Table-based approaches [173], [226]. Moreover, Xilinx provides a reference 

design which combines the LUT technique with the optimized shift-register blocks 

(SRL16E) found in its FPGAs [173]. Although RAM-based CAMs are the most efficient 

in terms of resource utilization [173],  they do not support the ternary mode required for 

partial schemata matching in SC.  

The base HAoS design used the suggested (by Xilinx) SRL16E-based approach which, 

according to [173], provides efficiency in terms of the trade-off between required area 

and operating frequency. It was noticed, that as the number of entries for the TCAM 

increased, depending on the number of maximum supported systems, for deep TCAM 

implementations (>128 entries) the area footprint of the LUT-based approach was not 
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substantially smaller from the one of the simple register-based design (15%-25% area 

overhead depending on size) while the two implementations has similar operating 

frequency (up to ~100MHz). Thus, since the size difference was not prohibitive, the 

much simpler register-based TCAM structure was preferred. Further details on the 

TCAM design revision are provided in Appendix D. 

The main advantage of this optimization
23

 was the reduction of the overall latency of the 

matching mechanism resulting in increasing the efficiency of valid triplet generation. 

Since the TCAM is written every time a system is altered during an interaction, replacing 

the SRL16E-based TCAM with an array of registers and comparators, provided single-

clock read and write operations, saving 15 clock cycles for every interaction which 

changed one system and 30 clock cycles when both systems are changed.  

4.3.3 Further Addressing I/O Efficiency 

The investigation of the capabilities and limitations of various communication interfaces 

between HAoS and a CPU, discussed in section 4.1, makes evident the crucial role of the 

performance of the design on the I/O boundary. Various optimizations have been made 

in order to obtain faster CPU accesses and minimize the overhead of extracting real-time 

(during the execution of a SC program) logging information. 

As shown in Figure B., the registers in the REG BANK are accessed by the CPU through 

the AXI4-Lite communication link to, among other functionality, read the active triplet 

and write back any system which is changed by the current interaction (see Figure 3.10). 

As the parts of an active triplet that will be used during an interaction depend on the 

transformation function, HAoS makes available to the user its full contents (shown in 

Figure 3.8) along with some more useful information (addresses of systems, active scope 

and active context). In the initial design all this user data are read from and written back 

to the REG BANK, and then the CU handles updating the local memories and the TCAM 

with the changed systems.  

Looking for a more efficient way, the mechanism that is used when the program is 

loaded to the local memories was slightly changed in order to enable the CPU to directly 

write changed systems to HAoS memories. However, since writing a triplet to the 

memories is performed in one clock cycle, to reduce latency, the whole user data would 

                                                      
23

 Practically here we traded area for performance, choosing the bigger but faster registered -based 

TCAM. 
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have to be updated when a change was made. Enabling the option of independently 

writing parts of the triplet would greatly increase the control logic complexity and the 

required area footprint.  

Further addressing this communication challenge, a write-detection mechanism was 

devised, inspired by the ―dirty-bit‖ scheme commonly used in page replacement and data 

caches [227]. As mentioned above, since all user data are available in the beginning of 

an interaction, the user may read only the parts of the triplet that are going to be used in 

his custom transformation function. The great enhancement comes when writing the 

transformed triplet back to the memories. 
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0 2 4 8 10 18 26 34 40
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Figure 4.1. Revised Triplet Memory Map and Write-Detection Mechanism. In the upper 

part, the revised registers organization for each system in a triplet shown along with the 

sizes (in bytes) for each field. Fields from left to right: schemata 1 & 2 (for data system), 

transformation function, system address, binary and ternary parts for each schemata of a 

context system share the same address space with a byte-array formatted version of the 

respective schemata of a data system. All fields have an associated write-detection flag 

(shown here with a dot) which is set when a field is modified.  In the middle, the two systems 

along with the active interaction function, scope and context addresses form the user data. 

In the bottom, when writing-back the transformed triplet after an interaction, the write 

address from the CPU is used to update only those fields that have actually been changed 

while the rest are copied over from the local copy (active triplet), minimizing the required 

CPU I/O operations 
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Each field of the transformed triplet is now associated with a write-detection flag. This 

flag array is reset when an interaction is assigned to the CPU. The address of the  

registers that hold each individual field of the transformed triplet (see Figure 4.1) is 

already given in the predetermined memory map of the CPU (the memory management 

subsystem of the CPU accesses the REG BANK as any other memory location). While in 

―Transform‖ state (see Figure 3.10), when each such field is altered by the CPU, the 

decoded write address from the memory subsystem is matched against each field address 

and sets its respective flag. At the end of the ―Transform‖ state, the active triplet (user 

data before interaction) is copied to the transformed triplet (user data after interaction) 

address space, updating at the same time only the fields that were actually changed by 

the CPU. Using this relatively simple write-detection approach, the need of accessing 

individual fields when writing the triplet is avoided, preserving the low area footprint of 

the HAoS memories writing logic, but also minimizing the required user accesses to 

enable the write-back of the interaction result. 

In order to further minimize the user effort while manipulating the HAoS user data, 

taking into account that each SC schema (16-bit in this implementation) may be used as 

a whole (e.g. a 16-bit number) or as a bit-array (e.g. a 16-element chromosome), each 

schema can be accessed (read/written) in both modes (2-byte value and 16-byte array 

with one effective bit each). This provides the user with the flexibility of being able to 

avoid time-consuming bit-manipulation through bit-masking while processing the data 

by operating on an array and also saving bit-to-byte software conversions as this is 

handled by hardware. 

Furthermore, the parts of a compressed template of a context system (see Figure 3.8) 

were carefully re-arranged from SCH1-FUNCTION-SCH2 to SCH1-SCH2-FUNCTION 

to get more compact memory utilization and faster accesses as the respective registers in 

the REG BANK were also re-arranged in order to overcome any compiler byte-

alignment restrictions. This way, the whole template can be accessed by 2 consecutive 4-

byte memory read operations rather than three separate ones (one for each of the three 

fields). 

4.3.4 Further Addressing User-Friendliness with a Functional Model 

While the developed simulation environment provides extended debugging capabilities , 

it requires access and expertise on electronic design tools which should not be a 

requirement for developing SC models to run on HAoS. Furthermore, such low-level 

system simulations can be extremely time-consuming. Thus, in order to expedite natural 
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SC models development, a software equivalent functional model of the suggested HAoS 

architecture (a high-level simulator of the HAoS circuitry) was built, making possible to 

quickly verify the functional behaviour of a SC program even without the need of having 

the hardware platform. 

The HAoS functional model is based on the original implementation in [24], but 

provides a software interface to develop abstract high-level interaction behaviours, 

similar to the (C/C++) plug-in approach in SCoPE. Once the functionality of the required 

contextual behaviour is verified, the user can easily reuse the plug-in (with minimal 

implementation-specific changes) in the compatible HAoS development flow.  

4.3.5 Further Addressing Programmability 

In order to also enhance the user experience and further address the programmability of 

HAoS, the challenge of loading the program to the platform, being able to extract debug 

information during runtime and storing this log information for post-processing were 

carefully examined taking into consideration that it would be preferable if HAoS was a 

stand-alone self-contained solution.  

As discussed in section 3.7, SC models are first developed using the SC language (see 

Listing 3.1). The compiler has been updated to incorporate abstract transformation 

functions in order to enhance flexibility by supporting high-level processing through the 

CPU, resulting in human-readable assembly code (see Figure 3.17). However, this 

format is not optimal for the program to be loaded to HAoS. Thus, a post-compiler tool 

was developed to transform the human-readable assembly code to binary format with 

minimum size in order to minimize the amount of data to be transferred to the HAoS 

local memories and the processing time during program loading.  

This SC binary generator tool effectively assigns one bit  for each element of the 

scopetable, while cleverly separates data from context systems as the former can be 

further compressed while the latter may not, since system templates of contexts carry 

already compressed information. Therefore, each line of the scopetable (see Figure 3.17) 

requires the number of systems contained in the program to be divided by 8 and rounded 

up to the closest integer amount of bytes, the transformation function is always 4 bytes 

as it can never have a ternary part, each schemata of data systems is compressed to 2 

bytes while each template of a context system requires 16 bytes, 8 for its binary part and 

8 for its ternary part. The transformation function information is not included in the 

binary SC format, as all interactions supported natively by HAoS have a predetermined 
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opcode while all CPU-supported interactions can be checked for validity during runtime 

through the software backend.  

After the SC binary file, containing all required information, is prepared, the program 

should be loaded to HAoS memories. The most straight-forward solution would be to 

store the SC program on either the on-chip Block-RAM or the on-board DDR3 RAM 

memory resources of the soft CPU. While the first option would enable the fastest 

loading time, this would reduce the already limited available on-chip memory resources. 

While this size limitation could be resolved by using the bigger on-board RAM memory, 

a connection of the platform with a conventional computer would still be implied and 

required in order to transfer the developed program to HAoS.  

Thus, in order to enhance flexibility and make HAoS a standalone platform, it was 

decided that the program should be stored on and loaded from a form of non-volatile 

memory. Since the selected FPGA development board featured a Compact Flash card 

controller (a common feature for development boards), this was chosen to be used as the 

main storage of the prototype, since when it is FAT-formatted, it can also support a basic 

file system.  

Using the Compact Flash card and its file system, also addresses another very important 

programmability aspect. This is the ability to efficiently log runtime information in a 

console-like manner. Although access to a real-time console is possible during live 

hardware debugging (using Xilinx tools), this results in excessive run times as all text is 

communicated to a separate computer through a high-latency UART channel. For SC 

applications which require that results are logged throughout the execution of the 

program, just the data-logging overhead can account for the majority of the run time. 

Storing any output data on the onboard CF card drastically reduces the required runtime 

due to logging and again results in a standalone platform.    

It is noted that in order to ease development, SC programs with low size requirements 

can be hardcoded in software and loaded on HAoS on-chip memories along with the 

accompanying low-level driver. A tool converting the SC binary file to ASCII text (in 

order to be embedded in the user code) was developed to enable this functionality which 

can be very useful during the first stages of development of a SC model, as initially a 

lightweight version of the model can be more easily and quickly verified through 

multiple revisions of the code until the desired behaviour is achieved. An example of the 

resulting translated SC binary to ASCII is given in Appendix H for the example SC 

program discussed in section 3.7 (see Figure 3.17). 
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As explained in section 4.1, having decided that a soft processor will be used in the 

HAoS prototype platform, using the Xilinx MicroBlaze processor was the most straight-

forward decision as this offers a complete solution which is supported by the available 

Xilinx design tools out of the box, in contrast with other open source and proprietary 

alternatives. As the overhead of a complete operating system would have a high impact 

on the performance of the platform, especially on such a low-performance processor, it 

was decided that SC high-level interaction processing should be run as a bare-metal 

application (referred to as ―standalone‖ operating system option by Xilinx), which is a 

set of low-layer software modules used to access processor specific functions. Therefore, 

a low-level driver had to be developed in order to achieve communication between the 

MicroBlaze and HAoS.  

 

Figure 4.2. HAoS driver flow diagram 

The HAoS driver handles all required background functionality. Its flow diagram is 

given in Figure 4.2. It resets HAoS at the beginning, initialises any used communication 

interfaces and loads the program either externally, from the CF card, or internally, from 

the embedded user code, and then the loaded SC program starts executing. Then the 

driver waits for an interrupt from HAoS, by constantly reading the predetermined HAoS 

status register, to either pass control to the user code to perform some high-level 

interaction or halt the system in case all systems have become stable or the user-defined 

maximum number of interactions has been reached or a user-defined condition has been 

satisfied. At the end of the execution, it also optionally gives some useful statistics 

(execution time, percentages of aborted iterations due to either schemata mismatches or 
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unavailable matching contexts in the selected scope, executed transformation functions, 

number of interactions and average execution times). Effectively, all these background 

processes are transparent to the user, which only has to define the transformation 

functions that are defined in the SC source code and are supposed to be executed on the 

CPU.  

The HAoS software framework is completed by a basic but comprehensive API, in order 

to enhance the flexibility of the platform and the accessibility of the user to the internal 

state of HAoS. The API among others, provides the user with read and write access to 

any HAoS memory-mapped control register, and also offers optimized low-level access 

routines to the schemata byte-arrays, scopetable manipulation, direct access to the full 

contents of the HAoS local memories (TCAM and system RAMs) and the high-precision 

(10ns resolution) HAoS real-time counter while it gives to the user the option of 

executing initialization and termination code, respectively, before and after the execution 

of the main SC program. A summary of the functions provided by the API is given in 

Appendix E while more detailed information can be found on the official HAoS webpage 

[191].  

 

Figure 4.3. HAoS programming toolchain and software framework illustrating the complete 

suggested programming platform  

The discussion above is summarized in Figure 4.3. The provided toolchain to convert the 

SC source to the final HAoS binary is shown in the upper part, while the lower part gives 

an overview of the software framework (and its association to the partitions of the 

hardware platform), where the program is loaded from either the CF or part of the user 

code, the driver handles background processes while the user just focuses on writing the 
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high-level implementations of the required interaction transformation functions, 

communicating, when needed, with HAoS through the provided API.  

4.3.6 Refinements Results 

Various optimizations made to the prototype HAoS architecture are discussed in the 

previous sections. These enhancements are made to address mainly research challenge 

Chg3 (see section 1.4), in order to increase performance, in terms of latency and 

operating frequency, and I/O efficiency but also improve qualitative aspects as user-

friendliness and programmability. 

Table 4.4. Benchmark timing improvements reflecting various architectural optimizations, 

using the 64-system base configuration with MicroBlaze running at 200MHz. Results given 

are averaged over 10 runs. Reported timing for each row is obtained using optimizations 

stated in all rows preceding it. On average, the CPU consumes ~40ms for the 

transformation functions and ~15ms for the low-level driver functionality.     

Optimization Description 
Benchmark 

Timing (ms) 

No Optimization - CPU Writes Back the Triplet to HAoS Memories in consecutive writes  

Writing logging information (20 ASCII characters) to off-board terminal through debug 

UART and USB 

768.213 

CPU Writes Back the Triplet to HAoS Memories in consecutive writes -  

Writing logging information (20 ASCII characters) to on-board Compact Flash card 
186.315 

CPU Writes the Triplet to HAoS Registers - HAoS then writes it back to memories 176.613 

CPU reads/writes only what is needed since Hardware Write-Detection is enabled 135.928 

HAoS offers byte-aligned schematas in software-aware formatted registers for optimized 

CPU access 
121.428 

Enable hardware random numbers from the LFSR instead of using standard PRNG 

software functions 
109.431 

Optimised read/write functions using full data width for CPU schemata access 105.877 

Minimized schemata-matching overhead using a register-based TCAM (single clock 

write latency) 
101.704 

Replaced barrel-shifter in BITPOSSEL with parallel pipelined shifter and multiplexers 

fed with pre-calculated constants accounting for every possible shifting combination     
98.704 

Increased HAoS operating frequency from 12.5MHz to 50MHz. Merged COUNTONES 

with BITPOSSEL to form RSL and optimized its critical path 
82.934 

In order to quantify the performance improvements, a classic computational problem (the 

binary knapsack problem solved using a genetic algorithm optimization - see section 5.1) 

is used here as a benchmark and the performance of the 64-systems HAoS is measured in 
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terms of the duration of the execution of the program until 10000 interactions have been 

reached. In this configuration the MicroBlaze runs at 200MHz while accurate (±10ns) 

timing measurements are obtained by the dedicated real-time counter on HAoS. The 

optimizations results are given in Table 4.4. 

As shown above, while all optimizations have a positive contribution to overall system 

performance, the ones that provide the most major improvements are the Hardware 

Write-Detection mechanism (see section 4.3.3) and the optimizations on the critical path 

of the RSL (see section 4.3.1) that allowed a higher operating frequency. Furthermore, 

printing logging information on an off-board terminal (e.g. a laptop connected to the 

board through USB), would heavily impact the performance of the system due to the 

increased latency of the UART while disabling logging would negatively impact the user 

experience. The solution of storing real-time information locally on the SD card enables 

logging with a minimal impact to performance (compared to the terminal approach).  

Further addressing Chg3, ease-of-use is improved by the functional model which enables 

users to start developing and verify the basic functionality of SC programs without the 

need of the hardware platform, while a complete software framework is also provided to 

improve programmability and forms the base for the formal HAoS model development 

methodology, introduced in the next section, to enhance user-friendliness and support the 

utility and viability of the HAoS prototype platform. 

4.4 Addressing Scalability for Single-Chip Implementations 

It is important to note that depending on the number of systems required for a SC model, 

the HAoS architecture can be easily scaled to accommodate any number of systems as 

long as the design area can fit on the selected FPGA device (assuming a single-FPGA 

implementation).  HAoS has been written in highly-parameterized VHDL code. Thus, 

scaling the design is a matter of changing a single parameter, the length of the address 

bus (which is equal to the base-2 logarithm of the number of maximum supported 

systems). In this way, the size of the SC model, in terms of systems, is limited solely by 

the size of the available FPGA device. 

As mentioned in section 3.8, the available Xilinx ML605 development board, features 

the Virtex-6 LX240T FPGA which is a mid-range 40-nm based device, with high-end 

devices built on 28-nm processes offering even 10 times more reprogrammable fabric 

real estate and significant performance potential [228]. Table 4.5 shows the 

implementation statistics of the available variations of the HAoS platform of Figure B.2, 
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scaling the number of systems, including also the case of the area footprint of the 

platform without HAoS (number of systems equals zero, just the MicroBlaze subsystem - 

18% of available slices). These figures are in agreement with the initial estimates of 

Table 3.6 and give the utilization of slices, LUTs, registers, Input/Output ports and DSP 

blocks for designs ranging from 32 to 1024 systems. 

Table 4.5. HAoS platform implementations statistics as the number of maximum systems 

increases. Figures based on Virtex-6 LX240T utilization. The MicroBlaze subsystem 

including all peripherals except HAoS requires approximately 18% of available area. 

Numbers of slices, LUTs, registers, I/Os, RAMs and DSP blocks with respective percentages 

used are given for designs supporting 32-1024 systems (1024-systems configuration does not 

include the latest design changes) 

Maximum 

Systems 
0 32 64 128 256 512 1024* 

 
Total Used % Used % Used % Used % Used % Used % Used % 

Slices 37680 6841 18 12235 32 13492 35 15525 41 18269 48 24882 66 34522 91 

Slice 

LUTs 
150720 14283 9 27636 18 29972 19 34338 22 43146 28 61481 40 98511 65 

Slice 

Registers 
301440 15061 4 22733 7 25400 8 30818 10 41727 13 63768 21 108361 35 

I/O 

Blocks 
600 193 32 193 32 193 32 193 32 193 32 193 32 193 32 

RAMs 416 56 13 58 13 61 14 64 15 70 16 106 25 148 35 

DSP 

Blocks 
768 6 1 7 1 7 1 7 1 7 1 7 1 7 1 

It is interesting to note that the size of the design appears to scale linearly (considering 

the limits imposed by a single-chip implementation) as the number of systems increases, 

as illustrated in Figure 4.4.  

This implies that, assuming availability (and affordability) of the largest modern FPGA 

device (Virtex-7 2000T with 305400 slices), SC models with up to 8196 systems may be 

efficiently modelled with the single-FPGA HAoS platform (based on a projection of the 

number of slices required according to the linear regression equation for the used slices 

of Figure 4.4). 

While the performance of HAoS will be identical for designs supporting different 

maximum number of systems, fine-tuning the size of the design for a particular 

application may permit more functions to be hardware-accelerated, increasing overall 

performance. If such an addition is not required, the design featuring the greatest number 

of systems may always be used. 
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Figure 4.4. Linearity on area utilization as the number of maximum supported systems is 

increased. Linear regression lines and determination coefficients given for slices, LUTs, 

registers and RAMs  

It is also noted that while the MicroBlaze processor of the hardware platform is clocked 

at 100MHz, higher operating frequencies are achievable and have in fact been tested to 

be fully operational, running at 200MHz, near the lower bound of the design sizes. This 

is expected as, when the area utilization is low, the implementation tools have more 

flexibility and achieving timing closure is more feasible. However, the lower 100MHz 

CPU frequency has been selected for the evaluation purposes of this section in order to 

have a uniform performance along all the size variations of the platform. 

The discussion above makes evident that the specification (number of maximum 

systems, performance of the soft processor, operating frequency of the HAoS subsystem) 

of the HAoS platform strongly depends on the characteristics of the FPGA device it is 

implemented on and that the prototype is merely an example of what a mid-range device 

can accomplish. It is expected that as new FPGA technologies emerge, the custom HAoS 

logic, having been written in completely vendor-agnostic fully-synthesizable code, can 

be adopted with minimal effort to achieve greater performance.     

4.5 HAoS Model Development Methodology 

Building upon the discussion of previous sections and further focusing on the practical 

aspect of using the platform, a methodology for developing natural models targeting 
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HAoS is suggested in this section and illustrated in Figure 4.5 with a layered format to 

separate the distinct development phases.  

 

Figure 4.5. HAoS model development methodology (* implies user input) 

Assuming that an existing natural system or process needs to be simulated, it is 

important to first understand its behavioural dynamics and identify its quantitative 

characteristics in order to conceptualize it (Conceptual Layer). At this stage, a systemic 

analysis is necessary to identify the interacting systems, the interactions among them 

(any contextual behaviour defining their transformation functions) and their  organisation 

(using scopes). The SC calculus notation can be used to describe the interactions, while 

the SC model may be visualized using the SC graphical notation (see Figure 2.9). Having 

a proper SC graphical notation of the model can make writing of the SC source code 
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(*.sc - see Listing 3.1) quite trivial as each element in the SC graph corresponds directly 

to a specific part of the code. This fact implies that source code extraction from SC 

graphs can be automated in the future, enabling building SC models by using a high-

level SC graph tool. This direct mapping also extends in the SC calculus notation making 

the transition from the Conceptual Layer to the next layer, the Application Layer, fully 

automated once these SC high-level tools are developed.  

The Application and Link Layers form the software framework discussed in sections 

4.3.4 and 4.3.5. In the Application Layer, the SC source code is translated to human-

readable assembly code (*.scp), which is then used as input to the HAoS functional 

model along with the high-level processing plugins, implied by transformation functions 

not supported natively by HAoS (not included in the HAoS instruction set - see Table 

3.4). The source code and plugins are then revised until the desired behaviour is 

accomplished. The Link Layer is the back-end phase were the SC binary (*.scb) is 

generated by the post-compiler and, depending on how the program is going to be 

loaded, it is either transferred to the Compact Flash Card or converted to ASCII text 

(*.txt) to be embedded to the user code. Slight modifications may be needed at this point 

to the interaction plugins prepared in the Application Layer to account for low-level 

communication to HAoS through the provided API. Finally, the user code is linked with 

the HAoS driver (using the Xilinx Software Development Kit) to generate the bare-metal 

executable (*.elf) which will run on the MicroBlaze processor. 

At the Physical Layer, the HAoS platform is implemented on the target FPGA board. 

Based on the number of systems of the SC model, the appropriate configuration 

bitstream (*.bit) is selected and combined with the output executable of the Link Layer 

to form the final bitstream to program the FPGA device. The SC model simulation starts 

by asserting the on-board hardware reset. The CF card acts as the storage unit of the 

platform, storing the HAoS binary program (*.scb) and runtime log information (*.log). 

A summary of the various file types used along the suggested HAoS model development 

framework is given in Appendix F. 

Before the final deployment of the SC model, live hardware debugging is also supported 

through the Xilinx Software Development Kit (SDK) [225] following a typical 

debugging flow in an Eclipse-based environment. The choice of the MicroBlaze 

processor (section 4.1) ensured that software development is seamlessly integrated in the 

HAoS embedded system design flow, as the complete architecture can be exported from 

the hardware environment directly to the software environment. The SDK tools take 
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advantage of this compatibility and configure the compiler and the debugger according 

to the underlying hardware design in an automated way while the memory mapping of 

the various peripherals is configured by auto-generated linker scripts. The maturity of 

the tools and the inclusion of the specialized hardware Xilinx MicroBlaze Debug Module 

in the system enable full source-level debugging capabilities as all typical debugging 

features (like setting breakpoints and watchpoints, examining program variables and the 

contents of system memory, stepping through program execution and viewing the call 

stack) are supported. During debugging, access to the internal state of the HAoS custom 

logic is obtained through reading the appropriate registers of the REG_BANK using the 

provided API functions (see Appendix E) while the host computer running the SDK 

communicates with the FPGA development board through the UART of the embedded 

system using a standard USB cable.  

4.6 Summary 

In this chapter, the base HAoS system is extended to a practical hardware platform 

accompanied by a software framework to provide a complete SC programming platform. 

A thorough investigation of potential communication interfaces is provided in section 

4.1. The analysis suggests that current technologies and protocols are widely 

inappropriate for the real low-latency high-bandwidth solution required for linking the 

SC architecture to a hi-end CPU. Thus, the suggested design makes a compromise based 

on the latency-bandwidth trade-off that current technologies support, and it is concluded 

that the ideal configuration would involve a high-performance CPU and the 

reprogrammable logic on the same die, communicating at wire speed (acknowledging the 

fact that current industrial trends have started adopting this approach).  

The rest of the chapter addresses Chg2 (SC architecture support), by revising the 

random-selection and schemata-matching hardware blocks, and Chg3 detailing 

optimizations and enhancements that increase the efficiency of the design in terms of 

latency and area, quantifying the results in sections 4.3.6 and 4.4. Combining the 

updated hardware design with a complete software framework, developed mainly to 

enhance user-friendliness and programmability, a HAoS model development 

methodology is then formulated in 4.5 and demonstrated in the next chapter, giving 

examples of simulating a natural process from conception to obtaining the final results .  

The time complexity of the schemata matching mechanism is evaluated in section 5.1.5 

and reveals that the optimized architecture achieves the task in near constant time. 
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Chapter 5  

Verification and Evaluation 

Low-level simulations of the hardware design have previously (section 3.8.1) verified 

the functional behaviour of the base HAoS design testing various simple scenarios. 

However, system-level verification is also important to stress the architecture and ensure 

that the complete platform (including the embedded CPU subsystem and communication 

interface) is behaving as expected. Since the hardware platform is available, live testing 

(SC programs executed on hardware) can be much faster than the extremely time-

consuming RTL simulations, enabling the testing of more advanced functionality and 

more complex SC models. System-level hardware verification addresses research 

challenge Chg2 as it validates the support of the underlying SC architecture from the 

suggested design. 

Furthermore, executing more complex SC models on the final hardware platform can 

also be used to evaluate HAoS against alternative simulators, in terms of efficiency - 

addressing this way research challenge Chg3. Thus, after successfully executing the 

simple test programs of Table 3.5 on hardware, three practical bio-inspired models, 

presented in this chapter, are simulated with our prototype platform, and the results are 

compared with the outcome of alternative simulation environments confirming that 

HAoS can be used as a practical simulation solution (addressing the second requirement 

of Chg3).  

The selected models attempt to cover a wide range of possible SC applications. First, a 

genetic algorithm optimization of the binary knapsack problem gives an example of how 

evolutionary methods can be implemented with SC to solve a classic synthetic 

computational problem. Then, moving to a more practical application, we model a well-

studied biochemical process, the MAPK signalling cascade. Finally, increasing 

significantly the complexity, a SC application modelling the effect of chromosome 

missegregation during cellular division and typical treatment approaches on cancer 

growth is presented. All the models presented below, have been previously introduced 

targeting different platforms and are reused for a thorough verification and evaluation of 
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HAoS. The first two models are based on previously developed SC applications, 

retargeted here to the HAoS platform, while the cancer SC application has been 

developed from scratch. 

Part of the work presented in this chapter has been published in [37], [160] and 

submitted for publication in [230]. 

5.1 A Genetic Algorithm Optimization of the Binary Knapsack 

Problem 

The most complex test case among the initial verification scenarios of Table 3.5 is the 

genetic algorithm (GA) optimization of the binary knapsack problem [231]. The 

knapsack (or rucksack) problem is a classical example of combinatorial optimization 

[232] which involves finding an optimal object in a finite set of objects, essentially 

exploring a search space for the best solution to a given problem. Other typical examples 

in this category of problems are the Travelling Salesman Problem, Minimum Spanning 

Tree Problem and Job Assignment Problem [232] having in common that an optimum 

instance is required, but examining all the possible permutations to identify it is not 

usually desirable or feasible.  

For this reason, alternative approaches and numerous algorithms can be found in the 

literature [232] addressing the various types of combinatorial problems. Among them, a 

Genetic Algorithm (described earlier in the context of Evolvable systems, section 2.2.2) 

is a well-suited method for solving the binary knapsack problem, as it uses evolutionary 

search techniques to identify a sufficiently good solution. The SC model presented below 

follows the approach introduced in [34], running on the GPU-based SC implementation, 

in order to directly compare the performance results obtained by HAoS to prior SC 

implementations. 

5.1.1 The Binary Knapsack Problem  

In the general knapsack problem, there are n types of items. Each type i, has an 

associated non-negative value vi and weight wi. The maximum combined weight of items 

that can fit in the knapsack is W. The binary (or 0-1) knapsack problem also poses a 

restriction on the number xi of copies of each type of object to zero or one. The problem 

is mathematically formulated as:  

Maximize 


n

i

ii xv
1

where Wxw
n

i

ii 
1

 and  1,0ix  
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Figure 5.1. 16-Element Binary Knapsack Problem where W = 80kg 

The configuration of the specific test case for the binary knapsack problem is shown in 

Figure 5.1 with W = 80 kg, n =16 (i = 0→15) and various randomly selected 

combinations of weight and value for the available items. 

5.1.2 Applying a Genetic Algorithm to the Binary Knapsack Problem 

In order to solve a problem with a GA-based approach, a population of candidate 

solutions is evolved by altering a set of properties for each candidate. For the binary 

knapsack problem, each solution may or may not include one copy of each available 

item. Each solution is represented by an n-bit binary string, where n is the number of 

available items and each bit represents if a specific item is (if the bit is set) or is not (if 

the bit is cleared) selected to be part of the solution. Thus, the string, or chromosome, 

holds the binary decisions making up each distinct solution for the given problem. 

This representation is illustrated in Figure 5.2, giving as an example the optimal solution 

of the 16-element binary knapsack problem of Figure 5.1. The position of each bit in the 

chromosome corresponds to the distinct type of each item (shown at its top facet in 

Figure 5.1). The weight and value for each solution, according to its chromosome, is 
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calculated by summing the weights and values of the items at the corresponding 

positions with set bits. For the configuration of Figure 5.1, the optimal chromosome 

gives a maximum value of 124 for a total weight of 79.   

 

Figure 5.2. Representation of the optimal solution for the Binary Knapsack Problem 

Following a classical GA methodology, a set (or population) of solutions is initialized 

with random values for each bit in their chromosomes. Then, a set of genetic operators is 

used to alter the genetic material of each solution. For simplicity, only three standard 

genetic operators, illustrated in Figure 5.3, are applied to the candidate solutions of the 

Binary Knapsack Problem
24

: Binary (or Single Point) Mutation which performs a random 

bit flip, One-Point Crossover that swaps the genetic content of the two parents around a 

randomly selected point and Uniform Crossover where each bit of the resulting solution 

may come from each parent with a 50% probability. 

The selection of solutions to propagate to the next generation is straightforward as the 

fitness function in this case simply gives the weight of the chromosome, so valid 

solutions with greater weight are fitter. However, it is noted that  as the genetic 

alterations are random, the resulting offspring may become invalid if its total weight 

exceeds the predetermined threshold W. For this reason, each genetic operation also 

includes a guarding functionality to prevent invalid solutions by selectively decreasing 

the weight of an unacceptable chromosome until its weight is below W. 

 

                                                      
24

 It is noted that other types of mutation (as boundary, uniform and Gaussian) and crossover (as 

two-point, cut-and-slice and half-uniform) are also commonly used. Moreover, other genetic 

operators (as regrouping, colonization-extinction and migration) are also suggested in the 

literature [250]   
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Figure 5.3. Standard genetic operators: Binary Mutation, One-Point and Uniform 

Crossover 

 

5.1.3 Systemic Analysis 

Having described the genetic optimization approach of the binary knapsack problem in 

the previous sections, a systemic analysis is required in order to identify the systems, the 

interactions among them and the scopes they belong to before building the corresponding 

SC model (implementing the conceptual layer of the suggested model development 

methodology, see Figure 4.5).  
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In this case, associating the data systems with the candidate solutions is a 

straightforward choice, as the similarity of the binary representation of a chromosome 

(see Figure 5.2) with the representation of a HAoS data system (see Figure 3.8a) is 

evident. Thus, the genetic content of each chromosome is stored in one of the schemata 

of a SC system. This implies that as the size of each schema is set to 16 bits in this 

HAoS implementation, a restriction of a maximum of 16 items is posed to this knapsack 

problem.  

As systems are initialized to random values after the beginning of the program, the SC 

model should initially include only non-initialized solutions. Moreover, the fittest 

solution should be uniquely stored in a different type of system, which will be updated 

only when required (only when a fitter solution than the previously fittest solution has 

been found). Thus, three distinct types of data systems, stored in the second schema of 

each data system, are required to represent all possible solution: non-initialized, 

initialized and fittest.  

The obvious context systems needed, defining interactions between the parent solution 

systems, correspond to the three genetic operators used in our problem (see Figure 5.3). 

Additionally, following the discussion above, a context handling the initialization of 

solutions (an ―initializer‖ context) is also required, setting the bits of the chromosome-

representing schema randomly to 1 or 0 (with 50% probability each) and changing their 

type-representing schema from non-initialized to initialized. Moreover, another ―output‖ 

context should be responsible for updating the fittest solution, by comparing its weight 

with the weight of a randomly chosen initialized system and updating it when a new 

maximum weight is found. 

Considering the required scopes of interaction, since the main transformation activities 

of this SC model are performed by the genetic operator contexts on initialized solutions, 

a dedicated ―computation‖ scope is defined to separate them from the secondary tasks of 

initialization and output. This implies that non-initialized solutions can be part of the 

root (or ―main‖) scope but they need to be moved in the computation scope when 

initialized by the initializer context. The output context (along with the fittest solution) 

can also be contained in the root scope. However, since interacting systems must be in 

the same scope, and since the fittest solution belongs to the root scope, initialized 

solutions should also be part of the main scope (in order to be able to interact with the 

final solution during updating). This denotes that initialized solutions are part of both the 
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computation and the main scopes. The genetic optimization binary knapsack SC model, 

according to the systemic analysis above is summarized in Figure 5.4. 

 

Figure 5.4. The binary knapsack SC model. Non-initialized solutions are initialized by the 

initializer context and added into the computation scope where they are transformed 

through genetic operations. The output context updates, if necessary, the fittest solution.  

5.1.4 SC Binary Knapsack Model Implementation 

The HAoS binary knapsack model (and the two other bio-inspired models presented later 

in this chapter) has been implemented applying the suggested development 

methodology
25

 of section 4.5. The systemic analysis performed at the Conceptual Layer, 

resulting in laying out the model on SC graphical notation, makes the development of the 

                                                      
25

 The low level details of the implementation of the Application, Link and Physical Layers will 

be omitted here. All source code and configuration bitstrings can be found in the official HAoS 

webpage [191]. 
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SC source code straightforward. In order to show this, the source code of the binary 

knapsack model is given in Listing 5.1.  Its direct mapping to Figure 5.4 is evident as, 

after the functions and some useful labels are defined, the data systems, contexts and 

scopes are defined exactly as represented graphically. A description of the SC contexts 

functionality is given in Table 5.1.  

Listing 5.1. Binary Knapsack SC model source code (50 solutions) 
             

#systemic start 
 

// define the functions 

#function Output            %b00000001010000000000000000000000 

#function Initialize        %b10000001010000000000000000000000 

#function UniformCrossover  %b01000001010000000000000000000000 

#function OnePointCrossover %b11000001010000000000000000000000 

#function BinaryMutation    %b00100001010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label comp       %b1111111100000000 

#label Sol        %b1000000000000000 // Initialized Solution System Type 

#label nonInitSol %b0100000000000000 // Non-Initialized Solution System Type 

#label FittestSol %b1100000000000000 // Fittest Solution System Type 

#label zero2      %b00000000000000000000000000000000 

 

// declare the scopes  

main (%d0 %d0 %d0) 

computation ( comp %d0 comp ) 

 

// data systems  

OutSolution ( zero %d0 FittestSol )    // Fittest Solution  

[1:50]solution ( zero %d0 nonInitSol ) // Non-Initialized Solutions 

 

// context systems 

 

// The initializer context defines an interaction between a non-initialized       

// solution and the computation scope  

initializer ([zero zero2 nonInitSol] Initialize(0,0) [comp zero2 comp]) 

 

// The output context defines an interaction between an initialized solution  

// and the fittest solution  

output  ([dontcare zero2 Sol] Output(0,0) [dontcare zero2 FittestSol]) 

 

// The genetic operator contexts define interactions between initialized solutions  

uniformCross ([dontcare zero2 Sol] UniformCrossover(0,0) [dontcare zero2 Sol]) 

onePointCross ([dontcare zero2 Sol] OnePointCrossover(0,0) [dontcare zero2 Sol]) 

binMutation ([dontcare zero2 Sol] BinaryMutation(0,0) [dontcare zero2 Sol]) 

 

// set up the scopes 

#scope main 

{ 

 OutSolution 

 [1:50]solution 

 

 initializer 

 output 

 

 computation 

} 
 

#scope computation 

{ 

 uniformCross 

 onePointCross 

 binMutation 

} 
 

 #systemic end  
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Table 5.1. Summary of the Knapsack SC model functions. All functions run on the CPU. 

Function Name Description 

Initialize 
Initializes an non-initialized solution with random bit values, transforms 

it to initialized and inserts it also in the computation scope 

UniformCrossover   

Performs Uniform Crossover (each child bit can come from any of the 

parents with 50% probability - see Figure 5.3) using two initialized 

solutions as parents 

OnePointCrossover 

Performs One-Point Crossover (the child is produced by two 

consecutive parts, one from each parent, while the point that defines the 

length of the parts is chosen randomly -  see Figure 5.3) using two 

initialized solutions as parents 

BinaryMutation     

Performs Uniform Crossover (a random bit-flip is performed to the 

parent to result in the child - see Figure 5.3) using one initialized 

solution as parent 

Output 
Compares a random solution with the fittest and updates the fittest if 

needed 

 

Experiment Setup 

The setup of the binary knapsack experiment replicates the configuration presented in 

[34], and shown earlier in Figure 5.1, in order to enable a direct comparison and 

evaluation of the performance of HAoS against prior SC implementations. In particular, 

identical copies
26

 of the SC source code are used to run the experiment on HAoS, the 

original sequential (section 2.4.1) and the GPU-based (section 2.4.3) implementations. 

SCoPE (section 2.4.2) is excluded here, as it uses a different SC language and compiler. 

It is noted that the CPU is heavily used in this case, as the available low-level hardware-

supported HAoS instructions are not suitable for the required high-level GA tasks. 

The experiment involves running the 16-item SC binary knapsack model using 50, 100, 

200, 400, 800 and 1000 solutions. As the time of convergence to the optimal 

chromosome can vary greatly for different runs and since this metric is mainly affected 

by the sequence of the selected genetic operations applied to the candidate solutions, it 

was decided that the three platforms would be evaluated based on reaching a certain 

amount of interactions, set in this experiment at 10000 (following the setup in [34]). An 

Intel® Core™ i7 950 CPU at 3.06GHz with 4 GB of RAM running on 32-bit Windows 7 

and an NVIDIA GeForce GTX 260 GPU with 192 CUDA cores where used for the 

sequential and GPU versions. HAoS, as mentioned in sections 4.2 and 4.3.6, uses a 

                                                      
26

 The source code was not optimized for HAoS in order to enable a more fair comparison. 
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MicroBlaze processor with 64KB of RAM running at 100 MHz while the custom logic is 

clocked at 50MHz. 

5.1.5 Results 

The binary knapsack problem was one of the initial verification tests (see Table 3.5) that 

validated the functionality of HAoS by simulation. The verification environment lacked
27

 

precise timing information, as the CPU INTERFACE (see Figure 3.9) was emulated by a 

generic register-based mechanism implementing a handshake protocol and the timing of 

functions running on the processor was estimated by averaging the results of intrusive 

software-based profiling. Thus, timing results presented in this chapter will be solely 

based on live testing on the hardware platform.  

However, in order to show that the verification environment can be used, if required 

(mostly for debugging purposes), even for such a high-level model, an excerpt from its 

output near the end of the simulation is given in Listing 5.2 showing that the optimal 

chromosome, with right weight and value (see Figure 5.2), is correctly identified (also 

noting the relatively long run time). 

Listing 5.2. Verification environment output for Binary Knapsack SC model  
              

#Time 52093085ns :: KSBINMUTATE{CPU}: (22591,22591) => (6207,22591)  

[((sys1.sch1),(sys2.sch1)) => ((sys1.sch1),(sys2.sch1))] <sc:0,cxt:53,it:9998> 

#Time 52097645ns :: KSOUTPUT   {CPU}: IF DIFF THEN BETTER (22587,22591) => 

(22587,22591) (sys1@51,sys2@1) [sys1.sch2:1=>1, 

sys2.sch2:3=>3][((sys1.sch1),(sys2.sch1)) => ((sys1.sch1),(sys2.sch1))] 

<sc:0,cxt:53,it:9999> 

#  

#Time 52098245ns :: SC Top Test finished.. 

#  

#Time 52098245ns :: The SC program was loaded at 2613975. 

#  

#Binary Knapsack Problem Solution is 0101100000111111 (found at iter. 2259 

<@13929180ns>) 

#It has a weight of 79.000000 and a value of 124.000000 

#  

#Aborted 11 times due to schemata mismatch out of 10000 iterations. 

#Aborted/Successful CAM compare Ratio : 0.11% 

#  

#Process time 305.01 seconds (simulation real time duration) 

The comparison results for the different experiment configurations in terms of number of 

systems are given in Figure 5.5 as a semi-log graph (left) in order  include the 

exponential growth of runtimes for the sequential implementation, while on the right 

                                                      
27

 Applies for behavioural (RTL) simulations. Precise and very precise timing can be obtained in 

the verification environment by running post-synthesis and post-place-and-route simulations 

including the processor subsystem but this results in excessive run times. 
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HAoS performance is compared only with the GPU-based version. All the 

implementations eventually identify the correct solution.  

 

Figure 5.5. Binary knapsack problem experimental results across a range of number of 

systems comparing the sequential, GPU and HAoS SC implementations (left - semi-log) - 

zoomed in (right) 

 

5.1.6 Analysis 

Since the code implementing the transformation functions of the SC model is 

intentionally identical to the code running in the other implementations, the comparison 

results mainly represent the efficiency difference of the three platforms on valid triplet 

generation, affected mainly by the implementation of the schemata matching mechanism. 

As the number of system increases, the sequential implementation struggles as it handles 

schemata matching with an inefficient loop-based approach resulting in time complexity 

of O(n
2
), while the GPU version, by utilizing multiple stream processors, parallelizes 

part of this loop and achieves to decrease it in O(n) [34] (shown in Figure 5.5 if the 

minimal highest orders factors are ignored). The truly parallel nature of the TCAM is the 

differentiating feature for HAoS since schemata matching is executed in constant time 

(one clock cycle ‒ implying O(1)), shown in Figure 5.5.  

As more clearly shown in Figure 5.6 (illustrating the normalised performance of HAoS 

in relation with the sequential and GPU SC versions), the superiority of the HAoS 

platform against prior implementations is evident as HAoS performs more than 1000x 

better than the sequential solution in the best case and approximately 8x-9x when 

compared with the GPU implementation. 
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Figure 5.6. Binary knapsack experiments HAoS normalised performance compared to the 

sequential and GPU implementations 

 

Moreover, it is important to be noted that, these results do not apply only in the problem 

class which the knapsack experiment belongs in, but they can be generalized to any 

problem that may be solved with SC given that HAoS provides sufficient computational 

resources when compared to alternatives. This is attributed to the importance of the 

schemata matching mechanism. The performance during the simulation of any natural 

system under the SC paradigm always rely on valid triplet generation (finding the two 

systems to interact according to the schemata templates of a, third, context system) and 

the actual computation which changes the systems according to the transformation 

function of the context system. Being able to perform the computational part, by 

executing code written in some well-established high-level language, is essential in order 

to achieve a generic and practical architecture not limited to the complexity of the 

computation. However, attempting to also simulate the schemata matching step, which is 

highly-parallel in nature, to the same sequential logic results in the findings of Figure 5.5 

when compared to the suggested HAoS architecture for ascending number of systems, 

due to the inherent parallelism of the employed TCAM. 

The schemata matching task can be viewed as a lookup in a 3-dimensional search space 

for each scope, where each dimension represents the indexes of each system in the valid 

triplet (s1 for first interacting system axis, s2 for second interacting system axis and c for 

context axis), or a 4-dimensional search space with the fourth dimension (s) representing 
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the scopes of each system. In the current configuration the coordinates on s and c axes 

(valid scope and active context) are chosen randomly, as explained in section 3.5, and 

then HAoS locates the appropriate coordinates on axes s1 and s2 by performing two 

consecutive lookups using the TCAM to identify the interacting systems, and thus 

pinpoint the next valid triplet. Using a second TCAM, would enable the identification of 

both interacting systems at the same time, while using such a double TCAM structure (or 

effectively a dual-port TCAM) for each context system would enable a one clock cycle 

latency of finding all active triplet points in the 3-dimensional search space for each 

scope.  

Extending this thought, again multiplying the number of TCAMs with the number of 

scopes would allow a truly parallel schemata matching mechanism that would give all 

interacting systems pairs for all contexts in all scopes at once. Such a structure would 

increase the number of required TCAM storage exponentially. Whereas the TCAM in the 

current prototype requires (N is the number of maximum supported systems):  

SizeTCAM  = ( LengthTCAM ) * ( WidthTCAM ) = ( 2 * SizeSchemata )* ( N ) = ( 2 * 16 ) * 1024 = 4KB 

in the hypothetical 4-dimensional TCAM scenario it would require : 

SizeTCAM4d = 2 * N * N * SizeTCAM = 4 * SizeSchemata * N
3 

= 8GB 

which is an enormous size when considering on-chip distributed memory today but may 

become feasible in the future or using an alternative TCAM implementation approach, 

e.g. an external TCAM configuration. The HAoS prototype, in this context, is a 

compromise between the inefficient sequential approach and the truly parallel but 

currently infeasible 4d approach for schemata matching. 

Apart from the encouraging evaluation results, it should be noticed that the knapsack 

problem here acts as more than an example of a common synthetic computational 

problem being solved. Implementing a genetic algorithm in such a native way implies 

that the design encompasses, to some level, a lot of the natural properties of Table 1.1, 

addressing research challenge Chg1. As it has been shown in [22], such a system can 

present behavioural natural properties as self-adaptation, self-organization, fault-

tolerance and self-maintenance while also implementing a stochastic, distributed and 

approximate computational model. Moreover, the successful execution of this first high-

level SC model confirms the support of the suggested design for the underlying 

architecture of SC, addressing research challenge Chg2. The results additionally address 

research challenge Chg3 by verifying the efficiency of HAoS against prior SC 

implementations. 
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5.2 Simulation of a Biochemical Process with HAoS: the MAPK 

Signalling Cascade 

Enzymes regulate various cellular functions by catalyzing chemical reactions among 

biological molecules. One of the enzymes known to be responsible for gene expression 

and cell fate induction is the protein kinase which adds phosphate groups to proteins (a 

process called phosphorylation). Extracellular stimuli (mitogens) can activate protein 

kinases (Mitogen Activated Protein Kinases - MAPK) and start a chain reaction known 

as the MAPK signalling cascade [233], resembling the behaviour of a biological 

ultrasensitive switch which can bring the cell to discrete states.  

The MAPK cascade model presented in this section was introduced by Huang and Ferrell 

in [233]. The authors give estimated results based on the numerical solution of rate 

differential equations derived by the involved biochemical reactions which are in 

accordance with in vitro experimental results presented in the same paper. The same 

model was used later in [234] as an application for their stochastic π-calculus simulator 

and in [22] as a case study to demonstrate the visualization framework of the high-level 

SCoPE implementation (see section 2.4.2 - Figure 2.14 actually represents a MAPK 

cascade model). 

5.2.1 The MAPK Signalling Cascade 

During the process involved in the MAPK signalling cascade, mitogens activate a 

MAPKKK (mitogen-activated protein kinase kinase kinase or MAPKKK or for 

simplicity here KKK) which in turn phosphorylates a MAPKK (mitogen-activated 

protein kinase kinase or MAPKK or KK) which itself phosphorylates a MAPK (mitogen-

activated protein kinase or MAPK or K). The product of the first step, the activated 

KKK, is denoted as KKK*. In the next steps, one or two phosphate groups (P) are added 

to K and KK and result in single (KP and KKP) and double (KPP and KKPP) 

phosphorylated kinases.  

The cascade can return to its initial state with the addition of phosphatase enzymes 

(KKPase and KPase) which remove a phosphate group from its substrate (this reverse 

process is called dephosphorylation). The phosphorylation and dephosphorylation 

processes along with their associated chemical reactions are illustrated in Figure 5.7. 
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Figure 5.7. Simplified biochemical description of the MAPK signalling cascade ignoring 

phosphate groups. The cascade is traversed forwards during phosphorylation (lower half, 

left-to-right) to result in a high concentration of activated kinases KKK*, KKPP and KPP 

and backwards during dephosphorylation (upper half, right-to-left) to return to its initial 

state. E1 and E2 represent the mitogens which activate KKKs and deactivate KKK*s, 

respectively. The intermediate product of each reaction (written here as the reactants 

connected by a hyphen) may either give the final products or be transformed back to the 

initial reactants
28

. 

5.2.2 Systemic Analysis 

Taking into consideration the chemical reactions of the cascade (see Figure 5.7), a 

systemic analysis of the model is performed to identify the systems to interact and the 

form of the interactions between them. Since this is a biochemical model involving 

enzyme activity, selecting the level of abstraction of the SC model at the enzyme level is 

a straightforward decision. 

Considering first the phosphorylation process, looking at the bottom half of Figure 5.7, 

since the addition of the mitogens E1 performs the activation of proteins KKK and 

transforms them in activated proteins KKK*, it is evident that the mitogens act as 

context systems, defining the interaction of a data system KKK with an implied free 

phosphate group (PF) resulting either on the KKK binding the PF and becoming KKK* 

with a bound phosphate group (PB) or no system being transformed. This binding of a 

                                                      
28

 To be more exact, the intermediate products are in chemical equilibrium state with the 

reactants, meaning that no real transformation can happen between them as both reactants and 

products are present at concentrations which have no further tendency to change with time. 

Products  ← Reactants
Reactants → Products
⇌ : Chemical Equilibrium

KKK+E1 ⇌ KKK*-E1 → KKK*+E1

KKK+E2 ← KKK-E2 ⇌ KKK*+E2

KK+KKK* ⇌ KK-KKK* → KKK*+KKP⇌ KKK*-KKP → KKK*+KKPP

← KKPP-KKPase ⇌ KKPP+KKPaseKK+KKPase ← KKP-KKPase ⇌ KKP+KKPase

K+KKPP ⇌ K-KKPP → KKPP+KP⇌ KKPP-KP → KKPP+KPP

← KPP-KPase ⇌ KPase+KPPK+KPase ← KP-KPase ⇌ KP+KPase
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PF and its transformation to a PB is implied for every reaction during the 

phosphorylation process and will not be repeated in the following analysis.  

Moving in the next pair of reactions, a KKK* may transform a KK into a KKP and if this 

reaction is performed, the KKK* may also further transform the product KKP into a 

KKPP. Thus KKK* acts as a context, defining interactions between KK or KKP data 

systems and the implied PFs. It should be noted that while KKK is a data system, it is 

transformed to a context system (KKK*) when activated by E1 in the previous step. This 

implies that the context adapting functionality (discussed in section 3.6.1 and tested in 

section 3.8.1) is required by this SC model.  

Looking at the last set of reactions, the product of the previous reaction KKPP (which 

has resulted from data system KKP) acts as a context, defining interactions between K or 

KP data systems and the implied PFs. The possible products of these interactions are 

respectively KP or KPP data systems. Thus the data system KKP is transformed to the 

context system KKPP. As shown in the bottom right part of Figure 5.7, KKPP and KPP 

are the last products of the phosphorylation process, so monitoring their concentration 

can give the state of the MAPK signalling cascade biological switch (the two distinct 

states of the switch are represented by either very high or very low concentration of 

these products) during an experiment using this model. 

Using the same thought process and the chemical reactions of the top half of Figure 5.7, 

a systemic analysis can also be performed for dephosphorylation. For each reaction 

during this process, an unbinding of a bound phosphate group PB and its transformation 

to a free phosphate group PF is implied. Skipping the detailed explanation, the 

phosphatase enzymes KPase and KKPase and the mitogen E2 act as contexts. KPase may 

transform data systems KPP and KP to data systems KP and K, respectively. KKPase 

may transform data systems KKP to data systems KK but may also transform context 

systems KKPP to data systems KKP. This dual functionality cannot be represented by 

one system. Thus, a context should be used to model the former behaviour of KKPase, 

while a context adapter system should be used to model the later. Finally, context 

adapter E2 may transform KKK* contexts back to data systems KKK.  

After identifying the systems involved in the SC MAPK cascade model above, the last 

part of the systemic analysis is with regards to the required scopes of interaction. An 

exact representation of the model would require that once a phosphate group P, modelled 

as a separate system, is bound by a protein kinase during phosphorylation, this P could 

not be able to be re-bound by another kinase. Furthermore when this specific kinase 
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would interact during dephosphorylation, it would need to unbind the specific P that had 

bound before. This functionality, representing the physical location in a real biochemical 

system could be implemented using scopes. However, it would add considerable 

complexity to the SC model.  

Since the main focus of this MAPK model lies on the concentrations of the activated 

kinases, representing the phosphate groups as a distinct system each is not a fi rm 

requirement. The total of Ps can also be modelled as a container system holding in its 

schemata counters for the number of the free groups PF and of the ones bound to a 

kinase PB. Furthermore, this model assumes that an adequate number of Ps is available, 

equal or greater than |KKK|+2*(|KK|+|K|) (as one P can be bound by a KKK and two Ps 

can be bound by KKs and Ks), which would be enough to phosphorylate all kinases. 

Thus, the way Ps are modelled becomes irrelevant as it would only have an effect on the 

outcome of the model only in the case of having a shortage of P, since this would disable 

some reactions. So, in order to avoid adding unnecessary complexity to the SC model, all 

phosphate groups can be modelled by a single system taking part in all interactions or 

even be safely ignored, as long as the contexts appropriately alter the kinase systems. 

Following this approach, the number of total required systems is drastically decreased 

and also no additional scopes are needed, apart from the root scope.   

In order to make the systemic analysis more clear, the systems and interactions of the 

HAoS MAPK model are described in SC calculus notation [22] in Table 5.2. The 

designations (P[F]) and (P[B]) as the second interacting system denotes that a free or 

bound phosphate group, respectively, would be used if each P was represented by a 

separate system while all interactions would involve the same P system if all Ps were 

represented by a container system. The parenthesis reminds us that the P system may 

even be ignored (in that case, the second template would match with any system). The 

simplified SC model discussed above is given in SC graphical notation in Figure 5.8. 
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Figure 5.8. The HAoS MAPK model in SC graphical notation. During phosphorylation, E1 

mitogens activate KKKs, which become KKK*s and phosphorylate KKs, which, when 

double phosphorylated, become KKPPs and phosphorylate Ks. This process is reversed 

during dephosphorylation with KPase and KKPase phosphatases and E2 mitogens bringing 

the cascade to its initial state. Systems with the same colour or connected with a dotted line 

may represent the same system (redrawn here for clarity). Phosphate groups may be 

modelled as separate systems including information about their binding ([F]:free, 

[B]:bound) or as one counter system representing all of them (P) or may even safely ignored 

as they do not have an impact on the behaviour of the model.  
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Table 5.2. The HAoS MAPK model interactions in SC calculus notation. The notation S1 }- 

C -{ S2 indicates that the systems S1 and S2 match the schemata of a context system C and 

they interact in the scope of C according to its transformation function, while the | symbol 

separates different outcomes that an interaction may have. During phosphorylation a free 

phosphate group (PF) becomes bound (PB) to a kinase, while it is released during 

dephosphorylation when phosphate groups are included in the model. The different types of 

systems according to the systemic analysis are represented as follows here: Bold for 

contexts, italic for context adapters and normal for data  
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Interacting Systems  
 

        Result 

  KKK }- E1 -{  (P[F]) 
 

 KKK* (P[B]) | KKK (P[F]) 

  KK }- KKK* -{  (P[F]) 
 

 KKP (P[B]) | KK (P[F]) 

  KKP }- KKK* -{  (P[F]) 
 

 KKPP (P[B]) | KKP (P[F]) 

  K }- KKPP -{  (P[F]) 
 

 KP (P[B]) | K (P[F]) 

  KP }- KKPP -{  (P[F]) 
 

 KPP (P[B]) | KP (P[F]) 
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Interacting Systems  
 

        Result 

   
  KPP }- KPase -{  (P[B])  

 

 KP (P[F]) | KPP (P[B]) 

  KP }- KPase -{  (P[B]) 
 

 K (P[F]) | KP (P[B]) 

  KKPP }- KKPase -{  (P[B]) 
 

 KKP (P[F]) | KKPP (P[B]) 

  KKP }- KKPase -{  (P[B]) 
 

 KK (P[F]) | KKP (P[B]) 

  KKK* }- E2 -{  (P[B]) 
 

 KKK (P[F]) | KKK* (P[B]) 
 

5.2.3 SC MAPK Signalling Cascade Model Implementation 

Following the systemic analysis of the previous section, the MAPK HAoS model 

includes all types of supported systems: data, context and context adapters. Observing 

the systemic interactions of Table 5.2, data systems are differentiated by the number of 

protein kinases (Ks) and phosphate groups (Ps). So a straightforward approach to 

represent this information is to assign one bit for each K and each P in each data system. 

If separate phosphate groups are included in the model, another pair of bits can be used 

to represent the P data system type and its binding state. Furthermore, noting that 

contexts KKK*, KKPP and KPase can define interactions performing the same 

transformation on two different types of data systems (KKK* can select KKK or KK, 

KKPP can select K or KP and KPase can select KPP or KP), these interactions can be 

grouped together. Ternary bits (denoted with a question mark: ?) can be used in the data 

template defined in the schemata of these contexts, so that both possible data system 
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types can be selected during schemata matching. This is shown in the labels section of 

the SC source code of the model, given in Listing 5.3. 

Listing 5.3. MAPK Signalling Cascade SC model source code 
             

#systemic start  

 

// define the functions needed according to the systemic interactions 

#function PHOSPH_E1       %b00000010010000000000000000000000 // Phosphorylation E1 

#function PHOSPH_KKK      %b10000010010000000000000000000000 // Phosphorylation KKK* 

#function PHOSPH_KKPP     %b01000010010000000000000000000000 // Phosphorylation KKPP 

#function DEPHOSP_E2      %b11000010010000000000000000000000 // Dephosphorylation E2 

#function DEPHOSPH_KKPASE %b00100010010000000000000000000000 // Dephosphoryl. KKPase 

#function DEPHOSPH_KPASE  %b10100010010000000000000000000000 // Dephosphoryl. KPase 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label zero2      %b00000000000000000000000000000000 

 

//// #label phosfree   %b0000001000000000 // uncomment to include phosphate groups 

//// #label phosbound  %b0000001100000000 // uncomment to include phosphate groups 

#label kkk        %b1110000000000000 

#label kk         %b1100000000000000 

#label k          %b1000000000000000 

#label kkp        %b1100100000000000 

#label kp         %b1000100000000000 

#label kpp        %b1000110000000000 

#label kkORkkp    %b1100?00000000000 // using ternary bit to match both kk and kkp 

#label kkpORkkpp  %b11001?0000000000 // using ternary bit to match both kkp and kkpp 

#label kpORkpp    %b10001?0000000000 // using ternary bit to match both kp and kpp 

#label kORkp      %b1000?00000000000 // using ternary bit to match both k and kp 

 

main (%d0 %d0 %d0) // declare the main scope 

 

// data systems  

[0:9]kkk ( zero %d0 kkk ) 

[0:99]kk ( zero %d0 kk ) 

[0:99]k  ( zero %d0 k )  

//// [0:409]phosphate ( zero %d0 phosfree ) 

// uncomment commented contexts and comment the line above them to include Ps 

 

// context systems  

 

// Phosphorylation 

e1 ([dontcare zero2 kkk] PHOSPH_E1(0,0) [dontcare zero2 dontcare])  

//// e1 ([dontcare zero2 kkk] PHOSPH_E1(0,0) [dontcare zero2 phosfree]) 

kkkst ([dontcare zero2 kkORkkp] PHOSPH_KKK(0,0) [dontcare zero2 dontcare]) 

//// kkkst ([dontcare zero2 kkORkkp] PHOSPH_KKK(0,0) [dontcare zero2 phosfree]) 

kkpp ([dontcare zero2 kORkp] PHOSPH_KKPP(0,0) [dontcare zero2 dontcare]) 

//// kkpp ([dontcare zero2 kORkp] PHOSPH_KKPP(0,0) [dontcare zero2 phosfree]) 

 

// Dephosphorylation 

e2 ([kkkst] DEPHOSP_E2(0,0) [dontcare zero2 dontcare]) 

//// e2  ([kkkst] DEPHOSP_E2(0,0) [dontcare zero2 phosbound]) 

kpase ([dontcare zero2 kpORkpp]  DEPHOSPH_KPASE(0,0) [dontcare zero2 dontcare]) 

//// kpase ([dontcare zero2 kpORkpp] DEPHOSPH_KPASE(0,0) [dontcare zero2 phosbound]) 

kkpasekkp ([dontcare zero2 kkp]  DEPHOSPH_KKPASE(0,0) [dontcare zero2 dontcare]) 

//// kkpasekkp ([dontcare zero2 kkp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 phosbound]) 

kkpasekkpp ([kkpp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 dontcare]) 

//// kkpasekkpp ([kkpp] DEPHOSPH_KKPASE(0,0) [dontcare zero2 phosbound]) 

 

#scope main // set up the main scope 

{ 

 e1 

 e2 

 kpase 

 kkpasekkp 

 kkpasekkpp 

 [0:9]kkk 

 [0:99]kk 

 [0:99]k 

 //// [0:409]phosphate 

} 

 

 #systemic end  
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Table 5.3. Summary of the MAPK SC model functions. All functions run on the CPU. 

Function Name Description 

PHOSPH_E1 
Represents the functionality of enzyme E1, transforming KKK to 

KKK* or leaving them unchanged 

PHOSPH_KKK 

Represents the functionality of activated kinases KKK*, 

transforming KK and KKP to KKP and KKPP respectively, or 

leaving them unchanged 

PHOSPH_KKPP 

Represents the functionality of activated kinases KKPP, 

transforming K and KP to KP and KPP respectively, or leaving them 

unchanged 

DEPHOSP_E2 
Represents the functionality of enzyme E2, transforming KKK* to 

KKK or leaving them unchanged 

DEPHOSPH_KPASE 
Represents the functionality of phosphatases KPase, transforming 

KPP and KP to KP and K respectively, or leaving them unchanged 

DEPHOSPH_KKPASE 

Represents the functionality of phosphatases KKPase, transforming 

KKPP and KKP to KKP and KK respectively, or leaving them 

unchanged 

Context adapter systems e2 and kkpasekkpp, which respectively transform kkkst 

(KKK*) and kkpp contexts back to data systems, match the context systems according 

only to their transformation function, so the name of the systems to be matched are used 

in the SC source code instead of separate templates. Finally, not all defined systems need 

to be part of the main scope at the beginning of the SC program, as contexts KKK* and 

KKPP are products of interactions which occur along the execution of the model. 

As discussed in the previous section, the MAPK model used in this experiment is a 

simplified
29

 version, in terms of the representation of the phosphate groups. While this 

version ignores Ps, the SC source code given in Listing 5.3 includes for completeness the 

changes (in comments) that would be needed to include Ps in the model
30

.   

                                                      
29

 If the simplification of the model (resulting in decreasing the overall number of required 

systems) was not possible, the size of the model would be restrictive for execution on the 

implemented prototype HAoS platform, which after the last revisions of the design officially 

supports models involving up to 511 systems. 

30
 The inclusion of a data system representing all phosphate groups would also be quite simple as 

this system would need to be defined and included in the main scope. Moreover, a single 

matching label (e.g. "phos")  corresponding to the type of this phosphate system would replace 
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On the high-level software development side of the model, context transformation 

functions plugins (Application Layer, Figure 4.5) were developed to implement the 

transformation activity of each interaction. These functions, running on the embedded 

processor, mainly handle the required systems' type alterations (see Table 5.2 and Table 

5.3) and the logging of the output from the model (concentration, represented by the 

number of systems, of the final products of the chemical reactions) on the SD card. It is 

noted that in the case of context adapting the software should notify the hardware 

(through appropriately setting a configuration register) that a system has changed its type 

(from data to context or vice versa).  

Experiment Setup 

The MAPK signalling cascade model has been previously simulated with the Stochastic 

Pi Machine (SPiM) simulator in [234] and with the high-level SC implementation 

(SCoPE) in [22]. Thus, modelling the MAPK cascade with HAoS using the same 

configuration and initial conditions previously used in the experiments presented in 

[234] and [22] enables the direct comparison and evaluation of our prototype platform 

against these alternative simulators in terms of quality of results and performance (based 

on execution speed). 

The common configuration used in all three modelling environments, in accordance with 

the experiment in [234], involves 10 KKKs, 100 KKs and  100 Ks kinases, 1 E1 and 1 

E2 enzymes, and 1 KKPase and 1 KPase phosphatases. All protein kinases are initialized 

to a non-phosphorylated state. All chemical reaction rates (which in this model are 

translated to interaction probabilities) are set to a nominal value of 1. This implies that 

since every interaction may either change the interacting systems or leave them 

unchanged, each outcome has a probability of 0.5. 

5.2.4 Results 

Since the results of the SPiM simulator, modelling the cascade, have been shown in 

[234] to be in agreement with the actual response of this signalling network, observed in 

a wet lab, we can use them as a reference to validate the functionality of HAoS. As 

illustrated in Figure 5.9, the simulated behaviour of the cascade is shown to be in 

                                                                                                                                                      
all "phosfree" and "phosbound" labels in all context definitions, as all interactions would involve 

this single P data system. 
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agreement for all three used simulation environments ((a) SPiM, (b) SCoPE and (c) 

HAoS). 

However, while all three simulators capture the functional behaviour of the cascade 

correctly, their simulation running times vary significantly. Simulating biological 

processes was the key consideration for their design but their performance depends 

heavily on their implementation. While, as previously discussed, SCoPE is a high-level 

software (C++) implementation of SC, the SPiM simulator is a functional programming 

[235] (F#) software implementation of the SPiM language, developed by Microsoft 

Research, which is based on stochastic π-calculus [49] and standard kinetic theory of 

physical chemistry [234]. HAoS being a hardware-based implementation, it benefits 

from the inherent parallelism of the TCAM and low-level hardware latency-aware 

optimizations. As seen in Table 5.4, HAoS outperforms the alternative software-based 

simulators: SPiM by a factor of 17.3 and SCoPE by a factor of 11323.6 in the case of the 

MAPK cascade. 

             

  
Figure 5.9. Traversing the MAPK signalling cascade with (a) SPiM, (b) SCoPE and (c) 
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Table 5.4. Performance of the HAoS, SPiM (v1.13) and SCoPE simulators based on 

simulation duration, simulating 50 seconds of the MAPK cascade evolution, with initial 

conditions as stated in Figure 5.9. Values shown are the average over 20 runs acquired 

using PowerShell on Windows 7 64-bit, Core i7 Q840 CPU with 8 GB RAM for the 

software-based simulators, while HAoS is implemented on a Xilinx Virtex-6 FPGA utilizing 

a MicroBlaze soft processor running at 100MHz with 64KB of dedicated memory.  

 HAoS SPiM SCoPE 

msec 58.1 1004.9 657902.5 

factor 1 17.3 11323.6 

 

      

5.2.5 Analysis 

As shown in Figure 5.9, the behaviour of the MAPK signalling cascade as a biological 

switch that can bring the cell in discrete states is captured by all three used modelling 

environments, as all instances of KK and K kinases are double phosphorylated and result 

in KKPP and KPP respectively. However, minor differences can be observed in the 

output of the three simulators regarding the signal response sensitivity of the model in 

terms of the rate of KPP production as a result of KKPP activations near both states and 

especially as the concentrations reach the total number of the available kinases plateau. 

It is noticed that the SPiM simulator reflects more accurately the decrease in available 

kinases, resulting in reaching the final state (after a decrease in the activation rate) in a 

more gradual manner presenting a more rounded sigmoidal finish. Both SC simulators 

present a more abrupt finish as the chemical rates are translated to interaction 

probabilities in the software level, resulting in a less sensitive behaviour as fine-tuning 

their values is also affected by the interaction order mechanism employed in the 

implementation. 

The timing results of Table 5.4, also illustrated as the performance factor provided by 

HAoS against SPiM and SCoPE (after normalisation) in Figure 5.10, reveal the low 

efficiency of the high-level SCoPE implementation, as a result of its increased provided 

flexibility and the ineffective brute-force schemata matching mechanism which iterates 

through random triplets of systems until one that can define an interaction is identified. 

The SPiM simulator, while running on a conventional CPU, achieves a considerably 

better performance due to its optimized implementation of stochastic π-calculus. It 

models the various interactions with separate processes communicating through 

predetermined channels with dynamically adjusted interaction rates, affected by the 

number of possible combinations of inputs and outputs on each channel [234]. It is 

important to notice that while the SC models set the level of abstraction at the enzyme 
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level, modelling each kinase as an individual entity, the SPiM model  simulates all 

instances of the same type of kinases in a separate unified group, resulting in a reduced 

simulation complexity and increased performance.  

 

Figure 5.10. MAPK cascade experiment HAoS normalised performance compared to the 

SPiM and SCoPE simulators 

    

Yet, in spite of this relative difference in the implementation of the MAPK model, HAoS 

still achieves to outperform SPiM due to its highly parallel nature and low-level 

optimizations which implement the implied SC architecture efficiently. Thus, these 

results confirm that research challenges Chg2 and Chg3 have been adequately addressed 

since the suggested platform provides support for the architectural features of SC while 

achieving this with efficiency. This is shown by the capacity of HAoS outperforming not 

only prior SC implementations, as SCoPE, but also rival simulators, as SPiM.  

5.3 Modelling the Effect of Chromosome Missegregation and 

Typical Cancer Therapy Approaches in Tumour Evolution 

with HAoS 

Medical research is given a high priority amongst all research activity, mainly because it 

usually addresses issues that may have a profound role in the course of human life. A 

cure for cancer may be called the ―holy grail‖ of medical research on life-threatening 

diseases, due to the increasing levels of cancer-related mortality being observed during 

the last decades. Cancer is a group of  diseases, having in common irregular cell growth, 
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which are commonly associated with multiple external factors but without a registered 

common cause [236]. The ultimate goal of cancer research is to provide an effective way 

of prevention, diagnosis and therapy for the large number of individual cancer diseases, 

but in order to accomplish that, researchers should first gain understanding of the 

complex underlying tumour development pathways. The explosive technological 

advancements of the past century have been enabling this by means of wet lab 

experiments but also by more efficient computational models (in silico) to assist and 

sometimes guide in vivo (in living biological organisms) and in vitro (in a test tube) 

experimental research. 

While there is a wide range of types of cancers, usually classified according to the organ 

developing unregulated cell growth, most of them have been linked to a variety of 

genetic irregularities along the development of the tumour [237]. Whether this 

abnormalities play a causal and initiatory role or if they are just consequences of cancer 

is still an open question [237]. An example of such a genetic anomaly is aneuploidy - 

defined as a cellular state of having an abnormal number of chromosomes [238]. One of 

the mechanisms associated with this lack or excess of chromosomes in cells is 

chromosome missegregation - the erroneous duplication of chromosomal genetic 

material during cell division [238], resulting in a change in the number of chromosomes 

in daughter cells, also known as aneuploid cells.  

This section presents a reimplementation of a model encapsulating the role of 

chromosome missegregation in the development of a tumour. In order to further show 

the modelling capabilities of SC and HAoS, we are not limiting the biological model in 

just simulating the interactions between the cells in a tissue, but also demonstrate that 

external stimuli can also be integrated in it, by means of human-induced changes in the 

internal state of the tissue - caused by typical cancer treatment approaches, 

chemotherapy and surgery. The chromosome missegregation reference model is 

presented in [238] and is implemented optimally in a high-level software programming 

language (C++). This test case attempts to show how we may approach the 

implementation of such a high-level model using SC and the HAoS development tools 

presented earlier and evaluates the functionality and performance of HAoS and its high-

level functional model (essentially the HAoS functional simulator) against an optimal 

high-level software implementation. The selected reference biological model is not 

demonstrated just as a real-world application but it was specifically chosen as a worst-

case scenario, as explained later, in terms of performance comparison with a rival 
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software implementation approach in order to stress the HAoS programming platform to 

its computational limits. 

5.3.1 The Cancer Model 

The reference cancer model, drawn from [238], is an agent-based model. An agent, in a 

computer-based simulation context, is defined as a self-contained entity with a set of 

pre-defined initial characteristics, according to a number of base behavioural rules, and 

with the potential of being self-adaptable - adjusting its behaviour by learning from 

experience and altering its base rules [238]. The agents are chosen according to the 

selected level of abstraction of the model, and in this case the agents are the cells of an 

organ or biological tissue.  

Description of the Reference Model 

The behaviour of the tissue is regulated by the intrinsic characteristics of the population 

of cells. Each cell initially contains two sets of identical chromosomes with a set of 

regulatory genes, each responsible to control a specific cellular process. A pair of each 

type of gene is distributed among the pair of chromosomes to reflect the nature of the 

simulated diploid genome. The key cellular processes modelled and regulated by the 

genes are [238]: 

 Cellular Division: The biological process where a cell duplicates its DNA and 

then separates the two copies giving birth, to two genetically identical daughter 

cells, replacing the parent cell. 

 Cellular Apoptosis: The process of regulated cellular death to prevent excess 

growth and maintain a homeostatic state - preserving a stable cell number and 

tissue structure.  

 Chromosome Segregation: The process of redistributing genetic material (DNA) 

between daughter cells during the mitotic step of division. Errors during this 

process may result in an asymmetrical distribution of chromosomes - commonly 

known as missegregation. Genes regulating this process are known to increase 

fidelity when present. 

Cellular division genes are an abstraction of proliferation controlling genes, known as 

proto-oncogenes, apoptosis genes are an abstraction of tumour suppressor genes while 

chromosome  segregation regulatory genes represent genes that control reliable 

segregation [238]. Following this brief introduction, the reference cancer model as 

described above is illustrated in Figure 5.11. 
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Figure 5.11. The reference cancer model. (Left) Abstract cells in a biological tissue are used 

as agents. (Right) Each cell includes a pair of chromosomes; each of them initially has the 

same genetic content - number of genes. Each gene controls a specific cellular process: 

Division, Apoptosis and Chromosome Segregation 

In addition, in order to explore the effects of the initial genetic configuration and gene 

linkage (genes being part of the same chromosome) in cell growth and genetic diversity, 

three different chromosomal gene distributions are used. Initially, each chromosome pair 

has two copies of the gene or genes it contains. The segregation regulatory genes are 

always part of the second chromosome pair. Division genes are genetically linked with 

apoptosis genes (both being part of the first chromosome pair) in Chromosome 

Distribution A. In Distribution B, apoptosis genes are contained in the first chromosome 

pair while division genes are part of the second chromosome pair. In distribution C these 

positions are reversed (division genes in the first pair and apoptosis genes in the second). 

The three chromosomal distributions are illustrated in Figure 5.12.  

 

Figure 5.12. The three genetic configurations, employing different gene chromosomal 

linkage, are used to explore the effect of the initial genetic distribution in the overall tissue 

growth and behaviour  
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The reference model also investigates the response of the simulated tissue in typical 

cancer treatments. Thus, four therapy-related scenarios are examined for each 

chromosome distribution simulated:  

 Therapy Scenario A: No therapies  

 Therapy Scenario B: Surgery only - localized tumour removal 

 Therapy Scenario C: Chemotherapy only - drug or radiation based attack on 

excessively dividing cells, usually using bio-markers 

 Therapy Scenario D: Both therapies - a combination of surgery followed by 

chemotherapy 

Implementation of the Reference Model 

The specific mechanics of the reference model, as it was implemented in [238], are 

described in Algorithm 5.1.  

For each iteration of the simulation (which implements a separate experiment), and 

according to the simulated chromosome distribution, the regulatory genes control the 

fate of each cell in the tissue. The corresponding process for each gene is executed 

according to a probability p proportional to the number of copies N of the specific 

regulatory gene in the chromosome, and in extent in the specific cell, and a fixed 

parameter r associated with the empirical rate of the process, derived from relative 

literature and experiments performed in a lab environment.  The probabilities of 

apoptosis pap, division pdiv and missegregation pmsg (pmsg is adjusted to the number of 

different chromosomes to be selected, in this case 4: chr1a, chr1b, chr2a, chr2b) are 

given according to Equations 5.1.  

pap = rap Nap 

                                                            pdiv = rdiv Ndiv                                                    (5.1) 

pmsg = rmsg (4-Nmsg) 

Thus, the selected reference model, with behaviour of considerable complexity, will 

serve as a realistic demonstration application modelling a biological system taking into 

consideration a multitude of factors, constraints and abstractions. Evidently, agent-based 

models are suitable candidates for a SC implementation, as the notion of an agent aligns 

well with the notion of the fundamental SC element, the system. While interactions 

between cells are not modelled, the fate of the tissue is determined by the behaviour of 

each cell, controlled by genetic and external stimuli.  
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Algorithm 5.1. The reference cancer model algorithm [238]. Different experiments are 

executed in sequence. Each experiment runs until the tissue has reached a threshold size in 

number of cells (THEND) or a maximum number of generations. During each generation (or 

timeslot), each living cell in the tissue may die, divide (and missegregate or not) or remain 

unchanged according to the corresponding probabilities. 

 

Initialize the model with random seed 

Set the carrying capacity of the tissue to a fixed number 

for all experiments do 

 Create tissue with an initial population of cells, each with two diploid chromosomes. 

 Each chromosome in each cell is given one or two genes based on chromosome distribution 

 repeat 

  for all cells in tissue do 

   if during surgery then 

    Kill current cell if tissue size (total cells) exceeds its initial size 

   else if no chromosomes in the cell (mitotic checkpoint) then 

    kill current cell 

   else if total cells > tissue capacity and apoptosis probability pap satisfied then 

    kill current cell 

   else if division probability pdiv satisfied then 

    if during chemotherapy (lasts fixed number of timeslots after cancer detection) then 

     kill current cell 

    else 

     Add mitotic cell (birth of new daughter cell, identical to current parent cell) 

     if missegregation probability pmsg satisfied then 

      randomly select r : one of the four chromosomes in the cell 

      perform asymmetrical division instead (increment daughter r, decrement parent r)  

     end if 

    end if 

   else 

    current cell remains unchanged 

   end if 

   go to next cell 

  end for 

  Update number of cells 

  if number of cells > cancer detection threshold (THDET) and no previous therapy then 

   initiate therapy (surgery and/or chemotherapy) 

  end if 

  Increment timeslot t (generation counter - abstract time) 

 until reached maximum number of generations or cells (End Threshold - THEND) 

 print output results 

end for 

The reference model is constructed in [238] as a linked list with each of its elements 

representing a cell, making traversing through all cells during each generation, or 
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timeslot of simulation, trivial and optimal. In contrast with previous test cases, the 

reference model does not require that a search space is explored for potential 

interactions, but only that each cell function, during each abstract time step, may have an 

outcome according to the nested-if statement of Algorithm 5.1. However, in order to 

implement the model in SC, the interactions among cells and the tissue should be 

explicitly defined, thus a systemic analysis of the model is required, given in the next 

section. It is noted that, since the agents (cells) are selected in a sequential manner (just 

by visiting the next node of the linked list), their selection process is a best -case 

scenario, making the model a worst-case scenario in terms of comparison for HAoS. 

5.3.2 Systemic Analysis 

Following the suggested model development methodology in section 4.5, the previous 

paragraph describing the reference cancer model corresponds to the initial conceptual 

layer, since a thorough understanding of an existing model to be implemented in SC is 

crucial prior to any development effort. As with the previous models presented in this 

chapter, the next step is a comprehensive systemic analysis to identify the level of 

abstraction, systems and the contextual interactions among them.  

As mentioned before, working on an agent-based model simplifies this task as the level 

of abstraction and most interacting systems are given as the agents. However, it is 

important to analyze the dynamics among them to define an optimal way to represent 

their interactions, which can commonly be an iterative process. Due to the increased 

complexity of the cancer model, a detailed description of the thought process and 

decisions leading to a number of possible suitable SC model variations is presented 

below.  

This systemic analysis will result in four SC cancer model alternatives, implemented and 

compared with the reference model later in this chapter. In order to reach these four final 

SC models, the analysis will begin with a set of intermediate steps which will add the 

specific features of the reference model gradually. 

SC Cancer Model Development Step 1: The Base SC Cancer Model 

Starting with Algorithm 5.1, and retaining the level of abstraction at the cellular level, it 

is quickly noticed that a pool of data systems is required to represent the living cells. The 

obvious cellular functions that can act as transformation functions in contextual systems 

are cell death and cell division.  Considering initially therapy scenario N (no therapies), 
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a cell may die at the mitotic checkpoint (when no chromosomes are left in it) or when the 

tissue has grown over its carrying capacity and the apoptosis probability is satisfied.  

The death context mainly tries to identify a living cell and kills it under the conditions 

mentioned above, where initially the second interacting system may be any other cell 

(since this is unaffected - death examines a cell at a time). SC rules explicitly state that 

systems can be transformed but never destroyed so a living cell is transformed to a dead 

one (or waste system) by the death context if killed.  

The divider context, in contrast to death, may affect both interacting systems. The notion 

of division implies that a new cell will be created, which will ideally be reproduced as an 

identical copy of the parent cell.  As this new cell cannot be created from nothing, the 

divider will define an interaction between a living cell representing the parent and a 

waste system that may be transformed to a new living cell through division, representing 

the daughter cell. The notion of waste systems (possibly previously killed cells) being 

transformed to living cells is biologically plausible as during the division process the 

parent cell consumes energy acquired by nutrients in its environment. This initial SC 

cancer model is illustrated in Figure 5.13. 

 

Figure 5.13. Initial SC cancer model. A death context transforms living cells to non-living 

ones while non-living cells act as daughter cells in division interactions, transformed in 

living cells by a division context. 
 

SC Cancer Model Development Step 2: Integrating the Tissue 

The next step is to integrate the notion of the tissue to our SC model. As the total of the 

cells makes up the tissue, another data system is needed to represent the tissue which has 

in its scope all the cell systems. The size of the tissue, in terms of cells, is an important 
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metric for the model. While the total number of cells could be stored in a global variable 

in the user code portion of the HAoS program, in order to comply with the SC feature of 

systems having local knowledge, it is instead stored locally in one of  the schemata of the 

tissue data system. Thus, a mechanism for updating the size of the tissue should be added 

to the SC model - incrementing the total number of living cells with every division and 

decrementing it with every cell death. Furthermore, while each living cell belongs to 

(meaning it is in) the scope of the tissue, every non-living cell (either dead or nutrient 

cell) should be out of its scope. Thus, the processes of cell death and division are broken 

in two steps: (a) perform the process and (b) update the total number of cells in the tissue 

and the scope memberships of the interacting systems.  

 

Figure 5.14. Revised SC cancer model with tissue and two-step cell death and division 

processes. During death a living cell is transformed to a non-living one which is then 

discarded from the tissue. During division, a non-living cell is absorbed in the tissue and 

then it is transformed to a living one, becoming the daughter cell 

For this reason, two contextual systems are added to the model to handle the tissue size 

and scopes updating. For each possible cell division, a non-living cell interacts with the 

tissue through an ―absorb‖ context and if the probability of division is satisfied, it is 

transferred from the tissue external environment inside its scope changing its type to 

being (yet) undivided resulting to the size of the tissue being incremented. This 

undivided cell then interacts with a living cell through the division context in the scope 

of the tissue and acts as the division daughter cell - becoming a copy of the parent living 
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cell. Cell death is performed in a similar two-step process. A living cell interacts with 

the tissue through the death context and if the death conditions (from Algorithm 5.1) are 

satisfied, it is transformed to a dead (non-living) cell. This non-living cell then interacts 

with the tissue through a ―discard‖ context and it is transferred back to the external 

environment of the tissue (outside the tissue scope), becoming a nutrient non-living cell 

(and a valid candidate for division). This discard context also decrements the si ze of the 

tissue. Following these thoughts, the updated SC cancer model is shown in Figure 5.14. 

As noticed in Figure 5.14, missegregation is not explicitly controlled by a context. This 

was decided as segregation is part of the division process (happening when the genetic 

content of the parent cell is copied to the undivided daughter cell to become a new living 

cell), and as such this functionality is integrated in the division context. Also, while it 

seems visually suitable to have only living cells as part of the tissue and non-living ones 

making up its environment, it is reminded that non-living cells are used here as an 

abstraction for energy consumed or released by the tissue during cell division and death.  

Taking into consideration that the implied scope manipulation (cells constantly changing 

scopes as they are discarded from or absorbed into the tissue) may have a considerable 

computational impact, degrading the (timing) performance of the model, and since this 

membership does not have an active biological role for the model, it was decided that all 

systems may be part of the tissue. This way, meaningless scope alterations are avoided 

as all systems belong to the scope of the tissue. 

SC Cancer Model Development Step 3: Integrating the Cancer Therapies 

Returning to Algorithm 5.1 and as mentioned in the previous section, the reference 

model also includes human-induced interference in terms of common cancer treatments, 

surgery and chemotherapy. Therapies are applied to the tissue following cancer detection 

- when the number of living cells reaches a predetermined detection threshold (THDET in 

Algorithm 5.1). Surgery is performed during one timeslot, immediately after detection 

and removes a number of living cells, bringing the tissue back to its initial size. 

Chemotherapy is performed during a fixed duration of timeslots (9 in our experiments , in 

accordance to [238]), either after detection (therapy scenario C) or after surgery (therapy 

scenario D). During chemotherapy, cells that are meant to divide, instead die. Thus, cell 

death during chemotherapy is included in the division process while surgery requires 

effectively the same functionality by the death context but is executed only during the 

surgery timeslot. This also implies that the surgery context has priority over all other 

contexts during surgery if the number of living tissue cells exceeds its initial size.  
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In order to control the therapy processes, the therapy state of the tissue is embedded, as 

corresponding flags, in one of its schemata. This is sufficient for controlling 

chemotherapy (being integrated in division) but not for controlling surgery. The reason 

is that the division context already defines two interacting cell systems, the parent cell 

and another one to become the daughter cell, so the state of the tissue cannot be used to 

block divisions while it is in surgery state, as required by the reference model. Thus an 

additional intermediate (preparatory) step is needed, defining an interaction between the 

parent cell and the tissue, in order to be decided if this cell can proceed to division 

depending on the tissue state. This is accomplished with another ―fertilizer‖ context, 

which transforms a living cell to a parent cell if the therapy state of the tissue is not in -

surgery. The parent cell then interacts with a nutrient cell (the non-living cell to be used 

during division as a daughter cell) and both cells are transformed by the division context: 

the parent cell to a living cell and the daughter cell to a divided cell. The divided cell, 

being the product of the division process, then interacts with the tissue and is finally 

transformed to a living cell by the absorb context which also updates the size of the 

tissue. Thus, division is now a three-step process. The therapy-enabled cancer SC model, 

described above, is shown in Figure 5.15. 

 

Figure 5.15. Therapy-Enabled SC cancer model. The therapy state of the tissue is locally 

stored in its data system to enable controlling the surgery and chemotherapy processes. 

Division is executed in three steps: (i) fertilize a living cell to become a parent, (ii) perform 

division and segregation of this parent cell to produce a divided cell (iii) the tissue absorbs 

the divided cell which becomes living and the tissue size is updated  
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SC Cancer Model Development Step 4: Integrating the Notion of Time 

The last consideration before we have a complete SC cancer model reflecting the 

reference one is integrating the notion of simulated time. The reference model uses 

abstract time, counted in abstract time units called generations or, during this analysis, 

timesteps or timeslots. A generation has finished when the main loop in Algorithm 5.1 

has visited all living cells and decided their individual fate. It is importance to notice that 

the model does not use any feedback from this time variable affecting its behaviour. The 

abstract time is mainly used for convenience as an index when logging simulation output 

data.   

The way the list of living cells is traversed in the reference model is completely different 

from the approach used in HAoS. As the living cells are stored in a linked list in the 

software implementation, the list is traversed in the same relative order. This traversal 

order changes slightly with the local addition of new nodes (daughter cells are placed 

immediately after parent cells during division) and the removal of nodes (during cell 

death). In HAoS, the order of the selected cells to be evaluated against the available 

genetic processes is random, as all matching systems to the template defined by the 

schemata of the active context system have the same probability of being selected to 

interact. Evaluation of a cell here stands for the evaluation of the probability of this cell 

interacting through one of the given context systems and according to this interaction, it 

might get transformed during one of the genetic processes or remain unaltered. The 

inherent randomness of HAoS is desirable as the goal of the experiment is to model a 

stochastic biological system.  

However, this means that there is not a convenient way to ensure that all cells are 

selected before any of them is re-selected. Thus, this functionality needs to be 

implemented on the SC model level. In order to accomplish this, a dual-phase approach 

was devised, called here a tic-toc approach. During each phase, the execution follows the 

flow shown in Figure 5.15 with a main difference. The products of each genetic process 

are marked (the current phase state of each cell is stored locally in its schemata) and can 

only interact in the next phase. In essence, all the context systems of the SC model of 

Figure 5.15 are duplicated, with each of their two copies being able to define an 

interaction only during one of the two distinct phases.  

In this way, the two phases of the model create two ―virtual‖ scopes which are 

implemented by using the phase state of each system during valid triplet generation. 
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Ensuring that all living cells are selected during each phase and then the phase finishes is 

accomplished by storing the current phase state in the tissue system along with a counter 

which is set equal to the number of total living cells of the tissue in the beginning of 

each timeslot and is decremented after each cell is evaluated. Essentially, this counter 

monitors the number of remaining living cells to be evaluated in the current timeslot, 

ensuring that the timeslot can finish and the phase can change only when it reaches zero.  

SC Cancer Model 1: Time-Enabled Model  

According to the discussion above the functionality of the time-enabled SC cancer model 

is summarized as follows: All living systems and the tissue are initialized in the tic 

phase. The tic-marked contexts can only define interactions when the tissue is on the tic 

phase. Thus, all tic-marked contexts are enabled and all toc-marked contexts are 

disabled. Division is executed in three steps as in the therapy-enabled model of Figure 

5.15 (intermediate products are also tic-marked) but its final products, the new living cell 

(daughter cell in division) created by the absorb context and the living cell (parent cell in 

division) transformed by the division context are marked as toc, disabling any further 

interactions during this tic phase. In the case of cell death, the dying cell also gets toc-

marked in order to be disabled for the current phase. However, since the final product of 

cell death is a nutrient cell, which can be used in both phases, it does not need to get 

phase-marked. It is noticed, that interacting cells are always phase-marked in the first 

step of any genetic process, even if the associated probability with this process is not 

satisfied 

This means that any cell that is evaluated is changing phase, even if it remains 

unchanged, to avoid interacting twice during the same phase and ensure the remaining 

living cells counter is correctly updated. After the last tic-marked cell has been 

evaluated, all living cells should be toc-marked and the remaining living cells counter 

should be zero. At this point, the counter is updated to the number of total cells and the 

tissue changes its phase state to toc. All toc-marked contexts are now enabled while all 

tic-marked contexts get disabled as they can no longer define interactions as the tissue is 

now toc-marked. A mirror process to the one described above (toc instead of tic) is 

executed until the toc phase ends, and tic phase begins again. The time-enabled (tic-toc) 

model is illustrated using SC graphical notations in Figure 5.16.  

. 
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Figure 5.16. Time-Enabled (Tic-Toc) SC cancer model. Two mutually-exclusive phases are 

used to ensure all cells are evaluated exactly once before advancing to the next timeslot. 

Both phases are part of the tissue scope, yet the phase state of the tissue determines which 

one is enabled at each timeslot 

When an interaction results in intermediate products of a genetic operation, these 

products remain in the same phase until they are consumed. A cell changes phase when 

the resulting system is the final result of a genetic operation or if the initiating context of 

cell death or division (death or fertilizer contexts respectively) leaves the evaluated cell 

unchanged (meaning that the respective death or division probability is not satisfied). All 

contexts involving the tissue except the division context may change the phase of the 

Tic

Death

Tic

Living

Cell

Tic

Dead

Cell

Tic

Divided

(Daughter)

Cell

Tic

Parent 

Cell

Tic
Division

Tic

Discard

Nutrient

CellTic

Living

Cell

Tic

Living

Cell

Nutrient

Cell

Nutrient

Cell

Nutrient

Cell

Tic

Fertilizer

Tic

Living

Cell

Tic

Living

Cell

Tic

Living

Cell

Tic

Living

Cell

Nutrient

Cell

Nutrient

Cell

Tic

Absorb

Tic

Living

Cell

Nutrient

Cell

Toc

Living

Cell

Toc

Living

Cell

Tic

Surgery
Tic

Living

Cell

Toc

Death

Toc

Living

Cell

Toc

Dead

Cell

Toc

Divided

(Daughter)

Cell

Toc

Parent 

Cell

Toc

Division

Toc

Discard

Nutrient

CellToc

Living

Cell

Toc

Living

Cell

Nutrient

Cell

Nutrient

Cell

Nutrient

Cell

Toc

Fertilizer

Toc

Living

Cell

Toc

Living

Cell

Toc

Living

Cell

Toc

Living

Cell

Nutrient

Cell

Tissue

Toc

Absorb

Toc

Living

Cell

Nutrient

Cell

Tic

Living

Cell

Tic

Living

Cell

Toc

Surgery
Toc

Living

Cell

Tic 

Phase

Toc 

Phase



Chapter 5. Verification and Evaluation  182 

 

 

tissue after the last cell in a timeslot is evaluated. This implies that the fertilizer and 

death contexts can change the tissue phase when the evaluated (last) living cell remains 

unaltered while absorb and discard contexts may change it when they consume the last 

intermediate result (divided and dead cell respectively). 

Table 5.5. Time-Enabled (Tic-Toc) cancer SC model interactions 

 Interacting Systems 
 

Results 

T
ic

 P
h

a
se

 

Tic Living Cell }- Tic Fertilizer -{ Tic Tissue 

 

( Toc Living Cell | Tic Parent Cell | Tic Dead Cell ) 
( Toc Tissue | Tic Tissue ) 

Tic Parent Cell }- Tic Division -{ Nutrient Cell 

 

( Toc Living Cell) ( Tic Divided Cell) 

Tic Divided Cell }- Tic Absorb -{ Tic Tissue 

 

( Toc Living Cell )  

( Tic Tissue | Toc Tissue ) 

Tic Living Cell }- Tic Death -{ Tic Tissue 

 

( Toc Living Cell | Tic Dead Cell )   
( Tic Tissue | Toc Tissue ) 

Tic Dead Cell }- Tic Discard -{ Tic Tissue 

 

( Nutrient Cell )  

( Tic Tissue | Toc Tissue ) 

Tic Living Cell }- Tic Surgery -{ Tic Tissue 

 

( Toc Living Cell | Tic Dead Cell ) 

(Tic Tissue | Toc Tissue ) 

T
o

c
 P

h
a
se

 

Toc Living Cell }- Toc Fertilizer -{ Toc Tissue 

 

( Tic Living Cell | Toc Parent Cell | Toc Dead Cell ) 
( Tic Tissue | Toc Tissue ) 

Toc Parent Cell }- Toc Division -{ Nutrient Cell 

 

( Tic Living Cell) ( Toc Divided Cell) 

Toc Divided Cell }- Toc Absorb -{ Toc Tissue 

 

( Tic Living Cell )  

( Toc Tissue | Tic Tissue ) 

Toc Living Cell }- Toc Death -{ Toc Tissue 

 

( Tic Living Cell | Toc Dead Cell )   

( Toc Tissue | Tic Tissue ) 

Toc Dead Cell }- Toc Discard -{ Toc Tissue 

 

( Nutrient Cell )  
( Toc Tissue | Tic Tissue ) 

Toc Living Cell }- Toc Surgery -{ Toc Tissue 

 

( Tic Living Cell | Toc Dead Cell ) 

(Tic Tissue | Toc Tissue ) 

 

In more detail, a fertilizer context may leave the type of the interacting living cell 

unaltered (changing only its phase) or change it to a parent cell with the same phase in 

case of the first step of normal division or kill it (change it to a dead cell) also with same 

phase, in case of division during chemotherapy. As mentioned above, it may also change 

the phase of the tissue at a timeslot transition. The division context always transforms 

the parent interacting cell to a living cell changing its phase and also changes the 

interacting nutrient cell to a divided cell (setting its phase to the current one). The absorb 

context, in the last step of division, changes the divided cell to a living cell with different 

phase while it may also change the phase of the tissue. Death and surgery contexts 

change the phase of the interacting living cell when they do not kill it, while they leave 

its phase unchanged when they do (changing its type to dead). They may also alter the 
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tissue phase when changing timeslot. Finally, the discard context always transforms the 

dead interacting cell to a nutrient cell and may also change the tissue phase. The calculus 

notation of the time-enabled SC cancer model representing its behaviour in terms of SC 

interactions, as it is explained above is given in Table 5.5. 

SC Cancer Model 2: Timeless Model  

The time-enabled SC cancer model of Figure 5.16 satisfies all the requirements and 

features all the characteristics of the original model. However, in order to accurately 

model its abstract time, the complexity of the model was considerably increased. Taking 

into consideration that time, although convenient for logging output information, should 

not otherwise greatly affect the model behaviour, a timeless variation of the cancer 

model was also implemented to determine the level of this effect. The timeless model is 

equivalent in terms of SC graphical notation with the therapy-enabled model, illustrated 

in Figure 5.15, and overcomes the problem of sampling the internal state of the tissue 

(total number of cells and number of chromosomes) by continuously monitoring and 

storing all changes in the relevant internal variables immediately after each alteration is 

caused by any genetic process (instead of only sampling it at the end of the timeslot). 

In the case of the timeless SC cancer model, the systemic interactions are similar to the 

ones of the time-enabled model excluding any phase-related features. The calculus 

notation of the timeless model is given in Table 5.6, making this similarity obvious when 

compared to Table 5.5. 

SC Cancer Model 3: Approximate Time Model  

In order to further explore the effect of abstract time and reduce the complexity of the 

time-enabled model of Figure 5.16, a hybrid model in terms of time was also 

implemented. This ―approximate time‖ model waives the restriction of all cells being 

evaluated at each time-step but keeps the remaining living cells counter functionality to 

keep track of approximate time. Essentially, it ensures that a number of cells equal to the 

size of the tissue are evaluated before advancing to the next time timeslot. As living 

interacting cells are selected on a purely random manner with the same probability, it is 

expected that the behaviour of the model will remain concise - while not all cells may be 

evaluated during a single time-step, all of them will interact with the same probability 

and approximately the same frequency over the duration of the experiment. Thus, the 

main difference of this model compared to the timeless one is that it keeps the notion of 

the timeslot (implying that an adequate number of cells are evaluated before advancing 

time), but it uses a less strict mechanism to achieve this (since not every cell is evaluate 
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exactly once in each timeslot). In terms of the SC graphical notation, this hybrid model, 

attempting to address the trade-off between complexity and functionality, is also 

represented by Figure 5.15. Additionally, since no change has been made to the 

approximate time model in the way systems interact with each other, when compared to 

the timeless model, the calculus notation is the same for both models.  

Table 5.6. Timeless and Approximate Time cancer SC models interactions 

Interacting Systems 
 

Results 

Living Cell }- Fertilizer -{ Tissue 

 

( Living Cell | Parent Cell | Dead Cell)  

( Tissue ) 

Parent Cell }- Division -{ Nutrient Cell 

 

(Living Cell ) ( Divided Cell ) 

Divided Cell }- Absorb -{ Tissue 

 

(Living Cell ) ( Tissue ) 

Living Cell }- Death -{ Tissue 

 

( Living Cell | Dead Cell ) 

( Tissue) 

Dead Cell }- Discard -{ Tissue 

 

( Nutrient Cell) ( Tissue ) 

Living Cell }- Surgery -{ Tissue 

 

( Living Cell | Dead Cell )  

(Tissue ) 
 

SC Cancer Model 4: Optimized Approximate Time Model  

While developing a SC model, ensuring that it behaves correctly (in this case, in a 

similar way to the reference model) is crucial. However, the SC model developer should 

take into consideration the performance of the model as well. In an attempt to 

demonstrate example optimizations that can be made on the SC model side, an optimized 

version of the approximate time model was also developed.  

The most evident way to optimize a SC model is to ensure that valid triplet generation is 

performed in an optimal way. This means that HAoS should be able to identify triplets of 

interacting systems without (or, more realistically, without numerous) mismatches (see 

section 3.5). The hardware ensures that even in cases that only one pair of systems can 

match the templates defined by the schemata of the context, this pair will be efficiently 

identified, if such a pair exists. If a pair does not exist, this results in a schemata 

mismatch and another context is selected. Effectively, while the hardware attempts to 

find triplets, from an interaction (or processing) point of view, mismatches result in idle 

time as no interactions are performed. The SC model should take this fact into 

consideration and try to minimize mismatches, in order to increase efficiency and 

consequently overall performance.  

Taking a closer look at Figure 5.15 and according to the discussion integrating therapies 

in the cancer model, we notice that the surgery context performs the exact same task 
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with the death context in a different occasion. However, while the death context can 

define interactions along the course of the simulation, the surgery context is only 

functional during the surgery timeslot. This implies that, as the surgery context is 

randomly chosen with the same probability as every other context during the execution 

of the HAoS cancer program, it produces mismatches on the majority of the times it is 

selected. Thus, embedding the surgery task in the death context increases the efficiency 

of the SC program.  

In addition, an extra optimization can be made with regards to the transition from a 

timeslot to the next one. After all the cells have been evaluated in any timeslot, there 

may be outstanding interactions to be made in order for intermediate products of the two 

main genetic operations (cell division and death) to be consumed (dead cells in the case 

of death or parent and divided cells in the case of division - see Figure 5.15). This 

ensures that each genetic operation finishes in the timeslot it was initiated and the total 

number of cells is reported correctly for each timeslot.  Effectively, once the remaining 

living cells counter reaches zero, the fertilizer and death contexts do not define any 

further interactions until the next timeslot commences, waiting for the division, absorb 

and discard contexts to consume the cells produced in the intermediate cells. Thus, in 

order to reduce mismatches in this case, an extra flag, stored in the tissue system, is used 

to disable the selection of the fertilizer and death contexts when no more interactions 

initiating division or death may be performed in the current timeslot. This way, we 

achieve optimal timeslot transitions in terms of performance. 

Another observation regarding to the optimal flow of the SC program can be made when 

we take a higher-level view on the execution of tasks in terms of interactions. A high-

level task is broken down in more than one interaction in two cases. Either the task 

requires that more than two systems must interact under a single context to accomplish 

the expected functionality or a succession of steps should be performed, implying a 

number of contexts being selected sequentially, to implement a chain of events. 

Supporting a context type that could define interactions among multiple systems would 

be impractical form an implementation point of view as it would increase the size of 

such context systems (an extra schema would be added to such contexts, to define a 

template for matching systems, for every extra supported system). However, the two 

cases could be merged, as multiple interacting systems could be selected by subsequent 

contexts.  
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Nevertheless, as the selection of contexts happens in a random manner to reflect the 

stochastic behaviour of natural systems, breaking down a task in elementary steps will 

usually result in suboptimal performance. While the subsequent contexts will eventually 

be selected, the implied sequence of interactions defines a pipeline which stalls until the 

next context (the next step in the correct order along the desired chain of events) is 

randomly chosen. Thus, having a way to control the selection of contexts in the case of 

chained interactions, effectively implementing micro-interactions (analogous to micro-

instructions in micro-programmable control units), would greatly increase efficiency. 

 

Figure 5.17. Optimized SC cancer model. The surgery functionality is now embedded in the 

death context while the contexts implementing the two main genetic operations, death and 

division, are now chained 

 

Table 5.7. Optimized Approximate Time cancer SC model interactions 

Interacting Systems 
 

Results 

Living Cell }- Fertilizer -{ Tissue 

 

( Living Cell | Parent Cell | Dead Cell)  

( Tissue ) 

Parent Cell }- Division -{ Nutrient Cell 

 

(Living Cell ) ( Divided Cell ) 

Divided Cell }- Absorb -{ Tissue 

 

(Living Cell ) ( Tissue ) 

Living Cell }- Death -{ Tissue 

 

( Living Cell | Dead Cell ) 

( Tissue) 

Dead Cell }- Discard -{ Tissue 

 

( Nutrient Cell) ( Tissue ) 
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Returning to the cancer model, the two main genetic operations involved, cell division 

and death, are broken down to three and two steps respectively. If context chaining was 

supported, cell division would be defined as a fertilizer-divider-absorb context chain 

while cell death would be implemented as a death-discard context chain. As described in 

the next paragraph, the context-chaining feature was added in HAoS, realized mainly in 

the user software domain, to showcase this functionality. The optimized approximate-

time cancer SC model (integrating the surgery functionality in the death context, 

implementing optimal interaction transitions and context chaining) is shown in Figure 

5.17. Its calculus notation is given in Table 5.7. In terms of SC interactions, its main 

differences with the previous models are the omission of the surgery context and the 

inclusion of context chains (implied by the vertical arrows). 

Systemic Analysis Summary  

To sum up, as in traditional software programming, there is more than one way to build a 

SC model representing a natural system. This section has demonstrated this, taking a 

complex biological model, a tissue developing cancer caused by genetic defects - and 

provided a thorough explanation of the thought process while building such a SC model. 

In this case, four candidate cancer SC models are presented: a time-enabled model, a 

timeless model, an approximate time model and an optimized approximate time model. 

The building elements in these resulting SC models have distinct biological meanings 

representing, in the form of SC systems, biological structures or processes, shown in 

Table 5.8. The next section focuses on the implementation of those models while the 

comparison experimental results are presented later in this chapter. 

5.3.3 SC Cancer Model Implementation 

Following the discussion of the previous paragraph, the four resulting cancer  SC models 

attempt to explore the trade-off between functionality, performance and convenience. 

Before presenting the results evaluating these metrics in the next section, some 

implementation-specific topics need to be addressed.  These include some considerations 

to be made before developing the final SC source code and performing the setup of the 

cancer experiments. 

Developing the SC source code 

While using SC graphical notations to present the four suggested cancer models is 

visually appealing and straightforward, using their SC calculus notations, to describe 

their systemic interactions, can greatly expedite the development of the SC source code.  
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Table 5.8. Biological representation of the systems of the SC cancer models 

SC 

System 
Biological Representation (Analogous to) 

Living 

Cell 
A cell of the biological tissue.  

Death 

Context 

Death is the context in which a living cell interacts with the tissue; it combines 

pressure for space, apoptosis and therapeutical interventions in one abstract form 

and may result in the living cell becoming a dead cell, representing the Programmed 

Cell Death (PCD) [239] biological process.  

Discard 

Context 

Discard is a context in which a dead cell interacts with the tissue; representing the 

biological mechanism (termed as efferocytosis [240]) which is responsible for the 

removal of apoptotic bodies (dead cells), by special cells, called phagocytes, that 

engulf and consume the dead ones. Phagocytes, using special receptors in their 

surface, identify dead cells by recognising special molecules which are placed to 

their cell surface in the last stages of cell death [240]. Matching the phagocytes 

receptors with these compatible special molecules is similar to the schemata 

matching mechanism of SC, with systems matching their schemata to the templates 

of context systems. This process releases energy to the environment, represented 

here in the form of a nutrient cell. 

Dead 

Cell 

The result of cell death; a cell showing organized degradation of cellular organelles 

which is finally broken into (several) apoptotic bodies [240] 

Nutrient 

Cell 

Nutrient cells represent the energy and nutrients in the tissue environment that may 

be released by cell death and may also be used to make new cells during division  

Fertilizer 

Context 

Fertilizer is the context in which a living cell interacts with the tissue; representing 

the preparatory step for division, known as the interphase
31

 [241], making the parent 

able to initiate the mitosis process. Errors during this phase may kill the cell.  

Division 

Context 

Division is the context in which a living (parent) cell interacts with a nutrient cell; 

representing the mitotic phase of division [241], resulting in two daughter
32

 cells 

with identical genetic information if no errors occur or different genetic information 

in the case of missegregation (resulting in aneuploid cells).  

The SC calculus notations of the cancer models, shown in Tables 5.5 (time-enabled 

model), 5.6 (timeless and approximate time model) and 5.7 (optimized approximate time 

model), define their respective interactions and in addition include information about the 

phase of systems (in the case of the tic-toc model) and the type of interacting cells. 

However, in order to write the final SC source code, some additional information must 

be included in order to correctly implement the selection of appropriate cells in the 

therapy cases (surgery and chemotherapy). As explained in the previous section this is 

accomplished with the inclusion of flags regarding the therapy state of the tissue in its 

                                                      
31

 The first part of this phase, called G1, is regulated by the MAPK cascade [241], presented in 

section 5.2. 

32
 However, only one of the resulting cells is tagged as daughter in this SC model.  
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schemata. The format of the bit-fields stored in the data systems of the SC cancer models 

is illustrated in Figure 5.18.  

 

Figure 5.18. SC cancer model data systems and their contents. Bit 13 of schemata 2 defines 

the system as tissue or cell. The tissue size and cell age are stored in the respective schemata 

1. Their 32-bit transformation function (TF) is zero. Schemata 2 holds the remaining non-

evaluated cells counter, the surgery state (S), the chemotherapy state (C) and the phase 

state (tic-toc, TT) in case of the time-enabled model or the optimal timeslot ending flag (TE) 

in the case of the optimized approximate-time model. For cell systems, it stores the number 

of the different chromosome types of the cell and also the cell type (living, parent, dead, 

nutrient or divided along with its phase in the case of the time enabled model).  

The proper system selection for the model is accomplished by appropriately using ―don't 

care‖ bits in the respective therapy state bits in the templates defined by the schemata of 

each context. According to this, since the fertilizer context may initiate division during 

either a non-therapy timeslot or a chemotherapy timeslot, the tissue will be selected (and 

thus a fertilizing interaction can be defined) if its surgery bit (S) is set to 0 (since it is not 

in surgery) and for any value of its chemotherapy state bit (as it may or may not be in 

chemotherapy). 

In a similar fashion, the absorb context may not consume divided cells only during 

surgery, so in this case: S is set to ―don't care‖ (or ―X‖) and C is set to 0. The same 

principle is applied to the rest of the contexts. The death context will not kill living cells 

during surgery if the surgery functionality is not embedded to it.  In this case, the surgery 

may kill living cells only during the surgery state while their total number exceeds the 

initial tissue size (see Algorithm 5.1). If the surgery and death functionalities have been 

merged, then the death context, similarly to the discard context (as cells may die at any 

time point), can interact with the tissue in any therapy state (both C and S are set to 

―X‖). The complete SC code of the cancer models, according to the discussion above, is 

given for reference in Appendix G. 

SC Models' Parameters Setup  

In the reference cancer model experiments, as they are presented in [238], two 

parameters of the model (introduced in section 5.3.1, Algorithm 5.1) representing 
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number of cells thresholds, THEND (the end of the simulation threshold) and THDET (the 

cancer detection threshold), are set higher than the systems capacity of our HAoS 

prototype. For this reason these two parameters have been scaled down during our 

experiments. This, however, does not have an impact in the model behaviour as these 

parameters just define checkpoints in time for those two specific events. Thus, the main 

difference observed with the original simulations is with regards to the timeslot which 

cancer is detected (the tissue reaches a cancerous state as the total number of cells 

exceeds THDET) and the duration of the simulation (which runs until the tissue size 

exceeds THEND). Since the first change implies just a shift of the cancer detection time 

and as the model does not change its behaviour towards the end of the simulation, these 

modifications are assumed to be acceptable. 

While the parameters mentioned above have a minimal impact on the model  behaviour, 

the parameters setting the intrinsic rates of apoptosis r ap, division rdiv and chromosome 

missegregation rmsg (see Equations 5.1) have a major effect on the model, as they affect 

the respective genetic operations probabilities and in extent the cell population of the 

tissue.  The nested-if structure in Algorithm 5.1 implies that each cell may result in the 

outcome of any of the possible cases but importantly also implies a selection priority. 

Obviously this does not apply in systemic interactions, which happen in a stochastic 

way. Due to the complex nature of the algorithm and mainly because of the conditional 

feedback mechanisms (the probabilities are affected by the number of chromosomes 

which are affected by the probabilities), deriving the intrinsic rate constants r with an 

analytical way was avoided and a brute-force approach was followed instead.  

Thus, in order to derive the adjusted values of the intrinsic rate constants r to be used in the 

four SC cancer models, the original algorithm was altered to reflect the different nature of 

interactions when these are implemented in a systemic way (the resulting “systemic style” 

algorithm is given in  

 

Algorithm 5.2). The main changes to the original algorithm involved the removal of any 

priority in the selection of the genetic operation that may be performed on the cell and 

also taking into consideration the number of context systems involved. Since the rate 

constant for apoptosis should always be equal to the rate constant for division, to 

preserve the homeostatic behaviour of the tissue, the goal was to find a pair of constants 

rap/div - rmsg (apoptosis/division and missegregation rate constants) to result in a similar 

behaviour to the one given by the reference model.  
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Algorithm 5.2. The reference cancer model algorithm written in a “systemic way” in order 

to derive adjusted values for the parameters setting the intrinsic rates of the genetic 

operations due to the difference on probability mechanics between all four SC models and 

the reference one. The priority selection of the original model is broken. Interactions that 

may initiate cell death / division have the same probability. 

Initialize the model with random seed 

Set the carrying capacity of the tissue to a fixed number 

for all experiments do 

 Create tissue with an initial population of cells, each with two diploid chromosomes. 

 Each chromosome in each cell is given one or two genes based on chromosome 

distribution 

 repeat 

  for all cells in tissue do 

   if during surgery then 

    Kill current cell if tissue size (total cells) exceeds its initial size 

   else 

    if context that may initiate cell death is selected then 

     if total cells > tissue capacity and apoptosis probability pap satisfied then 

      kill current cell 

     else 

      current cell remains unchanged 

     end if 

    else if context that may initiate cell division is selected then 

     if division probability pdiv satisfied then 

      if during chemotherapy then 

       kill current cell 

      else 

       Add mitotic cell (birth of new daughter cell, identical to current parent cell) 

       if missegregation probability pmsg satisfied then 

        randomly select r : one of the four chromosomes in the cell 

        perform asymmetrical division instead(increment daughter r,decrement parent r) 

        if no chromosomes left in parent cell (mitotic checkpoint) then 

         kill parent cell 

        end if 

       end if 

      end if 

     else 

      current cell remains unchanged 

     end if 

     go to next cell 

    else 

     re-evaluate current cell (until a genetic operation is attempted) 

    end if 

  end for 

  Update number of cells 

  if number of cells > cancer detection threshold (THDET) and no previous therapy then 

   initiate therapy (surgery and/or chemotherapy) 

  end if 

  Increment timeslot t (generation counter - abstract time) 

 until reached maximum number of generations or cells (End Threshold - THEND) 

 print output results 

end for 
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A series of simulations using the altered algorithm were executed for a range of different 

rap/div - rmsg pairs, comparing the similarity to the reference algorithm based on metrics 

relevant with the constants: mean number of generations run until simulation finish, 

mean number of missegregations per generation and mean cancer detection (or 

diagnosis) generation. The qualifying pair was the one with the minimum value for the 

root mean square of the differences of the corresponding values to these metrics between 

the altered and the original algorithm. 

The ―systemic‖ variation of the reference model thus enabled the discovery of the 

parameters to be used by all models. For the final setup of all the experiments, the end of 

the simulation threshold (THEND) was set at 200 generations, the initial size of the tissue 

was set at 100 cells, the cancer diagnosis threshold was set at 200 cells and the tissue 

carrying capacity was set at 150 cells. For the original cancer model the genetic 

operation constants for apoptosis, division and chromosome missegregation were set at 

[238]: 

rap = rdiv =0.045, rmsg = 0.02 

while for the SC cancer models, using the methodology mentioned above, they were set 

respectively at:  

rap = rdiv =0.09, rmsg = 0.02 

Experiments Setup  

In order to get a fair comparison in terms of both functionality and performance, the 

same methodology presented in [238] was followed to obtain the results of each batch of 

simulations. 

Due to the complexity of the experiment, it was decided that this test case is also ideal 

for the evaluation of the functionality of the developed HAoS functional model 

(functional model of the hardware circuitry, not to be mistaken with the simulated 

biological models) which is essentially a high-level HAoS simulator. All SC cancer 

models were tested both live on hardware with HAoS and using its simulator.  

As discussed in the cancer model presentation section, three gene distributions (see 

Figure 5.12) with different gene chromosomal linkage and four therapy scenarios 

(with/without surgery and/or chemotherapy) are examined. In total, ten cancer models 

are involved in the experiments: the four SC cancer models described in the previous 

section (time-enabled, timeless, approximate-time and its optimized variation) running 



Chapter 5. Verification and Evaluation  193 

 

 

both on hardware and on the HAoS simulator
33

, the reference model from [238] and, for 

completeness, its altered variation (coded in a systemic-aware way). Each of these ten 

models was executed in batches of 20 experiments
34

 for each possible gene distribution 

and therapy scenario combination and the mean of those simulations is used to represent 

the final results.  

Due to the high number of possible comparison metrics, a set of indicative selections 

were made to compare the cancer models for the multitude of simulated configurations. 

The behavioural features compared along the duration of the simulations were the tissue 

size (in cells) and the number of regulatory genes for each genetic operation (division, 

apoptosis and segregation) in the case of the non-therapy scenario. For the therapy 

scenarios, the models were compared based on the average apoptosis-to-division gene 

ratio, which is characteristic of the model behaviour according to [238].  

Following the methodology in [238], for each batch of experiments, the output from the 

models (tissue size and number of genes) was stored in separate text files for each 

simulation. These log files were then used for post-processing (using Mathematica), 

transforming the results in a form more suitable for statistical analysis (analyzed then 

with Excel).  

5.3.4 Results 

The comparison results are given below for all the cancer models: the original one from 

[238], the original recoded in a systemic style (OriginalSystemicStyle) and the time-

enabled (TicToc), timeless (noTime) and approximate time (ApproxTime) with and 

without optimizations (opt and nopt) for both the HAoS simulator (simHAoS) and the 

hardware platform itself (HAoS). 

In the case of the models simulating a therapy scenario, the results are re-aligned taking 

the diagnosis time as a common reference time point to make the comparison more 

comprehensive. Also in the case of the timeless SC cancer models, since the notion of 

time is missing, a direct comparison of the genetic evolution of the tissue with the other 

                                                      
33

 While a model runs on the HAoS hardware platform and its software simulator unaltered, it is 

expected to give slightly different results in terms of behaviour and quite different results in 

terms of performance. Thus, it is accounted as two separate models in the context of this analysis.  

34
 Each experiment here is a simulation of one of the resulting cancer models for a specific pair of 

gene configuration - therapy scenario. 
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models is not possible. For this reason, the number of the main genetic operations (in the 

form of tissue interactions) is used to monitor their growth instead of time. In order to 

enable their visual comparison, the results from the timeless models are plotted along 

with the ones acquired by the other models - appropriately scaling the respective axes.  

Point-to-Point  Model  Behaviour  Comparison  Results 

The point-to-point comparison results, giving simulation results for all ten cancer models 

in the same graph for each experiment configuration, are presented in Figures 5.19 - 

5.23. Figures 5.19 - 5.21 give the output of the models when no therapy is used for all 

chromosome distributions comparing the resulting average number of cells and all three 

types of genes. Figures 5.22 - 5.23 compare the apoptosis-to-division gene ratio only for 

chromosome distributions B and C (as distribution A shows a homeostatic tissue 

behaviour which does not require treatment) for therapy scenarios B, C and D involving 

surgery, chemotherapy and both therapies, respectively.  

As seen in Figures 5.19 - 5.23, the behaviour of the tissue is correctly captured by the SC 

cancer models, since the results are quite similar in most cases. Especially in the 

experiments without therapies involved (Figures 5.19 - 5.21), the similarity regarding the 

tissue size and numbers of regulatory genes is evident, as all models converge on the 

same results. A slight difference is observed only in the case of the number of cells for 

gene distribution A. Since all simulations carry on until the maximum number of 

generations, the tissue shows the expected homeostatic behaviour but the inherent 

randomness in SC causes a wider oscillation in the evolution of the number of total cells, 

resulting in the tissue converging in a slightly higher number of cells.  

Same observations can be made for the therapy-enabled results (see 5.22 - 5.23) 

comparing the apoptosis-to-division gene ratio since there is a high degree of correlation 

between the SC cancer series and the reference one.  
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Figure 5.19. Non-therapy cancer models comparison for gene distribution A. The results 

shown give the average from 20 runs taken by each of the ten models for the tissue size in 

cells (first row), division genes (second row), apoptosis genes (third row) and segregation 

genes (fourth row) for gene distribution A.  
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Figure 5.20. Non-therapy cancer models comparison for gene distribution B. The results 

shown give the average from 20 runs taken by each of the ten models for the tissue size in 

cells (first row), division genes (second row), apoptosis genes (third row) and segregation 

genes (fourth row) for gene distribution B.  
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Figure 5.21. Non-therapy cancer models comparison for gene distribution C. The results 

shown give the average from 20 runs taken by each of the ten models for the tissue size in 

cells (first row), division genes (second row), apoptosis genes (third row) and segregation 

genes (fourth row) for gene distribution C.  
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Figure 5.22. Therapy-enabled cancer models comparison near cancer diagnosis for gene 

distribution B. The results shown give the average from 20 runs taken by each of the ten 

models for the ratio of the number of apoptosis regulatory genes to the number of division 

regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy - 

second row) and D (both therapies - third row) for gene distribution B. The results are 

plotted from 25 timeslots before until 25 timeslot after cancer detection for models 

supporting time and from 750 tissue interactions before until 750 interactions after 

detection for the timeless models.  
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Figure 5.23. Therapy-enabled cancer models comparison near cancer diagnosis for gene 

distribution C. The results shown give the average from 20 runs taken by each of the ten 

models for the ratio of the number of apoptosis regulatory genes to the number of division 

regulatory genes for therapy scenario B (only surgery - first row), C (only chemotherapy - 

second row) and D (both therapies - third row) for gene distribution C. The results are 

plotted from 25 timeslots before until 25 timeslot after cancer detection for models 

supporting time and from 750 tissue interactions before until 750 interactions after 

detection for the timeless models. 
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Performance Comparison Results 

While all suggested cancer models have been able to give results similar to the expected 

ones, their performance is the differentiating factor that will enable us to select the most 

optimal implementation. The average absolute and normalized (in terms of each 

generation) execution times for all cancer models, gene distributions and applied 

therapies are given in Table 5.9.  

 

Table 5.9. Absolute and normalized average execution times for all simulated cancer 

scenarios 

 

Absolute Execution Time (ms) 

Gene Distribution Distr. A Distribution B Distribution C 

Therapies None None Surgery Chemo Both None Surgery Chemo Both 

Original 1192.1 336.8 460.2 478.2 362.0 328.4 457.4 463.4 345.6 

OriginalSystemicStyle 1648.7 353.2 393.0 405.0 398.0 366.1 363.4 359.6 378.7 

simHAoS-TicToc 81862.0 19536.0 40969.0 20000.2 18013.0 16646.0 18194.0 39619.0 41590.0 

simHAoS-ApproxTime-nopt 25880.0 4387.0 4965.0 5243.0 5622.0 4106.0 4890.0 4765.0 5195.0 

simHAoS-ApproxTime-opt 7362.0 2182.0 2234.0 2338.0 2407.0 3239.0 2006.0 2262.0 2599.0 

HAoS-TicToc 422.6 146.6 146.0 167.3 155.3 136.7 139.8 139.9 156.0 

HAoS-ApproxTime-nopt 384.5 126.7 136.1 148.3 149.7 124.4 125.6 145.4 136.9 

HAoS-ApproxTime-opt 328.5 112.3 111.6 139.9 135.3 105.3 104.9 122.0 137.2 

simHAoS-noTime 29218.0 19084.0 18438.0 20625.0 19362.0 11272.0 11878.0 13281.0 15077.0 

HAoS-noTime 310.7 172.0 177.2 187.0 378.0 160.2 167.8 182.5 170.0 

 
Normalized Execution Time (Per Generation) 

Gene Distribution Distr. A Distribution B Distribution C 

Therapies None None Surgery Chemo Both None Surgery Chemo Both 

Original 3.97 4.33 5.14 4.49 3.28 4.30 5.19 4.73 3.15 

OriginalSystemicStyle 5.50 4.33 4.25 3.75 3.48 4.58 4.17 3.60 3.50 

simHAoS-TicToc 284.39 302.65 523.23 225.74 190.31 261.52 259.54 481.98 439.87 

simHAoS-ApproxTime-nopt 86.30 70.93 70.58 61.21 60.22 69.36 68.01 60.58 59.88 

simHAoS-ApproxTime-opt 24.46 29.37 27.50 24.07 24.45 44.22 26.55 25.70 26.07 

HAoS-TicToc 2.10 2.23 2.08 1.88 1.77 2.18 2.06 2.08 1.74 

HAoS-ApproxTime-nopt 1.91 2.11 1.95 1.76 1.65 2.03 1.92 1.75 1.61 

HAoS-ApproxTime-opt 1.63 1.49 1.29 1.46 1.38 1.44 1.43 1.35 1.47 

 
Normalized Execution Time (Per Tissue Interaction) 

simHAoS-noTime 5.84 7.24 6.83 7.36 6.84 4.80 4.42 5.12 5.60 

HAoS-noTime 0.06 0.06 0.07 0.07 0.13 0.06 0.07 0.07 0.07 
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5.3.5 Analysis 

Model Behaviour   

As observed in all charts, the apoptosis genes gradually become less than the division 

genes (the ratio is always below 1). The reason is that the cancer model implies a 

positive feedback on division genes growth. This means that as the number of genes 

grows, the probability of division grows as well (as this probability is proportional to the 

number of genes) resulting in cells with at least the same number of division genes 

(since genetic material gets written from the parent to the daughter cell). However, in the 

case of death, when the number of apoptosis genes grows, the probability of the cell 

dying grows as well, meaning its genes are lost and not carried in the next generation, as 

in the case of division. As seen in the therapy related results, the SC models tend to 

overestimate the gene ratio compared to the original one - implying that the positive 

division gene feedback in the SC models is weaker, mainly due to the lack of priority in 

selecting the genetic operation to each cell.  

Another, less noticeable difference, is that the reference series tend to have a greater 

change in the gene ratio at the time of therapy from the SC model ones, especially for 

therapies involving surgery. This is an artefact of the structural design of the original 

cancer model as daughter cells (new nodes in the linked list) are positioned next to 

parent cells creating locally elevated concentrations of division genes, due to the positive 

feedback mechanism. While cells are evaluated as the linked list is traversed, surgery 

removes a range of cells adjacent to each other in the reference model, making it more 

probable that all the cells of such clusters of higher division genes will remain or be 

removed from the tissue after surgery. In the SC models however this does not happen as 

the selection of cells created during division and killed during surgery happens in a 

random manner. 

Finally, a notable difference between the models supporting the notion of time and the 

timeless ones can be found on the way the various metrics are monitored and illustrated 

in the figures above. As mentioned earlier, the values for each metric are sampled in the 

end of each timeslot for the models supporting timeslots while they are continuously 

sampled in the timeless models. This is most evident in the surgery timeslot where a big 

number of cells are killed, changing considerably the genetic state of the tissue. While 

for the time-supporting models the surgery happens in one timeslot and is plotted as a 

sudden change of the tissue, for the timeless models the surgery operation is unravelled 

as a big number of subsequent cell deaths that are shown in the resulting figures. 
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Since a stochastic biological model is simulated, some variation in the results is naturally 

expected. To compare the level of behavioural similarity of the SC cancer models to the 

reference one in a more clear way, the differences of the averages of all time-supporting 

models to the values of the original one are plotted in Figures 5.24 - 5.28 while their 

respective mean error, standard deviation and correlation are given in Table 5.10. The 

timeless models are excluded from these comparisons as a point-to-point comparison 

between timeslot and tissue interactions would not be beneficial. To further support the 

fact that some level of variation is natural and acceptable, a second batch of experiments 

using the reference model (Original2) was conducted and their difference to the 

reference simulations is also included in the analysis below. 

As seen in Figures 5.24 - 5.28, a clear pattern cannot be identified in the behaviour of 

each model when compared to the original one due to the stochastic nature of this cancer 

model and the variability of the intermediate states due to its complexity. In general, the 

second batch of experiments using the reference model gave, as expected, results that are 

more similar to the original ones. However, notably this was not always the case (when 

taking into consideration the results from all the different scenarios). This is also 

confirmed by the statistical comparison results of Table 5.10.  

This test case has stressed the simulating abilities of both the HAoS functional simulator 

and the hardware platform itself. As shown in Figures 5.19 - 5.28 and Table 5.10 the 

developed high-level HAoS simulator succeeds on modelling the behaviour of the 

platform, capturing within an acceptable statistical error the results given simulating a 

complex biological model.   

Following the discussion above, we can conclude that HAoS (and its accompanying 

simulator) can adequately model a fairly complex biological system. As in traditional 

programming, more than one ways can be used to describe such a system. While 

capturing the functionality of such a model is essential, its performance in terms of 

execution speed is also usually critical. 
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Figure 5.24. Non-therapy cancer time-supporting models results differences for gene 

distribution A against the reference model on tissue size and regulatory genes 
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Figure 5.25. Non-therapy cancer time-supporting models results differences for gene 

distribution B against the reference model on tissue size and regulatory genes 
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Figure 5.26. Non-therapy cancer time-supporting models results differences for gene 

distribution C against the reference model on tissue size and regulatory genes 
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Figure 5.27. Differences on apoptosis-to-division ratio between the therapy-enabled time-

supporting cancer models for gene distribution B against the reference one around 

diagnosis timeslot 
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Figure 5.28. Differences on apoptosis-to-division ratio between the therapy-enabled time-

supporting cancer models for gene distribution C against the reference one around 

diagnosis timeslot 
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Table 5.10. Statistical comparison of the time-enabled cancer models to the reference one in 

terms of mean error (ME), standard deviation (STD) and correlation (COR) 

 

Total Cells 

 

Distr. A Distr. B Distr. C 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -41.097 19.962 0.407 -5.413 4.913 0.981 -3.426 3.663 0.991 

simHAoS-TicToc -22.118 14.377 0.639 -15.150 11.645 0.948 -16.714 16.597 0.931 

simHAoS-ApproxTime-nopt -32.314 15.975 0.443 -17.253 15.534 0.939 -20.041 21.199 0.892 

simHAoS-ApproxTime-opt -15.489 9.433 0.548 -8.120 7.975 0.985 -11.090 9.118 0.964 

HAoS-TicToc -27.836 15.299 0.560 -19.570 18.229 0.964 -16.166 15.406 0.937 

HAoS-ApproxTime-nopt -21.457 11.770 0.623 -25.431 26.779 0.935 -17.555 17.025 0.916 

HAoS-ApproxTime-opt -27.597 16.510 0.537 -7.084 5.607 0.992 -7.827 7.664 0.982 

Original2 0.143 2.738 0.900 2.220 4.362 0.992 -1.036 3.311 0.994 

 

Average Division Genes 

 

Distr. A Distr. B Distr. C 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -0.175 0.135 -0.743 0.032 0.022 0.997 0.007 0.008 0.999 

simHAoS-TicToc -0.038 0.022 0.830 -0.011 0.017 0.997 -0.014 0.018 0.998 

simHAoS-ApproxTime-nopt -0.190 0.105 0.341 -0.013 0.014 0.998 -0.047 0.047 0.998 

simHAoS-ApproxTime-opt -0.132 0.117 0.410 0.020 0.012 0.991 0.006 0.006 0.998 

HAoS-TicToc -0.066 0.053 0.732 0.000 0.016 0.992 -0.021 0.024 0.997 

HAoS-ApproxTime-nopt -0.094 0.078 -0.791 -0.027 0.037 0.995 -0.018 0.026 0.995 

HAoS-ApproxTime-opt -0.081 0.061 0.433 -0.009 0.013 0.999 0.006 0.012 0.990 

Original2 -0.028 0.031 0.977 0.004 0.007 0.997 0.009 0.007 0.998 

 

Average Apoptosis Genes 

 

Distr. A Distr. B Distr. C 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -0.175 0.135 -0.743 -0.041 0.047 0.993 -0.036 0.030 0.998 

simHAoS-TicToc -0.038 0.022 0.830 -0.001 0.004 0.998 0.011 0.025 0.995 

simHAoS-ApproxTime-nopt -0.190 0.105 0.341 0.002 0.010 0.996 0.016 0.022 0.998 

simHAoS-ApproxTime-opt -0.132 0.117 0.410 -0.002 0.008 0.997 0.017 0.022 0.997 

HAoS-TicToc -0.066 0.053 0.732 -0.005 0.007 0.998 0.020 0.030 0.997 

HAoS-ApproxTime-nopt -0.094 0.078 -0.791 0.021 0.022 0.997 0.025 0.028 0.999 

HAoS-ApproxTime-opt -0.081 0.061 0.433 -0.039 0.039 0.998 0.004 0.007 0.998 

Original2 -0.028 0.031 0.977 -0.024 0.026 0.997 0.026 0.032 0.999 

 

Average Segregation Genes 

 

Distr. A Distr. B Distr. C 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -0.033 0.038 -0.241 0.032 0.022 0.997 -0.036 0.030 0.998 

simHAoS-TicToc -0.060 0.046 -0.862 -0.011 0.017 0.997 0.011 0.025 0.995 

simHAoS-ApproxTime-nopt -0.037 0.034 -0.350 -0.013 0.014 0.998 0.016 0.022 0.998 

simHAoS-ApproxTime-opt -0.085 0.043 -0.340 0.020 0.012 0.991 0.017 0.022 0.997 

HAoS-TicToc -0.050 0.029 -0.382 0.000 0.016 0.992 0.020 0.030 0.997 

HAoS-ApproxTime-nopt -0.026 0.025 0.158 -0.027 0.037 0.995 0.020 0.025 0.999 

HAoS-ApproxTime-opt -0.025 0.013 0.826 -0.009 0.013 0.999 0.004 0.007 0.998 

Original2 -0.037 0.022 0.150 0.004 0.007 0.997 0.026 0.032 0.999 

 

Average Apoptosis to Division Ratio (Gene Distribution B) 

 

Surgery Chemotherapy Both Therapies 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -0.086 0.035 0.996 -0.090 0.022 0.982 -0.068 0.029 0.996 

simHAoS-TicToc -0.093 0.024 0.995 -0.080 0.011 0.987 -0.136 0.035 0.972 

simHAoS-ApproxTime-nopt -0.134 0.031 0.980 -0.106 0.021 0.907 -0.079 0.030 0.974 

simHAoS-ApproxTime-opt -0.096 0.024 0.998 -0.084 0.019 0.973 -0.070 0.029 0.987 

HAoS-TicToc -0.059 0.013 0.988 -0.094 0.014 0.975 -0.102 0.031 0.989 

HAoS-ApproxTime-nopt -0.085 0.017 0.984 -0.087 0.009 0.990 -0.100 0.041 0.911 

HAoS-ApproxTime-opt -0.097 0.033 0.987 -0.056 0.013 0.975 -0.114 0.031 0.954 

Original2 -0.028 0.020 0.996 -0.005 0.014 0.978 -0.036 0.029 0.975 

 

Average Apoptosis to Division Ratio (Gene Distribution C) 

 

Surgery Chemotherapy Both Therapies 

 

ME STD COR ME STD COR ME STD COR 

OriginalSystemicStyle -0.039 0.013 0.988 -0.138 0.033 0.994 -0.067 0.021 0.948 

simHAoS-TicToc -0.013 0.024 0.994 -0.129 0.021 0.998 -0.043 0.006 0.973 

simHAoS-ApproxTime-nopt -0.066 0.010 0.995 -0.095 0.006 0.996 -0.053 0.008 0.971 

simHAoS-ApproxTime-opt -0.029 0.016 0.994 -0.095 0.011 0.990 -0.044 0.011 0.978 

HAoS-TicToc -0.049 0.019 0.985 -0.093 0.046 0.863 -0.071 0.007 0.973 

HAoS-ApproxTime-nopt -0.043 0.023 0.986 -0.120 0.024 0.991 -0.049 0.015 0.944 

HAoS-ApproxTime-opt -0.051 0.018 0.992 -0.073 0.012 0.998 -0.030 0.015 0.951 

Original2 0.034 0.014 0.996 -0.006 0.014 0.979 0.053 0.026 0.967 
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Model Performance   

As seen on the top portion of Table 5.9, simulations are lengthier for gene distribution A 

as the models reach the maximum number of generations (since the homeostatic 

behaviour of the tissue keeps its size well under the maximum cells threshold). As 

expected, the execution times for the software implementations are similar (10-15% 

variation). The HAoS simulator needs considerable more time to identify interacting 

systems triplets. Comparing the (normalized) results from the cancer models executed on 

HAoS, the time-enabled model requires additional time to implement the tic-toc time 

phase mechanism. The timeless model cannot be directly compared (its timing is 

provided in Table 5.9 for reference) as it is normalized against tissue interactions rather 

than timeslots and also logs more output information as it monitors more events. The 

approximate time models are faster than the time-enabled, while as expected the few 

optimizations of its optimized variation (HAoS-ApproxTime-opt) result in it having the 

best execution times. 

While HAoS still outperforms the reference cancer simulation program, the 

outperforming factor (relative difference in the performance) is smaller than the ones 

achieved in the previous sections (knapsack problem and MAPK cascade). This is 

however expected as the cancer model was a corner case, comparing the simulation 

capabilities of HAoS with a dedicated software implementation running on a high-end 

desktop computer and identifying interacting systems in a trivial way. Yet, as shown in 

Figure 5.29, HAoS achieved on average more than 60% performance incresase.  

 

Figure 5.29. Cancer growth experiment HAoS normalised performance against the 

dedicated c++ implementation  
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Moreover, further profiling the optimized SC cancer model running on hardware, 

showed that an additional performance increase can be achieved with a purely-hardware 

implementation of context-chaining. Since the current context-chaining approach relies 

on the user to explicitly define the next context to be executed in the chain by software, 

this results in many time-consuming and execution-blocking memory accesses which 

may be avoided by a smart implementation preloading the possible (or permitted) chains 

in the HAoS memories along with the SC program loading. However, this implies that 

several changes would be required in the hardware, driver and compiler code and, thus 

the more simplistic current approach was preferred for our prototype. 

The complexity of this high-level cancer model and its successful execution on the 

HAoS platform confirms that the implied SC architecture (systems, scopes, contexts, 

schemata matching) is effectively supported, meeting this way research challenge Chg2. 

The cancer experiments proved that HAoS can compete with dedicated solutions  on 

modelling real-world biological models, confirming that research challenge Chg3 has 

also been adequately met, in terms of both practicality and efficiency. 

5.4 Summary 

This chapter presented the implementation of three bio-inspired models, using the 

developed prototype HAoS programming platform, in order to verify its functionality 

and evaluate its performance against alternative solutions. The three models were 

carefully selected to represent verification test cases of increasing complexity, testing all 

aspects of the suggested architecture, both in the hardware and the software domain.  

These demonstration HAoS applications were developed using the suggested 

development methodology of section 4.5. Each of the preceding sections provides an 

introduction to the bio-inspired model, followed by a systemic analysis, details on the 

model implementation, the experimental setup and the obtained results. 

First, a SC application implementing a genetic algorithm optimization of the binary 

knapsack problem showed the suitability and compatibility of the SC hardware 

architecture with standard evolutionary methods. This test case was used to evaluate the 

performance of HAoS against the original sequential and the GPU-based 

implementations of SC. The results showed the superiority of HAoS, mainly based on 

the fine-grained parallelism of the TCAM, even when compared with a powerful GPU. 

The next application modelled a well-studied biochemical process, the MAPK signalling 

cascade. Being more complex in nature, it tested more advanced functionality like 
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context adapting and enabled the evaluation of HAoS against the flexible high-level 

SCoPE SC implementation and a stochastic π-calculus simulator written using functional 

programming. HAoS again matched the behaviour of the alternative simulators providing 

a considerable performance gain. 

The last HAoS application modelled the effect of genetic abnormalities and therapeutic 

approaches on cancer growth. In this test case, a comprehensive analysis on the thought 

process required to build a considerably complex SC model was provided, along with 

examples of optimizations that can be made at the SC source code and transformation 

function plugin level to take full advantage of the underlying hardware architecture . The 

notion of context chaining was introduced as a means of controlling SC interactions that 

define a chain of events. Additionally, this model was used to validate the functionality 

of the developed high-level HAoS simulator (a program with functional behaviour 

similar to the circuitry). The performance of HAoS was evaluated against an optimized 

dedicated software implementation and showed a competitive advantage, considering 

that this case represented a worst-case scenario in terms of comparison, due to the 

straightforward selection of the agents.  

 
Figure 5.30. Performance Evaluation Results Summary 

Analysis for all three HAoS applications showed that research challenges Chg2 and 

Chg3 have been met, as the suggested programming platform successfully simulated a 

range of SC models of increasing complexity, confirming the support for the implied SC 

architecture. The evaluation results, as collectively shown in Figure 5.30, show that 

HAoS consistently outperformed the rival simulators in all cases, confirming it shows 

the capacity to be used as an efficient and practical simulation solution alternative. 
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Chapter 6  

Conclusion 

This final chapter summarises and concludes the thesis. At first, a summary of the work 

presented in this thesis is provided while revisiting its objectives. Then the contributions 

of the thesis are listed, followed by a critical evaluation of the research outcomes. Future 

work is suggested for further investigation and development of the HAoS programming 

platform. The thesis finishes by describing how the contributions address the three main 

research challenges and provide evidence to support its hypothesis. 

6.1 Summary of Work Revisiting the Objectives 

This thesis focuses on the practical hardware implementation of the Systemic 

Computation paradigm. The objectives of this work, identified and listed in section 1.5, 

are reviewed below summarising the work presented in this study.  

1. Review the work done on Natural Computation with a focus on hardware-based 

approaches. 

An introduction to Natural Computation was given in section 1.1. The computational and 

behavioural properties of Natural Computation were listed, against the opposing 

properties of conventional computation, in Table 1.1 (page 19), and they were outlined at 

the end of the same section. Understanding the concept of those properties is very useful 

because, in essence, they define natural computation.  

Chapter 2 provided a thorough literature review on several approaches to Natural 

Computation. Various, software and hardware, approaches and computational paradigms 

on Natural Computation were listed in Table 2.1 (page 30). The software approaches and 

the computational paradigms were briefly discussed in section 2.1, while conventional 

(Chip Multiprocessors, supercomputers, pure peer-to-peer networks and GPUs) and 

unconventional (ubiquitous computing, wireless sensor networks, FPGAs, computing 

with unconventional materials) hardware-based approaches to natural computation were 

critically described in section 2.2. An overview of a set of indicative projects (POEtic, 
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PERPLEXUS, SpiNNaker, Molen, DodOrg) was also given to show how various 

approaches are applied to accomplish, model or mimic natural computation.  

2. Review and assess the work done on Systemic Computation (theory and 

implementations) to date. 

A brief introduction on the SC theory was provided in section 1.2 giving its roots. In 

addition, the conventions followed by SC in order to model biological processes 

effectively, were listed. In essence, those conventions define the SC paradigm. SC was 

further described in section 2.3, as it was introduced in the original paper by Bentley. 

The SC conventions were discussed and the SC graph notation and systems 

representation was illustrated. A simple demonstration of computation and the 

progression of a simple SC program were also given to illustrate how SC can be used. 

The three prior SC implementations were discussed in section 2.4. The original SC 

implementation was a low-level simulation of a systemic computer and provided a proof-

of-concept for the SC theory. It provided a basic instruction set, an assembly language 

and corresponding compiler. The second SC implementation was a high-level simulation 

of a systemic computer and provided flexibility with a high-level SC programming 

language, a compiler and a virtual machine, a complete runtime environment and 

visualization tools. The third implementation used the power and parallelism of a GPU, 

to accelerate SC programs execution with great success, compared to the two previous 

attempts, since the acceleration factor was in the order of one hundred.   

3. Investigate the suitability of available hardware implementation platforms for SC by 

evaluating them in terms of their ability to support the natural properties of SC 

(Chg1), the implied SC architecture (Chg2), and practicality/efficiency (Chg3) and 

select the most appropriate. 

In order to evaluate and investigate the suitability of the available implementation 

platforms, the features that should be incorporated by a practical SC hardware 

implementation platform, taking into consideration the research challenges, were 

determined in section 2.5. These included the compatibility of the platform with the SC 

natural properties (section 1.1) and the SC architecture features (systems, scopes, 

contexts and interactions), and also I/O efficiency, programmability, design friendliness, 

technology maturity and scalability.  

Signifying and understanding the advantages and disadvantages of each available 

hardware implementation approach to natural computation in Chapter 2 was crucial to 

identify which of them could be used as a suitable implementation platform for SC. For 
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this reason, a critical discussion concluded the description of each approach, with regard 

to their compatibility with the SC paradigm, and those that could define a SC hardware 

implementation platform were evaluated against the identified implementation 

requirements. The summary of the evaluation was given in Table 2.3 which was used to 

discard the less suitable platforms for a SC implementation. FPGAs were finally selected 

among the two other candidates, GPUs and wireless sensor networks. 

4. Analyse the SC architectural features and create a prototype hardware 

implementation designed to support the SC architecture. 

The first Hardware Architecture of Systemic computation (HAoS) was introduced in 

Chapter 3. The main SC architectural features, focusing more on the computational 

rather than the behavioural aspects of Natural Computation (see Table 1.1), were 

depicted and discussed in section 3.2, while potential architectures had been listed earlier 

in section 3.1. HAoS is a novel custom digital design, which addresses the SC 

architecture parallelism requirement by exploiting the inbuilt parallelism of an FPGA 

and by using the highly efficient matching capability of a Ternary Content Addressable 

Memory (TCAM). Basic processing capabilities were embedded in HAoS, in order to 

minimize time-demanding data transfers, while the optional use of a CPU provides high-

level processing support. The suggested architecture was detailed and its underlying 

building blocks were discussed in sections 3.4 - 3.6. The CPU interface (see Figure 3.9) 

was only simulated at this point. 

The functional simulation-based verification methodology along with a set of test 

programs was given in section 3.8.1. Since the target development board had been 

identified (based on the supported functionality and maturity of the FPGA device family 

it includes) to be the Xilinx ML605 board, accurate implementation estimates of HAoS 

for the on-board Virtex-6 LX240T FPGA device were acquired through Xilinx 

developments tools and summarized in Table 3.6 (section 3.8.2). This first HAoS 

implementation supported a maximum number of 64 systems. 

5. Create a complete and standalone practical SC programming platform with the 

ability to meet the three challenges.  

After a thorough investigation of the most suitable implementation approach for the 

HAoS-CPU communication interface in section 4.1, it was decided that a soft embedded 

processor, implemented on the reconfigurable logic, minimized the communication 

overhead and provided the ability to prototype the communication link. The CPU 

subsystem, along with various peripherals, was integrated to the HAoS initial design (in 
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section 4.2) through an AXI4-Lite based interface, which was well-suited to handle 

communications involving control and status registers, as the ones in the register bank of 

HAoS. 

After the custom design was combined with the on-chip soft processor, the Compact 

Flash Card interface was added to the platform to enable SC programs loading and 

runtime information logging, making the prototype a standalone solution for simulating 

natural processes. The initial design was expanded to support the maximum number of 

systems, being limited only by the size of the target FPGA device while scaling became 

a matter of changing a single parameter as fully-parameterizable code was used 

throughout the system. The usability and viability of the platform was also greatly 

enhanced by the accompanying software framework and the suggested model 

development methodology.  

The prototype has the potential of adding great educational value in the academic 

community as it combines practical aspects of hardware and software engineering with 

an unconventional computational paradigm focusing on natural systems modelling. 

6. Analyse and address the limitations of the hardware prototype by means of 

optimizations and enhancements taking into consideration the research challenges.  

Various optimizations applied in the initial HAoS architecture in terms of speed and area 

were discussed in section 4.3. The optimizations included refining the Random Selection 

Logic by pipelining and careful resource sharing, minimizing the schemata matching 

overhead by using a register-based TCAM which features a single-clock cycle read and 

write latency and further addressing I/O efficiency by devising a write-detection 

mechanism. These optimizations enabled the increase of the operating frequency and 

throughput and the decrease of the overall latency compared to the initial design. 

Timing-based verification was conducted to validate the optimizations before the design 

was implemented on hardware (downloaded on the FPGA). The enhancements included 

addressing user-friendliness, by providing a HAoS functional simulator to expedite and 

ease SC models development, and programmability by introducing a complete HAoS 

programming toolchain and an accompanying software framework, which were then 

used to formulate a HAoS model development methodology (in section 4.5).  

7. Evaluate the ability of the prototype SC platform to meet the three challenges  by 

simulating natural models against alternative solutions. 

An initial evaluation against prior SC implementations was provided in section 5.1, 

where the same SC source code solving a typical genetic algorithm optimization 
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problem, the binary knapsack problem, was executed by the original SC implementation, 

the GPU SC implementation and HAoS.  SCoPE was excluded from this evaluation since 

it uses a different version of the SC language but it can be safely assumed that its 

performance would be similar to the original version (both being purely software 

implementations relying solely on conventional hardware architectures). Experimental 

results showed that HAoS provides an effective solution in terms of efficiency versus 

flexibility trade-off and can potentially outperform prior implementations. 

A well-studied biochemical process, the MAPK signalling cascade, was the second SC 

model, developed using the methodology of section 4.5 and presented in section 5.2, 

simulated with the HAoS prototype platform. Although this experiment was used as a 

means of verification and evaluation of the platform against alternative high-level 

simulators, SCoPE and SPiM, it also provided an example of simulating a highly 

stochastic and approximated model.  

The third and most complex SC model, out of the models presented in this thesis, 

examined the role of chromosome missegregation, a cellular anomaly of genetic origin, 

in the development of a tumour. External stimuli were also modelled in the form of 

typical cancer therapies, chemotherapy and surgery. In contrast with the other models, 

presented in the first two sections of Chapter 5, which retargeted previously introduced 

SC models to the HAoS programming platform, the cancer SC model was developed 

from scratch in the context of this thesis. For this reason and due to the increased 

complexity of this model, a thorough explanation and a detailed systemic analysis were 

provided before reaching the alternative ways of approaching and implementing such a 

model. Thus four variations of this SC model were presented, all representing the 

functionality of the reference model, trying to identify a balanced choice in terms of 

accuracy and efficiency. This test case was also used to evaluate the correctness of the 

HAoS functional simulator. The results showed that HAoS can outperform the optimized 

C++ reference model while correctly modelling its complex behaviour.  

6.2 Contributions 

This work contributes to the fields of systemic computation, natural computation and, in 

general, computer science by providing: 

 A critical review of hardware-based approaches to systemic and natural 

computation and identification of the requirements of an implementation 

platform, in order to support a practical SC hardware implementation. 
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 Critical analysis of natural computation implementation platforms with respect to 

SC and the derived requirements. 

 Determination of the most appropriate hardware implementation platform for a 

practical SC implementation.  

 Design of the first hardware SC architecture taking into consideration the 

flexibility and performance trade-off. 

 Introduction of a complete and practical standalone platform to simulate natural 

systems, accompanied by  

o a programming toolchain,  

o a software framework and  

o a model development methodology  

 A custom hardware write-detection mechanism used to decrease CPU accesses to 

a local resister file. 

 A custom random selection circuit that selects a set bit from a given bus and 

returns its position. 

 Introduction of the concept of context chaining in SC applications. 

 SC programming examples executed on hardware showcasing efficient natural 

systems modelling. 

 Introduction of a SC cancer model focusing on chromosome missegregation and 

including genetic and external stimuli.   

6.3 Critical Evaluation 

The various design decisions and choices involved in the development of the resulting 

prototype, from the selection of hardware implementation platform to the layout of the 

hardware architecture and then the development of its accompanying software, have 

been explained throughout chapters 2 to 4. These decisions have been primarily based on 

finding a balance between efficiency and flexibility and were driven by currently 

available technologies and design methodologies. Yet, it has been evident from the 

analysis given before any decision was made, that there was usually no single correct 

answer to each design challenge faced along this work. 
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Implementation Platform Selection 

According to the analysis of section 2.5, FPGAs were selected as the most suitable 

platform for a hardware implementation of SC. While this decision was made due to 

maturity of the FPGA technology and its great potential for fine-grained parallelism, 

advancements in emerging technologies as Quantum and DNA computing may enable 

the implementation of SC in a more natural substrate in the future.  

Regarding the other strong candidates for realizing SC, from the discussion of section 

2.5, both Wireless Sensor Nodes and GPUs provide advantages that would make them 

suitable candidates. The comparison between the FPGA-based HAoS prototype and the 

GPU SC implementation using the binary knapsack test case (section 5.1) reveals the 

superiority of a dedicated hardware architecture over the power of a GPU. However, 

while FPGAs are widely used having a plethora of commercial applications, GPU design 

advancements are mainly driven by the power-hungry and ever-demanding gaming 

industry. Thus, the two fields should continue evolving with the same pace for the FPGA 

platform to continue being the most favourable option. A quantitative comparison 

between the FPGA-based and a WSN-based approach was not possible as such an 

implementation is not available yet. Thus, since the features of a WSN network are well-

aligned with the natural properties of SC, a WSN SC implementation may still prove 

useful to realize. 

Hardware Architecture 

As stated in section 1.2, the two main tasks implied by SC are the identification of the 

interacting systems and then the transformation of those systems. The competitive 

advantage of the suggested hardware architecture lies on the efficiency of the TCAM 

performing schemata matching in a parallel manner, regarding the first implied task, and 

the low-latency communication with the embedded CPU, regarding the second. 

However, it is clear that there is still great performance gain potential regarding the 

parallelization of the transformation task which may be addressed by using on-chip 

available resources or additional off-chip processing elements. 

The rationale behind choosing the soft processor in section 4.1 is the extremely low 

communication overhead which can however be negligible when the runtime of a task 

increases. While the embedded processor approach was proven sufficient to prototype 

the suggested hardware architecture (according to its evaluation against alternative 

simulators in Chapter 5), more computationally intensive natural models may require 

more raw processing power which may be addressed by the computation-offloading 
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hybrid approach suggested in section 4.1 and further low-level hardware optimizations 

and enhancements. 

While the suggested hardware architecture was designed to implement the SC paradigm 

in an efficient and practical way, it is acknowledged that it does not fully support all the 

natural properties that are implied by SC. Evidently, the focus of this work was more 

towards the computational rather than the behavioural properties supported by the SC 

concept in theory. The FPGA platform was selected for the increased level of support it 

can provide for these implied properties and some of them like parallelism and stochastic 

interactions have been implemented on the hardware level. The behavioural properties 

are left to be simulated by the SC applications running natively on the HAoS platform, 

e.g. self-adaptation and fault-tolerance can be sufficiently demonstrated using a genetic 

algorithm [22] which being greatly compatible with SC, it can be easily simulated and 

efficiently mapped to the underlying architecture of HAoS as shown in section 5.1. 

Prototype Implementation 

The suggested hardware design has been written in highly-parameterized VHDL code, 

enabling its effortless migration to any FPGA device. The selected FPGA development 

board featured a midrange FPGA device in terms of size and included a rich set of 

features
35

. As FPGA technology evolves and modern devices provide more efficient 

reprogrammable solutions, HAoS is not constrained to a specific vendor, it can be easily 

scaled just by changing a single parameter in the source code (as long as the design fits 

to the target device) and is fairly future-proof as it uses an industry-standard 

communication interface to its embedded CPU. Using this flexibility, the number of 

maximum supported systems using a single device may be adequate to simulate fairly 

complex natural systems. However, scaling the architecture further than a single FPGA 

device, realizing a distributed architecture of HAoS nodes, may be beneficial for real-

world modelling scenarios. 

SC Model Development and HAoS Programming 

The three SC models presented in Chapter 5 attempted to cover a wide
36

 range of SC 

applications with varying levels of behaviour complexity. The suggested model 

                                                      
35

 As various communication interfaces (PCI Express Gen2, USB 2.0, Gigabit Ethernet and 

DDR3 memory interface) and on-board peripherals (FMC expansion connectors, SD card 

controller and an LED screen). 

36
 Wide in the context of a research thesis. 
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development methodology can facilitate further exploring new models while the 

provided programming toolchain and software framework can assist in making HAoS 

programming straightforward for potential SC programmers, familiar with conventional 

programming methodologies and techniques. However, an understanding of the main 

concepts of SC, the basic mechanics of the underlying hardware and software 

development for an embedded processor is encouraged for efficient HAoS model 

development. 

6.4 Future Work 

Although the current prototype has been proven to be fully functional, there are several 

further improvements that could be made to increase its efficiency. The following 

suggestions address the deficiencies of the HAoS platform, identified in the critical 

evaluation section above.   

Hardware Architecture 

In order to maximize the utilization of on-chip resources, the vast number of available 

DSP building blocks can be used as discrete parallel processing elements and any 

remaining FPGA fabric can be used as a dynamically reconfigurable area for 

predetermined hardware-supported functions. As FPGAs provide the flexibility to 

partially reconfigure the device to implement a different circuit every time on a 

predetermined area of the available fabric, a different circuit could be downloaded on the 

FPGA, according to the requirements of a systemic program, which then would highly 

optimize the performance of the system. The supported reconfigurable function set could 

either include only predetermined hardware functions or any supported function by a 

high-level synthesis tool or C-to-HDL compiler [164], [242], [243]. Essentially this 

feature would imply that instead of having a fixed instruction set supported by the FU 

(see Figure 3.9), the FU would be itself reconfigurable and tailored to the specific SC 

application, maximizing this way resources utilization. 

Another enhancement to the suggested hardware architecture would be the addition of an 

extra communication interface on the platform to provide the possibility of HAoS 

offloading computationally-intensive tasks to a conventional CPU through a PCI-Express 

link. The motivation behind this is the acknowledgement that a low-performance soft 

processor can be a poor choice if a heavy computational task is required. A smart 

solution would execute hardware supported tasks within the HAoS FU, low-demanding 

general-purpose processing tasks to the low-latency low-throughput on-chip processor 

and computationally expensive processing tasks to the high-latency high-throughput off-
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chip conventional CPU. Thus, adding this option to the platform, would give the user the 

choice between having a standalone solution and fine-tuning the system performance 

according to the processing requirements of the given application.  

More low-level enhancements that would increase the efficiency and flexibility of the 

architecture are also possible. Some examples would be supporting variable parts next to 

the transformation function section of a system holding auxiliary program information, 

an efficient implementation of context chaining supported inherently by hardware and 

also further increasing the size of the schemata of a number of systems in order to be 

able to hold more local information. 

Prototype Implementation 

Naturally, the raw performance of the platform may also be increased by retargeting the 

HAoS architecture to the latest FPGA family, using a bigger and faster FPGA device to 

enable more systems to be modelled (using a single device) and the operating frequency 

of the custom logic to be increased without further architectural changes to the design. 

Also the operating frequency of the processor may also be increased by an order of 

magnitude, if the selected FPGA device makes use of a powerful hard CPU, instead of 

the low-end soft CPU of the HAoS prototype, implemented next to the reconfigurable 

logic (as it is the case for the recently commercialized Xilinx Zynq
37

 Extensible 

Processing Platform [202] and the recently announced Altera Stratix 10 FPGA platform 

which includes a quad-core A53 64-bit ARM processor fabricated on an Interl 14-nm 3D 

Trigate Transistor process, as discussed in section 4.1). This approach would maintain 

the low-latency communication advantages of the suggested design. A migration to such 

a platform would not impose altering the suggested communication interface, as the 

selected AXI4 based communication protocol (being an industry standard) used by 

HAoS, is readily supported by such modern solutions. However, minor changes would 

be required on the software side. 

                                                      
37

 The configurable logic provided by these devices is still limited since a full dual -core ARM 

CPU is also implemented on the same chip. The largest currently available Zynq device (Z-7100) 

provides 444K reconfigurable logic cells while the midrange Virtex-6 FPGA used for 

implementing HAoS includes 241K cells. However, with FPGA manufacturers moving to smaller 

technology nodes (currently announced down to 14-16nm), these limitations will be more 

efficiently addressed as the technology matures. The highest operating frequency for the ARM 

Cortex-9 CPU in the Zynq family is currently 1GHz (Z-7045-3 device) [202]. 
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An investigation on the scaling of the HAoS platform beyond the single-FPGA 

implementation is also suggested. This could be accomplished with using an external 

CAM configuration in order to address the increasing number of systems requirement. 

This approach would have a performance penalty but it would enable a broader range of 

SC applications. As the on-chip CAM is the most area-consuming block of HAoS, its 

absence will provide a high number of maximum supported systems, even when only one 

FPGA device is used. Moreover, external TCAMs can easily be incorporated to an 

FPGA-based design through dedicated or generic communication interfaces and also be 

scaled by cascading multiple devices [244][245]. A second approach that could address 

the scalability of the HAoS architecture is an FPGA cluster [93], with each FPGA 

defining a separate scope or part of a scope and system transfers/exchanges happening 

between the discrete FPGA nodes. Taking into consideration budget limitations of a 

hardware realization of this approach, the functionality may be simulated and tested on a 

configuration initially using a small number of FPGAs. A network interface will 

probably have to be designed at the bounds of each chip. A shared bus topology or a 

wireless link may help addressing the communication-related scalability issues. Address-

Event Representation [111] may also be considered to be adopted by the design in order 

to compensate for the limitation of the I/O pins of the FPGAs. 

SC Natural Models Development and HAoS Programming 

A natural extension of this work would involve exploring more natural models and 

developing SC applications which would fully exploit the efficiency of the suggested 

programming platform. Specifically, SC applications showing the level of support for the 

behavioural properties of Natural Computation would be especially interesting, using the 

work presented in [22] (exploiting self-adaptation, robustness, fault-tolerance, 

homoeostasis and self-organisation) as a starting point. 

The HAoS programming framework could also be greatly enhanced by further 

automating parts of the Conceptual and Application Layer (see Figure 4.5) with the 

addition of a high-level SC graph tool which would translate the graphical notation of a 

SC model to calculus notation and the corresponding SC source code. 

Implementation Platform  

As noted in the previous section, it would be interesting to also explore additional 

suitable implementation platforms and evaluate their performance and compatibility with 

the SC paradigm. An obvious candidate would be a WSN-based [79] approach while 
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alternatively a SpiNNaker-based [132] implementation would also be appealing once the 

final platform is available. 

6.5 Closing Words 

The hypothesis of this thesis was to prove the viability and utility of a practical SC 

hardware implementation. In order to accomplish this, an overview was first given on the 

fields of Natural and Systemic Computation to introduce their base concepts and non-

conventional nature. Then, in order to provide evidence to support the hypothesis, three 

research challenges had to be addressed: 

Chg1: How can a hardware platform support the central SC natural properties? 

Acknowledging the fact that the implementation of a hardware platform that fully 

supports all the SC inherent natural properties is not yet realistic, this thesis attempted to 

identify a compromise based on the various trade-offs provided by current technologies 

and design techniques. A critical analysis of hardware-based approaches to natural 

computation was presented, followed by the identification of the key requirements for an 

implementation platform which would provide sufficient support for as many as possible 

of the implied natural properties of SC, focusing more on the computational part. The 

investigation of the compatibility of the various available implementation platforms with 

the desired properties led to the selection of FPGAs as the most suitable choice to 

implement the first Hardware Architecture of Systemic computation (HAoS). The natural 

properties were also taken into consideration along the design of the custom hardware 

and its accompanying software. After analysis of the available options, constraints and 

trade-offs, a few of the properties (as stochastic execution and parallelism) were 

incorporated to the suggested hardware platform, while the rest remained to be supported 

on a software level (e.g. by using a genetic algorithm). 

Chg2: How can a hardware platform support the underlying architecture of SC? 

In order to support the underlying SC architecture, a hardware platform should be 

implemented on a substrate which is compatible with the specific features of SC: 

systems, scopes, contexts and interactions
38

. For this reason, the compatibility with these 

features was also considered in the implementation platform investigation. Since the 

FPGA platform was selected, a design analysis concluded that systems and scopes would 

be stored on system RAM to optimize area utilization, while register-based constructs 

                                                      
38

 Including schemata matching and random selection 
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would provide parallel access to performance-critical status information. A new, more 

hardware-friendly, systems representation and coding method was devised in order to 

optimally map the architecture to the hardware resources. A Ternary Content 

Addressable Memory was selected to handle the demanding task of schemata matching 

to implement valid triplet generation in a purely parallel manner. An optimized and 

dedicated hardware state-machine was implemented to control the interaction flow. In 

addition, a custom circuit was designed to handle the random selection task, which was 

used to randomly identify a valid scope among all scopes in the SC program, a context 

among all contexts in a scope and a pair of interacting systems among all matching 

systems. The support for the SC architecture was further revised with low-level 

optimizations and it was also evaluated and verified using high-level bio-inspired SC 

models running live on the suggested hardware platform. 

Chg3: How can a hardware platform meet the first two challenges while also being 

practical and efficient? 

Practicality and efficiency were also considered during the investigation of the most 

appropriate technology/substrate, which would be used to implement HAoS. The 

requirements regarding this challenge were identified to be I/O efficiency, 

programmability, design-friendliness, technology maturity and scalability. After the 

selection of the implementation platform and the introduction of the base HAoS 

architecture, the design effort was focused on optimizations and enhancements targeting 

a more practical and efficient simulation platform. A critical analysis regarding the 

HAoS-CPU communication interface led to the selection of an embedded CPU due to the 

minimal communication latency. Low-level optimizations in the RSL, the TCAM and the 

I/O boundary increased significantly the efficiency of the platform. Additionally, the 

user experience and the level of practicality where substantially enhanced by the 

functional model of the design (HAoS simulator), the programming toolchain, the 

software framework and the programming methodology, which greatly expedited SC 

models development targeting HAoS. The efficiency of the platform was evaluated by 

simulating natural models and it was validated by outperforming prior SC 

implementations and alternative simulation environments. 

To sum up, this thesis met all three research challenges since the resulting prototype was 

realized on the most compatible to the desired natural properties implementation 

platform (Chg1) and implemented the SC paradigm and its implied architecture (Chg2) 

in a practical way, employing widely-used programming techniques and methodologies 
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(using C/C++ for transformation functions implementation) on a mature technology 

(FPGAs combined with embedded processing). Additionally, the efficiency of the 

platform (Chg3) was shown through evaluation, as HAoS has been shown to have the 

capacity of outperforming competing solutions proving the viability and utility of the 

suggested design (illustrated in Figure 6.1). Thus, by meeting the research challenges, 

this thesis provides compelling evidence to support the hypothesis that it is possible to 

implement a practical Systemic Computation hardware architecture that is viable and 

useful. 

 

Figure 6.1. Comparison in flexibility and efficiency provided by the HAoS programming 

platform, contributed by the work presented in this thesis, against to prior SC 

implementations. The suggested practical hardware-based implementation provide a 

balanced SC programming solution 

 

Throughout this study, it has been highlighted that nature seems to work in a massively 

parallel fashion. The creation of new computer architectures better suited to model 

natively natural systems is the dream of many hardware engineers. This thesis is a 

stepping stone towards that goal. 

Original High-Level GPU HAoS
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Efficiency
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Appendix A. SC Example Test Programs Source Code 

Listing A.1. Addition in Multiple Scopes (Test1 Example) Source Code 

               

#systemic start 

 

// define the functions 

#function ADD       %b10000000000000000000000000000000 

#function PRINT     %b01000000010000000000000000000000 

 

// define some useful labels 

#label num        %b1000000000000000 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label printnum   %b??????????1????? 

#label zero2      %b00000000000000000000000000000000 

 

// and the program begins here: 

// declare the scopes  

scope0 (%d0 %d0 %d0) 

scope1 (%d0 %d0 %d0) 

scope2 (%d0 %d0 %d0) 

scope3 (%d0 %d0 %d0) 

 

// data systems  

data01 (num %d0 %d1000) 

data02 (num %d0 %d24) 

 

data11 (num %d0 %d1000) 

data12 (num %d0 %d130) 

data13 (num %d0 %d25) 

 

data21 (num %d0 %d1000) 

data22 (num %d0 %d130) 

data23 (num %d0 %d25) 

data24 (num %d0 %d32) 

 

data31 (num %d0 %d1000) 

data32 (num %d0 %d130) 

data33 (num %d0 %d25) 

data34 (num %d0 %d32) 

data35 (num %d0 %d13) 

 

// context systems  

sum ([num zero2 dontcare] ADD(0,0) [num zero2 dontcare]) 

output  ([num zero2 zero] PRINT(0,0) [num zero2 printnum]) 

 

// set up the scopes 

#scope scope0 

{ 

 data01 

 data02 

 sum 

 output // should print 1024 

} 

 

#scope scope1 

{ 

 data11 

 data12  

 data13 

 sum 

 output // should print 1155 

} 

 

#scope scope2 

{ 

 data21 

 data22  

 data23 

 data24  

 sum 

 output // should print 1187 

} 

 

#scope scope3 

{ 

 data31 

 data32  

 data33 
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 data34  

 data35 

 sum 

 output // should print 1200 

} 

 

#systemic end  

                                                   

 

 

Listing A.2. Subtraction-escape and then multiply and print (Test2 Example) Source Code 

               

#systemic start 

 

// define the functions 

#function SUBTRACTe %b01000000000000000000001000000000 

#function MULT      %b11000000000000000000000000000000 

#function PRINT     %b01000000010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label num1       %b1000000000000000 

#label num2       %b0100000000000000 

#label num3       %b1100000000000000 

#label num4       %b0010000000000000 

#label scp        %b1111111111111111 

#label zero2      %b00000000000000000000000000000000 

 

// and the program begins here: 

main (scp %d0 %d0) 

 

// Scope c1  

c1 (scp %d0 %d1) 

data1 (num1 %d0 %d10) 

data2 (num2 %d0 %d3) 

datax1 (num3 %d0 %d110) // dummy - does not match 

datax2 (num3 %d0 %d120) // dummy - does not match 

datax3 (num3 %d0 %d130) // dummy - does not match 

datax4 (num4 %d0 %d140) // dummy - does not match 

datax5 (num4 %d0 %d150) // dummy - does not match 

minus  ([num1 zero2 dontcare] SUBTRACTe(0,0) [num2 zero2 dontcare]) 

 

#scope c1 

{ 

 data1 

 data2 

 minus  // 10-3=7 

 datax1 

 datax2 

 datax3 

 datax4 

 datax5 

} 

 

// Scope c2  

C2 (scp %d0 %d2) 

data3 (num1 %d0 %d16) 

data4 (num2 %d0 %d4) 

datay1 (num3 %d0 %d1010) // dummy - does not match 

datay2 (num3 %d0 %d1020) // dummy - does not match 

datay3 (num3 %d0 %d1030) // dummy - does not match 

datay4 (num4 %d0 %d1040) // dummy - does not match 

datay5 (num4 %d0 %d1050) // dummy - does not match 

minus  ([num1 zero2 dontcare] SUBTRACTe(0,0) [num2 zero2 dontcare]) 

 

#scope c1 

{ 

 data3 

 data4 

 minus  // 16-4=12 

 datay1 

 datay2 

 datay3 

 datay4 

 datay5 

} 
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// Scope main  

times ([num1 zero2 dontcare] MULT(0,0) [num1 zero2 dontcare]) // 12*7=84 

output  ([num1 zero2 dontcare] PRINT(0,0) [num1 zero2 dontcare]) 

 

#scope main 

{ 

 c1 

 c2 

 times 

 output 

} 

 

#systemic end  

                                                   

 

Listing A.3. Context Adapting (Test3 Example) Source Code 

               

#systemic start 

 

// define the functions 

#function SUBTRACT  %b01000000000000000000000000000000 

#function ADD       %b10000000000000000000000000000000 

#function COPY      %b01010000000000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label num3       %b1100000000000000 

#label scp        %b1111111111111111 

#label zero2      %b00000000000000000000000000000000 

 

// and the program begins here: 

main (scp %d0 %d0) // main scope 

 

// data systems  

datax1 (num3 %d0 %d110)  

datax2 (num3 %d0 %d120)  

datax3 (num3 %d0 %d130)  

datay1 (num3 %d0 %d1010)  

datay2 (num3 %d0 %d1020)  

datay3 (num3 %d0 %d1030) 

  

// context systems  

minusadapt ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt1 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt2 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt3 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt4 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt5 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

minusadapt6 ([num3 zero2 dontcare] SUBTRACT(0,0) [num3 zero2 dontcare]) 

addadapt ([num3 zero2 dontcare] ADD(0,0) [num3 zero2 dontcare]) 

 

// context adapter system: transforms subtraction systems to  

// additions ones by copying the contents of add to sub systems   

killminus  ([minusadapt] COPY(0,0) [addadapt]) 

 

#scope main 

{ 

 minusadapt 

 minusadapt1 

 minusadapt2  

 minusadapt3 

 minusadapt4 

 minusadapt5 

 minusadapt6 

 addadapt 

 killminus   

 datax1 

 datax2 

 datax3 

 datay1 

 datay2 

 datay3 

} 

 

#systemic end  
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Appendix B. CPU Subsystem Integration Details 

The custom HAoS logic connects to the IC through a point-to-point bidirectional slave 

interface block, the user IP Interface (IPIF) which in addition to the data and address 

buses provides a set of standardized control signals (like chip select, chip enable, byte 

enable and acknowledgements). A simplified block diagram of the HAoS CPU 

communication link (the CPU INTERFACE of Figure 3.9) is shown in Figure B.1. 

 

Figure B.1. The AXI4-Lite based HAoS-MicroBlaze communication link 

A slight modification was required to the IPIF logic as the Xilinx AXI4-Lite interface 

natively supports up to only 32 4-byte registers. In order to waive this restriction, the 

default read/write address decoding logic (the register address would be decoded to give 

a one-hot 32-bit bus with the set bit at the position of the register to be read/written) and 

the 32 register-array was replaced by an interface to the HAoS REG BANK providing 

just the exact access address. This address is then decoded in the REG BANK to give 

access to any set of the HAoS control registers, depending on the size of the data to be 

accessed (1-, 2- and 4-byte accesses supported here as the Xilinx AXI4-Lite bus has a 

width of 4 bytes) and importantly without the requirement of data being aligned on 4-

byte words. This results in a slightly increased size of the decoder due to the bigger 

number of multiplexers needed, but it can enable a more compact usage of the registers 

since non-word aligned memory accesses of the HAoS register space are now also 

supported.  

Apart from the soft CPU and the communication interface, the hardware platform is 

completed with some other useful peripherals, shown in Figure B.2. From top to bottom, 

we have the local Block-RAM based instruction and data memories (64KB), the 

MicroBlaze processor with its various communication interfaces, the AXI4 interface and 

its associated bus connecting the processor with the external DDR3 memory (512MB) 

and the AXI4-Lite interface and its bus to all other peripherals. These are an Ethernet 
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Controller, on-board switches and push-buttons and LEDs control blocks, the on-board 

LCD controller, the Flash EEPROM configuration memory controller, the interrupt 

controller, the Compact Flash card controller, a timer and the UART control block. It is 

noted that, from the processor point of view, HAoS is just another peripheral in terms of 

connectivity and accessibility, as it uses a specific address space of the processor 

memory map. 

 

Figure B.2. Top-level On-Chip HAoS Platform Block Diagram  
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Appendix C. RSL Optimisations Details 

The critical path was identified by performing static timing analysis using standard 

Xilinx tools (PlanAhead). The longest path was implementing valid triplet generation 

and originated from the TCAM (context template matching result to identify interacting 

systems), entered the RSL through the input MUX and then it passed from the 

COUNTONES block to count the number of set bits of the bus. Since the sum of the set 

bits is used as the divisor of the random number from the LFSR to give the rank of the 

randomly selected set bit, the critical path then passes from the 16-stage divider to the 

BITPOSSEL. There the rank is translated to the address of the randomly selected system 

and the critical path finishes at the memories (binary and ternary RAMs) where this 

address is used to obtain the interacting system. The critical path, before the 

optimizations listed below, is illustrated in Figure C.1. 

 

Figure C.1. Critical path of initial HAoS design based on static timing analysis  

As mentioned in section 3.6.2, the BITPOSSEL module of the RSL, combines a parallel 

bit count with a branchless selection method. The parallel bit count is used to provide 

partial sums which are then appropriately masked and passed through a barrel -shifter to 

provide the position of a bit with a given rank in the input bus, resulting in a divide-and-

conquer technique. As seen in Figure C.2, the COUTNONES and BITPOSSEL modules 

of the RSL are merged, as the parallel sum-of-bits counter in COUNTONES is reused for 

the generation of the partial sums during the identification of the position of the selected 

bit.  
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Figure C.2. The Revised RSL module. P stands for pipeline registers. COUNTONES and 

BITPOSSEL modules have been merged to share the adder tree. The RSL has been 

carefully pipelined having in mind the trade-off between minimizing latency and excessive 

resource utilization reducing the critical path from 80ns to 20ns 

The length of the barrel shifter is equal to the size of the longest input bus to the RSL 

which in turn is equal to the number of maximum supported systems. Thus, when this 

number is increased, the number of logic levels required for the barrel shifter 

implementation has a considerable impact to the delay along the critical path. For this 

reason, the conventional barrel shifter is replaced with a parallelized and pipelined 

version which instead uses an array of multiplexers with registered pre-shifted (by the 

required pre-calculated number of bits) versions of only the possible subset of shifting 

combinations of the input buses. Referring back to Figure 3.13 and the discussion of 

section 3.6.2 regarding finding the position of a set bit given its rank, the BITPOSSEL 
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includes an array of comparators (comparing the intermediate rank to the remaining sum 

of bits or partial sum of each level, implemented with subtraction) and multiplexers 

selecting appropriate values for the position (or address) virtual pointer and rank 

depending on the result of the comparison (middle and bottom part of Figure C.2).  

However, for each level, only a subset of shifting combinations of the partial sums is 

possible (according to the bit-group length of a given level). By replacing the barrel 

shifter with an array of multiplexers along with using pre-shifted versions of the 

intermediate sums of the adder tree, we obtain all inputs to the array of units in the 

BITPOSSEL in parallel (see Figure C.2). Registering those inputs, breaks the critical 

path after the adder tree and before the comparator tree of the BITPOSSEL, giving the 

same depth and a latency of less than 20 ns. 
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Appendix D. Revising the TCAM Design 

Each SRL16E primitive is implemented by a LUT and can effectively store one 

matchable 4-bit data value by driving its output with a set bit only for the corresponding 

input value (out of the 16 possible permutations). When the SRL16E-based CAM is 

written, the data input is compared against the output of a counter that cycles through all 

16 possible values, and when a match occurs, a '1' is shifted in the SRL16E while zeroes 

are shifted when the values do not match [173]. Thus, since this design is effectively 

constructed by a chain of parallel 16-bit shift registers, each write operation, shifting 

data in, one bit at a time, requires 16 clock cycles. The read operation (which in a CAM 

is equivalent to a comparison with its input) is performed in a single clock as the data 

input is partitioned in 4-bit chunks and the chunks are fed as addresses to an array of 

cascaded SRL16E blocks. Each SRL16E gives a match (a set bit at its output) if its input 

corresponds to a location that stores a set bit.  

 

Figure D.1. The SRL16E-based building block of the base HAoS TCAM. The SRL16Es and 

their associated logic are cascaded using the carry chain between the FPGA slices as a wide 

AND gate to form wider CAMs. The ternary encoder (using a custom encoding mapping 

[173]) is used in both read and write operations. Write operation require that all states of a 

4-bit counter are “compared” with the encoded value, resulting in a 16 clock cycles write 

latency 

In addition, ternary CAMs support more input combinations as some of the input bits 

may be ―don't care‖ (X) bits. This implies that the data need to be encoded at the 4-bit 

input of the SRL16E where data (or binary) bits are combined with mask (or ternary) bits 

to give a 2-bit ternary-encoded value. Also, the addition of ternary bits also implies that 
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more than one set bits may be stored in an SRL16E as more than one entry may give a 

match to a ternary value. The SRL16E-based design is summarized in Figure D.1. 

The revised design includes a register array which has two partitions, one to hold the 

data bits and another to store the mask bits. Using registers, write operations are now 

performed in a single clock cycle. The result of a CAM read operation is available 

immediately as all comparisons are performed in parallel according to: 

Match_bus(i) = and_reduce (data_in xnor binary_regs(i)) or mask_in or ternary_regs(i) 

Match_bus is the resulting bus carrying one 1-bit matching flag for each word, i is the 

position of the word, and_reduce is a wide AND gate since all the individual bits of the 

comparison result should be set (a set bit implies a match at that position in the word) in 

order to have a word match and data_in is the input binary word which is tested for 

bitwise equality against the binary word stored in position i of the register array 

(binary_regs(i)). A bit in a word can still be flagged as matched even if the 

corresponding binary bits do not match if any of the (input - mask_in or locally stored - 

ternary_regs(i)) ternary bits are set. An extra benefit of using such a parallelized 

structure for the ternary comparison is that its latency is independent of the depth of the 

CAM. 
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Appendix E. Provided HAoS API 

Table E.1. Summary of the provided functions (simplified) in the HAoS API 

Function Name Description 

scReadX() Read a HAoS register. X can be 8, 16 or 32 for 1-, 2- or 4-byte read operation  

scWriteX() 
Write a HAoS register. X can be 8, 16 or 32 for 1-, 2- or 4-byte write 

operation 

readSysXScYArr() 
Optimised (uses maximal-length memory access and unrolls the access loop) 

function to read schema Y of system X where X and Y can be 1 or 2 

writeSysXScYArr() 
Optimised function to write schema Y of system X where X and Y can be 1 or 

2 

writeScope() Write Entry or Entries in HAoS scopetable 

loadSumReg() Write HAoS scopetable sum - Number of systems in a scope 

camWrite() Write Entry in HAoS Ternary Content Addressable Memory 

camRead() 
Reads System from the RAMs that hold the full contents of the TCAM 

systems 

displayBeats() 
Stores Execution Time. May display number of real timer (@100MHz) ticks 

since it was last reset. Also supports time units 

resetRealTimer() Resets HAoS real time counter 

setSwReset() Asserts HAoS Software Reset 

clearSwReset() Clears HAoS Software Reset 

displayStats() 
Displays program execution statistics as duration, number of interactions and 

number of abortions due to context or schemata mismatch 

uSleep() The CPU waits for a user-defined number of us. 

lcdPrintString() Write the lines of the On-board LCD display 

printHAoSConstants() Print all constants defined in the code 

encodeSchemata() 
Encodes (decompresses) schemata to the appropriate format in order to be 

written to on-chip memory 

readValidTriplet() 

Reads the valid triplet, that is the matching systems, transformation function, 

active scope and context address, and extracts the various user-accessible 

fields in the triplet driver data structure 

writeBackTriplet() Writes transformed triplet back to HAoS memories 

haveTripletWrittenBack() 
Transfers transformed triplet back to HAoS registers and lets the hardware do 

the write-back to the memories. 

loadIniSim() Software Simulation of loading the Initialisation File (for debugging only)  

sysAceFReadSim() Software Simulation of reading the Compact Flash Card 

schemataPartToI() Transforms l bits of binary schemata, starting from bit s, to integer 

iToSchemataPart() 
Transforms integer into binary with length l and places it in schema starting at 

bit s 
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Appendix F. File Types used along HAoS Model Development  

Table F.1. Summary of file types used along HAoS model development 

File 

Type 
Generated by Description Format 

.sc User  

HAoS model source code written in the SC 

language defining transformation functions, 

systems and scopes 

Listing 3.1, 

Section 3.7 

.scp HAoS Compiler 
SC human-readable assembly code corresponding 

to .sc file 

Figure 3.17, 

Section 3.7 

.scb 
Post-Compiler 

Binary Generator  

Size optimized binary representation of the .scp 

file. The exact contents of this file are loaded to 

HAoS memories   

Binary .txt 

Equivalent, 

Section 4.3.5 

.txt 
Binary-to-ASCII 

Converter  

ASCII file, replacing each bit of the .scb file with a 

'0' or '1' ASCII character. The resulting string can 

be embedded in the user code, loading the SC 

program to the HAoS memories directly from 

MicroBlaze Block RAMs (achieves minimum SC 

program loading time, convenient for debugging)  

Same with .scb 

but in ASCII, 

Section 4.3.5, 

Appendix H 

.elf 

Xilinx SDK 

MicroBlaze GNU 

Compiler & 

Linker  

The HAoS program executable, including the 

driver and any code if high level functions are 

used, executed by MicroBlaze 

Standardized 

[229] 

.bit 

Xilinx ISE 

Implementation 

Tools 

FPGA configuration bit-string. The reconfigurable 

logic of the FPGA is programmed according to this 

file which represents an image of the hardware 

circuit to be implemented 

Proprietary 

(Xilinx) 

.log HAoS executable 
A log storing any text output while the HAoS 

program runs 
N/A 
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Appendix G. Cancer Models SC Source Code 

Listing G.1. Time-Enabled Cancer Model SC Source Code 

               

#systemic start 

 

// define the functions 

#function KILLCELL      %b10001000010000000000000000000000 

#function DIVIDECELL    %b01001000010000000000000000000000 

#function ABSORBCELL    %b11001000010000000000000000000000 

#function DISCARDCELL   %b00101000010000000000000000000000 

#function FERTILIZE     %b10101000010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label zero2      %b00000000000000000000000000000000 

#label dontcare2  %b???????????????????????????????? 

 

// must embed initial cell population number in tissue 

// initial living cells : 100(dec) :  

// 001100100(binary) : 001001100(binary-reversed)  

#label tissue   %b0010011000001000  

 

#label tissuet   %b????????????1??? 

#label cellt   %b????????????0??? 

 

#label tic_normaltissuet     %b????????????1000 

#label tic_surgerytissuet    %b????????????1100 

#label tic_maysurgerytissuet %b????????????1?00 

#label tic_chemotissuet      %b????????????1010 

#label tic_maychemotissuet   %b????????????10?0 

#label tic_anytissuet        %b????????????1??0 

 

#label toc_normaltissuet     %b????????????1001 

#label toc_surgerytissuet    %b????????????1101 

#label toc_maysurgerytissuet %b????????????1?01 

#label toc_chemotissuet      %b????????????1011 

#label toc_maychemotissuet   %b????????????10?1 

#label toc_anytissuet        %b????????????1??1 

 

#label tic_livingcellt %b????????????0100 

// initial chromosome values are((1,1),(1,1)):100100100100 

#label tic_livingcell  %b1001001001000100  

#label tic_parentcellt %b????????????0010 

#label tic_parentcell  %b1001001001000010 

#label deadcellt       %b????????????0110 

#label deadcell        %b1001001001000110 

#label nutrientcellt   %b????????????0001 

#label nutrientcell    %b1001001001000001 

#label toc_livingcellt %b????????????0101 

#label toc_livingcell  %b1001001001000101 

#label toc_parentcellt %b????????????0011 

#label toc_parentcell  %b1001001001000011 

#label dividedcellt    %b????????????0111 

#label dividedcell     %b1001001001000111 

 

// and the program begins here: 

main (%d0 %d0 %d0) 

organic_tissue (%d100 %d0 tissue ) 

 

[0:99]tissueCells ( zero %d0 tic_livingcell ) 

[0:299]environmentCells ( zero %d0 nutrientcell ) 

 

// account for extra living tissue cells in the end 

[0:79]spareEnvironmentCells ( zero %d0 nutrientcell )  

 

// tic phase 

[0:2]tic_fertilizer ([dontcare zero2 tic_livingcellt] FERTILIZE(0,0)  

[dontcare zero2 tic_maychemotissuet]) 

tic_divider ([dontcare zero2 tic_parentcellt] DIVIDECELL(0,0)  

[dontcare zero2 nutrientcellt]) 

tic_absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0)  

[dontcare zero2 tic_maysurgerytissuet]) 

 

[0:2]tic_death ([dontcare zero2 tic_livingcellt] KILLCELL(0,0)  

[dontcare zero2 tic_maychemotissuet]) 

tic_discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 tic_anytissuet]) 

 

tic_surgery ([dontcare zero2 tic_livingcellt] KILLCELL(0,0)  

[dontcare zero2 tic_surgerytissuet]) 
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// toc phase 

[0:2]toc_fertilizer ([dontcare zero2 toc_livingcellt] FERTILIZE(0,0)  

[dontcare zero2 toc_maychemotissuet]) 

toc_divider ([dontcare zero2 toc_parentcellt] DIVIDECELL(0,0) [dontcare zero2 

nutrientcellt]) 

toc_absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0)  

[dontcare zero2 toc_maysurgerytissuet]) 

 

[0:2]toc_death ([dontcare zero2 toc_livingcellt] KILLCELL(0,0)  

[dontcare zero2 toc_maychemotissuet]) 

toc_discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 toc_anytissuet]) 

 

toc_surgery ([dontcare zero2 toc_livingcellt] KILLCELL(0,0)  

[dontcare zero2 toc_surgerytissuet]) 

 

// set up the scopes 

#scope main 

{ 

 organic_tissue 

} 

 

#scope organic_tissue 

{ 

 organic_tissue 

 [0:99]tissueCells 

 [0:299]environmentCells 

 [0:79]spareEnvironmentCells 

 

 [0:2]tic_fertilizer 

 tic_divider 

 tic_absorb 

 [0:2]tic_death 

 tic_discard 

 tic_surgery 

  

 [0:2]toc_fertilizer 

 toc_divider 

 toc_absorb 

 [0:2]toc_death 

 toc_discard 

 toc_surgery 

  

} 

 

#systemic end                                                    

 

 

Listing G.2. Timeless Cancer Model SC Source Code 

                

#systemic start 

 

#function KILLCELL      %b10001000010000000000000000000000 

#function DIVIDECELL    %b01001000010000000000000000000000 

#function ABSORBCELL    %b11001000010000000000000000000000 

#function DISCARDCELL   %b00101000010000000000000000000000 

#function FERTILIZE     %b10101000010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label zero2      %b00000000000000000000000000000000 

#label dontcare2  %b???????????????????????????????? 

 

// must embed initial cell population number in tissue 

// initial living cells : 100(dec) :  

// 001100100(binary) : 001001100(binary-reversed)  

#label tissue   %b0010011000001000  

#label tissuet   %b????????????1??? 

#label cellt   %b????????????0??? 

 

#label normaltissuet     %b????????????100? 

#label surgerytissuet    %b????????????110? 

#label maysurgerytissuet %b????????????1?0? 

#label chemotissuet      %b????????????101? 

#label maychemotissuet   %b????????????10?? 

#label anytissuet        %b????????????1??? 
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#label livingcellt     %b????????????0100 

// initial chromosome values are((1,1),(1,1)):100100100100 

#label livingcell      %b1001001001000100  

#label parentcellt     %b????????????0010 

#label parentcell      %b1001001001000010 

#label deadcellt       %b????????????0110 

#label deadcell        %b1001001001000110 

#label nutrientcellt   %b????????????0001 

#label nutrientcell    %b1001001001000001 

#label dividedcellt    %b????????????0111 

#label dividedcell     %b1001001001000111 

 

// and the program begins here: 

main (%d0 %d0 %d0) 

organic_tissue (%d100 %d0 tissue ) 

 

[0:99]tissueCells ( zero %d0 livingcell ) 

[0:299]environmentCells ( zero %d0 nutrientcell ) 

 

// account for extra living tissue cells in the end 

[0:79]spareEnvironmentCells ( zero %d0 nutrientcell )  

 

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2 maychemotissuet]) 

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt]) 

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet]) 

 

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet]) 

[0:1]discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet]) 

 

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet]) 

 

// set up the scopes 

#scope main 

{ 

 organic_tissue 

} 

 

#scope organic_tissue 

{ 

 organic_tissue 

 [0:99]tissueCells 

 [0:299]environmentCells 

 [0:79]spareEnvironmentCells 

 

 fertilizer 

 divider 

 absorb 

 death 

 [0:1]discard 

 surgery 

} 

 

#systemic end 

                                                    

 

 

 

Listing G.3. Approximate-time Cancer Model SC Source Code 

                

#systemic start 

 

// define the functions 

#function KILLCELL %b10001000010000000000000000000000 

#function DIVIDECELL   %b01001000010000000000000000000000 

#function ABSORBCELL    %b11001000010000000000000000000000 

#function DISCARDCELL   %b00101000010000000000000000000000 

#function FERTILIZE     %b10101000010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label zero2      %b00000000000000000000000000000000 

#label dontcare2  %b???????????????????????????????? 

 

// must embed initial cell population number in tissue  

// initial living cells : 100(dec) : 001100100(binary) : 001001100(binary-reversed)  

#label tissue   %b0010011000001000  

#label tissuet   %b????????????1??? 

#label cellt   %b????????????0??? 

 

#label normaltissuet     %b????????????100? 
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#label surgerytissuet    %b????????????110? 

#label maysurgerytissuet %b????????????1?0? 

#label chemotissuet      %b????????????101? 

#label maychemotissuet   %b????????????10?? 

#label anytissuet        %b????????????1??? 

 

#label livingcellt     %b????????????0100 

// initial chromosome values are((1,1),(1,1)):100100100100 

#label livingcell      %b1001001001000100  

#label parentcellt     %b????????????0010 

#label parentcell      %b1001001001000010 

#label deadcellt       %b????????????0110 

#label deadcell        %b1001001001000110 

#label nutrientcellt   %b????????????0001 

#label nutrientcell    %b1001001001000001 

#label dividedcellt    %b????????????0111 

#label dividedcell     %b1001001001000111 

 

// and the program begins here: 

main (%d0 %d0 %d0) 

organic_tissue (%d100 %d0 tissue ) 

 

[0:99]tissueCells ( zero %d0 livingcell ) 

[0:299]environmentCells ( zero %d0 nutrientcell ) 

 

// account for extra living tissue cells in the end 

[0:79]spareEnvironmentCells ( zero %d0 nutrientcell )  

 

[0:2]fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2 

maychemotissuet]) 

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt]) 

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 

maysurgerytissuet]) 

 

[0:2]death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 maychemotissuet]) 

discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet]) 

 

surgery ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 surgerytissuet]) 

 

// set up the scopes 

#scope main 

{ 

 organic_tissue 

} 

 

#scope organic_tissue 

{ 

 organic_tissue 

 [0:99]tissueCells 

 [0:299]environmentCells 

 [0:79]spareEnvironmentCells 

 

 [0:2]fertilizer 

 divider 

 absorb 

 [0:2]death 

 discard 

 surgery 

}  

 

#systemic end 

                                                    

 

Listing G.4. Optimized Approximate-time Cancer Model SC Source Code 

                

#systemic start 

 

// define the functions 

#function KILLCELL      %b10001000010000000000000000000000 

#function DIVIDECELL    %b01001000010000000000000000000000 

#function ABSORBCELL    %b11001000010000000000000000000000 

#function DISCARDCELL   %b00101000010000000000000000000000 

#function FERTILIZE     %b10101000010000000000000000000000 

 

// define some useful labels 

#label zero       %b0000000000000000 

#label dontcare   %b???????????????? 

#label zero2      %b00000000000000000000000000000000 

#label dontcare2  %b???????????????????????????????? 

 

// must embed initial cell population number in tissue  
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// initial living cells : 100(dec) :  

// 001100100(binary) : 001001100(binary-reversed)  

#label tissue   %b0010011000001000  

#label tissuet   %b????????????1??? 

#label cellt   %b????????????0??? 

 

#label normaltissuet        %b????????????100? 

#label surgerytissuet       %b????????????110? 

#label maysurgerytissuet    %b????????????1?0? 

#label chemotissuet         %b????????????101? 

#label noendmaychemotissuet %b????????????10?0 

#label noendanytissuet      %b????????????1??0 

#label anytissuet           %b????????????1??? 

 

#label livingcellt     %b????????????0100 

// initial chromosome values are((1,1),(1,1)):100100100100 

#label livingcell      %b1001001001000100  

#label parentcellt     %b????????????0010 

#label parentcell      %b1001001001000010 

#label deadcellt       %b????????????0110 

#label deadcell        %b1001001001000110 

#label nutrientcellt   %b????????????0001 

#label nutrientcell    %b1001001001000001 

#label dividedcellt    %b????????????0111 

#label dividedcell     %b1001001001000111 

 

// and the program begins here: 

main (%d0 %d0 %d0) 

organic_tissue (%d100 %d0 tissue ) 

 

[0:99]tissueCells ( zero %d0 livingcell ) 

[0:299]environmentCells ( zero %d0 nutrientcell ) 

 

// account for extra living tissue cells in the end 

[0:79]spareEnvironmentCells ( zero %d0 nutrientcell ) 

 

fertilizer ([dontcare zero2 livingcellt] FERTILIZE(0,0) [dontcare zero2 

noendmaychemotissuet]) 

divider ([dontcare zero2 parentcellt] DIVIDECELL(0,0) [dontcare zero2 nutrientcellt]) 

absorb ([dontcare zero2 dividedcellt] ABSORBCELL(0,0) [dontcare zero2 maysurgerytissuet]) 

 

death ([dontcare zero2 livingcellt] KILLCELL(0,0) [dontcare zero2 noendanytissuet]) 

discard ([dontcare zero2 deadcellt] DISCARDCELL(0,0) [dontcare zero2 anytissuet]) 

 

// set up the scopes 

#scope main 

{ 

 organic_tissue 

} 

 

#scope organic_tissue 

{ 

 organic_tissue 

 [0:99]tissueCells 

 [0:299]environmentCells 

 [0:79]spareEnvironmentCells 

 

 fertilizer 

 death 

} 

 

#systemic end 
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Appendix H. HAoS Binary-To-ASCII Conversion Resulting Text 
File Format 

Figure H.1. Annotated HAoS ASCII program example, corresponding to the SC program of 

section 3.7. The exact representation of the binary file is written in ASCII, separated in 

bytes (hex form)  

 

 
                                                    

 

 

0x03, 0x00,

 

0x0A, 0x00, 

0x00, 0x00, 

0x24, 0x00, 

0x01, 0x00, 

0x04, 0x00, 

0x04, 0x00, 

0x01, 0x00, 

0x20, 0x00, 

0x20, 0x00, 

0x01, 0x00, 

0x01, 0x00, 

0x00,

0xFF, 0xFF, 0x00, 0x00, 

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x02, 0x00, 0x40, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 

0x00,

0xFF, 0xFF, 0x01, 0x00, 

0x00,

0x01, 0x00, 0x0A, 0x00, 

0x00,

0x02, 0x00, 0x03, 0x00, 

0x00,

0xFF, 0xFF, 0x02, 0x00, 

0x00,

0x01, 0x00, 0x10, 0x00, 

0x00,

0x02, 0x00, 0x04, 0x00, 

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 

0x01,

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x02, 0x02, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F 

Number of Functions

Number of Systems

Scopetable (1 bit/entry)

S
y
s
te

m
 T

y
p

e

Data System
0x02, 0x00, 0x03, 0x00,

Schemata 1 Schemata 2

Context 

System

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 

0x02, 0x02, 0x00, 0x00, 

0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

Binary PartTernary Part

Transformation Function

Interacting System 1

Transformation Function
Schemata 1

Interacting System 1

Interacting System 2

Schemata 2

Transformation FunctionSchemata 1

Interacting System 1

Interacting System 2

Schemata 2

Interacting System 2

Transformation Function
Schemata 1 Schemata 2

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,

 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F 
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