University of Kentucky

UKnowledge

University of Kentucky Master's Theses Graduate School

2004

DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL
CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC
WELDING PROCESS

Matthew Wayne Everett
University of Kentucky, rdrash371@aol.com

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Everett, Matthew Wayne, "DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL CONTROL
ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC WELDING PROCESS" (2004). University of Kentucky
Master's Theses. 245.

https://uknowledge.uky.edu/gradschool_theses/245

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@Isv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL
CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC
WELDING PROCESS

The Quasi-Keyhole plasma arc welding (PAW) process is a relatively simple concept,
which provides a basis for controlling the weld quality of a subject work piece by cycling the arc
current between a static base and variable peak level. Since the weld quality is directly related to
the degree of penetration and amount of heat that is generated and maintained in the system, the
Non-Linear Interval Control Algorithm provides a methodology for maintaining these
parameters within acceptable limits by controlling the arc current based upon measured peak
current times. The Texas Instrument’s TMS320VC5416 DSK working in conjunction with
Signalware’s AED-109 Data Converter provides a hardware solution to implement this control
algorithm. This study outlines this configuration process and demonstrates its validity.

KEYWORDS: TMS320VC5416 DSK, AED-109, Interval Control, Quasi-Keyhole, Plasma Arc
Welding

Author: Matthew Wayne Everett

Date: 29 May 2004

Copyright 2004, Matthew Wayne Everett

DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL
CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC
WELDING PROCESS

By

Matthew Wayne Everett

Dr. YuMing Zhang
Director of Thesis

Dr. William T. Smith
Director of Graduate Studies

Date: 29 May 2004

RULES FOR THE USE OF THE THESES

Unpublished theses submitted for the Master’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

THESIS

Matthew Wayne Everett

The Graduate School
University of Kentucky

2004

DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL
CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC
WELDING PROCESS

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering in the
College of Engineering
at the University of Kentucky

By
Matthew Everett, PE, LSIT, MCP
Lexington, Kentucky
Director: Dr. YuMing Zhang, Department of Electrical and Computer Engineering
Lexington, Kentucky

2004

Copyright 2004, Matthew Wayne Everett

At this time, I wish to dedicate this thesis to my mother, Linda Glass. She has always
been an example of principle, perseverance, and dedication. I can only hope that she is proud of
me as [am of her. I love you Mom.

Acknowledgements

This work has been supported and partially funded by the National Science Foundation
under Grant DMI-0114982 and the Center for Manufacturing Systems at the University of
Kentucky.

At this time, I would like to thank Dr. Yuming Zhang for the personal, academic, and
material support he has provided throughout my undergraduate and graduate work at the
University of Kentucky in the Department of Electrical and Computer Engineering. As the
Director of the Welding Research Laboratory and the Applied Sensing and Control Laboratory,
Dr. Zhang has graciously allowed me to participate in this program, utilize his laboratory
facilities, and provide technical guidance. Since first meeting Dr. Zhang in the summer of 2001,
I have found him to not only be extremely intellectually gifted, but also a refreshing individual. I
cannot remember a time when Dr. Zhang was unable to smile and provide an upbeat tone to our
discussions, or in my observations, his discussions with others. The University of Kentucky is
quite fortunate to have a professor such as Dr. Zhang on staff.

I would also like to thank Wei Lu for his technical guidance and patience. Wei is
currently pursuing his PHD here at the University of Kentucky, which I am sure he will complete
quite soon. Wei is a fine individual who enriches the academic community. If in the future our
paths do not cross, I wish Wei and his family the best life has to offer. I will not forget his
gratitude.

il

Table of Contents
ACKNOWIEAZMENEStieti e e
List Of Tablesouuieiei e
List OF FIGUIES ..ottt e
LSt O FIIES .. neniit e

1 Introduction

L O o] <71 5
1.2 MICTO-PrOCESSOT .ottt e e
1.3 Micro-Controller ...
1.4 Digital Signal Processor —c.oiuiiiiiiiiiiiiii e
1.5 Daughter Card oo e
2 Quasi-Keyhole Plasma Arc Welding Process
2.1 Arc Welding o e
2.2 Plasma Arc Welding Process and Laboratory Experimental System —

3 Digital Signal Processor

3.1 TMS320VC5416 DSP Developmental Starter Kit (DSK)coooiiniain.
3.1.1 DSK ATChiteCtureoo.ouiieiieiiii e
3.1.1.1 Emulation ..o
3.1.1.2 Hardware Expansion —coiiiiiiiiiiiiiiiiiieeee e
31,13 MEMOTY et
3.1.1.3.1 Processor Mode Status Register ~
3.1.1.3.2 Program Memory Map for Page 0 and

Data Memory Map
3.1.1.3.3 Extended Program Memory Map
3.1.1.34 TO Memory Map ciiiiiiiiiiiiiiiiieeeeeen,
3.1.1.3.5 Data Memory Page Map ..ot
3.1.1.3.6 Program Memory Page Mapooiiieen.
3.1.1.3.7 Memory Resources cccovviiiiiiiiiiiiiiinnnnn
3.1.1.3.8 Wait State Generator coceeiveiiiiniineennnnnn.
3.1.1.4 CPLD Re@IStErS coouiiiiiiiiii i
3.1.1.4.1 USER REGRegisterccoceviiiiiiiiieniinnn...
3.1.1.42 DC REGRegister ...ccooiiiiiiiiiiiiiiiiiieieeens
3.1.1.43 CODEC L CMD and CODEC H CMD

Registers

3.1.1.4.4 VERSION Register ccccceeiiiiiiiiiiiiiiinnn,
3.1.1.45 MISC Re@ISter ...oovvvviniiiiiiiiiiii i,
3.1.1.4.6 CODEC _CLK Register..........ccevveviiiniiiiannannnnn.
3.2 TMS320VC5416 DSP (C5416 DSP) Functional Overview —
3.2.1 5416 ProCessor — coonniiniii i

iv

NN = = =

3.2.2 Pin Assignments for the PGE Package
3.2.3 Device and Development Support Tool Nomenclature
3.2.4 Programmable Bank-Switching
3.2.5 Enhanced 8-/16-Bit Host-Port Interface (HPI 8/16)
3.2.6 Multichannel Buffered Serial Ports
3.2.7 General-Purpose I/O (GPID) Pins

3.2.8 Hardware Timer
3.2.9 Clock Generator

3.2.11 DMA Controller

3.3 Power Requirements
3.4 Switches

3.8 LEDs

Code Composer Studio

4.1 Code Composer Studio Overview

4.2 System Requirements

4.3 Installationcccooiiiiiiii.n
4.4 Project Management —
4.5 CCS DebugToolscccevvnviinnnnnn
4.5.1 Bookmarks
4.5.2 Breakpoints
4.53 ProbePoints........................

4.5.4 Watch Windows
4.5.5 Symbol Browser
4.5.6 General Extension Language

4.5.7 Command Window
4.5.8 Data Converter Plug-In ...

4.6 CCS DSP/BIOS

Data Converter Daughter Card
5.1 AED-109

5.3 JTAG Header
5.4 Digital I/O Connector

5.5 Analog I/O Connectors
5.6 FPGA

5.6.2.1

3.2.10 Enhanced External Parallel Interface (XI102)

3.5 (5416 DSK Reference Designator Layout
3.6 External JTAG Connector, J7
3.7 USB Embedded JTAG Emulation Connector, J210

4.6.1 CCS Chip Support Library
4.6.2 Real-Time Analysis
4.7 Training Recommendation

5.2 EVM Expansion Interfaces

5.6.1 FPGA Configuration ...
5.6.2 FPGA Control Registers
Digital I/O Register

5.6.2.2 Digital I/O Control Register

23
23
25
25
26
27
28
28
28
29
31
31
31
32
33
33

34
36
36
36
39
39
39
39
40
40
40
41
41
41
42
42
43

44
45
49
50
51
53
53
54
56
56

5.6.2.3 D/A Data Register ~

5.6.2.4 D/A Clock Rate Register ...
5.6.2.5 D/A Clock Down Counter Register

5.6.2.6 A/D Data Register ~
5.6.2.7 A/D Clock Rate Register ...

5.6.2.8 A/D Clock Down Counter Register
5.6.2.9 A/D Clock Pulse Width Register

5.6.2.10 A/D Control CRy Register ~
5.6.2.11 A/D Control CR; Register ~

5.6.2.12 Interrupt Down Counter Register

5.6.2.13 Interrupt Start Register ...
5.6.2.14 Interrupt Period Register ...

5.6.2.15 A/D and D/A Status Register

5.7 Amplifiers
5.8 Breadboard Area ...
5.9 BootFlash
5.10 Reference Voltage Supplies.............ccceevviiiiiiinnnn..
5.11 DAC Reference Currentsccoovvviiiiiiiiinnnnnnnn..
5.12 Digital Buffers ...

Embedded Programming

6.1 TestProgram ...
6.2 Test Program Modificationccoovvvvnnnn...
6.2.1 Printing ...

6.2.2 Clock Ratesccovvviiviiiiiiiiiiiiiiiieenns

6.2.3 Test and Platform Code Removal

6.2.4 Algorithm Reconfiguration ~

6.2.5 Globals for Diagnostic Termination ...
6.2.6 Base Ten Conversion —ccovvvvevnnnnnn...
6.2.7 NONLinearInterval delay quicker
6.2.7.1 Data Transfer Variables =~

6.2.7.2 FPGA Memory Register Declarations

6.2.7.3 Global Declarations ~

6.2.7.4 Static Declarations ~

6.2.7.5 Appl Parms Outline

6.2.7.6 Appl Init Outline

6.2.7.7 Appl Process Outline

6.2.7.8 Appl Idle Outline

6.2.7.9 Appl End Outline

6.2.8 Parameter Estimation Layout ...

6.3 CodeFilesoooiiiiiiii

Non-Linear Control Algorithm

T OVEIVIEW .ttt e
7.2 Model Descriptionccoeviiiiiiiiiiiiiiieanenn..
7.3 Feedback Algorithm ...

vi

57
58
59
60
61
61
62
63
65
66
67
68
69
70
70
71
71
71
71

72
73
74
74
75
75
76
76
77
77
78
78
79
82
83
83
84
85
85
85

86
86
87

& Parameter Estimation

8.1 Constructoooiiiii
8.2 Matrix Expansioncoocciiiin
8.3 CostFunction ...
8.4 Least Squares Parameter Solution

8.5 Proof of Least Squares Parameter Solution

9 Parameter Estimation Test Runs

9.1 Parameter Test Setup ~ oiiiiiiiiii...
9.2 Calibrationcccooeiiiiiiiiiiiiiiiiiin,
9.3 Random Input Generator
9.4 Analog Output Initialization ~
9.5 TestRuns ...
10 Implementation
10.1 Implementation Setup cceeninan
10.2 Analog Output Initialization ~
10.3 Control Results ...,

11 Conclusion

I11.1 Accomplishment ... e e
11.2 Additional Featuresoooiuiiiiiiiii i
11.3 Final Thoughts ... e e
Appendices
Appendix A: TMS320VC5416 DSK Registers
A.l CPU REZISIETS ittt ettt et e e e e e e e e e e ns
ALL.1 Status RegISterS ..ottt
A2 Peripheral Memory-Mapped Registers —ccovviiiiiiiiiiinnnn...
A3 CPLD REZISIETS uinttiniiiteee et e
A4 McBSP Control Registers and Sub-Addresses —ccoeevviinnnn.

A.5 DMA Sub-Bank Addressed Registers
A.6 Interrupts ooiiiii

Appendix B: Code Composer Studio Test Program Required Files

B.1 Required Files
Appendix C: General Extension File (GEL)

C.1 C5416 dsk.gel ...l
Appendix D: Linker Command File

D.1 5416 Inkp.cmd ...l
Appendix E: Include Files

E.l AEDh

E2 AED Applh ...l

E3 AED Brdh ...

E4 AED Cfgh .

E5 AED DMSh ..

E.6 dma5416.h ...

E.7 dsk5416.h ...

vii

89
&9
90
90
91

96
96
97
97
97

102
102
102

115
115
116

118
118
120
121
121
123
124

125

126

130

131
133
135
139
140
142
143

Appendix F:

E.8
E.9
E.10
E.11
E.12

F.1
F.2
F.3
F4
F.5
F.6
F.7

emifh ...
ntr5416.h ...
regs.h
regsS416.h ...
timrS5416.h ..o

Source Files

5416 dsk.c
AED DMS 4wDMA.c
AED MAIN.c .o
Vectors.asm —occciiiiiiiiiian
AED 109 32dc ..oooiiiiiiiii

NONLinearInterval delay quicker.c

NONLinearParameterEstimate.c

viii

144
145
147
152
167

169
175
184
188
190
201
209

218

221

List of Tables

Table 3-1, Motherboard and Daughter Card Component Height

Table 3-2, PMST Bit Field Definition ~—
Table 3-3, Data Memory (DM_CNTL) Bit Definitions ~
Table 3-4, USER_REG Bit Definition ~ cooeeee.
Table 3-5, DC_REG Bit Definitionc.coeiiiiiiinn...
Table 3-6, MISC Register Bit Definition ~coeeuene.
Table 3-7, CODEC_CLK Register Bit Definition
Table 3-8, McBSP External Interface Pins
Table 3-9, Clock Mode Settings at Reset ~
Table 3-10, Pin-Out for Optional Power Connection, J5
Table 3-11, Pin-Out for JTAG 14-Pin Header, J7
Table 3-12, Pin-Out for USB JTAG Connector, J201 ~
Table 3-13, User LEDS e
Table 3-14, System LEDS ...
Table 5-1, Expansion Memory Interface, J9
Table 5-2, Expansion Peripheral Interface, J1I0
Table 5-3, ITAG Pin-Out, J1 ...

Table 5-4, Digital I/O Pin-Out, J15, and FPGA Digital I/O Control Lines

Table 5-5, AED-109 FPGA Memory-Mapped Registers
Table 5-6, THS1209 Control Register 0 Bit Functions ~
Table 5-7, THS1209 Control Register 1 Bit Functions
Table 9-1, System Parameter Bounds ~ll

X

10
11
15
17
18
19
19
27
28
31
32
33
33
33
45
47
50
50
54
63
65

List of Figures

Figure 2-1, Laboratory Experimental System for Quasi-Keyhole PAW Process

Figure 3-1, TMS320VC5416 DSK ..o
Figure 3-2, Daughter Card Layout —ccoooiiiiiiiiiiiiiiiiiinen,
Figure 3-3, Stacked Daughter Card Illustration ~
Figure 3-4, Processor Mode Status Registerooovviiiiinn..n.

Figure 3-5, C5416 DSK Program Memory Map for Page 0 and Data
Memory Map
Figure 3-6, TMS320V(C5416 DSK Extended Program Memory Map

Figure 3-7, TMS320V(C5416 DSK I/O Memory Map ~
Figure 3-8, CPLD RegIStersccciviiiiiiiiiiiiiiiiiieiiieiieeaenns
Figure 3-9, C5416 DSP Block Diagram coviiiiiiiinnine..
Figure 3-10, 5416 Processor Block Diagram
Figure 3-11, 144-Pin PGE LQFP,
Figure 3-12, TMS320 Part Number Specification
Figure 3-13, TMS320 Platforms — ccooiiiiiiiiiiiiieieans
Figure 3-14, HPI Memory Map ...
Figure 3-15, DMA Memory Map for Program Space ~
Figure 3-16, DMA Memory Map for Data and I/O Space
Figure 3-17, DSK Reference Designator Board Layout ~
Figure 4-1, CCS Software Development Flow —
Figure 4-2, CCSIDE .. .ot
Figure 4-3, Project Tree and Line Editor Display —
Figure 5-1, Signalware AED-109 Top Surface ~ coeiets
Figure 5-2, AED-109 Basic Block Diagramccoonee
Figure 5-3, AED-109 Custom Al Front Endooooiiii.
Figure 5-4, AED-109 Custom AO ..o
Figure 5-5, XCV50E-PQ240AFS0145 FPGA Pin-Out ~
Figure 5-6, Data Space Bit Addressing ~ccoiiiiiiiiiiiiin.
Figure 5-7, Digital I/O Register — cooiiiiiiiiiiiiiiiii e
Figure 5-8, Digital I/O Control Register —ccoviiiiiiiiiiinnn.n.
Figure 5-9, D/A Data Registerooiiiiiiiiiiiiiiiiiiieieans
Figure 5-10, D/A Clock Rate Register ~ccoooiiiiiiiiiiiiiinn,
Figure 5-11, D/A Clock Down Counter Register —
Figure 5-12, A/D Data Register ~ cooiiiiiiiiiiiiiiiiiie e
Figure 5-13, A/D Clock Rate Register —coooiiiiiiiiiiinninn.
Figure 5-14, A/D Clock Down Counter Register —
Figure 5-15, A/D Clock Pulse Width Register ~
Figure 5-16, A/D Control CRy Register coooiiiiiiiiiin..
Figure 5-17, A/D Control CR; Register cccoiiiiiiiiiiinn.n.
Figure 5-18, Interrupt Down Counter Register ~
Figure 5-19, Interrupt Start Registercooooiiiiiiiiiiiiiiiinn.n.
Figure 5-20, Interrupt Period Register ...
Figure 5-21, Status Registerccoiiiiiiiiiiiiiiiiiiiiiieieanns
Figure 9-1, Test Run 1 ... e

Figure 9-2, Test RUN 2 .. i
Figure 9-3, Test Run 3 ...
Figure 9-4, Test RUn4 e
Figure 9-5, Topside All Four Test Runs ...,
Figure 9-6, Bottom Side All Four Test Runsooceviiiiinnnn

Figure 10-1, Control Signal, Peak Time .f = 325 ms, Base Time = 400 ms,
Start Peak Current 135 A

Figure 10-2, Peak Current Time, Peak Time s =325 ms, Base

Time = 400 ms, Start Peak Current 135 A

Figure 10-3, Keyhole Potential, Peak Time s = 325 ms, Base ~

Time = 400 ms, Start Peak Current 135 A

Figure 10-4, Delay, Peak Time s = 325 ms, Base Time =400 ms,

Start Peak Current 135 A

Figure 10-5, Topside Work Piece, Peak Time s = 325 ms, Base

Time = 400 ms, Start Peak Current 135 A

Figure 10-6, Bottom Side Work Piece, Peak Time . = 325 ms, Base
Time = 400 ms, Start Peak Current 135 A

Figure 10-7, Control Signal, Peak Time .f = 125 ms, Base Time =200 ms,
Start Peak Current 110 A

Figure 10-8, Peak Current Time, Peak Time .s= 125 ms, Base

Time = 200 ms, Start Peak Current 110 A

Figure 10-9, Keyhole Potential, Peak Time s = 125 ms, Base ~

Time = 200 ms, Start Peak Current 110 A

Figure 10-10, Topside Work Piece, Peak Time s = 125 ms, Base

Time = 200 ms, Start Peak Current 110 A
Figure 10-11, Bottom Side Work Piece, Peak Time s = 125 ms, Base
Time = 200 ms, Start Peak Current 110 A

X1

106

107

108

109

110

111

112

113

114

Matt614.pdf

List of Files

Xii

Chapter One

Introduction

1.1 Objective

The objective of this project was to digitally implement a non-linear interval control
algorithm for the Quasi-Keyhole plasma arc welding (PAW) process. Several means are
available to accomplish this end such as: Personal Computer (PC) based general purpose
processor (hereafter referred to as Micro-Processor); Digital Control Processors (DSP); or
Micro-Controllers. All three of these approaches provide Analog-to-Digital Converters (ADC),
which are sometimes simply called Analog-Inputs (AI), and Digital-to-Analog Converters
(DAC), which are sometimes referred to Analog-Outputs (AO), capabilities in order to provide
an interface between the digital and analog arenas. It is noteworthy to mention that technically a
Digital-Input (DI) could have been utilized instead of an Al since the subject methodology
simply references a voltage threshold level, which is akin to the digital realm.

1.2 Micro-Processor |1]

The Micro-Processor is traditionally defined as a general purpose computer or processor
built on a single Integrated Chip (IC), which contains no RAM, ROM, or data converters. Its
purpose is solely to receive digital data, process, and output digital information. The platform
where the Micro-Processor resides determines what is processed, how data is stored, and I/O
functions. The Micro-Processor based solution, such as the Intel Pentium 4 for example built on
a platform such as a PC or MAC, is a more traditional approach for control implementations
where general purpose, relatively high speed, and expandability are of concern. This type of
implementation is relatively simple to implement since the associated Operating System handles
most background configuration, control, and timing issues, while an abundance of on-board and
peripheral hardware choices allow for easy expansion. The downsides of a Micro-Processor
approach are excessive monetary cost, large size, high power demand, and large overhead.
However, since the PC based solution has been previously demonstrated, the choice was
immediately reduced to a DSP or Micro-Controller technology.

1.3 Micro-Controller [1][2]]3]

A Micro-Controller attempts to combine the abilities of a PC with features such as Micro-
Processor, memory, Input/Output (I/O), timers, and other peripherals into a single Integrated
Chip (IC). In general, Micro-Controllers utilize a Von Nueman Architecture, which utilize a
shared memory space and bus for both data and instructions. As a result, two fetches are
required at least to execute an instruction. One fetch would be used to fetch the instruction,
while the other would be used to execute.

A good example of a Micro-Controller would be a Motorola 68HC912DT128A. This
Micro-Controller contains the following: 8192 bytes RAM; 2048 bytes EEPROM; 131072 bytes
Flash; 8 Timer Channels; 8 MHz Bus; 5 Volt Supply; 8 ADC Channels, 10 bits each; 2 PWM
Channels, 8 bits; 4 PWM Channels, 16 bits; and 67 I/O pins.

The Micro-Controller is the most popular and widely used low speed control device. It
has a heavy use in the appliance and automotive industry. An interesting example of how much
more the Micro-Controller is used compared to the Micro-Processor would be to examine the
average household in the United States. With Micro-Controllers being in everything from the
microwave to the can opener, the average household may have several dozen Micro-Controllers,
while on average only every other household has a Micro-Processor, which is usually associated
with the family personal computer. The advantages of the Micro-Controller are small size, low
cost, and small power demand, while the disadvantages are associated with limited
expandability, slow speed, and application mismatching.

1.4 Digital Signal Processor [2][4]

The Digital Signal Processor (DSP) is similar to the Micro-Controller in that both are
field programmable and combine multiple functions such as processing, memory, I/O, timing,
and other peripherals into a single Integrated Chip (IC). However, the DSP and Micro-
Controller are very different in the applications that they are used due primarily to differences in
their architecture and peripherals. In general, the DSP utilizes a Modified Harvard Architecture,
which allows data and instructions to each have their own independent separate memory space
and bussing structure. As a result, pre-fetching the following instruction while the latter is being
executed speeds up processing by a factor of two, except in the case of branching. Other
additional features such as the inclusion of a single cycle hardware multiplier, tend to greatly
increase the processing speed. With the lack of overhead associated with a general purpose
Micro-Processor, the DSP tends to be the fastest of the three options when trying to implement
control processing. Therefore, DSP’s tend to be used in applications where real-time processing
is necessary such as imaging or speech applications. The only real disadvantages of a DSP is
cost, complexity, and power consumption when compared to a Micro-Controller.

Realistically, the Quasi-Keyhole plasma arc welding process could be controlled with a
Micro-Controller, but other research avenues such as control methodologies involving weld pool
imaging are currently being pursued at the University of Kentucky; therefore, it was decided that
this control process would be a good test bench for implementing a DSP solution. As a result,
the Spectrum Digital’s TMS320VC5416 DSK stand-alone and evaluation module was chosen as
a platform to implement the non-linear interval control algorithm for the Quasi-Keyhole plasma
arc welding (PAW) process. The key features of this multi-layered printed circuit board DSK
are as follows: TMS320VC5416 DSP operating at 16 to 160 MHz; On-board USB JTAG
controller with plug and play drivers; 64K words of external on-board RAM; 256K words of
external on-board Flash ROM; Three Expansion Connectors (Memory Interface, Peripheral
Interface, and Host Port Interface); On-board IEEE 1149.1 JTAG Connection for Optional
Emulation Debug; Burr Brown PCM 3002 Stereo Codec; +5 volt operation; and Texas
Instrument’s Code Composer Studio configuration software.

1.5 Daughter Card [S5][6]
The DSK contains on it board an Audio CODEC PCM3002 data converter whose analog-

to-digital (AD) sampling rate may be user selected up to a maximum speed of 48 KHz. For this
reason, the PCM3002 is referred to as an Audio data converter since the maximum range of

human hearing perception is usually on the order of 15 to 20 KHz. For this control
implementation, this rate would be sufficient; however, it was desired to pursue faster sampling
rates for future research applications as previously discussed. As a result, Signalware’s AED-
109 Multi-Channel 8 MHz maximum sampling rate Analog Expansion Daughter Card was
chosen as a substitute data converter.

Chapter Two
Quasi-Keyhole Plasma Arc Welding Process
2.1 Arc Welding [7][8][9]

Arc welding utilizes an electrical arc as a heat source in order to heat, melt, and join
metals. As a result, a very basic understanding of how heat is transferred to the work piece is
necessary before developing a reasonable control algorithm. An arc is defined as an electric
current flowing between two electrodes through an ionized column of gas. A negatively charged
cathode and a positively charged anode create the intense heat of the welding arc. Since there
must be an ionized path to conduct electricity across a gap, the mere switching on of a power
supply over a cold electrode will not start the arc. The arc must be ignited or struck. The arc
may be ignited be either applying an initial voltage high enough to cause a discharge or more
commonly by touching the electrode to the anode and then withdrawing once the contact area
becomes heated, which is called striking. The intense heat at the welding tip, which approaches
6500 °F, causes the Argon gas, which surrounds the Tungsten cathode tip, to become ionized,
which effectively means that some of the outer electrons have been stripped away from the
central nucleus forming an ionized gas. A plasma is defined as an ionized gas, which consists of
a sea of ions and electrons that are a very good conductor of electricity. As a result, once the
Argon gas surrounding the Tungsten tip has been heated sufficiently it ionizes forming a plasma,
thus providing a conductive path between the cathode and anode to support the arc current.

The power dissipated in the arc does not occur entirely in the anode. Instead, the arc can
be thought of as impedance to the flow of current, which can be subdivided into the anode,
column, and cathode as shown below:

Pt = Pcathode + Pcolumn + Panode = Iarc current (Vcathode + Vcolumn + Vanode) 2-1

While considering equation 2-1, it should be realized that a majority of the power loss occurs in
the interfaces. In other words, the voltage drop in the column is typically small compared to that
in the anode and cathode. Furthermore, the energy input into an arc welding process is
proportional to the input power and inversely proportional to the travel speed of the torch. In
addition, the heat transfer efficiency, fj, to the work piece is less then one due to losses
associated with heating the welding rod, conductive dissipation, and radiation, which results in
the following equation:

P, V. I
Hpet = fl(anod Speed) - fl(anode Speed) 2-2

The choice of which electrode is the anode or cathode is another interesting topic. In this
application, the welding tip is chosen as the cathode, since a non-consumable tungsten electrode
was used. The reason for this choice is that the cathode emits electrons, which will accelerate in
the Electric Field between the torch and work piece gaining additional kinetic energy. When the
electron strikes the anode, additional energy will be released into the work piece. Thus helping
to melt the work piece.

Finally, it should be realized that a large current is more important then a large voltage
when welding. A terminal voltage level between 20 to 80 Volts is typical, but the amperage
should be in the range of 30 to 300 Amperes. In certain instances, the current level may even
approach several thousand amperes. Typically, power drops are available at 120, 240, 480, and
600 V AC. These voltages are stepped down through the use of a transformer and then rectified
if a DC supply is desired. As a result, many control algorithms including the Quasi-Keyhole
Non-Linear Interval Control Algorithm utilize the power supply’s current as a control input. The
power supply may be either alternating or direct depending on the welding process being
utilized.

2.2 Plasma Arc Welding Process and Laboratory Experimental System [10 | [11] [12] [13]

There are several types of arc welding processes such as: Shielded Metal Arc Welding
(SMAW); Submerged Arc Welding (SAW); Gas Metal Arc Welding (GMAW); Flux Cored Arc
Welding (FCAW); Gas Tungsten Arc Welding (GTAW); Double-Sided Arc Welding (DSAW);
and Plasma Arc Welding (PAW) to just name a few. For the Quasi-KeyHole process, it was
decided to utilize the PAW process due to its high energy density and very stable arc. A
graphical description of a Quasi-Keyhole PAW system used in this study is shown below:

= Nthermal /Y
\Thermal f
Q /'mac PS 4 4 /) Miller F3
i e 1

—d R
Bocklng Bar _ | Ba : S 4 i %} “Weor (e

Insulator
Detection Flote

Figure 2-1 Laboratory Experimental System for Quasi-Keyhole PAW Process

The Plasma Arc welding process as implemented in Figure 2-lutilizes two different
power supplies and a B & B Precision Machine custom made torch. The Thermal Arc Ultra Flex
350 Pulse power supply manufactured by Prestolite Power Corporation is utilized to initially
strike the arc at an initial constant current level of 15 Amperes, which does not require that the
torch be located over the work piece. Since the plasma Argon gas is being blown in the direction
of the work piece, a conductive path or plasma is formed between the torch and the work piece
once they are in the vicinity of each other. At this time, the Miller Electric Maxtron 450 CC/CV
power supply can be turned on. The Miller power supply operates in a constant current mode
with the current level being remotely controlled by the DSP. This control is realized through
Port 17 of the power supply by varying a DC voltage level on pin G between zero and ten volts,
while realizing a conversion ratio of one volt equals fifty-five amperes. At this point, the Miller
power supply operates independently from the Thermal power supply; therefore, the Thermal
power supply may be left on or turned off.

The work piece, detection plate, resistor, and capacitor together form the efflux plasma
charge sensor (EPCS). The purpose of the EPCS is to determine when the keyhole has been
established through the work piece. This is accomplished by realizing that a dependent voltage
source is formed between the work piece and the detection plate. Before keyhole has been
established, there is no charge on the backside of the work piece and the efflux or keyhole
potential is zero, but when a charge begins to accumulate on the backside of the work piece the
dependent voltage source begins to grow. As a result, a threshold level of 0.5 volts was chosen
for this process to dictate when a keyhole had actually been established. A level below this was
not recommended to avoid false indications due to random noise associated with the process. A
resistor of 1 k€ is utilized between these two plates to insure that the work piece and the
detection plate are not electrically common, while limiting the current magnitude. The capacitor
is utilized to eliminate random noise; however, in this study, the capacitor was eliminated from
the circuit.

This process utilizes three Argon gas sources. The Argon source surrounding the
tungsten tip is referred to as the plasma gas, which is used to establish the plasma jet. The Argon
source, which surrounds the plasma jet, is referred to as the shielding gas, which exists to shield
the weld pool from harmful oxidation effects. The Argon source, which feeds the platform, is
referred to as the backing gas whose purpose is to shield the backside of the work piece from
oxidation.

Finally, the last item, which is not shown in Figure 2-1, is the Dynetic Systems Servo
Motor model 22134B. This servo is used to move the torch along the work piece at a fixed
speed. Supplying a reference voltage to the actuator controls the speed of the servo. For this
process, a reference voltage of .362 Volts was chosen which corresponds to a travel speed of
about 2.5 mm/second.

Chapter Three
Digital Signal Processor
3.1 TMS320VC5416 DSP Developmental Starter Kit (DSK) [4] [14]
The TMS320C5416 DSP developer’s starter kit (DSK) is a low-cost tabletop mounted
printed circuit board (PCB) designed to allow the user to evaluate characteristics of the

TMS320VC5416 DSP (C5416 DSP) to determine if the processor meets the requirements of the
application as shown below in Figure 3-1:

TMS320VO34 16 DSK

Figure 3-1 TMS320VC5416 DSK

The C5416 DSP, which operates between 16 to 160 MHz, is just one aspect of the development
board. Key additional features of this module, as previously stated in the introduction include:
On board USB JTAG controller with plug and play drivers; 64K words of external on-board
RAM; 256K words of external on-board Flash ROM; Three Expansion Connectors (Memory
Interface, Peripheral Interface, and Host Port Interface); On board IEEE 1149.1 JTAG
Connection for Optional Emulation Debug; and Burr Brown PCM 3002 Stereo Codec. In
addition to the development board, the kit includes: C5416 DSK Code Composer Studio™ v2.1
Integrated Development Environment (IDE); Quick Start Guide; Technical Reference; Customer
Support Guide; USB Cable; Universal Power Supply; and a AC Power Cord. Although this

module is targeted towards audio signal processing applications, it can be easily modified for
applications that require faster sampling rates through the use of the on board expansion
connectors for the interfacing of Daughter Cards, such as the AED-109 data converter.

3.1.1 DSK Architecture [4][15]

The DSK is divided into five major blocks of logic as follows: C5416 External on-board
Memory (Flash ROM and SRAM); Codec (Data Converter); CPLD Registers (Interface
Control); Expansion (Daughter Card and Host Communication); and JTAG (Emulation). The
control of these logic blocks is divided between a complex program logic device (CPLD) and a
field programmable gate array (FPGA). The Altera CPLD handles the interfacing concerned
with the Flash ROM, SRAM, Codec Control, and Daughter Card expansion by maintaining
registers, decoding memory addresses, and generating the appropriate control, while the FPGA
performs a similar function for the emulation. Please refer to Appendix A for a complete listing
of the DSK’s central processing unit (CPU), status, CPLD, and peripheral memory-mapped
registers.

3.1.1.1 Emulation [4]

Emulation is defined by Texas Instruments as providing a bridge between the Debugger
and hardware. This implies a method of communication between the DSK and Code Composer
Studio (CCS) located on the PC by utilizing the on board universal serial bus (USB) port, J201,
or the joint test action group (JTAG) 14-pin header, J7. This block of logic, located in the
bottom left corner, occupies roughly a quarter of the board area. This logic block is independent
of the C5416 DSP operation, and is strictly intended as a communication path between the DSK
and CCS for configuration, observation, testing, and troubleshooting. However, it is interesting
to note that the DA250 DSP performs processing associated with this logic block instead of the
C5416 DSP.

3.1.1.2 Hardware Expansion [16]

The expansion capability is divided between three ports, which are the external memory
(P1), external peripheral (P2), and host port interface (P3). Ports P1 and P2 primary purpose is
to allow hardware expansion of the DSK through the use of connecting boards referred to a
Daughter Cards. The layout of a Daughter Card is specified such that a card may reside within a
PC chassis when attached to a PCI motherboard, though the interface is not restricted to a PCI
platform. The TMS320 Cross-Platform Daughter Card Specifications requires that Daughter
Cards intended to attach to a DSP platform must conform to the following component side
layout:

Anan
(3185)
+
3625
P 0.250)
500
@ EEATS .
(0125} ({Peripheral Connector)
________ 1 Zone 2 Zone 1
BEID |
B Cptional |
=m0 (] !
(1.14) '
i Connector |i‘_———_________——————i
Area || Optional |
| | I.'Iﬂ | J
———————— | 5 | {Memary Connector)
&0105] I Connector I
L R | |
¥) Areg !
st 500 | B4.00 |
T WRE] 2 5
(0.167) P E il (259 i il
e b 15.24
{0.60)

Communication between the DSK and Daughter Card occurs through the two 80-pin
headers referenced in Figure 3-2, with one being primarily dedicated for external memory
interfacing (P1) and the other for peripheral signals (P2). It should be noted that the designators
on the Daughter Card utilize “J” designators while the DSK utilize “P” designators for the
expansion ports. The same aforementioned TI standard requires that the component and

Figure 3-2 Daughter Card Layout

connector heights be restricted to the following criteria:

Daughtercard

Daughtercard

Motherboard

D

S e

°| |

°|

°} I

Figure 3-3 Stacked Daughter Card Illustration

Table 3-1Motherboard and Daughter Card Component Height

L Dimension | Dimension
Label Description Zone 1 Zone 2
A | Mated Height 11.81 (.465) | 11.81 (.465)
B | Maximum Motherboard Component Height 3.81 (.150) | 4.78 (.180)
C | Maximum Daughter Board Component Height 6.73 (.265) | 5.97 (.235)
Maximum “Bottom Side” Daughter Card
D e 1.00 (.039) | 1.00 (.039)

Daughter Cards are designed to be stackable as outlined in Figure 3-3 in case they do not require
all of the available resources of the DSP motherboard. Applications of these Daughter Cards can
be wide ranging with examples such as extended memory, RS232/RS422 serial ports, Ethernet,
or data converters being very prevalent. The host port interface (HPI) provides a parallel port for
which a host processor can access memory internal to the DSK for monitoring, configuration,
and a variety of other reasons.

3.1.1.3 Memory [2][4]

It should be remembered from the introduction that DSP’s in general utilize a Modified
Harvard Architecture, which allows data and instructions to each have their own independent
separate memory space and bussing structure. As a result, the DSK actually takes this concept a
step further by defining a shared memory space for Program, Data, and I/O addressing. The user
defines how the memory space is to be allocated separately between Program, Data, and I/O by
defining separate independent page layouts for each memory type, while realizing it is
recommended to reserve Page 0 as Program space and to have different memory types on
different pages. Furthermore, the DSK can be configured to operate in a Micro-Processor or
Micro-Controller mode. This nomenclature is somewhat of a misnomer since the basic
difference between the two modes is that the 16K word on-chip ROM is addressable in the
Micro-Controller mode, but not in the Micro-Processor mode. Strictly speaking both modes are
still in the DSP realm with the real intention of the Micro-Controller mode being to help
facilitate boot loading upon initial power on.

3.1.1.3.1 Processor Mode Status Register [4][17][18][19]

The aforementioned configuration and other features are established in the Processor
Mode Status Register (PMST). The PMST register is shown below in Figure 3-4:

15 7 6 5 4 3 2 1 0
IPTR MPMC| ovLy | AvIS | DROM |cLKOFF| smuL | ssT
ME;W{: RW-0 RM-0 RM-0 RW-0 RW-0 R/MW-0
N

Figure 3-4 Processor Mode Status Register

10

The bit fields described in Figure 3-4 are outlined below in Table 3-2:

Table 3-2 PMST Bit Field Definition

. Bit Reset .
Bit # Name Value Function
Interrupt vector pointer — The 9-bit IPTR field points to
the 128-word program page where the interrupt vectors
reside. The interrupt vectors can be remapped to RAM
15-7 IPTR 1FFh | for boot-loaded operations. At reset, these bits are all set

to 1. The reset vector always resides at address FF80h in
the program memory space. The RESET instruction
does not affect this field.

OVLY

RAM overlay. OVLY enables the on-chip dual address
dual-access data RAM blocks to be mapped into program
space. The values for the OVLY bit are:

- OVLY = 0: The on-chip RAM is addressable in

data space but not in program space.

- OVLY = I: The on-chip RAM is mapped into
program space and data space. Data page 0
(address Oh to 7Fh), however, is not mapped into
program space.

Table 3-2 PMST Bit Field Definition (Continued)

. Bit Reset .
Bit # Name Value Function
conjunction with IACK when interrupt vectors
reside in chip memory.
DROM - Enables on-chip DARAM4-7 to be mapped
into data space. The DROM values are:
3 DROM 0 - DROM = 0: The on-chip DARAM4-7 is not

mapped into data space.
- DROM = 1: The on-chip DARAM4-7 is mapped

into data space.
CLKOUT off. When the CLKOFF bit is a 1, the output
of the CLKOUT is disabled and remains at a high level.
Saturation on store. When SST = 1, saturation of the
data from the accumulator is enabled before storing in
memory. The saturation is performed after the shift
operation.

2 | CLKOFF 0

0 SST N/A

3.1.1.3.2 Program Memory Map for Page 0 and Data Memory Map [4] [17][18][19]

Referencing the bit definitions in Table 3-2, the program memory map for Page 0 and
data memory map are developed for the C5416 DSK as shown below in Figure 3-5:

Hex Page 0 Program Hex Fage D Pregram Hex Doata
nooo Resarved ik Reservad e Memory-Ma e-dl
(OVLY =1) (OVLY = 1) He-:yis-terpip
Extemal External ikl -
0OTE (OVLY =0} a07F (OVLY =0) Q060 Scratch-Pad
DOED On-Chip 0080 On-Chip 0a7F RAM
DARAMO-3 DARAMI-3 aosn On-Chip
(OVLY = 1) {DVLY = 1] 0
.) - ! DARAMD-3
Extarmal Extarnal g L
TFFE | (OVLY 20} TFFF]_igviy =0l | CE IRl
2000 8000 E : FH
Xtaerna o
Extarmal BE iy Ba0a Cn-Chip
CODOR Cn-Chip ROM DARAMA—T
FFTF - &bt} '
FEFF] (4K x 16-hit) {CROM=1}
FF&0 Interrupts EEEE Resarved o
{External) : Ectarl
FF&Q Interrupts {DROM=0}
FFFF — FFFF (Cn-Chip) FFFF ' '
MPfMZ= 1 MPMC=10

(Microprocessor Mode) iMicrocomputar Maode)

Addre=s ranges for on-chip DARAM in data memory ars: O RAMO: 008001 FFFhR;
DaRAMZ: 40000—5FFFh;
DaRAMS: B000H—S9FFFh;

D RAMG: COD0Oh-DFFFh;

CaRAMT: 2000h-3FFFh
DARAM: GO00OR—-TFFFh
DaRAME: A0COh—BEFFFH
DaRAMT: EOOOh-FFFFH

Figure 3-5 C5416 DSK Program Memory Map for Page 0 and Data Memory Map

12

Program memory is configured based upon the OVLY bit, MP/MC’ bit, and Page
number. Addresses 00004 through 7FFF ¢ are internally mapped to the DSP chip provided the
OVLY bit is set to 1, which is the preferred mode to be used by the DSK. These memory
addresses are dual addressable, implying that two operations can occur on an address in a single
clock cycle. Addresses 8000, through FF7F ;s are always external if operating in the Micro-
Processor mode, while addresses FF80;¢ through FFFF¢c are always on-chip and reserved for
external interrupts. If Program memory is set to operate in a Micro-Controller mode, addresses
80006 through FFFF s are mapped externally except on Page 0. On Page 0, Program space is
subdivided to allow for on-chip accessing of 16K word ROM, which results in 80004 through
BFFF¢ being external, C000,¢ through FEFF s being on-chip ROM, FF00;s through FF7F¢
being reserved, and FF80,¢ through FFFF;s being on-chip interrupts. Regardless of mode,
addresses 0000, through 007F ;¢ are reserved and cannot be accessed by the programmer on
Page 0.

Data memory is configured based upon the DROM bit, while the basic memory map is
independent of page number except on Page 0 where it is recommended that the Data memory
map not be applied due to reserved ranges and mixed memory types. Addresses 00004 through
7FFF,¢ are always on-chip. This address range is subdivided into three divisions as follows:
0000;¢ through 005F ;¢ are reserved for Memory-Mapped Registers; 0060, through 007F;¢ are
utilized as a Scratch-Pad; and 0080,¢ through 7FFF,¢ are available as general data space.
Addresses 80006 through FFFF;s are located on-chip if DROM bit is asserted and off-chip
otherwise. All on-chip Data memory is dual addressable, which implies once again that two
operations can occur on an address in a single clock cycle.

3.1.1.3.3 Extended Program Memory Map [4][17][18][19]

After the initial page, the same configuration bits are utilized, but the Program memory
map is slightly different. If the OVLY bit is set high, memory ranges 0x0000,¢ through
0x7FFF,c will always utilize dual access on-chip memory. Otherwise, this memory range will be
mapped off-chip. If the chip is operating in a Micro-Processor mode, memory addresses
0x8000,¢ through FFFFs, will use dual access on Page 1, single access on Pages 2 and 3, and
off-chip for Pages 4 through 127. Single access memory implies that only a single access per
clock cycle can occur on an individual address. The MP/MC’ bit only affects the configuration
on Pages 1, 2, and 3 in the program extended memory map. If the MP/MC’ bit is held low,
memory addresses 0x8000,¢ through 0XxFFFF ¢ will be mapped on-chip for Pages 1, 2, and 3. In
all other cases, this memory range will map program space off-chip. Figure 3-6 shown below
outlines how the extended program memory map is defined:

13

Hez Program

01"":"5;}::0 Program Hex P rogram Hex Program Hex Program W
Cin-Chip bl Cn-Chip VIR Cn-Chip I e Cn-Chip ' On-Chip
|DAHAM 0-3 DARAMO-2 DARAMI-3 ||:|,n RAMI- DARAMD-3
(OWLY=1) o LY =1} (OWLY=1) (O LY =1) (OvLY=1)
Extemal External External External Extemal
o17FFF | IOVLYS0L | garppp | IOVLY=0) | pagppr | (OVLY=0) | gzppp | (QVLY=D) 7Frrpp | (OVLY=0)
018000 0 Cin-Chip 028000 on-Chip 038000 an-Chip Y] Y TFRO0D
JCARAMA-T SARAMI-3 SARAM4-T
(MP/MC=0) (MP/MC=0) (MPIMC=0) External External
Extarnal External External
(MPMC=1} (MP/MC=1) {MPIMC=1}
U1FFFF [ZFFFF 03FFFF 04FFFF TFFFFF
Page 1 Page 2 Page 3 Page 4 Page 127
XPC=1 ¥PC=2 XPC=3 ¥PC=4 XPC=TFh
Address ranges for on-chip DARAM in program memory ars: DaRAM4: (1 8000R-01 9FFFh; DARAMS: 01A4000h-01BFFFH
DARAMG: 1 COC0Oh-01DFFFh; DaRAMY : D1EQ00R—01FFFFH
Address ranges for on-chip SARAM in program memory are:. . SARAMO: 02R000h—0259FFFh; SARAMI: 0ZADDOh-0ZBFFFh
SARAMZ: 02C000NR-C20DFFFh; SARAM?Z: 02E0CORh-02FFFFR
SARAM4: 032000h—039FFFh; SARAMSE: 02A000h-02BFFFh
SARAMG: 03CO00R-030DFFFh; SARAMYT: 02E0COh-02FFFFR

Figure 3-6 TMS320VC5416 DSK Extended Program Memory Map
3.1.1.341/0 Memory Map [4][17][18][19]

The C5416 DSP processor has no on-chip I/O accesses. The C5416 DSP uses a CPLD to
interface to the external on-board Flash and SRAM, on-chip Data memory space, Codec control,
and Daughter Card interface. As a result, the DSK uses I/O space to map the eight CPLD control
registers starting at addresses 0000;¢ through 0007,¢. This I/O map is shown below in Figure 3-
7:

Hex

Ox0000 CPLD Configuration
%0007 Registers
00008

Resarvad
0xTFFF
Qx@000 Daughter Card
OxFFFF Remm

Figure 3-7 TMS320VC5416 DSK I/O Memory Map
This memory map does not vary based upon Page location except for Page 0 where it is not used.
3.1.1.3.5 Data Memory Page Map [4][17][18][19]
Figure 3-5, Figure 3-6, and Figure 3-7 demonstrate how the DSK memory space is

divided into separate pages. Each external data page has 32K words, where each word is 16 bits
in length. The DSK utilizes a 20-bit word address for Data space, where the 15 least significant

14

bits are used to address the appropriate word on the subject page. The five most significant bits
are defined within the DM_CNTL register, which is one of the eight control registers associated
with the C5416 DSP CPLD. Based upon how the five most significant bits and DM_SEL bit are
defined within the DM_CNTL register, the Data memory map is capable of addressing up to
1.024M words located on 32 different off-chip pages. However, of the 16 available C5416 DSP
memory address lines, only Ay A4 are used. Ajq is set high only if an off-chip access is
required. Finally, it should be realized that the 16 least significant bit is always asserted if
external Data memory mapping is desired. The DM_CNTL register bit definitions are defined
below in Table 3-3:

Table 3-3 Data Memory (DM_CNTL) Bit Definitions

Bit Bit Name R/W Description

- 0= Flash Enabled
n MEMTYPE_DS - 1 =SRAM for Data Space Access

Flash/SRAM/Daughter Card Memory Page,

4 DM PG4 R/W Bit 4, MSB

) DM PG2 R/W gliatlszh/SRAMfDaughter Card Memory Page,

Flash/SRAM/Daughter Card Memory Page,
0 DM _PGO R/W Bit 0, LSB

3.1.1.3.6 Program Memory Page Map [4][17][18][19]

The DSK utilizes a 23-bit word address for external Program space, where the lower 15
bits are used to address the appropriate word on the subject page in a similar manner to Data
space. The upper seven bits are defined in the Program Counter Extension (XPC) Register. The
XPC register defines the page selection for Program Space. This register is memory-mapped
into data space at address 001E¢. At hardware reset, the XPC is initialized to 0. Since the XPC
register is seven bits in length, Program space is capable of addressing 4096M words on 128
different off-chip pages. The DSK does not have on-board resources to fully utilize this space;
however, the memory space does allow for memory expansion through external sources such as
Daughter Cards or other Host processors, which can be easily interfaced through the Host
Parallel Interface (HPI) Port . It also allows for utilization on other DSP platforms that have
more robust resources.

15

3.1.1.3.7 Memory Resources [4][17][18][19]

It should be noted that the DSK and the AED-109 Daughter Card do not possess the
resources to take full advantage of this mapping. The C5416 DSP contains 64K words of
DARAM, 64K words of SARAM, and 16K of Program ROM on-chip, while external on-board
resources of 64K words SRAM and 256K words Flash ROM are available as well. The AED-
109 Daughter Card does have the option to be delivered with a two 256K word Flash memory
chips, but this option was not chosen for the card being utilized. Furthermore, the on-chip
memory is divided into 8K word blocks. The memory division is on a per page basis and is
divided between single and dual access. Figure 3-5 and Figure 3-6 define these blocks as being
either DARAMO through DARAM?7 or SARAMO through SARAMY7 on each page. It should be
noted that ROM 1is not volatile when power is removed from the DSK, which implies the
programmer may read or write to these locations. As a result, a variety of on-chip, on-board, and
Daughter Card RAM and ROM memory options are available to the programmer.

3.1.1.3.8 Wait State Generator [4][17][18][19]

Memory access time tends to increase in the following order: on-chip Ram; on-chip
ROM,; external on-board RAM; external on-board Flash; external on-board CPLD; and external
off-board Daughter Card Flash. In addition, when fetching or loading to a memory location the
access time is not only dependent upon the hardware being utilized, but the speed at which the
clock is running. As a result, the C5416 DSP has an on-chip wait state generator, for off-chip
accesses, controlled by two registers referred to as the software wait state generator register
(SWWSR) and the software wait state control register (SWCR). These two registers work in
conjunction with each other to determine the appropriate number of wait states per external
memory operation. This wait state generator can be extended up to 14 machine cycles. Devices
that require more then 14 wait states can be interfaced using the hardware READY line. For
further details, please refer to TI’s TMS320VC5416 Fixed Point Digital Signal Processor Data
Manual.

3.1.1.4 CPLD Registers [4]

Figure 3-8 outlines the bit definitions for the 8 registers contained within the CPLD as
shown below, while realizing that the DM_CNTL register has been previously detailed:

16

e Name Bit T Bit & Bit 3 Bit 4 Bit 2 Bit 2 Bit1 Bit 0
Addr
o] USER_REG USR_SW3 USR_SW2 USR_SwWi1 USR_SW0 | USR_LEDZ | USR_LEDZ | USR_LED1 | USR_LEDD
R R R R R RAN R RAW
1 DC_REG DC_DET DC_Io_CTL DC_STAT1 DC_STATO DC_RST 4] DZ_CNTL1 | DC_CNTLD
R RAN R R R RwW RAN
u] Ofon resst) Oflcre) O by
2 CODEC_L CODEC_L_CMD[7..0]
R
3 CODEC_H CODEC_H_CMD[15..8]
R
o]
4 VERSION CPLD _VER[3.0] 1] BOARD VERSION[2.0]
R R
5 DM_CHNTL DM_SEL MEMTYFE_DS | MEMTYPE_PS DM_PG4 DM_PG3 DM_PG2 CM_PG1 DM_PGO
RAW RAN R R R R R R
afint) Oiflash) Oiflagh) Ofpage O Ofpage 0) Ofpage 0) Oipage O) O{page 0)
3] MISC CODEC_ROY 8] a o] 1] CC_WIDE | DC32-0DD | BSFZSEL
R RAW R RANW
O{Re=ady) 0(16 bits) Ofevan) OCODES)
T CODEC_CLK Q 1} Q DIv_SEL CLE_STOR | CLK_DIV1 CLE_DIvo
R RAN R RAW

Figure 3-8 CPLD Registers

3.1.1.4.1 USER_REG Register [4]

The USER _REG register controls the status of the 4 user LED’s with the four least
significant bits. The four most significant bits are used to read the state of the User Dip Switch.
Table 3-4 shown below outlines this register:

Table 3-4 USER REG Bit Definition

}?#lt Bit Name R/W Description

7 USER SW3 R User DIP Switch S2 —4 (1 = Off, 0 = On)
6 USER SW2 R User DIP Switch S2 — 3 (1 = Off, 0 = On)
5 USER SW1 R User DIP Switch S2 — 2 (1 = Off, 0 = On)
4 USER SWO R User DIP Switch S2 — 1 (1 = Off, 0 = On)
3 USER LED3 R/W | User Defined LED D12 (0 = Off, 1 = On)
2 USER LED2 R/W | User Defined LED D11 (0 = Off, 1 = On)
1 USER_LEDI R/W | User Defined LED D10 (0 = Off, 1 = On)
0 USER LEDO R/W | User Defined LED D9 (0 = Off, 1 = On)

3.1.1.4.2 DC_REG Register [4]

5:

The DC_REG register provides user control of the two Daughter Card control outputs
and the Daughter Card reset Signal. This register also monitors the two Daughter Card status
signals and the Daughter Card Detect Signal. These bit definitions are defined below in Table 3-

17

Table 3-5 DC_REG Bit Definition

B#:t Bit Name R/W Description
Daughter Card Detection (0 = No Board, 1 =
/ DC_DET R Daughter Card Detected)
0 =None, 1 =DC _RE
6 R A - DC RE is active on I/O Cycles
5 DC STATI R Daughter Card Status 1 (0 =low, 1 = high)
4 DC STATO R Daughter Card Status 2 (0 = low, 1 = high)
3 DC _RST R/W | Daughter Card Reset (Reset Active Low)
2 0 R Always zero
1 DC CNTLI R/W | Daughter Card Control 1 (0 = low, 1 = high)
0 DC CNTLO R/W | Daughter Card Control 0 (0 = low, 1 = high)

3.1.1.4.3 CODEC_L_CMD and CODEC_H_CMD Registers [4]

The CODEC L CMD and CODEC _H CMD registers are used to send command codes
to the on-board Burr-Brown PCM3002 Codec. These two individual 8 bit registers combined
form the sixteen bit command word.. For more specific register information, please refer to the
datasheet and TI’s technical support for the appropriate cross-reference of embedded control
signals. However, Ti’s Data Converter Plug-In (DCP) is available within Code Composer
Studio, which allows fast and easy software development for data converters attached to the
DSP. This Plug-In will generate source code files and add them to your DSP development
project. These files contain the lowest level of interface software required for the subject data
converter. As a result, a general familiarity provided in the data sheets should allow the user to
modify these Plug-In generated source files as required.

3.1.1.4.4 VERSION Register [4]

The VERSION register is used to signify the DSK board version and the VHDL firmware
installed on the CPLD. The DSK board version occupies the lowest three significant bits,
referred to as bits 2, 1, and 0, which are set during board assembly. The four most significant
bits signify the VHDL firmware version, which are set during implementation of the CPLD. Bit
3 is not currently used and is always zero.

3.1.1.4.5 MISC Register [4]

The MISC register controls data memory access width, the DSP multi-channel buffered
serial port 2 (MCBSP2) selection, and the Codec control shift register ready status. The most
significant control bit is the DC_Wide, which signifies if the Daughter Card memory length is to
be 16 or 32 bits. When the selection is 32 bits, two 16-bit words are combined with one residing
in the upper 16 bits and the other in the lower 16 bits, which makes for a much faster transfer of
data between the DSK and Daughter Card. Since the DSK memory addressing is based upon 16
bits, 32-bit addressing is accomplished by writing the 16 most significant bits first to the
destination address plus one, and the writing the lower 16 bits to the destination address. When

18

reading from memory the 16 least significant address bits should be read first. The DC32_ODD
bit is 1 if the destination or source address is odd and 0 if the destination or source address is
even. The 16 least significant address bits always use the supplied address, while 16 most
significant bits always adds 1 to the supplied address. Furthermore, for 32-bit addressing a
specific sequence of events must be followed. When writing, the page address in the DM_CNTL
register must be set first. Secondly, the DC_ WIDE and DC32 ODD bits in the MISC register
must be configured next. Third, write the 16 most significant bits first followed by the 16 least
significant bits. The final step involves turning off the DC_WIDE bit in the MISC register. The
procedure for reading is the same except that 16 least significant bits are read first followed by
the 16 higher bits. The bit definitions are outlined below in Table 3-6:

Table 3-6 MISC Register Bit Definition

Bit Bit Name R/W Description

6 | 0 | R JAlwaysZeo |

4/ 0 | R JAlwaysZero |

Daughter Card Memory Width Selection
2 | DCWIDE | RIW | 4 _T6 bits, 1 =32 bits)

MCBSP2 Select

0 BSP2SEL R/W

(0 = PCM3002 Data Channel, 1 = Daughter Card

3.1.1.4.6 CODEC_CLK Register [4]

The CODEC_CLK register effectively controls the sampling rate of the ADC aboard the
PCM3002 as outlined below in Table 3-7:

Table 3-7 CODEC_CLK Register Bit Definition

Bit Bit Name R/W Description

6 | 0 | R JAlwaysZeo |
4/ 0 | R JAlwaysZeo |

2 CLK STOP R/W CLK STOP

19

Table 3-7 CODEC_CLK Register Bit Definition (Continued)

B;[Bit Name R/W Description
00 =24 KHz
1 CLK DIV1 R/W 01 = 12 Kz
10 =8 KHz
0 CLK DIV2 R/W 11 = 6 KHz

The default sampling rate is 48 KHz, but can be user selected to other values by pulling bit
number 3 high and configuring the clock divisor bits appropriately. In order to set the sampling
rate properly, a specific order must be followed. The CLK STOP bit must be set first. The

clock divisor bits are set next. Reset the CLK STOP bit next. Set the DIV_SEL to one last.

3.2 TMS320VC5416 DSP (C5416 DSP) Functional Overview [2][17][19]

The TMS320VC5416 fixed-point, digital signal processor (DSP) is based on an advanced
modified Harvard architecture that has one program bus and three data memory busses. This
processor is the CPU for the C5416 DSK. A block diagram of the C5416 DSP is shown below in

Figure 3-9:
B D, E Buses and Contral Signals
EAK RAK B4K R&M
54X cLEAD Single Access Dual Access Ll E.ﬁﬁ"am
Data Program/Data
MEuE
; Y oo Kmeamay | | K
TIEUS h RHEA Bus
{.] Bridge H McESP1
i -)
o o
EATA] Enhancad X0 C:}
y * - McESPZ
E r
& e :
e, | = P, McESP3 i
=

ATeHT i 16 HPI k

L4 1

TIMER

APLL

| Clocks JTAG
Ty

Figure 3-9 C5416 DSP Block Diagram

20

The C5416 DSP provides on-chip 16K words of Program ROM, 64K words of DARAM,
and 64K words of SARAM as outlined previously in Section 3.1.1.3.7. In addition, external
memory sources are available on the DSK, but faster processing speeds can be achieved if
addressing remains on-chip to the greatest extent possible. Furthermore, the available memory
space has been outlined in a detailed extended memory map, which is shared amongst the Data,
I/O, and Program mappings as outlined in Section 3.1.1.3.

The C5416 DSP has several peripherals built on-chip listed as follows: software-
programmable wait-state generator; programmable bank switching; host-port interface
(HPI8/16); three multi-channel buffered serial ports (McBSPs); hardware time; clock generator
with a multiple phase-locked loop (PLL); enhanced external parallel interface (XI102); and a
direct memory access (DMA) controller. The wait-state generator was previously introduced in
Section 3.1.1.3.8.

3.2.1 5416 Processor [18]

This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism,
application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The
basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.
Please refer to Ti’s TM320C54x™ DSP Functional Overview for a complete list of the 54x
Instruction Set Opcodes.

Separate Program and data spaces allow simultaneous access to program instructions and
data, which provides the high degree of parallelism referenced previously. Two reads and one
write can be performed in single cycle. In addition, data can be transferred between program and
data spaces. The 5416 processor accomplishes this configuration by integrating a 40-bit
arithmetic logic unit (ALU), two 40-bit accumulators, a barrel shifter, a 17 x 17 bit
multiplier/adder, and a compare/select/store (CSSU) unit into a single CPU. A functional block
diagram is shown below in Figure 3-10:

21

Syslam conlm | F"r-:-;’-:n-ad-:i'm:- ion [t addees rm'-:dl-:n

inkzraca 1 bz (PAG kegic
1: }J:__ PC. PR, RE, .l!l.F'.ﬁ.Ll[l .ﬁ.P.I'I.LH
BRC, R34, REA EH. I:IF' 3:
+ * Sl B
L |
FE |
: Memrer
CAB . 4 and !
l satemal
irdeifacs
CB
h i
e |
OB . 1 Paripharal
| nilarlace
w
E&B |
EB |
I
EXF areodar T
4 4
Al B
T ragistar ;.
&
B [
I LRl I I ma I ign dr
L 3
| Eamals
ATdul B
Lagand:
A Acoumulalor
B Acmmulalor B

¢ Gl

ata bas MSHLSW
E EBE data bus nokicl
Fsl el il

P PR anbus

] I 2 Barel
ROUND T Tro

U alLl

Figure 3-10 5416 Processor Block Diagram

Please refer to Ti’s TM320C54x™ DSP Functional Overview for a detailed hardware description
list of the hardware elements contained within the 5416 processor.

22

3.2.2 Pin Assignments for the PGE Package [19]

The complete part number for the C5416 is TMS320VC5416PGE-160. All on-chip
elements of the C5416 DSP are built on a 144-pin low-profile quad flatpack (LQFP). The pin

assignments are shown below:

[
i go | THIS
H an | TCK
2 ar | TRST
| aa fp TOI
24 as |y TOO
ICETRE H 2« oty EMU1LTFT
MSC H = az |y EMILKD
I S e az | TOUT
FOE A 25 a1 b ooz
B0 4o acfj WP 1B
AOO (20 o fj CLKMDS
EC d- 8 | CLKMEDZ
MRTIT] 2e 77 B LMD
Cvoo [z Ti f] oz
Cves o 75§l O
BOR1 [Jas 74 fl BOXA
EF5R1 .!E = M oD Mo WG = O MmO m i m ee [= I = ™ om nmm e~ oMo -3 EFS}:‘I
.'\-.ll.-\..'-'|'--.-rr------'|'r-||:'-||-rr-----.-.11E:':\1.11:.?-u'\.m|.nEaml\.ilEl:l:.\-_Eln'l\.n-..,.:.l'.lIDIE';'--:-:l
P e e e e e s e S S e S b
AECdREaEoEoRlRa s Do IESREREE S5 457
5 E 5 g o by B E E EI moT E

Figure 3-11 144-Pin PGE LQFP

3.2.3 Device and Development Support Tool Nomenclature [18 |

To designate the stages in the product development cycle, TI assigns prefixes to the part
numbers of all TMS320 devices and supports tools such as TMS, TMP, or TMS. A full part
number description is outlined below to help define the TMS320CV5416PGE:

23

TM5 320 C #i PGE

PREFIX
'{Hﬁ n-:-:pnnmnnljall:ln'.lrcn
=] (=
THS= hualiitd davica
2MJ= MIL-STD-E=3C
ZM = High Rel jnon 22300
DEVICE FAMILY PACKAGE TYPET
A = THSEA Famiy H = phbsicDIP
J = cemami OIP
L = cemmic DIP side-brazed
B = cemmi
FZ = cemmi CC
FM = phslic leadad C0
FO' = cemmi kadess CO
TECHNOLOGY Pl = 100 pin phstic ELA] QFP
C = CMOS PZ = 100pin phstic LLFP
E = CHMOIS EPRCM PEK = 128 pin phstic LLFP
F_= CMOS Flash EEF'F!IIIM P2 = 132-pin phstic bumpered QFF
LC= LowVollage CMOS {3 %_I; }tnn ,Ihsr:;csl-':'lam
V= L-:-'.'.'-'l.'i:-llagnlI-l'.lI:l-S 3'1." av 7 K rlar
or 1.8 = 1nGpin phsiic LOFP
U= I_1||;r.5_llll|_,;,-,-,|.'|,l;;| ge CHIOS [18Y GGW= 176-pin MicmSiar BEL
K] DEVICE
1x DSP:
10
W Ar
15
#x D3P:
20
i
Zax DSP:
A3 208 A0
ad AH
2 DSP:
a0
3
az
dx DSP:
a0
dd
sx D3P:
s 53
51 =
B2 a7
4= D5P:
TOP = Dudl-InLine Package ﬂ% ::E ﬁﬁ%
FGA = Fin Gnd Army
0 = Chip Caier B o mw
QFF = Quad Flat Packanoa e OSP:
LOFF = Low Profila Cuad Flat Package B2 &2
BGA = Ball Grid Sy ErD1 &211

Figure 3-12 TMS320 Part Number Specification

The TMS320 DSP family consists of three supported DSP platforms: TMS320C2000 ™,
TMS320C5000 ™, and the TMS320C6000™. Within the C5000 ™ DSP platform, there are
three generations: TMS320C5x ™; TMS320C54x ™; and TMS320C55x ™. A general overview
of these platforms is shown below:

24

C6000
(CB2%, CBdx
CB7x)

5000
{Co4x, C55x)

C2000

(C20x, C24x
C28x)

High performance

Fower-efficisrt
performance

Control optimized

Figure 3-13 TMS320 Platforms

Referencing Figure 3-13, the C5416 can be seen to be a midrange TMS320 platform. The C6000
family has clock speeds up to 1 GHz, while the TMS320C67x model actually incorporates a
math-coprocessor for floating-point hardware manipulation.

3.2.4 Programmable Bank-Switching [17] [18][19]

Programmable bank-switching logic allows the C5416 to switch between external
memory banks without requiring external wait states (Reference 3.2.10). This process inserts
one cycle automatically when crossing memory-bank boundaries inside or between Program
memory and Data memory space. This extra cycle allows memory devices to release the bus
before other devices start driving the bus. Bank-switching is defined by the bank-switching
control register (BSCR), which is memory-mapped at address 0029 .

3.2.5 Enhanced 8-/16-Bit Host-Port Interface (HPI8/16) [17][19]

The HPI8/16 is a parallel I/O port using an 8 or 16-bit bi-directional bus, which can be
used to interface to an external host processor through the DSK Host Port Interface Expansion
Connector, P3. This port is controlled by the HPI address register (HPIA), HPI data register
(HPID), and HPI control register (HPIC). The host, using the DMA bus, and DSP have access to
the entire on-chip RAM at all times based on the DSP clock with the host taking priority. As a
result, the HPI could be used for remote boot loading, monitoring, control, or hardware
expansion to an off-board host. Finally, the HPI memory is mapped into Data memory space as
shown below:

25

Addrass [Hex)

000 0oon
Reserved
non nosF
000 0oED
S-:raﬂti Il'lipad
nonooTF
000 Doan
DARAKD —
O RAKS
000 TFFF
oon 20040
Reserved
001 7TFFF
oo anad
DARANS —
CARAMT
00l FFFF
ooz anoa
Reserved
002 7FFF
00z 2000
SARAND —
pozFFFF| SARAMI
003 0000
Reserved
003 7FFF
003 8000
SARANA -
SARAMT
003 FFFF
004 0oon
Reserved
07FFFFF
Figure 3-14 HPI Memory Map
3.2.6 Multichannel Buffered Serial Ports [17][18][19]

The C5416 provides three high-speed, full duplex multichannel buffered serial ports.
These ports allow direct interface to external devices such as the on-board Codec and off-board
devices that may be associated with Daughter Cards. Two memory-mapped registers are used
for data transfer, which are called the data-transmit register (DXR) and the data-receive register
(DRR). The serial data can be transferred in 8, 12, 16, 20, 24, or 32-bits. Serial port receive and
transmit operations can generate their own maskable transmit and receive interrupts (XINT and
RINT), which allows software control of serial-port transfers. In addition, the C5416 is capable
of transmitting and receiving up to 128 channels. Each McBSP external interface consists of

seven pins, which are outlined below:

26

Table 3-8 McBSP External Interface Pins

Pin Name Description
BCLKX Transmit reference clock
BDX Transmit data
BFSX Transmit frame sync
BCLKR Receive reference clock
BDR Receive data
BFSR Receive frame sync
BCLKS External clock reference for the
programmable clock generator

The CPU or DMA can initiate transmission of data by writing to the DXR. Data that has
been written to the DXR is shifted out utilizing a transmit shift register (XSR) through the BDX
pin. This structure allows the DXR to loaded with the next word while the current data is being
transmitted.

The CPU or DMA can read received data through the DRR. Data that has been received
in on the BDR pin is shifted into a receive shift register (RSR) and then buffered into the receive
buffer register (RBR). If the DRR is empty, the RBR information is copied into the DRR. If the
DRR is in use, the RBR holds the data until the DRR is available. This configuration allows for
storage of two previous words, while reception of the current word is in progress.

Since not all C54x devices with McBSPs implement the BLCKS pin, the C5416 is
configurable to allow either the BCLKR or BCLKX pin to be used as the input clock to the
sample rate generator. This configuration is set by using a combination of bit 7 (enhanced
sample clock mode, SCLKME) of the pin control register (PCR) and bit 13 (McBSP sample rate
generator clock mode, CLKSM) of the sample rate generator register 2 (SRGR2).

The McBSP allows the clock and frame sync generation to be programmable as well.
The programmable functions are as follows: frame sync pulse width; frame period; frame sync
delay; clock reference (internal versus external); clock division; and clock and frame sync
polarity.

The McBSP allows for compression of data also. Two formats are available which are
either p-law or A-law. When compression is being utilized, data is encoded based on either the
u-law or A-law format, while the received data is decoded in a 2’s complement format.

The C5416 allows for up to 128 independent channels. When one of the available 128
channels is selected, each frame represents a 128-bit time-division multiplexed (TDM) data
stream. In other words, each channel consists of a frame of 128 bits, where the frames
corresponding to each channel have been multiplexed based upon a clock.

3.2.7 General-Purpose 1/0 (GPIO) Pins [17][18][19]

Every C54x device provides two general purpose I/O pins called BIO and XF. BIO is a
general input pin upon which conditional instructions can be based. The XF pin is an external

27

flag output that can be driven low or high under software control. Quite often the BIO and XF
functions are used for handshaking. In addition, the C5416 has 26 additional pins that are
multiplexed between the GPIO, HPI, and McBSPs functions that are controlled by software.

3.2.8 Hardware Timer [17][18][19]

All C54x devices feature a 16-bit timing circuit with a four-bit pre-scalar. The timer
counter is decremented by one every time a CLKOUT cycle occurs. Each time the counter
decrements to zero, a timer interrupt is generated. The timer can be stopped, restarted, reset, or
disabled by specific status bits.

3.2.9 Clock Generator [17][18][19]

The clock generator provides clocking to the C5416 device. This device is based upon a
phase-locked loop (PLL) circuit. This hardware requires an external clock reference, which is
connected to the X2/CLKIN, while the X1 pin is not connected. By multiplying this external
clock by a scale factor an internal faster or slower frequency may be obtained depending upon
mode of operation.

The PLL is software controllable and can be configured in one of two modes being the
PLL mode or DIV (divider) mode. In the PLL mode the clock on the X2/CLKIN pin is
multiplied by 1 of 31 possible ratios, which allows for an external source with a much slower
clock then compared to the C5416. In the DIV mode, the input clock on same pin is divided by 2
or 4 at which time the PLL circuitry can be disabled to conserve power.

The software-programmable PLL is controlled through the 16-bit memory-mapped clock
mode register (CLKMD) address 0058,s. However, upon reset, the CLKMD register is
initialized with a predetermined value dependent only upon the state of CLKMD1, CLKMD?2,
and CLKMD?3 pins. The CLKMD pin configurations are shown below:

Table 3-9 Clock Mode Settings at Reset

CLKMDI | CLKMD2 | CLKMD3 1890100 158 18081514 (Olei5
VALUE
0 0 0 00006 % (PLL disabled)
0 0 1 90076 PLL x 10
1 0 0 10076 PLL x 2
1 1 0 F007,¢ PLLx 1
1 1 1 00006 72 (PLL disabled)
1 0 1 F0004¢ Ya (PLL disabled)
0 1 1 - Reserved (Bypass Mode)

3.2.10 Enhanced External Parallel Interface (XIO2) [17][19]

28

The XIO2 has several features built into its logic such as the ability for DMA transfers to
extend to external memory, insertion of bank switching cycles when crossing 32K memory
boundaries (See Section 3.2.4), programming up to 14 wait states through software (See Section
3.1.1.3.8), and the ability to divide down the CLKOUT signal by a factor of 1, 2, 3, or 4.
Dividing down the CLKOUT signal is an alternative to wait states when interfacing with slower
external hardware. The CLKOUT divide-down factor is controlled through the DIVFCT field in
the bank-switching control register (BSCR).

3.2.11 DMA Controller [17][18][19]

The C5416 direct memory-access (DMA) controller transfers data between points in the
memory map without intervention by the CPU. This bi-directional transfer realm includes
internal RAM, internal peripherals such as the McBSPs, and external off-chip memory devices,
which can all be happening in the background while the CPU is performing other operations.
The DMA has six independent programmable channels. In addition, the DMA even has higher
priority for memory access then the CPU. Internal on-chip transfers can occur in either 32-bit
double word or single word 16-bit formats, while external transfers are limited to single word 16
bit transfers. Furthermore, the C5416 DMA controller does not support transfers between
peripheral devices to external memory and vice versa (i.e. No DMA support for transfers from
Daughter cards to or from external on-board memory.), transfers between external to external
devices, and synchronized external transfers.

Since the DMA controller on the C5416 supports transfers of data between Program,
Data, and 1/O space, two memory maps are defined for the DMA with both being subsets of the
overall Program, Data, and I/O memory maps shown on the following figures:

s Program Hex Program Hex Program Hey Program
oo 00000 0000 w0000 -
i Reserved
B s
DLAXS =0 iy
SLANS <0 12FFF 8K Words
bk Cin-C hi
CARARK
2K Words
3FFF !
40000 on-chi Gt N
DARAM2
2K Words
3000
" On-C hi
ARAN
oFEE 8K Words EH?EEEE oxTFFF . |
413 : BsErve
onChi) e
DARAM 4 SARAN /4
D1GFFF o pxoppp| B Words
014000 0000
On-Chip On-Chi
DAF.P.P] SARAM ?.'5
8K Waords 8K Waords
MBFFF mBFFF
01C000 o
on-Chi oin-Chi
Reserved DARAM & SARAM 26
8K Words BK Wards
MOFFF xDFFF
01EDDD
On-Chi 0 EQDD On.Chi
DARAM 7 SARAMN 3T
BK Words Ak Wards
FFFF D1FFFF OxFFFF uxFFFF
Page Page 1 Page 2 -3 I!agez—ﬁ.

Figure 3-15 DMA Memory Map for Program Space

29

Data Space (0000 - 005F)

0000 ——
a01F I Reserved
io2a LEE i
2 DER10
nnzz DERZ20
nnz3 DER10
33%# Reserved
0030 ORE22
0 ORR12
nnaz ODER22
0033 DER12
nnid

0035 Reserved
0036 RCERAZ

0037 ECERAZ

gggg Reservied

IR RECRAD
= EECRAD
0oac

OIAE Reserved

0040 DRR21

004 DRR 11 f
no4z2 DXR21 /
0043 CER 11 /
HH}[& Reserved /
o0da| RCERAT]

0od4E XCERAT _;"

II:III%dEE Reserved |’

Data Space
oonn
Data Space
{Sae Breakout)
__DOsSF
0060 | Scratch-Pad
07 RARK
aoeo Cin-Chip
DARARD
1FFF BE Words
2000 1 oneChi
g
?&FDFDE Yords
Cin-i2 hip
DARARZ
8K Words
A
. On-Chi
DARARS
8K Words
TFFF
8000} Op-Chi
SARAND
J9FFF 2K Words
A000
Cin-2 hi
SARAM1
BE Words
EFFF
Cooo On-Chip
SARANZ
DFFE B Woards
EOOD } on-Chi
SA_H:M |
FEFF 2K Words

D Space
naaa

Reserved

FFFF Le—

Figure 3-16 DMA Memory Map for Data and I/O Space

Based upon the way these DMA memory maps are defined, the DMA memory space is
independent of the memory control bits MP/MC’, DROM, and OVLY contained within the

PMST register.

External memory accesses are possible with the C5416 DMA controller as has been
previously stated, but only two of the six channels may be used in this manner. One channel is
for reading, while the other is for writing. For more detailed information regarding the C5416
DMA controller, please refer to TI’'s TMS320VC5416 Fixed-Point Digital Signal Processor Data

Manual.

30

3.3 Power Requirements [4]

The DSK can be powered by two different methods. The default power connection is
through a standard double pole 2.5 mm jack, J6. This connection provides a +5 Volt and
reference ground. J6 is located on the bottom side of the lower left corner of the DSK. The DSK
comes with a +5 Volt 3 Amp power supply, which can be connected to a standard 120 V AC 60
Hz source. However, the DSK can also be powered through, J5, which is referred to as the
optional power connector. This connection is a 4-pole system with the following pinout:

Table 3-10 Pin-Out for Optional Power Connector, J5

Pin # DC Voltage Level
1 +12 Volts
2 -12 Volts
3 Ground
4 +5 Volts

The 12 Volts DC sources are required for certain Daughter Cards such as the AED-109. The
DSK is not delivered with a connector soldered onto the J5 leads since J5 and J6 should not be
connected simultaneously or damage can result to the board. If the J5 connection is required,
this leads can be populated using a Molex part number 15-24-4041 connector.

3.4 Switches [4]

The C5416 DSK has two switches, which are the Reset switch, and a 4-position user DIP
switch. There are three methods of resetting the DSK. The first one is an automated power on
reset. This circuit waits until the power supply is within acceptable an acceptable range before
asserting pin RS’ on the PGE. The second is software driven through the on-board USB JTAG
emulator. The third is a on-board pushbutton, S1, which is located on the bottom side
immediately below the external peripheral interface, P2.

3.5 C5416 DSK Reference Designator Layout [4 |

A graphical illustration of various reference designators located throughout the DSK is
shown below:

31

|
s
T
Y.
S N

o
3 FI P
]ﬁnnn m_!f:?—ﬂiﬂ ? Iji

v WL, “Bitds

o8 ol] st T LT T ‘ ¢
5-%9,pE A st 59 R

12017 /36 / @\Jm\l Do 12 ||TF’69|@A

Figure 3-17 DSK Reference Designator Board Layout

3.6 External JTAG Connector, J7 [4]

When using Code Composer Studio, the standard method of emulation is through the
J201 USB JTAG port. However, the emulation can occur through the on-board 14-header JTAG
connector whose reference designator is J7. This is the standard method for interfacing with TI’s
DSP when not using a developer’s starter kit. As a result, the ability to utilize this method has
been provided for user convenience. The pinout for this connection is shown below:

Table 3-11 Pin-Out for JTAG 14-Pin Header, J7

Pin # DC Voltage Level
1 T™S
2 TRST-
3 TDI
4 GND
5 PD
6 no pin
7 TDO
8 GND
9 TCK-RET
10 GND
11 TCK
12 GND
13 EMUO
14 EMU1

32

3.7 USB Embedded JTAG Emulation Connector, J210 [4]

Connector J201 provides a universal serial bus (USB) interface between the Code
Composer Studio’s (CCS) debugger and the emulation logic located on the DSK. This is the
standard method of connection for the DSK with CCS in order to allow configuration,
monitoring, and testing. Officially, CCS cannot start without this connection being made;
however, the CCS C5416 version 2.10.05 developmental package can be started unofficially by
closing the CCS splash screen and terminating the error screen by clicking the upper right x.
This approach will not work on other CCS versions, but it is a useful tool. The pinout for the
USB connector is shown below:

Table 3-12 Pin-Out for USB JTAG Connector, J201

Pin # DC Voltage Level
1 USBVdd
2 D+
3 D-1
4 USB Vss
5 Shield
6 Shield

3.8 LEDs [4]

The C5416 DSK has eight light emitting diodes (LEDs) on-board. Half of this can be
user configurable, while the system LEDs cannot be programmed by the user. The four user
definable LEDs are used by the system for the power on self test (POST), but are available to the
user at all other times. The user LEDs are accessed via I/0O address 0000;¢ as shown below:

Table 3-13 User LEDs

Ref Des LED # Color Controlling Signal On Signal State
D9 1 Green | CPLD Register 0, Data Bit 0 1
D10 2 Green | CPLD Register 0, Data Bit 1 1
DI11 3 Green | CPLD Register 0, Data Bit 2 1
D12 4 Green | CPLD Register 0, Data Bit 3 1

Table 3-14 System LEDs

The system LED’s are reserved for defining the DSK status. They are defined below:

Ref Des Color Function On Signal State
D6 Green USB Emulation .in use. When the .External 1
JTAG emulator is used this LED is off.
D7 Green +5 Volts DC Present 1
D8 Green Reset Active 1
D201 Green | USB Active, Blinks during data transfer. 1

33

Chapter Four
Code Composer Studio
4.1 Code Composer Studio Overview [20][21][22][23]

The C5416 DSK is delivered with a specific version of Texas Instrument’s flagship
development tool Code Composer Studio (CCS) referred to as C5416 DSK CCS™ V2.1 IDE.
CCS consists of a C/C++ compiler, assembler, linker, integrated development environment
(IDE), and a variety of other support utilities. The IDE is the graphical user interface (GUI) of
CCS. It consists of an editor for creating source code, a debugger for real-time troubleshooting,
and a project manager for file organization and configuration before calling the appropriate
components to compile, assemble, and link. The main difference between the DSK and
complete versions of CCS is that the DSK version can only be ran with the TMS32V(C5416 DSK
and there are no upgrade rights.

The source code utilized within CCS can be written in C, C++, assembly, or a
combination thereof. If the source code is written in C or C++, the extended address C runtime
library rts_ext must be included for C54x processors. The C language that the TMS32054x
supports is based upon the ANSI C standard as described in the 2" edition of Kernighan and
Ritchie’s “The C Programming Language”, while the C54x compiler also supports C++ as
defined in Ellis and Sroustrup’s “The Annotated C++ Reference Manual” and many features
contained within the ISO/IEC 14882-1998. However, complete C++ standard library support is
not included, with libraries such as iostream being omitted. Alternatively, the programmer may
choose to program at the assembly level utilizing the TMS320C54x instruction set, which is
divided into four basic types: arithmetic; logical; program-control; and load store operations. For
a complete list of the available instruction, the reader is directed to TI’s technical manual
sprul 72c.

The most common software development path involves utilizing the ANSI C or C++
route instead of writing at the assembly level as shown below:

34

i compilar

hﬁ_l

- - Assembly
bpchiver ; . p] transiation
: ' Assembler | " ass'stalnt
©os0lrCE L
1 1
\ Macro | l - y
; litary : T Bssembler o
: ; Y oGalrCE ¢
Assembler : :

" CcOFF Library-build
: object 5 utility
ArcHiver D s -
i . Euntime- .
TR 7 ' osUpport
. Likrangof :
: Iﬂhje?t : - P Clikkary
. files ! Linker
Dekugging
toal s
» Executable | —;::‘
: COFF
; 1 File 1
Hex conversion ; i
uLility
¥ ¥ ¥
EFROM : Crass-refe renc e
raFanme [P.hs-:lute Inster] (lister] A0
processor

4

Figure 4-1 CCS Software Development Flow

Based upon Figure 4-1, the C or C++ code is first compiled into assembly instructions, then
assembled into machine language object files, and finally linked in order to combine the several
object files into one single executable file. Other development paths are available, but are less
common and were not used in this project; therefore, for further details on this subject please
consult TI’s technical literature.

4.2 System Requirements [24 |

CCS runs on a Microsoft Windows platform with the following operating systems being
supported: Windows 98SE; ME; 2000 SP1 or higher; and XP. The minimum hardware
requirements are as follows: 233 MHz Pentium™; 600 Mb disk free space; 64 Mb of RAM;
SVGA (800 x 600) display; Internet Explorer™ (4.0 or later) or Netscape Navigator ™ (4.0 or
later); and a local CD-ROM drive. However, for better performance, TI prefers at least 128 Mb
Ram, 16-bit color, and a 500 MHz Pentium™ or higher processor.

4.3 Installation | 24]

In order to install CCS on the host PC, the CCS installation CD should first be loaded
into the CD-ROM drive from which point an install screen should appear on the host monitor. If
no install window appears, go to the Start menu and select Run from which the browse button
should be utilized to select the setup executable file on the CD-ROM. The CCS install option
should then be selected, after which the dialog boxes should be responded to appropriately as
they appear on the screen. Once the install program has finished, two icons should have been
placed on the user’s desktop titled C5416 DSK Startup and the C5416 DSK Diagnostic Utility.
After the DSK has been connected to the PC through the USB port, the DSK startup icon should
then be selected. The Launch Setup option from the File pull-down menu should then be
selected in order to configure CCS for the appropriate target board. Drivers from the CD-ROM
will be needed to complete this process. The Diagnostic Utility program is used to perform
detailed tests on the various board subsystems such as the DSP core, codec, memory, and on-
board emulation. It can run in standalone mode or from within Code Composer. The PC should
be restarted before running this utility.

4.4 Project Management [21][25]

The best way to introduce the project management capabilities it to first review the CCS
IDE, which is shown below:

36

SEI

File Edit Wiew Project Debug Profiler GEL Qpiion Ionls DSP/BIOS wWindow lﬂel.p

B s BR[| B A= =
| =l | & e | S B
Fler 0 BHEEHEL
i)
o | |23 GEL files

| g s _dskogel
G| | (13 Projects
=
&
=
z
i

O/

[INITIALIZING CPU For Help, press F1 [MoM | [

Figure 4-2 CCS IDE

The project view window is on the left, while the line editor is on the right. Within the project
window, the general extension language (GEL) file is already present. This file is created during
the target board configuration, and will not vary between projects as long as the same C5416
DSK target is being utilized.

In order to open a project, the Open option from the Project pull-down menu should be
selected. Underneath the Project folder, a project file will now appear, which can be opened by
highlighting the file and double-clicking on the left button of the mouse. At this point, the linker
command file and the following folders will now be visible: DSP/BIOS Config; Generated Files;
Include; Libraries; and Source. The linker command file or any of the listed folders can be
opened by highlighting and double-clicking the left button on the mouse. With the exception of
library files, the linker command file and all other files may be opened in the line editor by
highlighting and double-clicking the left mouse button with the following results:

37

i# Code Composer - [NOMLinearinterval delay quicker.C] ;Iil_)ﬂ

e/ Fil= Edit %iew Prmoject Debug FProfler GEL Option Tools DSP/BIOS Window Help - -8 x|
D BR[| 9 Sl A R RSN = g EE
[d5416dsk_AED109pit][Debug i e s P R SR A &
Bler | O BEERRA
= Binclude <stdlib.h> a

B3 GEL fles #Finclude "dsk5416.h

© g oB16 dskogel : .

Er-E3 Projects #include {emif.h>

g d5416dsk_AED109.pit

++[E] 5418_lnkp.comd
--[Z7 DSP/BIOS Config
D Generated Files

#include "AED.h"
#include "AED_DMS.h"
#include "AED_Appl.h"

B Includs .
B2 Libraries #:-L £ AED_PRINT-
é%C]Soww #include <{stdic.h> % Must be placed after AED.

L[] 5416 dske yetizon g

AED_DMS_4wDMa, o

#include <{math.h>

| asEEwen|dass

AED_MAIM.C
HOMLinearl nterval delay quicker. C
a wectors. asm ; i

#define AED_BOARD 108 DiEE
#define DMS_MODE Da_F5_MODE
#define DIVIDE_POWER () <% NO_RECORL
#define NO_RECORDS (1<<DIVIDE_POWER)
#define NO_FRAMES 3
#define RECLEHN 1 <% length

#define ELEMENTEIZE_CODE DMA_ESRIZE3Z
#define ZAMPLES_PER_WORD 2

- #define DAC CLE_CNT 40959 o
[File Wiew | M#Bookmarks o -
I) NERN il
[MITIALZING CPU | | For Help, press F1 Lnl Col® [[WOM [[

Figure 4-3 Project Tree and Line Editor Display

Alternatively, a new project could have been created by selecting the New option under the
Project pull-down menu and selecting the appropriate options.

Files may be added or removed from the project at any time. To remove a file, the
Remove from Project option must be selected from the pull-down menu after highlighting the
subject file and single clicking the right button on your mouse. In order to add a file, the Add
Files to Project option under the Project pull-down menu must be selected.

The Compile, Assemble, and Link functions can be accomplished for the entire project
by selecting the Rebuild All option under the Project pull-down menu. If errors are detected
during compilation, the associated file, line, and error message is displayed in the Debug
Window, which is automatically opened upon start of the compilation process. If compilation,
assembly, and linking were successful a zero error message will be displayed instead in the same
Debug window. At this point, the executable file may be downloaded to the target DSK by
selecting the Load option from the File pull-down menu. The execution of the program can then
commence by selecting the Run option under the Debug pull-down menu, and halted by
manually by selecting the Halt option under the Debug pull-down menu as well. After
termination, the executable code is not automatically reset. The program counter is residing at
the last code line executed. If a reset is wished, the code can be simply reloaded into the DSK,

38

which resets the program counter implicitly, or the Reset CPU Option under the Debug pull-
down menu can be selected to explicitly perform the same function.

The CCS line editor incorporates a CodeMaestro coding assistant. This feature assists the
programmer in creating syntactically correct code by suggesting words that are incompletely
typed, listing members of a structure or object, displaying parameter information, correcting
case, color coding, and creating a line limit for CodeMaestro deactivation to avoid excessive line
editor response times. Alternatively, an external third party line editor can be configured within
CCS, but is only available for editing files and not the various debug functions offered by CCS.

4.5 CCS Debug Tools [21][25]

The CCS IDE Debug tools are supplied to provide a means of allowing the user to
troubleshoot software and automate the configuration process for on-board data converters
through the use of the Data Converter Plug-In. Perhaps the easiest and most useful debug
function is the ability to determine the value of a variable after the execution has been halted by
simply placing the cursor over the variable of interest in the line editor. CCS also provides a
Selection Margin on the left side of the line editor, which is used to the display the program
counter after execution termination with a yellow arrow and the manual setting of Bookmarks,
Breakpoints, or Probe Points.

4.5.1 Bookmarks [21][25]

Bookmarks are represented by a blue flag. Highlighting a particular line in the code,
clicking the right mouse button once, choosing the Bookmark pull-down menu, and selecting the
Set a Bookmark option sets Bookmarks. The advantage of Bookmarks is that allows the
programmer to quickly move to particular lines in the code. This is accomplished by
highlighting a particular line in the code, clicking the right mouse button once, choosing the
Bookmark pull-down menu, and selecting the Bookmarks, highlighting a Bookmark of interest,
and selecting Go To. Each bookmark is required to have its own unique description. Adding,
deleting, editing, and moving to a Bookmark location can also be accomplished by selecting
Bookmarks option from the Edit pull-down menu.

4.5.2 Breakpoints [21][25]

A red circle in the Selection Margin represents Breakpoints. The Breakpoint tool is
software driven, which is implemented by actually modifying the target code at the location of
choice in order to halt the execution of the program once the associated line has been reached.
They can be set by selecting a line of code and double clicking the left mouse button. There is
no limit to the number of Breakpoints that may be configured. Alternatively, they can be set by
choosing the Debug pull-down menu and selecting the Breakpoint option. While controlling the
welding process, the Breakpoint should never be utilized or damage to torch could result.

4.5.3 Probe Points [21][25]

39

Probe Points are represented by a cyan diamond in the Selection Margin. They are set by
selecting the Debug pull-down menu and choosing the Probe Points Option. Probe Points
temporarily halt a program to allow for file I/O at which point the execution is resumed. As a
result, Probe Points can be useful for troubleshooting, but cannot be used in a real-time
application due to the latency they induce.

4.5.4 Watch Windows [21]][25]

The Watch Window is another very useful feature within Debug toolset. The Watch
Window allows for the values contained within a variable or structure element to be monitored in
real-time during execution. A Watch Window can be established by selecting the Watch
Window Option under the View pull-down and manually typing a local or global variable.
Alternatively, highlighting a variable within the Line Editor, clicking the right button on the
mouse, and selecting Watch Window will establish the same goal. During code execution, the
value represented by a variable or loaded into a memory location being monitored is constantly
updated in the Watch Window in a numerical form.

The disadvantage of the Breakpoint or Watch Window methodology is that it difficult to
visualize how the data set for a variable is varying during execution. This is overcome by
utilizing the Graph Option within the View pull-down menu. As a result, a visual display of the
complete data set can be built in real-time as the data is collected. By using this tool, errors,
trends, and relationships can be evaluated much more efficiently.

4.5.5 Symbol Browser [21]][25]

The Symbol Browser is used to disseminate information contained within the executable
output file. This tool is invoked by selecting the Symbol Browser option under the Tools pull-
down menu. At this point, the Symbol Browser window is opened, which contains five separate
tabs which are labeled: Files; Functions; Globals; Types; and Labels. This tool was not utilized
in this project. For further details, please consult TI’s technical literature.

4.5.6 General Extension Language [21][25]

The General Extension Language (GEL) is an interpretive language similar to C. This
syntax is used to allow the programmer to create user specific functions to extend the CCS IDE
capability. GEL files can be created in any text editor external to CCS as long as the appropriate
syntax is followed and the GEL file extension is utilized. In order to load GEL files into CCS,
the Load GEL option under the File pull-down menu should be selected. At this time, the loaded
GEL file will appear under the GEL folder within the project view window. The GEL files are
not specific to a project. As a result, GEL functions can be accessed in any location within the
source code as well as within the Watch Window. Upon initial target setup, the ¢c5416 dsk gel
file is configured by the CCS IDE. This file establishes initial register configurations in order to
configure functions associated with starting, resetting, and initializing the C5416 DSP,
peripherals, DMA, Multi-Channel Buffered Serial Ports, Timer, and the General Purpose I/O
ports.

40

4.5.7 Command Window [21][25]

The command window allows the programmer a method to manually type in commands
that can be accessed by selecting the appropriate option under the correct pull-down menu.
Many other software applications use the same thought process with CAD systems being a good
examples. Typically, this feature is usually just a user’s preference option; however, there are
some commands that are not available in the pull-down menus that can only be accessed by
manually typing in the correct syntax within the Command Window. The Command Window is
opened by selecting the Command Window option under the Tools pull-down menu.

4.5.8 Data Converter Plug-In [21][25]

The Data Converter Plug-In automates the configuration process for on-board data
converters. This tool is activated by selecting the Data Converter Support Option under the
Tools pull-down menu. Once activated, the correct data converter and DSP must be selected. In
order to select the correct data converter, the appropriate data converter must be highlighted, the
right mouse button must be clicked, and the add option must be chosen. A pull-down menu is
then created for the selected data converter to allow for user option selection. From the Files
pull-down menu, the write tab should then be selected. This tool will then write several ANSI C
files to the active project. From these files, the appropriate functions can be called to utilize the
on-board data converter. Furthermore, the C5416 DSK CCS™ V2.1 IDE is not delivered with
this feature. However, the Data Converter Plug-In is considered shareware and can be
downloaded from TI’s website at no monetary cost.

4.6 CCS DSP/BIOS [21][26][27]

The DSP/BIOS is a scalable real-time kernel. This toolset is provided within the CCS
IDE. When utilized, it formulates a very basic operating system for the C5416 DSK. The
DSP/BIOS kernel is packaged as a set of modules that can be linked into the project application.
Since there are over 150 DSP/BIOS application programming interface (API) functions that can
be called by the application source code as an interface to the kernel, a scaleable DSP/BIOS
kernel support library can be linked into the project application as necessary based upon how the
DSP/BIOS API functions are referenced directly or indirectly by the application. Since the
kernel is scaleable, features that are not being utilized may be disabled in order to optimize
performance.

By definition, the kernel includes an interrupt handler, scheduler, supervisor, and
memory manager. The interrupt handler receives and stores all requests for kernel services. The
scheduler establishes the precedence, and the supervisor grants access. The memory manager
organizes the memory map as required, which eliminates the need for creating a linker command
file manually.

The kernel is configured using the DSP/BIOS Configuration tool. Selecting the
DSP/BIOS Configuration option under the File/New pull-down menu accesses this tool. The
DSP/BIOS Configuration tool provides the ability to statically declare and configure DSP/BIOS
kernel objects during development rather then during code execution. These static objects exist

41

for the duration of the program. The DSP/BIOS does allow for dynamic creation and deletion of
kernel objects during execution, but the statically defined objects will utilize the minimal
memory footprint. In addition, the static objects allow for accurate predictions of memory
requirements during execution.

C, C++, or assembly source code can utilize the DSP/BIOS kernel by calling the
appropriate DSP/BIOS application programming interface (API) function. In order to allow the
application to call these functions, the configuration file, which utilizes a cdb file extension,
should be added to the project once appropriate template has been configured and saved. The
cdb file is extracted into three files. The file called program.cdb is added to the DSP/BIOS
folder, while the files programcfg.s62 and programcfg_c.c are both added to the Generated File
folder. The linker command file generated by the DSP/BIOS configuration should then be
added, while being sure to remove any other previously added linker command files. The
vector.asm and rts_ext.lib should then be removed from the project since these are automatically
defined within the DSP/BIOS configuration file.

4.6.1 CCS Chip Support Library [21][26] [27]

The chip support library (CSL) is configured within the DSP/BIOS Configuration tool.
The CSL provides a set of macros and functions that simplify the configuration and management
of on-chip peripherals such as DMA blocks, memory or parallel interfaces, serial ports, and
timers. By utilizing this feature, the programmer can realize significant timesavings by avoiding
time-consuming manual configurations.

4.6.2 CCS Real-Time Analysis [21][26][27]

The DSP/BIOS Real-Time Analysis (RTA) tool utilizes the Real-Time Data Exchange
(RTDX) feature to obtain, transfer, and display target data in a low-speed albeit real-time
communication link between the target and Host computer. For example, DSP/BIOS provides a
fully reentrant printf capability that can be executed in approximately 60 instruction cycles. As a
result, a visibility into program execution is provided while implying a minimal intrusion into the
real-time application processing.

The RTDX consists of both target and host components. A small RTDX software library
runs on the target application emulator in order to pass data to or from the DSK through the
JTAG interface. On the host platform, an RTDX Host library operates in conjunction with the
Host CCS IDE to send or receive the same data. The Host library supports two modes of
receiving data, which are Continuous and Non-Continuous. The Continuous mode is used when
the RTDX Host library is required to act as a buffer to obtain and display data from the target
application without storing. The Non-Continuous mode writes the received data into a log file
for permanent storage.

The RTDX is configured under the Tools/RTDX pull-down menu. Under this selection,
three choices are provides as follows: Diagnostic Control; Configuration Control; and Channel
Viewer Control. The diagnostic feature provides a means of verifying that the RTDX is working
properly, while the configuration feature allows the ability to disable/enable, view current

42

configuration settings, and modify the current configuration by accessing the RTDX
Configuration Control Properties page. The Channel Viewer feature allows the user to
add/remove and enable/disable RTDX channels as necessary.

4.7 Training Recommendation

This chapter has only provided a very basic overview of the Code Composer Studio
software package. In addition, the DSP/BIOS and Chip Support Library were not utilized in this
embedded application. However, if the full capacity of the DSK were to be achieved, it would
be advantageous to utilize these tools since they provide a very powerful method for configuring
on-board resources. In addition, there are other features that are offered within CCS IDE, but are
not functional in the C5416 DSK implementation. As a result, it is recommended by the author
that a Texas Instrument’s CCS workshop be attended in order to allow the user to become
familiar with this methodology in an efficient manner.

43

Chapter Five
Data Converter Daughter Card
5.1 AED-109 [6]

Signalware’s 12-bit AED-109 Daughter Card capable of sampling rates up to 8 MHz is a
relatively efficient and economical means of building a fast feedback control system when used
in conjunction with a TI, DNA Enterprise, or Blue Wave Systems DSP platform. In particular,
the AED-109 is ideally suited for evaluation modules (EVM) and DSP developer’s starter kits
(DSK) for TI’s TMS320C6xxx and TMS320C5xxx series processors. Other applications of the
AED-109 involve sensor processing and communications. A picture of the top surface of the
AED-109 is shown below:

Figure 5-1 Signalware AED-109 Top Surface

The AED-109 is a versatile full size data converter whose main configuration consists:
two dual channel A-to-D converters; two dual channel D-to-A converters; three adjustable
voltage references; 16 digital I/O configurable ports; and a programmable logic interface for the
on-board FPGA, and several connector interfaces which include: EVM Expansion; JTAG;
Digital I/O; and Analog SMB. In addition, the AED-109 can be delivered in a number of
different configurations based upon user requirements. Additional options include analog
buffers, transformers, additional SMB connectors, flash memory for DSP boot loading, and a
variety of AI/AO input/output configurations. A basic block diagram of the AED-109 operation
is shown below:

44

Analog
Breadboard
Aren

2 -TIls4062

2 -TH33001

D-to-A
Converter

Fhsh (512KB)

A

Flash (S12EB)

A

2 Channel

A-to-D

Baot Load
P & Sawe {

Conv erter

2 THZ1209

2 Channel
A-to-D

Comv

EI'TEY

D-t-A
Cintr erter

izh S'I"E"Bd_ ’. Read fiom
Preprocessing AT Control

<

2 -TH=3ea1

.{_

DSP Board Clock

Up/downcowmter

VWrite in
DAC Conirol |

gadohononas

To Corrrerlers
Peripheral I'F

The FPGA pravides for a mnber af interiace functions in the daighterbaard.

Figure 5-2 AED-109 Basic Block Diagram

5.2 EVM Expansion Interfaces [6 |

There are actually two EVM expansion connectors called the expansion memory
interface, J9, and the expansion peripheral interface, J10. Both connectors are 80-pin and are
used to interface with the DSP platform, which in this case is the TMS320VC5416 DSK.
Referencing Figure 5-1, it should be noted that the top layer of AED-109 is actually facing down
when the EVM expansion connectors are engaged into the C5416. Furthermore, a stacking
feature was not chosen for this board, although available; therefore, no expansion connectors are
present on the bottom side of the board. The pin-out of the expansion memory interface is
shown below, where the letter “O” refers to output, “I” refers to input, and “Z” refers to high

impedance:
Table 5-1 Expansion Memory Interface, J9
Pin # Signal Name Type FPGA Pin #
1 5V PWR -
2 5V PWR -
3 XA21 O 220
4 XA20 O 221
5 XA19 O 222
6 XA18 O 223
7 XA17 O 224
8 XA16 O 228

45

Table 5-1 Expansion Memory Interface, J9 (Continued)

Pin # Signal Name Type FPGA Pin #

46

Table 5-1 Expansion Memory Interface, J9 (Continued)

Pin # Signal Name Type FPGA Pin #

52 GND - -

80 GND - -

The expansion peripheral connector pin-out is shown below:

Table 5-2 Expansion Peripheral Interface, J10

Pin # Signal Name Type FPGA Pin #

47

Table 5-2 Expansion Peripheral Interface, J10 (Continued)

Pin # Signal Name Type FPGA Pin #

12 | SPARENC) [- | -
14 | RSVDNO [- | -
6 | RSYDNO [- | -
18 | SPAREQNCO) [- | -
20 | 33V | _PWR | -
24 | XDX0 | O | 100
2 | GNDO -] -
8 | SPARENC) [- | -
3 | XDRO | I | 9%
3% | GND -] -
3% | Xox1 | O | 8
% | GNDO -] -
40 | SPARENC) [- | -
4 | GNDO -] -
4 | SPARENC) [- | -

48

Table 5-2 Expansion Peripheral Interface, J10 (Continued)

Pin # Signal Name Type FPGA Pin #
52 GND - -

XCNTLO | O | 72 |
66| XSTATO

68 | SPARENO) | - | -
7 | XCE3 | o | -
72 | DMAC2Z | O | 6
74 | DMACO | O | 65
7% | GNDOO) - -
78 | XCKOUT2 | O | 8

80 GND - -

5.3 JTAG Header [6]

In addition, this Signalware board is delivered standard with a 14-pin single row header
JTAG port, J1, which is used in the programming configuration of the on-board FPGA and
associated flash. This port is located on the right side of the board referencing Figure 5-1, where
pin 1 is located at the top with a dot adjacent. The pin-out of J1 is shown below:

49

Table 5-3 JTAG Pin-Out, J1

5.4 Digital I/0 Connector [6]
The Digital I/O connector is a 40-pin, 50 mil pitch, double-row connector designated,
J15. This connector has 16 digital I/O ports, 6 grounds, and 18 pins that are connected to pads

adjacent to the breadboard area. The pin-out for this connector is shown below:

Table 5-4 Digital I/O Pin-Out, J15, and FPGA Digital I/O Control Lines

Pin # Signal Name FPGA Pin #

BBPad | - |
9 | BBPad | - |

1| BBPad | - |
|13 | DigitalGround | - |
15 | Vo2 | - |
7 | Vo2 | - |

19 /O 19 -

50

Table 5-4 Digital I/O Pin-Out, J15, and FPGA Digital I/O Control Lines (Continued)

Pin # Signal Name FPGA Pin #

2 | o | - |
200
195
193
191
| 31 | DigitalGround | - |

217

187 or 210 for

- | VOEnable 185

- I1, 13, I5, 17 Enable 177

5.5 Analog I/0 Connectors [6]

The Analog I/O can be connected through 8 SMB connectors. There are eight ports with
plated-through hole connection points available on the AED-109 board for these Al or AO
connectors. Not all eight ports are populated at delivery. As a result, it should be realized that
the Analog I/O could be configured in a single-ended or differential manner. When in the
differential mode, the SMB connectors can be configured in two different manners with the
intention of being used in conjunction with either a floating (single) coax or dual coax cable. For
a single coax, the negative signal is wired to the backshell of the SMB resulting in only one SMB
connector being used for a single differential input; however, for a dual coax, the positive and
negative signals are actually brought in on two different SMB connectors and the backshell of
each connector is grounded resulting in two SMB connectors being used for a single differential
input. In the single ended mode, the backshell is grounded and only one SMB connector is
utilized per single ended input. However, it should be realized that this is merely the manner in
which the signal is delivered to the board and not necessarily the method in which the signal is
introduced to the THS1209 ADC. In other words a differential signal could be delivered to the
board, but the THS1209 ADC could still be configure to work in a single ended manner.

51

The delivered AED-109 actually had its front end Analog I/O inputs custom designed.
The Al are designed to be £10 Volts DC single ended with a differential output. The AO are
designed to be £1 Volts DC single ended. The AI’s are passed through a two-stage amplifier
circuit. The first stage consists of a inverter with a gain of approximately one-tenth, while the
second stage is a inverter with a unity gain. The differential output of the Al is accomplished by
having the output of the first stage split such that in one direction the unity inverter is bypassed
and in the other it is not. The result is a differential output of the Al circuitry as shown below:

RX00
2
MA————
1.0k RX01
—2 AAN—L
2.0k
NA_+VCCF
RX12B . | Na_svece
617 2 AM—1— _2 Wj‘\{ﬁ; UX00A RX13B . ‘
10k iy 2 At o -l UX00B RX04A
RX16 e g 2.0k J S S S v S S
VREFo———2 AAA, 1 iy | THS40X2 VREFo— 5 {np g 511
2.0k " [= THS40X2
~ \y A-VCCF
< RX20 phvece
522k RXO05A
- - 1 —ANN—Z ——— AN_P
59,4
v GND

Custom analog front-end for the AED-109

The inputs to these circuits are the SMB connectors referenced J6 and J7
The input voltage range into these circuits is -10V to +10V

Figure 5-3 AED-109 Custom AI Front End

The AO circuit is shown below:

Component Ref"X" =2 or 4

BXOZ2

RK12A RX10 RX00
v AN
SEE CHART SEE CHART 49.9(0603) 0.0

KauT2

R55A_G1A

A_CND acio 0.0

X00 ——CX00
AP
P AVAILABLE | RXOO/RX10
AMPLIFIERS | RX06/RX20
AN 4 el T
ax03 . THS4001 1.0K
THS4031 | 365
. RX16C RX0G | it - 5
00* SEE CHART HEa T BIE THS4051 | 10K
(=} 1]
RX42 RX20
49.3 (0603) TSE E CHART THS4061 400
B i} THS3001 | 750
A_CHO A_GNO

Figure 5-4 AED-109 Custom AO

52

5.6 FPGA [6]

The FGPA utilized can be a PQ or HQ 240 package, reference designator Ul, or for
smaller footprint applications, a PQ or HQ 208 package. For this implementation, an XCV50E-
PQ240AFS0145 FPGA was chosen. The pin-out for this device is shown below:

vou) CRAERRA™ Ri5 00 (0603) D_CNTLI25:0) i
Al21:2) o cexmiz it . L
%i 12= g o T P e r—tt ﬁ DN——0TPT2
cf as L m e
» 2| A Bl 15
18 | | il f i J ‘ [FA—:E?D DONE————o TP T28
= e T ; H nT HFH | 22 | e T3
T72 70 sz) L L 5 ! = & 00 o PROG——— OTRT0
- —> P8V
T73 TP U Qg %EE@?QQEEQQS‘QQ%Q@ggg g igék QQ;FQ 2 n Qg mg:ggg% I’ EXCLK. PT78
ot-fd GND
DATA_BUS[31:0] = . 8° 2 3 P Qcox| p wmad -
DATA BUS{5 lonRer_B7 R L J1
i 3 e o]
DATA BUs S o S H - H—e nr
3 Ls Brver e 2 e i E
a%ﬂﬁ %’“E‘:ﬁ JRVEEE [— - o— gﬁé
ks N |
i i o Co—] ";m
s Jvecir F— %
5% %WEFJ? I e i b
DATA BUSS Y0E B] IOVREF_ EE%‘__‘: Z8
e e S i LTAG dase
e o — - lex
) HA e K e 22-06-2141
5 e e — 14 pin RT header
Toshiba o Ut I — !
DATA BUS1S ': S aN - i
TECTSHO4FCT \TA BUS Voot
uzt ﬁ e VIRTEX-E_PC-HQ240 oo o T
s Rmer o0 Xilinx I —
w2 RO TIY 13 Virtex-E 1.8V R B mmE——
vt a0 | Hifeour XCVxoE-nXQ240 e |
DATA BUS2S s i L nocz0
IOAREF, O] 11
cap o ngm‘g et
0.22F (0603) S P = o & o —
;% ™ ARG5S
o L B o e A
w R@S&’E\:.' E‘ Dw! {-- INIT.
W e ¥ 5*2 awui_ﬂgaa 3 gsga PR
ke R3 ;‘?usm) S!nmgnnggng Qgégmgpqg BEE‘? 55—%99 éng Qggﬁqg Qgéng &p% i
03] ") 1} i o
el R1 i T TR i i Y S fsacoe E = ﬂ SRLEND RG]
e ﬂ(mm) = T e - H e
I gﬁﬁp
l: R4 T7OT PO-¢ LaFEimio
+o.eno 0.0 (0803) 171 TPo——u1L__| DCUNI'I'—'
e b ——
[T R oo —| W‘“’@,_
e e |
i me———ear TR
XETAT 1 e+ ﬁ
= 4.7k for R2 with Spartan XL FPGA, and 0.0 for R2 and R3 with Virtex FPGA. T
(R1 is omitted, and R3 is omitted for the Spartan.) R28 820 (0803) J,DMD

Figure 5-5 XCV50E-PQ240AFS0145 FPGA Pin-Out

The FPGA controls the interface between the DSK and Daughter card. As a result, all
signals originating from the expansion connectors are terminated at the FPGA chip with the
exception of the address and data lines driving the flash utilized as external memory for the
DSK, U13 and or Ul4. Only the control signals originate from the FPGA to the flash, U13 and
Ul4. In addition, the 16 digital I/O ports are also configured, read, and written to through the
FPGA. Furthermore, the FPGA is also responsible for configuration and control of the 12-bit
input to the DAC and the 12-bit output from the ADC.

5.6.1 FPGA Configuration [6]

The FPGA configuration is volatile (i.e. it is lost on power down); therefore, the
configuration for the FPGA is loaded on power-up from the serial PROM, U2, or the flash, U9
and or U10. In this configuration, only U9 is populated. Flash by its design is non-volatile and
is referred to as ROM. Alternatively, the FPGA can be configured through the Xilinx tool
iMPACT, in boundary scan mode. The latter method is volatile since the flash or serial PROM
is bypassed.

53

Tools for developing and downloading FPGA configurations are available from Xilinx.
The Series Software tools offer a freeware introductory version, WebPack, and non-shareware
more advanced software suites. WebPack can be used for basic configurations without FPGA
options. The exact tools required for synthesis and implementations depend upon the
configuration mode utilized. Since a PROM device was not populated, the procedure for
programming will not be covered in this document. As a result, the Xilinx tools iIMPACT and
Prom File Formatter are sufficient to accomplish the task. Both of these tools are contained
within the WebPack software package.

IMPACT is utilized to create the bit file, and the Prom File Formatter is used to create the
mcs file from the bit file. The bit file is used to program the FPGA chip while the mcs file is
used to program the flash. In order to implement these files, the JTAG Cable Model 1JC-2 from
Memec Design should be utilized to interface between the J1 port on the AED-109 and the
parallel port on the PC containing the Xilinx tools. If a volatile implementation is desired, then
only the FPGA should be programmed by using iMPACT in a boundary scan mode; however, if
non-volatile solution is desired, the Prom File Formatter should be used to program the flash
memory. If the boundary scan mode is chosen, a jumper must be placed across pins 1 and 2 of
the J1 connector. This jumper must then be removed before the next restart. If this jumper is not
removed, the FPGA will not be loaded from the flash upon power-on and will be un-configured.

5.6.2 FPGA Control Registers [4][6]

The FPGA makes use of several memory-mapped registers in order to configure, control,
and read/write to the various hardware elements on the AED-109. These registers are mapped
into Data space on the DSK as defined within the Test program. The following table outlines the
memory-mapped registers for the AED-109 used in conjunction with the C5416 DSK:

Table 5-5 AED-109 FPGA Memory-Mapped Registers

Restier Neis Byte 16-Bit Word | Data Space | Read/Write
Addressing | Addressing Page # Capability
Digital I/O 0190000046 640000 810 R/W
Digital I/0 Control 019000046 640001 4 810 R/W
A/D and D/A Status 0192000046 648000 910 R
Interrupt Start 019200046 648001 4 910 R/W
Interrupt Period 019200086 6480026 90 R/W
Interrupt Down Counter 0192000C; ¢ 6480036 90 R
A/D Clock Rate 0192001046 648004 ¢ 90 R/W
A/D Clock Down Counter | 01920014¢ 64800514 910 R
D/A Clock Rate 019200184 648006 910 R/W
D/A Clock Down Counter | 0192001C¢ 6480074 910 R
A/D Clock Pulse Width 0192002046 6480086 90 R/W
A/D CRO 019200244 648009 910 R/W
A/D CR1 0192002815 | 64800A 90 R/W
A/D Data 01A00000;6 | 6800004 1619 R
D/A Data 01A0000056 [6800004 1619 w

54

All of the FPGA memory mapped registers are 16-bits wide, but in the above table, two
addressing schemes are shown. The C5416 DSK is capable of supporting 16-bit addressing for
all memory spaces, but Data and I/O can also support 32-bit addressing as well. When using a
32-bit scheme, byte addressing is utilized which effectively makes two least significant bits
always zero. For example, bits 24, 23, and 20 are high for the Digital I/O byte addressing. For
16-bit addresses, the 32-bit address is shifted 2 bits to the right. As a result, the same Digital I/O
address is now expressed by having bits 22, 21, and 18 high.

The FPGA does not need to address more then 16 memory-mapped registers; therefore,
bits 15 through 6 are shown as zeros for byte addresses, but are actually don’t cares since they
are not connected to the FPGA. Bits 14 through 4 are don’t cares for 16-bit addressing for the
same reason.

Remembering Section 3.1.1.4.5 MISC Register, it was outlined that Daughter Card
memory accesses were permitted if the C5416 address line A;s is a logic 1, the DROM bit in the
PMST register is zero, and the DM_SEL bit in the DM_CNTL register contained with the CPLD
is set to 1. In addition, the AED-109 uses a 32-bit addressing scheme, which requires that the
DC_ WIDE bit within the CPLD MISC register be set to a logic 1. Furthermore, the DC_320DD
bit contained within the same MISC register must be set low if the supplied address is even and
high if odd. Finally, the transfer of data will be successful if the proper logic sequence is
followed as outlined in Section 3.1.1.4.5.

It is also worth revisiting the C5416 DSP address lines. This processor utilizes 16
external address lines, but A;s is only being set to signify to the processor that an off-chip
memory access will take place. The DM _SEL bit contained within the CPLD register
DM_CNTL signifies that a Daughter Card will being making this access provided this bit is a
logic 1. As a result, the A;s bit is not utilized in the data memory map address. Therefore,
concatenating the four DM_CNTL bits with the 15 remaining DSP address bits forms the
complete memory-mapped address. The DM _CNTL bits contained within the CPLD
DM_CNTL register are used to determine the correct page. An outline of this Data Space bit-
addressing scheme is shown below:

o 'j‘ ’1"‘ ’1“ ’; ’:" alalalalalalalalalal ose
wl= T E
AR & alalz]1]o]| Address
DM PG4 | OM PG2 | DM PG2 | DM _PG1 | DM _PGO Page
Address
W10 W18 W17 W16 s [mfmlmlwlalal]l wlalmlu]u]m] vemory
sl lelal7]le]ls]lalalz]1]o] Address
alalzl1]o0

A[15:0] is DSP Address

DM_PG[4:0] are located in DM_CTNL Register of CPLD at 1/O Location 0x0005
bits 4-0. See section 2.2.4.1.5 that discusses the DM_CTNL register.

M[19:0] is memory Address

Figure 5-6 Data Space Bit Addressing

55

The linker command file used by Code Composer Studio is responsible for defining how
the compiled executable code should be placed in Program space on page 0 and Data space on
page 1; however, once this code is executed variable information such as the FPGA memory-
mapped registers can be mapped outside the confines of the linker command file. See Chapter 6
for more details.

5.6.2.1 Digital 1/0 Register [6]
Each Digital I/O register bit corresponds to one digital I/O pin. The relationship is bit 0
corresponds to digital I/O 1, bit 1 corresponds to digital I/O 2, and so on. When the transceivers

are set to output, the Digital I/O register is R/W, but when the transceiver is set to input, the
Digital I/O register is read only. The layout of this register is shown below:

Digital /O Register

M5B LB
Bit 1% 14 13 12 11 10 9 8|7 6 5 4 5 2 1 0
Field o o o o o o o oo oo o | o |

w4 4% 32 41 1w 8 w7 6 9 4 3 2 4 0

ACCess EOFF i OB OE O OF OE O OE O OFF OF O OE OB N L
Initial Walue 0 0O

Field Definition
/0 15-8 Digital /O Bit Values: O-low, 1-high
o, 12, 14, 16 Digital /O Bit Values: O-low, 1-high

1, O3, 05, 07 Digital /O Bit Values: O-low, 1-high
Figure 5-7 Digital I/O Register

5.6.2.2 Digital I/O Control Register [6 |

The Digital I/O Control register is used to enable and control the buffers and transceivers.
The OE bit enables or disables these devices. The D, bits allow the Digital I/O on reference
designator J15 to be configured as 12 DO’s and 4 DI’s or 12 DI’s and 4 DO’s as shown below:

56

Digital 1O Control Register

MSE LSB
Bit TR RE | 18 | 2 e | B B Y, OB &5 & 3\ 3 4 0
Field OE D2 D1 =FARE
ACCess

lnmitial Vg4lve 0 O O 0 O O 0O O O 0O O O 0 0O 0O O

Field
O/E
D2
By

Definition
Output Enable /O 1-24: 0-enabled, 1-disabled
Direction [/O 9-16: O-input, T-output
Output Enable Outputs 1, 2, 5, 7 O-input, 1-output

Figure 5-8 Digital I/O Control Register

The buffer that is utilized is the 74LVTH244 reference designator, U20, and the transceiver is a
74LVTH245 reference designator, U19.

5.6.2.3 D/A Data Register [6]

The D/A Data register is 32-bits wide in order to support 32-bit double word DMA
transfers between the C5416 DSP and the AED-109 FPGA D/A FIFO. Once the Interrupt Down
Counter register reaches zero, an interrupt is generated and the DMA controller commences to
transfer data between the Data registers in the FPGA FIFOs and the C5416 independent of the
CPU. Since this 32-bit double word mode is actually comprised of two separate 16-bit words
where one occupies the upper 16-bits and the other the lower 16-bits, two consecutive 16-bit
transfers are performed per single 32-bit double word. After each 16-bit transfer, the source and
destination address are automatically incremented. The initial source address is contained within
this D/A Data register. Once a block of data has been transferred to the FPGA D/A FIFO, the
initial source address is reinitialized independent of the CPU.

The DMA controller uses the same memory address for the A/D Data register and the
D/A Data register. Although these memory addresses are the same, they do not represent the
same hardware. These transfers utilize the same bi-directional EMIF bus. As a result, only one
function is enabled at a time to avoid conflicts. Furthermore, the DMA controller has six
channels, but only 2 are available for off-board to on-chip transfers, which is sufficient for
reading and writing in this application. When the block transfer is completed, the DMA
channels autoinitialize in order to start fresh at the same physical memory address still contained
within the D/A Data register. This register is shown below:

57

DA Data Hegister

MSH LsHE
Biit a1 90 29 28 27 25 25 A U3 U2 N 20 TH 18 17 18
Field o oo bDDDDODODODDDD D D

31 30 29 28 27 26 25 24 43 Y2 N 20 18 18 17 18

ACESS WOV W W W W W W W W W W W W
Initial vValue 0 O O 0 0 0 0 O 0 0o 0 0 0 0O 0 O

mMsH LsH
Bit 1 141312111 8 8 7 6B & 4 3 2 1 0
Field o oo DD D D D

~ O
m O
Sl
I
L O
=N

O

O

1% 14 13 12 11 10 § 8

Acess WO W W
Initial value 0O 0O 0O 0

oz
o 3
oz
o 3
o 3
=3
oz
o 3
o 3
oz
o 3
o %

Field Definition
O o0-11 Data Sample (12 bits) for device A
0 16-27 Data Sample (12 bits) for device B

Figure 5-9 D/A Data Register
5.6.2.4 D/A Clock Rate Register [6][28][29]

This register is used to establish the DAC sampling rate. This register contains the DAC
EMIF clock rate divisor minus one. This register is used to load the D/A Clock Down Register
once it has decremented to zero. Since the D/A Clock Down register is counting down to zero,
the value held in the D/A Clock Rate Register is incremented by one to obtain the correct divisor
and avoid an interrupt that is generated one EMIF clock cycle early. When establishing this rate,
care should be taken to establish the appropriate ADC/DAC ratio. This ratio should always be
an interval number of binary bits such that the ratio could be 1, 2, 4, 8, and so on up to a
maximum interval number of 512. The reason for this maximum is that the FPGA FIFOs cannot
hold more then 512 data samples. In this case, an DAC sampling rate of 1.953125 KHz was
chosen. Realizing that the EMIF clock rate is 80 MHz and picking a divisor of 40960 in the Test
Program allowed the DAC sampling rate to be calculated for the THS5661. The DAC rate
cannot be set lower then the EMIF clock rate divided by 65535, which results in a minimum
sampling rate of 1.22 KHz at EMIF equal to 80 MHz. The maximum DAC rate should be
determined by experimentation by watching the U2 bit in the Status register. When a maximum
DAC rate has been exceeded, an underflow of the FPGA D/A FIFO will occur an bit U2 will be
a logic 1. However, the DAC sampling rate should never exceed the maximum ADC sampling

58

rate of 8 MHz established by the THS1209 data sheet. The D/A Clock Rate Register is shown
below:

D/A Clock Rate Register

WSE L5B
Bit %5 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0
Field c o o bbb bbb D D b 0O D D D

1% 14 13 12 11 10 9 & ¥ 6 & 4 3 2 1 0

Acess
[nitigl Value O O 0 0O 0O 0O O O 0 o o 0 0o o 0 0

Field Definition
O 0-15 Value loaded into the DAC clock down counter
DAC clock rate = CONY_CLK rate/{DAC Clock Rate REegister + 1)

Figure 5-10 D/A Clock Rate Register

5.6.2.5 D/A Clock Down Counter Register [6] [28 |

The D/A Clock Rate register initially loads the D/A Clock Down Counter register with
the divisor it contains plus one when the XCNTLO pin is low. This counter decrements every
EMIF clock cycle. Since the decrementing of this register does not start until the XCNTLO pin is
raised high, the D/A FPGA FIFO should have its contents initialized in the Test Program in order
to avoid an initial underflow of the D/A FIFO. Once the number of EMIF clock cycles equals
the divisor number used to calculate the DAC clock rate, an interrupt is generated and the
processed 16-bit control output is downloaded to THS5661 DAC from the FPGA D/A FIFO. At
the same time, the D/A Clock Rate register reloads the D/A Clock Down Counter register and
the process is repeated. The D/A Clock Down Counter register is shown below:

59

DéA Clock Down Counter Register

Eit

Field

Arceass

Initial Walue

Field
D 0-15

WMSE LSE
19 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o0 obbbDbDrbDbDDb DD D D
1 14 13 12 11 10 9 8 7 6B 5 4 3 2 1 0
r r r r r r r r r r r r r r r r
o 0 0

Definition

Value read from the DFA down counter.
A clock pulse is sent to the DVA converters when this count reaches
zero. |tis reloaded from the DFA Clock Rate Register.

Figure 5-11 D/A Clock Down Counter Register

5.6.2.6 A/D Data Register [6 |

The A/D Data register utilizes the same process as outlined in Section 5.6.2.3.

AD Data Register

Bit

Field

Acess

mMSB (=1
41 30 28 28 27 J5 25 24 23 22 21 20 19 18 17 1B

o oobbb b DDDUDUDOUDTUDUDUDD
41 30 28 28 27 26 25 24 23 22 21 20 19 18 17 1B

r r r r r r r r I r r r r r r r

Initial%¥alue 0 0O 0o 0 0 0 0 0 0 0 0O O O O 0O O

Bit

Field

Acess

M3B LSB

Initialv¥aluee 0 0O o 0 0 0 0 0 0O 0 0O O O O 0O O

Field Definition

0 0-11

Data Sample (12 hits) for device A

O 16-27 Data Sample (12 hits) for device B

Figure 5-12 A/D Data Register

60

5.6.2.7 A/D Clock Rate Register [6] [29]

This register is used to establish the ADC sampling rate. This register contains the ADC
EMIF clock rate divisor minus one. This register is used to load the A/D Clock Down Register
once it has decremented to zero. Since the A/D Clock Down register is counting down to zero,
the value held in the A/D Clock Rate Register is incremented by one to obtain the correct divisor
and avoid an interrupt that is generated one EMIF clock cycle early. When establishing this rate,
care should be taken to establish the appropriate ADC/DAC ratio. This ratio should always be
an interval number of binary bits such that the ratio could be 1, 2, 4, 8, and so on up to a
maximum interval number of 512. The reason for this maximum is that the FPGA FIFOs cannot
hold more then 512 data samples. In this case, an ADC sampling rate of 500 KHz was chosen.
Realizing that the EMIF clock rate is 80 MHz and picking a divisor of 160 in the Test Program
allowed the ADC sampling rate to be calculated for the THS1209. The ADC rate cannot be set
lower then 100 KHz based upon the TH1209 data sheet. The maximum ADC rate cannot be set
higher then 8 MHz based upon the same requirement. The A/D Clock Rate Register is shown
below:

AD Clock Rate Reqgister

hSE LB
Bit 1% 14 13 12 11 1w 8 8 7 6 5 4 3 2 1 0
Field B B D D B B D B B B D L B B DO D

1% 14 13 12 11 1w 8 8 7 6 5 4 3 2 1 0

Arcass
lnitial Value 0 0O O 0O 0O 0O 0 O O 0O 0 0O o o 0o 0

Field Definition
D 0-15 YValue loaded into the ADC clock down counter
ADC clock rate = CONY_CLK rate/{ADC Clock Rate Reqgister + 1)

Figure 5-13 A/D Clock Rate Register
5.6.2.8 A/D Clock Down Counter Register [6] [29]

The A/D Clock Rate register initially loads the A/D Clock Down Counter register with
the divisor it contains plus one when the XCNTLO pin is low. This counter decrements every
EMIF clock cycle. Since DMA will not download the contents of the A/D FPGA FIFO until the
Interrupt Down Counter register decrements to zero, the contents of this FIFO do not have to be
initialized in the Test Program in order to avoid an initial underflow of the A/D FIFO. Once the
number of EMIF clock cycles equals the divisor number used to calculate the ADC clock rate, an
interrupt is generated and the contents of one word of the A/D FIFO is uploaded from the
THS1209 ADC. At the same time, the A/D Clock Rate register reloads the A/D Clock Down

61

Counter register and the process is repeated. The A/D Clock Down Counter register is shown
below:

AD Clock Down Counter Register

M5B L5B
Bit 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field o o b o o bbb b b Db D D D D D

% M4 12 12 1110 9 8 7 6 5 4 3 2 1 0

Acess PO i OB OF 4 O OB OB
mitial Value 0O 0

_1
=
-
e
o
=

Field Definition
D 0-15 Value read from the AD down counter.
A clock pulse is sent to the A/D converters when this count reaches
zero. Itis reloaded from the A/D Clock Rate Register.

Figure 5-14 A/D Clock Down Counter Register
5.6.2.9 A/D Clock Pulse Width Register [6] [29]

When the A/D Clock Down Counter register has decremented to zero, the clock pulse
that is sent to the THS1209 ADC has a duration equal to a multiple of the EMIF or Daughter
Card clock period, which effectively produces a variable duty cycle for the ADC. The A/D
Clock Pulse Width register configures this value. In the appl parms function within the Test
Program, the pulse width is configured to be 5 times the EMIF clock period or 62.5 ns. The A/D
Clock Pulse Width register is shown below:

62

A0 Clock Pulse Wyidth Register

M5B LB
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field e O D D B O D B B D D B B DD D

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Acess
nitial Walue o 0O 0O 0 0 0O O O O o 0O 0O 0 0 0o 0

Field Definition
D 0-15 Comversion clock pulse width in base clock cycles.
rinimum - specified minimum clock pulse width in data sheet
Maximum - half of the Clock Rate Register

Figure 5-15 A/D Clock Pulse Width Register
5.6.2.10 A/D Control CR, Register [6] [29]

The TH1209 contains two analog input channels, which can be configured as two single
ended inputs or one differential input. Since there are two THS1209 ADC’s on the AED-109,
this board can be configured for two differential or two single ended 12-bit inputs to the FPGA
since the THS1209 can only quantitize a single 12-bit output regardless if it is single or
differential in nature. The external interface for these ports are the J6 and J7 SMB connectors or
the Breadboard area. In order to utilize the THS1209 in a single differential channel mode, the
Control Register 0 must be configured on the THS1209. This configuration is accomplished
through the A/D Control CRy register as shown below in the following table and figure:

Table 5-6 THS1209 Control Register 0 Bit Functions

Bit NEgEh WS Function
Value
V.o select:
0 0 VREF 0 => The internal reference is selected.
1 => The external reference voltage is selected.
1 0 RES Reserved
Power Down:
2 0 PD 0=>The ADC is active.
1 => The ADC is powered down.
Channel Select for bits 3-5:
3 0 CHSELO 000 => Analog input AINP (single ended)
4 0 CHSEL1 001 => Analog input AINM (single ended)
5 1 DIFFO 010 => Reserved
011 => Reserved

63

Table 5-6 THS1209 Control Register 0 Bit Functions (Continued)

Bit el Weine Function

Value

6 | 0 | DIFFl |Reserved |

Test Mode:
00 => Normal Mode
01 => Vrefp
10 => (Vreﬁn + Vrefp)/ 2
11=> Vrefm

A0 Control CRy REegister

M5B LB
BEit 15114 13 12911 10 9 & 7 6 5 4 3 2 1 0
Field W Spare o o b o b b D b D D D D
© "M 1w 9 & 7 6 5 4 3 2 1 0

Arcass
nitial Value 0 0O O 0O 0 0O O 0O 0 0O o 0o 0 0o o o0

Field Definition
D 0-11 Device Control Register for THZ12089
W1 Wyrite Control: 1 = write new value, 0 = reset register

(Register must be reset by CPU before a new write is performed.)

Figure 5-16 A/D Control CR, Register

Based upon the THS1209 data sheet, bit 5 should be asserted, while all other bits 11
through O should be a logic low in order to achieve a single channel differential mode. In
addition, the THS1209 only has one 12-bit configuration port, which results in the bits 11 and 12
being used to identify if the Control Register 1 or 0 is being configured. The bit pattern 00 refers
to Control Register 0, while 10 refers to Control Register 1. In addition, bit 15 should be
asserted in order to allow the register to be initially configured. Only bits 0 through 11 are
actually written to the TH1209 Control Register 0. The appropriate hexadecimal value of 8020
is established in the appl parms function within the Test Program. For further details, consult
the THS1209 data sheet.

64

5.6.2.11 A/D Control CR; Register [6] [29]

The THS1209 ADC utilizes one other register called the Control Register 1 to properly
configure this device. This register is responsible for resetting the device, establishing the
appropriate read/write logic levels, selecting 2’s complement or binary bit format, differential
offset error reduction, and debugging capabilities. Bit 2, 3, 4, 5, and 11 are always zero, while
bit 10 is always 1. In addition, the THS1209 only has one 12-bit configuration port, which
results in the bits 11 and 12 being used to identify if the Control Register 1 or 0 is being
configured. The bit pattern 00 refers to Control Register 0, while 10 refers to Control Register 1.
In this configuration, a R/W’, binary, no offset correction, and no debugging configuration was
selected by choosing a hexadecimal value of 84C0, in the appl parms function within the Test
Program. The following table outlines the appropriate configuration for the A/D Control CR;
register:

Table 5-7 THS1209 Control Register 1 Bit Functions

Bit | Reset Value | Name Function

Reset:

Writing a 1 into this bit resets the device and sets the
CRO and CR1 to the reset Values. To bring out of a
reset, write 0 to this bit.

0 0 RESET

| 2| 0 | RES |Alwayswritt0. |

R/W’, RD/(WR)’ selection:

Bit 6 of CR1 controls the function of the inputs (RD)’
and (WR)’. When bit 6 in CR1 is set to 1, (WR)’
becomes a R/W’ input and (RD)’ is disabled. From now
on a read is signaled with R/W high and a write with
R/W as a low signal. If bit 6 in CR 1 is set to 0, the input
(RD)’ becomes a read input and the input (WR)’
becomes a write input.

Offset Cancellation Mode:

0 => normal conversion mode

1 => enable calibration mode

If a 1 is written into bit 8 of CR1, the device internally
sets the inputs to zero and does a conversion. The
conversion result is stored in an offset register and

65

Table 5-7 THS1209 Control Register 1 Bit Functions (Continued)

Bit | Reset Value | Name Function
subtracted from all conversions in order to reduce the
offset error.

The A/D Control CR; Register is shown below:

AD Control CRy Register

M5B LSE
Bit 15014 13 12111 10 9 8 7 &6 &6 4 3 2 1 0
Field W Spare B e 0 D B B D D B B D D
C "M 10 9 8 7 6 5 4 3 2 1 0

Acess
|mitial Value 0 O ©o 0O 0 0 O O 0O 0 0O O 0O 0 0 0

Field Definition
D 0-11 Device Control Register for THS1209
W Wirite Control: 1 = write new value, 0 = reset register

(Reqgister must be reset by CPU before a new write is performed.)

Figure 5-17 A/D Control CR; Register
5.6.2.12 Interrupt Down Counter Register [6]

The Interrupt Start Register initially loads the Interrupt Down Counter register when the
XCNTLO pin is low. When the XCNTL1 pin goes high, the counter begins to decrement every
ADC clock cycle. The Test Program has been configured to generate an interrupt every 256 A/D
clock cycles. This interrupt is routed through the pin 53 on the Expansion Peripheral Interface,
J10, to the DSK. Since the Test Program has configured the ADC at 500 KHz and the DMA

66

transfer rate is 1.953125 KHz, which is the same as the DAC, an underflow condition will not
occur on the A/D FPGA FIFO. If the DMA transfer rate was set slower then the DAC rate, an
underflow would occur on the D/A FIFO. As a result, a DMA data transfer of the A/D FPGA
FIFO and D/A FPGA FIFO proceeds on the rising edge of the interrupt line generated by the
Interrupt Down Counter register. The DMA controller determines the order of the A/D and D/A
data transfer. The appl process function within the Test Program then sums the A/D data and
averages based upon the ADC/DAC ratio. At this same rising edge, the Interrupt Period register
reloads the D/A Clock Down Counter Register now that the XCNTLO pin is high and the process
is repeated. The Interrupt Down Counter register is shown below:

Interrupt Diown Counter RKegister
MSE LSE

Bit 15014 13 12111 10

iy
e}
-~
L))
"
I
o]
]
iy
Lo

Field B I B B B B B B B I B B B I3 B D
1% 14 13 12 11 w0 8 8 7 6 5 4 3 2 1 0

Aress R . <R R N . A N S A O S S . R
[nitial Walue 0 0O

Field Definition
D 0-15 YValue of the interrupt down counter.
This register is loaded with the contents of the Interrupt Start Register
wihile the XCNTLO pinis low. The counter counts down while the XCNTLO
pinis high. Aninterrupt is sent when this counter reaches zero. Then
it is reloaded with the contents of the Period Register. It continues to count
down while the XCNTLO pinis high.

Figure 5-18 Interrupt Down Counter Register
5.6.2.13 Interrupt Start Register [6]

The Interrupt Start register is used to load the Interrupt Down Counter and Interrupt
Period registers when the XCNTLO line is low. The Interrupt Start register is shown below:

67

AD and D74 Status Register

MSE L5B
Bit 15 14 15 12 11 10 8 5 4 110
Field SPARE SPARE 1] 01
ACESS EoE & o B F iy e
Initial Value O 0 0 O 0 0 0

Field Definition
i ADC FIFO Overflow
L1 ADC FIFO Underflow
02 DAC FIFO Overflow
L2 DAC FIFO Underflow

All status register bits are latched and held while XCHTLO pinis high. They
are all cleared to 0 when the XCNTLOD pin goes low.

Figure 5-19 Interrupt Start Register

The Interrupt Start Register value is user defined in the Test Program at 256.

When the

XCNTLO line is high, this register is irrelevant since the Interrupt Period register loads the

Interrupt Down Counter.

5.6.2.14 Interrupt Period Register [6 |

The Interrupt Period register is used to reload the Interrupt Down Counter register every
time it decrements to zero when the XCNTLI line is high. This register is loaded based upon the
contents of the Interrupt Start register when the XCNTLO line is low. The Interrupt Period

Register is shown below:

68

Interrupt Period Register

M5B LB
Bit 19114 13 12911 10 9 8 7 6 5 4 3 2 1 0
Field e b O B B b OB B B OB B L 3B B

o 14 4% 32 M B 9 % 7 B 9 4 3 2 9 A

Acess
nitialvalye 0o 0O 0O O 0O 0O O O O 0O O O O 0O 0O 0

Field Definition
D 0-15 YValue loaded into interrupt down counter after each interrupt is sent.
(Length of time in EMIF clock cycles before the next interrupt is sent.)

Figure 5-20 Interrupt Period Register
5.6.2.15 A/D and D/A Status Register [6]

The A/D and D/A status register allows the user to identify if an overflow or underflow
condition has occurred on the either the A/D or D/A FPGA FIFO’s by asserting the appropriate
bit. An A/D FPGA FIFO underflow occurs when the DMA attempts to read data from this FIFO
and it is empty, while a D/A FPGA FIFO underflow occurs when the DAC sampling rate is set to
fast such that the DMA cannot load the subject FIFO fast enough. An A/D FPGA FIFO
overflow occurs when the ADC clock rate is set faster then the DMA can download the data out
of the its FIFO. Conversely, a D/A FPGA FIFO overflow occurs when the DMA attempts to
write into the D/A FIFO and data is still present. The Test Program avoids the overflow or
underflow problems on the D/A FPGA FIFO by filling this FIFO half full (i.e. 256) with
duplicate 16-bit data words. When this set of data is sent, a pulse is sent to the DSK through J10
on the TINPI line, which in turn drives a counter. When the counter reaches half the FIFO size
another group of words are sent to the D/A FIFO and the process is repeated. The A/D and D/A
Status register is shown below:

69

A0 and DFA Status Register

M5B LB
Bit 15 14 13 12 11 109|877 6 5 4 3 21110
Field SPARE SPARE U1 O1
Acess I I I I r I I I r

_1
=
=

o N
P
=
=

Initial Walue 0O 0

Field Definition
1 ADC FIFO Owverflow
L1 ADC FIFO Underflow
02 DAC FIFO Overflow
2 DAC FIFO Underflow

All status register bits are latched and held while XCHTLD pinis high. They
are all cleared to 0 when the XCHNTLO pin goes low.

Figure 5-21 Status Register
5.7 Amplifiers [6][30][31]

The AED-109 uses the THS4062, U100 and U200, operational amplifiers to drive the
inputs of the A/D converters, and the THS3001, U30 and U31, operational amplifiers to buffer
the outputs of the D/A converters. The gain of these devices is set to one with their sole purpose
being to sink or sufficient current as well providing a degree of electrical isolation from the
outside world. The input range to the THS4062 is =1 Volt, while the output range of the
THS3001 is again £1 Volt. A loading resistor is placed across the input ADC amplifier to
reference the input to ground; however, because the inverting amplifiers source some current, a
bias voltage is developed across the input resistor, which is evident in the A/D readings when
there is no input source. This was verified by observing that the efflux plasma charge sensor
measured 0.654386 Volts before the keyhole in the work piece was established. Subtracting this
bias voltage from the measured readings alleviated this problem. For sources that do not have an
open-circuit connection, this problem does not exist.

5.8 Breadboard Area [6]

The AED-109 is furnished with a Breadboard to allow for the building of custom analog
circuitry. This area is on the far left side when looking at the top of the AED-109. Adjoining the
Breadboard area are input and output amplifiers for the converters. The Breadboard area was
designed for using both through-hole and 50 mil surface-mount components. In addition,
regulated 9 Volts is available throughout the Breadboard area. It is the author’s opinion that
utilizing this area is a bad practice due to the ability to damage the board, which removes

70

Signalware’s liability. If custom analog components are desired, the author recommends
outlining the requirements and having Signalware place these components.

5.9 Boot Flash [6]

The AED-109 has the ability to be upgraded with two additional flash memory chips part
number, AM29F400B, reference designators U13 and U14. Ul4 is located on the topside and
U13 is located directly beneath on the backside of the AED-109 adjacent to the JTAG J1
connector. The intention of this additional flash is to be able to boot load the C5416 DSP on
start up. Each chip contains 16-bit 256K words. This option was not purchased.

5.10 Reference Voltage Supplies [6 |

Three reference supplies are provided: 4.096 Volts; 2.048 Volts; and 1.024 Volts. The
2.048 V and 1.024 V unregulated supplies rated at a static 0.1 mA are adjusted with
potentiometers R20 and R24 located on the top-right backside of the board. The 4.096 V supply
rated at 20 mA is regulated with a reference diode. If the loads are dynamically varying, a buffer
amplifier to source or sink current should be utilized. These supplies can be easily overloaded
and thus damaged; therefore, the author does not recommend utilizing due to liability concerns.

5.11 DAC Reference Currents [6 |

The reference currents for the D/A converters are generated internally by the THS5611.
These currents may be scaled by varying the potentiometers R327 and R332 for the two D/A
converters, U7 an U8. The effective gain of the A/D converters are determined by the current
references and the output resistors R340/R342 and R440/R442. It is the author’s
recommendations that these values are factory set and should not be adjusted by anyone other
then Signalware due to liability concerns.

5.12 Digital Buffers [6]

The AED-109 has been supplied with two octal transceivers reference designators, U19
and U20. U19 buffers I/O numbers 9-16, and U20 buffers I/O numbers 1-8. The part number
for U19 is SN74LVTH245ADW, and the part number for U20 is SN74LVTH245ADW. These
buffers can support update rates up to 100 MHz; however, the EMIF clock is only 80 MHZ, the
DMA can’t support this rate, and the ADC maximum sampling rate is § MHz, which places these
transceivers well within their operational limits.

71

Chapter Six
Embedded Programming
6.1 Test Program [6 |

Each Daughter Card supplied by Signalware is delivered with a Test Program for a
particular targeted development board. In this case, the targeted board was the TMS320VC5416
DSK. Because this program is intended primarily as a hardware test, it does not use the
DSP/BIOS or chip support library established in Code Composer Studio (CCS). Signalware has
chosen this route because these CCS tools tend to cloak the hardware operation and make
hardware troubleshooting difficult. Support for CCS tools is not included with the AED-109
warranty technical support provided by Signalware.

The Test Program is a data acquisition and signal generation program written in ANSI C,
which can be easily modified for such applications as data collection or feedback control as in
this case. The expansion memory interface, J9, using the DMA controller is utilized to transfer
A/D and D/A data from the AED-109 to the C5416 DSP. The advantage of this method is that
the DMA controller handles this transfer independent of the CPU except when a block of data is
ready and an interrupt is generated.

A majority of the code associated with the Test Program concerns initializing the
hardware and printing the results. This is very useful when developing an application since the
initialization and output framework have already been provided. Minor modifications to this
methodology can be sufficient for a significant number of applications.

The basic operation of the Test Program is divided into three functions: A/D; Digital I/O;
and D/A. In the A/D step, the DMA registers are configured, starts the DMA controller, starts
the FPGA, and waits for interrupts indicating that a frame of data is ready. This process is
continued for several frames before stopping at which time test results are printed to the screen.
The Digital I/O is then turned on one at a time for a fraction of a second starting with pin 1 on
J15. An OK is then printed to the screen. The final step involves printing a triangular waveform
of £0.5 Volts that can be observed on either J5 or J8 with an oscilloscope or as a varying voltage
level with a digital multimeter.

The Test Code architecture divides the functions into four module types which are:
AED MAIN; AED DMS xxx; AED xxx; and xxx BRD. The AED MAIN module is a
general-purpose main program used to transfer between the C5416 and the AED-109. The
AED DMS xxx modules are used to set up the DMA registers and starting of the DMA
controller for the purpose of transferring data between the A/D and D/A converters to the C5416
DSP. The AED xxx is application dependent whose purpose is to configure, initialize, process,
and terminate the Test Program. The xxx BRD are development board dependent functions,
which support the previously listed three modules.

Since the AED-109 is being used in a differential mode in conjunction with a
TMS320VC5416 DSK, the appropriate application dependent module is the AED 109 32d.

72

This module is composed of five basic function modules which are: appl parm, appl init,
appl process, appl idle, and appl end. The appl parm function configures the FPGA memory
mapped registers. The appl_init function initializes variables and pre-loads the FPGA D/A FIFO
to avoid an initial underflow. The appl idle function is simply a loop that is performed while the
main program waits for an interrupt to be generated signaling that a new block of A/D data is
available in the A/D FPGA FIFO. In the mean time, the main program simply calls the appl idle
function instead of the appl process function. This is done to avoid an underflow condition
associated with the A/D FPGA FIFO. The appl process function processes the data that has
been downloaded from the A/D FPGA FIFO by the DMA controller, controls the D/A output,
and terminates the Test Program by returning a value other then 0. The last function is the
appl_end, which is responsible for printing to screen or file the results of the execution. A
complete list of files required to allow the test program to function is shown in Appendix B.

6.2 Test Program Modification [6 |

In order to implement the Non-Linear Interval Control Algorithm, the following files
were modified: AED.h; AED 109 32d.c; AED Applh; AED Cfg.h; and AED MAIN.c. The
AED.h file simply changed the statement, #define AED PRINT 1, to the following, #define
AED PRINT 2. In this header file, 1 is the default value, which causes the appl end function to
print to the screen rather then to a file as altered.

The AED Appl.h file was modified by changing the data types in the appl end function
call for the parameters bufs proc, buf count, and prev_buf count from int to unsigned int. This
was done to increase maximum count from 32767 to 65535 for the subject parameters, which are
responsible for counting the number of blocks of data that are downloaded from the A/D FPGA
FIFO and the actual number of blocks that have been processed by the appl process function. A
deviation can occur if the appl process function takes longer then the DMA download rate in
which case an overflow has occurred. These comparisons are printed to the screen from the
appl_end at program termination.

The AED Cfg.h file was modified by simply removing the comment out statements
surrounding the preprocessor token replacement define statement for the variable
CHECK FPGA_ OVFL. This variable is now established as 0, which prevents the AED.h file
from establishing the same variable as 1, which in turn will establish the
FPGA OVFL CHECK ENABLE as 0, which effectively disables overflow checking. This is
beneficial since the Test Program will terminate if an overflow condition occurs which is likely
to happen if the appl_process function takes longer then the DMA download rate.

In the AED MAIN program the blocks variable was modified to always be 1.
Previously, this value was being set to the frames value of 3. This result in turn was inducing an
error by preventing the member byte array of the structure dual data buffer from assigning its 0
element to the member byte of the structure address in the AED MAIN program. If this error is
not corrected, the initial memory address of A/D DMA downloaded data will have an offset error
when presented to the appl process function. The frames variable represents the number of
frames per block and is defined within the AED 109 32d module. This variable has multiple
functions and should not be modified from its present logic state other then to prevent the

73

equating to the number of blocks in the main program. In addition, the data types for the
variables bufs proc and prev buf count were changed from int to unsigned int in the
AED MAIN program in order to increase the number of blocks of data that can be tracked when
comparing the number of blocks of data that have been transferred from the A/D FPGA FIFO to
the C5416 versus the number of blocks that have actually been processed by the appl process
function.

6.2.1 Printing [6]

As previously stated, the AED 109 32d is the appropriate module to utilize when
configuring the THS1209 ADAC to accept a differential input. This module is divided into five
functions: appl parm; appl init; appl process; appl idle; and appl end. Modifications were
required in all functions except the appl idle. Furthermore, it is important to note
troubleshooting code is commonplace particularly when writing initial versions or performing
modifications of existing unfamiliar code. As a result, it is often a common practice to track
problems by performing printouts of information at various levels of implementation. This is
practice is acceptable provided one rule is followed. No printing is allowed from the
appl process or appl_idle functions. The reason being that these are real time applications, which
can be adversely affected by operations that take excessively long periods of time such as the
case when printing. If this advice is ignored, a printout will be observed, but observation will be
more a function of the induced timing error associated with printing then any underlying
problem.

6.2.2 Clock Rates [6][28][29]

The first requirement is the appropriate adjustment of the A/D and D/A Clock Rate
registers. This is accomplished by considering the ADC/DAC ratio, DMA transfer rate, FPGA
FIFO sizes, and appl_process function processing time simultaneously. The ADC THS1209 has
a configurable sampling rate between 100 KHz and 8 MHz, while the DAC THS5661 DAC
sampling frequency has a minimum value of the EMIF clock rate divided by 2'°. In this case, the
EMIF clock rate is 80 MHz resulting in a minimum DAC clock rate of 1.22 KHz. The maximum
DAC update rate is more complicated to establish. By itself, the THS5661 has a maximum clock
rate 100 MHz, but realistically should never exceed the ADC sampling frequency divided by
two. In addition, the DAC clock rate should not exceed the DMA transfer rate or an underflow
will occur. The sizes of the D/A and A/D FPGA FIFO’s are the equal and fixed at 512 16-bit
words, which limits the maximum ADC/DAC ratio to 512. The speed of the appl process
function is dependent upon its complexity, mathematical requirements, and algorithm
architecture. In the case of the appl process, the best advice is simplicity and avoidance of
division whenever possible.

With the aforementioned information in mind, the best starting point is with the DMA
transfer rate. This rate is established by choosing a divisor of the ADC sampling rate and storing
this information in the Interrupt Start register within the appl parm function. The best rate is one
that will avoid overflow and underflow problems associated with the A/D and D/A FPGA
FIFQO’s, allow variance in the appl process processing time, and maximize the data transfer rate.
As a result, the best recommendation would be to choose a divisor of 256 that is half the size of

74

the FIFO’s. This divisor will allow the transfer of A/D and D/A data between the AED-109 and
the C5416 to commence when the FIFO’s are halfway utilized, but at the same time allow for
some variance in the appl process processing time to help avoid overflow and underflow
situations. Based on this divisor, the DMA transfer rate is established at 1.953125 KHz.

In order to keep the sampling rates relatively slow relative to the AED-109, but above the
minimum specified ranges, an ADC clock rate was chosen at 500 KHz. This rate is established
by choosing the appropriate divisor of the EMIF clock, which is stored in the A/D Clock Rate
register in the appl parm function. The next decision was to choose an interval base two
ADC/DAC ratio of 256, by assigning the appropriate EMIF clock divisor for the D/A Clock
register with a global preprocessor token replacement define statement. This choice allows for
some variance in the appl process function processing time in order to avoid overflow or
underflow problems as well. The net result was a DAC sampling frequency, which equals the
DMA transfer rate.

6.2.3 Test and Platform Code Removal [6 |

The next step involved stripping the AED 109 32d module of code associated with
testing, different TI platforms, and unnecessary commenting. Since this Test Program was
originally written with the intention of applicability for various TI platforms, numerous
conditional compilation if statements are used throughout the algorithm. The net effect is to
mask the compiled end result. Therefore, it is easier to remove the conditional compilation
statements and only retain the portion of code that is applicable to the TMS320VC5416 DSK for
clarity and ease in troubleshooting. Code associated with generating a triangular waveform for
the DAC, ADC record skipping, test data initialization/generation/storage/printing, Digital 1/O,
and iteration tracking was removed due to irrelevancy to embedded control algorithm as well.

6.2.4 Algorithm Reconfiguration [6 |

The original intention of the AED 109 32d code was to set register values in the
appl_parm function, initialize variables in the appl_init function, and observe the ADC operation
in the appl process function for a fixed number of iterations before returning a termination
value. Based upon this termination response, the appl _end function would be called and proceed
with an initial check for error conditions followed by a printout of the ADC results, manipulation
of the Digital I/O, and then generation of a triangle wave to the DAC. However, this procedure
is not acceptable for a feedback control algorithm.

For a feedback control algorithm, the original intent of each function would be kept, but
procedures that would be performed in each function would be changed. Although not used in
this application, the Digital I/O could be moved to the appl init function. The intent of the
Digital input would be to program the control algorithm to some preset value such as different
base times or reference peak times in relation to the Non-Linear Interval Control Algorithm,
while the Digital outputs could be used to drive relays for a variety of purposes. However, of
greatest importance, the ability to read the system output from the ADC and output a control
signal through the DAC should be in the same real-time function, which in this case is referred to
as the appl process. The appl end function would be used solely for testing for error conditions

75

and outputting results. Alternatively, the outputting of information could even be possible in the
real-time process. This could be achieved by allowing a host to observe memory locations
through the HPI Expansion Connector, P3, on the C5416 DSK that would contain system output
and control signal data. Although very efficient, this degree of complexity was not pursued in
this project. Instead, it was chosen to simply store the control signal, next peak iteration current
level, peak current time measurement, keyhole potential, peak delay, and k™ time measurement
in an array format and save the results to an ASCII file on the host computer using the USB port
in the appl_end function. The appl init function main change would be that it would be used to
initialize the control output to zero and avoid an underflow situation with the D/A FPGA FIFO
upon startup. Various other variables associated with the control algorithm and saving data
would be added to the appl init file as well. The appl idle would remain unchanged.

6.2.5 Globals for Diagnostic Termination [6 |

As has been previously stated, the globals for diagnostic termination are used to monitor
the number of blocks of data that have been transferred from the A/D FPGA FIFO to the C5416
versus the number of blocks that have actually been processed by the appl process function.
Within the original AED 109 32d module, these variables were only declared as an int variable,
which in CCS is only 8-bits in length. As a result, only 256 different iterations could be tracked.
Since the control algorithm would iterate to a much greater degree, an unsigned int variable type
was chosen instead, which is 16-bits in length. This C5416 overflow tracking is a useful tool
when trying to measure the relative speed of the control algorithm-processing rate in relation to
the ADC sampling rate.

6.2.6 Base Ten Conversion [6][11][28][29]

The next step was determining how to properly decode the A/D quantization and encode
the quantization of the D/A. Both the A/D THS1209 and D/A THS5661 are 12-bit devices;
however, the THS5661 can be delivered in 14, 12, 10, and 8-bit configurations. As a result,
Signalware chooses to utilize both the 14-bit and 12-bit D/A converters in its various Daughter
card designs. In order to provide the maximum cross compatibility in its FPGA code,
Signalware has chosen to utilize a 14-bit software resolution in its Test Program regardless of the
actual hardware being utilized, which has been configured into the requirements of its
write32b_reg function. Therefore, from the appl process perspective, the D/A quantization is
14-bits. Within the FPGA firmware, the D/A quantitized value is reconfigured to the appropriate
12-bit value by simply shifting the value 2-bits to the right. Since the THS1209 is only delivered
in a 12-bit version, the quantitized value delivered by the A/D FPGA FIFO is also 12-bits.
However, in order to make the code less confusing, it was chosen to multiply this A/D value by 4
to allow the control algorithm to work in just one fictitious 14-bit quantization bit pattern.

It was now necessary to determine how to convert the integer base 2 quantization to a
base ten floating-point number and vice versa. The AED-109 custom analog input ports accept
+10 Volts, which are immediately passed through a one-tenth gain inverting op-amp. The signal
is then split with one path passing through a unity gain inverting op-amp and other bypassing.
As a result, the THS1209 is presented with an effective 1 Volt differential signal. Since we are
not using a 2’s complement encoding the, the all bits zero pattern will represent —1 Volts, and the

76

all bits 1 will represent +1 Volts. In order to achieve the true analog input value, the quantitized
value must be first multiplied by the quantization interval, then shifted down by 1, multiplied by
ten, and finally modified by having the offset bias removed by subtraction due to an open circuit
connection. The D/A quantization equation is shown below:

Al, = (QuantizationADC-% - 1]-10 — Bias 6-1
2

The AED-109 analog output ports work in the reverse manner with the following
exceptions: the AO’s are =1 Volts instead of +10 Volts; no Bias offset is present; and
adjustments for the Miller Electric Maxtron 450 CC/CV power supply must be made. The first
two exceptions are self-evident, but power supply should be outlined in detail. Supplying a 0 to
10 Volt analog signal to pin G on port 17 controls the output of the Maxtron power supply. This
control signal corresponds to a 1 Volt equals 55 Amperes conversion ratio. Since the DSK is
only capable of supplying a +1 Volts analog output, the Maxtron current output would not
exceed 55 Amperes if this problem was not addressed. As a result, an external single stage-
inverting amplifier was required; therefore, the floating-point base 10 control signal is multiplied
by the conversion ratio and the effective inverse gain of the amplifier. The gain was configured
at about —9.24. The A/D quantization equation is shown below:

v -1 14
uantization = |AOy ———— + 1[|— 6-2
Q bac (4755 4 924) 2

It should be noted that since equations 6-1, 6-2, and the control algorithm utilize mathematical
operations the header file math has been added to the AED 109 32d module.

6.2.7 NONLinearInterval delay quicker [6]

The NONLinearInterval delay quicker module is the modified version of the
AED 109 32d module provided by Signalware, which contains the actual Non-Linear Interval
Control algorithm. The module begins by utilizing the include directive for several necessary
header files as follows: stdlib; dsk5416; emif;, AED; AED DMS; AED Appl; stdio; and math.
The include directives are followed by a list of preprocessor token replacement define
statements, which define the subject variables as global to the subject module. These directives
are divided into two groups where one group defines the data transfer methodology and the other
defines the FPGA memory registers.

6.2.7.1 Data Transfer Variables [6]

The data transfer methodology is divided into several global variables listed as follows:
AED BOARD; DMS MODE; DIVIDE POWER; NO RECORDS; NO FRAMES; RECLEN;
ELEMENTSIZE CODE; SAMPLES PER_WORD; and DAC_CLK _CNT. The AED BOARD
module is simply a character string used to define the subject Signalware Daughter Card being
used. The DMS Mode defines the data memory service to work in a frame synchronous
continuous mode. The DIVIDE POWER defines the base two exponent value for the

77

ADC/DAC clock ratio. The NO_RECORDS is the actual ADC/DAC clock ratio, or in other
words, the number of A/D data samples that will be averaged to constitute one data value. The
NO_FRAMES defines the number of frames per block. The RECLEN variable defines the
number of words per record. The ELEMENTSIZE CODE describes the number of bits per
word as 32. The SAMPLES PER WORD defines the number of data samples per 32-bit word
as two. The DAC CLK CNT defines the D/A EMIF clock divisor minus one.

6.2.7.2 FPGA Memory Register Declarations [6]

The AED-109 FPGA memory registers are defined next. These 32-bit addresses are
actually only used to define the lower 15 bits, or in other words, the appropriate 16-bit word on
an undefined page. The upper five bits used to define that actual Data space page address are
defined in the appl parms function by performing a bitwise OR command.

6.2.7.3 Global Declarations [6] [28 |

The next step involved assigning global data types. These definitions are divided into
two groups. The first group is used as termination diagnostics, which are passed as parameters in
the functions within this module back to the AED MAIN program. Since this diagnostic
variables are being passed back to the AED MAIN program, these variables do not need to
retain their values once they are returned. The AED MAIN will maintain their values in
between function calls. The other variables need to be global, but also retain their values within
this module upon function return. As a result, the static variable definition is utilized.

The unsigned long variable A value is used as the average value for the long variable
A/D sum variable sumA. The sumA variable is the sum of all A/D samples. Since the AED-109
A/D converter has been configured to sample 256 times before downloading, the sumA variable
represents the sum of all of these measurements. This value is then shifted left based upon the
DIVIDE POWER value equaling to eight in this application. At this point, the A_value is a base
ten representation of a base 2 12-bit quantitized value of the analog input.

The unsigned long variable output is the used as the quantization variable for the D/A
function write 32b _reg function. This value a base ten representation of a base 2 fictitious 14-bit
quantization for the THS5661. It is described as fictitious because the THS5661 being utilized is
actually 12-bits. The data is being shifted two bits to the right in the FPGA firmware.

The int variables input cout and loop count are not being utilized. The loop count
variable is tracking the number of iterations that they appl idle loop iterates; however, nothing is
done with this information.

Two pointers variables are defined globally for this module. They are cntl base addr
and data base addr. These pointers are pointing to the memory addresses associated with these
variables. The hexadecimal values used to assign Data memory Page addressing are assigned to
these memory locations in the appl parms functions. The cntl base addr is used to define the
Data memory page for the FPGA memory-mapped registers, while the data base addr is used to
define the page address associated with DMA writes to the THS5661.

78

The unsigned long variable fpga io reg is actually a method of assigning the bit values to
the Digital I/O LSB _DIO REG and the MSB_DIO REG registers in one line. This is done with
the preprocessor token replacement define statement where a single 32-bit value is listed. In the
appl parms function, the LSB_DIO_ REG, which is really the Digital I/O register, is assigned to
the 16 least significant bits, while the MSB_DIO REG, which is really the Digital /O Control
register, is assigned to the 16 most significant bits. The purpose of this line is to be able to load
the Digital I/O register with all 0’s in every bit except the least significant bit, which has a 1,
while the Digital I/O Control register is loaded with all bits 0 except bit 15, bit 13, and bit 12.
Referring to sections 5.6.2.1 and 5.6.2.2, the Digital I/O is then initially configured as all output
bits disabled and bits 8 through 15 configured as outputs. The reason for this configuration is
that this is the initial setup that Signalware uses when the want to test the Digital /O. By
manipulating the Digital I/O Control register properly and shifting the bits 1 bit the left at a time
in the Digital I/O register, the test methodology of having all the Digital I/O initially off and then
turning one bit on at a time can be achieved. This setup is not used in this control, but was left in
for clarity for potential future use.

6.2.7.4 Static Declarations [6]

The float variables outputsave, u3save, y3save, KeyHolesave, Msec, and delaysave are
defined as arrays. These variables are used to store system information. Once the appl process
function terminates the application, the appl end function writes these results to an ASCII file
through the serial USB port on the host computer in order to analyze the results. Outputsave
represents the control signal output at all times. As a result, the Outputsave variable stores the
base current value in amperes while being output and then switches to the k' peak current level
once the base time frame has expired. U3save represents the calculated next k™ peak current
level in amperes. Y3save represents the k™ measured peak current time frame in milliseconds.
The KeyHolesave variable represents the efflux or keyhole potential between the work piece and
the detection plate in volts. The Msec variable represents the time in milliseconds since the
control process began. The final variable delaysave represented the time period in milliseconds
from when the keyhole potential threshold of 0.5 volts was exceeded to when the keyhole
potential falls below this threshold.

The array float variables Al, A2, and A3 represent system model parameters. These
variables are in an array format to allow for the storage of minimum and maximum values to be
stored. These extremes are established based upon the parameter estimation program detailed in
following section. Based upon these extremes, an iterative combinational comparison is
performed to determine the combination, which results in the maximum system response. The
parameter values, which result in the maximum response, are then stored in the float variables
Aone, Atwo, and Athree. Based upon how the non-linear interval system model was defined, the
A0 system parameter is subtracted out of the result when calculated the k+1 peak time duration;
therefore, its inclusion in this module is unnecessary. For detail concerning the non-linear
interval system model please refer to chapter 7.

The array float y was used to track the measured peak current level time durations. The

array size was seven in order to track the current k™ measurement as well as three iterations in
the past and three iterations in the future. For the Quasi-Keyhole process this number of

79

iterations has been found to produce sufficient results. For other processes where the Non-
Linear Interval control methodology is applied, additional iterations may be necessary to produce
stable results.

The array float ymeasured measures the actual peak time duration every time the keyhole
potential has exceeded the threshold voltage. The measurement does not actually occur until the
keyhole potential falling back below the peak threshold value. This value is then immediately
assigned to the variable y[3] in order that this measurement can be used in the control process
and saved backwards in time for the next k™ iteration.

The float array u is used to track the peak current control signal. This array is of size five
because of the system model is structured in such a manner that the peak current duration is only
needed one iteration into the future when calculating the peak current time duration three
iterations into the future. These variables are initially assigned to the maximum allowable peak
current level of 135 amperes in the appl_init function. It is important to note that u[4] is always
equal to u[3] throughout the control process because when predicting the system response into
the future the results are based upon a static peak current input at time frame k.

The float array du is used to track the peak current control signal change between
iterations. An array size of six could have been used instead of seven since u[6] is never used in
the control process; however, no error is induced due to this oversight. These variables are
initially assigned to zero in the appl init function. It is important to note that du[4] and du[5] are
always equal to zero and never changes throughout the control process because when predicting
the system response into the future the results are based upon a static peak current input at time
frame k.

The float variable y0 is the reference peak current time duration in milliseconds. In this
process, a time period of 325 ms was found to work efficiently. This variable is initialized in the
appl_init function. It does not change throughout the module.

The float variable KeyHolePotential tracks the measured keyhole or efflux potential.
This variable is initialized as zero in the appl init function. Once a measurement is made it is
immediately assigned to the k™ KeyHolesave variable for storage purposes.

The float variable BaseTime is used to assign the base current time duration in
milliseconds. In this process, a time period of 400 ms was found to work efficiently. This
variable is initialized in the appl init function. It does not change throughout the module. The
BaseTime is initiated once the keyhole potential drops below the threshold level. Once the
BastTime period has expired, the next k™ peak current level is initiated. It is also important to
note that the base time duration can vary significantly between different hardware applications of
this process. The reason being that the amount of heat that can be dissipated from the system is
dependent upon how quickly the hardware can set the base current level. In other words, the
time constant of the analog output is very important.

The float variables x0, x1, and x2 are used to track the peak time duration and the delay
associated with dropping the keyhole potential below the threshold once the base current level

80

has been initiated. All of these measurements are made in milliseconds referenced from when
the control process was initiated. The variable x0 represents the time when the peak current
level was initiated. The variable x1 represents the time that the current is dropped to the base
level. The variable x2 represents the time when the keyhole potential actually drops below the
threshold level after the base current level has been initiated. As a result, the measured peak
time duration, ymeasured, is equal to the difference between the x2 and x0, and the delay is equal
to the difference between x2 and x1. This time measurements are established by monitoring the
float variable counter. The counter is based upon the DMA download rate, which in this
application is equal to the D/A clock rate. Every time a new block of data is available from the
DMA the appl process function is called. Since the DMA and D/A rates are set at 1.953125
KHz, counting the number of times that the appl process function is called and multiplying this
number by 0.512 to obtain a time measurement in milliseconds can establish the time. It is
important to point out that if the appl process is still processing data when next block transfer is
ready an overflow condition will exist. This will result in a small timing error; however, if the
number of A/D samples that are missed is small, the error will be insignificant particularly when
considering the A/D sampling rate of 500 KHz. This error is not cumulative since the peak time
measurements are only relative to the welding cycle that they occur.

The float variable Time is used to capture the present time measurement. It is assigned to
the variable Msec for storage purposes, but more importantly it is used to compare against x0 to
determine when the base time period has expired. Since the Time assignment is being made after
the comparison to the x0 variable, there is a 0.512 ms error; however, this error is insignificant
when considering the magnitude of time frames being considered. If one wished to remove this
error, the time assignment would be made immediately after the counter increment in the
appl_process function and all other time assignments would be removed.

The float variable BaseCurrent is used to assign the base current level in amperes. In this
case, a base current level of 30 amperes was found to work efficiently. This variable is
initialized in the appl init function. It does not change throughout the module.

The float variable ylargest is used to store the predicted system response for the various
system parameter combinations three times steps into the future. This response is based upon no
change in the existing peak current level. If y[7] exceeds this variable, ylargest is reassigned to
y[7] and the associated system parameters are stored to Aone, Atwo, and Athree. This variable
is assigned to zero in the appl process function before the combinational parameter comparison
takes place.

The float variables meltdown and TimeMeltdown exist to prevent the welding nozzle
from becoming damaged. These variables are initialized to zero in the appl init function.
Within the appl process function, if the peak current level saturates at the maximum rating, the
meltdown variable acts as a counter, and the TimeMeltdown variable acts as the physical time
measurement. If this saturation current exists for 1.024 seconds, the control output will output a
zero value to prevent the nozzle from melting. If the predicted peak current level is below the
maximum current level, both variables are reinitialized to zero.

81

The float variables StartCurrent and MaxCurrent are used to establish the initial peak
current starting level and the saturation level. These variables are assigned in the appl init
function. The initial and maximum current ratings are established to be equal in this application
at 135 amperes.

The int variable count is used to track the array index for the storage variables used to
output system information in the appl end function. It is initialized to zero in the appl init
function. Within the appl process function, this variable is incremented every time storage
variables have information saved to them. The count variable is also used to determine when to
terminate the process. When the count value equals 309, the write 32b reg function outputs to
the analog output a quantitized variable that will result in a zero output. The program is allowed
to iterate one more time to insure that this output is processed to the analog output port, at which
time the process function will terminate the process. It is important to perform this procedure
properly, or the analog outputs will remain at their last programmed value and the torch will not
shut off.

The float variable skip exists to allow the program to be able to terminate if the peak
current level stabilizes at a value below a level that can establish a keyhole through the work
piece. This variable is initialized to zero in the appl init function. This variable also serves the
purpose of saving random data that is not tied to the peak current rising or falling edges. This
variable causes information to be stored every 2000 iterations or 1.024 ms as configured in the
appl process function. After every store, this variable is reinitialized to zero and the count starts
over.

The int variable start acts as a masking variable to allow other conditional statements to
be bypassed upon startup. At which point, the peak current level is set for next k™ iteration and
the masking provided by this variable is removed. This variable is initialized to zero in the
appl_init function and reset to one after initial start up.

The int variable mask acts as a masking variable to prevent conditional statements from
being processed. Once the delay time frame has passed this variable is set to 1. This variable is
reset to 0 once the base time frame has expired. This variable is initialized to zero in the
appl_init function.

The float variable openloopthree exists to allow the program to operate in an open-loop
condition upon startup for a user-configured period of iterations. This value was set to zero and
not utilized, but the logic is still in the code and may be useful depending on the application.

The int variable maskdelay is a masking variable used to prevent conditional statements
from being processed. Once the keyhole potential has exceeded the threshold voltage, this

variable is set to 1. This variable is reset to 0 once the base time frame has expired. This variable
is initialized to zero in the appl init function.

6.2.7.5 Appl_Parms Outline [4]][6]

82

The main purpose of the appl parms function is to configure the FPGA memory mapped
registers properly and to return the data transfer variables back to the AED MAIN program. In
addition, the appl parms function provides the page mapping defined within the five most
significant bits of the 20-bit Data Space memory addresses by defining the hexadecimal value for
the DSK5416 DM _CNTL register. The Data Space page mappings are defined by this process
as follows: control page is defined as page 8; register page is defined as page 9; and the page for
DMA transfer data is page 16.

The hexadecimal return values for the functions get cntl addr and get data addr have
been previously defined in the 5416 dsk module as 8000, and 0000;,. A bitwise OR is
performed with the get data addr with the hexadecimal address 80006 to allow both functions
to have the same hexadecimal address. Since the hexadecimal value of 8000;¢ sets all bits to
zero except bit 15, an external Daughter Card access can be performed once this value is added
to the previously defined 16-bit FPGA memory-mapped register addresses.

6.2.7.6 Appl_Init Outline [6]

The appl _init function is rather self-explanatory. It is used to initialize variables. It does
do two other important functions. It loads the DMA data block with all zero’s to avoid an
underflow condition, and it instructs the write 32b reg function to output a quantization value
that will cause the analog output to be zero as well.

6.2.7.7 Appl_Process Outline [6 |

The appl process is where the Non-Linear Control Algorithm resides. The function is
called by the AED MAIN every time a new block of data has been downloaded from the
THS1209 through the DMA controller read channel. The function starts by performing a
summation of the A/D data samples. If the actual 12-bit quantization had been desired, the
number of iterations would be equal to the actual number of A/D samples that were taken;
however, in order to match the quantization requirements of the write 32b reg function, the
entire data block was sampled a four times instead of just one. This was done to effectively
multiply the sum by 4, which is equivalent to shifting 2 bits to the left as well. As a result, the
quantization has been spread from 0 — 4096 to 0 — 16384. The result of this fictitious 14-bit
quantization is that it now takes a change of four intervals to effect a change in the output
through the write 32b function. A value represents the number of quantitized intervals. It has
base ten representation, but is calculated by shifting the base 2 representation by the base 2
exponent equivalent to the number of A/D samples being averaged. The actual keyhole potential
is calculated using equation 6-1.

Once a base ten floating-point representation of the analog input has been obtained, the
counter variable begins incrementing in order to provide a means of calculating a time
measurement. The concept for calculating time is based upon knowing the time interval that the
appl process function is called, which is 0.512 ms.

A conditional else-if statement is then entered, which has four potential possibilities.
Only one of this conditions will be true for every iteration. The first condition detects when the

83

keyhole potential threshold has first been exceeded. At this point, a time measurement is made,
the base current is set, and data is saved. The next condition detects when the keyhole potential
falls below the threshold level after the base current has been initiated. At this point, a time
measurement is made from which the delay variable and the base current ending time can be
calculated. In addition, the control algorithm commences.

The control algorithm proceeds by first performing a combinational parameter
comparison in order to determine the combination which produces the largest system response
based upon no change in the peak current level. The system parameters that produce the
maximum response are then used to calculate the next iteration peak current output. By
comparing the largest system response based upon no change in the peak current to the reference
peak time frame, the peak current level can either be decremented or incremented one ampere
per iteration until the system response three times steps into the future changes state in relation to
the reference peak time duration. The measured peak time duration and peak currents are then
saved backwards one iteration while maintaining the present k™ value. If the k™ value is above
or below the maximum current level or the base current level, the peak current duration is
truncated to these limiting values. Data is then saved.

The third conditional statement is only used at initial start up. Its purpose is to make a
time measurement, output the starting peak current level, and save data.

The fourth conditional statement is only executed after the base current time period has
been exceeded. At this point, a time measurement is made, the peak current is set, and data is
saved.

Once the conditional else-if statement has been processed, a conditional if statement is
encountered whose purpose is to insure that the peak current level does not saturate for a period
greater then 1.024 seconds. If the peak current is saturated for 1.024 seconds the analog output
is instructed to fall back to zero in order to keep the welding nozzle from melting.

Another conditional if statement is then encountered whose purpose is to allow the
program to terminate if the peak current level is set to a point that cannot establish a keyhole
through the work piece. In addition, this conditional if statement also provides a method of
saving data in a fashion that is not dependent upon the rising and falling edges of the peak
current time frame.

The last two conditional if statements provide a method of setting the analog output to
zero and then terminating the application. This ability is based upon tracking the number of data
saves that occur. Once a threshold has been exceeded, this logic will take effect.
6.2.7.8 Appl_Idle Outline [6 |

The appl_idle function has a relatively simple, but important purpose. In order to prevent

an underflow situation associated with the DMA data block, the appl idle function is entered if
the appl process function completes it’s processing before the next set of data is available from

84

the A/D data converter. The AED MAIN program will continually call the appl idle function
until the next data set is ready. No processing is performed in the appl idle function.

6.2.7.9 Appl_End Outline [6]

Once the appl process terminates the application, the AED MAIN program calls the
appl_end function before actually ending the program. In the appl end function, the results of
the diagnostic terminators are printed to the host’s monitor, but more importantly the system data
is saved to an ASCII file on the host computer through the on-board USB port.

6.2.8 Parameter Estimation Layout [6 |

The parameter estimation program is another modified version of the AED 109 32d
module. The purpose of this module is to provide random data input to the system and measure
the results. NONLinearIntervalParameterEstimate is the name of this module. This module is
similar to the NONLinearInterval delay quicker with several exceptions. The first exception is
that there is no control algorithm within this file, which reduces the number of required variables
and shortens the code extensively. The second exception is that an ASCII random input file has
been created by MatLab and is resident on the Host PC. This data set peak current range was
configured bounded between 85 to 115 amperes. This range was chosen to insure establishment
of a keyhole and to simulate the operating range of the process. As a result, this file is opened,
read, and closed within the appl init function. The third exception is that current limiting is
moved from the appl process to the appl init function immediately following the data input and
is not as complex. The current limiting function simply insures that the maximum current level
is not exceeded. The fourth exception is that data is only saved when keyhole potential threshold
is exceeded. The fifth exception is that the initial start up current is set to produce a zero output
on the AO. The sixth exception is that the conditional statement that provides a method for
termination if the peak current level is set in a manner that establishment of a keyhole is
unachievable is commented out under normal operation. This conditional statement is only used
to initialize the AO to zero with the Miller power supply turned off. Once the AO is set to zero,
the comments surrounding this conditional statement are reinserted and the parameter testing can
commence without damaging the equipment.

6.3 Code Files [6]

All of the required source code is attached in Appendixes C, D, E, and F, with the
exception of the project file and libraries. The project and library files could not be attached
because they were already compiled by Code Composer Studio, resulting in the ASCII text mode
being unavailable. Appendix C contains the GEL file generated by CCS when a target board is
detected. Appendix D illustrates the linker command file. Appendix E contains the headers, and
Appendix F contains the actual function modules. In Appendix F, the original AED 109 32d
file is specified along with the modified versions for the actual control and parameter estimation:
NONLinearInterval delay quicker and NONLinearIntervalParameterEstimate.

85

Chapter Seven
Non-Linear Control Algorithm
7.1 Overview [10]

The non-linear interval control algorithm for the Quasi-Keyhole plasma arc welding
process provides a means of robust control for systems with bounded parameter variations. This
is accomplished by systematically varying the peak and base current levels as well as their time
duration in order to control weld quality, which is directly related to the level of heat present in
the work piece. In order to simplify the model for this application, the base current level and
time duration were pre-defined to static values; however, for a more complex model, this may
not be allowable.

The establishment of a keyhole potential threshold provides a means of determining when
a keyhole has been established through the work piece. At this time, the control signal can be
reduced to the base level in order to close the keyhole and allow heat to dissipate from the
system. A peak current reference time period is then used by the control algorithm to calculate
the next iteration peak current level before repeating the cycle again.

7.2 Model Description [10 |

As previously mentioned, the time duration and current level provided to the system is
directly related to the amount of heat present. As a result, the non-linear interval model is
presented in equation 7-1, where y i represents the k™ weld cycle predicted peak current time
duration, y .; through y xn represents actual measured peak current time durations for all
previous weld cycles, u i.; through u ., represents the peak current levels for all previous weld
cycles, and coefficients a through a, represent the system parameters:

yk:a0+a1u +a2uk_2yk_1+a 7-1

- +..ta u

3 u k-3 y k-2 k—-n y k-n+1
It is evident that the product of the peak current level and time duration creates a non-linear
based system. In order to reduce processing complexity, the interval model presented in 7-1 was
only considered for three previous iterations realizing that for other applications this assumption
may not be sufficient to insure stability. The simplified model is shown below:

7-2

y, = a, + au + a + a

0 1 k-1 MY 3% Y

Since the system is subject to varying operating parameters due to the manufacturing
environment and the stochastic nature of the physics describing the weld pool and welding arc,
several random input test runs are required to characterize the parameter bounds of the system.
For the most robust control, these test runs would be performed for a variety of work piece
thickness and travel speeds; however, for simplicity, this project was restrained to working with
a single work piece thickness of 3.0 mm and travel speed of 2.534 mm/sec. As a result, four test
runs were performed from which the system parameters could be determined utilizing a least

86

squares approximation. For specific details on the least squares methodology or parameter test
runs please refer to chapters 8 and 9.

The units of the system parameters are as follows: a, is expressed in milliseconds; a; is
expressed in milliseconds per ampere; and a, through a, are expressed in inverse amperes. The
parameter a; through a, are in general usually negative. The reason for this basis is that the
previous peak current durations contribute to the total amount of heat in the system at the present
iteration. Since the a, parameter is positive, the previous heat input cycles effectively reduce the
amount of heat that needs to be input to the system on the next iteration, which in turn reduces
the magnitude of the peak current time duration. However, when identifying a model using the
least squares approximation, the higher order term parameters may be slightly positive, which
effectively accounts for system characteristics that have not been described in the subject model.
Realistically, the higher order terms contribute less as they fade farther into the past. As a result,
the parameter a; may actually be positive.

7.3 Feedback Algorithm [10]

In order to provide an effective feedback mechanism, equation 7-2 should first be
examined. By subtracting the difference between successive peak current time durations, the
following equation can be derived:

Y =Y, t2,Au +a, (uk—lyk U Y)+a3 (uk—2yk—1 _uk—3yk—2) 7-3

In some circumstances, it is desired to correlate positive changes in system outputs with
positive changes in control signal inputs despite the fact that this thought process is inversely
related to the subject PAW process. As a result, the authors of this algorithm envisioned
describing positive values; therefore, the following substitutions were made resulting in 7-6:

a, :—aj,wherej:1,2,3 7-4
u=-—u 7-5
Yin :yk+alAuk+a2 Uy Y, U,y s e,y e s Y, 7—6

If the reader examines the module NONLinearInterval delay quicker carefully, it would be
noticed that 7-6 was being used, but the non-tilde expressions for 7-4 and 7-5 were being
substituted. It is the author’s opinion, that the evaluation of all test data in a positive form masks
the actual physics of the process and should not be used. As a result, 7-3 will be used in the
discussion thereafter.

All next iteration peak current time durations are predicted based upon values that
occurred three iterations into the past. In order to balance the prediction in relation to past
references, the system response is then predicted three iterations into the future. Based upon
the parameters outlined in Table 9-1, the minimum and maximum values for each parameters
were chosen to characterize the bounds of the system. As a result, during every iteration, the

87

parameter combination that produces the maximum system response based upon no change in
the present peak current level is determined first. By using the combination of parameters that
produce the maximum predicted response, the smallest change in the control signal can be
utilized.

Once the combination of parameters that produce the maximum system response based
upon no change in the present peak current level is known, the associated system response can
then be compared to the reference value. If this maximum system response is larger, the peak
current level will need to be increased. Otherwise, if the maximum system response is smaller,
the peak current level needs to be decreased.

The magnitude of peak current level change is the next logic to be addressed. In order to
calculate the necessary change in peak current levels, the peak current is changed by 1 ampere
per iterative comparison. The resulting change in predicted peak current time duration three
cycles into the future is then compared to the reference peak current duration again. If the
predicted response still has the same relationship to the reference as the original maximum
system response based upon no peak current change, an additional 1 ampere change will be
processed and compared again. This iterative comparison is continued until the predicted
response changes relationship with the reference. Once the next iteration peak current level has
been calculated, the control iteration is complete and the welding cycle is ready to be repeated.

88

Chapter Eight
Parameter Estimation
8.1 Construct [10]

Previously, a non-linear model has been proposed to mathematically describe the Quasi-
Keyhole
process as follows:

y, = a, + au + a 8—1

0 1 k-1 Zuk—Zyk—l a

Suk—3yk—2

The coefficients of this model are often referred to as system parameters. System parameters
provide a means to calibrate the system to the local environment. In addition by having a basic
understanding of the reasoning behind a model, certain generalities may be established in regards
to these parameters. This model is attempting to predict the present peak current duration based
upon previous current levels and peak current times. As the peak current and associated
durations are increased, the amount of heat in the system increases, which results in a smaller
time frame before the keyhole is established. Therefore, in general, the a;, a,, and a3 coefficients
should be negative and relatively small in magnitude in order to reduce the estimated k™ peak
current time duration, while ay should be positive and relatively large in order to prevent the peak
duration from becoming negative, which is a physical impossibility.

8.2 Matrix Expansion

Often when describing systems, it is convenient to group the iterative variance together
into one mathematical construct called a matrix equation. The matrix expansion for the
aforementioned model is made exact by including an error vector as shown on the following

page:

yk 1 uk—l uk—Zyk—l uk—3yk—2 a0 ek
yk+1 1 uk uk—lyk uk—2yk—1 a1 ek+1
- a, |+ 8—-2
a 3
_y k+n] _1 tou k+n-1 u k+n-2 y k+n-1 u k+n-3 y k+n-2 1L) _e k+n)

Realizing that a vector is defined as a matrix whose dimensions are (n + 1) x 1, this matrix
expansion can be simplified as follows:

A

Y = ®0 + E 83

These matrixes are commonly referred to as the output vector, observation matrix, estimated
parameter vector, and error vector where the dimensions are (n+1)x 1, (n+1)x 4,4 x 1, and (n

89

+ 1) x 1 respectively. It is also important to note that the observation matrix is singular or
noninvertible in system identification problems, which prevents a trivial solution for the
parameter vector. Furthermore, it is also of interest to note that estimated output is formed by
non-linear system since the input and output form a cross product within the observation matrix,
but it will be shown later that a linear relationship can be developed for the least squares vector,
which is solely a function of the real output vector and the observation matrix.

8.3 Cost Function

In order to calibrate the system, unbiased numerical information must be obtained in
order to quantify the differences between the real physical system and the estimated. As a
result, unbiased system data is obtained by supplying random control signals, within a specified
range, and measuring the corresponding system outputs. The numerical comparison is achieved
by defining a cost function as follows:

N n AV T
Jol|= > YTV | = E E 8—4
k=L+1

Since the product of the observation matrix and estimated parameter vector forms the measured
output vector, the error vector is defined as the difference between measured output and the
estimated as shown below:

A

E = 00 -

=< >
)
I
W

- Y -

=< >

8.4 Least Squares Parameter Solution

Now that a mathematical comparison has been defined, it should be realized that this cost
function effectively forms a parabola with only a single minimum value as the system parameters
are varied; therefore, from basic calculus, the least squares parameter values may be obtained by
taking the partial derivative of the cost function with respect to the parameter vector, setting the
equation equal to zero, and solving for the least squares parameters, since the slope of the cost
function will be zero at this minimum value. The equation below summarizes:

e]] T
/_\ A N N N
B3 IC) 9Jlo| oJle| a6 all6
— = A N N N = O 8_6
an 00, 06, 06, 06,
0=0 A A
b)) e=91s

90

It is important to note that although the cost function itself is a scalar, equation 8-6 is actually a
vector since the parameter vector is actually a function of four independent parameters. Based
upon equation 8-6, the least squares parameter solution will simplify to the following form:

-1

>
—

T T
= |® ®&| O Y, provided | D exists 8—7

As a result, the least squares parameter estimation becomes very simple, with the use of MatLab,
once a method of providing a random input and sampling the corresponding output is achieved.

8.5 Proof of Least Squares Parameter Solution
The proof of the least squares approximation is based in linear algebra. As a result, the

proof starts with the cost function defined in equation 8-4. By substituting the error vector,
equation 8-5, into the cost function the following result is obtained:

1T _ _T _
; — A — VAN _ T A _ A
No|l=1Y-Y| |Y-Y| = |[Y -Y Y-Y 8—8
The foil method can then be applied as follows:
_ _T _ _T _
A —_ T — A —_ — T AN AN A
JOl =YY - Y Y - Y Y +YY 8-9

By substituting the estimated output, equation 8-3, into equation 8-9 transforms as shown below:

T T

A T ~~| - _Ty oA ~al I ~n

ol = vy v - |oe| v - v |owo| + |oo] |@0] s-10

This equation can then be further algebraically manipulated as described below:

T T
T T A ~ T 5

~ —_ ~ N N ~ ~ A

A T -
Y - Y P06 + 6 & PO 8—11

el = v v -

D > 1

Now the third term needs to be examined in further detail as follows:

91

T T

Equation 8-12 demonstrates that the second and third terms in equation 8-11 are equal, which
allows the cost function to be further manipulated as follows:

A _T_ A - A
ol = Y Y - 2 06 & Y + 6 & OO 8-13

The following temporary variables are now defined in order to simplify the algebraic
manipulation as shown below:

A= @Y 814
T

B =0 9 = |0 |D = | O = B 8-15

It is important to note that equation 8-15 demonstrates that this matrix is symmetric. Since
equation 8-15 is symmetric, the elements within this matrix have the following property:

bi = by

i i 8—16

Substituting equations 8-14 and 8-15 into equation 8-13 the following transformation is shown:

- T T
A T

ol = v v - 2

_T
B

D >
D >
oo
I
—_
AN

A +

D >

Equation 8-6 is then applied to equation 8-17, which results in the following:

2l 6
. = 0 - - - 818
00 00 00

92

At this point, it is convenient to look at the second and third terms independently. The second
term is examined first as shown below:

8—-19

Performing the partial derivative in accordance with equation 8-6, the following solution for the
second term of equation 8-18 is developed:

~ Tl
= 2A = 20 Y 8-21
The third term in equation 8-18 is now examined as the following shows:
b, b1z b13 b14 0,
A A A A b b b b 0
21 22 23 24 1
I aJ |:60 0, 0, 03] R
A b, b. b b_|l6,
s110 Bo 31 32 33 SEIN
b b_ b_ b |[05]
. _ i 4_1 42 43 44 | 80
N A\
20 20

93

Matrix multiplication is then performed in two steps as outlined below:

b, 0,+b

A A A

6,+b.0,+b 6,

A A A

Ao~~~ Tb, 0,+b _0,+b 0,+b 0
) 91 |:eo 91 92 93:| 21A0 22/\1 23/\2 24A3
aJé éé b, 0,+b, 6 +b 6,+b 6,
) _b41e?+b4zel+b43ez+b44e3_ -
A A
26 26
A 2 N N A A A N
b, 0, +b_0,0,+b 6,6,+b 660+ nextrow
N N A 2 N A A A
. b, 0,0,+b 6, +b 0,0,+b 6 0, +nextrow
T N N A N A A A
R - 2
N P b, 0,0,+b.0,0,+b 0,7 +b 6,06, +nextrow
A A A A A A A 2
) b416003+b420193+b43_0263+b4493 .
AN AN
20 20

At this point, it is interesting to note that the expression that the partial is in relationship with is a
scalar as may have not been immediately apparent in equation 8-17. Performing the partial
derivative in accordance with equation 8-6, the following vector is developed:

A N N

A A N

2b11 60+b12 61+b13 62+b14 63+b21 61+b31 02+b41 83
b12 60+b21 60+2b22 61+b23 62+b24 03+b32 62+b42 63
b,0,+b 0,+b O,+b 6,+2b 60,+b, 0,+b, 0,

_b1460+b24 6,+b,,0,+b, 6,+b _0,+b 62+2b4403_

N A A A

N A A A

Now remembering from equation 8-16 that elements within the matrix defined by equation 8-15
are symmetric the following simplification can be derived:

94

2b,, 6,+2b 6, +2b 6,+2b 6,

2b,0,+2b_0,+2b 6,+2b_ 0,

50 2b,,0,+2b_0,+2b_6,+2b_ 6,

2b,0,+2b,,0,+2b_, 0,+2b 0, |

This expression can then be manipulated into a compact matrix equation, which is the solution to
the third term of equation 8-17, as shown below:

by by, by by, 80

_ 5 by by by by, g)1 = 5 &)&)T é R — 27
ag b13 bz3 b33 b34 ?2
_b14 b, by b444—e3~

_T T A
= 20 Y + 20 ®6, = 0 828
00

Is

Solving this expression provides a solution to the least squares approximation parameter vector a
shown below:

- -1
" T T T

= [® ®&| ® Y, provided | D exists 8—-29

-1

Is

This expression verifies that the individual elements of the parameter vector have a very simple
solution provided equation 8-15 is nonsingular, a method of providing random input within
specified parameters while measuring the corresponding output has been developed, and the data

results can be mathematically analyzed with an automated mathematical software package such
as Matlab.

95

Chapter Nine
Parameter Estimation Test Runs
9.1 Parameter Test Setup

In order to determine the system parameters for the Non-Linear Interval system model,
the NONLinearIntervalParameterEstimate program should be substituted for the AED 109 32d
module. In order for the system parameters to be truly representative of the process, external
variables independent of the control process must be organized in a known, stable, and repetitive
condition. These variables are established in the following configuration: 2.4 mm nozzle
diameter; 2.534 mm/sec travel speed equating to a 0.362 volts servo reference voltage; argon
shielding gas pressure, 35 CFH middle of ball; argon backing gas pressure, 35 CFH middle of
ball; argon plasma jet pressure, 4 CFH bottom of ball; 5 mm nozzle height above work piece;
304 stainless steel work piece material; 3 mm work piece thickness; and a peak current operating
range between 85 and 115 amperes. If these external variables are changed for any reason, a
new set of system parameters will be required for the control algorithm to work effectively.

9.2 Calibration

The astute reader has probably realized that equations 6-1 and 6-2, which describes the
analog input voltage and D/A quantization, have been slightly modified. These equations
describe how the A/D and D/A should work ideally; however, due to board specific biasing
concerns, these equations require calibration. With the Miller power supply off, the D/A
quantization should be calibrated first. This is accomplished by examining the D/A output
equation in the else-if statement that is executed when the time exceeds the x0 variable. By
forcing the peak current duration to zero manually in this equation, the quantization interval,
which corresponds to a zero analog output, 2/2'*, can be adjusted until a zero AO is obtained.
By experimentation, this quantization was determined to be 7991, which is slightly different
from the idea value of 8192. At this point, the ratio described by -1/(55%9.24) can then be
calibrated by setting the peak current duration to a fixed level in the midpoint of the operating
range, executing, and measuring the analog output. In this case, 120 amperes was chosen. By
following this method, the adjusted value may be obtained —0.00196679597881. As a result,
equation 6-2 has been modified as follows:

Quantizationpyc = (AO, -(~0.00196679597881) + 1)-7991 9-1

The A/D analog input voltage described by equation 6-1 is calibrated next. This is accomplished
by wiring the analog input to a power supply. Since the analog input is not open circuited, there
will be not an offset bias induced by the loading resistor placed across the input ADC amplifier
used to reference the input to ground. The ratio 2/2'* can then be adjusted in order to match the
analog input configured by the power supply to a set value equivalent to a normal operating
voltage. By following this procedure, this ratio was determined to be 0.000124177. Equation 6-
1 is thus modified as follows:

Al, = (Quantization zpc -(0.000124177) — 1)-10 - Bias 9-2

96

9.3 Random Input Generator

This random input generator provides a method of providing a random input set from
which the corresponding output can be measured and recorded. This input set is created in
Matlab, which has limited the peak current range between 85 and 115 amperes. Once saved to
an ASCII file, the input file can be accessed through the appl init function using the USB port.
The code that was used to generate this input file is shown below:

random=rand(125,1);
random=random*30;
random=random-15;
random=random+100;
plot(random)

fid=fopen('infile 1 12504.txt','w");
fprintf(fid,'%3.16f\n',random);
fclose(fid);

9.4 Analog Output Initialization

When the AED-109 starts up, the initial quantization provided to the THS5661 from the
FPGA is all zeros. Unfortunately, this corresponds to a —1.0 volts output on the AO. Since the
gain of the external amplifier is set at —9.24, the effective control voltage to the Miller Electric
Maxtron 450 CC/CV power supply is 9.24 volts. If the Miller power supply powered up, this
would equate to a peak current level of 508.2 Amperes, which would immediately damage the
equipment. As a result, the iteration that provides for a termination method if a keyhole is not
achievable is commented out under normal operation; however, at startup, these comments are
removed and the interval used to increment the counter is set very short. Therefore, the Miller
supply is left powered down and this program is executed for a very short duration. Once this
program starts executing, the initial and final outputs are configured in such a manner as to
produce a zero output on the AO. At the application termination, the AO will be outputting zero.
At this point, the comments are reinserted around the conditional loop containing the counter
called skip. The test runs can now commence without damaging the equipment.

9.5 Test Runs

Four test runs were performed to account for the inherent variance in the system. From
each test run, a least-squares approximation was performed resulting in four sets of system
parameters. The code for performing a least-squares approximation in MatLab is shown below:

load data.txt

L=4;

N=114;

for K=L+1:N;
UpperPhi(K-L,©=[1 data(K,1) (data(K-1,1)*data(K-1,2)) (data(K-2,1)*data(K-2,2))];
UpperY (K-L)=data(K,2);

end;

97

UpperY=UpperY’;
ThetaHatLS=(UpperPhi’*UpperPhi)*(-1)*UpperPhi’*UpperY;
ThetaHatLS

The system responses for each test run are shown on the following pages:

T T T
Il . |~ Random Input, amp
—— Systern Response, ms |

Yalue

Sample Mumber

Figure 9-1 Test Run 1

98

“alue

value

GO0
it
540
525
a0
475
440
425
400
3
340
Sps)
300
275
240
225
200
175
140
125
100

74

al

25

L P o e e

I
— Random Input, amp
—— System Respaonse, ms

— HRandom Input, amp
—— System Response, ms

Figure 9-3 Test Run 3

99

a00 T T I
_________________________ [— Random Input, amp

g50

R B R B bdd —— Systern Response, ms

value
'
LT
(]

=i b b B D (e P

P LT 7] b = O L =)

T o P

Lo & g 16 [[T o L

sample

Figure 9-4 Test Run 4

From these sets of parameters, the minimum and maximum value for each parameter
were defined, which in turn are then used in the Non-Linear Interval Control algorithm. Within
the control algorithm, the set of system parameters that produces the maximum system response
after each A/D data sample is selected in order to determine the minimum change in the control
signal for the next iteration. The following minimum and maximum system parameters were
determined:

Table 9-1 System Parameter Bounds

System Minimum Maximum Value
Parameter Value
Ao 912.594537112136 1292.04854490696
Ay -10.1609654622258 -6.94168976627553
A, -0.00424252156547636 -0.000418976974092593
As -0.00211824837968971 0.000588460632832352

100

Photos of the actual test runs are shown below:

Figure 9-5 Topside All Four Test Runs

Gt i,

Figure 9-6 Bottom Side All Four Test Runs

101

Chapter Ten
Implementation
10.1 Implementation Setup

In order to embed the Non-Linear Interval Control Algorithm, the AED 109 32d module
should be replaced with the NONLinearInterval delay quicker program. In order for the control
to work properly, external variables independent of the control process must be organized in a
known, stable, and repetitive condition. These variables are established in the following
configuration: 2.4 mm nozzle diameter; 2.534 mm/sec travel speed equating to a 0.362 volts
servo reference voltage; argon shielding gas pressure, 35 CFH middle of ball; argon backing gas
pressure, 35 CFH middle of ball; argon plasma jet pressure, 4 CFH bottom of ball; 5 mm nozzle
height above work piece; 304 stainless steel work piece material; 3 mm work piece thickness;
and a peak current operating range between 85 and 115 amperes. If these external variables are
changed for any reason, a new set of system parameters will be required for the control algorithm
to work effectively.

10.2 Analog Output Initialization

When the AED-109 starts up, the initial quantization provided to the THS5661 from the
FPGA is all zeros. Unfortunately, this corresponds to a —1.0 volts output on the AO. Since the
gain of the external amplifier is set at —9.24, the effective control voltage to the Miller Electric
Maxtron 450 CC/CV power supply is 9.24 volts. If the Miller power supply powered up, this
would equate to a peak current level of 508.2 Amperes, which would immediately damage the
equipment. As a result, the iteration that provides for a termination method if a keyhole is not
achievable is normally set to increment the counter every 2000 iterations; however, at startup, the
iteration interval should be set to a very small number. Therefore, the Miller supply is left
powered down and this program is executed for a very short duration. Once this program starts
executing, the final output is configured in such a manner as to produce a zero output on the AO.
At the application termination, the AO will be outputting zero. At this point, the number of
iterations before incrementing should be reset to 2000 in the conditional loop containing the
counter called skip. The control implementation can now commence without damaging the
equipment.

10.3 Control Results

Once the system parameters determined in the parameter estimation program have been
encoded, testing of the actual Non-Linear Interval Control Algorithm can begin. Before
describing the results, it is important to realize that different hardware characteristics can have
significant effects on the results. The time constant of the analog output is of particular
importance. The most effective AO is one with a very short time constant; however, if the time
constant is relatively long, the base time will have to be substantially longer to allow the AO to
settle and the heat to dissipate from the system. The best weld quality was determined for this
hardware application to occur at a reference peak time of 325 ms and a base time of 400 ms. For
shorter base times, the reference time will decrease substantially in order to dissipate the heat

102

that has been absorbed by the work piece. However, the peak current will tend to grow to
establish a keyhole in a shorter time duration, with the net effect of reducing the stability of
system and the overall weld quality. The results at the ideal reference peak and base time are
shown initially followed by a shorter less ideal reference peak and base time as follows:

103

¥01

140 T T T T | |

1350

120
110

100 |- T =
90 nnnnn-

a0

/0

1]

Contral Signal (Amp)

S0
40

a0 Iibtutttdii i i it i iuunitin i i udiiiuuhutsiiu i i od ui iiilioaioo i) -

20
10

0 ! ! | | !
0 1 2 3 4 5 4]

Time x 10000 (ms) « 10t

Figure 10-1 Control Signal, Peak Time s = 325 ms, Base Time = 400 ms, Start Peak Current =135 A

SOI

Feak Current Time {ms)

Time x 10000 {ms)

Figure 10-2 Peak Current Time, Peak Time s = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A

901

KeyHole Potential {valts)

=
=
|
T
T
I
1
L
T
I
T
L
T
T
I
L
T
I
[
|
|
1
T
T
1
T
)
]
|
|

=
La
|
T
T
1
1
T
1
T
T
T
1
1
T
T
T
I
T
1
1
T
T
T
T
T
T
I
T
T
1

=
=2
|
T
T
T
T
1
T
T
T
T
T
T
I
1
T
T
T
T
T
T
T
I
T
1
T
T
]

=

1]]]] 1
a 1 2 3 4 5 B
Time x 10000 {ms) w10t

Figure 10-3 Keyhole Potential, Peak Time .f = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A

LOT

35 I I I I I I

Delay (ms)

L e

Time x 10000 {ms) « 10

Figure 10-4 Delay, Peak Time s = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A

801

Figure 10-5 Topside Work Piece, Peak Time . = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A

601

Figure 10-6 Bottom Side Work Piece, Peak Time .r = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A

dury) (eubis josuon

110

=+

¥ 10

Time x 10000 {ms=)

Figure 10-7 Control Signal, Peak Time .t = 125 ms, Base Time = 200 ms, Start Peak Current =110 A

______________________________________.|.H_

v 10°

Time x 10000 {ms)

I S e S sy e e e

]
LN OLOCLO L L L L L L L L L L L L L L L O
LW o L - L] e L - L e LW L - LU - L L0
OO0 Q0020 - = - LA L L L L= = == O OO (R O P e

(W) awn] weung yead

111

200 ms, Start Peak Current=110 A

125 ms, Base Time =

Figure 10-8 Peak Current Time, Peak Time (¢

o um) (s (d) L = Ly e = o T

DDDDDDDDD

el

Figure 10-10 Topside Work Piece, Peak Time .f = 125 ms, Base Time = 200 ms, Start Peak Current=110 A

148!

Figure 10-11 Bottom Side Work Piece, Peak Time .f= 125 ms, Base Time = 200 ms,

Start Peak Current=110 A

Chapter Eleven
Conclusion
11.1 Accomplishment

The stated goal of this project was to implement the non-linear interval control algorithm
in regards to the Quasi-KeyHole plasma arc welding (PAW) process utilizing a TMS320VC5416
DSK in conjunction with an AED-109 data converter. By configuring the control process to
operate with a 325 ms reference peak current time and a static 400 ms base current time, very
stable repetitive results with an excellent weld quality were achieved. It was also demonstrated
that each implementation is not only dependent upon the process and control algorithm, but the
digital hardware choices as well. With smaller analog output response times, the base current
period can be significantly reduced; however, the weld quality is highly dependent upon the
ability of embedded control process to dissipate heat effectively and in such a manner that the
peak current control signal is very stable. If the system response is stable, but the control signal
is erratic, a low weld quality will result.

Although somewhat complex to configure, the C5416 does provide a powerful tool with a
wealth of options to implement control processes. In comparison to other hardware choices such
as the Micro-Processor or Micro-Controller, the apparent main drawback would the complexity
of the configuration process with other factors such as cost or power consumption possibly being
of concern depending on the application. However, for welding control applications such as the
PAW process, the definitive results are usually of primary emphasis. Once the configuration
process has been conquered, the C5416 is an excellent choice due to its expandability and speed
of processing.

11.2 Additional Features

Realistically, the PAW process only requires one analog input and a single analog output
capable of sampling in the KHz range to be successful. This implementation does take
advantage of the stability offered by the differential analog input port and processing speed, but a
wealth of options supplied by the combination of the C5416 DSK and AED-109 Daughter Card
are not being utilized. Options such as configurable Digital 1/0O, HPI ports for external data
storage, on-board audio I/O, and programmable flash for boot loading are not being utilized in
this implementation.

The 16-bit Digital I/O configurable as 12 outputs and 4 inputs or 12 inputs and 4outputs
could be used in a number of ways. For example, the digital inputs could be used to program
pre-set reference peak and base times, or simply to recognize threshold inputs for signaling
purposes. If a 12-bit digital output pattern was configured, the 12-bit quantization pattern for
either the A/D or D/A could be output for external observation or storage. Other digital output
possibilities include the control of relays, lights, or buzzers for a multitude of purposes. As a
result, the existing control module NONLinearInterval delay quicker has the required memory-
mapped registers provided in its code to allow for future Digital I/O implementations if desired.

115

The HPI port provided on the C5416 DSK is definitely an underused asset. The present
control methodology is configured to store system information in arrays saved in on-board
SRAM. This practice is functional for the desired observations; however, this process increases
the code size, which effectively slows down processing times and limits the amount of data that
may be stored. If the HPI port had been utilized as an avenue for external storage, the amount of
data stored could be greatly increased by simply observing on-board or on-chip memory
locations.

The on-board audio ports, although not capable of higher sampling rates such as AED-
109, are still an effective means of interfacing between the analog and digital worlds. In the
current configuration, the control signal is assumed to be in compliance with the quantization
that is generated by the AED-109. As a result, a good use of an additional lower frequency
analog input would be to measure the actual control signal current that is being generated by the
Miller power supply to verify compliance. Another good example would be to use additional
analog input ports for multiple system output systems, while realizing that the same logic could
be applied for analog outputs as well. Regardless of the application, the combination of AED-
109 and C5416 DSK analog I/O would allow for a variety of other configurations that are not
being utilized in this control.

Finally, the programmable Flash is an interesting feature for stand-alone environments
such is common in applications such as appliances, cell phones, or factory environments. The
programmable flash provides a method of loading not volatile boot-loadable programs upon start
up, independent of outside influences. This configuration is very useful when in a production or
non-testing mode; however, in the laboratory environment, such is the case in this application
where observation, modification, speed, and troubleshooting are at premium, flash configurations
are not recommended. Flash has the added disadvantage of memory accessing times, which are
significantly slower then RAM. As a result, real-time applications tend to avoid flash for any
other application other then initial boot loading into RAM at start up.

11.3 Final Thoughts

If the DSP venue is chosen as the tool of choice for future embedded control processes,
there are many advanced features that could be pursued for future applications. The driving
motivation for most modifications is the desire for greater processing speed. For example in the
case of the C5416, no math co-processor is provided. This tends to slow processing speeds in
mathematical intensive operations. As a result, other DSP’s such as the TMS320C67x actually
incorporate math co-processors, which are very useful in floating-point hardware manipulation.
In addition, clock speeds in the range of 1 GHz are now available for the C6000 series DSP’s,
which is significantly faster then the 160 MHz provided by the C5416. Other process specific
aspects could also be pursued. A good example would be the analog output response times,
which are of critical importance to Quasi-KeyHole PAW process. In this case, providing the
manufacturer with the required operational time constants could greatly increase the overall
system stability and weld quality.

In conclusion, the TMS320VC5416 DSK used in conjunction with the AED-109 data
converter has been shown to be an effective tool in implementing feedback control algorithms.

116

With the robust configuration options provided by this system, the existing implementation could
be easily modified for other feedback or data processing applications. With the modern demands
of faster, smaller, cheaper, the DSP solution is and will continue to be a fixture concerning
signal-processing applications for the foreseeable future.

117

Appendix A
TMS320VC5416 DSK Registers
A.1 CPU Registers [19 |
The C5416 DSK has 27 memory-mapped CPU registers that are mapped into Data
memory space addresses Ohjs to 1Fh;s. The following is a list of available memory-mapped

registers (MMRs):

Table A-1 CPU Memory-Mapped Registers

Name Dec Hex Description

| st0o | 6 | 6 | StatusRegster0 |
AL | 8 | 8 | AccumulatorALowWord(150) |

A.1.1 Status Registers [19 |

The C5416 contains three status registers: STO; ST1; and PMST. Each status register is
further divided into several distinct fields. Although each field is often thought of as a separate
register, it is not possible to access these fields individually; therefore, in order to set one field, it
is necessary to set all of the fields within the same status register. The STO fields are listed as
follows:

118

Aucxiliary Register Pointer (ARP)

Carry Bit (C)

Data Page Pointer (DP)

Overflow Flag for Accumulator A (OVA)
Overflow Flag for Accumulator B (OVB)
Test/Control Flag (TC)

The ST1 fields are listed below:

Accumulator Shift Mode (ASM)
Block Repeat Active Bit (BRAF)
Dual 16-bit Math Bit (C16)
Compatibility Mode Bit (CMPT)
Compiler Mode Bit (CPL)
Fractional Mode Bit (FRCT)
Hold Mode Bit (HM)

Interrupt Mask (INTM)
Overflow Mode Bit (OVM)
Fractional Mode Bit (SXM)
External Flag (XF)

The PMST is divided as shown below:

Address Visibility Bit (AVIS)

CLKOUT Disable Bit (CLKOFF)

Map ROM into Data Space (DROM)

Interrupt Vector Table Pointer (IPTR)
Micro-Processor/Micro-Controller Mode Bit (MP/MC)
RAM Overlay Bit (OVLY)

Saturation on Multiply Bit (SMUL)

Saturation on Store (SST)

A.2 Peripheral Memory-Mapped Registers [19 |

The C5416 uses Peripheral Memory-Mapped Register to control and configure on-chip
peripherals. These registers are listed as follows:

Table A-2 Peripheral Memory-Mapped Registers

Name Dec Hex Description
DRR20 32 20 McBSP 0 Data Receive Register 2
DRRI10 33 21 McBSP 0 Data Receive Register 1
DXR20 34 22 McBSP 0 Data Transmit Register 2
DXR10 35 23 McBSP 0 Data Transmit Register 1
TIM 36 24 Timer Register
PRD 37 25 Timer Period Register

119

Table A-2 Peripheral Memory-Mapped Registers (Continued)

Name Dec Hex Description

- | 39 | 27 JReserved |
| - | 4547 | ODOF | Reserved |
- | 5859 | 3A3B | Reserved |
- | 6 | 3F JReserved |
- | 748 | 4AS53 JReserved |

- 89-95 59-5F Reserved

A.3 CPLD Registers [19]

The main Board Setup Library (BSL) header file dsk5416.h includes definitions for the
I/O mapped CPLD registers. It is acceptable practice to make assignments with ioport variables
just like any other variable. The eight CPLD registers are listed below:

DSK5416_USER_REG, 0
DSK5416 DC_REG, 1
DSK5416 PCM3002 L, 2
DSK5416_PCM3002_H, 3
DSK5416_VERSION, 4
DSK5416 DM _CNTL, 5

120

. DSK5416_MISC, 6
DSK5416_CODEC_CLK, 7

A.4 McBSP Control Registers and Sub-Addresses [19]

The control registers for the multichannel buffered serial port (McBSP) are accessed using the
sub-bank addressing scheme. This allows a set or sub-bank of registers to be accessed through a
single memory location. The McBSP sub-bank address register (SPSA) is used as a pointer to
select a particular register within the sub-bank. The McBSP data register (SPSDx) is used to
access (read or write) to the selected register.

Table A-3 McBSP Control Registers and Sub-Addresses

Name Hex Name Hex Name Hex Hex

Add Add Add | Sadd Description

(MCR20 | 39 | MCR21 | 49 | MCR22 | 35 | 9 | Multichannel Control Register 2 |

RCERBO 39 RCERBI 49 RCERB2 35 B Recs:we Chal}l}el Enable
Register Partition B

XCERBO 39 XCERBI 49 XCERB2 35 D Trar}snut Cha}gnel Enable
Register Partition B

39

RCERCO RCERC]1 49 RCERC?2 Additional Channel Enable

Register for 128-Channel Select

39 35 12 Additional Channel Enable
XCERCO XCERCI 49 XCERC2 Register for 128-Channel Select

39 35 14 Additional Channel Enable
RCEREO RCEREI 49 RCERE2 Register for 128-Channel Select

39 35 16 Additional Channel Enable
XCEREO SCEREL 49 SCERE2 Register for 128-Channel Select

39 35 18 Additional Channel Enable
RCERGO RCERGI 49 RCERG2 Register for 128-Channel Select

121

Table A-3 McBSP Control Registers and Sub-Addresses (Continued)

Name Hex Name Hex Name Hex Hex
Add Add Add | Sadd Description

39 35 1A | Additional Channel Enable
XCERGO - XCERGI XCERG2 -- Register for 128-Channel Select

A.5 DMA Sub-Bank Addressed Registers [19 |

Table A-4 DMA Sub-Bank Addressed Registers

Name Hex Add Hex Sub-Add Description
DMSRCO 56 0 DMA Channel 0 Source Address Register

(DMDST1 | 56 | 6 |DMA Channel I Destination Address Register |
(DMSFCI | 56 | 8 | DMA Channel I Sync Select and Frame Count Register |

122

Table A-4 DMA Sub-Bank Addressed Registers (Continued)

Name Hex Add Hex Sub-Add Description
DMGCRO 56 26 DMA Global Count Reload Register, Channel 0

A.6 Interrupts [19]

Table A-5 Interrupts

Name Trap Dec Hex Pr Description

(SINTI8 | 4 | 12 | C | - |Softwarelnterrupt#18
(SINT20 | 6 | 20 | 14 | - | Softwarelnterrupt#20
(SINT22 | 8 | 28 | IC | - | Softwarelnterrupt#22
(SINT24 | 10 | 36 | 24 | - | Softwarelnterrupt#24

(SINT26 | 12 | 44 | 2C | - | Softwarelnterrupt#26
(SINT28 | 14 | 52 | 34 | - |Softwarelnterrupt#28
[SINT30 | 16 | 60 | 3C | - | Softwarelnterrupt#30
(INTI"SINTL | 18 | 68 | 44 | 4 | ExternalUserInterrupt#l
| TINT,SINT3 | 20 | 76 | 4C | 6 | Timerlnterrupt

123

Table A-5 Interrupts (Continued)

Name Trap Dec Hex Pr

Description
XINTO, SINT5 22 84

54 8 McBSP #0 Transmit Interrupt (default)

XINT2, SINT7 McBSP #2 Transmit Interrupt (default)
HINT’, SINT9 HPI Interrupt

DMACH4, SINT11 McBSP #1 Transmit Interrupt (default)
DMACS5, SINT13 DMA Channel 5 (default)

124

SCl

Appendix B
Code Composer Studio Test Program Required Files
B.1 Required Files [6]

Table B-1 Code Composer Studio Required Files for Test Program Execution

. Linker DSP/ oo
GEL Project Command | BIOS Generated | Include Libraries Source
C5416_dsk.gel | d5416dsk AED.pjt | 5416 Inkp.cmd AED.h drv5402£.1ib 5416 _dsk.c

.y | | | | AEDBdh AED_MAIN.c
-y 4 | | JAEDDMSh| | Vectorsam |
o pdsksdloh |)

T e |

Appendix C
General Extension File (GEL)

C.1 C5416_dsk.gel [32]

/* set PMST to: OVLY on; DROM on, CLKOUT off */
#define PMST VAL 0x7facu

/* set wait-state control reg for: 2 wait states, 4 for I/O */
#define SWWSR VAL 0x4492u

/* set external-banks switch control for: set CONSEC and BH, CLKOUT/=2 */
#define BSCR_VAL 0xa002u

/* Set Default Reset Initialization Value */

#define ZEROS 0x0000u

/* Set CLKMD register to PLL multiplier of 10 */
#define CLKMD VAL 0x9107u

/* Set Peripheral Control Register Addresses for DEV_RESET */
#define DMPREC 0x0054u

#define DMSA 0x0055u

#define DMSDI 0x0056u

#define DMA_CHO DMFSC _SUB_ADDR 0x0003u
#define DMA CH1 DMFSC _SUB_ADDR 0x0008u
#define DMA CH2 DMFSC SUB_ADDR 0x000Du
#define DMA CH3 DMFSC _SUB_ADDR 0x0012u
#define DMA CH4 DMFSC SUB_ADDR 0x0017u
#define DMA_CHS5 DMFSC _SUB_ADDR 0x001cu
#define MCBSPO_SPSA 0x0038u

#define MCBSPO_SPSD 0x0039u

#define MCBSP1_SPSA 0x0048u

#define MCBSP1_SPSD 0x0049u

#define MCBSP2_SPSA 0x0034u

#define MCBSP2_SPSD 0x0035u

#define MCBSP_SPCR1_SUB_ADDR 0x0000u
#define MCBSP_SPCR2_SUB_ADDR 0x0001u
#define MCBSP_SRGR1_SUB_ADDR 0x0006u
#define MCBSP_SRGR2 SUB_ADDR 0x0007u
#define MCBSP_MCR1_SUB_ADDR 0x0008u
#define MCBSP_MCR2 SUB_ADDR 0x0009u

#define SRGR1_INIT 0x0001u
#define PRDO 0x0025u

#define TCRO 0x0026u

#define PRD1 0x0031u

#define TCR1 0x0032u

#define TIMER STOP 0x0010u
#define TIMER RESET 0x0020u
#define PRD DEFAULT O0xFFFFu
#define GPIOCR 0x0010u

/* The Startup() function is executed when the GEL file is loaded. */
StartUp()

{

C5416_DSK_Init();

GEL_TextOut("Gel StartUp complete.\n");

}

menuitem "C5416_DSK_Configuration";

hotmenu CPU_Reset()

126

{
GEL Reset();

PMST =PMST VAL;

/* don't change the wait states, let the application code handle it */
/* note: at power up all wait states will be the maximum (7) */
/* SWWSR = SWWSR_VAL; */
BSCR =BSCR_VAL;

DSK5416_DisableFlash();

GEL_TextOut("CPU Reset Complete.\n");

j

/* All memory maps are based on the PMST value of 0XFFEOQ */
hotmenu C5416 DSK_Init()

{

GEL Reset();

PMST =PMST VAL;

/* don't change the wait states, let the application code handle it */
/* note: at power up all wait states will be the maximum (7) */
/* SWWSR = SWWSR _VAL; */
BSCR =BSCR_VAL;

DSK5416 DisableFlash();

C5416 Periph Reset();

GEL_XMDef(0,0x1eu,1,0x8000u,0x7f);

GEL_XMOn();

GEL MapOn();

GEL_ MapReset();

GEL MapAdd(0x80u,0,0x7F80u,1,1); /* DARAM */
GEL_MapAdd(0x08000u,0,0x8000u,1,1); /* External */

GEL MapAdd(0x18000u,0,0x8000u,1,1); /* DARAM */
GEL_ MapAdd(0x18000u,0,0x8000u,1,1); /* SARAM */
GEL_MapAdd(0x28000u,0,0x8000u,1,1); /* SARAM */

GEL MapAdd(0x0u,1,0x60u,1,1); /* MMRs */
GEL_MapAdd(0x60u,1,0x7FAOu,1,1); /* DARAM */
GEL MapAdd(0x08000u,1,0x8000u,1,1); /* DARAM */

GEL MapAdd(0x00000u,2,0x10000u,1,1); /* 10 Space */
GEL_TextOut("C5416_Init Complete.\n"); }

/* sk sk sk sk sfe sk sk sk sk sk sfe sk sk sk ke sk sfe ke sk s ke sk sfeoske skeoskosk skeskosk */

C5416_Periph_Reset()
{

IFR = 0xFFFFu;

IFR = 0x0000u;

DMA Reset();
MCBSPO_Reset();
MCBSP1 Reset();
MCBSP2_Reset();
TIMERO_Reset();
GPIO_Reset();

}
DMA _ Reset()

{

*(int *)DMPREC = ZEROS;

*(int *)DMSA = DMA_CHO_DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;

*(int *)DMSDI = ZEROS;

*(int *)DMSA =DMA_CHI DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;

*(int *)DMSDI = ZEROS;

127

*(int *)DMSA = DMA_CH2_DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;
*(int *)DMSDI = ZEROS;
*(int *)DMSA =DMA_CH3_DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;
*(int *)DMSDI = ZEROS;
*(int *)DMSA =DMA_CH4 DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;
*(int *)DMSDI = ZEROS;
*(int *)DMSA = DMA_CH2_DMFSC_SUB_ADDR;
*(int *)DMSDI = ZEROS;
*(int *)DMSDI = ZEROS;

}
MCBSPO_Reset()

{

*(int *)MCBSPO_SPSA = MCBSP_SPCR1_SUB_ADDR;
*(int *)MCBSPO_SPSD = ZEROS;

*(int *)MCBSPO_SPSA = MCBSP_SPCR2_SUB_ADDR;
*(int *)MCBSPO_SPSD = ZEROS;

*(int *)MCBSP0O_SPSA = MCBSP_SRGR1_SUB_ADDR;
*(int *)MCBSPO_SPSD = SRGR1_INIT;

*(int *)MCBSP0O_SPSA = MCBSP_SRGR2_SUB_ADDR;
*(int ¥)MCBSPO_SPSD = ZEROS;

*(int ¥)MCBSP0O_SPSA = MCBSP_MCR1_SUB_ADDR,;
*(int *)MCBSPO_SPSD = ZEROS;

*(int *)MCBSP0O_SPSA = MCBSP_MCR2 SUB_ADDR;
*(int *)MCBSPO_SPSD = ZEROS;

}

MCBSP1_Reset()

{

*(int *)MCBSP1_SPSA = MCBSP_SPCR1_SUB_ADDR;
*(int *)MCBSP1_SPSD = ZEROS;

*(int *)MCBSP1_SPSA = MCBSP_SPCR2 SUB ADDR;
*(int *)MCBSP1_SPSD = ZEROS;

*(int *)MCBSP1_SPSA = MCBSP_SRGR1 SUB_ADDR;
*(int *)MCBSP1_SPSD = SRGR1_INIT;

*(int *)MCBSP1_SPSA = MCBSP_SRGR2 SUB_ADDR;
*(int *)MCBSP1_SPSD = ZEROS;

*(int *)MCBSP1_SPSA = MCBSP_MCR1_SUB_ADDR;
*(int *)MCBSP1_SPSD = ZEROS;

*(int *)MCBSP1_SPSA = MCBSP_MCR2 _SUB_ADDR;
*(int *)MCBSP1_SPSD = ZEROS;

}

MCBSP2_Reset()

{

(int ¥)MCBSP2_SPSA = MCBSP_SPCR1 _SUB_ADDR;
*(int *)MCBSP2_SPSD = ZEROS;

*(int ¥)MCBSP2_SPSA = MCBSP_SPCR2 SUB_ADDR;
(int ¥)MCBSP2_SPSD = ZEROS;

*(int ¥)MCBSP2_SPSA = MCBSP_SRGR1 _SUB_ADDR;
(int ¥)MCBSP2_SPSD = SRGR1 _INIT;

*(int ¥)MCBSP2_SPSA = MCBSP_SRGR2 SUB_ADDR;
(int ¥)MCBSP2_SPSD = ZEROS;

*(int ¥)MCBSP2_SPSA = MCBSP_MCR1_SUB_ADDR;
(int ¥)MCBSP2_SPSD = ZEROS;

(int ¥)MCBSP2_SPSA = MCBSP_MCR2 SUB_ADDR;

128

*(int *)MCBSP2_SPSD = ZEROS;
}
TIMERO_ Reset()

{

*(int *)TCRO = TIMER_STOP;
*(int *)PRDO0 = PRD_DEFAULT;
*(int *)TCRO = TIMER _RESET;
H

GPIO_Reset()

{

*(int *)GPIOCR = ZEROS;

}

DSK5416 DisableFlash()

{

/* Disable Flash so SRAM is visible */

GEL_MemoryFill(0x0005, 2, 1, 0x40);
§

129

Appendix D
Linker Command File
D.1 5416 _Inkp.cmd [33]

MEMORY

{

PAGE 0: P DARAM4S: origin = 0x18000, len = 0x4000
VECT: origin = 0x7f80, len = 0x80

PAGE 1: USERREGS: origin = 0x60, len = Ox1c
BIOSREGS: origin = 0x7c, len = 0x4

D DARAMO: origin = 0x80, len = 0x 180

D DARAMI13: origin = 0x2000, len = 0x6000
D DARAMBG67: origin = 0xc000, len = 0x4000
H

SECTIONS

{

.vectors: {} > VECT PAGE 0

.sysregs: {} > BIOSREGS PAGE 1

treinit: {} > P_DARAM45 PAGE 0

.gblinit: {} > P DARAM45 PAGE 0

frt: {} > P_DARAM45 PAGE 0

text: {} >P_DARAM45 PAGE 0

.cinit: {} >P_DARAM45 PAGE 0

.pinit: {} > P _DARAM45 PAGE 0

.sysinit: {} > P_DARAMA45 PAGE 0

Jbss: {} >D DARAMO PAGE 1

far: {} > D DARAMG67 PAGE 1

.const: {} >D DARAMO PAGE 1

.data: {} > D _DARAMO PAGE 1

.switch: {} > D DARAMO PAGE 1

.sysmem: {} >D DARAMI3 PAGE 1

.cio: {} >D DARAMO PAGE 1

.MEMS$obj: {} > D DARAMO PAGE 1
.sysheap: {} > D_DARAMO PAGE 1

.stack: {} > D DARAMO PAGE 1

H

130

Appendix E
Include Files

E.1 AED.h [6]

/e st s e st st sk ke st st st ke ke stesk s ke st sk sk e ke st s ke st st sk st ke st sheskesie skt ke st sk st ke stk ke st skosteste st stk st stk sekokokoskokokokoskokokok

AED System Descriptions
TYPES and CONSTANTS:
AED_xxxx - Standard error return values
AED FLASH xxxx - Standard flashing constants
AED_ PRINT - Indicates printing preference
CHIP_6xxx - Determines processor model
CHECK FPGA OVFL - Determines if overflow check is desired
FPGA ADDRESS - Determines the address of the FPGA data
FPGA OVFL CHECK ENABLE - Determines if overflow check is possible
OLD_FPGA REV - Determines if old FPGA revision is used
TALK TO FPGA - Determines if the FPGA is present
xxxx_LED - Standard LED definitions
FUNCTIONS:
error_flashing - Flashes a numeric code to ERR_LED forever
error_flashing while - Flashes a numeric code while condition
***/
#ifndef AED H
#define AED H
#include "AED_Cfg.h"
#include "AED Brd.h"
#ifndef AED PRINT
/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h
2 =File
1 = Print (Default)
0 =No print */
#define AED PRINT 2
#endif
#ifndef CHECK_FPGA OVFL
/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h
0 =No Check Made
1 = Check FPGA overflow pin(default)
*/
#define CHECK _FPGA OVFL 1
#endif
#f (!(defined(CHIP_2810) ||\
defined(CHIP_5416) ||\
defined(CHIP_5510) ||\
defined(CHIP_6201) ||\
defined(CHIP_6701) ||\
defined(CHIP_6211) ||\
defined(CHIP _6211X) ||\
defined(CHIP_6416) ||\
defined(CHIP_6711)))
/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h */
#error "Must #define processor type as CHIP xxxx"
#endif
#ifndef FPGA_ADDRESS
/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h

131

Not defined = Use standard FPGA address

Defined = Use the FPGA address specified

*/

#define FPGA ADDRESS get data addr()

#endif

/* Indicates if FPGA supports overflow checking and it is enabled */

#define FPGA OVFL CHECK ENABLE ((OLD FPGA REV<2) &&\
TALK TO FPGA && CHECK FPGA OVFL)

#ifndef OLD_FPGA REV

/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h

0 =Rev 1 board (default)

Rev 0 board; FPGA Version 102], 100x (default)

1 = Rev 0 board; FPGA Version 1021

2 = Rev 0 board; FPGA Version 102H or older

*/

#define OLD FPGA REV 0

#endif

#ifndef TALK TO _FPGA

/* Should be set in Project|Options|Symbols|"Define Symbols" or AED Cfg.h

0 = No FPGA present

1 = Communication with FPGA (default)

*/

#define TALK_TO _FPGA 1

#endif

/* Standard LED definitions */

#define ERR_LED 0

#define APPL_LED 1

/* Standard error returns */

#define AED OK 1

#define AED_ERR 0

/* Standard flashing constants, DON'T use 10s */

#define AED FLASH MAIN DMS ERROR 11

#define AED FLASH MAIN FPGA OVERFLOW 12

#define AED FLASH NORMAL COMPLETION 13

#define AED FLASH DAC DATA BUFFER MALLOC ERROR 14

#define AED FLASH DAC ERROR SAMPLE RATE 15

#define AED FLASH EDMA ERROR LINK ALLOCATION 16

#define AED_FLASH MAIN DATA BUFFER MALLOC ERROR 17

#define AED FLASH APPL SAVE BUFFER MALLOC ERROR 18

#define AED FLASH MAIN TEST BUFFER MALLOC _ERROR 19

#define AED FLASH FEATURE NOT IMPLEMENTED 21

/* */
/* FUNCTIONS */
/* */

/***

error_flashing - Flashes a numeric code to ERR _LED forever
Parameters: IN flashes - numeric code ranging 1 - 99
***/

void error_flashing(int flashes);
/***
error_flashing while - Flashes a numeric code while condition

Parameters: IN flashes - numeric code ranging 1 - 99

IN cond - pointer to a boolean condition
***/
void error_flashing while(int flashes, int *cond);

#endif

132

E.2 AED Applh [6]

/e st s e st st sk e st st st ke ke steske s e st sk sk st kst s ke st st sk ste ke st steskesie skt skestesie st stesteskoste ke sttt st stk st stk sekokoskokoskokokoskokokok

AED System Descriptions

TYPES and CONSTANTS:

ApplBlockType - Standard buffer type definition

EXTERNAL VARIABLES:

appl_test data - pointer to test data area for

TALK TO FPGA=0

FUNCTIONS:

appl_parms - Defines size of block for DMA transfers

appl_init - Performs block init before data transfer

appl_test - Fills block with test data from FPGA

appl_process - Processes 1 buffer of data

appl _idle - Performs background processing

appl_end - Processing after termination of main loop
***/
#ifndef APPL HDR

#define APPL HDR

#if (defined(CHIP_5416) || defined(CHIP_5510))

typedef union {

long * word,

unsigned long * uword,

short * hword;

unsigned short * uhword,

char * byte;

unsigned char * ubyte;

} ApplBlockType;

typedef long WordType;

typedef unsigned long UWordType;

#else

/* standard buffer type definition - 32 bit DSPs */

typedef union {

int * word;

unsigned int * uword,

short * hword;

unsigned short * uhword,

char * byte;

unsigned char * ubyte;

} ApplBlockType;

typedef int WordType;

typedef unsigned long UWwordType;

#endif

extern ApplBlockType appl test data;

extern ApplBlockType dual data buffer;
/**/
/* standard application interface functions - called by AED main */
/**/
/***

appl_parms - Defines mode and size of block for DMS transfers
Parameters: OUT frames - number of frames in the block
OUT records - number of records in the frame

OUT reclen - number of transfer elements in record

OUT esize - transfer element size code (brd_hdr.h)

OUT mode - transfer mode code (DMS_hdr.h)

133

***/

void appl_parms(unsigned int *frames, unsigned int *records, unsigned int *reclen, unsigned int *esize, unsigned int
*mode);

/* masks for mode parameter */

#define DMA_SYNC MASK 0xOfff

#define DMA_PORT MASK 0xf000
/***

appl_init - Performs buffer init before data transfer

Parameters: OUT data_block - pointer to beginning of entire input

block (all frames)

IN block bytes - number of bytes in block

IN dma_chan - DMA channel allocated by main for input

Note: This routine is autmatically called from main before the data transfer is intiated, to initialize data buffers.
***/

void appl_init(ApplBlockType data block, unsigned int block bytes, Dma_channel dma_ chan);
/***

appl_test - Fills separate test block to simulate data from FPGA

Parameters: OUT fill - pointer to beginning of test block

IN frame bytes - number of bytes in each frame

IN frames - number of frames in block

Note: This routine is autmatically called from main to initialize the test buffer with data.
***/

unsigned long appl_test(ApplBlockType fill, int frame bytes, int frame);
/***

appl_process - Processes 1 frame of buffer data

Returns: user defined termination code, 0 is no termination

Parameters: IN data buffer - pointer to beginning of frame of data just received from FPGA

IN buf number - number of buffer just received

Note: This routine is autmatically called from main when a full buffer of data has been transferred from the
daughterboard.

et st sk ke she st s e skeske s sk st st s sk stk sk st st skt st stk stttk sk skl skotolkolkoskoskokoskolostokokokokoiokoskolokokokokokokokokekokokek ok /

int appl process(ApplBlockType data buffer, int buf number);
/***
appl_idle - Performs background processing
Returns: user defined termination code, 0 is no termination
Note: This routine is automatically called from main when no other processing is required, but may not be called
regularly.
***/
int appl idle(void);
/***
appl_end - Final processing before termination
Parameters: IN times - main program loop cycles executed
IN bufs_proc - number of buffers processed by appl process

IN buf count - number of buffers received

IN prev_buf count - last buffer given to appl process

IN DMS _err - error code from DMS

IN appl_term_code - user termination code from either appl process or appl_idle

IN FIFO_ovfl - indication that the FIFOin the FPGA has overflowed

IN DMS count - number of frames remaining to be received in the block

Note: This routine is automatically called from main at program termination.
***/
void appl_end(unsigned int times, unsigned int bufs_proc, unsigned int buf count, unsigned int
prev_buf count, int DMS err, int appl term_code, unsigned int FIFO_ovfl,
unsigned int DMS_count);

#endif

134

E.3 AED Brd.h [6]

/e st s e st st sk e st st st ke ke steske s e st sk sk st kst s ke st st sk ste ke st steskesie skt skestesie st stesteskoste ke sttt st stk st stk sekokoskokoskokokoskokokok

TYPES and CONSTANTS:

INTR_xxxx - Type for interrupt selection number (ISN)
DMA esize - Defines for DMA transfer element size code
FUNCTIONS:

alloc_timer_intr - Provide an interrupt at specified period
board init - Initialize EVM or DSK board for use

brd led enable - [lluminate user LED on board

brd led disable - Extinguish user LED on board

byte size - Number of address increments in element sizes
cpu_freq - Frequency of internal CPU clock in MHz

delay usec - Delay specified number of microseconds
delay_msec - Delay specified number of milliseconds
FPGA_start - Start the FPGA collecting data

FPGA stat_addr - Pointer to FPGA status address

FPGA stat mask - Mask FPGA FIFO overflow bit
FPGA_stop - Stop the FPGA collecting data and reset FIFO
get data addr - Daughterboard data read/write address

get cntl addr - Daughterboard control read/write address
interrupt_init - Bind interrupt service routine to an ISN
intr_pause - Disable ISN

intr_start - Enable ISN with cleared flag

mcbsp_freq - Frequency of internal MCBSP clock in MHz
read 32b reg - Read 32 bit data from daughterboard
write 32b_reg - Write 32 bit data to daughterboard
***/
#ifndef BRD H

#define BRD H

/* */
/* TYPES and CONSTANTS */
/* */

/* Interrupt Selection Numbers */
typedef enum {

INTR_TIMERO = 0x1,
INTR_TIMERI = 0x2,
INTR_SDRAM = 0x3,
INTR_PCI_IRQ = 0x4,
INTR_FIFO_READ = 0x35,
INTR_FIFO_WRITE = 0x6,
INTR_DBOARD = 0x7,
INTR_EDMA = 0x8,
INTR_DMA 0 = 0x8,
INTR_DMA 1 =0x9,
INTR_DMA 2 =0xA,
INTR_DMA 3 =0xB,
INTR_MCBSP_TRANS 0= 0xC,
INTR_MCBSP_REC 0 =0xD,
INTR_MCBSP_TRANS 1 = 0xE,
INTR_MCBSP_REC 1 =0xF

} IntrSelNumType;

/* Element size codes for daughterboard transfers */
#define DMA_ESIZE32 0x00
#define DMA_ESIZE16 0x01

135

#define DMA_ESIZES 0x02

/* */
/* FUNCTIONS */
/* */

/***

alloc_timer_intr - Provide an interrupt at specified period

Returns: ISN for interrupt at period timing

Parameters: IN period_in - desired period in 500 ns increments
***/

IntrSelNumType alloc_timer_intr (unsigned long period_in);
/***

board_init - Initialize EVM or DSK board for use

***/

void board_init (void);
/***
brd led enable - [lluminate user LED on board

Returns: error code indicating incorrect LED for this board

Parameters: IN LED_number - number of LED beginning at zero

Note: The number available will vary with board.
***/

int brd_led enable(int LED number);
/***
brd led disable - Extinguish LED on EVM board

Returns: error code indicating incorrect LED for this board

Parameters: IN LED number - number of LED beginning at zero

Note: The number available will vary with board.
***/

int brd led disable(int LED Number);
/***
byte size - Number of address increments in element sizes

RETURNS: address increments (same as sizeof() returns)

PARAMETERS: IN esize code - element size codes for daughterboard transfers

***/

int byte_size (unsigned int esize_code);
/***
cpu_freq - Frequency of internal CPU clock in MHz

RETURNS: CPU frequence in MHz
***/
int cpu_freq (void);
/***
delay usec - Delay specified number of microseconds

RETURN: error code

PARAMETERS: IN numUsec - number of microseconds delay

***/

int delay usec (unsigned short numUsec);
/***
delay msec - Delay specified number of milliseconds

RETURN: error code

PARAMETERS: IN numMsec - number of microseconds delay

st ol ke ek ol sk skl ke ok sl ol skt ol ol skl sk skt ol okt ol ol ok otk ol ke o

int delay msec (unsigned short numMsec);
[k sk sk ok sk ok ok ok ko sk ok sk ok kR ok ok sk skok okt sk ok sk ik ok sk sk okt ok ok ko ok ok

FPGA_enable - Enable the FPGA to receive data

st ol ke ekl sk skl ke kool otk otk ol ol skt sk skt ol okl ol ok kol ok o

void FPGA _enable (void);

/***

136

FPGA_start - Start the FPGA collecting data

***/

void FPGA_start (void);
/***
FPGA_stat_addr - Pointer to FPGA status address

RETURN: pointer to status address word
***/

unsigned int * FPGA_stat addr (void);
/***
FPGA stat mask - Mask FPGA FIFO overflow bit

RETURN: mask for overflow bit in status address word
***/

unsigned int FPGA_stat mask (void);

/***

FPGA_stop - Stop the FPGA collecting data and reset FIFO

et st s ke she st s ke skeske s s st st st s sk stk sk ste skt st stk stk skt sk skl skotokolkoskoskokoskokostokokokokoiokoskolokokokokkokokokekokokek ok /

void FPGA_stop (void);
/***
get data addr - Daughterboard data read/write address

Returns: void pointer for read/write of data

Notes: This board may set bits in registers if necessary to

render this address active (like paging bits)
***/

void * get data_addr (void);
/***
get_cntl_addr - Daughterboard control read/write address

Returns: void pointer for read/write of control

Notes: This board may set bits in registers if necessary to render this address active (like paging bits)
ok sk sk akok ok Rk sk Rk ok sk sk Rtk ok sk koo ok sk ksl stk ok sk ok kst sk ok sk kbR ok ok /

void * get cntl addr (void);

J sk sk sk ok sk sk ok ok ko sk ik ok ko ok ok sk sk ok ik ok ko ok ok sk kR ok kok ok ok ok ok
interrupt_init - Bind interrupt service routine to an interrupt

PARAMETERS: IN ptr_isr - pointer to an interrupt service routine

IN isn - interrupt selection number
***/

void interrupt_init (void(*ptr_isr)(void), IntrSeINumType isn);
/***
intr_pause - Disable ISN

PARAMETERS: IN isn - interrupt selection number

st ol ke ek ol sk sk ke okl ol skt ol ol stk ol sk sk kol okl ol sk otk ol ke o

void intr_pause (IntrSelNumType isn);

J sk sk sk ok sk ok ok ko sk stk ok kiR ok ok sk sk ok ik ok ko ok ok sk ko ok ok ok ok kR ok ok
intr_start - Enable ISN with cleared flag

PARAMETERS: 1IN isn - interrupt selection number

***/

void intr_start (IntrSelNumType isn);
/***
mcbsp _freq - Frequency of internal MCBSP clock in MHz

RETURNS: MCBSP frequency in MHz

st ol ke ekl sk skl ok kool ol skt ol ke skl sk skt ol okl ol ok otk ol ke o

int mebsp_freq (void);

[k sk sk ks ok ok ko sk ok ok ok kR ok ok sk akok okt kol sk ok ok sk sk ok kok ok kR kR ok
read 32b reg - Read 32 bit data from daughterboard

RETURNS: value read from the specified address

PARAMETERS: IN addr - pointer to the read address

NOTE: This routine transmits 32 bits to the daughterboard for

137

both 16 and 32 bit buses.

***/

unsigned long read 32b_reg (unsigned long *addr);
/***
write 32b_reg - Write 32 bit data to daughterboard

PARAMETERS: IN addr - pointer to the write address

IN data - value to be written

NOTE: This routine transmits 32 bits to the daughterboard for both 16 and 32 bit buses.

et st s ke she st s sheskeske s s st stestoske sk stk sk ke st stk st stk sttt sk skoioloskotolkolkoskokokoskokokokokokokokokoskolokokokokkokokokekokokekok /

void write 32b_reg (unsigned long *addr, unsigned long data);
/**/

#endif

138

E.4 AED Cfg.h [6]

/e st s e st st sk e st st st ke ke steske s e st sk sk st kst s ke st st sk ste ke st steskesie skt skestesie st stesteskoste ke sttt st stk st stk sekokoskokoskokokoskokokok

TYPES and CONSTANTS:

FUNCTIONS:
***/
#ifndef CONFIG H_

#define CONFIG H

/***

APPLICATION DEFINES
***/
/*#tdefine AED_ PRINT 0*/

/*#tdefine TALK_TO_FPGA 0*/

#define CHECK_FPGA OVFL 0

#endif

139

E.5 AED DMS.h [6]

/e st s e st st sk e st st st ke ke steske s e st sk sk st kst s ke st st sk ste ke st steskesie skt skestesie st stesteskoste ke sttt st stk st stk sekokoskokoskokokoskokokok

TYPES and CONSTANTS:

DMAC EX xxxx - controls for DMA status lines

FROM/TO_FPGA xxxx - direction values for DMS setup

DMA CH NUMBER - maximum number of channels

DMA xxx MODE - mode values for DMS setup

Dma_ channel - channel ID type

FUNCTIONS:

alloc DMA channel - allocate a channel and return id

count DMA channel - return frames remaining in block
operate. DMA channel - transfer one block with the channel

pause DMA_channel - pause the transfer in the channel

program_DMA channel - setup channel registers

start. DMA_channel - begin continuous transfer in channel

test DMA_channel - setup channel for test mode

VARIABLES:

read_err - error codes returned by channels

buf count - count of frames or blocks transferred (depends on channel mode)
***/
#ifndef DMS HDR

#define DMS _HDR

/* operation of the DMA status pin */

#define DMAC EN LOW 0 /* DMAC pin is held low */

#define DMAC _EN HIGH 1 /* DMAC pin is held high */

#define DMAC _EN RSYNC STAT 2 /* DMAC reflects RSYNC STAT */
#define DMAC_EN WSYNC STAT 3 /* DMAC reflects WSYNC STAT */
#define DMAC_EN FRAME COND 4 /* DMAC reflects FRAME COND */
#define DMAC _EN BLOCK COND 5 /* DMAC reflects BLOCK COND */
/* direction parameter values for channel programming */

#define FROM_FPGA MEM 0

#define FROM_FPGA_ SERI

#define FROM_FPGA_ SERO

#define TO_ FPGA MEM

#define TO_FPGA SERI

#define TO_FPGA SERO

/* maximum number of channels available */
#define DMA_CH_NUMBER 4

/* DMS mode values */

#define DMA RS MODE 0 /* read sync mode */
#define DMA WS MODE 1 /* write sync mode */

#define DMA_FS MODE 2 /* frame sync cont mode */

#define DMA_FSB MODE 3 /* frame sync block mode */

#define DMA NONE MODE 4

#define DMA XFER METHOD(mode) (mode & 0xf) /* remove start/stop */
#define DMA _START ON 0x000 /* start DMA imediately - default */
#define DMA_START OFF 0x100 /* do not start the DMA */

/* channel ID type */

typedef enum

{

DMA CH NONE=DMA CH NUMBER,

DMA CH 0=0,

DMA CH 1,

DMA CH 2,

O O N S

140

DMA CH 3
}Dma_channel;
/***/

extern volatile int read_errfDMA_CH_NUMBER+1], buf countfDMA CH NUMBER+1];

/**
Standard DMS interface functions - called by main and applications
**/
/***

alloc DMA channel - allocate a channel and return id
Return: channel ID code
***/

Dma_channel alloc. DMA_channel (void);
/***
count DMA channel - return frames remaining in block

Returns: frame count remaining

Parameters: IN chan - channel ID code
***/

int count DMA_channel(Dma_channel chan);
/***
operate. DMA _channel - transfer one block with the channel

Parameters: IN chan - channel ID code
***/

void operate. DMA channel(Dma_channel chan);
/***
pause DMA channel - pause the transfer in the channel

Parameters: IN chan - channel ID code
***/

void pause DMA channel(Dma_channel chan);

/***

program_ DMA channel - setup channel registers

Parameters: IN chan - channel ID code

IN dir - direction values for DMS setup

IN dest - pointer to destination address

IN src - pointer to source address

IN count - number of transfer elements in frame

IN frames - number of frames in block

IN esize - transfer element size code (brd hdr.h)

IN mode - mode values for DMS setup

***/

void program_DMA_channel(Dma_channel chan, int dir, void *dest, void *src, unsigned int count,
unsigned int frames, unsigned int esize, unsigned int mode);

/***

start. DMA_channel - begin continuous transfer in channel

Parameters: IN chan - channel ID code

***/

void start DMA_channel(Dma_channel chan);
/***
test DMA channel - setup channel for test mode

Parameters: IN chan - channel ID code

IN src - pointer to test source block

IN period - period between desired between interrupts (0.5 millisecond units)
***/
void test DMA_channel(Dma_channel chan, void *src, unsigned long period);

#endif

141

E.6 dma5416.h [34]

#ifndef DSK5416

#define DSK5416

#ifdef cplusplus

extern "C" {

#endif

/*
* Note: Bit definitions for each register field needs to be supplied here for the CPLD and other board peripherals.
*/

/* Board specific I/O registers */

ioport unsigned port0;
ioport unsigned portl;
ioport unsigned port2;
ioport unsigned port3;
ioport unsigned port4;
ioport unsigned port5;
ioport unsigned port6;
ioport unsigned port7;

/* Define easier to read names for I/O registers */

#define DSK5416 USER REG port0
#define DSK5416 DC REG portl
#define DSK5416 PCM3002 L port2
#define DSK5416 PCM3002 H port3
#define DSK5416 VERSION port4
#define DSK5416 DM_CNTL port5
#define DSK5416_MISC port6
#define DSK5416 CODEC_CLK port7

/* Initialize all board APIs */
void DSK5416_init();

#ifdef cplusplus

}

#endif

#endif

142

E.7 dsk5416.h [35]

* This files contains DSK5416 board specific 1/O registers
* define for the CPLD.

*/

#ifndef DSK5416

#define DSK5416

#ifdef cplusplus

extern "C" {

#endif

/* Note: Bit definitions for each register field needs to be supplied here for the CPLD and other board peripherals.
*/

/* Board specific I/O registers */

ioport unsigned port0;

ioport unsigned portl;

ioport unsigned port2;

ioport unsigned port3;

ioport unsigned port4;

ioport unsigned port5;

ioport unsigned port6;

ioport unsigned port7;

/* Define easier to read names for I/O registers */
#define DSK5416 USER REG port0
#define DSK5416 DC REG portl
#define DSK5416 PCM3002 L port2
#define DSK5416 PCM3002 H port3
#define DSK5416 VERSION port4
#define DSK5416 DM_CNTL port5
#define DSK5416 MISC port6
#define DSK5416 CODEC_CLK port7

/* Initialize all board APIs */
void DSK5416_init();

#ifdef cplusplus

}

#endif

#endif

143

E.8 emif.h [36]

/**/

/* This header files defines the data structures and macros to access the Software Wait State and Bank Switch
Control Regs and their bits/fields. */

/**/

#include "regs.h"
/**/
/* BNKCMP_MASK(val) - creates mask to set bank size of ext mem */

/* val - bank size of external memory (4,8,32,64) */
/**/

#define BNKCMP_MASK(val) (0x0010u - (val/0Ox4u))
/**/
/* BSCR_MASK (bnkcmp, psds, bh, exio) - set bank switch ctrl reg */
/* bnkemp - size of external memory banks (4 - 64) */
/* psds - flag, equal 1 if extra cycle for back-to-back program-data or data-program memory reads */
/* bh - flag, equal 1 if data bus holder is active , holds data bus , D(15-0) at previous logic level */
/* exio - flag, equal 1 if external-bus-off function is enabled. (normally set to 0) */
/**/
#define BSCR_MASK(bnkcmp, psds, bh, exio)\
((IMASK_FIELD(BNKCMP,BNKCMP_ MASK(bnkcmp), BNKCMP_SZ7)) &\
(psds ? (MASK BIT(PSDS) | MASK TARGET WORD) : ~MASK BIT(PSDS)) &\
(bh ? (MASK BIT(BH) |MASK TARGET WORD): ~MASK BIT(BH)) & (exio))
/**/
/* CLEAR_WAIT STATES - clears all software wait states */
/* addr - address of software wait state register */
/**/

#define CLEAR_ WAIT STATESSWWSR &=~MASK TARGET WORD
/**/
/* SET_WAIT STATES(ctrl) - set software wait states */

/* addr - address of software wait state register */

/* ctrl - mask to use in setting wait state register */
[t etk sk ol sk st o ke okl ol ke sk fl sk skt ol sk sl ol ok stk sl ke s ook ok /

#define SET_WAIT STATES(ctrl) SWWSR |= ctrl

/**/

/* SET_BUS CTRL(ctrl) - sets bus control register */

_ use | . . valu
/* ctrl - mask to use in setting register value */
/**/

#define SET BUS CTRL(ctr])BSCR |= ctrl

144

E.9 intr5416.h [37]

#include "regs5416.h"

typedef void (*ISRFUNC)(void);

void software_trap(int trap); /* Initiates trap to given interrupt */
/**/
/* Define all macros needed to enable/disable interrupts, set */

/* interrupt vectors, allocate space for interrupt vectors and */

/* set interrupt vector pointer. */
/**/
// extern unsigned int _vectors; /* Start label of vector table */

// extern ISRFUNC isr_jump_table[]; /* Array of ISR pointers */

/**/

/* Define interrupt trap numbers */
/**/
#define RS TRAP 0
#define NMI_TRAP 1
#define INTO_TRAP 16
#define INT1_TRAP 17
#define INT2 TRAP 18
#define TINT TRAP 19
#define RINTO_TRAP 20
#define XINTO TRAP 21
#define RINT2 TRAP 22
#define DMACO_TRAP 22
#define XINT2 TRAP 23
#define DMAC1_TRAP 23
#define INT3_TRAP 24
#define HPINT TRAP 25
#define RINT1 _TRAP 26
#define DMAC2_TRAP 26
#define XINT1 TRAP 27
#define DMAC3_TRAP 27
#define DMAC4 TRAP 28
#define DMAC5_TRAP 29
#define SINTR 0
#define SINT16 1
#define SINT17 2
#define SINT18 3
#define SINT19 4
#define SINT20 5
#define SINT21 6
#define SINT22 7
#define SINT23 8
#define SINT24 9
#define SINT25 10

#define SINT26 11
#define SINT27 12
#define SINT28 13
#define SINT29 14
#define SINT30 15
#define SINTO 16
#define SINT1 17
#define SINT2 18
#define SINT3 19

145

#define SINT4 20

#define SINTS 21
#define SINT6 22
#define SINT7 23
#define SINTS 24
#define SINT9 25
#define SINT10 26
#define SINT11 27
#define SINT12 28
#define SINT13 29

/**/

/* INTR_ENABLE - enables all masked interrupts by resetting INTM bit in Status Register 1 */

/**/

#define INTR_GLOBAL ENABLEasm("\tRSBXINTM")

/**/

/* INTR_DISABLE - disables all masked interrupts by setting INTM bit in Status Register 1 */

[/ st s e stk sk e st st st ke sk steske s ke st sk sk sk st stk ke sk stk kst stk skt sttt sk kol skokokoskokokokosiolokotokoskokskokokok skolokok/

#define INTR_ GLOBAL DISABLEasm("\tSSBXINTM")

[/ st s e stk s e st st stk sk stk s ke st sk skt st stk ke sk stk steskokske stk skt stttk kol skokokoskokokoskokolokotokoskokskokoskok skolokok/

/* INTR_CHECK FLAG(flag) - check the corresponding flag in the IFR register */

[/ st s e st st sk e sk st st ke sk stesk s ke st sk sk sk st skt ke sk stk ksl sk stk kol st stttk kol skokokoskokokoskoiolokotokoskokskokoskok skolokok/

#define INTR_ CHECK FLAG(flag) (IFR & (0x1u << flag))

/**/

/* INTR_CLR_FLAG(flag) - clears the corresponding flag in the IFR register */

/**/

#define INTR _CLR FLAG(flag){IFR &= (0x1u << flag);}

[/ st s e stk sk e st st stk sk stk s ke st sk sk sk st stk ke sk stk kst sk stk skt stttk stk skokokoskokokoskoiolokotokoskokskokoskok skolokok/

/* IDLE(mode) - sets CPU in idle mode based on level selected */

st etk sk ol sk s o ke ksl ol ke skl sk stk ol sk sl ol ok stk sl ke s ook ok /

#define IDLE(mode){ asm("\tidle " #mode); }

[k sk sk ok sk b ok ok ko sk ok ok ok stk ok ik sk sk ok sk ok sk okt sk akok ok ok ok ok ok /

/* INTR_ENABLE (flag) - set interrupt vector flags to enable/reset specific device interrupts */
/* flag - bit to set in interrupt mask register */
/**/

#define INTR_ENABLE(flag) IMR = MASK BIT(flag)
/**/
/* INTR_DISABLE (flag) - set interrupt vector flags to reset specific device interrupts */

/* flag - bit to set in interrupt mask register */
ARk sk ok sk ks sk Rt R Rk R sk R sk ok sk sk Rk sk R sk R SRR KRR R sk Rk sk ks sk R sk R Kok ok

#define INTR_DISABLE(flag)IMR &= ~MASK_BIT(flag)

st etk stk ol sk s o ke okl ol ke skl sk stk ol sk sl ol ok stk sl ke sk ook ok /

/* INTR_INIT - sets interrupt vector pointer */
sttt s e s e s e sttt ks ks ke okl okl okl ke sk sk st skt s e ook o /

#define INTR _INIT{PMST &= 0x7f; PMST |= (((unsigned int)&_vectors) & 0xff80u); }
/**/

/* INTR_HOOK(isr, isrfunc) - sets interrupt service routine vec */

/* isr - interrupt trap number (see TRAP instruction) */

/* isrfunc - address of interrupt service routine */
/**/

// #define INTR_HOOK(trap no, isrfunc)

146

E.10 regs.h [38]

/**/
/* DEFINE ALL PERIPHERAL MEMORY MAPPED REGISTER ADRESSES */
/**/
/**/

/* Check to see if mmregs.h has been previously included by */

/* another header, if so, skip this and go on */
/**/
#if !defined(MMREGS)

#include <limits.h>
/**/
/* Target specific data and macros */

/* MASK_TARGET_WORD - bit pattern to mask all bits in a target word */

/* WORD_SIZE - size in bits of target word */

/* BASE_ADDR - base address of memory-mapped peripheral control registers */
/**/
#define MASK_TARGET WORD Oxffff

#define TARGET WRD SZ CHAR BIT

#define BYTES PER WORD TARGET WRD SZ/8

#define WORD_SIZE (CHAR BIT * sizeof(unsigned int))

#define SP_ ADDR(port) (0x22 + (0x10 * port))

#define DRR_ADDR(port) (0x20 + (0x10 * port))

#define DXR_ADDR(port) (0x21 + (0x10 * port))

#define BSP_ ADDR(port) (0x22 + (0x20 * port))

#define BDRR ADDR(port) (0x20 + (0x20 * port))

#define BDXR_ADDR(port) (0x21 + (0x20 * port))

#define BSPCE_ADDR(port) (0x23 + (0x20 * port))

#define AXR _ADDR(port) (0x38 + (0x04 * port))

#define ARR_ADDR(port) (0x3a + (0x04 * port))

#define TDM_ADDR TSPC

#define TIMER_ADDR TCR_ADDR

/* */

/* MACRO FUNCTIONS */

/* */

/**/

/* Define data structures for all memory mapped registers */
/**/

/* */

/* Define bit fields for Serial Port Control Registers */
/* */
#define RSRFULL 13
#define RSRFULL_SZ
#define XSREMPTY
#define XSREMPTY _SZ
#define IN1

#define IN1_SZ

#define INO

#define INO_SZ

#define TXM

#define TXM_SZ
#define MCM

#define MCM_SZ
#define FSM

#define FSM_SZ

HLAHJ;—‘LA»—OO»—\OHSH

147

#define FO

#define FO_SZ
#define TDM
#define TDM_SZ
#define CLKDV
#define CLKDV_SZ
#define FSP

#define FSP_SZ
#define CLKP
#define CLKP_SZ
#define FE

#define FE_SZ
#define FIG

#define FIG_SZ
#define PCM
#define PCM_SZ
#define BXE
#define BXE SZ
#define XH

#define XH SZ
#define HALTX
#define HALTX SZ
#define BRE
#define BRE SZ
#define RH

#define RH_SZ
#define HALTR
#define HALTR SZ

[/ st e st st sk e st st st ke sk stk s ke st sk sk sk st stk ke sk stk kst sk stk skt stttk kol skokokoskoskokoskokolokotokoskokskokoskok skokokok/

—_ —_ — — —
— A W o mm, om0 =0 === N ND = O = N

—_
= W

/* Define Timer Period, and Control Registers with all related data structures, macros, and functions */
/**/

#define PSC 6

#define PSC_SZ 4

#define TRB 5

#define TRB_SZ 1

#define TSS 4

#define TSS _SZ 1

#define TDDR 0

#define TDDR_SZ 4

/* */

/* Data structures, macros for Clock Mode Register ~ */

/* */

#define PLLMUL 12

#define PLLMUL SZ 4

#define PLLDIV 11

#define PLLDIV_SZ 1

#define PLLCOUNT
#define PLLCOUNT SZ
#define PLLON_OFF
#define PLLON_OFF_SZ
#define PLLNDIV
#define PLLNDIV_SZ
#define PLLSTATUS
#define PLLSTATUS_SZ 1

[sk sk ok sk sk ks sk Rt sk R Rk R sk kR sk sk ok sk sk ks sk R sk Rk sk R R SRR R sk R R sk sk sk R sk R Kok ok
/* Define bit fields for Software Wait State Register */

S = = = N oo W

148

/**/

#define 10 12
#define I0_SZ

#define DATA_HI

#define DATA _HI SZ
#define DATA _LO

#define DATA LO _SZ
#define PROGRAM_HI
#define PROGRAM HI SZ
#define PROGRAM LO
#define PROGRAM LO SZ
/* */
/* Define structure for Bank Switch Control Register */
/* */
#define BNKCMP 12
#define BNKCMP_SZ
#define PSDS

#define PSDS_SZ
#define BH

#define BH SZ
#define EXIO

#define EXIO_SZ
#define INTO

#define INT1

#define INT2

#define TINT

#define RINTO
#define XINTO
#define RINT2
#define XINT2
#define INT3

#define HPINT
#define RINT1
#define XINT1
#define DMACO
#define DMACI 7
#define DMAC2 10
#define DMAC3 11
#define DMAC4 12
#define DMACS 13

J e e e S e S L e LY

/* DEFINE DATA STRUCTURE FOR HOST PORT INTERFACE CONTROL REG */

J e e e S e S L L LY

W

WO W W WoN WO

—_
— =

C o 0O AN DEWN—, O — O — —

a—=

#define BOB 0

#define SMOD 1

#define DSPINT 2

#define HINT 3
/**/
/* Serial Port 0 defined for C541 only */
/**/
#define DRRO *(volatile unsigned int *)0x20
#define DRRO_ ADDR 0x20

#define DXRO *(volatile unsigned int *)0x21
#define DXRO ADDR 0x21

#define SPCO *(volatile unsigned int *)0x22
#define SPCO_ADDR 0x22

149

/**/

/* Buffered Serial Port 0 defined for all devices except C541 */

/**/

#define BSPCO
#define BSPCO_ADDR
#define BSPCEQ

#define BSPCEO_ ADDR

#define BDRRO
#define BDRRO_ADDR
#define BDXRO0
#define BDXR0_ADDR

*(volatile unsigned int *)0x22
0x22
*(volatile unsigned int *)0x23
0x23
*(volatile unsigned int *)0x20
0x20
*(volatile unsigned int *)0x21
0x21

/***/

/* Defined flags for use in setting control for HPI host interface control pins */
/* The value of these constants is their relative bit position in */
/* the control structure for the host side of the HPI interface */

/***/

#define HAS PIN
#define HBIL PIN
#define HCNTLO PIN
#define HCNTL1 PIN
#define HCS PIN
#define HDO_PIN
#define HDS1 PIN
#define HDS2 PIN
#define HINT PIN
#define HRDY PIN
#define HRW_PIN

SV WN—~O

J R L LY

/* AUTOBUFFERING UNIT (Buffered Serial Port 0) */

/* Defined for all except C541

*/

R e LY

#define AXRO
#define AXRO_ADDR
#define BKXO0
#define BKX0 ADDR
#define ARRO
#define ARRO_ADDR
#define BKRO
#define BKRO _ADDR

*(volatile unsigned int *)0x38
0x38
*(volatile unsigned int *)0x39
0x39
*(volatile unsigned int *)0x3a
0x3a
*(volatile unsigned int *)0x3b
0x3b

J R L L LY

/* AUTOBUFFERING UNIT (Buffered Serial Port 1) */

*/

J R L LY

#define AXR1
#define AXR1_ADDR
#define BKX1
#define BKX1 ADDR
#define ARR1
#define ARR1_ADDR
#define BKR1
#define BKR1 _ADDR

*(volatile unsigned int *)0x3c
0x3c
*(volatile unsigned int *)0x3d
0x3d
*(volatile unsigned int *)0x3e
0x3e
*(volatile unsigned int *)0x3f
0x3f

J R L LY

/* Buffered Serial Port 1 defined only for C548

*/

J R L L LY

#define BSPC1
#define BSPC1_ADDR

*(volatile unsigned int *)0x42
0x42

150

#define BSPCE1

#define BSPCE1 _ADDR
#define BDRR1

#define BDDR1_ADDR
#define BDXR1

#define BDXR1 _ADDR
#define MMREGS
#endif

*(volatile unsigned int *)0x43
0x43

*(volatile unsigned int *)0x40
0x40

*(volatile unsigned int *)0x41
0x41

151

E.11 regs5416.h

#if !defined(_ S4XXREGS)
#include <limits.h>
#include "regs.h"

/* */
/* MACRO FUNCTIONS */
/* */

#define CONTENTS_ OF(addr)(*((volatile unsigned int*)(addr)))

#define LENGTH_TO_BITS(length)(~(Oxffffffff << (length)))

/* MACROS to SET, CLEAR and RETURN bits and bitfields in Memory Mapped locations using the address of the

specified register. */

#define REG_READ(addr)(CONTENTS_OF(addr))

#define REG_ WRITE(addr,val) (CONTENTS_OF(addr) = (val))

#define MASK BIT(bit) (1 << (bit))

#define RESET BIT(addr,bit)(CONTENTS_ OF(addr) &= (~MASK BIT(bit)))

#define GET_BIT(addr,bit) (CONTENTS_OF(addr) & (MASK BIT(bit)) ? 1 : 0)

#define SET BIT(addr,bit)(CONTENTS OF(addr) = (CONTENTS OF(addr)) | (MASK BIT(bit)))

#define ASSIGN BIT VAL(addr,bit,val)((val) ? SET BIT(addr,bit) : RESET BIT(addr,bit))

#define CREATE_FIELD(bit,length) (LENGTH_TO_ BITS(length) << (bit))

#define RESET FIELD(addr,bit,length)(CONTENTS OF(addr) &= (~CREATE FIELD(bit,length)))

#define TRUNCATE(val,bit,length) (((unsigned int)(val) << (bit)) & (CREATE_FIELD(bit, length)))

#define MASK FIELD(bit,val,length)TRUNCATE(val, bit, length)

#define GET FIELD(addr,bit,length)((CONTENTS_OF(addr) & CREATE FIELD(bit,length)) >> bit)

#define LOAD_FIELD(addr,val,bit,length)(CONTENTS OF(addr) &= (~CREATE_FIELD(bit,length))\
| TRUNCATE(val, bit, length))

/**/

/* Memory-mapped Byte Manipulation Macros */
/**/
#define CSET BIT(reg,bit)((*((volatile unsigned char *)(reg))) |= (MASK BIT(bit)))
#define CGET_BIT(reg,bit)((*((volatile unsigned char *)(reg))) & (MASK BIT(bit)) ? 1 : 0)
#define CCLR_BIT(reg,bit)((*((volatile unsigned char *)(reg))) &= (~MASK_BIT(bit)))
#define CGET FIELD(reg,bit,length)\

((*((volatile unsigned char *)(reg)) & (MASK FIELD(bit,length))) >> bit)
#define CLOAD_FIELD(reg,bit,length,val)((*((volatile unsigned char *)(reg))) =\

((*((volatile unsigned char *)(reg)) & (~MASK_FIELD(bit,length)))) | (val<<bit))

#define CREG_READ(addr)(*((unsigned char *)(addr)))
#define CREG_WRITE(addr,val)(*((unsigned char *)(addr)) = (val))
/* MACROS to SET, CLEAR and RETURN bits and bitfields in Memory Mapped and Non-Memory Mapped using
register names. */
#define GET _REG(reg)(reg)
#define SET REG(reg,val) ((reg)=(val))
#define GET _REG BIT(reg,bit)((reg) & MASK BIT(bit) ? 1 : 0)
#define SET REG BIT(reg,bit)((reg) |- MASK BIT(bit))
#define RESET REG BIT(reg,bit)((reg) &= (~MASK BIT(bit)))
#define GET REG_FIELD(reg,bit,length)(reg & CREATE FIELD(bit,length)) >> bit)
#define LOAD REG_FIELD(reg,val,bit,length)(reg &= (~CREATE_FIELD(bit,length)) | (val<<bit))
/*****************MCBSP Registers’ Bits, Bltﬁelds*****************/

/* */
/* Define bit fields for Serial Port Control Registers 1 and 2 */
/* */
#define DLB 15
#define DLB_SZ 1
#define RJUST 13
#define RJUST SZ 2

152

#define CLKSTP
#define CLKSTP_SZ
#define DXENA
#define DXENA_SZ
#define ABIS

#define ABIS SZ
#define RINTM
#define RINTM_SZ
#define RSYNCERR
#define RSYNCERR SZ
#define RFULL
#define RFULL SZ
#define RRDY
#define RRDY SZ
#define RRST

#define RRST SZ
#define FREE

#define FREE SZ
#define SOFT

#define SOFT _SZ
#define FRST

#define FRST _SZ
#define GRST

#define GRST_SZ
#define XINTM
#define XINTM_SZ
#define XSYNCERR
#define XSYNCERR SZ
#define XEMPTY
#define XEMPTY _SZ
#define XRDY
#define XRDY SZ
#define XRST
#define XRST SZ

/*

—

HOP—‘P—‘P—‘[\)D—‘MN.&»—AO\D—A\])—lmb—l\OD—lOP—AD—AD—A[\),_‘wN.bb—AO\,_‘\]N,_‘

/* Define bit fields for Receive Control Registers 1 and 2

/*

#define RFRLEN1
#define RFRLEN1_SZ
#define RWDLEN1
#define RWDLENI1 SZ
#define RPHASE

#define RPHASE SZ
#define RFRLEN2
#define RFRLEN2 SZ
#define RWDLEN2
#define RWDLEN2 SZ
#define RCOMPAND
#define RCOMPAND SZ
#define RFIG

#define RFIG_SZ

#define RDATDLY
#define RDATDLY _SZ
/*

[

N O = NN WWWLMJ0o0— g W oo

/* Define bit fields for Transmit Control Registers 1 and 2

/*

*/

*/

*/

*/

*/
*/

#define XFRLEN1
#define XFRLEN1 SZ
#define XWDLEN1

#define XWDLEN1 SZ

#define XPHASE
#define XPHASE _SZ
#define XFRLEN2
#define XFRLEN2_SZ
#define XWDLEN2

#define XWDLEN2 SZ

#define XCOMPAND

#define XCOMPAND SZ

#define XFIG
#define XFIG_SZ
#define XDATDLY

#define XDATDLY SZ

[

DO = NN WWWL Q00— oy b Qo

/*

/* Define bit fields for Sample Rate Generator Registers 1 and 2 */

/*

#define FWID

#define FWID SZ
#define CLKGDV
#define CLKGDV_SZ
#define GSYNC
#define GSYNC _SZ
#define CLKSP
#define CLKSP SZ
#define CLKSM
#define CLKSM SZ
#define FSGM
#define FSGM_SZ
#define FPER

#define FPER _SZ

/*

—

[

—_—

*/

*/

*/

/* Define bit fields for Multi-Channel Control Registers 1 and 2 */

/*

#define RPBBLK
#define RPBBLK SZ
#define RPABLK
#define RPABLK SZ
#define RCBLK
#define RCBLK SZ
#define RMCM
#define RMCM_SZ
#define XPBBLK
#define XPBBLK SZ
#define XPABLK
#define XPABLK SZ
#define XCBLK
#define XCBLK SZ
#define XMCM
#define XMCM_SZ
/*

DO WD LD I~ OWNND WL v

*/

*/

/* Define bit fields for Receive Channel Enable Register Partition A */

/*

#define RCEA15

15

*/

#define RCEA15 SZ
#define RCEA14
#define RCEA14 SZ
#define RCEA13
#define RCEA13 SZ
#define RCEA12
#define RCEA12_SZ
#define RCEAI11
#define RCEA11_SZ
#define RCEA10
#define RCEA10 _SZ
#define RCEA9
#define RCEA9 SZ
#define RCEAS
#define RCEA8 SZ
#define RCEA7
#define RCEA7 SZ
#define RCEA6
#define RCEA6_SZ
#define RCEAS
#define RCEAS SZ
#define RCEA4
#define RCEA4 SZ
#define RCEA3
#define RCEA3 _SZ
#define RCEA2
#define RCEA2 SZ
#define RCEA1
#define RCEA1 SZ
#define RCEAO
#define RCEAO_SZ
/*

[[[

—

— O = N WA R N N — 00— O > = — o= = —

*/

/* Define bit fields for Receive Channel Enable Register Partition B */

/*

#define RCEB15
#define RCEB15_SZ
#define RCEB14
#define RCEB14_SZ
#define RCEB13
#define RCEB13 SZ
#define RCEB12
#define RCEB12_SZ
#define RCEB11
#define RCEB11_SZ
#define RCEB10
#define RCEB10_SZ
#define RCEB9
#define RCEB9 SZ
#define RCEBS
#define RCEB8 SZ
#define RCEB7
#define RCEB7 SZ
#define RCEB6
#define RCEB6_SZ
#define RCEBS
#define RCEB5_SZ

15
1
14
1
13
1
12
1

[
—_—

—

— N = O] = 00— O =

155

*/

#define RCEB4
#define RCEB4 SZ
#define RCEB3
#define RCEB3 SZ
#define RCEB2
#define RCEB2 SZ
#define RCEB1
#define RCEB1 SZ
#define RCEBO
#define RCEBO_SZ

—_—O = = = N = W= N

/*

*/

/* Define bit fields for Transmit Channel Enable Register Partition A */

/*

#define XCEA15
#define XCEALS5 _SZ
#define XCEA14
#define XCEA14_SZ
#define XCEA13
#define XCEA13 SZ
#define XCEA12
#define XCEA12_SZ
#define XCEA11
#define XCEA11 SZ
#define XCEA10
#define XCEA10 SZ
#define XCEA9
#define XCEA9 SZ
#define XCEAS
#define XCEA8 SZ
#define XCEA7
#define XCEA7 SZ
#define XCEA6
#define XCEA6 SZ
#define XCEAS
#define XCEAS5 SZ
#define XCEA4
#define XCEA4 SZ
#define XCEA3
#define XCEA3 SZ
#define XCEA2
#define XCEA2 SZ
#define XCEA1
#define XCEA1 SZ
#define XCEAO
#define XCEAO SZ
/*

15
1
14

1
13
1
12
1

—
—_—

—_
— O = = e N W B e N e O e] 00 O = S

*/

*/

/* Define bit fields for Transmit Channel Enable Register Partition B */

/*

#define XCEB15
#define XCEB15 _SZ
#define XCEB14
#define XCEB14_SZ
#define XCEB13
#define XCEB13_SZ
#define XCEB12
#define XCEB12 SZ

15
1
14
1
13
1
12
1

156

*/

#define XCEB11
#define XCEB11 _SZ
#define XCEB10
#define XCEB10 SZ
#define XCEB9
#define XCEB9 SZ
#define XCEBS
#define XCEBS SZ
#define XCEB7
#define XCEB7_SZ
#define XCEB6
#define XCEB6_SZ
#define XCEBS5
#define XCEBS5_SZ
#define XCEB4
#define XCEB4 SZ
#define XCEB3
#define XCEB3 SZ
#define XCEB2
#define XCEB2 SZ
#define XCEBI
#define XCEB1 _SZ
#define XCEBO
#define XCEBO _SZ
/*

—
—

— O =) —~ —m N~ W R~ W0~ O\ =~ 00~ \O H:S [

*/

/* Define bit fields for Pin Control Register
/*

*/
*/

#define XIOEN
#define XIOEN SZ
#define RIOEN
#define RIOEN SZ
#define FSXM

#define FSXM_SZ
#define FSRM

#define FSRM_SZ
#define CLKXM
#define CLKXM_SZ
#define CLKRM
#define CLKRM_SZ
#define CLKS STAT
#define CLKS STAT SZ
#define DX STAT
#define DX STAT SZ
#define DR_STAT
#define DR_STAT SZ
#define FSXP

#define FSXP_SZ
#define FSRP

#define FSRP_SZ
#define CLKXP
#define CLKXP SZ
#define CLKRP
#define CLKRP SZ

/st sk sk sk sk st stk sk stk skokokokok skokokokskokokok ok ok /

/* Register Definition MCBSP */

/*******************************/

—_ —_ —
—_— N W

_ O = = = N = W= N = U]hAO‘H(x»—\O»—ES —

157

/* PORT [-2--]--1--]-0--|*/
#define SPCR1_ADDR(port) (port ? 0x49 : 0x39)

#define SPCR2_ADDR(port) (port ? 0x49 : 0x39)
#define SPSA_ADDR(port) (port ? 0x48 : 0x38)
#define SPSD_ADDR(port) (port ? 0x49 : 0x39)
#define DRR2_ADDR(port) (port ? 0x40 : 0x20)
#define DRR1_ADDR(port) (port ? 0x41 : 0x21)
#define DXR2 ADDR(port) (port ? 0x42 : 0x22)
#define DXR1_ADDR(port) (port ? 0x43 : 0x23)
#define MCBSP_ACCSUB_ADDR(port) (port ? 0x49 : 0x39)
#define SPCR1_SUBADDR 0x00
#define SPCR2_SUBADDR 0x01
#define RCR1_SUBADDR 0x02
#define RCR2_SUBADDR 0x03
#define XCR1_SUBADDR 0x04
#define XCR2 SUBADDR 0x05
#define SRGR1_SUBADDR 0x06
#define SRGR2 SUBADDR 0x07
#define MCR1_SUBADDR 0x08
#define MCR2_SUBADDR 0x09
#define RCERA SUBADDR 0x0A
#define RCERB_SUBADDR 0x0B
#define XCERA _SUBADDR 0x0C
#define XCERB_SUBADDR 0x0D
#define PCR_SUBADDR 0x0E
/*****************DMA Registers’ BitS, Bltﬁelds*****************/
/* */
/* Define bit fields for DMPRE Register */
/* */
#define DMA_FREE 15

#define DMA_FREE SZ 1

#define DPRC 8

#define DPRC _SZ 6

#define DPRC5 13

#define DPRC5_SZ 1

#define DPRC4 12

#define DPRC4 SZ 1

#define DPRC3 11

#define DPRC3_SZ 1

#define DPRC2 10

#define DPRC2 _SZ 1

#define DPRC1 9

#define DPRC1_SZ 1

#define DPRCO 8

#define DPRCO_SZ 1

#define INTSEL 6

#define INTSEL SZ 2

#define DE 0

#define DE_SZ 6

#define DES 5

#define DES SZ 1

#define DE4 4

#define DE4 SZ 1

#define DE3 3

#define DE3 SZ 1

#define DE2 2

158

#define DE2 SZ
#define DEI
#define DE1_SZ
#define DEO
#define DEO_SZ
/*

—_ O = = =

/* Define bit fields for DMSEFCn Register

/*

#define FRAMECOUNT 0
#define FRAMECOUNT SZ 8
#define DSYN 12
#define DSYN_SZ 4
#define DLBW 11
#define DLBW_SZ 1
/*

/* Define bit fields for DMMRCn Register

/*

#define AUTOINIT 15
#define AUTOINIT _SZ 1
#define DINM 14
#define DINM_SZ 1
#define IMOD 13
#define IMOD_SZ 1
#define CTMOD 12
#define CTMOD_SZ 1
#define SLAXS 11
#define SLAXS SZ 1
#define SIND 8
#define SIND SZ 3
#define DMS 6
#define DMS SZ 2
#define DLAXS 5
#define DLAXS SZ 1
#define DIND 2
#define DIND SZ 3
#define DMD 0
#define DMD_SZ 2
/****************************/

/* Register Definition DMA */
[k R kR R sk Rk ok ok

#define DMPREC *(volatile unsigned int*)0x54
#define DMPRE_ADDR 0x54

#define DMSBA ADDR 0x55
#define DMSAI_ADDR 0x56
#define DMA_ACCSUB_ADDR 0x57
#define DMSRC _SUBADDR 0x00
#define DMDST SUBADDR 0x01
#define DMCTR_SUBADDR 0x02
#define DMSEFC_SUBADDR 0x03
#define DMMCR_SUBADDR 0x04
#define DMSRCP_SUBADDR 0x1E
#define DMDSTP_SUBADDR 0x1F
#define DMIDX0 SUBADDR 0x20
#define DMIDX1 SUBADDR 0x21
#define DMFRIO_SUBADDR 0x22
#define DMFRI1 _SUBADDR 0x23

159

*/
*/
*/

*/
*/
*/

#define DMGSA_SUBADDR 0x24

#define DMGDA_SUBADDR 0x25
#define DMGCR_SUBADDR 0x26
#define DMGFR_SUBADDR 0x27

/**/

/* Subregister Read / Write

k
/i***/
#define MCBSP_SUBREG_WRITE(port, subaddr, value) \
((REG_WRITE(SPSA_ADDR(port), subaddr)), (REG_WRITE(MCBSP_ACCSUB_ADDR(port), value)))
#define MCBSP_SUBREG_ READ(port, subaddr) \

((REG_WRITE(SPSA_ADDR(port), subaddr)), (REG_ READ(MCBSP_ACCSUB_ADDR(port))))
#define DMA_SUBREG_ WRITE(chan, subaddr, value)((subaddr>=0x1E) 7\

(REG_WRITE(DMSBA_ADDR, (subaddr)), REG_ WRITE(DMSAI ADDR, value))\

:(REG_WRITE(DMSBA_ ADDR, (chan*5+subaddr)), REG WRITE(DMSAI ADDR, value)))
#define DMA_SUBREG_ READ(chan, subaddr)((subaddr>=0x1E) 7\

(REG_WRITE(DMSBA_ADDR, (subaddr)), REG_READ(DMSAI ADDR))\

:(REG_WRITE(DMSBA ADDR, (chan*5+subaddr)), REG READ(DMSAI ADDR)))
/**/
/* Subregister Bit Field Read / Write

%

/***4********************/
#define MCBSP_SUBREG_ BITWRITE(port, subaddr, bit, size, value) \

REG_WRITE(MCBSP_ACCSUB_ADDR(port), ((REG_WRITE(SPSA ADDR(port), subaddr),
REG_READ(MCBSP_ACCSUB_ADDR(port))) & ~CREATE FIELD(bit, size)) | ((value) << (bit))))
#define MCBSP_SUBREG BITREAD(port, subaddr, bit, size) \

(unsigned int) (REG_WRITE(SPSA_ADDR(port), subaddr),
(REG_READ(MCBSP ACCSUB_ADDR(port)) & CREATE FIELD(bit, size)) >>(bit))
#define DMA_SUBREG BITWRITE(chan, subaddr, bit, size, value)((subaddr>=0x1E) ?\
(REG_WRITE(DMSBA_ADDR, ((REG_WRITE(DMSBA_ ADDR, subaddr),
REG_READ(DMA_ACCSUB_ADDR)) & ~CREATE_FIELD(bit, size)) | ((value) << (bit)))))\
:(REG_WRITE(DMSBA_ ADDR, ((REG_WRITE(DMSBA ADDR, (chan)),

(REG_READ(DMA_ACCSUB_ADDR) & CREATE_FIELD(bit, size))>>(bit)))))))
#define DMA SUBREG_BITREAD(chan, subaddr, bit, size)((subaddr>=0x1E) 2\

((unsigned int) (REG_WRITE(DMSBA_ADDR, subaddr), (REG_ READ(DMA_ ACCSUB_ADDR) &
CREATE_FIELD(bit, size)) >>(bit))):((unsigned int) (REG_WRITE(DMSBA ADDR, (chan*5+subaddr)),
(REG_READ(DMA_ACCSUB_ADDR) & CREATE_FIELD(bit, size)) >>(bit))))

/* */
/* | The following part of 54XXregs.h was not needed for my purposes. */
/* | It has already been included in the regs.h I have received from */

/* V Karen Baldwin (?) some time ago. */
/********************/

/* Interrupt Vectors */
/********************/

#define BASE_ VEC_ADR 0x80
#define RESET VEC 0x0
#define NMI_VEC 4
#define SINT17_VEC 8
#define SINT18 _VEC 12
#define SINT19_VEC 16
#define SINT20_VEC 20
#define SINT21_VEC 24
#define SINT22 VEC 28
#define SINT23 VEC 32
#define SINT24 VEC 36

160

#define SINT25_VEC 40

#define SINT26_VEC 44
#define SINT27_VEC 48
#define SINT28 VEC 52
#define SINT29 VEC 56
#define SINT30 VEC 60
#define INTO_VEC 64
#define INT1_VEC 68
#define INT2_VEC 72
#define TINTO VEC 76
#define RINTO_VEC 80
#define XINTO VEC 84
#define DMACO_VEC 88
#define TINT1 VEC 92
#define INT3_VEC 96
#define HPI VEC 100
#define RINT1_VEC 104
#define XINT1 _VEC 108
#define DMAC2_VEC 104
#define DMAC3 VEC 108
#define DMAC4_VEC 112
#define DMACS5_VEC 116
/***/
/* Define data structures for all memory mapped registers */
/***/
/* */
/* Data bitfields Period for Timer */
/* */
#define PSC 6
#define PSC_SZ 4
#define TRB 5
#define TRB_SZ 1
#define TSS 4
#define TSS_SZ 1
#define TDDR 0
#define TDDR_SZ 4
/* */
/* Data bitfields for Clock Mode Register */
/* */
#define PLLMUL 12
#define PLLMUL SZ 4
#define PLLDIV 11
#define PLLDIV_SZ 1
#define PLLCOUNT 3
#define PLLCOUNT SZ 8
#define PLLON_OFF 2
#define PLLON_OFF SZ 1
#define PLLNDIV 1
#define PLLNDIV_SZ 1
#define PLLSTATUS 0
#define PLLSTATUS SZ 1

/* */
/* Define bit fields for Software Wait State Register ~ */
/* */
#define 10 12

#define I0_SZ 3

161

#define DATA_HI
#define DATA _HI SZ
#define DATA LO
#define DATA LO SZ
#define PROGRAM_HI
#define PROGRAM HI SZ
#define PROGRAM_LO
#define PROGRAM LO SZ
/* */
/* Define bitfields for Bank Switch Control Register */
/* */
#define BNKCMP 12
#define BNKCMP_SZ 4
#define PS_ DS 11
#define PS DS SZ 1
#define HBH 2
#define HBH SZ 1
#define BH 1

1

0

1

WO W WWoN W\

#define BH SZ
#define EXIO
#define EXIO _SZ
/* */
/* Define bitfields for Interruput Mask Register */
/* */
#define INTO
#define INT1
#define INT2
#define TINTO
#define RINTO
#define XINT
#define RINT2
#define DMACO
#define XINT2
#define DMACI1
#define INT3
#define HPINT
#define RINT1 10

#define DMAC2 10

#define XINT1 11

#define DMAC3 11

#define DMAC4 12

#define DMACS 13

/* */
/* DEFINE DATA STRUCTURE FOR HOST PORT INTERFACE CONTROL REG */
/* */
#define BOB
#define SMOD
#define DSPINT
#define HINT
#define XHPIA

st ek sk ol sk sk e ke kel ol ket skl sk stk ol skl ol ok otk sl ol s ook ok /

O I I AAN N hA W~ O

O

BrWN— o

/* Define Interrupt Flag and Interrupt Mask Registers */
/**/
#define IMR *(volatile unsigned int*)0x00

#define IMR_ADDR 0x0

#define IFR *(volatile unsigned int*)0x01

162

#define IFR_ADDR 0x1

/**/
/* NOTE: YOU CAN ACCESS THESE REGISTERS IN THIS MANNER ONLY *#/
/% IF THE SUBADDRESS REGISTER HAS BEEN DEFINED ALREADY %/

/**/
/**/

/* MultiChannel Buffer Serial 0 defined for 54XX */
/**/
#define SPCR10 *(volatile unsigned int*)0x39

#define SPCR10_ADDR 0x39

#define SPCR20 *(volatile unsigned int*)0x39

#define SPCR20_ADDR 0x39

#define DRR20 *(volatile unsigned int*)0x20

#define DRR20_ADDR 0x20

#define DRR10 *(volatile unsigned int*)0x21

#define DRR10_ ADDR 0x21

#define DXR20 *(volatile unsigned int*)0x22

#define DXR20 ADDR 0x22

#define DXR10 *(volatile unsigned int*)0x23

#define DXR10_ ADDR 0x23
/**/
/* MultiChannel Buffer Serial 1 defined for 54XX */
/**/
#define SPCR11 *(volatile unsigned int*)0x49

#define SPCR11_ADDR 0x49

#define SPCR21 *(volatile unsigned int*)0x49

#define SPCR21_ADDR 0x49

#define DRR21 *(volatile unsigned int*)0x40

#define DRR21 ADDR 0x40

#define DRR11 *(volatile unsigned int*)0x41

#define DRR11_ADDR 0x41

#define DXR21 *(volatile unsigned int*)0x42

#define DXR21 ADDR 0x42

#define DXR11 *(volatile unsigned int*)0x43

#define DXR11_ADDR 0x43

#define SPCR12 *(volatile unsigned int*)0x35

#define SPCR12_ADDR 0x35
/**/
/* MultiChannel Buffer Serial 2 defined for 54XX */

st etk sk ol sk s e ke ke sl ol ke skl sk sl ol sk sl ol ok stk sl ke sk ook ok /

/*

#define SPCR22 *(volatile unsigned int*)0x35
#define SPCR22 _ADDR 0x35

#define DRR22 *(volatile unsigned int*)0x30
#define DRR22 ADDR 0x30

#define DRR12 *(volatile unsigned int*)0x31
#define DRR12_ADDR 0x31

#define DXR22 *(volatile unsigned int*)0x32
#define DXR22 ADDR 0x32

#define DXR12 *(volatile unsigned int*)0x33
#define DXR12_ ADDR 0x33

*/

kst etk ek ol sk s o ke ksl ol ke skt sk stk ol ok sl ol ok stk sl ok sk ook ok /

/* Direct Memory Access defined for 54XX
*/

/**/

163

#define DMPRE (0x54)

#define DMSBA (0x55)
#define DMSAI (0x56)
#define DMSRCP (0x57)
#define DMDSTP (0x57)
#define DMGSA (0x57)
#define DMGDA (0x57)
#define DMGCR (0x57)
#define DMGFR (0x57)

#define DMFRI(reg) ((reg) ? 0x57:0x57)

#define DMIDX(reg) ((reg) ? 0x57:0x57)

#define DMSRC(channel) ((channel) ? 0x57:0x57)

#define DMDST/(channel) ((channel) ? 0x57:0x57)

#define DMCTR(channel) ((channel) ? 0x57:0x57)

#define DMSEFC(channel) ((channel) ? 0x57:0x57)

#define DMMCR(channel) ((channel) ? 0x57:0x57

#define DMA REG READ(dma_ subaddress, channel) (DMSAI(channel)=dma subaddress), *(volatile unsigned
int*) DMFRI(channel))

/* */

/* Data bitfields Period for DMPRE */

/* */

#define DPRC5 13

#define DPRC5_SZ 1

#define DPRC4 12

#define DPRC4 SZ 1

#define DPRC3 11

#define DPRC3_SZ 1

#define DPRC2 10

#define DPRC2 _SZ 1

#define DPRC1
#define DPRC1_SZ
#define DPRCO
#define DPRCO_SZ
#define INTSEL
#define INTSEL SZ
#define DES

#define DE5S_SZ
#define DE4

#define DE4 SZ
#define DE3

#define DE3 SZ
#define DE2

#define DE2 SZ
#define DEI

#define DE1_SZ
#define DEO

#define DEO_SZ

/* */
/* Data bitfields Period for DMSEFCn */
/* */
#define DSYN

#define DSYN SZ
#define FRAME CNT
#define FRAME CNT _SZ
/* */
/* Data bitfields Period for Mode Control Register */

—_ O = = = N = W= A = AN\ = 00— O

—_
[\

o O N

164

/* */

#define AUTOINIT 15
#define AUTOINIT SZ 1
#define DINM 14
#define DINM_SZ 1
#define IMOD 13
#define IMOD _SZ 1

#define CTMOD 12

#define CTMOD_SZ
#define SIND
#define SIND SZ
#define DMS
#define DMS_SZ
#define DIND
#define DIND SZ
#define DMD
#define DMD_SZ
/***/
/* TIMER REGISTER ADDRESSES (TIMO = Timer 0, TIM1 = Timer 1 */
/* Defined for all devices */
/***/

#define TIM_ADDR(port) (port ? 0x30 : 0x24)

N O WO Wo

#define TIM(port) *(volatile unsigned int*)TIM_ADDR(port)

#define PRD_ADDR(port) (port ? 0x31 : 0x25)

#define PRD(port) *(volatile unsigned int*)PRD_ADDR(port)

#define TCR_ADDR(port) (port ? 0x32 : 0x26)

#define TCR(port) *(volatile unsigned int*)TCR_ADDR(port)
/***/
/* EXTERNAL BUS CONTROL REGISTERS */
/***/
#define BSCR *(volatile unsigned int*)0x29

#define BSCR_ ADDR 0x29

#define SWCR *(volatile unsigned int*)0x2B

#define SWCR_ADDR 0x2B

#define SWWSR *(volatile unsigned int*)0x28

#define SWWSR_ADDR 0x28
/***/
/* HOST PORT INTERFACE REGISTER ADDRESS */
/* Defined for C54XX */
/**/
#define HPIC *(volatile unsigned int*)0x2C

#define HPIC_ADDR 0x2C

#define HPI ADDR 0x1000
/***/
/* Defined flags for use in setting control for HPI host interface control pins */
/* The value of these constants is their relative bit position in */
/* the control structure for the host side of the HPI interface */

/**/

#define HAS PIN
#define HBIL PIN
#define HCNTLO PIN
#define HCNTL1 PIN
#define HCS PIN
#define HDO PIN
#define HDS1 PIN
#define HDS2 PIN

NN bW~ O

165

#define HINT PIN 8

#define HRDY_ PIN 9

#define HRW_PIN 10
/***/
/* CLOCK MODE REGISTER ADDRESS */
/* Defined for C54XX */
/**/
#define CLKMD *(volatile unsigned int*)0x58

#define CLKMD_ ADDR 0x58

/e st s e st st sk ke st st s ke ke steske e she st sk s st st st ke st sk sk s st ke stk sfestesk s ste st stk st st stk steskeskoskoste st skoskoskeskokok skokokoskokoskoksiokoskokokok /

/* Extended Program Counter -XPC register */
/***/

extern volatile unsigned int XPC;

#define XPC *(volatile unsigned int*)0x1e

#define XPC_ADDR Oxle
/***/
/* Program Control and Status Registers (PMST, STO, ST1) */
/***/
#define PMST *(volatile unsigned int*)0x1d

#define PMST _ADDR 0x1d

#define STO *(volatile unsigned int*)0x06

#define STO_ ADDR 0x06

#define ST1 *(volatile unsigned int*)0x07

#define ST1_ADDR 0x07
/***/
/* General-purpose I/O pins control registers (GPIOCR, GPIOSR) */
/***/
#define GPIOCR *(volatile unsigned int*)0x3C

#define GPIOCR_ADDR 0x3C

#define GPIOSR *(volatile unsigned int*)0x3D

#define GPIOSR _ADDR 0x3D

#define 5S4XXREGS

#endif

166

E.12 timr5416.h [40]

/e st s e st st sk ke st st s ke ke stesk s ke ke sk s she sk st s e st st sk sk stesiese e skesi sk ke kst skt ke st st stesieske ke st sk sieste ke stk ste sttt steostosk stk skokokoskokokokokoskokokokok /

/* Define Timer Period, and Control Registers with all related data structures, macros, and functions */
/***/

#include "regs5416.h"

/**/

/* TIMER_START - starts timer operation */

/**/

#define TIMER_START(port)TCR(port) &= ~MASK_BIT(TSS)

[/ st e e st st sk ke st st stk sk stk s ke st sk sk sk st stk ke sk stk steskostske stk skt stttk sk kol skokokoskoskokoskokolokotokoskokskokoskok skokokok/

/* TIMER_HALT - halts timer operation */

/*******i;***/

#define TIMER_HALT(port)TCR(port) |= MASK BIT(TSS)
/**/
/* TCR_MASK - creates mask to set relevant fields in Timer Cntrl register */
/* trb - val to set timer reload bit */
/* tss - val to set timer stop/start bit */
/* tddr - val to set timer divide-down ratio */
/**/
#define TCR_MASK(trb, tss, tddr)\
((trb ? MASK_BIT(TRB) | MASK TARGET WORD: ~MASK BIT(TRB))&\
(tss ? MASK_BIT(TSS) | MASK_TARGET WORD: ~MASK BIT(TSS))&\
(tddr ? (MASK_FIELD(TDDR,tddr, TDDR_SZ) | MASK TARGET WORD) :\
~MASK FIELD(TDDR,tddr, TDDR_SZ)))

/**/

/* TIMER_INIT (ctrl, prd) - init and start timer */
/* ctrl - mask used to set timer control register */
/* prd - value to set timer period register */

st etk ekl sk sk o ke okl ok ke skl sk stk ol sk sl ol ok stk sl ke sk ook ok /

#define TIMER INIT(port, ctrl, prd){ SET BIT(TCR ADDR(port),TSS);TCR(port) = ctrl;\
PRD(port) = prd; TIMER RELOAD(port); }

/**/
/* timer_reset - reset timer to conditions defined by device reset */
/* 1i.e. period = Oxffff, tddr = 0x000 */
/**/
#define TIMER RESET(port){ TIMER HALT(port);\

LOAD FIELD(TCR_ADDR(port), 0x000, TDDR, TDDR_SZ); \

PRD(port) = Oxffff; TIMER _START(port); }

/**/

/* TIMER_RELOAD() - reloads timer with previsouly set period value, etc.. */

/**/

#define TIMER _RELOAD(port){ TIMER HALT(port); TCR(port) = MASK BIT(TRB);\
TIMER _START(port); }

st etk sk ol sk sk o ke kool ol ko skt ok stk ol okl ol ok stk sl ke sk ook ok /

/* TIMER READ - reads current value of timer */

/*******i;***/

#define TIMER READ(port)TIM(port)
/***/

/* MASK_CLKMD(PLLMUL, PLLDIV, PLLCOUNT, PLLONOFF, PLLNDIV) */

/* creates mas kto set PLL clock mode register */

/* PLLMUL - defines frequency multiplier */

/* PLLDIV - PLL divider is used with PLLMUL & PLLNDIV to define multiplier frequency */
/* PLLCOUNT - # of cycles for PLL to count before processor is clocked */

/* PLLONOFF - enables/disables the analog part of the PLL */

167

/* PLLNDIV - in conjunction with PLLMIL & PLLDIV determines value of multiplier. */
/**/
#define MASK CLKMD(pllmul, plldiv, pllcount, pllonoff, plindiv)\
((pllmul ? (MASK_FIELD(PLLMUL, pllmul, PLLMUL SZ) | MASK _TARGET WORD):\
~MASK FIELD(PLLMUL, 0xf, PLLMUL SZ7Z)) &\
(plldiv ? (MASK_BIT(PLLDIV) | MASK TARGET_WORD) :\
~MASK BIT(PLLDIV)) &\
(pllcount ? (MASK FIELD(PLLCOUNT,pllcount, PLLCOUNT SZ) | MASK TARGET WORD):\
~MASK FIELD(PLLCOUNT,0x7f, PLLCOUNT SZ)) &\
(pllonoff ? (MASK_BIT(PLLONOFF) | MASK_TARGET WORD): \
~MASK BIT(PLLONOFF)) &\
(plindiv ? MASK_BIT(PLLNDIV) | MASK_TARGET WORD :\
~MASK BIT(PLLNDIV)))
/**/
/* CLOCK_RESET(ctrl) - resets clock mode register */
/* ctrl - mask to set control register */
/**/

#define CLOCK_RESET(ctr) CLKMD = ctrl

168

F.15416_dsk.c [6]

typedef unsigned long
#include "AED.h"

#include "dsk5416.h"
#include "timr5416.h"
#include "intr5416.h"
#include "regs5416.h"

Uint32;

Appendix F

Source Files

#if AED_PRINT /* Must be placed after AED.h */

#include <stdio.h>
#endif

#define OK
#undef ERROR
#define ERROR

/* timer to be used to for delays

#define DELAY_ TIMER

0

-1

*/

INTR_TIMERO

/* timer to be used FPGA simulation */

#define PERIOD_TIMER
#define PORT(INTR_TIMER)

INTR_TIMERO
(INTR_TIMER-1)

#define DEFAULT PRESCALE 9

#define DC_WIDE 4

#define XCNTLO MASK 0x01
#define XCNTL1 MASK 0x02
#define XSTAT0O MASK 0x10
#define XSTAT1 _MASK 0x20

/* Interrupt ISN translation table, account for processor dependant */
/* connections to the expansion bus and daughterboard */

const int isn_trap[]={

RS TRAP, /¥ INTR _DSPINT
TINT TRAP, /*INTR _TIMERO
RS TRAP, /¥ INTR_TIMERI1

HPINT TRAP, /* INTR HPI

INT1 TRAP, /*INTR AltIntr
INT2 TRAP, /*INTR Alt Intr
INT3 TRAP, /*INTR Alt Intr
INTO TRAP, /* INTR DBOARD

DMAC2 TRAP, /¥ INTR_DMAO

DMAC3 TRAP, /¥ INTR_DMAI

DMAC4 TRAP, /¥ INTR_DMA2

DMACS5 TRAP, /* INTR DMA3

XINTO _TRAP, /*INTR MCBSP _TRANS 0

RINTO_TRAP, /* INTR_MCBSP _REC 0

XINT1 _TRAP, /*INTR MCBSP TRANS 1

RINT1 _TRAP, /*INTR MCBSP REC 1

IR

const int isn_flag[]={
0, /¥ INTR_DSPINT
TINT, /*INTR TIMERO
0, /¥ INTR_TIMERI1
HINT, /*INTR_HPI
INT1, /*INTR AltIntr

0x0 */ /*UNUSED*/
0x1 */ /*TIMERS*/
0x2 */

0x3 */

0x4 */

0x5 */

0x6 */

0x7 */ /*DAUGHTER BOARD INTR*/
0x8 */ /*DMA*/
0x9 */

0xA */

0xB */

0xC */

0xD */

0xE */

OxF */

0x0 */ /*UNUSED*/
0x1 */ /*TIMERS*/
0x2 */
0x3 */
0x4 */

169

INT2, /*INTR_Alt Intr 0x5 */

INT3, /*INTR_Alt Intr 0x6 */
INTO, /*INTR_DBOARD 0x7 */ /*DAUGHTER BOARD INTR*/
DMAC2, /* INTR_DMAO 0x8 */ /*DMA*/
DMAC3, /*INTR DMAI 0x9 */

DMAC4, /*INTR_DMA2 0xA */

DMACS5, /*INTR _DMA3 0xB */

XINTO, /* INTR_MCBSP_TRANS 0 0xC */

RINTO, /*INTR_MCBSP REC 0 0xD */

XINT1, /* INTR_MCBSP_TRANS I OxE */

RINT1, /*INTR_MCBSP REC 1 OxF */

3

unsigned int cpld_misc_reg_default;
unsigned int cpld_cntl reg default;
static unsigned int cpuFreqInMhz;
/***
alloc_timer_intr - Provide an interrupt at specified period
Returns: ISN for interrupt at period timing
Parameters: IN period in - desired period in 500 ns increments
***/
IntrSelNumType alloc_timer intr (unsigned long period in) {
unsigned int period_reg, ctrl reg;
/* period_in is in 0.5 usec units */
period_reg = ((cpuFreqInMhz/(DEFAULT PRESCALE+1))*period in)>>1;

ctrl reg= MASK BIT(TSS)[DEFAULT PRESCALE; /* stop timer */

TIMER_INIT(PORT(PERIOD_TIMER), ctrl_reg, period reg);
return PERIOD TIMER; /* selected period timer */

}

st stk sk ot ek s e ek ks ol ok stk e ol stk sl el sk ok ol ol st ol kb sk ol ok ok o

board init - Initialize EVM or DSK board for use
***/
void board _init (void) {
DSK5416 DC REG = 0x08; /* DB reset */
/* change the clock mode to 160MHz with CLKOUT at 80MHz */
CLKMD = 0x9007; /* reset value for x10 mode */
cpuFreqInMhz =160;
/* daughter board access */
cpld misc_reg default = 0; /* 16 bit default */
#if (TALK_TO_FPGA)
cpld _cntl reg default = 0xd0; /* data address default */
#else
cpld cntl reg default = 0x40; /* SRAM for test data */
#endif
DSK5416 USER_REG = 0; /* clear leds */
DSK5416 _MISC = cpld misc_reg_default;
DSK5416 CODEC CLK = 0;
DSK5416 DM _CNTL = cpld_cntl reg_default;
IMR = 0;
BSCR = 0x2002; /* bus hold and CLKOUT = CLK/2 */
SWWSR = 0x745B; /* data wait =2 */
PMST = 0x7FAOQ; /* MP/MC= 0, ovly=1, DROM=0, IPT=0x0ff */
DSK5416 DC REG = 0x0; /* take DB out of reset */
INTR_GLOBAL_ENABLE;

170

/st sk e st st sk ke st st st ke shesteske e e st sk sk st kst s ke st st sk st st st shestesk sk ke ke st skt st steskoste ke st skoseste st stk ste stk skekokokoskokokokoskokokok

brd led enable - Illuminate user LED on board

Returns: error code indicating incorrect LED for this board

Parameters: IN LED_number - number of LED beginning at zero

Note: The number available will vary with board.
***/
int brd _led enable(int LED number) {

DSK5416 USER REG |= 1<<LED_number; /* set led bit */

return OK;

} /* brd_led enable end */
/***
brd led disable - Extinguish LED on EVM board

Returns: error code indicating incorrect LED for this board

Parameters: IN LED number - number of LED beginning at zero

Note: The number available will vary with board.
***/
int brd led disable(int LED number) {

DSK5416 USER REG &= ~(1<<LED_number); /* clear led bit */

return OK;

} /* brd_led disable end */
/***
byte size - Number of address increments in element sizes

RETURNS: address increments (same as sizeof() returns)

PARAMETERS: IN esize code - element size codes for daughterboard transfers
***/
int byte_size (unsigned int esize code) {
const int size [= {2, 1, 1};
return size[esize_code];

}

st stk sk ol sk st e ek ks ol ok stk e ol stk sl ol sk okl ol st ol kb sk ol ok sk o

cpu_freq - Frequency of internal CPU clock in MHz

RETURNS: CPU frequence in MHz
***/
int cpu_freq (void)

{
return cpuFreqInMhz;

>

st stk sk ol sk st e ek kool ok stk e ol sk sl el sk kol ol st ol kb sk ol ok ok o

delay usec - Delay specified number of microseconds
RETURN: error code
PARAMETERS: IN numUsec - number of microseconds delay

st ol ke ekl sk sk ok ok ol ol skt ol ol skl sk skt ol okttt ol sk otk ol ok o

int delay usec (unsigned short numUsec)
{
unsigned int timer limit
= ((unsigned long)cpuFreqInMhz*(unsigned long)numUsec)/(DEFAULT PRESCALE+1);
unsigned int start, end,
/I printf ("Limit = %u usec= %u\n",
// timer_ limit, numUsec);
TIMER INIT(PORT(DELAY_ TIMER), MASK BIT(TSS) DEFAULT_ PRESCALE, 0xfftf);
TIMER _START(PORT(DELAY_ TIMER));
start = TIMER READ(PORT(DELAY_ TIMER));
end = start - timer_limit;
while (TIMER_READ(PORT(DELAY_ TIMER))) > end);
TIMER HALT(PORT(DELAY_ TIMER));

171

/I printf ("Start= %x End=%x Next= %x\n", start, end, next);
return AED_OK;
} /* delay_usec */
/***
delay msec - Delay specified number of milliseconds
RETURN: error code
PARAMETERS: IN numMsec - number of microseconds delay

et st s ke she st s ke skeske s st st st s sk stesk sk ke st st skt st skl stttk sk skosiokoskotolkolkoskoskokoskokostokokokokokokoskolokokokokkokokokekokokekok /

int delay_msec (unsigned short numMsec)
{

unsigned short j;
/* printf ("Msec=%u\n", numMsec); */

for (j=0; j<numMsec; j++)

delay usec(999);

return AED_OK;
} /* end delay_msec */
/***

FPGA_enable - Enable the FPGA to receive data

et st s ke she st s ke skeske s s st stestose sk stk sk ke ste stk st stk s sttt sk skosiokoskoteolkokoskoskok kol stokokokokoiokoskolokokokokskokokokekokokekok /

void FPGA _enable (void)

DSK5416 DC _REG |= XCNTL1 _MASK;
} /* FPGA_enable */

/***

FPGA_start - Start the FPGA collecting data
***/
void FPGA_start (void) {
#if (TALK_TO FPGA)
unsigned int cpu_intr = isn_flag[INTR_DBOARD];
unsigned int mask = 1<<(cpu_intr);
IFR = mask; /* clear interrupt in IFR */
DSK5416 MISC = cpld misc reg default;
DSK5416 DM _CNTL = cpld_cntl _reg_default;
DSK5416 DC _REG |= XCNTLO MASK;
#else
TIMER_START(PERIOD TIMER);
#endif

st stk sk ol sk st e ek kool ok stk e ol sk sl el sk kol ol st ol kb sk ol ok ok o

FPGA stat addr - Pointer to FPGA status address

RETURN: pointer to status address word
ok sk sk sk ok ok sk Rk ok sk sk Rtk ok sk sk Rk R ok ksl sk Rtk ok sk kR sk kR sk kbR ok ok /

unsigned int * FPGA_stat addr (void) {
return (unsigned int ¥*)DSK5416 DC REG;

/***

FPGA_stat mask - Mask FPGA FIFO overflow bit

RETURN: mask for overflow bit in status address word
***/

unsigned int FPGA_stat mask (void) {
return XSTATO0 MASK;

st stk sk ol sk st e ek ks ol ok stk e ol sk sl el sk okl tol ol sl ol kb sk ol ok kol o

FPGA_stop - Stop the FPGA collecting data and reset FIFO

st ol ok ek ol sk sk ke kb ol ol skt ol ol skl sk skt ol okl ol sk otk ol ok o

void FPGA _stop (void) {

172

#if (TALK_TO_FPGA)

DSK5416 DC REG &=~XCNTLO _MASK;
#else

TIMER HALT(PERIOD TIMER);
#endif

[/ st e steske sk e st st st ke sk st s ke st sk sk sk kst ke st stk st stk sesteskeoskoske sk stk skostolkolkoskokok kol stokolkokokokokoskokokokokokokokokokorok

get data addr - Daughterboard data read/write address

Returns: void pointer for read/write of data

Notes: This board may set bits in registers if necessary to render this address active (like paging bits)
***/
void * get data_addr (void) {

void *ptr = (void*) 0x8000; /* word address - CE2 */

return ptr;

[/ st e st sk s e st st st ke sk stes s ke ste sk sk sk steste sk ke st st skt st stk st sttt stttk skotolkotoskoskok kol stokolkokokokokoskolokokokokokokokokorok

get cntl addr - Daughterboard control read/write address

Returns: void pointer for read/write of control

Notes: This board may set bits in registers if necessary to render this address active (like paging bits)
***/
void * get cntl addr (void) {

void *ptr = (void*) 0x0000; /* word address - CE2 */

return ptr;

i

/***

interrupt _init - Bind interrupt service routine to an interrupt
PARAMETERS: IN ptr_isr - pointer to an interrupt service routine
IN isn - interrupt selection number

***/
extern unsigned int IntVM[4];
extern unsigned int _vectors[128];
void interrupt_init (void(*ptr_isr)(void), IntrSelNumType isn) {

unsigned int location = (isn_trap[isn])<<2;

_vectors[location+0] = IntVM[0];

_vectors[location+1] = (unsigned long)ptr_isr;

_vectors[location+2] = IntVM|[2];

_vectors[location+3] = IntVM[3];
} /* end interrupt_init */
/***

intr_pause - Disable ISN

PARAMETERS: IN isn - interrupt selection number
***/
void intr_pause (IntrSelNumType isn){

int cpu_intr = isn_flag[isn];

unsigned int mask = 1<<(cpu_intr);

IMR &= ~mask; /* disable interrupt in [ER1%*/

/***

intr_start - Enable ISN with cleared flag

PARAMETERS: IN isn - interrupt selection number
***/
void intr_start (IntrSelNumType isn) {

unsigned int cpu_intr = isn_flag[isn];

unsigned int mask = 1<<(cpu_intr);

printf("Mask=%x isn=%x cpu_intr=%x\n",

mask, isn, cpu_intr);

173

IFR = mask; /* disable interrupt in IFR1%*/
IMR |= mask; /* enable interrupt in IER 1%/

/***

mcbsp_freq - Frequency of internal MCBSP clock in MHz
RETURNS: MCBSP frequency in MHz

et st s ke she st s e sk sk s s st st st sk stk sk ste stk st stk st sttt sk kool skotolkokoskoskokoskokokokokokokokokoskolokokokokkokokokekokokekok /

int mebsp_freq (void)

return cpuFreqInMhz;

>

/***

read 32b reg - Read 32 bit data from daughterboard

RETURNS: value read from the specified address

PARAMETERS: IN addr - pointer to the read address

NOTE: This routine transmits 32 bits to the daughterboard for both 16 and 32 bit buses.
***/
unsigned long read 32b_reg (unsigned long *addr) {

unsigned long ret_msb, ret Isb;

unsigned int addr0 14 =

((unsigned int)addr & 0x7FFF);
unsigned long *uba = (unsigned long *)0x8000;
if (!((unsigned long)addr & 0x8000)) {
DSK5416 DM_CNTL = 0xc8; /* control page */

H

uba += addr0_14;

DSK5416 MISC = DC WIDE;

ret_msb = ((unsigned long)(*(unsigned int *)uba));

ret_lsb = ((unsigned long)(*((unsigned int *)uba+1)));

DSK5416 MISC = cpld misc reg default;

DSK5416 DM CNTL =cpld cntl reg default;

return (ret_msb<<16) | ret_Isb;

}

/***

write 32b _reg - Write 32 bit data to daughterboard
PARAMETERS: IN addr - pointer to the write address
IN data - value to be written
NOTE: This routine transmits 32 bits to the daughterboard for both 16 and 32 bit buses.
***/
void write 32b reg (unsigned long *addr, unsigned long data){
#if(TALK TO _FPGA)
unsigned int addr0_14 =
((unsigned int)addr & 0x7FFF);
unsigned long *uba = (unsigned long *)0x8000;
if (!((unsigned long)addr & 0x8000)) {
DSK5416 DM_CNTL = 0xc8; /* control page */

H

uba +=addr0_14;

DSK5416 MISC = DC WIDE;

*((unsigned int *)uba+1) = (unsigned int)(data>>16);

*(unsigned int *)uba= (unsigned int)data;

DSK5416 MISC = cpld misc reg default;

DSK5416 DM CNTL =cpld cntl reg default;
#endif

}

174

F.2 AED DMS_4wDMA.c [6]

#include <string.h>
#include <limits.h>
#include "intr5416.h"
#include "dma5416.h"
#include "timr5416.h"
#include "AED.h"
#include "TAED DMS.h"
#include "AED Brd.h"
#if AED_PRINT /* Must be placed after AED.h */

#include <stdio.h>
#endif
#define SET FIELD(addr,val,bit,length) \

(CONTENTS_OF(addr) |= ((unsigned int)(val) << (bit)))
#define CLR_FIELD(addr,bit,length) \
(CONTENTS_OF(addr) &= ~CREATE_FIELD(bit,length))

typedef struct {

unsigned int ch;

unsigned int *src;

unsigned int srcp;

unsigned int *dst;

unsigned int dstp;

unsigned int cnt;

unsigned int sfc;

unsigned int mcr;

unsigned int gsa;

unsigned int gda;

unsigned int ger;

unsigned int gft;

unsigned int frm;
} Dma5416Config;
extern void interrupt dma_intr0_fs(void);
extern void interrupt dma_intrQ fs_start(void);
extern void interrupt dma_intrO_ws(void);
extern void interrupt dma_intrl_fs(void);
extern void interrupt dma_intrl_fs_start(void);
extern void interrupt dma_intrl_ws(void);
extern void interrupt dma_intr2_fs(void);
extern void interrupt dma_intr2_fs_start(void);
extern void interrupt dma_intr2_ws(void);
extern void interrupt dma_intr3_fs(void);
extern void interrupt dma_intr3 fs start(void);
extern void interrupt dma_intr3_ws(void);

/ﬂe

extern unsigned int cpld _misc_reg default;
volatile int read_errfDMA_CH_NUMBER+1], buf countfDMA CH _NUMBER+1];

/*

static Dma5416Config dma[DMA CH _NUMBER];
volatile unsigned int trans_cntfDMA CH _NUMBER];
static unsigned int frame sync[DMA CH_NUMBER];
static unsigned int frame cnt{fDMA CH NUMBER];
static IntrSelNumType sync_isn[]DMA CH NUMBER];
static unsigned int alloc_chan = 0;

static unsigned int *src_addrfDMA CH NUMBER];

175

static unsigned int *dst addrfDMA_CH NUMBER];

static const unsigned int dma_fs mode[] = {

0, /* read sync mode */

0, /* write sync mode */

1, /* frame sync cont mode */
1}; /* frame sync burst mode */

static const unsigned int dma_ie_mode[] = {
IMOD_FRAME, /* read sync mode */
IMOD_FRAME, /* write sync mode */
IMOD_FRAME, /* frame sync cont mode */
IMOD_BLOCK}; /* frame sync burst mode */
static const IntrSelNumType dma_isn_trans[] = {
INTR DMA 0,
INTR DMA 1,
INTR DMA 2,
INTR DMA 3};
static const unsigned int dma_size trans[] = {
DBLW_ENABLE,
DBLW_DISABLE,
DBLW_DISABLE,
DBLW_DISABLE};

/*

void start DMA channel(Dma_channel chan){
// DMA_AUTO_ENABLE(dma[chan].ch);
} /*end start DMA*/

*/

/*

void operate. DMA channel(Dma_channel chan){
DMA_ENABLE(dma[chan].ch);

} /*end start. DMA*/

*/

/ﬂe

void pause DMA channel(Dma_channel chan){
DMA_DISABLE(dma[chan].ch);
intr_pause (sync_isn[chan]);

} /*end pause DMA_channel */

*/

/*

int count DMA_channel(Dma_channel chan){

return DMA_SUBREG_READ(dma[chan].ch, DMCTR SUBADDR);

} /* end count. DMA_channel */

J R L LY

Dma channel alloc DMA channel (void) {
Dma channel dma chan;
dma chan = (Dma_channel) alloc_chan++;
dma[dma chan].ch=DMA CH2 +dma chan;
return dma_chan;

} /* end alloc. DMA_channel */

*/

/*

void program_DMA channel(Dma_channel chan, int dir,

void *dest, void *src, unsigned int count,
unsigned int nbuf,
unsigned int size, unsigned int dms_mode) {

IntrSelNumType dma_isn;

/* pause the DMA channel before programming */

pause DMA _channel(chan);

dmal[chan].sfc = 0;

dma([chan].mcr = 0;

dma[chan].gfr = 0;

176

*/

/* configure source address */
dma[chan].src = src;
dma[chan].srcp = 0;
src_addr[chan] = src;
/* configure dest address */
dma[chan].dst = dest;
dma[chan].dstp = 0;
dst_addr[chan] = dest;
/* configure transfer counter */
dmal[chan].cnt = (dma_size trans[size]) ? (count*2)-1 : count-1;
dma[chan].frm = nbuf;
frame cnt[chan] = nbuf;
/*get cpu intr and bind intr routine */
dma_isn =dma isn_trans[chan];
frame sync[chan] =dma_fs mode[DMA XFER METHOD(dms_mode)];
switch (dir) {
case FROM_FPGA_ MEM:
sync_isn[chan] = INTR_DBOARD;
break;
case FROM FPGA SERO:
sync_isn[chan] = INTR_MCBSP REC 0;
break;
case FROM FPGA SERI:
sync_isn[chan] = INTR_MCBSP REC I;
break;
case TO FPGA MEM:
sync_isn[chan] = INTR_DMA 0;
break;
case TO_FPGA SERO:
sync_isn[chan] = INTR_MCBSP TRANS 0;
break;
case TO_FPGA SERI:
sync_isn[chan] = INTR_MCBSP_TRANS 1I;
break;
default:
error_flashing(AED FLASH FEATURE NOT IMPLEMENTED);
} /* end switch */
if (frame_sync[chan]) {
/* For the frame sync mode, set up a
dma to transfer one frame, use an isr
to process the sync interrupt */
switch (chan) {
case 0:
interrupt_init(dma_intr0_fs, dma_isn);
interrupt_init(dma_intr0_fs_start, sync_isn[0]);
break;
case 1:
interrupt_init(dma_intrl fs, dma_isn);
interrupt_init(dma_intrl fs_start, sync_isn[1]);
break;
case 2:
interrupt_init(dma_intr2 fs, dma isn);
interrupt_init(dma_intr2 fs start, sync_isn[2]);
break;
case 3:
interrupt_init(dma_intr3 fs, dma_isn);

177

interrupt_init(dma_intr3 fs start, sync_isn[3]);
break;
} /* end switch */
intr_start(dma_isn);
switch (dir) {
case FROM_FPGA_ MEM:
SET FIELD(&dma[chan].mcr, LAXS EXTERNAL, SLAXS, SLAXS SZ7);
SET FIELD(&dma[chan].mcr, LAXS INTERNAL, DLAXS, DLAXS SZ);
SET FIELD(&dma[chan].mcr, SPACE DATA, DMS, DMS _SZ);
SET FIELD(&dma[chan].mcr, SPACE DATA, DMD, DMD SZ7);
SET FIELD(&dma[chan].mcr,
(dma_size_trans[size]) ? INDEXMODE INC : INDEXMODE NOMOD,
SIND, SIND SZ);
SET FIELD(&dma[chan].mcr, INDEXMODE INC, DIND, DIND SZ);
break;
case FROM FPGA SERI1: case FROM FPGA SERO:
SET FIELD(&dma[chan].mcr, LAXS INTERNAL, SLAXS, SLAXS SZ);
SET FIELD(&dma[chan].mcr, LAXS INTERNAL, DLAXS, DLAXS SZ);
SET FIELD(&dma[chan].mcr, SPACE IO, DMS, DMS SZ);
SET FIELD(&dma[chan].mcr, SPACE _DATA, DMD, DMD _SZ);
SET FIELD(&dma[chan].mcr, INDEXMODE NOMOD, SIND, SIND SZ);
SET FIELD(&dma[chan].mcr, INDEXMODE INC, DIND, DIND SZ);
break;
case TO_ FPGA MEM:
SET_FIELD(&dma[chan].mcr, LAXS INTERNAL, SLAXS, SLAXS SZ7);
SET FIELD(&dma[chan].mcr, LAXS EXTERNAL, DLAXS, DLAXS SZ);
SET FIELD(&dma[chan].mcr, SPACE _DATA, DMS, DMS _SZ);
SET FIELD(&dma[chan].mcr, SPACE DATA, DMD, DMD_ SZ);
SET FIELD(&dma[chan].mcr, INDEXMODE INC, SIND, SIND SZ);
SET FIELD(&dma[chan].mcr,
(dma_size_trans[size]) ? INDEXMODE INC : INDEXMODE NOMOD,
DIND, DIND_SZ7);
break;
case TO FPGA SERI1: case TO FPGA_ SERO:
SET_FIELD(&dma[chan].mcr, LAXS INTERNAL, SLAXS, SLAXS SZ7);
SET FIELD(&dma[chan].mcr, LAXS INTERNAL, DLAXS, DLAXS SZ);
SET_FIELD(&dma[chan].mcr, SPACE _DATA, DMS, DMS SZ);
SET_FIELD(&dma[chan].mcr, SPACE IO, DMD, DMD _ S7);
SET FIELD(&dma[chan].mcr, INDEXMODE INC, SIND, SIND_SZ);
SET FIELD(&dma[chan].mcr, INDEXMODE NOMOD, DIND, DIND SZ);
break;
default:
error_flashing(AED FLASH FEATURE NOT IMPLEMENTED);
} /* end switch */
/* set mode control */
SET_BIT(&dma[chan].mcr, DINM);
SET_FIELD(&dma[chan].mcr, dma ie_mode[dms mode], IMOD, IMOD_SZ);
/* set the priority high */
DMPREC |- MASK BIT(DPRCO+dma[chan].ch);
SET FIELD(&DMPREC, INTSEL 01, INTSEL, INTSEL SZ);
} else {
/* For word sync mode process with an isr only */
switch (chan) {
case 0:
interrupt_init(dma_intr0_ws, sync_isn[0]);
break;

178

case 1:
interrupt_init(dma_intrl ws, sync_isn[1]);
break;
case 2:
interrupt_init(dma intr2_ws, sync_isn[2]);
break;
case 3:
interrupt_init(dma intr3_ws, sync_isn[3]);
break;
} /* end switch */
} /*end if ¥/
/* set word size */
cpld misc reg default = (dma_size trans[size]) ? 0x04 : 0x00;
/* initialize globals */
read_err[chan] = 0;
buf count[chan] = 0;
trans_cnt[chan] = dma[chan].cnt;
intr_start(sync_isn[chan]);
} /* end init DMA_channel */
/* */
void test DMA channel (Dma_channel chan, void *src,
unsigned long period) {
IntrSelNumType timer _isn;
/* this function only covers FROM_FPGA MEM */
timer_isn = alloc_timer_intr(period);
/* reconfigure source address -
Change source address
convert to byte address */
dma(chan].src = src;
src_addr[chan] = src;
if (frame_sync[chan]) {
/* set increment code over no adjustment (0) */
SET FIELD(&dma[chan].mcr, INDEXMODE INC, SIND, SIND SZ);
/* clear the CSDP SRC field to indicate SARAM source */
CLR_FIELD(&dma[chan].mcr, SLAXS, SLAXS SZ);
SET_FIELD(&dma[chan].mcr, LAXS INTERNAL, SLAXS, SLAXS SZ);
/* substitute timer for the FPGA synchronization */
intr_pause(sync_isn[chan]);
switch (chan) {
case 0:
interrupt_init(dma_intrQ_fs_start, timer isn);
break;
case 1:
interrupt_init(dma_intrl fs_start, timer isn);
break;
case 2:
interrupt_init(dma_intr2 fs_start, timer isn);
break;
case 3:
interrupt_init(dma_intr3 fs start, timer isn);
break;
} /* end switch */
intr_start(timer_isn);
} else {
/* word sync */
intr_pause(sync_isn[chan]);

179

switch (chan) {

case 0:
interrupt_init(dma_intr0_ws, timer isn);
break;

case 1:
interrupt_init(dma intrl ws, timer isn);
break;

case 2:
interrupt_init(dma intr2_ws, timer_isn);
break;

case 3:
interrupt_init(dma_intr3_ws, timer isn);
break;

} /* end switch */

intr_start(timer_isn);

} /* end if */
} /* end test DMA channel */

/*

/* This code is the interrupt routine; it should not be modified.

extern void interrupt dma_intr0_fs(void) {

read err[0] = DMPREC & MASK BIT(DEO+dma[0].ch);

if (read_err[0]) return;
buf count[0]++;
} /* end dma_intr0_fs */

*/

/*

/* This code is the interrupt routine; it should not be modified.

extern void interrupt dma_intrl_fs(void) {

read_err[1] = DMPREC & MASK_BIT(DEO+dma[1].ch);

if (read_err[1]) return;
buf count[1]++;
} /* end dma_intrl fs */

*
~

*/

/ﬂe

/* This code is the interrupt routine; it should not be modified.

extern void interrupt dma_intr2_fs(void) {

read_err[2] = DMPREC & MASK BIT(DEO+dma[2].ch);

if (read_err[2]) return;
buf count[2]++;
} /* end dma_intr2 fs */

*
~

*/

/ﬂe

/* This code is the interrupt routine; it should not be modified.

extern void interrupt dma_intr3_fs(void) {

read_err[3] = DMPREC & MASK_BIT(DEO+dma[3].ch);

if (read_err[3]) return;
buf count[3]++;
} /* end dma_intr3_fs */

*/

/*

/* This code is the interrupt routine; it should not be modified.

extern void interrupt dma_intr0_fs_start(void) {
dma_init(dma[0].ch,
dmal0].sfc,
dma([0].mcr,
dma[0].cnt,
dma[0].srcp,
(unsigned int) src_addr[0],
dma[0].dstp,
(unsigned int) dst_addr[0]);

180

*
~

*/

DMA_ENABLE(dma[0].ch);

if (--frame_cnt[0] == 0) {
frame cnt[0] = dma[0].frm;
src_addr[0] = dma[0].src;
dst_addr[0] = dma[0].dst;

} else {
src_addr[0] += trans_cnt[0];
dst_addr[0] += trans_cnt[0];

} /* end if end of block */

} /* end dma_intr0_fs_start */

/*

/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intrl fs start(void) {
dma_init(dma[1].ch,
dma][1].sfc,
dma[1].mer,
dma[1].cnt,
dma[1].srcp,
(unsigned int) dmaf[1].src,
dma[1].dstp,
(unsigned int) dma[1].dst);
DMA_ENABLE(dma[1].ch);
if (--frame_cnt[1] ==0) {
frame cnt[1] = dma[l].frm;
src_addr[1] = dma[1].src;
dst_addr[1] = dma[1].dst;
} else {
src_addr[1] +=trans_cnt[1];
dst_addr[1] += trans_cnt[1];
} /* end if end of block */
} /* end dma intrl fs start */

*/

/ﬂe
/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intr2_fs_start(void) {
dma_init(dma[2].ch,
dma[2].sfc,
dma[2].mcr,
dma[2].cnt,
dma(2].srcp,
(unsigned int) dmal[2].src,
dma(2].dstp,
(unsigned int) dma[2].dst);
DMA_ENABLE(dma[2].ch);
if (--frame_cnt[2] == 0) {
frame cnt[2] = dma[2].frm;
src_addr[2] = dma[2].src;
dst_addr[2] = dma[2].dst;
} else {
src_addr[2] += trans_cnt[2];
dst_addr[2] += trans_cnt[2];
} /* end if end of block */
} /* end dma _intr2 fs start */

*/

/ﬂe

/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intr3 fs start(void) {
dma_init(dma[3].ch,

181

*/

dma[3].sfc,
dma[3].mcr,
dma[3].cnt,
dma(3].srcp,
(unsigned int) dmal[3].src,
dma(3].dstp,
(unsigned int) dma[3].dst);
DMA ENABLE(dma[3].ch);
if (--frame cnt[3] ==0) {
frame cnt[3] = dma[3].frm;
src_addr[3] = dma[3].src;
dst_addr[3] = dma[3].dst;
} else {
src_addr[3] += trans_cnt[3];
dst_addr[3] += trans_cnt[3];
} /* end if end of block */
} /* end dma_intr3 fs start */
/* */
/* */
/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intr0_ws(void) {
ST1 &= ~(0x4000); /* set off CLP bit */
*dst_addr[0]++ = *src_addr[0]++;
if (--trans_cnt[0] == 0) {
buf count[0]++;
trans_cnt[0] = dma[0].cnt;
if (--frame _cnt[0] == 0) {
frame cnt[0] = dma[0].frm;
dst_addr[0] = dma[0].dst;
src_addr[0] = dma[0].src;
} /* end if end block */
} /* end if end frame */
} /* end dma_intrQ_ws */
/* */
/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intrl_ws(void) {
ST1 &= ~(0x4000); /* set off CLP bit */
*dst_addr[1]++ = *src_addr[1]++;
if (--trans_cnt[1] == 0) {
buf count[1]++;
trans_cnt[1] = dma[1].cnt;
if (--frame cnt[1] ==0) {
frame cnt[1] = dma[1].frm;
dst_addr[1] = dma[1].dst;
src_addr[1] = dma[1].src;
} /* end if end block */
} /* end if end frame */
} /* end dma_intrl ws */
/* */
/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intr2_ws(void) {
ST1 &= ~(0x4000); /* set off CLP bit */
*dst_addr[2]++ = *src_addr[2]++;
if (--trans_cnt[2] == 0) {
buf count[2]++;
trans_cnt[2] = dma[2].cnt;

182

if (--frame_cnt[2] ==0) {
frame cnt[2] = dma[2].frm;
dst_addr[2] = dma[2].dst;
src_addr[2] = dma[2].src;
} /* end if end block */
} /* end if end frame */
} /* end dma_intr2 ws */

*/

/ﬂe
/* This code is the interrupt routine; it should not be modified. */
extern void interrupt dma_intr3 ws(void) {
ST1 &= ~(0x4000); /* set off CLP bit */
*dst_addr[3]++ = *src_addr[3]++;
if (--trans_cnt[3] ==0) {
buf count[3]++;
trans_cnt[3] = dma[3].cnt;
if (--frame _cnt[3] ==0) {
frame cnt[3] = dma[3].frm;
dst_addr[3] = dma[3].dst;
src_addr[3] = dma[3].src;
} /* end if end block */
} /* end if end frame */
} /* end dma_intr3_ws */

*/

/*

183

F.3 AED MAIN.c [6]

#include <stdlib.h>
#include "AED.h"
#include "AED_DMS.h"
#include "AED _AppLh"
#ifdef CHIP_5416
#include "dsk5416.h"
#endif
#if AED_PRINT /* Must be placed after AED.h */
#include <stdio.h>
#endif
ApplBlockType dual data buffer;
static unsigned int bufs_proc; /lstatic int bufs_proc; //matt
static unsigned int prev_buf count; //static int prev_buf count; //matt
static unsigned int frames, records, reclen, esize, mode;
static unsigned int frame bytes, blocks;
static Dma_channel ex dma_chan;
#if (ITALK TO FPGA)
ApplBlockType appl test data;
static unsigned long period;
#endif
#if FPGA_OVFL_CHECK ENABLE
#ifndef CHIP_5416
static unsigned int *FPGA_status_addr;
#endif
static unsigned int FPGA_status_mask;
#endif
main()

R R Rk KRk kR SR KRR R SRR R SR SR RRRR Rs R KRSk RSk RSk R R S R sk kR Rk sk kR ok ok
/* Initialize */
[sk Rk R KRk kR SRR R R SRR R RR SR RRRSR RS RRRSR Rsk R sR R S R sk kR Rk sk kR ok ok
board _init();
/***/

/* Clear static variables, allocate buffers, init status variables */
3k sk sk sk sk sk sk sk sk sk st sl sie sk ske sk sk sk sk sk sk sk sk sk ske sk ske sk ske sk sk sk sk sk sk sk ske sk ske sk ske sk sk sk sk sk sk sk st s st ske sk ske sk sk sk sk sk skesk sk skosk skosk sk
/ /

#if FPGA_OVFL_CHECK ENABLE
#ifndef CHIP_5416
FPGA_status_addr = FPGA stat addr();
#endif
FPGA status mask = FPGA stat mask();
#endif
#if (ITALK TO FPGA)
appl_test data.uword = NULL;

#endif
prev_buf count = 0;
bufs_proc = 0;

appl parms(&frames, &records, &reclen, &esize, &mode); /*appl hdr*/
frame bytes = records*reclen*(byte_size(esize));
if (mode&DMA_SYNC MASK == DMA FSB_MODE) {

blocks = 1;
} else {

blocks = 1; /frames; //matt
}

184

#ifdef CHIP_5510
dual data_buffer.byte = (char *)malloc(frames*frame bytes+1)+1;
#else
dual data buffer.byte = malloc(frames*frame bytes);
#endif
if (!dual_data buffer.byte) {
error_flashing(AED FLASH MAIN DATA BUFFER MALLOC_ERROR);
} /* end if */
#if (ITALK TO FPGA)
if ('appl_test data.byte) {
error_flashing(AED FLASH MAIN TEST BUFFER _MALLOC ERROR);
} /*end if ¥/

#endif
/**/
/* Clear the buffers, start DMA, and wait for interrupt */

/**/

if (mode & DMA NONE MODE) {
ex dma chan=DMA CH NONE;
} else {
ex_dma chan=alloc DMA channel();
program DMA channel(ex_dma chan, mode&DMA PORT MASK, /*dma_ex*/
dual data_buffer.byte, FPGA ADDRESS,
records*reclen, frames, esize,
mode&DMA SYNC MASK);
} /* end if */
read_err[ex_dma chan] = 0;
buf count[ex dma chan] = 0;
appl_init(dual data buffer, (frames*frame bytes), ex dma chan);
/* set up dma channel to read from fill in lieu of FPGA */
#if (I TALK TO FPGA)
period = appl_test(appl test data, records*reclen, frames); /*appl hdr*/
#if AED PRINT
printf ("Period = %lu (0.5 usec)\n", period);
#endif
test DMA channel (ex dma chan, appl test data.byte, period); /*dma_ex*/
#endif
/* check for DMA OFF not set by the user, default is ON */
if {(DMA_START_ OFF&mode)) {
start DMA channel(ex dma chan); /*dma_ex*/
#ifdef CHIP_5510
delay usec(40); /* allow DMA to do start up frame before event */
#endif
/* tell FPGA to start collecting data */
FPGA_start ();

H
{ /*begin Block*/
unsigned int times = 0;//unsigned int times = 0; //matt
unsigned int fpga err=0;
ApplBlockType address;
int appl_err = 0;
while (!(read_err[ex dma chan]) && lappl err) {
/* interrupt always occurs in ISE configurations */
times++;
if ((prev_buf count) != (buf count[ex dma chan])) {
#if FPGA OVFL CHECK ENABLE
#ifdef CHIP_5416

185

if (((unsigned int)DSK5416 DC REG) & FPGA_status_mask)
#else
/* Céoxxx and C55xx */
if ((* FPGA_status addr)& FPGA _status mask)
#endif
break;
#endif
address.byte = &dual data_buffer.byte
[(prev_buf count%blocks)*frame bytes];
appl_err = appl_process(address, prev_buf count);
prev_buf count=buf count[ex dma chan];
bufs proc++;
}else {
#ifdef TIMEOUT
if ((times>>TIMEOUT) > (bufs_proc+1)) {
FPGA stop ();
#if AED_PRINT
printf ("Timeout\n");
#endif
break;
} /* end if */
#endif
appl_err = appl_idle();
} /*end if ¥/
} /* end while */
/* get the FIFO overflow code before stopping */
#if FPGA_OVFL CHECK ENABLE
fpga err =
#ifdef CHIP_5416
((unsigned int)DSK5416 DC REG) & FPGA status_mask;
#else
/* Coxxx and C55xx */
(* FPGA_status addr)& FPGA_status mask;
#endif
#else
fpga err=0;
#endif
/* tell FPGA to stop collecting data */
FPGA stop ();
#if AED_PRINT
printf("Main loop ended.\n");
#else
delay_msec(5);
#endif
pause DMA channel(ex dma chan); /*dma_ex*/
/**/

/* Check for processing errors */
/**/
appl_end(times, bufs_proc, buf count[ex dma chan],prev_buf count,
read err[ex dma chan], appl_err,
fpga err, (count DMA channel(ex_dma chan)));
} /* end block */
return(0);
} /* end main */
/***

error_flashing - Flashes a numeric code to ERR_LED forever

186

Parameters: IN flashes - numeric code ranging 1 - 99
***/

void error_flashing(int flashes)

inton=1;

error_flashing while(flashes, &on);
} /* end error flashing */
/***

error_flashing while - Flashes a numeric code while condition

Parameters: IN flashes - numeric code ranging 1 - 99

IN cond - pointer to a boolean condition

***/

void error_flashing while(int flashes, int *cond)
{ . .
int j;
#if AED_PRINT
if (flashes = AED FLASH NORMAL COMPLETION) {
printf("ERROR %d, lookup in AED.h\r\n", flashes);

}
#endif
/* two digit flash */
brd led disable(ERR_LED);
do {
delay_msec(2100);
for(j=0; j<flashes/10; j++){
brd led enable(ERR LED);
delay_msec(100);
brd led disable(ERR_LED);
delay_msec(300);
}
delay_msec(300);
for(j=0; j<flashes%10; j++){
brd led enable(ERR LED);
delay msec(100);
brd led disable(ERR_LED);
delay msec(300);
}
} while (*cond);
} /* end error_flashing */

187

F.4 Vectors.asm [6]

; plug inifinite loop -- with nested branches to
; disable interrupts -- for all undefined vectors

.sect ".vectors"

ref ¢ int00

.align 0x80
__vectors:

.def _ vectors
RESET:

; C entry point
; must be aligned on page boundary

BD c int00

STM #200,SP
RETE

nmi:

sint17
sint18
sint19
sint20
sint21
sint22
sint23
sint24
sint25
sint26
sint27
sint28
sint29
sint30

NOP
NOP
NOP

.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16
.space 4*16

int0: RETE

intl:

int2:

tint:

NOP
NOP
NOP

RETE

NOP
NOP
NOP

RETE

NOP
NOP
NOP

RETE

NOP
NOP
NOP

rint0: RETE

; Teset vector

; branch to C entry point

; stack size of 200

; enable interrupts and return from one

;NMI~
; software interrupts

188

NOP
NOP
NOP
xint): RETE
NOP
NOP
NOP
xint2: RETE
NOP
NOP
NOP
rint2: RETE
NOP
NOP
NOP
int3: RETE
NOP
NOP
NOP
hint: RETE
NOP
NOP
NOP
rintl: RETE
NOP
NOP
NOP
xintl: RETE
NOP
NOP
NOP
dmac4: RETE
NOP
NOP
NOP
dmac5: RETE
NOP
NOP
NOP
; Model Interrupt Vector
.data
_IntVM: BD c¢ int00 ; branch to C entry point
PSHM leh ; push the XPC register
NOP
.def IntVM
.end

189

F.5 AED 109 32d.c [6]

#include <stdlib.h>

#ifdef CHIP_5416

#include <timr5416.h>

#include "dsk5416.h"

#else

#include <timer.h>

#endif

#if defined(CHIP_6711) || defined(CHIP_6211) || defined(CHIP_6211X)

#include "6x11DSK.h"

#include "regs.h"

#else

#include <emif.h>

#endif

#include "AED.h"

#include "AED DMS.h"

#include "AED _AppLh"

#if AED_PRINT /* Must be placed after AED.h */
#include <stdio.h>

#endif

/*
In documentation in this module, the term "buffer" is used to refer
to either a "block" or a "frame". "Block" is the whole memory area
allocated to transferring data from the AED's (daughterboard) FPGA
to the DSP's memory via DMS through the EMIF bus. The "block" is
divided into one or more "frames".
The DMS, Data Movement Service, is implemented in several forms for
use in various DSPs. Access to the DMS is through a common header
module (AED DMS.h) which serves all implementations. The most
elementary implementation is the use of the CPU to tranfer the data
(AED_DMS intr.c). This implementation supports DSP with not data
movement hardware, but it is slow and not recommended if another
implementation can be used. Other implementations are available
for DMAs and EDMASs on various DSPs.
In most modes of operation, one frame of data is processed at a
time. The DMS is setup to give an interrupt at the completion of
transfer of each frame. Upon the receipt of the interrupt, but
not in the interrupt service routine, the frame last transfered
is presented to appl process as the "buffer" for processing.
However, in block processing modes, interrupts occur only once for
the entire block, and the entire block is presented as the "buffer"
for processing in the appl process function.
The mode, number of frames in the block, number of records in the
frame, and the size of the records are selected in appl parms.
Records are a application dependent subdivision of the frame.
Frequently, multiple records, identical in format, are transferred
in a frame in order to reduce the number of interrupts.

*/
/* application may change these defines */
#define AED_BOARD "109 Diff"
#define DMS MODE DMA FS MODE
#define RECORD SKIP POWER (6) /*NO_RECORDS to skip for speed*/
#define DIVIDE POWER (8) /*NO_RECORDS =2"DIVIDE POWER */
#define NO_RECORDS (1<<DIVIDE POWER) /* records/frame */

190

#define NO_FRAMES 3 /* frames/block */

#define RECLEN 1 /* length of record in words */
#define ELEMENTSIZE CODE DMA_ESIZE32

#define SAMPLES PER_ WORD 2

#define SAVE _RECORDS 32 /* size of printout */
#define ITERATIONS 16 /* size of averages */
#define DAC_CLK_CNT 79 /* divide 80MHz by 80 */

/* FPGA register address definitions */
#ifdef CHIP_5416
#define LSB_DIO_REG (0x0000/sizeof(unsigned short))
#define MSB_DIO_REG (0x0001/sizeof(unsigned short))
#define STATUS _REG (0x0000/sizeof(unsigned short)) /* read only */
#define START REG (0x0001/sizeof(unsigned short))
#define PERIOD REG (0x0002/sizeof(unsigned short))
#define INTR_CD_REG (0x0003/sizeof(unsigned short)) /* read only */
#define ADC_CLK_REG (0x0004/sizeof(unsigned short))
#define ADC_CPW_REG (0x0008/sizeof(unsigned short))
#define ADC_CRO_REG (0x0009/sizeof(unsigned short))
#define ADC_CRI1_REG (0x000a/sizeof(unsigned short))
#define ADC_CD_REG (0x0005/sizeof(unsigned short)) /* read only */
#define DAC_CLK_REG (0x0006/sizeof(unsigned short))
#define DAC_CD _REG (0x0007/sizeof(unsigned short)) /* read only */
#else
#define LSB_DIO_REG (0x00000/sizeof(unsigned short))
#define MSB_DIO_REG (0x00004/sizeof(unsigned short))
#define STATUS REG (0x20000/sizeof(unsigned short)) /* read only */
#define START REG (0x20004/sizeof(unsigned short))
#define PERIOD REG (0x20008/sizeof(unsigned short))
#define INTR_CD_ REG (0x2000C/sizeof(unsigned short)) /* read only */
#define ADC_CLK_REG (0x20010/sizeof(unsigned short))
#define ADC_CPW_REG (0x20020/sizeof(unsigned short))
#define ADC_CRO_REG (0x20024/sizeof(unsigned short))
#define ADC_CRI1_REG (0x20028/sizeof(unsigned short))
#define ADC_CD_REG (0x20014/sizeof(unsigned short)) /* read only */
#define DAC_CLK_REG (0x20018/sizeof(unsigned short))
#define DAC_CD_REG (0x2001C/sizeof(unsigned short)) /* read only */
#endif
/* Globals for diagnostics of termination */
unsigned int debug_times;
int debug_bufs proc;
int debug_buf count;
int debug_prev_buf count;
int debug DMS _err;
int debug_appl term code;
unsigned int debug FIFO_ovfl;
unsigned int debug DMS count;
ApplBlockType save data;
#if('TALK_TO_FPGA)
#if (defined(CHIP_5416) || defined(CHIP_5510))
unsigned long test_datalNO_RECORDS*NO_FRAMES*RECLEN];
#else
far unsigned int test datalNO RECORDS*NO FRAMES*RECLEN];
#endif
#endif
unsigned long fpga io_reg = 0x70000001;
unsigned short * cntl base addr;

191

unsigned long * data_base_addr;
Dma_channel fpga chan;
int input_count;
/* */
/* the following code is application dependent */
static int loop_count;
static int iteration,
unsigned int A value[ITERATIONS];
unsigned int B_value[[TERATIONS];
ApplBlockType addr[ITERATIONS] = /* for testing */
{0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0};
int bufs[ITERATIONS] = /* for testing */
{99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99 };
/* end of application dependent code */
/* */

[/ st s e steske sk e st st st ke sk steske s ke st s sk sk steste sk ke stesteskoske st stk s skeskoskoske sk stk skt stk skokoskokostokolkoskokokokoskokokokokokokokokokekok

appl_parms - Defines mode and size of block for DMS transfers
Parameters: OUT frames - number of frames in the block
OUT records - number of records in the frame
OUT reclen - number of transfer elements in record
OUT esize - transfer element size code (AED_Brd.h)
OUT mode - transfer mode code (AED_DMS.h)
Notes:
1) This routine is always called from main prior to allocation
of the block for data transfer. This function returns the
specifics for the allocation and the DMS setup.
2) The DMS can transfer the data in different widths up to the
EMIF bus size. The code selects the size independent of DSP.

3) The DMS mode codes include both word and frame synchronization.
Synchronization is the pulses sent on a wire connecting the AED
with the DSP used by the DMS to determine when to read or write
to the AED.
4) The DMS can be implemented with any of the facilities available
on any particular DSP. Interrupts are available on all DSPs so
the AED _DSM _intr support can always be used, although it is slow.
The other implementations depend on what the DSP has for data
transfer hardware.
***/
void appl parms(unsigned int *frames,
unsigned int *records,
unsigned int *reclen,
unsigned int *esize,
unsigned int *mode)
{
unsigned long * io_addr = get_cntl_addr();
/* */
/* the following code may be application dependent or
additional code may be required */
cntl base addr = (unsigned short *)
#ifdef CHIP_5416
((unsigned short)get cntl addr() | 0x8000);
#else
get_cntl_addr();

192

#endif
data_base addr = get data_addr();
/* AED109 Standard EMIF settings

Parm 6x01 6x11 5510 5416
Write setup 4 3
Write strobe 3 2
Write hold 3 2
Read setup 2 2
Read strobe 13 7
Read hold 0 0
*/

#if defined(CHIP_6711) || defined(CHIP_6211) || defined(CHIP_6211X)
REG_WRITE (EMIF_CE2, 0x30A20720); /* CE2 control, 32bit async*/
#if (TALK_TO_FPGA)

REG_WRITE (MARO, O0Oxl); /* Enable cache for SRAM */
REG_WRITE (L2CFG, 0x80000002); /* 2-Way cache & EDMA Pri */
#endif
fpga io reg =0x71000001;
#define ADC_MIN_CPW 7
#else
#ifdef CHIP_5510
EMIF_CE2 CTRLI = 0x2105;
EMIF_CE2 CTRL2 = 0x5105;
EMIF_CE2 CTRL3 =0;
#define ADC_MIN_CPW 7 /* 7 times the EMIF CLK period */
#else
#ifdef CHIP_5416
#define ADC_MIN CPW 5
#else
/* C6x01 EVMs */
EMIF_CE1_CTRL = 0x40F20D20;
#define ADC_MIN CPW 5
#endif
#endif

#endif
puts("Begin Processing\n");
brd led enable(ERR LED);

#if(!'TALK _TO_FPGA)

#ifdef CHIP_5416

appl test data.uword = (UWordType *)test data;
#else

appl_test data.uword = test data;
#endif

#endif

#ifdef CHIP_5416
DSK5416 DM _CNTL = 0xc8; /* control page */
delay usec(1);

#endif
*frames = NO_FRAMES;

*records = NO_RECORDS;

*reclen = RECLEN;

*esize = ELEMENTSIZE CODE,;

*mode = DMS MODE;

/* end of application dependent code */

/* */

(cntl_base addr+LSB_DIO REG) = fpga io reg; / LSB */

193

(cntl_base_addr+MSB_DIO REG) = fpga io _reg>>16; / MSB */

delay usec(1);
#ifdef CHIP_5416

DSK5416 DM CNTL = 0xc9; /* register page */

delay usec(1);
#endif

*(cntl_base addr+START REG) = 256;

delay usec(1);

*(cntl_base addr+PERIOD REG)=NO RECORDS*RECLEN;

/* number of words per frame */

delay usec(1);

/* ADC and DAC clock rate = EMIF CLOCK / (CLK_REG + 1)*/

(cntl_base_addr+tADC_CLK REG)=19; / EMIF_CLK /20 */

delay usec(1);

*(cntl_base_addrtADC_CPW_REG)=ADC MIN_ CPW;

delay usec(1);

(cntl_base_addr+ADC_CRO REG) = 0x8020; / 2 differential channels */

delay usec(1);

*(cntl_base addr+ADC_CR1 REG) = 0x84CO0;

delay usec(1);

*(entl_base addr+DAC CLK REG)=DAC CLK CNT;
#ifdef CHIP_5416

delay usec(1);

DSK5416 DM _CNTL = 0xdO0; /* data address default */
#endif
#if AED_PRINT

printf("\n*** AED " AED BOARD " TEST PROGRAM STARTED ***\n");
#endif
} /* end appl_parms */
/***

appl_init - Performs buffer init before data transfer

Parameters: OUT data block - pointer to beginning of entire input block (all frames)
IN block bytes - number of bytes in block
IN dma_chan - DMA channel allocated by main for input
Note: This routine is autmatically called from main before the
data transfer is intiated, to initialize data buffers.

***/

void appl init(ApplBlockType data block, unsigned int block bytes, Dma channel dma_chan)

/* the following code may be application dependent or additional code may be required */
int i, j, k;
unsigned short *ptr;
save data.byte = malloc(SAVE _RECORDS*RECLEN*byte size(ELEMENTSIZE CODE));
if (Isave_data.byte) {
error_flashing(AED FLASH APPL SAVE BUFFER MALLOC ERROR);
} /* end if ¥/
fpga chan =dma_ chan;
ptr = data_block.uhword;
for (i=0; i<NO_FRAMES; i++) {
for (j=0; j<NO_RECORDS; j++) {
for (k=0; kKRECLEN*SAMPLES PER WORD; k++) {
*(ptr++) = 0;
H
H
b

ptr = save_data.uhword;

194

for (j=0; j<SAVE_RECORDS; j++) {
for (k=0; kKRECLEN*SAMPLES PER_WORD; k++) {
*(ptr++) = 0;
}
}
for (j=0; j<ITERATIONS; j++) {
A value[j] =0;
B value[j] =0;
} /* end for */
loop_count = 0;
iteration = 0;
input_count = 0;
#if AED_PRINT
printf("Begin application processing (Block size = %d bytes)\n",
block bytes);
#endif
brd led disable(ERR _LED);
/* end of application dependent code */
} /* end appl_init */
/***
appl_process - Processes 1 frame of buffer data
Returns: user defined termination code, 0 is no termination
Parameters: IN data_buffer - pointer to beginning of frame of data just received from FPGA
IN buf number - number of buffer just received
Note: This routine is autmatically called from main when a full
buffer of data has been transferred from the daughterboard.
***/

int appl process(ApplBlockType data buffer, int buf number)

{ .
nt ret;
/* the following code is application dependent */
int j;
unsigned int sumA = 0, sumB = 0;
ApplBlockType ptr;

input_count++;
brd led enable(APPL LED);
if (iteration==(ITERATIONS-1)) {
for (j=0; j<SAVE_RECORDS*RECLEN; j++) {
save_data.uword[j] = data_buffer.uword[j];
} /* end for */
} /* end if */
addr[iteration&(ITERATIONS-1)] = data_buffer;
bufs[iteration&(ITERATIONS-1)] = buf number;
/* compute the buffer mean */
ptr = data_buffer;
for (j=0; j<(NO_RECORDS>>RECORD_ SKIP POWER); j++) {
sumA += (unsigned int)*(ptr.uhword-++);
sumB += (unsigned int)*(ptr.uhword++);
} /* end for */
A _value[iteration&(ITERATIONS-1)] = sumA>>(DIVIDE_ POWER-RECORD_SKIP_POWER);
B_value[iteration&(ITERATIONS-1)] = sumB>>(DIVIDE_ POWER-RECORD_SKIP POWER);
ret = ++iteration > (ITERATIONS-1)? 99:0;
/* end of application dependent code */
return (ret);
} /* end appl_process */

/***

195

appl _idle - Performs background processing
Returns: user defined termination code, 0 is no termination
Note: This routine is automatically called from main when no other
processing is required, but may not be called regularly.
***/

int appl idle(void)

/* the following code is application dependent */
loop_count++;
/* end of application dependent code */
return 0;
} /* end appl_idle */

/***

appl_end - Final processing before termination

Parameters: IN times - main program loop cycles executed
IN bufs_proc - number of buffers processed by appl_process
IN buf count - number of buffers received

IN prev_buf count - last buffer given to appl process
IN DMS err - error code from DMS
IN appl term_code - user termination code from either appl_process or appl_idle
IN FIFO ovfl - indication that the FIFOin the FPGA has overflowed
IN DMS count - number of frames remaining to be received in the block
Note: This routine is automatically called from main at program termination.
***/

void appl end(unsigned int times,

int bufs proc,
int buf count,
int prev_buf count,
int DMS err,
int appl_term code,

unsigned int FIFO_ovfl,
unsigned int DMS_count)
{
/* the following code is application dependent */
unsigned long pattern, save;
int j;
#if AED_PRINT
FILE *outfile;

#endif
debug_times = times;
debug bufs proc = bufs_proc;
debug_buf count =buf count;
debug_prev_buf count = prev_buf count;
debug DMS err =DMS err;

debug_appl term code = appl_term code;
debug FIFO ovfl =FIFO ovfl;
debug DMS count =DMS count;
#if AED_PRINT
#if 'TALK TO FPGA
printf("FPGA channel simulated\n");
#endif
printf("Interrupts received = %d\n", input_count);
R Rk R Rk R R SRR R R R SR SRRk R R SRR R RSk RS KRR R SRRk Rk Sk

/* Check for processing errors */
sk s st s sk s st s sk s ot ot sk s st st sk s s s sk e s st sk s sk ot ok s st st s sk s st sk ke s ot sk sk sk st s sk s st sk sk skoke skok sk ok ok
/ /

if (DMS _err) {

196

printf("Read drop error %d (bufct=%d, trnct=%d)\n",
DMS err, prev_buf count, (DMS_count));
}
if (appl_term_code) {
printf(" Application Termination %d\n", appl term_code);

}
if (FIFO_ovfl) {
printf("FPGA FIFO Overflowed\n");
}
printf("Test Loops = %u Bufs Processed = %d Bufs Received = %d\n",
times, bufs_proc, buf count);
#if (AED_PRINT == 2) /* file I/O */
printf("Writing outfile.txt\n");
outfile = fopen("outfile.txt", "w");
#else
outfile = stdout;
#endif
if (outfile) {
#if (AED_PRINT == 2) /* file I/O */
fprintf(outfile,"\n*** AED " AED BOARD " TEST PROGRAM DATA FILE ***\n");
#endif
fprintf(outfile, "Block Addresses:");
for (j=0; j<ITERATIONS; j++) {
char *aptr = addr[j].byte;
if (%5 == 0) fprintf(outfile, "n ");
#if (defined(CHIP_5416))
fprintf (outfile, "%06x", aptr);
#elif (defined(CHIP_5510))
fprintf (outfile, "%081x", aptr);
#else
/* C6x processors */
fprintf (outfile, "%08x", aptr);
#endif
fprintf (outfile, "(%2d)", bufs[j]);
} /* end for */
fprintf (outfile, "\n");
fprintf (outfile,
"A= %04x %04x %04x %04x %04x %04x %04x %04x %04x %04x\n",
A value[0], A _value[l], A _value[2], A _value[3], A_value[4],
A value[5], A _value[6], A _value[7], A _value[8], A_value[9]);
fprintf (outfile,
"B=%04x %04x %04x %04x %04x %04x %04x %604x %04x %604x\n",
B_value[0], B_value[1], B_value[2], B_value[3], B_value[4],
B_value[5], B_value[6], B_value[7], B_value[8], B_value[9]);
for (j=0; j<SAVE_RECORDS*SAMPLES PER WORD*RECLEN; j+=16) {
fprintf (outfile, "[%3d] %03x %03x %03x %03x %03x %03x %03x %03x %03x %03x %03x %03x %03x
%03x %03x %03x\n",
.]5
save data.uhword[j],
save data.uhword[j+1],
save data.uhword[j+2],
save data.uhword[j+3],
save data.uhword[j+4],
save data.uhword[j+5],
save data.uhword[j+6],
save data.uhword[j+7],

197

save data.uhword[j+8],
save data.uhword[j+9],
save data.uhword[j+10],
save data.uhword[j+11],
save data.uhword[j+12],
save data.uhword[j+13],
save data.uhword[j+14],
save_data.uhword[j+15]);

}/* end for */

#if (AED_PRINT == 2) /* file I/O */
fprintf(outfile,"*** Data file complete ***\n");
fclose(outfile);
printf("Data file write complete\n");

#endif

} else {
printf("Failure to open outfile.txt\n");
} /* end if */
#endif
#if AED_PRINT
printf("Checking Digital Outputs\n");
#endif
#ifdef CHIP_5416
DSK5416 DM_CNTL = 0xc8; /* control page */
DSK5416_MISC = 0x00; /* 16 bit data */
delay usec(1);

#endif
#define DIG_ O MASK 0Oxaa
pattern = 1;

for (j=0; j<15; j++) {
fpga io reg &= ~pattern;
pattern <<=1;
fpga io reg |= pattern;
(cntl_base addr+LSB_DIO REG) = fpga io_reg; / LSB */
delay msec(1);
save = (*(cntl_base_addr+LSB_DIO REG))<<I;
if ((save&DIG_O_MASK) != (pattern&DIG_O MASK)) {
if (j)
printf(" Digital I/O Mismatch In= %011x Out= %011x\n",
save, pattern);
else {
printf("Digital inputs not all connected. In= %011x\n",
save);
/* break; */
} /* end else */
} /* end if ¥/
delay msec(250);
} /* end for */
#ifdef CHIP_5416
DSK5416 DM _CNTL = 0xd0; /* data address default */
delay usec(1);
#endif
#if AED_PRINT
printf("OK\n");
#endif
if (DMS err) {
error_flashing(AED_FLASH MAIN _DMS ERROR);

198

} else if (FIFO_ovfl) {
error_flashing(AED FLASH MAIN FPGA OVERFLOW);
} else {
unsigned int DAC value = 0;
printf("Running test wave on DAC\n");
for (j=0; j<511; j++) {
/* fill whole FIFO */
write 32b reg(data base addr,
((DAC _value)&0x3FFF) | (((unsigned long)~(DAC value++))<<16));

}
#ifdef CHIP_5416
TIMER_INIT(0,0,0x{fff);
TIMER_START(0);
FPGA_start();
for (;;) {
while (~TIMER_READ(0) <
(DAC value-256)*(DAC_CLK CNT+1)*2);
/* DSP timer counts at CPU, FPGA counts at CPU/2
because the EMIF runs at CPU/2 */
#else
TIMER_INIT(1,0,0xffffffff,0);
TIMER_START(1);
FPGA_start();
for (;;) {
while (TIMER_READ(1) < DAC_value-256);
#endif
j = 256;
while (j--) {
/* fill half of the FIFO */
write 32b reg(data base addr,
((DAC _value)&0x3FFF) | (((unsigned long)~(DAC value++))<<16));
} /* end for */
} /* forever */
H
/* end of application dependent code */
} /* end appl_end */
/***
appl_test - Fills separate test block to simulate data from FPGA
Parameters: OUT fill - pointer to beginning of test block
IN frame bytes - number of bytes in each frame
IN frames - number of frames in block
Note: This routine is autmatically called from main to initialize the test buffer with data.
***/
#if('TALK _TO_FPGA)
#define SAMPLE RATE KHZ 10000L /* Sample rate for timer setup */
unsigned long appl_test(ApplBlockType fill, int frame elements, int frames)

/* the following code is application dependent */
int1,j;
int samples_per element = (byte size(ELEMENTSIZE CODE)/sizeof(short));
int frame samples = frame_elements*samples per element;
/* period is in 0.5 microseconds units */
/* for a time between frames (frame sync)
period = (frame_elements/SAMPLE RATE)/(0.5¢-6 us) */
unsigned long period = (2000L*(long)frame elements)/SAMPLE RATE KHZ;
/* fill can be changed to accomodate testing */

199

for (i=0; i<frames; i++) {
for (j=0; j<frame samples; j++) {
fill.uhword[i*frame samples+j]
= ((i+1)*0x1000)+(j+1);
} /* end for */
} /* end for */
/* end of application dependent code */
return period;
} /* end appl_test */
#endif

200

F.6 NONLinearInterval delay quicker.c

#include <stdlib.h>
#include "dsk5416.h"
#include <emif.h>
#include "AED.h"
#include "TAED DMS.h"
#include "AED _AppLh"
#if AED_PRINT
#include <stdio.h> /* Must be placed after AED.h */
#endif
#include <math.h>
#define AED_BOARD "109 Dift"
#define DMS_MODE DMA_FS MODE
#define DIVIDE POWER (8) /¥ NO_RECORDS =2"DIVIDE POWER */
#define NO_RECORDS (1<<DIVIDE POWER) /* records/frame */
#define NO_FRAMES 3 /* frames/block */
#define RECLEN 1 /* length of record in words */
#define ELEMENTSIZE CODE DMA ESIZE32
#define SAMPLES PER_ WORD 2
#define DAC CLK CNT 40959 /* divide 80MHz by 40960 */
/* FPGA register address definitions */
#define LSB_DIO_REG (0x0000/sizeof(unsigned short))
#define MSB_DIO_REG (0x0001/sizeof(unsigned short))
#define STATUS _REG (0x0000/sizeof(unsigned short)) /* read only */
#define START REG (0x0001/sizeof(unsigned short))
#define PERIOD REG (0x0002/sizeof(unsigned short))
#define INTR _CD_REG (0x0003/sizeof(unsigned short)) /* read only */
#define ADC_CLK_REG (0x0004/sizeof(unsigned short))
#define ADC_CPW_REG (0x0008/sizeof(unsigned short))
#define ADC_CRO_REG (0x0009/sizeof(unsigned short))
#define ADC_CR1_REG (0x000a/sizeof(unsigned short))
#define ADC_CD_REG (0x0005/sizeof(unsigned short)) /* read only */
#define DAC_CLK_REG (0x0006/sizeof(unsigned short))
#define DAC_CD_REG (0x0007/sizeof(unsigned short)) /* read only */
/* Globals for diagnostics of termination */
unsigned int debug_times;//unsigned int debug_times; //matt
unsigned int debug_bufs proc;//int debug_bufs proc; //matt
unsigned int debug_buf count;//int debug_buf count; //matt
unsigned int debug_prev_buf count;//int debug prev_buf count; //matt
int debug DMS _err;
int debug_appl term code;
unsigned int debug FIFO ovfl;
unsigned int debug DMS count;
#if(ITALK TO_FPGA)
unsigned long test datal]NO _RECORDS*NO_FRAMES*RECLENT];
#endif
unsigned long fpga io reg = 0x70000001;
unsigned short * cntl base addr;
unsigned long * data_base addr;
Dma_channel fpga chan;
int input_count;
static int loop_count;
static unsigned long A_value;
static unsigned long output;

201

static float outputsave[310];
static float u3save[310];
static float y3save[310];
static float KeyHolesave[310];
static float Msec[310];
static float delaysave[310];
static float A1[2];
static float A2[2];
static float A3[2];
static float Aone;
static float Atwo;
static float Athree;
static float y[7];
static float ymeasured,
static float u[5];
static float du[7];
static float y0;
static float KeyHolePotential;
static float BaseTime;
static float x1;
static float x0;
static float x2;
static float Time;
static float BaseCurrent;
static float ylargest;
static float counter;
static float meltdown;
static float TimeMeltdown;
static float StartCurrent;
static float MaxCurrent;
static float delay;
static int count;
static float skip;
static int start;
static int mask;
static float openloopthree;
static int maskdelay;
void appl parms(unsigned int *frames,
unsigned int *records,
unsigned int *reclen,
unsigned int *esize,
unsigned int *mode)
{
unsigned long * io_addr = get_cntl_addr();
cntl _base addr = (unsigned short *)
((unsigned short)get cntl addr() | 0x8000);
data base addr = get data addr();
#define ADC_MIN_CPW 5 /* 5 times the EMIF CLK period */
puts("Begin Processing\n");
brd led enable(ERR LED);
#if(ITALK TO_FPGA)
appl test data.uword = (UWordType *)test data;
#endif
DSK5416 DM CNTL = 0xc8; /* control page */
delay usec(1);
*frames = NO_FRAMES;

202

*records = NO_RECORDS;
*reclen = RECLEN;
*esize = ELEMENTSIZE CODE,;
*mode = DMS MODE;
(cntl_base_addr+LSB_DIO_REG) = fpga_io_reg; / LSB */
(cntl_base_addr+MSB_DIO_REG) = fpga_io_reg>>16; / MSB */
delay usec(1);
DSK5416 DM CNTL = 0xc9; /* register page */
delay usec(1);
*(cntl_base addr+START REQG) = 256;
delay usec(1);
*(cntl_base_addr+PERIOD REG)=NO_RECORDS*RECLEN;
/* number of words per frame */

delay usec(1);
/* ADC and DAC clock rate = EMIF CLOCK / (CLK_REG + 1)*/
(cntl_base addr+ADC CLK REG) = 159; / EMIF CLK /160 */
delay usec(1);
*(cntl_base addr+ADC _CPW_REG) = ADC MIN_CPW;
delay usec(1);
(cntl_base addr+ADC_CRO REG) = 0x8020; / 2 differential channels */
delay usec(1);
*(cntl_base _addr+ADC_CR1_REG) = 0x84C0;
delay usec(1);
*(cntl_base _addr+DAC _CLK REG)=DAC CLK CNT;
delay usec(1);
DSK5416 DM _CNTL = 0xd0; /* data address default */
#if AED_PRINT

printf("\n*** AED " AED_BOARD " TEST PROGRAM STARTED ***\n");
#endif

H
void appl_init(AppIBlockType data_block, unsigned int block bytes, Dma channel dma_chan)

{

int e,g,w,x,y,Z;

unsigned short *ptr;

//2.4 mm nozzle, .362 Volts for Servo equates to travel speed of 2.534 mm/sec,
//max 135 Amp, min 30 Amp, Argon Plasma Jet pressure of 4 CFH bottom of ball,
/Istart 135 Amp, 5 mm nozzle height, 3 mm Work Piece,

//304 stainless steel, Argon Shield Jet pressure of 35 CFH middle of ball,

//Argon Backing Jet pressure of 35 CFH middle of ball

for (g=0;g<7;g++)

du[g]=0;
for (e=0;e<5;e++)

u[e]=135;//135 Amps initial output

}
ymeasured=0;
A1[0]=-6.94168976627553;
Al[1]=-10.1609654622258;
A2[0]=-0.000418976974092593;
A2[1]=-0.00424252156547636;
A3[0]=0.000588460632832352;
A3[1]=-0.00211824837968971;
y0=325;//325 ms
BaseTime=400;//400 ms

203

BaseCurrent=30;//30 Amp
StartCurrent=135;//135 Amp
MaxCurrent=135;//135 Amp
mask=0;
maskdelay=0;
counter=0;
count=0;
skip=0;
start=0;
openloopthree=0;
meltdown=0;
TimeMeltdown=0;
A value =0;
KeyHolePotential = 0;
for (z=0;z<310;z++)
{
outputsave[z]=0;
u3save[z]=0;
y3save[z]=0;
delaysave[z]=0;
KeyHolesave[z]=0;
H
fpga chan =dma chan;
ptr = data_block.uhword,
for (w=0; w<NO_FRAMES; w++)
{
for (x=0; x<NO_RECORDS; x++)
{
for (y=0; y<RECLEN*SAMPLES PER_ WORD; y++)
{
*(ptr++) = 0;
}
H

H
write 32b reg(data base addr,7991);

loop _count = 0;
input_count = 0;
#if AED PRINT
printf("Begin application processing (Block size = %d bytes)\n",block bytes);
#endif
brd led disable(ERR LED);
}/* end appl_init */
int appl process(ApplBlockType data buffer,int buf number)

int ret;

int 1,j,g,n,w,m,t,r;

unsigned long sumA = 0;

ApplBlockType ptr;

brd led enable(APPL LED);

/* compute the buffer mean */

ptr = data_buffer;
//NO_RECORDS=ADsamplingRate/DAsamplingRate=500k/1.953125k=256
//Requires that the same signal be provided to both input

//ports. For bias correction, remove 0.654386 from KeyHolePotential
//Equation. By multiplying NO_RECORDS by four, we have assumed
//a fictitious 14 bit Resolution for the ADC. The actual

204

//quantization for the ADC is 12 bit. This fictitious 14 bit
//lassumption does not produce an error. The KeyHole quantization
//(i.e. DAC) is actually 12 bit also, but the write32b function
//requires that it be handled in 14 bit fictitious manner.

//The Control Signal 14 Bit quantization will have to change
//by four intervals to produce an interval change at 12 Bit.

//No errors are induced by this data handling method. True

//12 Bit realization can be utilized for the ADC, but not for

//the DAC. If 12 bit quantization is desired for the ADC,

/lyou should not multiply NO_RECORDS by four and adjust the
//input ratio appropriately; This data handling methodogy is
/ot ideal, but is dictated by Signalware's firmware which

//is loaded on the FPGA chip.

for (j=0; j<(NO_RECORDS*4); j++)

sumA += (unsigned long)*(ptr.uhword++);
}/* end for */
A value = sumA >> DIVIDE POWER;
KeyHolePotential = (((A_value*.000124177)-1)*10)-.654386;
counter=counter+1;
if ((((mask == 0) && (KeyHolePotential >=.5)) && (start == 1)) && (maskdelay == 0))
{
x1=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
output=7520;//Corresponds to BaseCurrent of 30 Amps
write 32b reg(data base addr,output);
Time=x1;
maskdelay=1;
//Don't need a skip because of mask
outputsave[count]=BaseCurrent;
y3save[count]=ymeasured;
u3save[count]=u3save[count-1];
KeyHolesave[count]=KeyHolePotential;
delaysave[count]=delaysave[count-1];
Msec[count]=Time;
count=count+1;

§
else if ((((mask == 0) && (KeyHolePotential <.5)) && (start == 1)) && (maskdelay == 1))

{

x2=counter*.512;

write 32b reg(data base addr,output);
Time=x2;

mask=1;

maskdelay=0;

ylargest=0;
openloopthree=openloopthree+1;
ymeasured=x2-x0;

delay=x2-x1;

y[3]=ymeasured;
x0=x2+BaseTime;

if (openloopthree > 0)

{
du[3]=0;
for (W=0;w<2;w++)//Al

{
for (n=0;n<2;n++)//A3
{

205

for (g=0;g<2;g++)//A2
{
for (1i=3;1<6;i++)//y
{
yli+t1]=y[il+Al[w]*dul[i]+((-A2[gD)*(((-u[i-1]D)*y[iD-((-uli-2]) *y[i- 1)) +((-A3 [n]) *(((-u[i-2]) *y[i-1])~((-ui-
3D*yli-2D));
i
if (y[6] > ylargest)
{

ylargest=y[6];
Aone=Al[w];
Atwo=A2[g];
Athree=A3[n];
}
}/g
i
Hiw
if (ylargest>y0) //y[3]
{

do{
du[3]=du[3]+1;
u[3]=u[3]+1;
u[4]=u[3];
for (t=3;t<6;t++)
{
y[t+1]=y[t]+Aone*du[t]+H((-Atwo) *(((-u[t-1])*y[t])-((-u[t-2]) *y[t-1])))+((-Athree)*(((-u[t-2]) *y[t-1])~((-u[t-
3])*y[t-}2])));
}while(y[6]>y0);
du[3]=du[3]-1;
u[3]=u[3]-1;
u[4]=u[3];
L/>y0
else if (ylargest<y0)
{
do{
du[3]=du[3]-1;
u[3]=u[3]-1;
u[4]=u[3];
for (r=3;r<6;r++)
{
y[r+1]=y[r]+Aone*du[r][+((-Atwo)*(((-u[r-1]) *y[r])-((-u[r-2])*y[r-1])))+((-Athree) *(((-u[r-2]) *y[r-1])-((-u[r-
3])*y[r-}2])));

}while(y[6]<y0);
du[3]=du[3]+1;
u[3]=u[3]+1;
u[4]=u[3];

HI<y0
else

{
du[3]=du[3];
u[3]=u[3];
uf[4]=u[3];
Hi=y0

}//end openloop

206

for (m=0;m<3;m++)//save y measurements and u/du predictions backwards
{
y[m]=y[m+1];
u[m]=u[m+1];
}
if (u[3] > MaxCurrent)

u[2]=MaxCurrent;
u[3]=MaxCurrent;
u[4]=MaxCurrent;

if (u[3] < BaseCurrent)
{
u[2]=BaseCurrent;
u[3]=BaseCurrent;
u[4]=BaseCurrent;

//Don't need a skip because of mask
outputsave[count]=BaseCurrent;
y3save[count]=ymeasured;

if (openloopthree > 0)

{

u3save[count]=u[3];

}
KeyHolesave[count]=KeyHolePotential;
delaysave[count]=delay;
Msec[count]=Time;
count=count+1;

}//end < keyhole loop
else if (start == 0) //Only saves at beggining of program.
{

x0=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
Time=x0;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
output=5869;//135//6419;//100//6104;//120//6262;//110 Amps Start Current
write 32b reg(data base addr,output);

start=1;

outputsave[count]=StartCurrent;

y3save[count]=0;

u3save[count]=StartCurrent;

KeyHolesave[count]=KeyHolePotential;

delaysave[count]=0;

Msec[count]=Time;

count=count+1;

i
else if (((mask == 1) && (Time > x0)) && (start ==1))

{

output=(((u[3]*(-.00196679597881))+1)*7991);//calibrated at 120 Amp
//within .5 Amps between 30 - 135 Amps
//slightly non-linear due to Amplifier
//7991 is calculated by setting u[3] to
//zero and measuring output voltage, then
//by knowing the interval at 120 Amp by
/lexperimentation the ratio may be calculated

write 32b reg(data base addr,output);

mask=0;

outputsave[count]=u[3];//next k output

207

y3save[count]=ymeasured;//last measured output
if (openloopthree > 0)

{

u3save[count]=u[3];//next k output

}

else
{
u3save[count]=StartCurrent;//Initial Output
§
KeyHolesave[count]=KeyHolePotential;
delaysave[count]=delaysave[count-1];
Msec[count]=Time;
count=count+1;
H
Time=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
if (((u[3] == MaxCurrent) && (openloopthree > 0)) && (maskdelay == 1))
{
meltdown=meltdown+1;
TimeMeltdown=meltdown*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
if (TimeMeltdown == 2000) //Shutsdown system if output at maximum
/Nevel for 2 seconds.
{

write 32b_reg(data_base addr,7991);
outputsave[count]=0;
y3save[count]=ymeasured;
u3save[count]=u[3];
KeyHolesave[count]=KeyHolePotential;
delaysave[count]=delaysave[count-1];
Msec[count]=Time;
count=count+1;
}
}
else
{
meltdown=0;
TimeMeltdown=0;
}
ret=0;
skip=skip+1;
if ((skip == 2000) && (maskdelay == 0)) //This iteration only useful if
//KeyHolePotential observation every 1024 ms
//is wanted. If not wanted, can remove
//skip iteration algorythm.

{

skip=0;

if (count > 0)
{
outputsave[count]=outputsave[count-1];
y3save[count]=ymeasured;
if (openloopthree > 0)

u3save[count]=u[3];//next k output
}

else

u3save[count]=StartCurrent;

208

b

KeyHolesave[count]=KeyHolePotential;
delaysave[count]=delaysave[count-1];
Msec[count]=Time;
count=count+1;
}

}

if (count > 308) //Sets Output to Zero for Next Program Run

{
write_32b_reg(data_base addr,7991);
outputsave[count-1]=0;

if (count > 309) //Returns 1 to terminate process function
{
ret=1;
outputsave[count-1]=0;
H
return (ret);
} /* end appl_process */
int appl idle(void)
{
loop_count++;
return 0;
} /* end appl_idle */
void appl end(unsigned int times,
unsigned int bufs_proc,
unsigned int buf count,
unsigned int prev_buf count,
int DMS err,
int appl_term code,
unsigned int FIFO_ovfl,
unsigned int DMS_count)
{
int p;
#if AED_PRINT
FILE *outfile;

#endif

debug_times = times;

debug bufs proc = bufs_proc;
debug_buf count =buf count;
debug_prev_buf count = prev_buf count;
debug DMS_err =DMS err;

debug_appl term_code = appl_term_code;
debug FIFO ovfl =FIFO ovfl,
debug DMS count =DMS count;
#if AED_PRINT
#if ITALK TO FPGA
printf("FPGA channel simulated\n");
#endif
printf("Interrupts received = %d\n", input_count);
if (DMS_err)

{
printf("Read drop error %d (bufct=%d, trnct=%d)\n",
DMS err, prev_buf count, (DMS count));

if (appl_term_code)

209

{

printf(" Application Termination %d\n", appl_term code);
§
if (FIFO_ovfl)
{
printf("FPGA FIFO Overflowed\n");

}

printf("Test Loops = %u Bufs Processed = %u Bufs Received = %u\n",

times, bufs_proc, buf count);
// Should be set in AED.h
/I 2=File
/I 1=Print (Default)
// 0 =No print
#if (AED_PRINT == 2) /* file I/O */
printf("Writing outfile.txt\n");
outfile = fopen("outfile.txt", "w");
#else
outfile = stdout;
#endif
if (outfile)

{
#if (AED_PRINT == 2) /* file I/O */

fprintf(outfile,"\n*** AED " AED BOARD " Non-Linear Control Algorythm System Data ***\n");

#endif

fprintf (outfile," control ufk] y[k] KeyHole Delay Time\n");

y3save[0]=0;
KeyHolesave[0]=0;

Msec[0]=0;
for (p=1;p<310;p++)
{
fprintf (outfile,"%016f %016f

%016f %016f %016f

%016f\n" ,outputsave[p],u3save[p],y3save[p],KeyHolesave[p],delaysave[p],Msec[p]);

H

#if (AED_PRINT == 2) /* file I/O */
fprintf(outfile,"*** Data file complete ***\n");
fclose(outfile);
printf("Data file write complete\n");

#endif

}

else

{

printf("Failure to open outfile.txt\n");
}/* end if */

#endif

if (DMS _err)

error_flashing(AED_FLASH MAIN _DMS ERROR);

i
else if (FIFO_ovfl)

{
error_flashing(AED_FLASH _MAIN_FPGA_OVERFLOW);

}
} /* end appl_end */

210

F.7 NONLinearIntervalParameterEstimate.c

#include <stdlib.h>

#include "dsk5416.h"

#include <emif.h>

#include "AED.h"

#include "AED_DMS.h"

#include "AED_Appl.h"

#if AED PRINT

#include <stdio.h> /* Must be placed after AED.h */

#endif

#include <math.h>

#define AED_BOARD "109 Diff"

#define DMS_MODE DMA FS MODE

#define DIVIDE_ POWER (8) /*NO_RECORDS =2"DIVIDE POWER */
#define NO_RECORDS (1<<DIVIDE POWER) /* records/frame */
#define NO_FRAMES 3 /* frames/block */

#define RECLEN 1 /* length of record in words */

#define ELEMENTSIZE CODE DMA ESIZE32
#define SAMPLES PER_ WORD 2
#define DAC CLK CNT 40959 /* divide 80MHz by 40960 */
/* FPGA register address definitions */
#define LSB_DIO_REG (0x0000/sizeof(unsigned short))
#define MSB_DIO_REG (0x0001/sizeof(unsigned short))
#define STATUS _REG (0x0000/sizeof(unsigned short)) /* read only */
#define START REG (0x0001/sizeof(unsigned short))
#define PERIOD REG (0x0002/sizeof(unsigned short))
#define INTR _CD_REG (0x0003/sizeof(unsigned short)) /* read only */
#define ADC_CLK_REG (0x0004/sizeof(unsigned short))
#define ADC_CPW_REG (0x0008/sizeof(unsigned short))
#define ADC_CRO_REG (0x0009/sizeof(unsigned short))
#define ADC_CR1_REG (0x000a/sizeof(unsigned short))
#define ADC_CD_REG (0x0005/sizeof(unsigned short)) /* read only */
#define DAC_CLK_REG (0x0006/sizeof(unsigned short))
#define DAC_CD_REG (0x0007/sizeof(unsigned short)) /* read only */
/* Globals for diagnostics of termination */
unsigned int debug_times;
unsigned int debug_bufs proc;
unsigned int debug_buf count;
unsigned int debug_prev_buf count;
int debug DMS _err;
int debug_appl term code;
unsigned int debug FIFO ovfl;
unsigned int debug DMS count;
#if(ITALK TO_FPGA)
unsigned long test datal]NO _RECORDS*NO_FRAMES*RECLENT];
#endif
unsigned long fpga io reg = 0x70000001;
unsigned short * cntl base addr;
unsigned long * data_base addr;
Dma_channel fpga chan;
int input_count;
static int loop_count;
static unsigned long A_value;
static unsigned long output;

211

static float outputsave[125];
static float y3save[125];
static float KeyHolesave[125];
static float Msec[125];
static float ymeasured;
static float KeyHolePotential;
static float x1;
static float x0;
static float Time;
static float counter;
static float random_currentinput[125];
static float random_input[125];
static int count;
static int skip;
static int start;
static int mask;
void appl parms(unsigned int *frames,
unsigned int *records,
unsigned int *reclen,
unsigned int *esize,
unsigned int *mode)
{
unsigned long * io_addr = get_cntl_addr();
cntl_base addr = (unsigned short *)
((unsigned short)get cntl addr() | 0x8000);
data_base addr = get data_addr();
#define ADC_MIN_CPW 5 /* 5 times the EMIF CLK period */
puts("Begin Processing\n");
brd led enable(ERR LED);
#if(l'TALK_TO_FPGA)
appl test data.uword = (UWordType *)test data;
#endif
DSK5416 DM_CNTL = 0xc8; /* control page */
delay usec(1);
*frames = NO_FRAMES;
*records = NO_RECORDS;
*reclen = RECLEN;
*esize = ELEMENTSIZE CODE;
*mode = DMS MODE;
(cntl_base_addr+LSB_DIO_REG) = fpga _io_reg; / LSB */
(cntl_base addr+MSB_DIO REG) = fpga io_reg>>16; / MSB */
delay usec(1);
DSK5416 DM CNTL = 0xc9; /* register page */
delay usec(1);
*(cntl_base addr+START REG) = 256;
delay usec(1);
*(cntl_base_addr+PERIOD REG)=NO RECORDS*RECLEN;
/* number of words per frame */
delay usec(1);
/* ADC and DAC clock rate = EMIF CLOCK / (CLK_REG + 1)*/
(cntl_base_addrtADC_CLK REG) = 159; / EMIF_CLK / 160 */
delay usec(1);
*(cntl_base addr+ADC _CPW_REG) = ADC MIN_CPW;
delay usec(1);
(cntl_base addr+ADC_CRO REG) = 0x8020; / 2 differential channels */
delay usec(1);

212

*(cntl_base _addr+ADC _CR1_REG) = 0x84C0;
delay usec(1);
*(cntl_base _addr+DAC _CLK REG)=DAC CLK CNT;
delay usec(1);
DSK5416 DM CNTL = 0xd0; /* data address default */
#if AED PRINT
printf("\n*** AED " AED BOARD " TEST PROGRAM STARTED ***\n");
#endif

b
void appl_init(ApplBlockType data_block,
unsigned int block bytes,
Dma channel dma chan)
{
int w,x,y,z,8,t,p;
FILE *infile;
unsigned short *ptr;
//2.4 mm nozzle, .362 Volts for Servo equates to travel speed of 2.534 mm/sec,
//max 115 Amp, min 85 Amp, Argon Plasma Jet pressure of of 4 CFH bottom of ball,
//5 mm nozzle height, 3 mm Work Piece,
//304 stainless steel, Argon Shield Jet pressure of 35 CFH middle of ball,
//Argon Backing Jet pressure of 35 CFH middle of ball
infile=fopen("infile.txt","r");
for (s=0;s<125;s++)

{
fscanf(infile,"%f\n",&random_currentinput[s]);
}
fclose(infile);
for (t=0;t<125;t++) //Limit input to maximum value
{
if (random_currentinput[t] > 135)
{
random_currentinput[t]=135;
}
}
/I printf("%f\n",random_currentinput[0]);
fclose(infile);
for (p=0;p<125;p++)
{

random_input[p]=random_currentinput[p];

/I printf("%f\n",random_input[0]);
ymeasured=0;
mask=0;
counter=0;
count=0;
skip=0;
start=0;

A value =0;
KeyHolePotential = 0;
for (z=0;2<200;z++)
{
outputsave[z]=0;
y3save[z]=0;
KeyHolesave[z]=0;
Msec[z]=0;
H

213

fpga chan =dma chan;
ptr = data_block.uhword;
for (w=0; w<NO_FRAMES; w++)
{
for (x=0; x<NO_RECORDS; x++)
{
for (y=0; y<RECLEN*SAMPLES PER WORD; y++)

{

*(ptr++) = 0;

}

H
write_32b_reg(data_base addr,7991);
loop_count = 0;
input_count = 0;
#if AED PRINT
printf("Begin application processing (Block size = %d bytes)\n",block bytes);
#endif
brd led disable(ERR _LED);
}/* end appl_init */
int appl process(ApplBlockType data buffer,int buf number)

int ret;
int j;
unsigned long sumA = 0;
ApplBlockType ptr;
brd led enable(APPL LED);
/* compute the buffer mean */
ptr = data_buffer;
for (j=0; j<1024; j++)
{
sumA += (unsigned long)*(ptr.uhword++);
}/* end for */
A value = sumA >> DIVIDE POWER;
KeyHolePotential = (((A_value*.000124177)-1)*10)-.654386;
counter=counter+1;
if (count >= 116)

{
count=count+1;
I
if (mask==10)
{

if (KeyHolePotential >= .5) && (start == 1))

x0=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
output=7520;//Corresponds to BaseCurrent of 30 Amps

write 32b_reg(data base addr,output);

Time=x0;

mask=1;

ymeasured=x0-x1;

x1=x0+200;//BaseTime;

//Don't need a skip because of mask
outputsave[count]=random_input[count];
y3save[count]=ymeasured;
KeyHolesave[count]=KeyHolePotential;
Msec[count]=Time;

214

count=count+1;

}//end keyhole loop
}
if (start == 0) //Only saves at beggining of program.
{

x1=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
Time=x1;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
output=(((random_input[count]*(-.00196679597881))+1)*7991);//calibrated at 120 Amp
//within .5 Amps between 30 - 135 Amps
//slightly non-linear due to Amplifier
//7991 is calculated by setting u[3] to
//zero and measuring output voltage, then
/by knowing the interval at 120 Amp by
/lexperimentation the ratio may be calculated
write_32b_reg(data_base addr,output);
start=1;
H
Time=counter*.512;//Note: The DA rate is .512 ms/cycle or 1.953125 kHz
if (mask == 1)

if (Time > x1) //Only saves once until mask reset.
{
output=(((random_input[count]*(-.00196679597881))+1)*7991);//calibrated at 120.065 Amp
//within .2 Amps between 30 - 135 Amps
//slightly non-linear due to Amplifier
write 32b_reg(data base addr,output);
mask=0;
}
H
ret =0;
skip=skip+1;
/11*
if (skip == 19)//This iteration only useful to
//initialize output to zero.
//Once initialized, comment out.
{
skip=0;
count=count+1;
b
1%/
if (count > 115) //Returns 1 to terminate process function
{
write_32b_reg(data_base addr,7991);
outputsave[count-1]=0;

if (count >= 125) //Returns 1 to terminate process function
{
ret=1;
write 32b reg(data_base addr,7991);
outputsave[count-1]=0;
§
return (ret);
} /* end appl_process */
int appl_idle(void)
{

loop_count++;

215

return 0;

}

/* end appl_idle */

void appl_end(unsigned int times,

{

unsigned int bufs_proc,
unsigned int buf count,
unsigned int prev_buf count,
int DMS err,

int appl_term_code,
unsigned int FIFO_ovfl,
unsigned int DMS_count)

int p;
#if AED_PRINT

FILE *outfile;

#endif

debug_times = times;

debug bufs proc = bufs_proc;
debug_buf count =buf count;
debug_prev_buf count = prev_buf count;
debug DMS_err =DMS err;

debug_appl term_code = appl_term_code;
debug FIFO ovfl =FIFO ovfl;
debug DMS count =DMS count;
#if AED_PRINT

#if ITALK TO FPGA
printf("FPGA channel simulated\n");
#endif
printf("Interrupts received = %d\n", input_count);
if (DMS_err)
{
printf("Read drop error %d (bufct=%d, trnct=%d)\n",
DMS _err, prev_buf count, (DMS_count));
§
if (appl_term_code)
{
printf(" Application Termination %d\n", appl term_code);
§
if (FIFO_ovfl)
{
printf("FPGA FIFO Overflowed\n");
H
printf("Test Loops = %u Bufs Processed = %u Bufs Received = %u\n",
times, bufs_proc, buf count);
// Should be set in AED.h
/I 2=File
/I 1=Print (Default)
/[0=No print
#if (AED_PRINT == 2) /* file I/O */
printf("Writing outfile.txt\n");
outfile = fopen("outfile.txt", "w");
#else
outfile = stdout;
#endif
if (outfile)

{
#if (AED_PRINT == 2) /* file /O */

216

fprintf(outfile,"\n*** AED " AED BOARD " Non-Linear Control Algorythm System Data ***\n");
#endif
fprintf (outfile," u[k] y[k] KeyHole Time\n");
y3save[0]=0;
KeyHolesave[0]=0;
Msec[0]=0;
for (p=1;p<125;p++)

{
fprintf (outfile,"%016f %016f %016f %016f\n",outputsave[p],y3save[p],KeyHolesave[p],Msec[p]);

H

#if (AED_PRINT == 2) /* file I/O */
fprintf(outfile,"*** Data file complete ***\n");
fclose(outfile);
printf("Data file write complete\n");

#endif

}

else

printf("Failure to open outfile.txt\n");
}/* end if */
#endif
if (DMS _err)
{
error_flashing(AED_FLASH MAIN_DMS ERROR);
i
else if (FIFO_ovfl)
{
error_flashing(AED FLASH MAIN FPGA OVERFLOW);

H
} /* end appl_end */

217

Bibliography

[1] James E. Lump Jr., Electrical and Computer Engineering, University of Kentucky, EE583
Introduction, What is a Micro-Controller, and why would I take a course about one?
http://www.engr.uky.edu/~jel/course/583/583intro/index.htm, October 2002.

[2] Differences between a DSP and Micro Controller (Micro-controller). Texas Instrument’s
Inc., DSP KnowledgeBase, http://focus.ti.com/general/docs/techsupport.jsp.

[3] Lee Rosenburg, Electrical and Computer System’s Engineering, Rensselaer Polytechnic
Institute, ECSE-4790 Microprocessor Systems Motorola 68HC12 User’s Manual, Revision 1.1,
August 2000.

[4] TMS320VC5416 DSK Technical Reference. 5416 dsk techref, 506005-0001 Rev. a,
Spectrum Digital Inc., March 2002.

[5] PCM3002/PCM3003 16-/20-Bit Single-Ended Analog Input/Output STEREO AUDIO
CODECS. PDS-1414C, Burr-Brown Inc., January 2000.

[6] Documentation Package for AED-109 Multi-Channel Analog Expansion Daughterboard.
Signalware Corporation, Version 1.1, March 2003.

[7] Arc-Welding Fundamentals. The Lincoln Electric Company, Articles, 1994,
http://www lincolnelectric.com/knowledge/articles/content/arcweld.asp.

[8] General Atomics Fusion Education Slideshow. Slide 27, Plasma Defined, General
Atomics Fusion Education, http://fusioned.gat.com/images/pdf/slides01-67.pdf.

[9] Yuming Zhang, Electrical and Computer Engineering, University of Kentucky, EE/MFS
699, Joining Processes, Class Handout Notes, Spring 2003.

[10] W. Lu, W.-Y. Lin, and Y. M. Zhang. Non-Linear Interval Model Control of Quasi-
Keyhole Arc Welding Process: Automatica, 40(5): 805-813, 2004.

[11] Miller Owner’s Manual MAXTRON 450, Form: OM-2206A, Serial No. KC301174.
Miller Electric Mfg. Co., November 2002.

[12] Thermal Arc, Arc Welding Power Supplies & Accessories Catalog, Third Edition, Form
No. B4-2027. Thermal Arc Inc., July 2003.

[13] Standard Product Catalog, Dynetic Systems Highly Energized DC Servo Motors: Form
No. 75dpi.

[14] DSP Starter Kit (DSK) for the TMS320VC5416, Quick Start Installation Guide.
5416 _dsk quickstartguide, 506006-4001B, Spectrum Digital Inc., April 2002.

218

[15] CPLDs vs FPGAs, Comparing High-Capacity Programmable Logic. PIB18, Version 1,
Product Information Bulletin. ALTERA Inc., February 1995.

[16] TMS320 Cross-Platform Daughtercard Specification, Revision 1: Literature No. spra711.
Texas Instruments Inc., November 2000.

[17] TMS320VC5416 Fixed-Point Digital Signal Processor Data Manual: Literature No.
sprs095k. Texas Instruments Inc., September 2003.

[18] TMS320C54x DSP Reference Set Volume 1: CPU and Peripherals, Literature No.
sprul31g. Texas Instruments Inc., March 2001.

[19] TMS320VC5416 Fixed-Point Digital Signal Processor Data Manual: Literature No.
sprs095h. Texas Instruments Inc., December 2001.

[20] TMS320C54x DSP Reference Set Volume 2: Mnemonic Instruction Set, Literature No.
sprul72c. Texas Instruments Inc., March 2001.

[21] Code Composer Studio Getting Started Guide: Literature No. spru509c. Texas
Instruments Inc., November 2001.

[22] TMS320C54x C/C++ Language Implementation. TMS320C54x Code Generation Tools
Help, Texas Instruments Inc., May 2001.

[23] Software Development Tools Overview. TMS320C54x Code Generation Tools Help,
Texas Instruments Inc., May 2001.

[24] Code Composer Studio IDE Quick Start: Literature No. spru405a. Texas Instruments
Inc., February 2001.

[25] Code Composer Studio User’s Guide: Literature No. spru328b. Texas Instruments Inc.,
February 2000.

[26] TMS320 DSP/BIOS User’s Guide: Literature No. spru423a. Texas Instruments Inc.,
November 2001.

[27] DSP/BIOS Quick Start Reference Guide: Literature No. spru426. Texas Instruments
Inc., February 2001.

[28] THS5661A, 12-Bit, 125 MSPS, CommsDAC Digital-to-Analog Converter: Literature
No. slas247b. Texas Instruments Inc., September 2002.

[29] THS1209 12-Bit, 2 Analog Input, 8 MSPS, Simultaneous Sampling Analog-to-Digital
Converters: Literature No. sla5288b. Texas Instruments Inc., December 2002.

219

[30] THS4061, THS4062 180-MHz High-Speed Amplifiers: Literature No. slos234d. Texas
Instruments Inc., December 1998.

[31] THS3001 420-MHz High-Speed Current-Feedback Amplifier: Literature No. slos217c.
Texas Instruments Inc., July 1998.

[32] C5416 dsk. General Extension Language File for TMS320VC5416 DSK. Texas
Instruments Inc..

[33] 5416 Ink. Linker Command File for TMS320VC5416 DSK. Texas Instruments Inc.,
June 2003.

[34] dma5416. DMAS5416 Routines Header File. Texas Instruments Inc., February 2002.

[35] dsk5416. Header File for DSK5416 Board Specific /O Register Definitions for the
CPLD. Texas Instruments Inc., December 2001.

[36] emif. Header File which Defines Data Structures and Macros to Access Software Wait
State and Bank Switch Control Registers and Associated Bits/Fields, V0.00. Texas Instruments
Inc. 2000.

[37] intr5416. Header File which Defines Macros Needed to Enable/Disable Interrupts, Set
Interrupt Vectors, Allocate Space for Interrupt Vectors, and Set Interrupt Vector Pointer, V0.00.

Texas Instruments Inc., 2000.

[38] regs. Header File which Defines All Peripheral Memory Mapped Register Addresses,
V0.00. Texas Instruments Inc., 2000.

[39] regs5416. Header File Extension for regs Header File. Texas Instruments Inc., 2000.

[40] timr5416. Header File which Defines Timer Period and Control Registers with All
Related Data Structures, Macros, and Functions, V0.00. Texas Instruments Inc., 2000.

220

Vita
. Date and Place of Birth:
30 March 1968, Louisville, Kentucky
. Educational Institutions Attended and Degrees Awarded:
Georgetown College: BS Physics, BA Engineering Arts, and Math Minor 1990.
University of Kentucky: BS Civil Engineering 1992

BS Electrical Engineering 2001
. Professional Positions Held:
USDA, Soil Conservation Service: Eng. Aide, September 1991 — September 1992
Central Associated Engineers: Civil Engineer, October 1992 — December 1992
U.S. Army Corps of Engineers: Civil Engineer, December 1992 — January 2000
Intertek Testing Services: Electrical Engineer, June 2000 — January 2001
Lexmark International: Electrical Engineer, January 2001 — April 2001
Raytheon/LL3 Communications: Electrical Engineer, May 2001 — Present
. Scholastic and Professional Honors:
Professional Engineer: Kentucky Registration #19849
Land Surveyor-in-Training: Kentucky Registration #1504
Microsoft Certified Professional: Registration #1386565
. Professional Publications:
N/A

Author: Matthew Wayne Everett

Date: 29 May 2004

221

	DSP IMPLEMENTATION OF A DIGITAL NON-LINEAR INTERVAL CONTROL ALGORITHM FOR A QUASI-KEYHOLE PLASMA ARC WELDING PROCESS
	Recommended Citation

	Abstract
	Approval Page
	Rules for Use of Thesis
	Cover Page for Thesis
	Dedication
	Table of Contents
	Acknowledgements
	List of Tables
	Table 3-1, Motherboard and Daughter Card Component Height
	Table 3-2, PMST Bit Field Definition
	Table 3-3, Data Memory (DM_CNTL) Bit Definitions
	Table 3-4, USER_REG Bit Definitions
	Table 3-5, DC_REG Bit Definition
	Table 3-6, MISC Register Bit Definition
	Table 3-7 CODEC_CLK Register Bit Definition
	Table 3-8, McBSP External Interface Pins
	Table 3-9, Clock Mode Settings at Reset
	Table 3-10, Pin-Out for Optimal Power Connector, J5
	Table 3-11, Pin-Out for JTAG 14-Pin Header, J7
	Table 3-12, Pin-Out for USB JTAG Connector, J201
	Table 3-13, User LEDs
	Table 3-14, System LEDs
	Table 5-1, Expansion Memory Interface, J9
	Table 5-2, Expansion Peripheral Interface, J10
	Table 5-3, JTAG Pin-Out, J1
	Table 5-4, Digital I/O Pin-Out, J15, and FPGA Digital I/O Control Lines
	Table 5-5, AED-109 FPGA Memory-Mapped Registers
	Table 5-6, THS1209 Control Register 0 Bit Functions
	Table 5-7, THS1209 Control Register 1 Bit Functions
	Table 9-1, System Parameter Bounds

	List of Figures
	Figure 2-1, Laboratory Experimental System for Quasi-Keyhole PAW Process
	Figure 3-1, TMS320VC5416 DSK
	Figure 3-2, Daughter Card Layout
	Figure 3-3, Stacked Daughter Card Illustration
	Figure 3-4, Processor Mode Status Register
	Figure 3-5, C5416 DSK Program Memory Map for Page 0 and Data Memory Map
	Figure 3-6, TMS320VC5416 DSK Extended Program Memory Map
	Figure 3-7, TMS320VC5416 DSK I/O Memory Map
	Figure 3-8, CPLD Registers
	Figure 3-9, C5416 DSP Block Diagram
	Figure 3-10, 5416 Processor Block Diagram
	Figure 3-11, 144-Pin PGE LQFP
	Figure 3-12, TMS320 Part Number Specification
	Figure 3-13, TMS320 Platforms
	Figure 3-14, HPI Memory Map
	Figure 3-15, DMA Memory Map for Program Space
	Figure 3-16, DMA Memory Map for Data and I/O Space
	Figure 3-17, DSK Reference Designator Board Layout
	Figure 4-1, CCS Software Development Flow
	Figure 4-2, CCS IDE
	Figure 4-3, Project Tree and Line Editor Display
	Figure 5-1, Signalware AED-109 Top Surface
	Figure 5-2, AED-109 Basic Block Diagram
	Figure 5-3, AED-109 Custom AI Front End
	Figure 5-4, AED-109 Custom AO
	Figure 5-5, XCV50E-PQ240AFS0145 FPGA Pin-Out
	Figure 5-6, Data Space Addressing
	Figure 5-7, Digital I/O Register
	Figure 5-8, Digital I/O Control Register
	Figure 5-9, D/A Data Register
	Figure 5-10, D/A Clock Rate Register
	Figure 5-11, D/A Clock Down Counter Register
	Figure 5-12, A/D Data Register
	Figure 5-13, A/D Clock Rate Register
	Figure 5-14, A/D Clock Down Counter Register
	Figure 5-15, A/D Clock Pulse Width Register
	Figure 5-16, A/D Control CR0 Register
	Figure 5-17, A/D Control CR1 Register
	Figure 5-18, Interrupt Down Counter Register
	Figure 5-19, Interrupt Start Register
	Figure 5-20, Interrupt Period Register
	Figure 5-21, Status Register
	Figure 9-1, Test Run 1
	Figure 9-2, Test Run 2
	Figure 9-3, Test Run 3
	Figure 9-4, Test Run 4
	Figure 9-5, Topside All Four Test Runs
	Figure 9-6, Bottom Side All Four Test Runs
	Figure 10-1, Control Signal, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-2, Peak Current Time, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-3, Keyhole Potential, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-4, Delay, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-5, Topside Work Piece, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-6, Bottom Side Work Piece, Peak Time ref = 325 ms, Base Time = 400 ms, Start Peak Current = 135 A
	Figure 10-7, Control Signal, Peak Time ref = 125 ms, Base Time = 200 ms, Start Peak Current = 110 A
	Figure 10-8, Peak Current Time, Peak Time ref = 125 ms, Base Time = 200 ms, Start Peak Current = 110 A
	Figure 10-9, Keyhole Potential, Peak Time ref = 125 ms, Base Time = 200 ms, Start Peak Current = 110 A
	Figure 10-10, Topside Work Piece, Peak Time ref = 125 ms, Base Time = 200 ms, Start Peak Current = 110 A
	Figure 10-11, Bottom Side Work Piece, Peak Time ref = 125 ms, Base Time = 200 ms, Start Peak Current = 110 A

	List of Files
	Chapter One
	1.1 Objective
	1.2 Micro-Processor
	1.3 Micro-Controller
	1.4 Digital Signal Processor
	1.5 Daughter Card

	Chapter Two
	2.1 Arc Welding
	2.2 Plasma Arc Welding Process and Laboratory Experimental System

	Chapter Three
	3.1 TMS320VC5416 DSP Development Starter Kit (DSK)
	3.1.1 DSK Architecture
	3.1.1.1 Emulation
	3.1.1.2 Hardware Expansion
	3.1.1.3 Memory
	3.1.1.3.1 Processor Mode Status Register
	3.1.1.3.2 Program Memory Map for Page 0 and Data Memory Map
	3.1.1.3.3 Extended Program Memory Map
	3.1.1.3.4 I/O Memory Map
	3.1.1.3.5 Data Memory Page Map
	3.1.1.3.6 Program Memory Page Map
	3.1.1.3.7 Memory Resources
	3.1.1.3.8 Wait State Generator

	3.1.1.4 CPLD Registers
	3.1.1.4.1 USER_REG Register
	3.1.1.4.2 DC_REG Register
	3.1.1.4.3 CODEC_L_CMD and CODEC_H_CMD Registers
	3.1.1.4.4 VERSION Register
	3.1.1.4.5 MISC Register
	3.1.1.4.6 CODEC_CLK Register

	3.2 TMS320VC5416 DSP (C5416 DSP) Functional Overview
	3.2.1 5416 Processor
	3.2.2 Pin Assignments for the PGE Package
	3.2.3 Device and Development Support Tool Nomenclature
	3.2.4 Programmable Bank-Switching
	3.2.5 Enhanced 8-/16-Bit Host-Port Interface
	3.2.6 Multichannel Buffered Serial Ports
	3.2.7 General-Purpose I/O (GPIO) Pins
	3.2.8 Hardware Timer
	3.2.9 Clock Generator
	3.2.10 Enhanced External Parallel Interface (XIO2)
	3.2.11 DMA Controller

	3.3 Power Requirements
	3.4 Switches
	3.5 C5416 DSK Reference Designator Layout
	3.6 External JTAG Connector, J7
	3.7 USB Embedded JTAG Emulation Connector, J210
	3.8 LEDs

	Chapter Four
	4.1 Code Composer Studio Overview
	4.2 System Requirements
	4.3 Installation
	4.4 Project Management
	4.5 CCS Debug Tools
	4.5.1 Bookmarks
	4.5.2 Breakpoints
	4.5.3 Probe Points
	4.5.4 Watch Window
	4.5.5 Symbol Browser
	4.5.6 General Extension Language
	4.5.7 Command Window
	4.5.8 Data Converter Plug-In

	4.6 CCS DSP/BIOS
	4.6.1 CCS Chip Support Library
	4.6.2 CCS Real-Time Analysis

	4.7 Training Recommendation

	Chapter Five
	5.1 AED-109
	5.2 EVM Expansion Interface
	5.3 JTAG Header
	5.4 Digital I/O Connector
	5.5 Analog I/O Connectors
	5.6 FPGA
	5.6.1 FPGA Configuration
	5.6.2 FPGA Control Registers
	5.6.2.1 Digital I/O Register
	5.6.2.2 Digital I/O Control Register
	5.6.2.3 D/A Data Register
	5.6.2.4 D/A Clock Rate Register
	5.6.2.5 D/A Clock Down Counter Register
	5.6.2.6 A/D Data Register
	5.6.2.7 A/D Clock Rate Register
	5.6.2.8 A/D Clock Down Counter Register
	5.6.2.9 A/D Clock Pulse Width Register
	5.6.2.10 A/D Control CR0 Register
	5.6.2.11 A/D Control CR1 Register
	5.6.2.12 Interrupt Down Counter Register
	5.6.2.13 Interrupt Start Register
	5.6.2.14 Interrupt Period Register
	5.6.2.15 A/D and D/A Status Register

	5.7 Amplifiers
	5.8 Breadboard Area
	5.9 Boot Flash
	5.10 Reference Voltage Supplies
	5.11 DAC Reference Currents
	5.12 Digital Buffers

	Chapter Six
	6.1 Test Program
	6.2 Test Program Modification
	6.2.1 Printing
	6.2.2 Clock Rates
	6.2.3 Test and Platform Code Removal
	6.2.4 Algorithm Reconfiguration
	6.2.5 Globals for Diagnostic Termination
	6.2.6 Base Ten Conversion
	6.2.7 NONLinearInterval_delay_quicker
	6.2.7.1 Data Transfer Variables
	6.2.7.2 FPGA Memory Register Declarations
	6.2.7.3 Global Declarations
	6.2.7.4 Static Declarations
	6.2.7.5 Appl_Parms Outline
	6.2.7.6 Appl_Init Outline
	6.2.7.7 Appl_Process Outline
	6.2.7.8 Appl_Idle Outline
	6.2.7.9 Appl_End Outline

	6.2.8 Parameter Estimation Layout

	6.3 Code Files

	Chapter Seven
	7.1 Overview
	7.2 Model Description
	7.3 Feedback Algorithm

	Chapter Eight
	8.1 Construct
	8.2 Matrix Expansion
	8.3 Cost Function
	8.4 Least Squares Parameter Solution
	8.5 Proof of Least Squares Parameter Solution

	Chapter Nine
	9.1 Parameter Test Setup
	9.2 Calibration
	9.3 Random Input Generator
	9.4 Analog Output Initialization
	9.5 Test Runs

	Chapter Ten
	10.1 Implementation Setup
	10.2 Analog Output Initialization
	10.3 Control Results

	Chapter Eleven
	11. 1 Accomplishment
	11.2 Additional Features
	11.3 Final Thoughts

	Appendices
	Appendix A
	A.1 CPU Registers
	A.1.1 Status Registers

	A.2 Peripheral Memory-Mapped Registers
	A.3 CPLD Registers
	A.4 McBSP Control Registers and Sub-Addresses
	A.5 DMA Sub-Bank Addressed Registers
	A.6 Interrupts

	Appendix B
	B.1 Required Files

	Appendix C
	C.1 C5416_dsk.gel

	Appendix D
	D.1 5416_linkp.cmd

	Appendix E
	E.1 AED.h
	E.2 AED_Appl.h
	E.3 AED_Brd.h
	E.4 AED_Cfg.h
	E.5 AED_DMS.h
	E.6 dma5416.h
	E.7 dsk5416.h
	E.8 emif.h
	E.9 intr5416.h
	E.10 regs.h
	E.11 regs5416.h
	E.12 timr5416.h

	Appendix F
	F.1 5416_dsk.c
	F.2 AED_DMS_4wDMA.c
	F.3 AED_MAIN.c
	F.4 Vectors.asm
	F.5 AED_109_32d.c
	F.6 NONLinearInterval_delay_quicker.c
	F.7 NONLinearIntervalParameterEstimate.c

	Bibliography
	Vita

