
The Design and Implementation of a Prototype Exokernel

Operating System

by

Dawson R. Engler

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1995

@Dawson R. Engler, 1995.

JThe Mu*hoherebygrats to MT1
permission to reprod-uce and to
distibute publicly paper a~.n.
electronic copies of th5hsil
docurntn In "- hrole 0'r n nPaW

A uthor.
Departm Vuof Electri •.Engineering and Computer Science

January 1995

I /1ýý j /

/

Certified by •/A ./ ------• ...-•...........................
M. Frans Kaashoek

Assistant Professor of Computer Science and Engineering
Thesis Supervisor

,~ a

Accepted by
Frederic R. Morgenthaler

Chairma, C-mmittee on Graduate Students

;-MASSACHU TSErTS INSTTUTE
OF TECHNOLOGY

APR 111996
LIBRARIES

a

The Design and Implementation of a Prototype Exokernel Operating
System

by
Dawson R. Engler

Submitted to the Department of Electrical Engineering and Computer Science
on January 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Traditional operating systems abstract hardware resources. The cost of providing these ab-
stractions is high: operating systems are typically unreliable, complex, and inflexible. More
importantly, applications that are built on these systems are both inefficient and limited
in scope: most resource management decisions cannot be made by application designers,
leaving them with little recourse when the management of these resources is inappropriate.
We believe that the quest to abstract physical resources has sharply limited the flexibility
and ambition of applications.

In this thesis, we propose a new operating system structure, exokernel, which is built
on the premise that an operating system should not abstraction physical resources. Rather,
operating systems should concentrate solely on multiplexing the raw hardware: from these
hardware primitives, application-level libraries and servers can directly implement tradi-
tional operating system abstractions, specialized for appropriateness and speed.

This thesis motivates the need for a new operating system structure, provides a set
of precepts to guide its design, discusses general issues that exokernels must deal with in
multiplexing physical hardware, and describes and measures a prototype exokernel system.
In many cases this prototype system is an order of magnitude more efficient than a tradi-
tional operating system. Furthermore, it supports a degree of flexibility not attained in any
operating system. For example, virtual memory is efficiently implemented entirely at the
application level.

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

"A considerable amount of bitter experience in the design of operating systems
has been accumulated in the last few years, both by the designers of the systems
which are currently in use and by those who have been forced to use them. As
a result, many people have been led to the conclusion that some radical changes
must be made, both in the way we think about the functions of operating systems
and in the way they are implemented." - Butler Lampson, 1971.

The cheapest, fastest and most reliable component of an [operating system] are
those that aren't there - Gordon Bell, paraphrase.

Acknowledgments

This thesis and its ideas has been very much a joint project with my advisor Frans Kaashoek:
many of the insights and motivations I present resulted from our frequent discussions. James
O'Toole was involved in much of the early exokernel meetings and publication [36, 37, 35];
the idea of dynamically loading application code into the kernel was his. Without the
involvement of these two men there would be no exokernel.

I give special thanks to my office mate, Deborah Wallach. Her high scientific standards
and biting humor are much appreciated.

Special recognition goes to Frans Kaashoek, Massimiliano Poletto, Carl Waldspurger,
and Deborah Wallach, who all read the complete thesis (Frans did so multiple times). Their
heroic editorial endurance is greatly appreciated. Kevin Lew and Wilson Hsieh also gave
very useful feedback. The voice of sanity (played alternatively by Deborah Wallach and
Robert Bedichek) removed a few of my more fantastic claims.

I thank Sandeep Gupta for writing the timer interrupt and inverted page-table imple-
mentations.

Greg Andrews first introduced me to research. Without his assistance, it is unlikely
that I would be doing anything nearly so joyous.

Most especially I thank Kim Danloe, who has tolerated long hours, monosyllabic con-
versations, and general surliness throughout my research career: without her support, the
ivory tower would be lonely and empty.

Contents

1 Introduction 13
1.1 The Problem 13
1.2 M otivation 14

1.2.1 Poor reliability 14
1.2.2 Poor adaptability 15
1.2.3 Poor performance 16
1.2.4 Poor flexibility 16
1.2.5 Sum m ary 17

1.3 The Solution: Exokernels 17
1.4 Impact of an Exokernel Structure 19
1.5 Discussion 22
1.6 Thesis Overview 24
1.7 Sum m ary 24

2 Exokernel Design Issues 27
2.1 Design Principles 28
2.2 Tradeoffs in Distributed and Centralized Control 29
2.3 Resource Allocation 32

2.3.1 W hat to allocate 32
2.3.2 Interface level 33
2.3.3 Export all hardware operations 33
2.3.4 Virtualization 33
2.3.5 A egis 34

2.4 Resource Revocation 35
2.4.1 Tradeoffs 35
2.4.2 A egis 37

2.5 Resource Naming 37
2.5.1 Nam e spaces 38
2.5.2 Physical versus virtual names 38
2.5.3 Allocation by name 39
2.5.4 A egis 40

2.6 Protection 40
2.6.1 Tradeoffs 40
2.6.2 A egis 41

2.7 Device Multiplexing 42
2.7.1 Frame-buffer 42
2.7.2 Network 43

2.7.3 Aegis specifics
2.8 Global Optimization

2.8.1
2.8.2
2.8.3

2.9 Some
2.9.1

Simple global optimizations
Working set derivation .
Disk utilization

Practical Considerations .
Decoupled implementation

2.9.2 The role of servers
2.10 Summary

An Exokernel System
3.1 Platform
3.2 Events

3.2.1 Exceptions
3.2.2 TLB exceptions
3.2.3 Interrupts
3.2.4 Upcalls

3.3 Objects
3.3.1 Capabilities
3.3.2 Time-Slices
3.3.3 Page
3.3.4 Context identifier
3.3.5 Environment

3.4 System Calls
3.5 Primiti
3.6 ExOS:

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

ve Operations
A Simple Library Operating
ExOS ABI conventions .
The live-register problem
Time-sharing
Exceptions
Virtual memory
Process creation

3.7 Summary

4 Application-level Implementations of Basic
4.1 Experimental environment
4.2 Processes

4.2.1 Process scheduling
4.2.2 Process Creation
4.2.3 Efficient timer interrupts
4.2.4 Experiments

4.3 IP C .
4.3.1 IPC Experiments

4.4 Protection
4.4.1 Embedded protection domains . . .

4.5 Exceptions
4.5.1 Exception experiments

4.6 Virtual Memory

OS
. .•

. .

.•

..

. .

..

.•

bstractions

. 4 5

3
......

..... °

. .• ° . . .

..... •

.° .• ° .• . .

.°

......

System•

System .

4.6.1 Exposing Hardware Capabilities . . .
4.6.2 Specific Page Allocation
4.6.3 Address space structure
4.6.4 Tighter integration
4.6.5 Page size Trade offs
4.6.6 Page-table Structures
4.6.7 Virtual memory experiments

4.7 Conclusions

5 Related Work
5.1 Microkernels: The Garden Path of Simplicity
5.2 Pico-kernels

5.2.1 The p
5.2.2 SPAC
5.2.3 The B
The Cache K
Library Oper
SPIN
VM/370 ..
Synthesis
HAL
Extensible 0
Dynamically

ico kernel...................

aE

eraven Kernel...

.....ating Systems...............

rating Syste....................

perating Systems
loaded device drivers

6 Conclusions
6.1 Summary
6.2 Contributions
6.3 Future work
6.4 Close

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

90
90
90
91
91
91
91
92
92
92
92
93
93
93

.

List of Figures

1-1 An example exokernel-based system .
1-2 A set of example address spaces

2-1 Comparison of exokernels to traditional systems

3-1 Assembly code to perform exception forwarding (18 instructions)
STLB structure
Assembly code used by Aegis to lookup mapping in STLB (
Assembly code to perform a synchronous upcall
Capability representations
Slice data structure
Page data structure
Environment data structure
The address space structure of ExOS-based applications . .
Return from exception using a trampoline function

Experimental platforms
Null procedure and system call; times are in micro-seconds
upcall Benchmark; times are in micro-seconds
pipe Benchmark; times are in micro-seconds
shmem Benchmark; times are in micro-seconds
lrpc Benchmark; times are in micro-seconds
Trap benchmarks; times are in micro-seconds
Virtual memory benchmarks; times are in micro-seconds . .
150x150 matrix multiplication (time in seconds)

18 inst
. . .•

.. 58
;ructions). 59
. 61
... .. . 62
.. 62
.. 62
... . .. 64
. 68
. 70

. 74
S 75
S 78
S 78
S 79
S 79
S 81
S 87
S 88

3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

Chapter 1

Introduction

The operating system is interposed between applications and the physical hardware. There-
fore, its structure has a dramatic impact on the performance and the scope of applications
that can be built on it. Since its inception, the field of operating systems has been attempt-
ing to identify an appropriate structure: from familiar monolithic [99, 103] to micro-kernel
operating systems [2, 43] to more exotic language-based [81] and virtual machine [27, 40]
operating systems. This search, spanning the last three decades, has been aggressive and
vigorous but, unfortunately, has not been satisfactorily resolved [13, 22, 36, 43, 63, 72].

In this thesis we propose a new operating system structure that dramatically departs
from previous work. An exokernel eliminates the notion that an operating system should
provide abstractions on which applications are built. Instead, it concentrates solely on
multiplexing the raw hardware: from these hardware primitives, application-level libraries
and servers can directly implement traditional operating system abstractions, specialized
for appropriateness and speed.

1.1 The Problem

The cost of inappropriate, inefficient operating system abstractions has had a large impact
on applications [5, 13, 44, 45, 72, 91, 97]. This situation has persisted for the last three
decades, and has survived numerous assaults (e.g., object-oriented operating systems and
micro-kernels). Any concept that cannot be realized after such a long period of time should
be reexamined.

The standard definition of an operating system is software that securely multiplexes and
abstracts physical resources. The core assumption of this definition is that it is possible both
to define abstractions that are appropriate for all areas and to implement them to perform
efficiently in all situations. We believe that this definition, specifically its view of the OS
as an abstractor of hardware, sets an unattainable grail for the operating system designer
and sharply curtails the ambition of systems that can be built on top of the resultant
system. The basic intuition behind our arguments is that no OS abstraction can fit all
applications: it is fundamentally impossible to abstract resources in a way that is useful to
all applications and to implement these abstractions in a way that is efficient across disparate
needs. Operating systems that have been built in this manner have one or (usually) more of
the following characteristics: they are complex and large, decreasing system reliability and
aggressively discouraging change; they are overly general, making their use expensive and
their implementation consume significant fractions of machine resources; and they enforce

a high-level interface, precluding the efficient implementation of new abstractions outside
of the OS.

We believe that the attempt to provide OS abstractions is the root of many operating
system problems. We contend that these problems can be solved directly by the elimina-
tion of OS abstractions, lowering the interface enforced by the OS to a level close to the
raw hardware. It is important to note that we favor abstractions, but they should be im-
plemented outside the operating system so that application designers can select among a
myriad of implementations or, if necessary, "roll their own."

The structure of this chapter is as follows: Section 1.2 examines the costs of operating
system abstractions; Section 1.3 outlines specific features of our target operating system
structure; and Section 1.4 explores some of the advantages of this new OS structure. Sec-
tion 1.5 addresses common concerns expressed about an exokernel structure (e.g., possible
portability and size problems). We outline the remainder of the thesis in Section 1.6 and
conclude in Section 1.7.

The following definitions are used throughout this thesis.
Operating system: software that applications cannot either change or avoid. User-level

device drivers, privileged servers, and kernels are all included by this definition.
Application-level: software that can be changed and/or avoided by any application.

Libraries and applications are included in this definition.
User-level: software which can require high privileges to adapt or replace. For example,

replacing a device driver often requires supervisor privileges). The key distinction between
user- and application-level is that ordinary programs can replace, extend and implement
application-level software. The same condition does not necessarily hold for user-level soft-
ware, and thus dramatically limits its flexibility.

1.2 Motivation

The goal of the OS designer should be to push the interface defined by the OS to the level of
the raw hardware. The distinction between application-level and user-level is an important
one. Many microkernel proponents do not appear to properly appreciate it: while moving
in-kernel implementations of OS services (such as filesystems and device drivers) to user-
space can improve the extensibility of the system as seen by the "super-user," it does little
for the more common class of applications.

The thesis behind the exokernel structure is that the operating system should not ab-
stract physical resources. The sole role of an operating system should be to ensure protec-

tion; it should not either hide hardware functionality or inhibit application-level resource
sharing. Abstraction and management of hardware resources should be left to application-
level libraries and servers which are in a better position to implement these mechanisms
than any general purpose operating system.

Providing operating system abstractions results in: poor reliability, poor adaptability,
poor performance and poor flexibility. We discuss each of these points below.

1.2.1 Poor reliability

Abstracting resources (e.g., providing a full-featured virtual memory system with copy-
on-write, memory-mapped I/O and other features) requires a large amount of complex,

multi-threaded code. These characteristics, along with dynamic storage allocation and

management and the paging of kernel data structures and code, greatly decrease the reli-

ability of the system. Large pieces of software have large numbers of bugs, and therefore,
the large size of current operating systems has a direct impact on their reliability. As noted
by Spier:

Multiple-user operating systems are especially susceptible to software-quality
problems. In an attempt to satisfy the market's ever growing demand for various
sophistications, more and more code is being crammed into already exceedingly
complex monolithic operating system monitors (i.e., supervisors, executives) to
the point of rendering them virtually impossible to maintain at an acceptable
level of correctness. The industry is well aware of this fact, and every change
- no matter how trivial - is typically cautiously debated and evaluated as to
whether or not it really has to be incorporated; its implementation is typically
undertaken with great reluctance [89].

The interesting fact about this observation is that it was made in 1973; since then, oper-
ating system complexity has increased. And for good reason: traditional operating system
design forces kernel implementors to implement the virtual machine for radically different
applications and requirements. To do this successfully, OS designers have had to include
multiple standards and interfaces within the same operating system. In an exokernel design,
these standards and implementations could each be realized in an isolated fashion (e.g., in
a library), dramatically simplifying both their design and their implementation. Further-
more, unlike a micro-kernel design (which also addresses this problem), modularity does
not have to be expensive. Unlike a microkernel server, a library operating system can trust
the application that uses it and, therefore, perform most operations in the same address
space as the application (eliminating the cost of cross-domain IPC, security checks, copying
arguments, etc.). Of course, the danger to such flexibility is pervasive code duplication. We
believe this can be reduced in two ways. The first by using dynamic linking. The second is
that application-level code is generally simpler than operating system code. For example,
it can be written for a restricted set of application domains whereas the operating system
implementation must be extremely general purpose. We provide additional examples in
Section 1.4.

1.2.2 Poor adaptability

An operating system that provides a virtual machine is large and complicated. Changing
large, complicated pieces of software is hard. This creates a disincentive to incorporate new
features or tune existing ones. Furthermore, since all applications "depend on" the operating
system, change is not localized, which is an additional discouragement to operating system
alteration. Finally, only the kernel architect can incorporate new changes, further restricting
adaptability.

This point must be emphasized: the operating system is used by all applications; conse-
quently, changes to it cannot be localized to a particular application. The direct consequence
of this structures is that it cannot be changed by non-trusted personnel. Put another way,
the implementation of new abstractions, the tuning of old ones, or even simple bug fixes can
only be incorporated with great care. Thus, the operating system interface and implemen-
tation is, for practical purposes, fixed and unchanging no matter how inappropriate it is.
However, if this interface is pushed lower (preferably to the raw hardware), more and more
of its implementation can be done in application space and, therefore, localized to partic-
ular applications, allowing ambitious application-level experimentation and, furthermore,

enabling the results of these experiments to be used on a large scale, far more readily than
modifications to an operating system. An application-level library can simply be linked
into an application without destroying system integrity. This single characteristic enables
pervasive experimentation and customization. (Without discipline such a system would be-
come a Babel of incompatible interfaces: we believe that this rigor should be implemented
through standards rather than encoded in system structure.)

The inability of traditional operating systems to support localized change can be easily
seen: few of the good ideas in the last 10 years of operating system research have been incor-
porated (or allowed at application-level) by any operating system other than the one they
were developed on. For example, what operating systems support scheduler activations [4],
multiple protection domains within a single-address space [20], efficient IPC [67], or efficient
and flexible virtual memory primitives [5, 45, 58]? The structure of traditional operating
systems ensures that good ideas will, for the most part, remain research curiosities. In an
exokernel based system, these mechanisms can be implemented directly at application-level
without special privileges, and without compromising system integrity. We expect that
this single characteristic will dramatically increase both the degree and the utilization of
operating system experimentation.

1.2.3 Poor performance

OS abstractions are often overly general, as they attempt to provide any feature needed by
any reasonable application, and all applications must use a given OS abstraction. Appli-
cations that do not need a given feature pay unnecessary overhead [4, 72]. Additionally,
simply using a given feature is costly, since the operating system must interpret a myriad
of system call options [72]. Furthermore, the mere existence of OS abstractions consumes
significant amounts of main memory, cache space, TLB space, and cycles, which could be
used by applications to perform useful work.

Finally, any OS implementation makes trade-offs: whether to use a hierarchical or in-
verted page-table, whether to optimize for frequent reads or random writes, whether to have
copy-on-write or a large page size, etc. Unfortunately, any trade-off penalizes applications
that were neglected or not anticipated by the OS designer. However, this situation is easily
avoidable: if the OS does not abstract resources, it does not have to make such trade-offs.

1.2.4 Poor flexibility

Poor reliability, poor adaptability, and poor performance in operating systems could be
acceptable if applications could simply ignore the operating system and implement their own
abstractions. Unfortunately, the high-level nature of current operating system interfaces

makes this approach infeasible. At best, applications can emulate the desired feature on top
of existing OS abstractions; unfortunately, such emulation is typically clumsy, complicated,
and prohibitively expensive. For example, once the application has no access to the raw
disk interface, database records must be emulated on top of files: further examples of

conflicts between OS-provided abstractions and what applications require can be found in

the literature [5, 13, 44, 45, 72, 91, 97].
The abstractions of modern operating systems hide useful information and capabilities.

For instance, even simple operations such as monitoring TLB misses or determining the
physical page used to map a virtual one are not possible on any operating system, even
though the effects of cache conflicts can be great [104]. Finally, the high-level nature of

operating systems is self-fulfilling: removing application-level access to hardware resources
and operations forces any software that must use these resources to be implemented in the
kernel. This, in turn, completes a vicious circle where additional functionality is pulled
into the kernel because it needs to directly access resources abstracted by the previous
wave of software. For example, a file system requires, at most, a protected directory and
name-space structure; instead, modern operating systems implement all operations (read,
write, create) in the filesystem itself. This removes the ability of applications to directly
access file buffers, decide which information should be cached, or determine the layout and
structure of the files themselves. Furthermore, it forces additional policies and trade-offs
to be incorporated into the file system: buffer management decisions (which to replace,
which to allocate), prefetching (what blocks and how many to prefetch) and what access
patterns will be anticipated. The single insight that we wish to offer is that these policy
decisions and implementation trade-offs are unnecessary. If the operating system tracks
ownership, application-level libraries can implement the rest - more reliably, efficiently,
and appropriately than any general-purpose operating system could hope to do [3].

In closing, there is no "best way" to implement a high-level abstraction; hard-wiring the
implementation in the operating system, where it can neither be changed nor avoided is,
therefore, a dangerous practice. 1

1.2.5 Summary

In short, operating systems are complex, fragile, inflexible, and slow, because they attempt
to provide a general-purpose virtual machine. The operating system is basically hardware
masquerading as software: it cannot be changed, all applications must use it, and the
information it hides cannot be recovered. Operating system design should incorporate the
lessons learned by hardware designers during the transition from CISC to RISC: hardware
should provide primitives, not high-level abstractions.

1.3 The Solution: Exokernels

We contend that the solution to all of these difficulties is straightforward: eliminate operat-
ing system abstractions. The OS should only export physical resources in a secure manner;
it should not present a machine-independent interface to applications.

In this section we give a quick sketch of an OS structure that embodies an "abstraction-
free", low-level interface. We call such a structure an exokernel. The sole function of an
exokernel is to allocate, deallocate, and multiplex physical resources in a secure way. The
resources exported by this kernel are those provided by the underlying hardware: physical
memory (divided into pages), the CPU (divided into time-slices), disk memory (divided
into blocks), DMA channels, I/O devices, translation look-aside buffer, addressing context
identifiers, and interrupt/trap events.

Security is enforced by associating every resource usage or binding point with a guard
that checks access privileges. For example, as one of the steps in preserving memory in-
tegrity, the kernel guards the TLB by checking any virtual-to-physical mappings given by
applications before they are inserted into the TLB.

'Operating systems are governments. Politically aware readers will recognize in our arguments many
used in debates against strong centralized governments (e.g., individual versus state rights, capitalism versus
communism, etc.). This is a useful view: many of the intuitions and arguments are similar.

Those few global optimizations that require kernel participation can be implemented by
an exokernel's control over control over the allocation and revocation of physical resources
(this issue is discussed more thoroughly in Section 2.8). With this control it can enforce
proportional sharing, or what resources are allocated to which domains.

To make these examples concrete, we outline what address spaces, time-slices, and IPC
might look like under the regime we have described (more thorough descriptions will be
provided in subsequent chapters). The details we present are highly machine-specific, but
the general outline should be similar across machines; the main goal in each is to answer
the question: what is the minimum functionality that the kernel needs to provide in order
for this primitive to be implemented in application space?

Address space To allow application-level virtual memory, the OS must support boot-
strapping of page-tables, allocation of physical memory, modification of mapping hardware

(e.g., TLB), and exception propagation. The simplest bootstrapping mechanism is to pro-
vide a small number of "guaranteed mappings" that can be used to map the page-table and
exception handling code. Physical memory allocation should support requests for a given
page number (enabling such techniques as "page-coloring" for improved caching [14]). Priv-
ileged instructions (e.g., flush, probe, and modify instructions) can be wrapped in systems
calls, and those that write to privileged state (e.g., TLB write instructions) are associated
with access checks. Exception propagation is done in a direct manner by saving a few
scratch registers in some agreed-upon location in application-space and then jumping to an

application-specified PC-address [97].
All of these operations can be sped up by downloading application code into the ker-

nel [13, 36]. This implementation techniques aside, the full functionality provided by the
underlying hardware should be exposed. For instance reference bits, the ability to disable

caching on a page-basis, the ability to use different page sizes, etc. should all be available
for application-level control.

Process The only state needed by the operating system to define a process is a set of

exception program counters that the operating system will jump to on an exception, an

associated address space, and both prologue and epilogue code to be called when a time-

slice is initiated and expires. Placing context-switching under application control (through

the application-defined prologue and epilogue code) enables techniques such as moving the
program counter out of critical sections at context-switch time [15].

IPC The basic functionality required by IPC is simply the transfer of a PC from one

protection domain to an agreed-upon value in another, with the donation of the current

time-slice, installation of the called domain's exception context, and an indication of which

process initiated the call (security reasons for this last constraint are given in Lampson [64]).

This lightweight cross-domain calling mechanism implements the bare-minimum required

by any IPC mechanism, allowing the application to pay for just the functionality that it

requires. For instance, a client that trusts a server may allow the server to save and restore

the registers it needs, instead of saving the entire register file on every IPC. Since the

machine state of current RISC machines is growing larger [76], this can be crucial for good
performance.

This is far from a complete enumeration of all system primitives (for example, we have so

Emacs
Swap

Server

'I \1

Figure 1-1: An example exokernel-based system

far neglected disks and devices), but should give a feel for what level of functionality the OS
is required to provide. The bare minimum is much removed from the policy-laden, overly
general, and restrictive implementations of today's operating systems.

The structure of a possible exokernel-based system is given in Figure 1-1. This struc-
ture consists of a thin exokernel veneer that multiplexes physical resources securely and
library- and server-based operating systems that implement system objects and policies.
This structure allows the extension, specialization and even replacement of abstractions.
For example, page-table structures can vary across different applications. UNIX processes
can use a traditional hierarchical page-table; protected objects can use small linear page
tables, and parallel operating systems hierarchical page-tables for local data and inverted
page-tables for global data. Figure 1-2 illustrates different structures that may be appro-
priate to different address space sizes; these structures can co-exist on the same machine.

1.4 Impact of an Exokernel Structure

We discuss how our proposed structure solves the traditional problems of reliability, ef-
ficiency, and extensibility; these points have at their core the observation that the most
efficient, reliable, and extensible OS abstraction is the one that is not there.

Reliability Exposing hardware resources safely and efficiently requires neither sophisti-
cated algorithms nor many lines of code. As a result, an exokernel can be small and readily

Hardware

Figure 1-2: A set of example address spaces

20

understood: both of these properties aid correctness.
Additionally, the application-level implementation of operating system services is likely

to be much simpler in structure and smaller in realization than a traditional, general-
purpose OS. For example, it does not have to multithread among multiple, potentially
malicious entities, nor worry about the peculiar characteristics of supervisor mode (e.g., the
particular locking constraints that arise within the kernel to guard against loss of interrupts
and deadlock). Finally, since this application operating system "trusts" the application,
it can use application state directly and simply; a general-purpose operating system is
constantly copying user data, guarding against illegal addresses, and checking for validity.
All of these concerns can be ignored in an application-level operating system since, if the
application does something wrong, the damage is to itself only.

Adaptability The kernel's simplicity enables easy modification. Furthermore, since most
of the operating system code deals with the allocation and protection of system resources,
there is not much that needs to be tuned.

By allowing fundamental system primitives (e.g., processes) to be implemented at application-
level, we have removed the dependence of the entire system on the correctness of these
implementations. In other words, by localizing a change within a single library or server
operating system, applications that wish to use a new feature can link it in (albeit with
steps such as dynamic linking to reduce memory consumption). Those that do not, do
not need to. Traditional operating systems occupy the unfortunate position of having ev-
ery application depend on their correct and appropriate implementation. This dependence
drastically limits the degree to which experimentation can be carried out and the results
used.

An important point of this structure is that it is now easy to "overthrow" inappropriate
implementations. Over time, any successful piece of software acquires features, generality,
bulk. In the case of operating systems, applications are forced to use such a piece of software
with no recourse. In an exokernel structure they can avoid inappropriate library implemen-
tations by simply linking in a different library. (Of course, we hope that the exokernel itself
will not fall victim to this trend: hopefully, the simplicity of its central premise - that the
operating system should not abstract hardware resources - will preclude this fate.)

Another advantage of improved adaptability is that traditional OS abstractions can be
implemented in application space, with access to application-level development environ-
ments (e.g., debuggers and profilers).

Efficiency An exokernel pushes resource management out into application space, allow-
ing implementations to exploit application-specific knowledge in making trade-offs (e.g.,
optimizing for reads or random writes, sparse address spaces, etc.). Furthermore, since im-
plementations can be highly specialized, they can eliminate the cost of generality present in
most OS abstractions. This structure allows a broad pool of non-kernel architects to imple-
ment alternative implementations. Since the entire system does not depend on these imple-
mentations non-privileged implementors can readily alter and experiment with application-
level operating systems. Furthermore, these operating systems will be readily used, since
they do not have to be used by the entire system (and hence trusted in a very real sense).

Finally, since most interactions between an application and its companion operating
system can occur in the same address space, the current contortions to minimize the cross-
domain costs of TLB pollution/misses, system call traps, and context-switches are com-

pletely obviated.

Flexibility Applications can now implement system abstractions in ways that are funda-
mentally impossible on traditional operating systems. Radical page-table structures, process
abstractions, address spaces, and file systems can be constructed safely and efficiently on
top of this structure. We expect that this freedom will enable a broad class of applications
that are not feasible under current operating systems.

The ability of application-level operating systems to support powerful, efficient, and
unusual abstractions cannot be overemphasized. By allowing any application writer to im-
plement fundamental system objects, the degree, ease, and pervasiveness of experimentation
and utilization of the results of this experimentation can dramatically increase.

1.5 Discussion

In this section we discuss some common concerns that have been expressed about an exok-
ernel structure. They are arranged in roughly decreasing order of occurence.

Doesn't an exokernel cause portability problems? There are two levels of porta-
bility that must be provided, machine portability and OS interface portability. The first
may be achieved in the standard manner: namely, a low-level layer that hides machine
dependence. The second can be achieved through application-level implementations of in-
dustry standards (e.g., POSIX). The difference is that the implementation of these layers
are now in application space and, therefore, can be replaced without special privileges. Such
an organization allows efficient and unusual implementations of system objects to be real-
ized in a flexible and localized manner, directly simplifying the addition of new standards
and features not anticipated by kernel architects.

Won't trap costs go up, decreasing system performance? The exokernel dis-
patches most hardware traps far more efficiently than in current operating systems (see
Chapter 4). Furthermore, the potentially high cost of exceptions such as TLB faults can be
countered either through caching state in the exokernel or by safely importing application
code into the kernel. We provide initial measurements of basic system costs in Chapter 4.

Finally, trusted servers can be used: flexibility will come at "zero cost" for those applications
that don't need it.

However, it is worth noting that this concern is misguided: even if the overhead of basic
operations increases, we believe that the cost of these operations is not the most important
system overhead. Rather, the cost of managing system objects constitutes the main system

overhead: exceptions comprise very little of this metric. By pushing the implementation
of these managerial mechanisms out into application space, many specialized and more

efficient implementations will be able to exist. We expect this will translate into real
improved system performance.

What happens to the system structure when any application can define its
own interfaces? The vast flexibility available to applications on an exokernel system
raises this legitimate question. As language, GUI and standard library implementors can

attest, preventing a Babel of incompatible interfaces is quite simple: define standards and

conventions. As we argue in this thesis, the effects of hard-wiring interfaces into the system
structure are a convincing demonstration that such an approach is not the right way to
define a standard.

In closing, while an exokernel allows the possibility of a chaotic system it also allows
the creation of a harmonious, elegant one as well: a system whose structure does not have
to be anticipated by kernel architects.

OS software is too difficult to change whether it is in application space or
not. While it is indeed true that changing large pieces of software is difficult, it is clear
that changing such software in the kernel is even more difficult. By moving most code to
application level, modifications to it become no more (or less) difficult than changing any
other large piece of software. Furthermore, as we argue in Section 1.4, application-level
libraries and servers can be significantly simpler and cleaner than traditional operating
system implementations.

Finally, this question has an incorrect assumption: it is usually not possible to change
traditional operating systems at all, regardless of their complexity. Either the OS source
is not available or proprietary, or modification requires root privileges. Furthermore, since
any OS modification must be used by all applications change is actively discouraged. With
an exokernel structure, proprietary binaries can always be replaced by application-level
software.

Won't executables become large? As a practical matter, libraries that implement
traditional abstractions can be sizable. However, shared libraries can be used to combat
this problem. They have been used successfully in equivalent situations. For example, the
X-window libraries are typically dynamically linked. In the worst case, servers can be used
to multiplex code, data and threads of control.

Of course, this argument assumes that a reasonable amount of sharing takes place on
the system. It is true that if an application uses its own specialized library then it will
have to link in this library's code. But, even without special methods, this should not be
a large overhead: applications typically only use a very small subset of the OS interface,
and therefore most functionality does not need to be linked in. Furthermore, as argued in
Section 1.4, these libraries should be much simpler and smaller because they can be tailored
to a particular domain. Finally, since these implementations reside in application space,
their text and data can be rearranged for increased locality.

Does an exokernel structure introduce a new class of bugs? An unpleasant
possibility of migrating OS abstractions into an application's address space is that bugs can
result in very unusual effects. For example, if an application performs wild writes over its
page-tables, the effects can be quite surprising. This problem can be addressed in a number
of ways. One possibility is to implement abstractions through servers (who are protected
by address-space fire-walls) during development: when the code is ready for production
use, these services are inlined in libraries. Another is to use multiple protection domains
within the same address space to prevent wild writes to sensitive state. A very interesting
possibility is to map critical data to arbitrary locations in the address space: in a large
address space it is unlikely that a wild write could find such state. In a sense, the virtual
address is a capability [110]. Finally, the flippant answer is, of course, that applications
should be written in a type-safe language.

In conclusion, there are any number of methods to protect critical state from buggy
applications. At a practical level, we do not expect this problem to be a difficult one to
solve.

How does an exokernel optimize global system performance? We do not believe
that effective global optimizations require centralized OS resource management. Section 2.8
discusses this issue in more detail.

Isn't all this code motion really just a shell game? No. Application-level code

can be simpler than operating system code because it can be specialized and because it does
not need to deal with the difficulties of supervisor mode. Additionally, as micro-kernel pro-
ponents also argue, user-level development tools are typically much more sophisticated and
effective than those available for kernel development. Finally, modification of application-
level code should not require high privileges or degrees of trust. Therefore, many more
maintainers are available than for traditional operating system code.

A closely related question is how multiple specialization of a general purpose library
can be easily maintained. As with any large system, modularity is critical; object-oriented
techniques such as inheritance, sub-typing and overloading can also be used. We do not
believe that this area brings up problems unique to operating system code.

1.6 Thesis Overview

This thesis is laid out as follows: Chapter 2 discusses general design decisions that must
be made in an exokernel and the specific decisions we have made in our implementation.
Chapter 3 details our prototype exokernel and library operating system. Chapter 4 provides
concrete examples of why operating system extensibility is worthwhile and demonstrates the
efficacy of the exokernel approach through a number of experiments. We discuss related
work in Chapter 5 and conclude in Chapter 6.

Before closing, we note that Chapter 2 is not a lightweight chapter: readers who find its
level of discussion tedious or who are still ambivalent about the exokernel methodology are
encouraged to skip ahead to Chapter 4, where we show the large performance gains that
can be obtained by an exokernel-based system.

1.7 Summary

Traditional operating systems have suffered from poor reliability, poor adaptability, poor
performance and poor flexibility. Furthermore, operating system complexity (and its atten-
dant problems) will be exacerbated as OS designers attempt to provide increasingly general

purpose virtual machines (e.g., through the inclusion of multiple standards within the same

OS implementation). More importantly, application performance and flexibility have been

directly harmed by by these problems, and the ambition of designers has been sharply cur-

tailed by their limited ability to manage resources. We believe that many operating system

problems can be solved by lowering the operating system interface: namely, by exporting
physical resources to applications directly, management and abstraction of these resources

can then be specialized for simplicity, efficiency, and appropriateness.
The exokernel philosophy has at its core two simple observations:

1. There is no "best way" to implement a high-level abstraction: hard-wiring the imple-
mentation in the operating system, where it can neither be changed nor avoided is,

therefore, undesirable.

2. The most reliable, extensible, and efficient kernel primitive is the one that is not there.

By pushing abstractions out to application space, they can be crafted for specific

application domains, which will increase both their efficiency and appropriateness.

Both of these intuitions motivate migrating the implementation and specification of high-

level abstractions into library- and server-based operating systems.

The exokernel's central tenet can be viewed in the context of the tension between dis-
tributed and centralized control: we believe that distributed control is the most effective
mechanism for flexible, efficient systems.

Chapter 2

Exokernel Design Issues

An exokernel attempts to eliminate all abstractions and, as a result, all resource-specific
policies from the kernel. However, since it multiplexes the hardware, some policy decisions
cannot be avoided: for example, how resources are named, allocated, revoked, and pro-
tected. This chapter examines the specific set of policies an exokernel must include, and
reconciles them with the overarching goal of exposing the full complement of resources nec-
essary for application-level management. We provide a set of principles that can guide the
determination of how to implement/design each policy in such a way as to give the most
control to applications.

This methodology can be put in a general framework of distributed control: traditional
operating systems have a very strong centralization of control (i.e., the operating system
controls most resources), while an exokernel attempts to move most control to applications.
This design space is markedly different from the one that has traditionally been explored in
both the research literature and in practical implementations; we touch upon its important
points. While our discussion of multiplexing assumes an exokernel as context, the issues we
examine and the design choices we make are applicable to traditional operating systems as
well, and can be incrementally incorporated into a traditional structure.

This chapter has two parts. The first deals with the general principles that an exoker-
nel is built upon. These principles are stated in Section 2.1 and elucidated in the following
sections: Section 2.2 examines the tensions between distributed and centralized control; Sec-
tion 2.3 discusses resource allocation; Section 2.4 discusses resource revocation; Section 2.5
examines naming issues; Section 2.6 some protection considerations. Finally, device mul-
tiplexing is considered in Section 2.7. Some of these issues are tightly intertwined (e.g.,
the representation of resources has a deep impact on how they are revoked, allocated and
multiplexed). To aid clarity, however, we discuss these points in isolation. Each of these
issues is examined in its own section; these sections have the following structure: the first
half deals with the general issues and tradeoffs involved, the second discusses the specific
choices made in our exokernel, Aegis.

The second part of the chapter deals with practical considerations to the general prin-
ciples: when they should be violated, caveats to their use, and challenges they present to
system construction. The obvious difficulty with distributed resource management is global
optimization. Effective global optimization does not require centralized resource manage-
ment: our reasoning is presented in Section 2.8. A more subtle difficulty is the complexity
that distributed control introduces. We discuss how selective application-level centraliza-
tion (in the form of servers) can counteract this complexity in Section 2.9. We conclude in

Section 2.10.
The default class of applications discussed in this chapter is competing entities that

are each attempting to maximize their performance. For the purposes of this chapter,
applications are assumed to be non-malicious and equal in the amount and type of resources
they may allocate and manipulate. Extending these conditions is largely orthogonal to an
exokernel design; we do not consider it here.

2.1 Design Principles

The fundamental goal of an exokernel is the simple, safe and efficient multiplexing of raw
physical resources across applications. The ideal exokernel interface is the actual hardware.
Informally, an exokernel attempts to allow applications to control all resources available to
traditional operating systems without either additional overhead or restrictions. We have
developed a number of simple principles that can be used as guides during this process.
This list is not complete and, as our experience grows, will likely be shown to be not wholly
correct. However, our initial experience indicates that they form a basis for designing an
exokernel system. Adherence to them greatly aids in the methodical elimination of operating
system abstractions and, more importantly, in the exportation of all hardware capabilities
to applications. Finally, their explicit enumeration allows their violation to be done with
clear intent, rather than by accident. These principles are summarized below:

1. Applications should manage all physical resources; exokernels should only manage
resources to the extent required by protection (e.g., management of allocation, re-
vocation, and ownership). This is the central principle of an exokernel: all other
principles are derived from it. Our motivation is the belief that distributed resource
management is the best way to build an efficient, flexible system.

2. Fine-grain allocation of all hardware resources. The more resources that can be al-
located, the more effective and ambitious application-level management can become.

Therefore, an exokernel attempts to allocate all hardware resources directly to appli-
cations. To increase the flexibility of both management and resource sharing, the unit

of allocation is fine-grain.

3. Resource interfaces should be low-level. A low-level interface requires the least oper-
ating system management and allows the most application-level control. Therefore,
an exokernel designer attempts to push the interface that defines hardware resources
to the level of the raw hardware.

4. All hardware operations should be exported. Application-level management is aided
by access to all operations the hardware provides for a given resource. For example,
virtual memory management is aided by access to any DMA capabilities the hardware

supports. Therefore, an exokernel attempts to securely export all hardware operations.

5. Resource revocation should be visible. Visible revocation is informative and, more im-

portantly, directly aids lightweight application-level resource management. Therefore,
an exokernel should directly query applications during revocation.

6. Exokernel name spaces should be visible. Any name-space that the exokernel man-
ages or creates should be enumerable from application-level. For example, exokernel

"free-lists" should be published so that application-level resource managers can tailor
allocation requests to the available resources.

7. Resource names should be physical. The use of physical names exposes the full power
of resource names, allows the greatest flexibility in application-level resource manage-
ment, and the most minimal operating system resource management. Therefore an
exokernel should avoid the use of virtual names and the translation and management
that it entails.

8. Resources can be requested by name. Physical names encapsulate powerful resource
attributes. For example, the distance of a disk block from the current disk head
position determines the speed of disk access.

9. Resource virtualization should be used only when a resource cannot be multiplexed
without it or when efficiency demands it. Resource virtualization consumes resources
and requires operating system management: it is anathematic to all exokernel precepts
and should be avoided if at all possible. Unfortunately, device multiplexing frequently
requires some form of virtualization; this issue is discussed in Section 2.7. In rare
cases, efficiency demands that the underlying hardware resources be virtualized. For
example, the use of a virtualized TLB to absorb the capacity misses of a hardware
TLB; this issue is discussed in Section 3.2.1,

10. Global system optimization should not be done through centralized resource manage-
ment. Many useful system-wide optimizations that would seem to require a strong,
centralized kernel. An exokernel architect must carefully resist the temptation to fol-
low this garden path: as we argue in Section 2.8 many global optimizations can be
done directly through an exokernel's control over allocation and device interfaces.

While these precepts are not difficult to understand and may seem quite innocuous,
they represent a fundamental change in operating system design. Traditionally, the ability
of application-level software to directly manage resources was weak, if it existed at all. An
exokernel gives a profound degree of control to application-level managers. We explore
the implications of this change in the sections that follow. As a brief setting of context
between an exokernel and past systems, the differences are painted with a "broad-brush"
in Figure 2-1. While there are many individual exceptions to our characterizations, the
general contrasts hold, and can be used to understand how the exokernel structure relates
to more traditional architectures.

2.2 Tradeoffs in Distributed and Centralized Control

This section examines the first (and most basic) exokernel principle: that applications
should manage all physical resources and that the exokernel should confine itself to solely
to what management is required to enforce protection. The premise behind this principle is
that distributed resource management is the best way to built an efficient, flexible system.
This premise (which is partly shared by other "extensible" operating systems [108]) departs
from traditional operating systems. Since Chapter 1 has already presented arguments for
why high-level operating system abstractions are deleterious, this section concentrates on
the tradeoffs between distributed and centralized control. The high-level interface adopted
by most operating systems results directly in centralized control, since it forces the operating

Monolithic Micro-kernel Virtual Exokernel
Machine

Management Centralized Centralized (OS Centralized (in Distributed
+ servers) emulator)

Abstraction- High High to medium Low (emulated) Low (real)
level
Major Files, processes, Files, processes, Hardware Hardware (real)
abstractions IPC IPC (emulated)
Names None or virtual None or virtual Virtual Physical
Protection Abstraction & Abstraction & Abstraction- Explicit access

name-based name-based based control
Operations High-level High-level Machine opera- Machine opera-

(medium for tions (emulated) tions (real)
trusted servers)

Deallocation Implicit Mostly implicit Implicit Explicit

Figure 2-1: Comparison of exokernels to traditional systems

system to manage resources. The low-level interface adopted by an exokernel results in
distributed control, since it pushes resource management into applications.

Centralized control

The tension in the level of resource allocation is the tradeoff between centralized and dis-
tributed control: a low-level interface pushes resource management out into application
space, where it can be optimized for local conditions while a high-level interface keeps
management under centralized control, where it can be optimized for global conditions.
Frequently, these two levels are in direct conflict.

Chapter 1 has already detailed many disadvantages of centralized control; in this sub-
section we look at four potential advantages:

* Less state duplication. Object allocation and control exists through a single central-
ized entity. This allows book-keeping at one level to be reused by another. With
lower-level allocation, the system may have pervasive state duplication, since each
entity may not trust the resource tracking implemented by another.

However, the cost of this space optimization is that there is a single, centralized
manager who cannot be circumvented, no matter how inappropriate its decisions. If
centralized resource managers always made effective policy decisions then this opti-
mization could be compelling. However, we believe that the inappropriateness and
cost of use of operating system abstractions mitigates against such a structure. Be-
sides, in cases where it is possible for a centralized manager to consistently make wise
decisions an exokernel certainly allows the use of application-level servers to aggre-
gate code, data and functionality. The important difference is that this aggregation
is voluntary rather than by fiat.

* More effective global optimization. The centralized organization forced by high-level
abstractions can give the operating system a clear view of the entire system. Opti-
mization requires information; this organization can provide a substantial amount.

We do not believe that effective global optimization requires centralized management.

The information required to optimize resource usage can, typically, be derived from
secondary operations (e.g., LRU usage from allocation requests, disk writes, etc.). We
provide examples of this in Section 2.8.

* Greater uniformity. Centralized control implies a single and (perhaps) uniform in-
terface. Additionally, applications only have to communicate with a single entity for
any allocation request. In a distributed system, many different entities may control
resources and their interfaces may be widely disjoint.

The decision that must be made here is whether interfaces should be encoded in system
structure or at a higher level (i.e., in a standard). An exokernel takes the latter view,
which allows multiple standards to easily exist on the same system. Furthermore,
many of the benefits of single entity systems can be derived from servers; we discuss
this in Section 2.9.

* Faster access checks. A subtle point of high-level abstractions is that they contain a
large aggregate of bindings (e.g., virtual to physical mappings bound in the page-table
structure, file pointers, etc.); the presence of these internal binding can be used to
speed access checks. For example, in the case of a TLB fault, if the operating system
finds the virtual to physical mapping in the page-table it can insert it directly into
the mapping hardware: if the page-table is managed by the application, the operating
system must check each mapping for validity, adding overhead.

However, efficient binding checks can be implemented through caches, rather than the
heavy-weight mechanism of high-level abstractions: centralized resource management
is not a necessary prerequisite for efficient access checks.

In summary, centralization is sometimes effective; in these specific instances an exokernel
can derive the same benefits through the use of servers.

Despite the potential benefits, centralization has a cost. As discussed in Chapter 1, the
most obvious is the sheer magnitude of code and data to efficiently and correctly implement
the book-keeping it requires. Economies of scale do not hold in computer systems: if
anything, the opposite is true. For example, a small, tight kernel can used unmapped code
and data; as the kernel's role (and size) grows the kernel must map and page itself, which
dramatically increases complexity. Because of their generality, centralized mechanisms have
been unreliable, inefficient, inflexible and have precluded application-level management. A
more subtle problem is that high-level management requires the kernel to pre-emptively
make resource management decisions, thereby ensuring that local resource management is
not possible and that, as a result, application-specific requirements will be met poorly, if
at all. For example, both garbage collectors and distributed shared memory systems would
benefit from tight integration with virtual memory, trap, and disk hardware.

Distributed control

As argued in Chapter 1, the advantage of distributed control is the flexibility that it allows.
This flexibility is due to a single fact: distributed resource management allows multiple
resource managers to co-exist and to be replaced and created without special privileges.
Many useful abilities fall out from this single property. For example, subsystems can man-
age resources in application-specific ways, allowing them to be tuned to the "common-case"
operations of different domains. Furthermore, resources can be abstracted in fundamen-
tally different ways on the same system easily, directly, and without special privileges. This

advantage cannot be underestimated: constructing large software systems is difficult; this
difficulty can be eased by the application of suitable abstractions. In a centralized imple-
mentation abstractions are, for practical purposes, fixed, and thus conflicts between what
abstractions are provided and what abstractions are needed cannot be effectively resolved.
The operating system is required to multiplex the hardware so that applications can co-exist.
If it does this by inflicting painful abstractions, then the resultant applications will not be
either very useful or very interesting and thus its central purpose, supporting coexistence,
will be unnecessary.

Despite the many advantages of distributed control, there can be very real costs. For
example, global optimization can become more difficult, because the operating system does
not manage resources. In general, distributed control is costly in situations where the op-
erating system cannot independently make quick decisions about a situation but, because
it has seceded control to applications, must instead communicate with them. This com-
munication has an overhead both in the obvious cost in cycles and in more subtle ways

(e.g., this communication allows control to escape from the operating system into an ap-
plication at critical times). We do not believe that this cost outweighs the benefits of
flexible, application-level control; the experiments discussed in Chapter 4 tentatively show
this assumption to be valid.

Additionally, distributed control requires that ownership and privileges need to be
tracked and to be checked more frequently. This overhead can be substantial, however,
we show techniques that can effectively reduce it. For example, checking the access rights
to a given physical page on a TLB miss can add significant overhead to virtual memory
management but can be directly countered through the use of a software TLB to handle
hardware TLB capacity misses [9, 49]. We believe that the global effect of the flexibility

and efficiency of application-specific resource management will outweigh the micro-costs
of its use. Again, the experiments in Chapter 4 provide provisional assurance that this

assumption is correct.
Finally, distributed control is inherently more complicated than a single centralized point

of control. In Section 2.9 we discuss how the judicious use of application-level servers can
capture the useful functionality provided by centralized methods without their heavy-weight
cost.

2.3 Resource Allocation

In this section, we examine which resources are allocable, the interface to allocatable re-

sources, and the operations that can be performed on them. More than any other issue,

the answers to these questions determine the character of a system, the ambition of the

applications and subsystems that can be built from it, and the power available to them.

2.3.1 What to allocate

The premise of an exokernel is that application management is crucial for efficient, flexible

systems. Management requires allocation, therefore an exokernel attempts to allow all

hardware resources to be allocated: time-slices, context-identifiers, physical pages, disk
blocks, etc. Traditionally, application management has been minimal: operating systems

have encapsulated resources within abstractions (e.g., disk blocks have been encapsulated

within files and physical memory within address-spaces that, in turn, are encapsulated

within processes). Even the low-level abstractions of virtual machines have precluded much

application level management: since the main goal of the virtual machine is to be invisible to
an application, it is should not be surprising that application management (which requires
communication between application and the operating system) should be weak. Previous
operating systems have placed a preponderance of emphasis on abstraction-based resource
management and therefore, have avoided constraints in protection, naming, deallocation,
and sharing that an exokernel structure must address.

Closely related to what can be allocated is the unit (or grain) of allocation. Coarse-grain
allocation allows amortization of protection and book-keeping information, but impedes
sharing and flexible management. An exokernel allocates space-shared resources at as fine
a grain as possible.

2.3.2 Interface level

The level of resource allocation is the dual of "what" can be allocated. Possible levels span
a large range, from the high-level abstraction of a UNIX process (which encapsulates the
allocation of CPU, physical memory, and access rights in a single entity) to the low-level,
fine-grain allocation of a single physical register. The level at which resources are allocated
forces a wide variety of design choices, and is a strong determinant of the operating system
structure.

Resource allocation should be at the level detailed by the chip specification. If the allo-
cated unit is portable across machines, it is probably too high. Low-level allocation should
not be achieved through emulation. The emphasis on a low-level interface is motivated by
the fact that low-level allocation is essential for application resource management and di-
rectly eliminates many high-level policy decisions and mechanisms. Operating systems have
traditionally provided a high-level virtual machine that is portable across architectures (in-
deed, many successful operating system interfaces have outlived the machines that birthed
them [99]). Those kernels that do allow low-level allocation typically only allocate those
resources to a server, which in turn manages them (e.g., window managers are typically
granted exclusive access to a frame-buffer).

2.3.3 Export all hardware operations

Flexible management requires access to the full capabilities of a system object. Therefore,
positing access rights, all operations of the underlying hardware are allowed on an owned
resource: all privileged instructions are supported, and all memory operations allowed (e.g.,
DMA). Traditional operating systems do not export the full set of hardware resources and
certainly do not allow the full complement of hardware operations on them.

2.3.4 Virtualization

Somewhat orthogonal to the level of the interface is the extent to which this interface is a
virtualized facsimile. While virtualized interfaces can indeed be low-level, they have most
of the disadvantages of high-level interfaces: the emulation they provide is both complex
and expensive to implement and, in all probability, provides applications with no more real
control than a high-level kernel interface. For instance, VM/370 provided each user with a
virtual machine detailed to the level of devices and privileged instructions [27], consumed
significant resources in the process and, as discussed previously, did not allow much more
actual distributed control than a traditional operating system.

However, there are particular cases where virtualization is either unavoidable or can
dramatically improve performance. As discussed in Section 2.7, virtualization must be used
to multiplex devices, since ownership of device input/output can typically only be derived
with detailed knowledge of data the device manipulates. For example, to determine which
applications own which network packets requires knowledge of network protocols such as
TCP, UDP, etc. Hard-coding this information in the kernel would decrease simplicity,
flexibility and reliability. Virtualization can be used to avoid such a situation.

A specific place in an exokernel where virtualization may improve performance (possibly
by a substantial amount) is in increasing the size of the hardware TLB through the use of a
software TLB [49]: by virtualizing the TLB to a larger size, capacity misses can be reduced,
and with them, the cost of inserting a mapping into the TLB (e.g., system calls and access
right checks). We measure the overhead of application-level virtual memory in Section 4.6.7.

In closing, virtualization is used only when resource multiplexing could not occur without
it or, in extremely rare cases, when efficiency demands it.

2.3.5 Aegis

We examine how Aegis satisfies each of the principles we have enumerated. Aegis allows
applications to allocate all resources that it understands: pages, CPU slices, and context-
identifiers. In the full system this set of resources will be extended to include network
buffers, disk blocks, frame-buffers and the full complement of I/O devices (sound cards,
etc.). The issues that arise in device allocation and multiplexing are explored in Section 2.7.
Space-shared resources are allocated at as fine a granularity as possible: physical memory is
divided into pages, CPU slices are partitioned at the system clock granularity, and context-

identifiers are allocated singly.
The CPU representation is unique and deserves a brief discussion. The CPU is viewed

as a space-multiplexed device: the CPU is represented as a vector, where each element
corresponds to a time-slice. Time-slices are partitioned at the clock granularity and can
be allocated in a manner similar to physical memory. Scheduling is done "round robin"

by cycling through the vector of time-slices. A crucial property of this representation is
position, which encodes an ordering and an approximate guarantee of when the time-slice

will be run. Position can be used to meet deadlines, and to trade off latency for throughput.

For example, a long-running scientific application could allocate contiguous time-slices in

order to minimize the overhead of context-switching, while an interactive application could

allocate several equidistant time-slices in order to maximize responsiveness.
Some resources are either time-shared, or not associated with owners. Registers are allo-

cated "whole cloth" to each process: on the current architecture allocating specific registers

to a given process is more trouble then it is worth. However, on a different architecture this

might not be such an obvious decision. For instance, on a SPARC processor [51] allocat-

ing individual register windows may be useful. TLB entries and cache blocks do not have

explicit owners: they can be written and read by each individual process.
Aegis allows applications to issue all privileged instructions and load/store operations

to memory mapped I/O devices. Protection is guaranteed by associating these operations

with guards. The ability to issue privileged instructions allows applications to fully exploit
the hardware resources. For example, applications can probe the TLB for specific entries

or flush it entirely; these abilities allows detailed tracking of "working set" and reference

information. Exposing DMA hardware (or emulating it in software) allows applications

to perform bulk memory transfers or initializations without polluting either the cache or

the TLB. As described in Chapter 4, this detailed level of control is very useful when
implementing flexible application-level virtual memory.

There are two places where Aegis virtualizes a resource. The first is the TLB: because
access checks would add a large overhead to each TLB miss, Aegis overlays the hardware
TLB with a larger software TLB [9, 49] to absorb capacity misses. The second area is
the network interface, which requires virtualization in order to multiplex; the specifics of
this virtualization are discussed in Section 2.7. We do not anticipate virtualizing other
non-device resources.

2.4 Resource Revocation

Once resources have been allocated to processes there must be a way to reclaim them. This
section concentrates on the tradeoffs of visible and invisible revocation schemes.

Revocation can either be visible or invisible to processes. Systems with external pagers [73]
use a form of visible revocation for physical memory. Traditionally, operating systems have
performed revocation invisibly. For example, with the exception of some external pagers,
most operating systems deallocate (and allocate) physical memory without informing ap-
plications.

Visible revocation is informative and directly aids lightweight application management
(i.e., physical names can be used). Pervasive use of visible revocation is a marked departure
from traditional systems, and will dramatically increase applications' ability to manage
resources.

2.4.1 Tradeoffs

Visible revocation: there are three good characteristics of visible revocation. First, it
allows applications to adjust to changing conditions by providing explicit cues when
a resource is in short supply. Secondly, it potentially enables applications to ex-
ert fine-grain control over what specific instance of a given resource is deallocated.
For example, user-level pagers allow applications to select which particular page to
deallocate. Finally, visible revocation allows the operating system to place more re-
sponsibility on applications to manage resources and, correspondingly, to eliminate
the same management within itself.

There are many possible variants of visible revocation. Each form must make a deci-
sion about how binding the revocation interaction is. For instance, if an application
does not return a resource promptly, does the operating system kill it or is a more
graceful scheme used. This contract (or abort protocol) is the main determinant of
their character. The reason for this is that the main cost of visible revocation is that
it requires, at some point, explicit communication between the operating system, and
application, adding both overhead and latency to revocation. A more subtle con-
sideration is the degree to which the operating system's control over the system is
reduced: visible revocation can allow control to escape to the application during a
resource shortage.

Invisible deallocation: the operating system deallocates resources as it sees fit, without
application involvement. Invisible deallocation has lower latency and is simpler than
visible deallocation: applications do not have to be queried at revocation time; there-
fore, there does not need to be an "abort protocol" in place to deal with applications

that do not return resources promptly. The disadvantage directly results from this
strength: applications have no control over deallocation and, more subtly, no overt
cues that resources are scarce.

The three variables that influence which deallocation mechanism to use are resource
activity (the rate of allocation and deallocation), the amount of state associated with each
resource, and the potential impact of application-level knowledge. Visible deallocation
works best with static resources that have a large amount of state associated with them.
For example, pages are large, infrequently deallocated entities that can profit from visible
revocation mechanisms. The performance advantage of reducing page faults easily allows
the overhead of explicit communication between application and operating system to be
recouped. Invisible deallocation works well for highly active, stateless resources. For exam-
ple, context-identifiers can be deallocated frequently, and have little state associated with
them: reclaiming CIDs simply requires flushing TLB mappings that contain that CID from
the TLB; no state needs to be saved. Furthermore, the latency of reclamation is important:
blocking a runnable process until another has returned a context-identifier is unacceptable.
In this setting, invisible deallocation is likely the correct choice.

Finally, the frequency of revocation directly influences the profitability and implemen-
tation of bindings (e.g., the binding of a virtual to physical page number in the TLB).
Bindings must be explicitly removed at deallocation time. If revocations are frequent or
must happen efficiently, all bindings must be enumerated quickly or system performance
will suffer. If there are a large number of bindings, the state required to enumerate them

can itself consume significant resources: bindings are not a panacea for system performance.

The abort protocol

Visible revocation protocols interact with applications. If the system needs the resource, the

time of this interaction must be bounded. The system's abort protocol is used to determine
what action to take if this bound has been exceeded.

The strongest constraint on abort protocols is that they encode a notion of time. Since

programmers do not reason effectively about time bounds, some care must be taken in the

design of an appropriate protocol. This constraint aside, it is possible to implement simple,
effective abort strategies. We discuss some possibilities below.

Hint based. Revocation is viewed as dialogue between application and operating sys-
tem in order for the application to suggest specific resources to deallocate. If the application

does not give a hint in a timely manner, the operating system makes its own determination.

It then gives the application an exception (e.g., "revocation time exceeded") with the name

of the resource that was deallocated. This exception allows applications to relocate any

mappings that use the physical name associated with the resource. Other than the obvious

need to allot enough time for applications to "usually" make a deallocation decision, there

is the additional complication of ensuring that in the case where the kernel has to deallocate

a resource, a critical instance of that resource is not deallocated (e.g., the page holding TLB

exception code). A partial solution is to allow applications to mark resource instances as

non-deallocatable. For example, this is done by the Cache Kernel to pin virtual memory

mappings [22]. The problem then becomes how these pinned resources can be deallocated.

A possible solution is to associate with every application a "swap server" that acts as a

guardian. If the operating system can find no unpinned resource to deallocate it notifies

the swap server, which then swaps out the application and frees some or all of its associated

resources.

Fascist. From the kernel's point of view, a simpler mechanism than hints is to simply
bound the time required to deallocate a resource. Applications are then responsible for
organizing resource lists in such a way that resources can be deallocated quickly. For
example, an application could have a simple vector of physical pages that it owns (pinned in
main memory): when the kernel indicates that a page should be deallocated, the application
simply selects one of these pages, writes it to disk, and frees it. Such an organization is
not difficult to construct and, if the kernel is made aware of certain "good faith" operations

(e.g., the writing of a page to disk in preparation for deallocation) it should not be an
unreasonable alternative. This method should be implemented with at least two stages of
revocation notifications, in order to allow the low-level allocation mechanisms to interact
with higher-level application software. For example, if revocation occurs in two stages

("please return a page" and "return a page in 50 micro-seconds") then the low-level paging
software can do an upcall to higher-levels on the first notification. If this higher-level does
not respond by the second notification, the page-manager simply deallocates the resource
directly.

2.4.2 Aegis

Aegis uses visible deallocation for CPU slices, pages and the system objects that it controls.
Context-identifiers are reclaimed "invisibly" from applications.

Revocation is done when resource usage exceeds a specified threshold. Which instance
of the resource to revoke and who to revoke it from are highly system dependent. For
example, on a system with proportional sharing [105], this determination will be made
differently than on a "fair-share" system [46, 55]. As discussed later, Aegis will allow this
to be parameterized on a system-wide basis. We discuss the default mechanism below.

As devices are added, revocation will be done at two levels: the first is a request for the
given object, the second level is a demand. The abort protocol follows the "hint" protocol
described above. Resources are forcibly flushed to a backing store (similar to the Caching
Kernel [22]), and the application is given an exception that its revocation time was exceeded.
The location of the backing store will be included as an argument to the exception.

Initially, random selection will be used to select which application to revoke a resource
from. Each active resource will be associated with its owner; to revoke a resource, Aegis
will randomly select the owner from this vector, and send the application an exception
to indicate that it should relinquish a resource of the indicated type. A critical point is
that it is the application decides which instance of the resource to deallocate. Randomized
revocation has very good properties for equal sharing. Introducing a proportional-share
structure on top of it is a matter of scaling this selection so that some entities are more
likely to be selected than others [105]. We do not consider these issues in this thesis.

2.5 Resource Naming

The representation of names determines both how heavyweight the OS management must
be and the effectiveness of application-level resource management. An exokernel attempts
to use physical names wherever possible. This is a fundamental difference between it and
previous operating systems. With few rare exceptions (e.g., external pagers), physical names
have not been used in any other multiprogrammed operating system structure; certainly no
such operating system has placed the importance on them that an exokernel does.

We discuss the tradeoffs between virtual and physical names. For a more extensive and

general discussion of naming see Saltzer [85]. The three issues we look at are the impact of
the naming scheme on: (1) revocation (how "relocation" meshes with a sensible revocation
mechanism), (2) sharing (how names can be translated across contexts), and (3) allocation
(what can be named, and if the full information encoded in a name can be exploited).

2.5.1 Name spaces

Name-spaces that are managed or created by the exokernel should have an application-level
"enumerate" operator. Allocation of specific resources is aided by an accurate picture of
what resources are in use. Therefore, publishing this book-keeping information (e.g., free-
list, estimation of disk head position, etc.) allows more effective allocation to be provided.
Furthermore, exokernel data structures can provide crucial information as to the resource
utilization of the system. For example, the mappings in a software TLB can give an ap-
proximation of the current active set of physical pages. This principle can be viewed as
simply exposing all bookkeeping primitives to applications.

Traditional operating systems are markedly reticent about supplying such information,
which makes it difficult to get a clear picture of what resources are in use at any point in time.
Part of this fact is simply because applications on these systems cannot typically manage
resources, and so would not be able to make much use of such information. The other
part is that information hiding is a very effective way to decouple the OS implementation
from its specification. We believe that the cost of decreased application-level management
outweighs the benefit of such information hiding.

2.5.2 Physical versus virtual names

The naming issues we discuss here have been made in the specific context of names managed
by the operating system and seen by the application. Naming can be done using the actual
name of an object (physical naming) or via a layer of indirection (virtual naming). Efficient,
reliable translation of virtual names is difficult, and can consume significant resources (e.g.,
virtual memory systems). Most resources cannot be named in traditional operating systems;
those that can do so through virtual naming (e.g., virtual addresses, "logical" disk blocks,
etc.). The challenge in the use of physical names is relocation and, as a direct consequence,
revocation.

Physical naming

Physical naming is WYSIWYG: page 5 is page 5, disk block 137 is disk block 137. In such a

scheme, processes access and locate objects using their actual names. The chief advantage

of physical naming is that it requires no translation, and therefore is lightweight and easy
to implement. Its main disadvantage is the constraints it places on revocation: at either use

or revocation time, the process itself must be notified of revocation, so that it can relocate

its names. For example, a process using physical page "5" in virtual mappings will have

this information scattered throughout its address space, which removes any possibility of

the kernel relocating it. This issue can be viewed as who controls the "context" in which

names are resolved: control over the context determines who can sensibly alter it.

If revocation happens visibly, then relocation does not pose additional problems: the

operating system will explicitly communicate with applications at revocation time anyway,
so relocation adds no new constraints. However, there exist situations where physical nam-

ing should be used but deallocation is not explicit. For instance, a graceful abort protocol

may deallocate a resource "by force" if a process exceeds the time-limit it had to deallocate
a resource. Unfortunately, in the presence of physical names, this resource is still named
throughout the application's context: nothing good can come of this. To mesh physical
names with invisible deallocation an auxiliary data structure, a relocation vector, must be
introduced. When a resource is deallocated by the operating system, this fact is registered
in the vector and the application receives a "relocation" exception (to allow it to update
any mappings that uses the resource). Since this situation will not arise frequently, the
vector can be small; furthermore, since lookup does not have to be efficient, its structure
can be simple as well.

Virtual naming

A virtual naming scheme adds a level of indirection between a name used by an application
and the real, physical name of the resource. A familiar example of this is virtual memory.
This level of indirection (called a context [85]) can be per-process, per-system, or any range in
between. The primary advantage of virtual naming springs from the transparent relocation
it allows. For example, if an operating system controls the mappings of virtual to physical
names, it does not have to explicitly communicate with applications on revocation.

Virtual naming's main costs are the resources consumed by the mapping structure and
the overhead of translating virtual to physical names. If translation does not have to be
efficient, it can be made quite simple (e.g., a vector of tuples). Typically, however, trans-
lation must be efficient, which leads to complex mapping structures (e.g., page-table-based
virtual memory systems are notoriously complicated). Furthermore, the state required to
perform this mapping can be quite large. Some resources, on the other hand, are easily
associated with virtual names. For instance, context-identifiers are small in number, and
thus require few resources to map efficiently.

The use of virtual naming allows some operating system optimizations that are otherwise
difficult. For instance, disk compaction is very easy with the use of virtual names, since
applications and higher-level filesystems do not need to be involved in the process [30].
However, the use of such a "logical disk" to map disk blocks can require over 4 megabytes
of physical memory for disks of even moderate size [30].

Summary

The cost of virtual naming is the associated loss of information and the computation required
to map the virtual name to the corresponding physical name. Furthermore, its strength,
transparent revocation, is often irrelevant: application-level resource managers will want to
be notified when revocation happens (e.g., the deallocation of a physical page).

An exokernel attempts to use physical names whenever possible. Because the use of
physical names at application-level eliminates the need for kernel name management (e.g.,
translation and relocation), we believe that it is the cornerstone of light-weight application
resource management.

2.5.3 Allocation by name

Names encapsulate useful resource attributes. For example, the position of a disk block in
relation to the current position of the disk arm determines how quickly it can be written.
Allocating a a disk block by name allows a more efficient file-system to be constructed.
Furthermore, names have power. For instance, in a system with direct mapped caches, the

name of the physical page (i.e., the page-number) determines where it maps in the cache.
Two pages with names that fall in the same "page-color" equivalence class will contend for
the same regions of the cache [83]. If applications can request specific physical pages, they
can minimize their conflict between already owned pages and between the pages allocated
elsewhere in the system. Traditionally, operating systems have not provided any support
for direct request of resources by name (e.g., physical page "42").

At first glance, useful name-based allocation appears to require substantial machinery.
For example, to return to our disk arm example, applications may want to phrase questions
such as "allocate a block close to sector 10 or 20, whichever is less fragmented." Obviously,
such queries can get arbitrarily complicated and baroque. Fortunately, a complex query
engine is completely avoidable: if the kernel publishes the data it would use to satisfy such
requests, applications can satisfy extremely detailed and volatile predicates without any
operating system interaction. For instance, if the operating system publishes the disk block
"free list" and estimation of disk arm position, then applications decide which disk block
fits their requirements. This functionality is extremely simple to provide and will likely
exceed the sophistication of query mechanisms provided by the kernel. The one drawback
of such a method is that it is not atomic: between the time an application-level OS scans
a freelist and requests a resource, the resource could have been allocated. However, such a
situation will probably be very infrequent.

2.5.4 Aegis

Aegis attempts to use physical names whenever possible. Physical pages are named explic-
itly, as are time-slices and TLB entries. Aegis allows resources to be requested by name;

as suggested above, this facility is made more useful by exposing the current free-list to
applications, which gives them a high probability of success in their allocation requests.
Resources that are already allocated will not be revoked to satisfy such requests.

As discussed above, physical names and name-driven allocation enable a large number of
optimizations. For instance, applications may want to construct runs of contiguous physical

pages to allow larger page sizes to be mapped in the TLB or to allow larger DMA transfers.
Context-identifier names are virtual. Because our current machines only support a small

number of identifiers (64), frequent revocations can occur. Additionally, context identifiers

must be returned promptly on revocation if the system is to make progress or if a "graceful"

deallocation policy is to occur with any regularity.

2.6 Protection

Because an exokernel explicitly allocates physical resources and attempts to move all man-

agement of these resources to the application, protection assumes a more explicit and central

role than in a traditional high-level operating system. However, the issues we discuss here

are hardly unique to exokernels: we discuss them because they are so central, not because

of unique tradeoffs. Protection is a well-known area: our discussion is based mainly on the

literature. We elide many details; for a general discussion, consult Saltzer [86].

2.6.1 Tradeoffs

At a high-level, there are two protection schemes we consider: access control lists and

capabilities [86]. Both associate guards with resources: when principals attempt to use

a resource (or encode a binding involving it) these guards check access rights. ACLs are
simply lists of principals allowed to use a given resource. ACLs cannot be circumvented:
the kernel has absolute control over access rights. Furthermore, the exact list of principals
that can access a resource can be controlled completely. This strength is also a weakness:
sharing must involve the kernel. In contrast, capabilities are a ticket-based approach, where
possession of a ticket is taken as prima facie evidence that the principal has the right to use
the resource. There are numerous capability schemes. We only consider self-authenticating
capabilities, which are large numbers that are unlikely to be guessed [21]. In other words,
security is achieved through obscurity. Self-authenticating capabilities allow ease of sharing
and requires only simple protection machinery. Sharing is easy, since capabilities can be
passed as data between principals without kernel intervention. Protection is simple to
implement since the kernel does not need to track who has access to what resources: the
kernel simply has to check that each use of a resource is by a principal with the appropriate
ticket (i.e., with an if-statement).

2.6.2 Aegis

Aegis uses capabilities for protection. Pages, time-slices and environments are associated
with capabilities. Every point where a resource can be used is associated with a guard.
When a principal wishes to use a resource, it presents the capability to the guard. The
guard checks the access rights given by the capability. If the use is allowed, the operation
is allowed to proceed. Otherwise an exception is given to the client. Each resource is
associated with a read and a write capability; additionally, each allocated resource has an
owner that may free it (or change its capabilities). Environments are defined hierarchically
(i.e., an environment that allocates another owns it and all of its associated resources).
Capabilities are selected by the applications themselves, allowing space-efficient encodings
(e.g., all pages owned by a particular process may be associated with the same capability
value) and a "public encryption" style of sharing (e.g., two resources may agree a priori
what capabilities to use for resources; once these resources are allocated, they "publish" the
names and use them).

At a practical level, the merits of capabilities over ACLs for general-purpose protec-
tion are unclear. There were two advantages of capabilities that led us to use them over
ACLs. The first advantage capabilities have over ACLs is that with capabilities the ker-
nel's storage of access rights does not increase proportional to sharing: with ACLs, every
additional principal requires more bits to track. However, this advantage may be illusory:
principals certainly have to track ownership and so, in practice, total space requirements
will still grow with sharing. While this space requirement can be countered by having one
capability control more than one instance of a resource, such an approach is clumsy. The
second advantage capabilities have over ACLs is the ability to share resources without ker-
nel intervention. However, on a real system with non-trusting applications, an application
will not want to "invisibly" share a resource with another, since it could not prevent the
owner of the resource from freeing it "unexpectedly." To prevent such occurrences requires
some form of reference counting, which will amount to an ACL. Finally, capabilities have a
practical disadvantage in terms of bookkeeping and interfaces: tracking large numbers and
passing them to system routines can be clumsy.

In the future, we will likely use an ACL scheme modeled on Lampson's "bitstrings" [62]
to protect most resources (a likely exception will be disk blocks). This approach has been
recently used both in SPACE [79] and in the Cache Kernel [22].

2.7 Device Multiplexing

Devices are difficult to multiplex: their interfaces are complex and their state extremely
volatile. For example, device buffer usage can fluctuate dramatically within short amounts
of time. Both of these characteristics make time-sharing impractical (context-switching a
large amount of device state is expensive) and space-sharing challenging (the volatility of
the device's state makes the static divisions required by space-sharing difficult and expensive
to implement). However, these implementation issues aside, the main difficulty in device
multiplexing is that associating the input/output of a device with an owner (the basic
requirement for multiplexing) requires a large amount of application-specific knowledge.
For example, if the kernel is to divide the frame-buffer in a reasonable manner it must
have a fairly precise notion of "windows," "exposure events," etc. Another example is
the network: demultiplexing a string of bits coming in off of the wire requires a detailed
knowledge of network protocols such as TCP, UDP, etc.

In general, the demultiplexing problem can be solved a number of ways. The first is to
simply encode the required knowledge in a server or the kernel itself. In some cases this can
be perfectly acceptable; usually, however, this encoding significantly reduces the flexibility
of the system. A more flexible mechanism uses secure bindings to associate resources with
owners.

A secure bindings separates resource protection from management. A key property is
that domain-specific knowledge is only required to setup the binding, not to maintain it.
The ability to implement protection without an understanding of the underlying resource
semantics is extremely powerful. For our purposes, the most interesting feature is that
application-level resource management can be implemented with great freedom. To clarify
this admittedly vague discussion, consider virtual memory management. Traditional virtual
memory implementations serve the two functions of protection and management. An OS can
directly cleave these functions by allowing applications to generate address translations and
then simply ensuring that a given translation is allowed. By restricting its attention to the
secure binding of address mappings, an operating system allows applications to implement
their own page-tables and have complete control over their address space structures. For
more complicated resources (i.e., devices) a common implementation grants a set of servers

the right to bind applications to a particular resource; once this binding is in place, the

kernel (or hardware) can check access rights. We look at exactly how this can be realized
below. The important point here is that access control is the only function of the server:

the application has complete discretion in management and usage of the resource, once
allocated. Separating protection from management in this manner allows applications to

have a large degree of freedom in resource management. The utility of this idea is large.

2.7.1 Frame-buffer

Encoding detailed knowledge of a windowing system in the kernel is not desirable. There

are a number of methods used to avoid this problem. The most common solution is to
memory-map the device buffer into user-space where a server can manipulate it directly.
Unfortunately, this still requires that applications go through a centralized server to access

the frame-buffer. An intriguing solution taken by Silicon Graphics can be viewed as an

instance of secure bindings. The hardware associates each pixel with a context identifier; a
process that has the same context-identifier as the pixel can write directly to its memory.
This process is both flexible and efficient. The only system involvement is at binding setup,

when a server sets the context identifier of the required pixels to that of the process 1. This
same technique is also used for the sound port.

The disadvantage to these approaches is that their implementation consumes a large
amount of silicon. A more "low-tech" approach is to allow a window server process to
download pieces of code into the kernel; these pieces can be called by applications to perform
operations that they require. Protection can be ensured by bounding memory operations
and jumps [104] and by limiting resource consumption [31] (e.g., CPU time and memory).
The window server can use this capability to allow the applications themselves to write code
fragments (say to implement a particular clipping algorithm) that it can check for safety
and then download into the kernel. This functionality can be used to give applications a
wide degree of freedom in what operations and optimizations they can perform.

2.7.2 Network

There are two problems in multiplexing a networking device: sending and receiving. Sending
is simpler; we consider it first.

Multiplexing the send capabilities of the network device is simply a matter of multiplex-
ing send buffers. With simple hardware support, this is fairly easy to achieve. For example,
one solution (suggested by Druschel [34]) is to map a send buffer into the address space
of each process. These buffers can be allocated/shared/revoked in a manner analogous to
physical memory.

Demultiplexing messages is a more difficult problem, since it requires associating a string
of bits with protocol-specific meaning. If backwards compatibility is not a constraint, this
is one area where the complete knowledge of the domain can be encoded easily in the
kernel: each message can be tagged with a process identifier; the kernel could directly vector
incoming messages to the associated process. This approach is used in [53]. Unfortunately,
networking has tremendous backwards compatibility constraints. An exuberant alternative
is to treat every process as a connection point and give it its own Ethernet address [61].
This allows simple vectoring and requires no protocol changes. Unfortunately there are
reasons why this cannot, in general, be done with impunity.

The traditional compromise between flexibility and backwards compatibility has been to
allow applications to demultiplex the messages themselves through packet filters [74]. Packet
filters are predicates written in a small type-safe language. Logically, packet filters examine
all incoming network packets; those messages that satisfy their predicate are delivered to
the filter's associated application. The obvious problem with this structure is ensuring
that a filter does not "lie" and accept packets destined for another process. Traditionally,
this problem is eliminated in two ways. First, each filter is associated with a priority,
such that filters with lower-priority cannot intercept messages destined for higher-priority
filters. Second, only trusted servers can install a packet-filter (this is another example of
a secure binding). Unfortunately, since applications are precluded from installing packet
filters directly, this structure limits flexibility. For instance, applications are limited to
those protocols known to the server, which removes their ability to experiment with novel
protocols.

Fortunately, we have a solution to this situation that is built upon the simple observation
that most applications do not care if other applications on the same node can view their

'In practice, there are more contexts than context identifiers, so auxiliary techniques are used to enforce
ownership.

messages (either because the messages are encrypted or because they are uninteresting).
Therefore, as long as other applications cannot consume a message intended for another,
it does not matter if a message is read. We split packet filters into those that care about
secrecy (i.e., those that consume their messages) and those that do not (i.e., those that do
not consume their messages). The first grouping has side-effects, the second is referentially
transparent. A filter that consumes its message can only be installed through trusted
servers; any packet that it accepts cannot be claimed by any other filter. However, if no
such filter accepts the packet, then the packet filter engine checks with each non-consuming
filter to see if it desires the packet: all those that do are given it.

This simple distinction allows applications that do not rely on packet filter measures
for security to directly install packet filters for any protocol they desire. We believe this
will allow nearly all applications to experiment at will: it is very rare for applications to
rely on packet filter measures, as opposed to encryption, for security. Furthermore, given
the ability of other nodes to "snoop" the wire, these applications likely have faulty security
assumptions in any event. In the subsection we discuss some practical concerns on making
this process efficient.

2.7.3 Aegis specifics

We only look at packet-filter issues here. Since each filter must be applied to each message,
computation rises linearly with the number of packet-filters installed. Fortunately, there
are very effective optimizations that can counter the cost of using packet-filters. We look
at both intra-filter [39] and inter-filter [109] optimizations.

The most effective intra-filter optimization is to dynamically generate the machine code
corresponding to the filter. Our prototype implementation shows that compiled packet
filters execute an order of magnitude more efficiently than when interpreted [39]. Thekkath
suggests this optimization in [98], but does not implement it.

Inter-filter optimizations revolve around the recognition of commonalities between fil-
ters: many filters look for similar packets (e.g., TCP, UDP, etc.) and therefore have large

overlap [109]. These commonalities can be used to collapse similar predicates, allowing
many filters to be pruned for each failed condition.

Unfortunately, recognition of overlaps has been hampered by the low-level nature of
current packet filter languages, which are typically pseudo-assembly languages. This low-

level representation allows a rudimentary interpreter to run with acceptable efficiency, but

destroys high-level information that could be used by a sophisticated compiler. This can

be seen in the current crop of inter-filter optimizers, which requires that filters be textually
equal from their initial statement onward in order to be grouped in equivalence classes

with other, similar packet filters (indeed, filters reversed in even a single instruction are not

recognized as equivalent [16]). Such a constraint is severely limiting on an exokernel system
that allows multiple applications to write and install their own packets. In effect, it would

require each filter writer to be aware of all other packet filters on the system in order to

write the filter in some "canonical" form. We have solved this problem by recognizing that
the over-specification of current filters is directly due to their low-level imperative nature.

Our solution is to use a medium-level declarative language (dpf) that does not impose
an ordering on its statements. Lack of statement ordering enables aggressive inter-filter

optimizations, since functional equivalence is no longer obscured by structural artifacts.

dpf is not the first declarative language for packet-filters. However, the other declarative

packet filter language that we know of (described in Bailey et al. [8]) does not utilize the

power of declarative specifications: predicates are not re-arranged to increase commonalities
and similar inter-filter "suffixes" are not utilized [77].

Once a destination process is found for a packet, the problem then becomes where to
put the message. We will allow packet filters to determine destination by adding support
for computation within the packet filter itself (this portion of the filter can be viewed as
an active message [102]). This ability directly eliminates the copying costs associated with
current filter implementations. (Concurrently with our work, the SPIN project is adding
active message support to the packet filter language MPF [16].)

2.8 Global Optimization

One of the most common concerns about an exokernel structure is that it disallows effective
global optimization. We address this concern by showing how the requirements of global
optimization can be separated from resource management for three of the most common
global optimizations done by traditional operating systems: tracking initialized pages, LRU
page replacement, and disk block allocation.

We believe that global system optimization does not require centralized resource man-
agement. Of all the exokernel principles, this is the most controversial. Given the lack of
a mature system it is difficult to verify; we briefly discuss three situations where effective
global optimization can be realized without resorting to centralized resource management.

2.8.1 Simple global optimizations

Many effective global optimizations are quite simple, and can be added directly to an exoker-
nel. An example is the tracking of zeroed pages. On systems with non-trusting applications,
it is important that no other application can read the "garbage" of another. Additionally,
in many situations, applications desire zero-initialized pages. Without operating system
support these two constraints will result in double initializations: the first process will clear
its pages of sensitive information and the second with pessimistically set its pages to zero.
However, an operating system can easily track which pages are already initialized and allo-
cate these to specific requests. An exokernel can track information about which pages are
zeroed as easily as a traditional operating system, and so does not make this optimization
any more difficult.

2.8.2 Working set derivation

A more challenging problem is how to derive the working set of various applications so that
page allocation can be spread equitably among them. This is a straight-forward operation
on a traditional operating system: it has access to all reference bits and can determine
whether page deallocation causes an increase in paging activity.

An exokernel has no intrinsic knowledge about the requirements and uses of any appli-
cation. Fortunately, derivations of working sets do not require such knowledge. Reference
information can be garnered by monitoring TLB insertions. The fact that page-revocation
induces paging can be derived by monitoring for increased physical-page allocation requests.
The latter action captures the information given by monitoring paging in a traditional op-
erating system. Indiscriminate resource requests can be actively discouraged by suspending
applications that request a resource that is in short supply.

2.8.3 Disk utilization

Disk arm latency is the crucial bottleneck in a disk system. An effective global policy, then,
attempts to ensure that the disk arm does not need to move frequently. This can be done
by allocating (or migrating) frequently accessed blocks along a narrow band (which lowers
seek time to requested blocks) and through the aggressive use of file-caching.

The difference in file-caching under an exokernel system is that the applications them-
selves manage these caches: whether this is done through proxy servers or directly is of
little concern - the characteristics and effectiveness of this file-buffer caching should not
suffer.

The only question, then, is how to ensure that the disk can form "hot sectors" that
minimize disk arm seeks. The first step in this has already been discussed: the disk block
free list and an approximation of the disk arm position is published, which allows disk
managers to explicitly allocate blocks close to the current disk arm position. The problem
then becomes how to multiplex this scarce resource in the face of heated contention. This
can be done in a direct manner by bounding the number of disk blocks applications can
allocate in hot regions.

However, we expect that in the common case application-level disk managers will ap-
proach good global utilization because of their sophistication. In the case of the limitation

of "good" disk blocks, disk managers will know that these blocks are very critical. Further-
more, they will realize that if they allocate too many of them the disk arm will have to seek

to another sector and therefore, the disk blocks that were so valuable before will become

less so. We believe all of these factors will encourage disk managers to wisely manage their

consumption of blocks in this very attractive territory.
Finally, the growing sophistication of disks will make them relatively impervious to any

form of disk management (or mis-management) [57]; as such, many of the mechanisms we

discuss will become irrelevant for effective disk performance.

2.9 Some Practical Considerations

As discussed in Section 2.2 centralization can have a simplifying effect on the system as a

whole. This section examines two areas where this simplicity can be recaptured without

forfeiting the flexibility of a distributed structure. The first is structuring an exokernel-based

system so that application-level operating system implementations are decoupled from each

other. The second is the very strong role servers can play in implementing operating system

abstractions.

2.9.1 Decoupled implementation

Operationally, traditional operating systems can be viewed as shared, dynamically linked li-

braries: as long as agreed upon integers are used for system calls, applications are effectively

decoupled from the actual operating system implementation. This decoupling is crucial in

terms of space: each application does not require its own copy of operating system text.

Furthermore, this decoupling is critical for backwards compatibility since it allows the oper-

ating system to be developed in a totally separate environment from applications: to use a

new operating system implementation, applications do not have to be re-linked (e.g., binary
compatibility can be achieved by radically different operating system implementations [24]).

There are a number of ways that exokernel-based systems can realize these same benefits.

The first is that a library operating system can use system call forwarding to communicate
with an application strictly through a system call interface. Servers can also be used as a
primitive form of dynamic linking: each server represents aggregates of code and data shared
among multiple processes, and can be accessed through well-known IPC ports. Finally, a
more customized approach is to use real dynamic linking, similar to what some modern
object-oriented systems implement.

While the methods we have listed entail more sophistication than the traditional inter-
action between operating systems and applications, we believe that this complication can
be minimized.

2.9.2 The role of servers

In this subsection we look at three important functions that have been performed by op-
erating systems: the breaking of self-referential loops in applications (e.g., an application
cannot "swap itself back in"), atomic actions and the management of shared, fault-isolated
caches. An exokernel-based system no longer has a single, centralized operating system that
knows the requirements and abstractions of the applications that utilize it; instead these
functions will have to be performed by application-level servers. Because these servers will
be critical, we briefly discuss the general requirements of these functions.

Self-referential loops

Self-referential loops occur when a process requires that an operation be performed on it
"from the outside": these are, typically, boot-strapping requirements. For example, for a
process to be "swapped in" requires the intercession of a third party that can set up page-
tables, etc. Similarly, an application requires help to "wake up" after suspension. Servers
can be used to perform these functions.

Atomicity

Implementation of some operations is aided by atomicity guarantees. For example, it can
be complicated for a running application to directly restructure its page-table, since pages
can be swapped out, mappings can change, etc. during the process. A simpler methodology
is for the application to be suspended by a third party who restructures the page-table, and
then unsuspend it. Again, this action can be done by servers.

Cache and binding management

Many of the issues discussed in this subsection have arisen previously in micro-kernel sys-
tems. We review some of the more subtle issues.

While applications can manage shared state directly, such an approach has poor fault-
isolation characteristics and, more to the point, is not viable between applications that do
not trust one another. A solution is to use a shared, fault-isolated cache that is managed by
a trusted (or at least highly accountable) entity. The uses of servers to manage caches (and
the bindings to them) are significantly more subtle than the simple use of boot-strapping.
There are roughly five properties that a server can ensure: that all accesses to it have the
appropriate access rights, that the cache is fault-isolated, that operations on the shared
state are well-formed, that shared state is kept coherent, and that appropriate bindings are
formed and managed. We consider each in turn.

The most obvious role of a server in cache management is that of guardian: the server
ensures that all operations to the shared state are by applications with appropriate creden-
tials.

The shared cache can be viewed as an object whose interface is guaranteed by its en-
capsulation in the server. This fault-isolation can take two forms. The first is simply the
use of address-space protection to prevent wild application writes. The second is the use of
the server's interface to ensure that all operations on this state are well-formed: the server
performs all operations and, therefore, applications do not have to be trusted to acquire ap-
propriate locks, update book-keeping data structures, etc. A nice property of this model is
that it maps directly onto the operating system's traditional role as a trusted manager [71].
Typically, servers are used to guarantee the correctness of operations to shared state when
a logical structure has been imposed on physical memory; this abstract structure cannot be
described (and hence, enforced) through the virtual memory system and so must be syn-

thesized at a "language level." For example, database managers ensure that all operations
to the database are well formed.

The role of coherence manager occurs when multiple applications cache certain objects
and require a trusted third party to manage the updates between them. For example, if two

applications concurrently read, modify and write-back disk block 4, one of their changes will

be overwritten. This calamity can be prevented by either merging the writes or by granting

exclusive access to the disk block. Either method can be safely performed by a server, which

can manage a cache of file-buffers, ensuring coherence, protection and fault-isolation [70].

The important property of this configuration is that applications do not have to trust each

other to manage objects correctly. Furthermore, boot-strapping is simplified: for example,

with a centralized disk block cache, a reader of a disk block does not have to ferret out all

writers to that disk block.
Binding and the management of bindings is also an important server role. Bindings

have to do with the granting of access rights to shared state: given appropriate credentials,

a server will form a binding between the application and a resource (e.g., perhaps through

memory mappings). Management of bindings involve tracking access rights and the chang-

ing conditions of the cache. For example, a binding formed to a resource with only a single

reader may need to be changed when a writer is added; or a binding may change because

the underlying physical resource involved changes. For instance, a binding of a logical to a

physical disk block may need to be updated if the information in the physical block is moved

during disk compaction. There are many examples of servers as managers of bindings. For

example, Maeda discusses a situation where a server manages a cache of file-buffers [70]. If

access rights are allowed, this server binds the file-buffer to the application (i.e., maps the

buffer into the processes address space); as conditions change, the server modifies this bind-

ing: if multiple readers and writers are manipulating the file the coherency requirements

are different than in the case of a single reader. A more simple-minded binding server could

be a text cache manager that dynamically links processes with the object code that they

require.
In closing, the reader should note that, paradoxically, the addition of servers to a system

can dramatically decrease the complexity of that system. Decreasing complexity through the

addition of entities is very unusual, and deserves some thought. In this case, it results from

the centralization servers can have on a system: servers can condense diffuse distributed

control into a single, centralized mechanism, with the expected simplification of interaction.

The judicious use of servers will allow an exokernel system to approach the simplicity of a

centralized system without sacrificing application-level resource management.

2.10 Summary

Exporting hardware to applications involves making tradeoffs in a design space that is
radically different from that explored in traditional operating systems. This chapter has
discussed a variety of design points in this space and has articulated a set of explicit prin-
ciples that can guide the design and implementation of an exokernel.

Chapter 3

An Exokernel System

This chapter describes two novel and interesting software systems whose organization is
built upon the simple principle of exposing all hardware functionality: Aegis, a prototype
exokernel, and ExOS, a prototype library operating system. Aegis is fundamentally dif-
ferent from any operating system, past or present; as such, the implementation details we
give should provide the reader with a firm grasp of what an exokernel actually looks like.
Furthermore, many of the issues that arise in an exokernel are intriguing in their own right.
The most unusual aspect of ExOS is that it manages fundamental operating system ab-
stractions (e.g., virtual memory and process mechanisms) at application-level, completely
within the address space of the application that is using it. To the best of our knowlege
ExOS is one of the first general-purpose library operating system implemented in a multi-
programming environment. (The Cache Kernel is investigating this approach concurrently
with our work [22].) For this reason, the implementation techniques we describe should
warrent the attention of the reader. Finally, this chapter describes some implementation
considerations that, while well known to some designers in the community, have not been
recorded: the specific details of user-level traps, design tradeoffs in software TLBs, and
exception handling conventions.

This chapter is a "snapshot" of the current implementation, provided to make the on-
going discussion more concrete, not as a a final implementation: the prototype currently
makes little provisions for device interrupts and has only rudimentary IPC binding and
system call interposition facilities. Furthermore, this implementation is primarily an ex-
ploratory one: we have not attempted to make the various pieces fit in a cohesive, unified
whole. Rather, we have concentrated on exposing the functionality of the hardware, and
providing the basic primitives that are required.

Section 3.1 gives a brief overview of our platform; Section 3.2 describes event handling
(both in general and in Aegis), specifically: exception forwarding, interrupt handling, and
upcalls. Section 3.3 discusses the internals of the current implementation; it explains the
data structures that define each object. Section 3.4 gives the current (rudimentary) system
call interface and Section 3.5 the full complement of privileged operations that can be
performed on the machine state. Section 3.6 highlights features of our library operating
system, ExOS. We conclude in Section 3.7.

3.1 Platform

An exokernel avoids portability: machine independent interfaces hide power, and require
resources to implement. As such the architecture for which an exokernel is designed for has
a profound impact on its structure and interface.

We base our exokernel on the MIPS architecture [54]; Aegis runs on the DECsta-
tion/MIPS family [54]. These machines have separate instruction and data caches, software
handled TLB faults, 64 context identifiers and a math coprocessor that controls floating-
point operations. The machine configurations that we use are uni-processor machines with
physically indexed caches, 31 general-purpose and 32 floating-point application-level regis-
ters.

TLB misses and exceptions are handled in software. The MIPS architecture specifies
two exception handlers: the first for user-TLB misses, the second for "everything else" (e.g.,
kernel TLB misses, interrupts, integer overflow, system calls, etc.). The MIPS ABI reserves
two registers for kernel use: kO and ki; it (roughly) divides general-purpose and floating
point register sets between caller and callee saved registers. Register zero holds the constant
0.

All privileged instructions are performed by co-processor 0, and most use the instructions
mtc0 (move to co-processor) and mfco (move from co-processor). Branches, loads and co-
processor operations have delay slots; the instruction set is a typical RISC.

The MIPS TLB hardware holds 64 entries. Each entry consists of two words: the first
contains a virtual page number and address space tag, the second the physical page that it
maps and the attributes of the mapping. Mapping attributes control whether the mapping is
cached, valid, dirty or "global". Global mappings do not check the context identifier on TLB
lookup; because the global attributes allow a TLB entry to match any application's virtual
address, it is the only capability Aegis does not export to applications. (This restriction
could be lifted if Aegis flushed the TLB when context-switching from processes that used
these bits.)

The following special registers will be referenced to in subsequent discussion (all infor-
mation taken from [54]):

status : the current process status word: supervisor and user mode bits and the status of
interrupts and co-processors (enabled or disabled).

tlbhi : contains the context identifier used to match the virtual address with a TLB entry
when virtual addresses are presented for translation.

tlblo : holds the low order 32 bits of a TLB entry when performing TLB read and write
operations.

tlbcxt : contains a pointer to a kernel virtual page table entry array (i.e., page table
pointer); it is used in the TLB refill handler. On all addressing exceptions (except
bus errors), this register holds the virtual page number (VPN) from the most recent
virtual address for which the translation was invalid.

tlbbad : contains the virtual address that most recently failed to have a valid translation.

epc : holds the exception program counter, i.e., the address where processing resumes after
an exception has been serviced.

cause : holds the cause of the last exception or interrupt. General purpose exceptions are
vectored through a common exception handler, this register is used to disambiguate
which particular exception occured.

To reclaim a context identifier or physical page, all mappings that involve it must be
flushed from the TLB. The MIPS hardware does not provide primitives to do these oper-
ations, so they must be performed by software. Furthermore, the non-coherent instruction
and data caches of the MIPS architecture require that special care be taken when pages
used for program text are reused. For example, as is common on machines with split in-
struction and data caches, initialization of these pages will not affect any instruction cache
lines that were derived from them. Therefore, if stale values for these pages still reside in
the instruction cache, a cache flush is required to ensure that the current instructions are
read.

3.2 Events

In this section we define the actions that occur in Aegis during exception and interrupt
processing and what is required to perform an upcall. Exceptions are synchronous events
corresponding to the current computation (e.g., a TLB miss). Interrupts, in contrast, are
asynchronous, and caused by external events: they may or may not be associated with the
current process. Upcalls transfer the program counter from one domain into another. They
are the building blocks of IPC.

The exokernel forwards all hardware exceptions except system calls and interrupts.
Generally, each exception or interrupt must have a save area to hold state. We look at two
methods for managing these save areas. The first method is to treat exceptional events
as function calls and dynamically allocate an activation record as each occurs. Unfortu-
nately, dynamic management adds overhead to the base case (e.g., it requires checks for
stack overflow, etc.). The alternative is to disallow "recursion" in these events and to stat-
ically allocate an activation record for each possible event that can occur simultaneously. 1
Recursion in this context means that handlers cannot cause or incur an exceptional event
of the type they were processing. For example, an exception handler dealing with integer
overflow must not itself incur an integer overflow exception.

The exokernel statically allocates event activation records. These activation records
are specified as physical memory locations at process creation (they can be subsequently
changed); they are authorized through capabilities, are 36 bytes in size, and cannot strad-
dle page boundaries. In the case of exceptions, applications are expected to refrain from
incurring additional exceptions during exception handling. The caveat to this constraint
is user-TLB exceptions. It would be overly restrictive to force applications to avoid TLB
misses while processing general exceptions, therefore Aegis allows the definition of a sepa-
rate TLB miss area. Interrupt handlers are either called with the given interrupt disabled
or must arrange that subsequent interrupts of the same type will not overwrite the current
interrupt state. For example, in the case of a network interrupt handler, Aegis will not
vector subsequent network interrupts to the application until the application is finished
processing the previous one.

1This organization is analogous to early versions of FORTRAN that, because they did not support
recursion, pre-allocated activations records at compile time.

We note that applications that wish to extend these semantics can do so through "pro-
logue" code that manages a stack of event save areas: when an exception or interrupt occurs,
its state is copied to a new event activation record; after this point, additional events can
occur without overwriting the previous state.

3.2.1 Exceptions

To forward an exception, Aegis:

* Saves three scratch registers into an agreed-upon save area. To avoid TLB exceptions,
Aegis does this operation using physical addresses.

* Loads the exception program counter, the last virtual address that failed to have
a valid translation, and the cause of the exception (included in this is information
about whether the exception occurred in a branch-delay slot and, on co-processor
faults, which co-processor was responsible).

* Uses the exception cause to perform an indirect jump to a user-specified program
counter value; execution resumes with the appropriate permissions set (e.g., interrupts
are re-enabled).

The application is then responsible for handling the exception and restoring any state
that was saved during exception forwarding. After processing the exception, applications
resume execution directly or initiate a system call that will restore saved registers and set
the program counter to a specified address. Allowing applications to return from their own
exceptions (without kernel intervention) requires that Aegis ensure that all state it saves
be available for user reconstruction. The means that all registers that are saved must be in
user-accessible memory locations, etc.

Currently, Aegis dispatches exceptions in 18 instructions. In the absence of cache misses
these 18 instructions consume 18 clock cycles. Figure 3-1 shows the MIPS assembly required
to do this (the data-structure fields it accesses are defined in Section 3.3). The low-level
nature of Aegis allows an extremely efficient implementation: exception forwarding requires
almost four times fewer instructions than the most highly-tuned implementation in the
literature [97]. Part of the reason for this improvement is that Aegis does not used mapped
data structures, and so does not have to carefully seperate out kernel TLB misses from the
more general class of exceptions in its exception demultiplexing routine. Another reason

for the improvement is the way in which the ExOS ABI allows application-level code to
manage the saving and restoring of registers as needed.

3.2.2 TLB exceptions

On the MIPS, the critical bottleneck in Aegis is the handling of user TLB misses: the entire
system will be unusable if these exceptions are inefficient. We discuss how applications can

effectively handle their own TLB misses and how the cost of this handling has been (largely)
eliminated.

Supporting application-level virtual memory

An application's virtual address space is partitioned into two segments. The first holds

normal application data and code. The second segment is used to hold exception handling

Forward an exception to the current environment.

1. Separate interrupts and system calls from user-exceptions.
mfc0 kO, cOcause # get cause of exception
nop # delay slot
and kl, kO, -(8<<2) & 255 # mask out syscalls and interrupts
beq k1, zero, sys-orint # jump to separate exception handler

2. Load pointer to current process
lui kl, HI(PSW.ENV)
lw kl, LO(PSW.ENV)(kl)
3. Index into user-exception vectc
and kO,kO, 254
add kO, kl, kO
lw k1, GENXSAVE-AREA(kl)
lw kO, ENVXH(kO)

4.
sw
sw
sw

load upper bits
load pointer

)r to find exception pc and save area.
remove upper bits of cause
index to exception handlers
load a pointer to the exception save area
load pointer to exception handler

Save 3 scratch registers.
aO, AO-.SAVE(kl)
al, A1SAVE(kl)
a2, A2SAVE(kl)

5. Load exception cause,
mfc0 aO, cOepc
mfc0 al, c0Otlbbad
mfcO a2, cO.cause

exception pc and exception virtual address.
load exception program counter
load virtual address of faulting instruction
load the cause register again

6. Return from exception (jump to user code and reset interrupts).
j kO # jump to exception handler
rfe # return from exception

Figure 3-1: Assembly code to perform exception forwarding (18 instructions)

code, page-tables, etc. The exokernel allows mappings in the second segment to be "pinned"
through guaranteed mappings. A miss on a guaranteed mapping will be handled by Aegis,
invisibly to the application. This frees the application from dealing with the intricacies of
boot-strapping the TLB and exception handlers that can take TLB misses. On a TLB miss,
the following actions occur:

1. The exokernel checks which segment the virtual address resides in. If it is in the
standard user segment, the exception is forwarded directly to the application. If it is
in the second region, Aegis first checks to see if it is a guaranteed mapping: if so, it
installs the TLB entry and continues, otherwise it forwards it to the application.

2. The application looks up the virtual address in its page-table structure, and if the
access is not allowed raises the appropriate exception (e.g., "segmentation fault"). If
the mapping is valid, the application constructs the appropriate TLB entry and its
associated capability and invokes the appropriate exokernel system routine.

3. The exokernel checks that the given capability corresponds to the access rights re-
quested by the application. If so, the mapping is installed in the TLB and software
TLB (STLB) [9, 49]; control is then returned to the application. Otherwise an error
is returned.

4. The application performs cleanup and resumes execution.

The obvious challenge in supporting application-level virtual memory is making it fast.
We accomplish this by overlaying the hardware TLB with a large software TLB (STLB)
to absorb capacity misses [9, 49]. On a TLB miss, Aegis first checks to see whether the
required mapping is in the STLB; if so, Aegis installs it and resumes execution. Otherwise,
the miss is forwarded to the application. The efficiency gains the STLB enables are belied
by the modest expenditure of memory it requires.

We briefly discuss STLB structuring issues; these insights, while not new, are not dis-
cussed elsewhere in the literature: we explore them to remove the current necessity of
re-inventing the STLB design space.

At a high-level there are two competing STLB designs: a unified STLB, multiplexed
among all applications and a private, per-process STLB. The important tradeoffs are dis-
cussed below.

Unified STLB: this structure shares space well (in a manner similar unified instruction
and data caches), and its size and location are easily "fixed" at compile time, allowing
these values to be encoded as constants. It has three main disadvantages: (1) multiple,
possibly similar, address streams must be merged, increasing the probability of patho-
logical "worst-case" behavior; (2) a more complicated hash function (since, again, it
must merge multiple address streams); and (3) its large size can make flushing invalid
mappings expensive.

Private STLB: this structure allows an efficient hash function and eliminates the need

to merge multiple address streams. Additionally, since the STLB only maps a single
address space, the context identifier is implicit in the structure, removing the require-
ment that the STLB be flushed when the context identifier is reused. There are two

disadvantages: (1) large private STLBs waste space and small private STLBs waste

time, and (2) for efficient hashing either there can only be a single STLB size, fixed at

compile time, or the STLB hash function must be generated "on the fly" at runtime.
The former approach is inflexible; the latter can increase context-switching costs (the
MIPS TLB miss handler resides at a fixed address, forcing specialized TLB handlers
to be copied to this location on every context-switch).

Less importantly, the simpler hash fucntion that can be used in a private STLB allows
ranges of virtual addresses to be flushed more efficiently than in a unified STLB. It is
not clear if this difference is important outside the context of micro-benchmarks.

Currently we use a unified STLB. To improve hashing coverage and to decrease the
number of TLB flushes that occur when context identifiers are recycled, each process is
associated with an 11 bit tag field: this field is constant over the process' life-time, and is
recycled infrequently. To decrease the likelihood of "worst-case" hashing collisions, the tag
is selected randomly from a collection of 211 - 1 tags. The STLB contains 4096 entries of 8
bytes each; it is a direct-mapped, resides in unmapped physical memory, and on an STLB
"hit", replaces the desired mapping in 18 instructions - the additional load it adds (to
check the virtual address space tag) resides in the same cache line as the mapping, and so
does not add additional cache miss overhead.

As dictated by the exokernel principle of exposing kernel book-keeping structures, the
STLB is mapped using a well-known capability, allowing applications to efficiently probe
for entries, etc.

The structure of our STLB is given in Figure 3-2; the assembly code required to index
into it is given in Figure 3-3. To avoid the worst-case behavior of a direct mapped STLB,
we will likely move to a two-way set-associative structure as the implementation matures

(as is used in Rialto [33] and PA-RISC operating systems [49]). Another alternative is the
use of a "victim cache" [52] to absorb STLB conflicts.

As noted in Huck [49], avoiding cache misses is crucial for efficient TLB replacement.
This constraint can have a noticeable impact on TLB lookup. For example, currently we
expend one cycle aligning the tlbctx register to 8-bytes; this instruction could be eliminated
by separating the STLB tag from the entry it maps. However, doing so would put them on
different cache lines and could thus result in an additional cache miss.

As a philosophical tie-in, the reader should carefully note the large number of tradeoffs
involved in realizing an abstraction as simple as an STLB: the tradeoffs made in implement-
ing traditional, high-level operating system abstractions should be frightening!

The STLB is the largest "non-essential" abstraction in Aegis. Unfortunately, despite
the tradeoffs in its design, it appears to be required. To put a sharp point on it: we eat
dinner with the devil, but hope the spoon is long.

3.2.3 Interrupts

Interrupts are caused by external events (e.g., timers, I/O devices). For our purposes,
the only difference between interrupts and exceptions is that interrupts involve scheduling
decisions: either the destination process is "woken up" or the interrupt is enqueued for
later delivery. Currently, Aegis handles only timer interrupts. As it is extended to include
disk and network drivers, time-slices will be accorded a modicum of control over interrupt
delivery: a sequence of bits will be associated with each time-slice indicating whether it can
be pre-empted by a particular interrupt.

Timer interrupts denote the beginning and end of time-slices, and are delivered in a
manner similar to exceptions: a register is saved in the "interrupt save area", the excep-

struct stlb {
/* STLB tag: the contents of the TLB context register (cO-tlbctx) */
unsigned :2,

vpn:19, /* bad virtual page number ,/
tag:ll; /* 11 bit tag associated (pseudo-randomly) with each process */

/* TLB entry */
unsigned :8, /* reserved ,/

g:l, /* Global: TLB ignores the PID match req ,/
v:l, /* Valid: if not set, TLBL or TLBS miss occurs*/
d:1, /* Dirty s/
n:l, /* Non-cacheable. ,/
pfn:20; /* Page frame number */

Figure 3-2: STLB structure

tion program counter is loaded, and Aegis jumps to user-specified interrupt handling code
with interrupts re-enabled. The application's handlers are responsible for general-purpose
context-switching: saving and restoring live registers, releasing locks, etc. The time the
application has to save its state is bounded: if this limit is exceeded, Aegis destroys the
application. In a more mature implementation the kernel will simply context-switch the
application "by hand."

3.2.4 Upcalls

Aegis provides an upcall [25] mechanism as a substrate for implementing efficient IPC mech-
anisms (e.g., [12, 48, 67]). An upcall is a light-weight, cross-domain calling mechanism.
Operationally, an upcall changes the value of the PC in the caller to an agreed-upon value
in the callee (the "gate" [62]), donates the current time-slice, and installs the destination
domain's context (context identifier, address space tag, and process status word).

Two flavors of upcalls are provided: synchronous and asynchronous. Synchronous up-
calls transfer ownership of the current time-slice to the callee; the callee can return the
time-slice via a synchronous upcall back into the original caller. Asynchronous upcalls
simply donate the remainder of the current time-slice to the callee. Both implementations
guarantee two important properties: (1) to applications, an upcall is atomic: once begun,
it will arrive at the callee's gate; (2) the exokernel will not overwrite any application-visible
register. Among their advantages, these properties allow the vast register state of modern

processors to be used as a temporary message buffer [23].
Currently, our synchronous upcall implementation costs 30 instructions. Because Aegis

implements the bare minimum required for any IPC mechanism, applications can pay for
just the functionality they require. This is a very important property, since it allows IPC to
be optimized for application-specific conditions. For example, upcalls between clients and
trusted servers can be optimized by allowing the server to save and restore any registers
that it uses, rather than requiring that the client save and restore its entire register state
on every IPC. To the best of our knowlege, Aegis is the first operating system whose IPC
semantics allow such conditions to be exploited.

Approximately a third of the IPC cost is due to the fact that the MIPS architecture
requires that the system call "exception" be disambiguated from other hardware excep-

Software refill of TLB: uses an STLB cache.

1. Compute hash function
mfc0 kO, cO0tlbcxt # get virtual page-number and 11-bit process tag
mfc0 k1, c0_tlbcxt # twice

Our hash function combines process tag with the lower bits of the virtual
page number (VPN) that missed:
(((cOtlbcxt << 17 ^ cO.tlbctx) >> 16) & STLB.MASK&~7)
sil kO, kO, 17 # move VPN up
xor kl, kO, k1 # combine with process tag
srl kl, kl, 16 # move down (8 byte align)
andi kO, k1, STLBMASK & "7 # remove upper and lower bits.

2. Index into STLB
lui k1, HI(stlb)
add kl, kO, kl

3. Load the physical page
lw kO, LO(stlb)+4(kl)
lw kl, LO(stlb)+O(kl)

load STLB (at known location)
index into STLB

entry and STLB tag
TLB entry
STLB tag

4. Load TLB: we first load the fetched TLB entry into tlblo (but do not write
this register into the TLB); we then re-fetch tlbcxt in preparation to its
comparison to the STLB tag.
mtcO kO, cOAlblo # (optimistically) load TLB entry
mfc0 kO, cO0tlbcxt # get context again
nop

5. Check tag (does not
bne kO, k1, stlb.miss
mfc0 kl, c0_epc

delay slot

match -> jump to miss handler)
compare tags to see if we got a hit
get exception program counter

6. Tags matched: install entry into the TLB
tlbwr # write tlblo to TLB

7. Return from exception
jump to resumption address
return from exception

Figure 3-3: Assembly code used by Aegis to lookup mapping in STLB (18 instructions).

tions. The remaining twenty instructions can be slightly reduced with straight forward
optimizations. The assembly code for synchronous upcalls is given in Figure 3-4.

3.3 Objects

Currently, Aegis supports five objects: capabilities, time-slices, pages, context identifiers,
and environments. This section introduces the data structures and operations that can be
performed on these objects. In general the design has emphasized simplicity. For example,
static allocation is used throughout the implementation, in a manner similar to [22, 78].
Also, the Aegis implementation is completely unmapped (both code and data), eliminating
the complication (and inefficiency) of virtual memory.

3.3.1 Capabilities

Capabilities consist of the resource name and a random sequence of bits; they are untyped
and may be passed freely as data. Capabilities are application-specified: at allocation, the
application presents the capabilities to which it wants the object to be bound. This allows
"well-known" capabilities to be used to access resources, enabling a distributed notion of
sharing. The owner of the resource can change any of the capabilities (or delete the object);
there are no provisions (yet) to have more than one owner or to transfer ownership. The
current implementation uses 32-bit capabilities; this small size has been chosen strictly for
convenience in writing the assembly language routines that use capabilities. The structures
involved are given in Figure 3-5.

Capability checks occur at resource-usage points. Because these checks can add overhead
to certain operations, Aegis allows certain uses to be bound. For example, applications can
insert bindings of virtual to physical pages in the TLB rather than have every memory
access require a capability check. Less obvious areas include the exception save areas and
guaranteed mappings. Logically, all bindings are flushed when the resource is deallocated.

3.3.2 Time-Slices

The time-slice structure is shown in Figure 3-6. The CPU is represented as sequence
of time-slices; the number of time-slices is a compile-time parameter. Each time-slice has
the length of the configured clock granularity (in the current implementation, 15.625 mil-
liseconds). Usable time-slices are associated with an environment: a null environment value
causes the time-slice to be skipped. Possessors of the write capability (wc) can change the
environment which will be resumed when the time-slice is initiated.

The important fields in the time-slice structure are ticks and int. ticks is used
to provide fairness by bounding the time an application takes to save its context: each
subsequent timer interrupt is recorded, and when a threshold is exceeded, the environment
is destroyed. When a time-slice is selected to run, ticks is checked: if its value is non-zero,
ticks is decremented and the time-slice is skipped; if its value is zero, the time-slice is
initiated. int indicates whether the time-slice can be pre-empted due to a device interrupt

(currently int is unused).
The representation of the CPU that Aegis uses (i.e., as a vector of time-slices) is unique;

an important property (discussed previously) is the notion of position that it encodes. The
exokernel cycles through the time-slices in a round-robin sequence. This simple scheduler

can support a wide range of higher-level scheduling policies. For example, a server could

Perform a synchronous upcall between environments.
Get rid of at least 6 instructions; bias towards IPC rather than
exceptions (can get rid of status register?)

1. Separate interrupts and system calls from user-exceptions (5 instructions).
mfc0 kO, cOcause # get cause of exception
nop # delay slot
and kl, kO, -(8<<2) & 255 # mask out syscalls and interrupts
beq k1, zero, sys-or-int # jump to separate exception handler
lui k1, HI(PSW.ENV) # load upper bits to process status word

... << exception handling code >> ...

sys-orintx:
2. Separate interrupts from system calls.
and kO, kO, 254
beq kO, zero, interrupt # interr
andi kO,a0,0x007f # force
beq tO, AEPC, ipc # specia
sll kO,kO,ENV.SHIFT.BITS # shift i
j sysx # some
nop

3. Perform IPC (heavily scheduled code)
ipc:

4. Load and install destination Context (
la tO, env # load e
addu kO, kO,tO # index
lb tO, ENVCID(kO) # get d(
lw aO, LO(CUR-ENV)(kl) # load I
bltz tO, ciddeallocated # make
sw kO, LO(CUR-ENV)(kl) # pswe
sll tO, TLB.HILPIDSHIFT # line u
mtcO tO, cO-tlbhi # assert
lh k1, ENV.TAG(kO) # load a
lb aO, ENV.ENVN(aO) # load e
sll kl, k1, PTEBaseSHIFT # move
mtcO kl, cOtlbcxt # set ne
1w k1, ENV-GATE(kO) # load g
lw kO, ENV.STATUS(kO) # load s
mtcO kO, cO.status # set st
j k1 # gate(p
rfe

upt has code = 0
legal IPC index
•1 case syscall: check to sec
index
other system call

20 instructions)
nvironment pointer
into it
:stination context id
)ointer to current environ
sure it has a CID
nv = e
p pid bits
new pid

Lddress tag
nviron identifier
tag into correct location
w context
;ate
tatus register
atus register
)sw)

Figure 3-4: Assembly code to perform a synchronous upcall

e if IPC

struct auth {
unsigned n:12,

prot:2,
cap:AUTHSZ;

/, name ,/
/* page-protection */
/* capability */

Figure 3-5: Capability representations

struct slice {
struct auth

struct env
unsigned short

wc,

rc;
*e;
next,
prey,
ticks,
int: 1;

write capability */
read capability */
associated environment (null if no one) */
next slice */
previous slice */
ticks consumed in interrupts */
whether it can be pre-empted on interrupts */

Figure 3-6: Slice data structure

enforce proportional sharing (perhaps through lottery scheduling [105]) on a collection of
sub-processes by allocating a number of time-slices; as each time-slice is initiated the server
first determines which of its sub-process should run and then enables it by performing
a yield system call to the chosen process. The exokernel's efficient implementation of
yield allows high-level schedulers to perform their operations with minimal overhead (this
overhead is measured in Section 4.3).

3.3.3 Page

The page structure is given in Figure 3-7. Each physical page has an associated page
structure; the finest granularity of allocation is a single page. The minimum state for each
page is quite simple: capabilities for read and write accesses. Applications that have the
capabilities for a given page can install TLB bindings, issue DMA operations, and use it
for exception save areas.

To support two 64-bit capabilities per page requires 16 bytes per page; assuming 4K
pages, this translates into an overhead of 16/4096 = 0.4%.

/* page structure */
struct page {

struct auth wc,

re;
/* write capability ,/
/* read capability */

Figure 3-7: Page data structure

3.3.4 Context identifier

Context identifiers are not associated with capabilities but are instead numbered by small
integers. Each environment can allocate a small number of CIDs; they are installed via
a system call. The ability to explicitly switch context identifiers allows an application to
cheaply switch between multiple protection domains within itself.

Attentive readers will recognize that the representation of context identifiers violates a
number of exokernel principles (e.g., that revocation is visible and naming is physical). We
have made these violations with full awareness: they are necessary to allow efficient, fluid
reclamation. These reasons are discussed more thoroughly in Section 2.4.

3.3.5 Environment

An environment is the unit of accountability in Aegis: all resource consumption is associated
with an environment.

Environments contain the contexts required to define an address space and execution
environment; they are the most complicated entities Aegis supports. Four distinct events
can happen during program execution: an exception, an interrupt, an upcall, and an address
translation. Environments must contain the four contexts required to support these events.
Therefore, at a high-level, an environment exactly represents the binding of the following
contexts:

* An exception context that includes values that the program counter should be set to
when a given exception occurs (xh) and pointers to physical memory where registers
can be saved when an exception occurs (tlbx.savearea and genxsavearea).

* An execution context that specifies PC values to both initiate (pro) and complete
(epi) time-slices, a register save area (intx.save_area) for timer interrupts, and a
status register (controlling what co-processors and interrupts are enabled). As devices
are included into Aegis, this context will be expanded.

* An upcall context that specifies legal PC values for synchronous (syncgate) and
asynchronous (asyncgate) upcalls. Currently, Aegis does not manage IPC bindings.
This implies that any environment can call into any other - access control is managed
by the application itself. Experience will indicate whether this task is too difficult.

* An addressing context that consists of a set of guaranteed mappings (xl, used to map
the environment's page-table, exception handling code), exception stacks, an address
space identifier (cid) and a tag used to hash into the system STLB (tag). To switch
from one environment to another, Aegis must install these values (and that of the
status register).

These are the base set of contexts required to define a process. All contexts require the others
for validity: for example, an addressing context does not make sense without an execution
or exception context. Currently, it is not possible to selectively substitute contexts. For
example, it is not possible to have multiple exception contexts within the same addressing
context: to achieve this structure, the application must either emulate it, or create a new
environment. We have not found it useful to separate these contexts.

The read and write capabilities (rc and wc) allow an environment to alter the fields of
another. This enables a server process to control an environment's exception context, base

exception handler type:
epc is the exception pc;
cause is the exception cause;
badaddr is the last bad virtual address.

typedef void (*exht)(unsigned epc, unsigned cause, addrt badaddr);

/* interrupt handler: epc holds the exception program counter. */
typedef void (*inth-t)(unsigned epc);

/* upcall: caller is the environment id of calling environment. */
typedef void (*upcall-t)(unsigned caller);

struct env {
struct autht wc, /* Write capability. */

rc; /* Read capability. */
exh_t xh[NEX]; /* Hardware exception handlers. */
inth_t pro, /* Prologue code. */

epi, /* Epilogue code. */
init; /* Called to initiate environment and hold continuation. */

addr-t tlbxisave-area, /* Save area for TLB refill exceptions. */
genxsavearea, /* Save area for general hardware exceptions. */
intx.savearea; /* Save area for timer-interrupts. */

* The following four fields are clustered to be on the same cache line(s); they
* completely characterize the context of the environment. These fields are what
* is installed on context-switching by Aegis.

signed char cid;
unsigned char envn;
unsigned tag:11;
unsigned status;
upcallt sync_gate,

async-gate;
struct tlb xl[MAXXL];

Address space identifier. */
Environment number. */
11 bit tag. */
Status register. */
Synchronous upcall entry point. */
Asynchronous upcall entry point. */
Guaranteed translations. */

Figure 3-8: Environment data structure

mappings, etc. More powerfully, it allows environments to allocate resources and charge
them to another environment. The rc capability allows the named resource to be read by
a given environment.

The envn field stores the current environment number: this is simply a time optimization
for upcalls.

3.4 System Calls

The following are a subset of the system calls provided by Aegis:
int yield(int who)

Yield the current time-slice to environment who; the flag AE.RANDOM causes
the destination to be chosen randomly. When the yielding application's next
time-slice is initiated, its execution resumes on the instruction after the system
call, without going through prologue code.

int sync.upcall(int who)

Perform a synchronous upcall into environment who. The current time-slice is
donated until the callee re-donates the time-slice (through either a synchronous
upcall back or explicit donation). The upcall fails if who does not exist (e.g.,
it has been deallocated). The exokernel does not alter any application-visible
registers on this call, allowing all registers to be used to pass messages. Once
initiated, the call completes in the destination address space.

int async.upcall(int who)

Peform an asynchronous upcall into environment who. The remainder of the
current time-slice is yielded to the callee; execution resumes at the instruction
after the system call, without going through the prologue code. The upcall fails
if who does not exist (e.g., it has been deallocated). The exokernel does not
touch any user-visible registers on this call, allowing all registers to be used to
pass messages. Once initiated, the upcall will complete in the other address
space.

int alloc(int type, auth c, void *obj)

Allocate a resource of type type to owner c initialized to the values in obj.
The following resources can be allocated: pages, environments, time-slices, and
context identifiers. type gives the type of resource to allocate: AEPAGE, AE.ENV,
AESLICE and AE.CID. c gives the write capability for the environment that
will be charged for the resource. If c is set to -1, then the object is allocated
to the current environment. obj holds the address of a page, time-slice or
environment structure (it is NULL when allocating context identifiers). Objects
can be requested by name (e.g., page 5). The exokernel publishes the "free list"
associated with each object, allowing applications to derive an accurate picture
of which resources are available. On success, the object name is returned.

int dealloc(int type, struct auth c)

Deallocate object c of type type.

int dmacpy(auth dst, auth src, int flags)

Page-sized DMA (possibly software-emulated): dst is the write capability
for the destination page, src the read capability for the source page. flags
indicates whether the source or destination should be cached or not.

int dmaset(auth dst, unsigned val, int flags)

Page-sized DMA (possibly software-emulated): dst holds the destination
page's write capability, val the value to be written, and flags whether the
write will be cached.

int getrate(void)

Returns the current clock rate in milliseconds.

struct {unsigned hi, lo; } gettick(void)

Returns the current clock tick.

Errors

The following errors can be produced exokernel system calls:

AEPERMIDENIED: The appropriate capability was not provided.

AEBOGUSNAME: The given resource does not exist.

AEBOGUS.TYPE: The requested type does not exist.

AEDEADENV: The called environment has been terminated.

AE-OFREE: There are no unallocated instances of the resource.

3.5 Primitive Operations

The exokernel supplies a number of primitive operations that should be viewed as pseudo-
instructions (similar to the Alpha's use of PALcode [88]). Each operation is guaranteed to
not alter the value of any application register: as such it can be used to read and write
machine state without requiring the saving and restoring of appropriate registers, etc. Some
of these instructions are aggregates of underlying hardware instructions: they are provided
to meet atomicity requirements (e.g., writing to the TLB is a single operation). With the

ability to download application code into the kernel, these operations would be unnecessary.
Interestingly, the ability to download code into the kernel [13, 31, 36, 104] would simplify

the interface: Aegis would not have to provide all "reasonable" machine instructions and

their aggregates but, instead, would just make the underlying hardware securely visible to

applications.
An important implementation note is that the MIPS ABI splits the register set into

callee- and caller-saved registers. To efficiently implement primitive operations requires ei-

ther that the operation be coded in assembly or that the calling conventions be changed (i.e.,
so that caller-saved registers are not overwritten). Fortunately, the GNU C compiler [90]
allows command line alterations of the register convention. This allows primitive operations

(and other routines that must assume all registers are "live") to be coded in ANSI C and

still have guarantees that they will not trample caller-saved registers. As a final implemen-
tation note, Aegis will likely remove the need to check for error codes in these operations:

those that complete successfully will resume execution with the PC set to three instructions
beyond their call site; those that fail will resume execution immediately after the call site.

This convention will allow very light-weight error detection.

The provided operations are in relation to the current process; in the future, a layer of
indirection may be added to allow server processes to more easily control their dependents.

int mfcO(int reg)

Coprocessor 0 is the conduit of all privileged instructions. Its registers hold
many useful values (e.g., the process status word, etc.). Applications can read
any of these registers using this primitive operation. The specific register to be
read is specified by reg, which is a flag formed by capitalizing the register name
as given in [54] and prepending AE. (e.g., AECONTEXT, AEERROR, AE.STATUS,
AE.BADVADDR, etc.).

int tlbwr(unsigned hi, unsigned lo, auth c)

Insert the given virtual to physical translation in a pseudo-random TLB
entry. The exokernel probes the TLB and deletes the mapping if it is already
present.

int tlbwi(int index, unsigned hi, unsigned lo, auth c)

Insert the given virtual to physical translation at the hardware TLB line
given by index. The exokernel probes the TLB and deletes the mapping if it is
already present.

int tlb.vadelete(unsigned hi)

Delete the indicated virtual mapping; returns the mapping or -1.

int tlb.padelete(unsigned pfn)

Delete the indicated physical page.

int tlbprobe(unsigned hi)

Probe for a particular mapping; returns the low part of the mapping or -1.

struct { unsigned hi, lo; } tlbr(int index)

Read indexed hardware TLB entry; it is returned in indicated structure.
(The STLB can be mapped by applications, removing the need to provide a
similar instruction for it.)

int tlbdirty(unsigned hi)

Delete dirty bit in virtual mapping hi; returns previous value or -1 if there
was no match.

int tlbcache(unsigned hi, int cache)

Change cache bit in virtual mapping hi; returns previous value or -1 if there
was no match.

int tlb.hwflush(unsigned lo, unsigned hi)

Flush all hardware TLB mappings from lo to hi (inclusive).

tlbswflush(unsigned lo, unsigned hi)

Flush software TLB mappings from lo to hi (inclusive).

Ox80000000

0x00401000

Ox00400000

0x00006000

0x00005000

Figure 3-9: The address space structure of ExOS-based applications

int cid_.switch(unsigned cid)

Install the context identifier cid.

int fpu_mod(int flag)

Enable or disable the floating-point co-processor. Returns the previous value.

void intrfe(unsigned epc)

Return from interrupt. Restores the system call index register and the argu-
ment zero register; this primitive is used if the application is not able to simul-
taneously restore interrupt state while jumping to the interrupt site. (Similar
functions are provided for general exceptions and TLB exceptions.)

3.6 ExOS: A Simple Library Operating System

This section gives a few details of our prototype library operating system: ExOS. The
current system supports time-sharing, exceptions, virtual memory and process creation.
We briefly discuss these issues below.

3.6.1 ExOS ABI conventions

The virtual address space structure is given in Figure 3-9. An important implementation
point is that the exception and interrupt "save areas" are located in the lower 15 bits
of the virtual address space. This allows loads and stores to be done directly using the

Rest of user address space

Mpped ception code (contextIswitching,
TLB handler and general exception handleris

Pa tb ea aflows contigious page
tables; mappedusing guarenteed mappings

Exception area; pinned; holds the thbee
exception save arens (128 bytes in siZe)
and 3 exception stacks (1024 bytes in size)

UmnmIpped

"zero" register (instead of loading an offset register with the save area pointer and somehow
restoring it). This allows efficient exception handling and easy state restoration after an
exception has been processed.

The MIPS ABI reserves the registers kO and ki for the operating system. Since the
application-level operating system has to perform most of the functions that motivated
these registers, ExOS extends the MIPS ABI to include two application-level operating
system registers: uO and ul (these were formerly the callee-saved s6 and s7 registers). In
our experience, compilers on the MIPS do not make effective use of all callee-saved registers
anyway, so this is not a traumatic modification (and has the small added benefit of making
context-switching faster).

3.6.2 The live-register problem

This section discusses how an application can return from an exception or interrupt without
kernel intervention. In the following discussion we use the term exception to refer to both
interrupts and exceptions.

As a general rule, exceptions and interrupts can occur when all registers are live. To
resume execution after processing an exception, the application needs to jump to the excep-
tion address using a register while simultaneously restoring this register. This requirement
raises two challenges: the first is how to restore the register without requiring another reg-
ister (which in turn would have to be restored, which requires another register, ...). The
second is how to simultaneously restore a register and perform a jump using it. The first
problem can be solved directly: because ExOS defines save areas low in the address space,
registers can be restored using register zero as the offset register; this register always holds
the constant zero and so does not need to be restored. For example, to restore register ri:

lw rl, R1SAVEAREA(zero) # restore rl at constant offset R1.SAVE=AREA
(this constant must be < 2^ 15)

The second problem appears to have an easy solution as well: on the MIPS, jumps have
delay slots. Therefore, the code sequence to jump and restore a register "simultaneously"
could look like (again, we use ri):

j rl # jump using rl
lw rl, RlSAVE.AREA(zero) # restore rl in the delay slot

Unfortunately, loads have a delay slot as well. This implies that the behavior of the jump's
destination will be undefined if it uses ri. Therefore, we need to guarantee the invariant
that the destination instruction cannot use the register restored in the delay slot. This
invariant is guaranteed using two mechanisms: the first relates to application code, the
second to library operating system code. The ExOS ABI prohibits application code from
using uO. Therefore, if we return from an exception using this register, we are guaranteed
that if application code initiated the exception, there will be no conflict. The other case
we must handle is when the library operating system itself causes an exception. We handle
this case by simply ensuring that a piece of exception handling code that uses uO cannot
take an exception. This code is expected to avoid the general hardware exceptions (e.g.,
integer-overflow, unaligned pointer accesses, etc). To prevent TLB exceptions, all code that
uses uO must be mapped using a "guaranteed mapping" (ensuring that it will not take

exception handler to deal with unaligned pointers
unaligned-handler:

... process exception ...
j rfe-trampoline # call trampoline to restore exception state
nop

aO holds exception pc: restore this and jump to the value it holds
rfe-trampoline:

move uO, aO # move aO to uO
lw aO, AOSAVE(zero) # restore aO
j u0 # jump to exception pc
nop

Figure 3-10: Return from exception using a trampoline function

an application-visible TLB exception). Obviously mapping all the application and ExOS
exception handling code using guaranteed mappings would consume significant resources.
To prevent this situation, a small "trampoline" function is used to restore exception state:
general exception handlers do not use uO or restore their own state but, instead, jump to
this function to restore the execution context (this code is given in Figure 3-10). In this
manner, very little code must be mapped and exceptions are handled extremely quickly.

Variants of the above method has been used by Bedichek [11] and Thekkath [96]. An
alternative solution is to return control using the kernel. Given the exokernel's efficient
system call dispatching, this method may not be unacceptable for real applications.

3.6.3 Time-sharing

As discussed previously, Aegis calls application-supplied prologue and epilogue code on time-
slice initiation and completion, respectively. ExOS does not stack interrupts, so saving and
restoring state is more complicated than necessary. The problem that must be solved is that
a timer-interrupt can occur while the application context is being restored. In practice this
means that some of the registers will have been restored to their correct value, while the
others will have garbage left over from the previous application. If the epilogue code blindly
saved all registers it would overwrite correct values with these garbage values. To solve this
problem, the epilogue code simply checks to see if the program counter was in the prologue.
If it was, then the epilogue does not save the application's state and returns control to
the operating system. A final problem that must be solved is that an interrupt can occur
when processing exceptions, in which case the two registers uO and ui could be live. This
situation is a variant of the live-register problem discussed in the previous subsection. It
is solved by requiring that all code that uses uO or ul be placed at the beginning of the

text segment. This organization allows ExOS to perform a simple conditional check on the
program counter to see if it lies in this region or not. If the PC points to an instruction

in this segment, ExOS returns control to the application using the exokernel's rfe routine.
Otherwise, it restores the application's state using u0 and ul and returns directly.

It should be noted that this complication is introduced as an optimization: ExOS could
always return using the rfe system call. As we identify the bottlenecks in the system, this
optimization may well be dropped.

3.6.4 Exceptions

With the exception of system calls, applications receive all exceptions directly. The ex-
okernel demultiplexes the exception cause and transfers control to an application-specified
exception handler. Applications are then responsible for handling the cause of the exception
and resuming execution. In the future, to allow simple decoupling between applications and
their library operating systems, the exokernel will allow system calls to be vectored directly
to an application-level handler.

Exceptions are forwarded very efficiently; we measure and discuss uses for fast exceptions
in Section 3.2.1.

3.6.5 Virtual memory

ExOS provides a rudimentary virtual memory system (its size is approximately 400 lines of
code). Its two main limitations are that it does not handle swapping and that page-tables
are implemented as a linear vector (address tranlations are looked up in this structure using
binary search). Barring these two implementation constraints, its interface is richer than any
other virtual memory system we know of: it provides flexible support for aliasing, sharing,
disabling and enabling of caching on a per-page basis, specific page-allocation, DMA, etc.

The cost of application-level virtual memory is measured in Section 4.6; we also detail
a myriad of uses for flexible application-level virtual memory.

3.6.6 Process creation

ExOS provides several fork variants (similar in spirit to the Plan9 rfork mechanisms [100]).
Fork requires a few hundred lines of code, most deal with duplication of the page-table.
Fork is interesting since it requires that the executing process create a clone of itself while
running and do so without directly manipulating physical memory. The latter constraint
can be dealt with effectively using Aegis' DMA support. DMA is not only efficient but is
also a simplifying primitive since temporary virtual address mappings do not need to be
installed for a single copy and then deleted.

3.7 Summary

We have described two novel software systems, Aegis and ExOS, and some pragmatic dis-
cussion of their realization. Aegis is an existence proof that an exokernel is not difficult to
implement; ExOS is an existence proof that an exokernel is not difficult to use. The most in-
teresting feature of these systems are that virtual-memory, process and trap management is
located entirely in application-space, allowing an unprecedented degree of application-level
control over how fundamental system abstractions are implemented.

Chapter 4

Application-level Implementations
of Basic OS Abstractions

The exokernel exports hardware interfaces directly to application level, allowing efficient and
flexible implementation and redefinition of traditionally kernel-level services. In this chapter
we motivate the need for more flexible and efficient implementations of basic operating
system services: IPC, virtual memory, process creation, exception handling and protection
domains. For each of the examples we measure the key operations that they depend on;
these results are compared against those obtained on a mature monolithic operating system.

While all of the examples show can be implemented directly in application-space on top
of the exokernel, the majority cannot be implemented efficiently (or at all) on any other
current operating system. There are four basic reasons for this inability. First, traditional
OS-enforced abstractions of hardware resources hide valuable information, giving applica-
tions very little control over hardware resources. Second, operating systems necessarily make
trade-offs in implementing abstraction. Since many trade-offs are application-dependent,
this leads to poor performance in applications that were neglected or not anticipated by the
kernel architects (e.g., LRU and MRU page replacement policies). Third, OS abstractions
have to be more general and thus more expensive than specialized, tuned implementations.
Fourth, extensions to traditional OS abstractions can only be implemented by kernel ar-
chitects. In the real world this makes change very slow: creating sufficient incentive for
kernel architects to incorporate a new feature into an already bloated, complex and fragile
operating system is difficult.

This chapter tests three hypotheses. First, low-level multiplexing .is not expensive: i.e.,
the cost of flexibility in an exokernel system is either negligible or easily recouped. Sec-
ond, basic system abstractions can be implemented at application level in a direct manner.
Finally, specialization and extensibility of these abstractions can cause substantial perfor-
mance improvements. The following sections test each hypothesis for a particular operating
system abstraction: Section 4.2 discusses processes, Section 4.3 IPC, Section 4.4 protection
domains, Section 4.5 exceptions, and Section 4.6 virtual memory. Each section is divided
into three parts. The first provides a brief discussion of exokernel capabilities in imple-
menting each abstraction. The second presents a number of motivating examples that are
enabled by an exokernel structure. The third gives a set of measurements demonstrating
that the examples we discuss can be implemented both efficiently and well on top of an
exokernel.

It is very important to note that the exokernel we measure is currently a toy implemen-

DECstation 2100 (12.5 MHz) Ultrix 4.2 8.7 11 12 MB
DECstation 3100 (16.67 MHz) Ultrix 4.2 11.8 15 24 MB

Figure 4-1: Experimental platforms

tation: it has no disk support, and only rudimentary software. While we do not expect
these additions to cause large fluctuations in our measurements, we emphasize that ours is
not a widely-used, robust implementation: the entire user community is, at the moment,
three people.

4.1 Experimental environment

We run experiments within the DECstation/MIPS family; the machine configurations
we use are shown in Figure 4-1. The two machine configurations are used to get a tentative
measure of the scalability of the exokernel. All times are measured using the "wall-clock."
We used clock on the Unix implementations and a micro-second counter on the exoker-
nel. The exokernel's time-quantum was set at 15.625 milliseconds. All benchmarks were
compiled using an identical compiler and flags: gcc version 2.6 with optimization flags "-
02". None of the benchmarks use floating-point instructions; we do not, therefore, save
floating-point state. Both systems were run in "single-user" mode.

All experiments were measured by performing a large number of trials and dividing by
this number to get the base cost of a single operation. None of the experiments used loop
unrolling to minimize looping overhead. Since this overhead is equivalent on both systems,
it understates the performance gains that our system obtains over Ultrix. Because such
measurements do not consider cold start or capacity misses in the cache or TLB misses,
they represent a "best case". However, Ultrix has a much larger cache and virtual memory
footprint than Aegis, again making this form of measurement more favorable to it than
to the exokernel. We therefore believe that the difference in performance between the two
systems is a conservative one. Finally, we note that Ultrix, despite its poor performance
relative to Aegis, is not a poorly tuned system. It is a mature monolithic system that
performs quite well in comparison to other research operating systems. For example, it
performs two to three times better than Mach 3.0 in a set of I/O benchmarks [75]. Also,
its virtual memory performance (measured in Section 4.6) is approximately twice that of
Mach 2.5 and three times that of Mach 3.0.

A few of the Aegis benchmarks were extremely sensitive to instruction cache conflicts.

In some cases the effects amounted to a factor of three performance penalty. A minor
rearrangement of object code during linking was sufficient to remove most conflicts. A
happy side-effect of using application-level libraries is that object code rearrangement is
extremely straight forward (i.e., a "makefile" edit). Furthermore, with instruction cache
tools, all conflicts between application and library operating system code could be removed
automatically - an option not available to applications using traditional operating systems!
We believe that the large impact of instruction cache conflicts is due to the fact that most
Aegis operations are performed at near hardware speed. As such, even minor conflicts are
noticeable.

The base cost for a null procedure and system calls are given in Figure 4-2. The null pro-
cedure call is presented as a sanity check: given its minimal operating system requirements,

SpecInt89 MIPS MemoryMachine OS

Machine OS procedure call syscall (getpid)
DEC2100 Ultrix4.2 .57 32.2
DEC2100 Aegis (pathl: stack) .56 4.7
DEC2100 Aegis (path2: no stack) .56 3.2
DEC3100 Ultrix4.2 .42 33.7
DEC3100 Aegis (pathl: stack) .42 3.5
DEC3100 Aegis (path2: no stack) .42 2.9

Figure 4-2: Null procedure and system call; times are in micro-seconds

it should be (and is) the same on both operating systems. It obliquely shows that for Aegis'
flexibility does not add overhead to base operations. Aegis has two system call paths. Both
perform the same initial demultiplexing actions required by the MIPS architecture: a series
of branches to determine the cause of the exception and whether the system call index is
too large, and an indirect jump through a jump table to vector the PC to the appropriate
value. The difference between them is that path1 uses a stack, while path2 does not. Path1
performs an additional jump through a jump table and has the additional overhead of saving
and restoring a few registers and loading the exokernel stack. With the exception of upcalls,
which are special-cased for efficiency, all Aegis system calls are vectored along one of these
paths. It is not clear whether Ultrix's getpid routine uses a stack or not; regardless, it is
approximately an order of magnitude slower than the either of the two system call paths
on the exokernel - this suggests that the base cost of demultiplexing system calls will be
noticeably higher on Ultrix. Part of the reason Ultrix is so much less efficient on this basic
operation is that it is required to perform a more expensive demultiplexing operation. For
example, page-table misses during TLB refills are vectored through this exception handler
and so Ultrix must take great care not to disturb any registers that will be required to
"patch up" an interrupted TLB miss. Because Aegis does not map its data-structures (and
has no page-tables) it can avoid such intricacies. We expect that this will be the common
case with all exokernels, since they should be quite small and therefore not require paging
of kernel text and code.

4.2 Processes

This section discusses process scheduling, process creation, and context switching on an
exokernel.

4.2.1 Process scheduling

The exokernel represents the CPU as a linear vector of time-slices. A crucial property of
this representation is position, which encodes an ordering (and an approximate guarantee
of when the time-slice will be run). Position can be used to meet deadlines, to trade latency
for throughput, and to order process initiations. As discussed in Section 3.3.2, this simple
scheduler can efficiently support a broad range of higher-level schedulers.

4.2.2 Process Creation

Traditionally, operating system support for process creation has been inefficient. This fact
results from the fact that processes have typically been created using a single primitive,
fork(), intended mainly for multiprogramming. The upshot of this inefficiency is that
creating a new address space or protection domain has been very expensive.

Since the exokernel exports the bare minimum required to construct threads (i.e., time-
slices) and address spaces (i.e., environments), applications have an enormous amount of
freedom in how high-level process abstractions are implemented. Some examples are given
below:

Efficient fault-isolation. Applications can isolate untrusted code (e.g., an RPC com-
ing in off of the wire) by executing it in its own address-space/protection-domain. This
flavor of fault-isolation is directly enabled by efficient process creation (i.e., the time to
create a new address space is low).

Expressive process creation. Application-level process creation allows a great deal of
flexibility in implementation; furthermore, as we discussed previously, since the implementa-
tion of these abstractions does not require special privileges, good ideas can be incorporated
in systems other than those that they originated on (e.g., Plan9's rfork [100]).

Specialized fork implementations. Many micro-kernels omit effective optimizations
that would complicate their virtual memory system. For example, QNX does not support
copy-on-write, even though that could speed up process creation by an order of magnitude.
Since applications completely control these implementations on top of the exokernel, they
can incorporate (or neglect) optimizations as they see fit.

4.2.3 Efficient timer interrupts

The exokernel forwards all exceptions and interrupts to applications. A specific case we
consider here is timer interrupts; when a time slice expires (i.e., a process' time-slice is
complete) the kernel forwards a timer-interrupt to application-space. This interrupt handler
is responsible for saving application state and performing any necessary clean-up actions
before the process is suspended. This flexibility allows a number of simple optimizations:

Fast process context switching. Context-switching costs can be reduced by not
saving floating-point registers if they have not been used. This well-known technique can

substantially reduce the cost of context switches [72]. Information about the use of floating-
point can either be deduced statically (e.g., through application-specific knowledge) or
dynamically. Dynamic detection can be done in a number of ways. The most common
technique marks the floating-point hardware as unusable: subsequent use will generate an

exception, which is used to indicate that context switching should save floating point state.

Applications can use this technique in an analogous manner.
Fast user-level thread context switching. The methods used to dynamically detect

floating-point usage have not traditionally been made accessible to applications. When
floating-point usage cannot be determined statically, thread context switching at user level

has therefore been inefficient. If the dynamic detection of floating-point usage were possible
at application level, thread packages could improve efficiency through the use of this simple
technique.

Scheduler activations. The inefficiency of the process abstraction has led to a prolif-

eration of user-level lightweight processes or threads. Unfortunately, since user-level threads
are invisible to the operating system, their use can result in both performance and correct-

ness problems [4]. For example, consider the case where two threads are multiplexed on top
of a heavy-weight process: if one thread causes a page-fault, the OS will block the entire
process, rather than letting the other thread run. Handling this problem is made possible
through the exokernel structure, which exposes the physical resources and their associated
exceptions (TLB misses, CPU time-outs, etc.) to the running environment.

Fast mutual exclusion. The explicit forwarding of timer-interrupts to application-
level allows the exception program counters value at interrupt to be used to implement a
variety of simple optimizations. For example, it allows efficient uni-processor synchroniza-
tion through critical-section aware context-switching code that can "pc-luser" the program
counter out of critical sections at context-switching time [15].

Fine-grained PC-sampling. Efficient timer interrupts allow fast (and thus more fine-
grained) PC-sampling, a profiling technique based on the simple observation that, since
the program counter will most frequently have values on the critical path, recording (or
sampling) the program counter values at each timer-interrupt can closely approximate actual
execution time [41]. This technique is much more efficient than a deterministic method such
as described by Larus [10]; furthermore, it does not require compiler support.

4.2.4 Experiments

We verify that the use of prologue and epilogue code does not introduce noticeable over-
head. This can be seen in Figure 4-2, which measured the time to perform a function call
ten million calls. This measurement includes a large number of application-level context
switches, and is slightly faster than the same operation under Ultrix, which performs "in-
kernel" context switches. The lack of difference should be attributed to the fact that the
time-quanta (15.625 milliseconds) is fairly large relative to the extra overhead induced by
allowing applications themselves to context switch.

4.3 IPC

Fast IPC is crucial for a efficient, decoupled system [12, 48, 67]. As described in Chapter 3,
the Aegis upcall mechanism is an efficient substrate for implementing fast IPC mechanisms.
We enumerate some IPC mechanisms that can be constructed on top of it.

Trusted LRPC. IPC to a trusted domain can be optimized. For example, a client that
trusts a server may, instead of a saving and then restoring its entire register state, allow the
server to save and restore the registers it needs [48]. Because the machine state of current
RISC machines is growing larger [76], this optimization is crucial for good performance.

Efficient LRPC. As we show by experiment, the efficiency of the upcall mechanism
can be used to implement a very efficient RPC with traditional semantics [12].

4.3.1 IPC Experiments

Measurements section IPC is measured in four ways:
upcall: measures the "bare-bones" cost of the exokernel's upcall mechanism. Times

are given in micro-seconds, and were derived by dividing the time to perform a call and
reply by 2 (i.e., we measure the time to perform a uni-directional upcall). Untrusted upcalls
save callee-saved registers accross calls; trusted upcalls trust the called server to save and
restore any registers that it uses. These times are conservative in that they include the
overhead to increment a counter and perform a branch. These times are one to two orders

OS Machine M1IIPS untrusted trusted
Aegis DEC2100/12.5MHz 11 5.9 2.89

L3 486/50MHz 10 10 n/a
L3 486 50MHz(normalized) 10 9.1 n/a

Aegis DEC3100/16.67MHz 15 4.4 2.2
L3 486/50MHz 10 10 n/a
L3 486/50MHz (normalized) 10 6.67 n/a

Figure 4-3: upcall Benchmark; times are in micro-seconds

Machine OS Unoptimized (usec) Optimized (usec)
DEC2100 Ultrix4.2 334 n/a
DEC2100 Aegis 30.9 24.8
DEC3100 Ultrix4.2 231 n/a
DEC3100 Aegis 22.6 18.6

Figure 4-4: pipe Benchmark; times are in micro-seconds

of magnitude faster than any similar operation available under Ultrix (in fact, they are an
order of magnitude more efficient than getpid!).

We do an approximate comparison of our upcall to L3's RPC mechanism - which is the
fastest in the world [67] - by scaling L3's times to the MIPS of our DECstation. Aegis's
upcall mechanism performs well: the untrusted upcall is approximately 30% faster than L3,
and the trusted upcalls approximately 2 times faster. We have not tuned the Aegis upcall
aggressively: architectural characteristics of the MIPS are one of the main determinants
of our better performance relative to L3. For example, L3 pays a heavy penalty to enter
and leave the kernel (71 and 36 cycles, respectively). While our base cost is not so high,
much of the Aegis code does deal with required operations: demultiplexing the system call
exception and setting the status, co-processor and address tag registers. Furthermore, for

the trusted measurements, application-level code must save 8 general-purpose callee-saved
registers.

pipe: measures the time needed to send a word-sized message from one process to
another using pipes. It was measured by "ping-ponging" a counter between two processes.

This experiment is based on Ousterhout's experiments [76]. The Ultrix pipe implementation
uses the standard UNIX pipe implementation. The ExOS pipe implementation uses a

shared-memory circular buffer. Writes to full buffers and reads from empty ones cause

the current time slice to be yielded by the current process to the reader or writer of the

buffer, respectively. The pipe implementation is an application-level library; the only kernel

primitives used are the the yield system call and those primitives required to construct
the application-level virtual memory. We use two pipe implementations: the first is a naive

implementation, while the second exploits the fact that this library exists in application

space by simply inlining the read and write calls. A further optimization (that will be

performed in future experiments) is to alias the buffer, eliminating checks for messages that

straddle buffer boundaries. Both exokernel pipe implementations are less than 200 lines

of code. Times are given in Figure 4-4. Aegis' unoptimized pipe implementation is an

order of magnitude more efficient than the equivalent operation under Ultrix. Much of this

Machine OS Time (usec)
DEC2100 Ultrix4.2 334
DEC2100 Aegis 12.4
DEC3100 Ultrix4.2 231
DEC3100 Aegis 9.3

Figure 4-5: shmem Benchmark; times are in micro-seconds

Machine OS untrusted trusted
DEC2100 Ultrix4.2 680. n/a
DEC2100 Aegis 13.9 8.6
DEC3100 Ultrix4.2 457. n/a
DEC3100 Aegis 10.4 6.4

Figure 4-6: lrpc Benchmark; times are in micro-seconds

performance is due to the efficient implementation of yield on Aegis.
shmem: this experiment measures the time for two processes to "ping-pong" using

a shared counter. The exokernel implementation uses the yield system call to yield the
current time-slice between partners. Because Ultrix does not provide a yield-like primitive,
acceptable efficiency can only be achieved by using pipes to emulate the required function-
ality. Times are given in Figure 4-5; as in the other IPC tests, the difference between Aegis
and Ultrix is large: in this test Aegis almost a factor of thirty faster than Ultrix.

Irpc: RPC into another address space, increment a counter and return its value. ExOS's
lrpc is built on top of the exokernel's upcall mechanism. There are two implementations:
trusted and untrusted. trusted only saves and restores the stack pointer: the called do-
main is assumed to be a trusted server that will restore any registers that it uses. untrusted
saves the general-purpose callee-saved registers. Ultrix does not have an RPC mechanism,
we emulated RPC functionality through a server process that waited on a well known pipe:
a client sends an index, the server calls the appropriate function, and returns the result
through the pipe.

Both implementations assume that only a singe function is of interest (i.e., neither
uses the RPC number to index into a table, etc.) and do not check permissions. Both
implementations are also single-threaded. Times are given in Figure 4-6. ExOS's untrusted
lrpc ranges between 49 and 44 fold faster than Ultrix, while the trusted version ranges
between 79 and 71 fold faster: almost a two order of magnitude differential. The most
important factor for this difference is the efficiency of the upcall mechanism.

4.4 Protection

Many applications would benefit from the ability to use protection domains as fire-walls
for enhanced modularity or to safely execute untrusted code via quarantine (e.g., for fault-
isolation [104]). The ability to decouple naming from protection is also important in a single
address space operating system [20]. The exokernel allows applications to define their own
page-tables and to directly manipulate context identifiers. This enables both lightweight
protection and the separation of protection and naming.

4.4.1 Embedded protection domains

One method to allow untrusted code to be safely imported into an address space is to use
sandboxing [104]. Sandboxing is a software fault-isolation technique that makes code safe
by bounding memory operations and jumps. Unfortunately, the average cost of general pro-
tection (i.e., sandboxing loads, stores and jumps) is quite high. The SPEC92 benchmarks,
running on DEC-MIPS and DEC-ALPHA machines, degrade in average performance by
approximately 17-20% [104]. Additional costs of sandboxing include a pair of dedicated
registers and, since sandboxing relies on the fact that the upper bits in a protection domain
are all the same (i.e., there is only one segment), an increase in the difficulty of sharing
across segments. Finally, sandboxing requires a trusted compiler; while this requirement
is not great if such a compiler already exists, constructing one from scratch is tedious and
error-prone.

The motivation of sandboxing is to simulate address-space protection domains when
cross-domain calls are expensive. However, if application code can own and install several
different context identifiers, then switching address spaces may require only a handful of
cycles (e.g., to enter supervisor mode and change the processor context identifier). This
use of embedded protection domains can speed applications up, eliminate the need to post-
process object code (which can be quite challenging [106]), and allow multiple segments
to be accessed simultaneously. We look at a few examples of where embedded protection
domains would be useful.

Database systems. To eliminate the cost of cross-domain calls, database programs
such as POSTGRES [92, 104] allow clients to download code into their address space.
Embedded protection domains would allow them to efficiently isolate client code.

Client/server systems. Many client/server configurations (e.g., the Thor system [68])
would also benefit from the ability to ship client code to the server. Furthermore, the tighter
coupling between client and server allows the cost of marshaling and copying (required if
IPC is used for cross-domain calls) to be eliminated.

Light-weight application fire-walls. Large applications can use different addressing
contexts to construct very lightweight protection domains. In effect, this allows "monolithic"
applications (such as large servers) to be broken up into a more "micro-kernel" like design
without the performance penalty typically associated with modularity.

Fine-grained thread access rights. Cheap, plentiful addressing contexts allow ap-
plications to decide on a thread-by-thread basis the access rights that will be granted to a
given thread.

Single-address space subsystems. The exokernel exports all the primitives required

to construct an address space with a separate protection domain, directly enabling the

application-level construction of single-address space subsystems [20, 85].

4.5 Exceptions

Fast user-level traps enable a number of intriguing applications. The exokernel structure

is uniquely suited to efficiently dispatch exceptions to user space. Its lack of management

allows exceptions to be dispatched in 16 MIPS instructions, four times fewer instructions

than the most efficient implementation in the literature (an implementation that improved

the documented state-of-the-art by an order of magnitude [97]).
We look at a list of applications and operations that benefit from efficient traps. Many

of these examples are drawn from Thekkath [97].

Figure 4-7: Trap benchmarks; times are in micro-seconds

Emulation of sub-page protection [97]. Many applications would benefit from a
page size smaller than that provided by current machines [5].

Efficient page-protection traps. These exceptions are used by applications such as
distributed shared memory systems, persistent object stores and garbage collectors [97, 5].

Instruction emulation. The efficient emulation of privileged instructions is crucial
for application-level OS emulation via direct execution.

Unbounded data-structures. Efficient unaligned pointer traps can be used to imple-
ment conditional signals of various flavors. For example, futures [29] can be implemented
efficiently using unaligned pointer traps: the pointer of an unresolved future to its value
is made to be unaligned. References to an outstanding future will trap, and the accessing
thread can then be suspended. When the value is available, the pointer is set to it and all
accesses to this "resolved" future then proceed normally.

In general, most of these operations could be done by inserting explicit checks in code

(e.g., futures can be implemented by checking every load and store to determine if it is to
an unresolved future). The obvious advantage to using exceptions instead of explicit checks
is efficiency. A more subtle advantage is that the use of explicit checks requires compiler
support. Writing a well-tuned, correct compiler that is portable and generates efficient
code is a difficult problem; eliminating this requirement aids the efficient implementation of
many operations. Furthermore, explicit checks take up space in the program text, possibly
polluting the cache and causing an increase in paging.

4.5.1 Exception experiments

unaligned: Time to take an unaligned pointer access trap. This exception cannot be
usefully exploited under Ultrix: the kernel attempts to "fix up" the unaligned access
and writes an error message to standard error.

overflow: Time to take an overflow trap.

co-proc: Time to take a floating-point co-processor unusable trap. This exception cannot
be caught under Ultrix, since applications cannot mark the floating point co-processor
as unusable.

prot: Time to take a page protection fault.

Times are given in Figure 4-7. Careful tuning of the exception path (aided by the
minimal kernel functionality Aegis provides) allows all traps to be dispatched approximately
two orders of magnitude faster than Ultrix.

Machine OS unaligned overflow co-proc prot
DEC2100 Ultrix4.2 n/a 272 n/a 294.
DEC2100 Aegis 2.8 2.8 2.8 3.0
DEC3100 Ultrix4.2 n/a 200. n/a 242.
DEC3100 Aegis 2.1 2.1 2.1 2.3

4.6 Virtual Memory

The exokernel is unique among operating systems in that it defers the whole of address
space management to applications. To test the usefulness of this ability we examine a
number of applications that would benefit from a tighter integration with the virtual mem-
ory system. To the best of our knowledge, the bulk of these examples cannot be done on
any other operating system. The costs of the in-kernel primitives discussed in the paper
are contrasted with the costs of exokernel-based, user-level implementations of these con-
structs. We break the discussion into five subsections: the effects of exposing all hardware
capabilities are discussed in Subsection 4.6.1; optimizations that can utilize specific physical
page allocation are examined in Subsection 4.6.2; uses for flexible address space structure
are given in Subsection 4.6.3; the effects of tighter integration between the virtual memory
system and application-level software are elucidated in Subsection 4.6.4. Page size trade
offs are examined in Subsection 4.6.5 and page-table structures in Subsection 4.6.6. Finally,
Subsection 4.6.7 provides a number of micro-benchmark measurements of VM system and
the cost of application-level virtual memory.

Additional examples of inadequate operating system support for application-level virtual
memory primitives can be found in [5].

Applications in the following subsections make use of the following six properties:

* NOCACHE: the ability to disable caching on a per-page basis;

* DMA: the ability to bypass the memory hierarchy and mapping hardware in order to
write from one physical address to another;

* NAME: the ability to name which physical pages should be allocated;

* USERPT: the ability to access virtual memory mappings at application-level;

* UTLB: the ability to control the exceptions associated with the TLB (this is closely
related to USERPT);

* PAGESIZE: the ability to chose the size of individual pages;

4.6.1 Exposing Hardware Capabilities

The exokernel gives very precise information of and control over the mapping hardware

to applications (e.g., the TLB). For example, it exports all privileged instructions and

page-attributes (such as caching) and allows applications to securely manipulate the TLB.

Exposing the full set of hardware capabilities enables operations that are not possible on

current operating systems:
Fine-grain monitoring. The tight coupling between applications and the virtual

memory system allows efficient address tracing [101]. Furthermore, any application can do

this at any time: no special dedicated hardware is needed.
Exposure of memory attributes. For example, reference counting and dirty bits can

be simulated in software, once applications have access to TLB exceptions [7].
Monitoring translation hardware. TLB access patterns can be used to derive work-

ing sets, or to deduce which pages take frequent TLB misses; this enables techniques such

as page-migration [19]. Knowledge about TLB misses is also useful because they approxi-

mate cache misses [19]. Application-level operating systems can use this heuristic to decide

which pages to mark as uncachable, potentially improving global system performance. Ad-
ditionally, with a deep memory hierarchy, local performance may improve as well (since
applications will by pass the cache hierarchy instead of looking for data that is not there).

DMA operations. The exokernel allows applications to initiate DMA operations al-
lowing them to avoid the memory subsystem during bulk data transfers, thus eliminating
cache and TLB pollution. This optimization can aid many operations such as networking
and garbage collection, and more common operations such as fork () and memcpy ().

Fine-grained control over virtual memory attributes. Giving applications access
to the full complement of hardware facilities allows precise control of page information (e.g.,
reference bits, page-size, caching attributes, etc.). Reference bits can be used to track writes
to memory pages (useful for garbage-collectors [5]). Application-controlled caching can be
used to reduce cache pollution by disabling caching for memory that exhibits poor locality.
For example, a log that absorbs many writes before being flushed to disk should not be
cached, since it needlessly evicts cache entries (not only is the ability to disable caching a
performance optimization, it also aids non-intrusive monitoring). I/O intensive programs
and compression algorithms could also benefit from this method of reducing cache pollution.

4.6.2 Specific Page Allocation

An application's ability to request specific physical pages enables a large number of opti-
mizations.

Cache conscious data layout. Control over the physical page numbers allows cache-
conscious layout of data on systems with physically mapped caches [14, 18, 45]. For example,
"page-recoloring" can be used to reduce cache conflicts [17]. This method is further assisted
by the ability of applications to approximate the working set using TLB snapshots [83].

Contiguous physical page sequences. Applications can use this exokernel-bestowed
ability to request specific physical pages. This functionality can be used to construct con-
tiguous runs of physical pages. These blocks can be used to construct super-pages [94] and
to improve the efficiency of DMA operations [34].

Cache multiplexing. Cache multiplexing is useful in two areas: (1) to guarantee that a
process has sole access to a piece of the cache (e.g., for real-time programs perhaps) and (2)
to limit the cache pollution of applications that exhibit poor locality (e.g., by forcing them
to only use a small section). Cache multiplexing can be done directly via page-coloring: to
allocate a specific piece of the cache to a specific process, the OS gives that process pages
of the corresponding color; if guarentees have to be made that no other process can access
this region, the OS does not allocate other applications pages of this particular color. An
obvious use of this technique would be to restrict the impact of poor locality: by allocating
the data and code that exhibits poor locality on pages of a particular color, the damage
the they can do to the cache is restricted. An important advantage of this technique over
just marking pages as uncachable is that applications still get the advantages of cache line
prefetching.

"No cache" guarantees. The correctness of some operations requires guarantees that
certain pieces of data do not reside in the cache. For example, DMA operations by-pass
the cache, and thus cause a coherency problem between the data in the cache and the value
in main memory: to ensure correctness applications must initiate a cache flush. A more
efficient mechanism is to use intentional cache conflicts to ensure that the cache does not
hold a piece of data (i.e., the "flush" becomes implicit).

Performance debugging. Increasingly, performance anomalies are claimed to be in-
struction cache related [104]. The control the exokernel provides over page selection allows
such propositions to be verified.

4.6.3 Address space structure

Application control over the structure of its address space allows a number of interesting
techniques.

Better static fault-isolation techniques. With control of their address space lay-
out, applications place sensitive state in arbitrary locations. This control can be used
for improved fault isolation, by reducing the chance that a write or read will access this
state; in a sense, the virtual address is a capability [110]. This technique can be used to
allow applications to safely import untrusted code (or to guard against their own buggy
algorithms).

Fine-grain control of naming. For example, parallel applications benefit from the
ability to choose which data will be shared and which will be private: without control over
naming, private data must be simulated by indexing into data-structures using their process
identification number. This issue comes up in single-address space operating systems: with-
out private naming, "private data" must be relocated to global addresses at load-time [20].
With private names, this naming can be done at compile time.

Control over layout. The ability to partition up virtual memory in an application
specific way allows dynamically typed languages to partition their object space (type-
segmentation) at different virtual memory segments, in order to have types be self-identifying [42].
An application level virtual memory library allows this operation to be done much more
readily.

Aliasing. Many operations such as garbage collection benefit from aliasing [5]. For
example, aliasing allows a garbage collector to map the same physical page using different
virtual memory attributes: the mapping in the mutator's space can be read-protected, while
the mapping in the collector's space has normal protections. A more prosaic example is the
simplification of circular buffer algorithms by the ability to alias memory after the "tail" of
the buffer to the "head": this ability can eliminate the need to special-case memory copies
that straddle the circular buffer.

4.6.4 Tighter integration

Many applications would benefit from a tighter integration with the virtual memory system.
We give some examples here.

TLB prefetching. If TLB penalties increase, TLB prefetching will become impor-

tant [9]. Exposing the TLB to applications allows them to do this optimization simply and
directly.

Appropriate page replacement policy. Since the exokernel allows applications to
control paging, they can can implement an application-specific paging policy (e.g., LRU,
MRU, by priorities, etc.). Furthermore, they can decide what to do with pages that are
reclaimed. For example, garbage collectors do not need to page out scanned pages, since
they only contain garbage. Unfortunately, current OS implementations do not support this

optimization, and therefore garbage-collection results in a "flurry" of I/O activity, because
the OS VM system does not realize that while the page has indeed been modified, it contains

garbage and so does not need to be stored to disk [26].

Page-prefetching. A scientific application may follow well-defined access patterns,
allowing it to predict which pages will be needed [45].

Accurate "in core" information. Accurate knowledge of which pages are resident
in memory can be useful to many types of applications. For example, a scientific program
manipulating large matrices could work on those pieces that are "in core", while prefetching
others. Garbage collectors can use this information as well, by reclaiming only the storage
which is resident in main memory. Finally, this information is critical to real-time appli-
cations, which must meet deadlines and cannot be subject to the vagaries of current VM
systems.

Pinning pages. Predicating that certain pages are pinned in memory before proceeding
can allow real-time applications to calculate and meet tighter deadlines [45]. Furthermore,
control over which pages are paged-out can allow applications to exploit application-specific
knowledge over what pages should reside in main memory. For instance, a database man-
agement system could ensure that critical pages, such as those containing directories, reside
in physical memory [45].

4.6.5 Page size Trade offs

Increasing or decreasing the page size that is being mapped affects the amount of memory
needed to map a virtual address space, the base unit of protection available, the working-set
size [75, 93], and the frequency of TLB faults [75, 93, 94]. Generally, large-page sizes allow
fewer TLB misses and (possibly) smaller page-tables, but at a cost of larger working-sets
and a coarse grain of protection. These trade-offs are highly application dependent, and
have thus far been poorly served by existing operating systems [94].

Many machines support multiple page-sizes [54, 51, 94]. There are a number of specific
ways that page size fluctuations may be useful:

Reduced page-table overhead. The use of large pages directly reduces the size of
page-tables needed to map an address space. Given that address space usage has been
growing at a rate of a bit and a half per year [20], this is an important optimization. An
object-based virtual memory system may find variable page size useful both in the reduction
in fragmentation it can bring and in the space savings that can be had for objects larger
than the base page size. E.g., a large object that is eight pages long may be mapped with
a single page-table entry if 8 contiguous physical pages may be associated with it.

Reduced false sharing in parallel systems. Smaller pages are a space-efficient way
of combating false sharing in parallel systems. Unfortunately, applications currently have
no control over either page size or the mapping structure, which removes them from having
any useful mechanism to realize this (other than having one object per page, which can get
expensive). Small pages can be implemented through either hardware or emulation [97]. An
additional area where false sharing may have overhead is on conventional shared memory
machines where TLB invalidates of other processors must be done on protection changes,
etc.

4.6.6 Page-table Structures

Page-tables are used to construct a discrete function from virtual to physical addresses.
The characteristics of this function (its sparsity, the range of inputs and outputs it has to
produce and the number of points it may be expected to match) have a deep impact on the
appropriateness of a given structure [49]. Below we examine some specific arenas where the

page-table structure may be stressed.
Different address space sizes. With the advent of 64-bit machines, the consideration

of what address space size is appropriate for a given application should become increasingly
important. The page-table mechanisms and structure used to map a sparse 64-bit address
space (i.e., inverted page-tables) are different from those appropriate to a dense 32-bit ad-
dress space (e.g., hierarchical page-tables). Current operating systems fix a general-purpose
page-table implementation for all applications. This penalizes those applications that do
not fit within the parameters used to derive the systems page-table structure. For example,
an operating system on a 64-bit machine will likely chose a page-table structure that trades
space in mapping large address spaces for speed in mapping small ones. This tradeoff is a
needless one, since, if page-table implementations can be isolated in libraries, applications
can select (or have selected for them) any one of an array of page-table structures. For
instance, a sparse 64-bit address space could use inverted page-tables while a 32-bit address
space on the same system could use hierarchical page-tables, and a protected object (that
may be comprised solely of two or three pages) can use a simple linear vector to map its
address space. A single-address space OS subsystem may use a completely radical structure;
so too might a persistent object store.

Efficient support for sparsity. Sparse address spaces present mapping challenges
in that the function of virtual to physical mappings must be able to cope with large holes
between valid mappings and still remain efficient both in space and time. The sparsity of
the address space will influence the computation/space tradeoffs made in a given page-table
structure. Again, this is an example of a trade-off that, if done in application space, allows
virtual memory implementations to be tuned to a specific application domain, rather than
forcing all applications to use a general-purpose implementation.

4.6.7 Virtual memory experiments

We compare Aegis and ExOS to Ultrix on seven virtual memory experiments, based upon
those listed in [5]:

dirty: Measures the time to query whether a page is "dirty" or not. Since it does not

require examination of the TLB, this measurement is used to test the base cost of

looking up a virtual address in ExOS's page-table structure. This operation is not
provided by Ultrix.

(un)protl: Measures the time required to change the page protection of a single page.
On the exokernel system, this operation involves modifying the page-table, TLB, and
STLB entries.

prot 100: Measures the time required to "read-protect" 100 pages. On the exokernel system,
this operation modifies the page-table, TLB and STLB entries.

unprot100: Measures the time required to remove read-protections on 100 pages. Involves

updating the page-table and modifying the TLB and STLB entries.

trap: Time to take a page-protection trap.

appell: Time to access a random protected page and in the fault-handler, protect some

other page and unprotect the faulting page (this benchmark is "protl+trap+unprot"
in Appel et al. [5]).

Machine OS dirty protl un/prot100 trap appell appel2
DEC2100 Ultrix4.2 n/a 51.6 175. / 175. 297. 438. 392.
DEC2100 Aegis 17.5 32.5 275. / 213. 13.9 74.4 45.9
DEC3100 Ultrix4.2 n/a 47.8 140. / 140. 240. 370. 325.
DEC3100 Aegis 13.1 24.4 206. / 156. 10.1 55. 34.

Figure 4-8: Virtual memory benchmarks; times are in micro-seconds

appel2: Time to protect 100 pages, access each page in a random sequence and, in the
fault-handler, unprotect the faulting page (this benchmark is "protN+trap +unprot"
in Appel et al. [5]).

The exokernel based virtual memory system resides entirely in application-space. The
current page-table structure we use is a simple linear vector: entries are found using binary
search. Obviously, these times could be greatly improved.

dirty measures the time to parse the page-table for a random entry. If we compare the
time required for dirty to the time required to perform (un)prot , we can see that over half
the time of in (un)protl is due to the overhead of parsing the page-table. This overhead
can be directly eliminated through the use of a data structure more tuned to efficient lookup

(e.g., a hash-table). Even with this penalty, our system can perform these operations close
to two times more efficiently than Ultrix. The likely reason for this difference is that, as
shown in Figure 4-2, Aegis dispatches system calls an order of magnitude more efficiently
than Ultrix.

In general, our exokernel-based system performs well on this set of benchmarks. The
sole exceptions are prot100 and unprot100. Ultrix is extremely efficient in protecting and
unprotecting contiguous ranges of virtual addresses: it performs 20% to 60% more efficiently
than Aegis in these operations. Part of this difference is a direct result of our immature
implementation; another appears to be due to the fact that, on Aegis, changing page-
protections requires access to two data structures (Aegis' STLB and ExOS's page-table)
to change protection information. We anticipate these times improving as we tune the
system. Fortunately, even with poor performance on these two operations, the benchmark
that depends on this operation, appel2, is close to an order of magnitude more efficient on
Aegis than on Ultrix.

trap is another area where the exokernel system performs extremely well (i.e., 21 to
24 times faster than Ultrix). This performance differential is achieved even though the
trap benchmark on Aegis is implemented with standard signal semantics: for example, all
caller-saved registers are saved. If these semantics were violated by ExOS, the performance
difference would become even larger.

Finally, the higher-level benchmarks, appell and appel2, also show impressive speedup:
up to an order of magnitude in some cases and never less than a factor of five.

These numbers were achieved even though (or rather, because) all virtual memory man-
agement was performed at application-level. At first blush the micro-cost of application-
level virtual memory would seem to add a large overhead to basic memory operations; these
benchmarks show that this assumption is wrong.

Figure 4-9: 150x150 matrix multiplication (time in seconds)

The overhead of application-level virtual memory

The overhead of application-level memory is measured by performing a 150 by 150 matrix
multiplication. Because this naive version of matrix multiply does not use any of the
special abilities of ExOS or Aegis (e.g., page-coloring to reduce cache conflicts), we expect
that it will perform equivalently on both operating systems. The times in Figure 4-9
give a tentative indication that application-level virtual memory does not add a noticeable
overhead to operations that have large virtual memory footprints. Of course, this is hardly
a conclusive proof: we will investigate this issue more thoroughly in future work.

4.7 Conclusions

This chapter has demonstrated that the following hypotheses hold for an exokernel system:

* The overhead of low-level multiplexing is either negligible or can be directly counter
acted. One of the most interesting results from this chapter is that application-level
virtual memory can be implemented without appreciable overhead.

* Fundamental operating system abstractions can be implemented simply and well at
application level. Furthermore, these implementations do not require much effort: the
system was implemented by the author in a few months.

* The exokernel's structure allows many basic primitives and abstractions to be imple-
mented up to two orders of magnitude more efficiently than in a traditional operating
system.

Future work will involve a more thorough testing of our exokernel system. Two of the
most glaring areas are in process creation and protection domain switching.

The single most important property of an exokernel is that it allows non-privileged appli-
cations to re-implement (and redefine) basic system objects. This allows systems built upon
an exokernel to be fundamentally more flexible than those built on traditional operating
systems.

Machine OS matrix
DEC2100 Ultrix4.2 7.1
DEC2100 Aegis 7.0
DEC3100 Ultrix4.2 5.2
DEC3100 Aegis 5.2

Chapter 5

Related Work

5.1 Microkernels: The Garden Path of Simplicity

Micro-kernels were originally intended to solve many of the problems we have listed (poor
reliability, poor performance and poor flexibility). Unfortunately, they have fallen short for
a number of reasons. First, while they allow replacement of device drivers and high-level
servers, such operations typically can only be done by trusted applications. Second, they are
still in the business of providing a virtual machine to applications. The high-level interface
that they enforce precludes much of the experimentation that applications desire (the reader
is invited to compare the primitives described in Section 1.3 to current micro-kernels).
Third, their rigid interface tends to be rudimentary or overly general when compared to
their monolithic counterparts; they often achieve simplicity by implementing only a small set
of high-level OS abstractions. For example, a micro-kernel may have achieved simplicity by
dropping support for mmap, memory-mapped I/O, and full-featured virtual memory, but not
given alternative mechanisms to implement the functionality these features provided: micro-
kernels can give applications even less control over hardware resources than a monolithic
system does.

Microkernel architects have realized that an operating system should be minimal. How-
ever, the manner in which they have attained this goal has not provided applications with
much more flexibility than under monolithic systems. This thesis offers a better alterna-
tive method to construct minimal operating systems. An OS should become minimal not
by enforcing a limited set of operations, but instead, through the systematic elimination
of all operating system abstractions in order to expose the hardware to application-level
software; from this primal mud, applications can craft their own abstractions, chosen for

appropriateness and efficiency, rather than make do with general-purpose, inefficient and

inappropriate abstractions.

5.2 Pico-kernels

Some "pico-kernel" architectures have pushed their interface very close to the hardware.
However, they are typically biased to server architectures, restricting the ability of application-

level software to locally manage resources. For example, usage of the low-level kernel inter-

face is typically restricted to highly privileged servers, which are expected to be cooperative
during resource allocation and deallocation.

5.2.1 The pico kernel

The pico kernel attempts to provide a minimal set of abstractions: virtual processors and
protection domains [6]. As with the other minimal, abstraction-based kernels, the main dif-
ference between it and an exokernel is that it is abstraction-based: instead of concentrating
solely on multiplexing and exporting the whole of hardware functionality, it attempts to
provide a small set of abstractions. Unfortunately, abstractions necessarily hide hardware
details and conflict, at least in some ways, with application requirements.

As in the Raven Kernel (discussed below) the pico-kernel designers have noticed that
application-level services cause less communication between the application and its operat-
ing system.

5.2.2 SPACE

SPACE is an interesting "submicro-kernel" that provides only low-level kernel abstractions
defined by the trap and architecture interface [79]. Its close coupling to the architecture
has many similarities to the philosophy we have espoused. However, it is difficult to eval-
uate the SPACE approach, since the authors provide neither an explicit methodology nor
performance results.

5.2.3 The Raven Kernel

The Raven kernel dislocates many traditional abstractions to user-space [82]: tasks, excep-
tion handling and virtual memory are all that is provided by the kernel. However, it does
not share our belief that the operating system has no business abstracting the hardware.
Rather, it views the operating systems main task as providing a reliable and convenient work
environment: the "raw physical hardware [is] an environment far to exacting for higher level
users to deal with" [82]. This view manifests in a simple virtual memory and task interface
that hides many of the features of the underlying hardware.

An interesting result of the Raven work is that they have found that simply lowering the
kernel interface increases efficiency, since applications do not have to explicitly communicate
with the kernel for many operations.

5.3 The Cache Kernel

The Cache Kernel [22] is a low-level kernel that adheres to some of our precepts for a model
operating system. The difference between the Cache Kernel and Aegis is mainly one of high-
level philosophy: the Cache Kernel focuses primarily on reliability, rather than securely
exporting hardware resources to applications. For example, the Cache Kernel attempts
to eliminate all dynamic memory allocation (similarly to Popek and Klines' Data Secure
Unix [78]). Unsurprisingly, this single constraint lowers the kernel interface as compared
to traditional operating systems. However, the de-emphasis on application flexibility and
extensibility is telling; the cache kernel is biased towards a server-based system structure
(for example, it supports only 16 "application-level" kernels concurrently).

These quibbles aside, we believe that with several straight-forward changes the Cache
Kernel would fit firmly and well within our definition of an exokernel.

5.4 Library Operating Systems

In a two-page position paper, Anderson argued for application-level library operating sys-
tems. To the best of our knowledge, he was the first to do so. He also proposed that
the kernel concentrate solely on adjudication of hardware resources. However, he did not
provide a design framework for such a system. For example, he did not address how secure
multiplexing of physical resources would be accomplished. In addition, he does not report
on an implementation of his ideas. Nevertheless, this paper can be considered a first step
in the direction of an exokernel architecture.

5.5 SPIN

The SPIN project investigates adaptable kernels that allow applications to make policy
decisions efficiently [13]. The SPIN system encapsulates policies in spindles that can be dy-
namically loaded into the kernel. To ensure safety, spindles will be written in a pointer-safe
language and will be translated by a trusted compiler. An interesting result of their imple-
mentation is the pervasive role naming can play in protection: control of what applications
can name (and hence manipulate) is, effectively, protection [16].

The SPIN project is attempting to solve a different from our work. Namely, they
investigate the difficult problem of how large software systems be meaningfully and reliably
parameterized by untrusted applications. This problem has at its core efficient, fine-grained
control over access rights; as such it is a very general problem and can have an impact far
beyond the narrow realm of operating systems.

We view the SPIN project complementary to our exokernel research, and we hope to
directly use their results to optimize application-level operating systems.

5.6 VM/370

The interface provided by the VM/370 operating system [27] is very similar to what would

be provided by our ideal OS: namely, the raw hardware. However, the important difference

is that VM/370 provides this interface by virtualizing the entire base-machine. Since this

machine can be quite complicated and expensive to emulate faithfully, virtualization can

result in a complex and inefficient OS. In contrast, our approach exports hardware resources

rather than emulates them, allowing an efficient and fast implementation.
The central tenet of the virtual machine movement (and VM/370 in particular) is that

an application should not be able to detect that it is not executing on the native hardware.

Supporting this illusion aggressively precludes application management: since the applica-

tion is not supposed to see VM/70 it is unable to communicate with it over such issues as

explicit allocation, revocation, naming and sharing (sharing is particularly difficult across

virtual machines [59]).

5.7 Synthesis

Synthesis is an innovative operating system that investigated the effects of a tight cou-

pling between operating system and compiler. In particular, Synthesis used dynamic code

generation to generate extremely efficient code sequences for a fixed, high-level UNIX inter-

face [72]. While their performance improvements were impressive, the fixed interface they

provided precluded much application-level customization. Furthermore, an exokernel's low-
level interface directly eliminates the need to partially evaluate complex operating system
functions: all functions are simple and, therefore, quite efficient.

We expect to use dynamic code generation pervasively in the optimization of application-
level operating systems; the main difference will be our reliance on portable, high-level
methods for generating code on the fly (e.g., as described in [39, 38]).

5.8 HAL

Many operating systems have a hardware abstraction layer. If the exokernel ideas work in
practice, these layers could aid the transition from traditional operating system structures
to more flexible, efficient and simple exokernels. In the future, we hope to perform such a
transformation on the codified HAL of Windows/NT [28]

5.9 Extensible Operating Systems

Many early operating systems papers discussed the need for extendible, flexible kernels [50,
65, 81, 107, 108]. Lampson's description of the CAL-TSS [60, 63] and Brinch Hansen's
microkernel paper [43] are two classic rationales. Hydra was the most ambitious system to
have the separation of kernel policy and mechanism as one of its central tenets [108]. Modern
revisitations of microkernels have also argued for kernel extensibility [1, 80, 84, 95, 28].
Anderson and Kiczales et al. also recently argued for minimalism and customizable [3, 56].

The most important difference between our work and previous approaches is the explicit
view that the operating system should not provide abstractions; as a result the interface in
these systems is a much higher one (e.g., page-tables are implemented by the kernel).

Current attempts include Scout [44], Bridge [69], and Vino [87]. Some of the techniques
used in these systems, such as type-safe languages [13, 36, 74, 81] and software fault-
isolation [31, 104], are also applicable to exokernels. These systems are just beginning to
be constructed, so it is difficult to determine their relationship to exokernels in general and
Aegis in particular.

5.10 Dynamically loaded device drivers

The commercial world has long looked at extensibility in the form of dynamically loaded
device drivers: the QNX operating system allows user-level handlers for device I/O [47];
Chorus servers are loaded into the kernel [84]; Mach 3.0 has migrated some of the AFS cache
manager back into the kernel [75]; Lepreau et. al. has provided a tool to reintroduce servers
into Mach 3.0 [66]. Draves has argued for selecting among several implementations of a
specific kernel abstraction to allow customization [32]. However, all of these customizations
require a very high privilege and none guarantee the safety of the code once introduced.

- ---- T---------~--- ·

Chapter 6

Conclusions

In this chapter we summarize the exokernel approach, detail the contributions of the thesis,
discuss future work and conclude.

6.1 Summary

Traditional operating systems encapsulate physical resources in high-level abstractions.
Thus, applications have little recourse in the face of inappropriate or inflexible operating
system abstractions. The exokernel structure proposed in this thesis attempts to eliminate
the conflict between application requirements and operating system provisions by multi-
plexing the raw physical resources across applications. Informally, an exokernel strives to
allow applications to control all resources available to traditional operating systems without
either additional overhead or restrictions. The central principle behind an exokernel is that
applications should manage all physical resources. Exokernels manage resources only to the
extent required by protection (e.g., allocation, revocation, and ownership). This principle
is based upon the belief that distributed resource management is the best way to build
an efficient, flexible system. This belief, in turn, is built upon two simple insights. The
first is that, fundamentally, there is no "best way" to implement a high-level abstraction.
Therefore, hard-wiring the implementation in the operating system, where it can neither
be changed nor avoided is a dangerous practice. On the other hand, enabling applications
to implement the abstractions they require at application-level allows very efficient and
flexible implementations. The second insight is that if a kernel abstraction is eliminated,
it can never break, consume cycles, nor conflict with application requirements. In short,
an exokernel eschews OS abstractions. Both of these intuitions motivate the exposure of
all hardware capabilities to applications. From these hardware primitives, application-level
libraries and servers can directly implement traditional operating system abstractions, spe-
cialized for appropriateness and speed.

6.2 Contributions

This thesis has attacked three important problems in operating systems: flexibility, perfor-
mance and reliability. Its specific contributions are listed below:

1. The insight that the reason traditional operating systems are inflexible, inefficient
and unreliable is because they are designed to provide abstractions of the underlying
hardware.

2. The development of an explicit methodology to directly solve the problems of tradi-
tional operating systems. Specifically, the definition of a new kernel structure, the
exokernel, that has as its central tenet the secure exportation of raw hardware re-
sources to applications (i.e., the full range of privileged instructions, TLB hardware,
DMA, etc.). The principles of an exokernel structure have been enumerated and many
of the issues surrounding its design have been fleshed out.

3. The development of a prototype exokernel, Aegis, that provides a preliminary test of
the exokernel approach.

4. The development of a prototype library operating system, ExOS, that is used as an
existence proof that traditional operating system objects (processes, virtual memory,
IPC) can be implemented effectively and flexibly in application space. One of the
interesting results we show is that virtual memory can be efficiently implemented at
application-level.

5. An initial quantitative evaluation of the exokernel ideas. Our initial results are quite
promising: many of the benchmarks either run an order of magnitude more efficiently
on the exokernel system than on a mature monolithic OS or, more compellingly,
cannot even be done on any other operating system.

6.3 Future work

The existing exokernel precepts must be refined and expanded. For example, a more satis-

factory framework for devices is needed.
At a practical level, a substantial amount of work needs to be accomplished before we

will have a mature exokernel-based system. In the short term, the first two priorities are

the implementation of disk and network device drivers and the higher-level software to use

them. In the longer term, we intend to implement a complete operating system and services,
so that the exokernel ideas can be tested in a production environment. Very high emphasis

will be placed on making the implementation as simple as possible. For example, much

of the code for the libraries and servers will be taken from the more stable public domain

operating systems.
The fundamental system restructuring that an exokernel allows will present a number

of interesting problems and insights. We intend to aggressively investigate how different

libraries and servers can be specialized and tuned to different application domains.

Additionally, we will be constructing several distributed systems based upon the exok-

ernel. The raw performance and close integration with the hardware should go a long way

towards providing fast, high-bandwidth network communication. This raw power can be

used as a strong building block for distributed applications; for example, a very efficient

distributed shared memory system. Furthermore, it will allow us to build a completely

location-transparent distributed system.
At an implementation level, there are a number of techniques we will utilize to further

increase the speed of the current exokernel system. The first will be the use of dynamic code

generation to tune TLB handling, exception forwarding and the Aegis upcall. The second

technique is the use of downloaded application code to improve performance. Downloaded

application code can be used to lower the cost of STLB misses (and, with careful attention

eliminate the need for it all together), batch system calls and, importantly, simplify the

exokernel interface: many of the system calls we require to expose the underlying hardware

(e.g., privileged instructions) can be directly eliminated, since applications can download
code to perform these operations directly.

6.4 Close

Traditional operating systems have been abstraction-based. These abstractions have hin-
dered reliability and efficiency and conflicted with application requirements. We have pro-
posed a new operating system structure to solve these problems. The central tenet on
which this structure is built is that all hardware functionality should be exposed directly to
applications without either operating system abstractions or management. This exokernel
architecture represents a fundamental shift in how operating systems are structured.

We have documented a small step in the realization of a mature exokernel system.
While initial results are quite promising (frequently one to two orders of magnitude better
than a mature monolithic system on basic operations), further evaluation must be done to
determine whether the exokernel architecture can be a successful guide for the next decades
of operating system design.

Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: a new kernel foundation for UNIX development. Proc. Summer 1986 USENIX
Conference, pages 93-112, July 1986.

[2] W.B. Ackerman and W.W. Plummer. An implementaton of a multiprocessing com-
puter system. Proceedings of the First ACM Symposium on Operating Systems Prin-
ciples, October 1967.

[3] T.E. Anderson. The case for application-specific operating systems. In Third Work-
shop on Workstation Operating Systems, pages 92-94, 1992.

[4] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler activa-
tions: Effective kernel support for the user-level management of parallelism. In Proc.
Thirteenth Symposium on Operating System Principles, pages 95-109, October 1991.

[5] A.W. Appel and K. Li. Virtual memory primitives for user programs. In Proceedings
of the Fourth International Conference on ASPLOS, pages 96-107, Santa Clara, CA,
April 1991.

[6] H. Assenmacher, T. Breitbach, P. Buhler, V. Hiibsch, H. Peine, and R. Schwarz.
Meeting the application in user space. In Proceedings of the Sixth SIGOPS European
Workshop, pages 82-87, September 1994.

[7] O. Babaoglu and W. Joy. Converting a swap-based system to do paging in an archi-
tecture lacking page-referenced bits. In Proceedings of the Eighth ACM Symposium
on Operating Systems Principles, pages 78-86, Pacific Grove, CA, December 1981.

[8] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit
Sarkar. PATHFINDER: A pattern-based packet classifier. In Proceedings of the First
Symposium on Operating Systems Design and Implementation, pages 115-123, 1994.

[9] K. Bala, M.F. Kaashoek, and W.E. Weihl. Software prefetching and caching for
translation lookaside buffers. In Proceedings of the First Symposium on OSDI, pages
243-253, June 1994.

[10] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. In
Proceedings of the 19th Annual Symposium on Principles of Programming Languages,
pages 59-70, Albequerque, New Mexico, January 1992.

[11] R. Bedichek. Private Communication, December 1994.

[12] B. N. Bershad. High performance cross-address space communication. Technical
Report 90-06-02 (PhD Thesis), University of Washington, June 1990.

[13] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Sav-
age, and E. Sirer. SPIN - an extensible microkernel for application-specific operating
system services. TR 94-03-03, Univ. of Washington, February 1994.

[14] B.N. Bershad, D. Lee, T.H. Romer, and J.B. Chen. Avoiding conflict misses dynami-
cally in large direct-mapped caches. In Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS- VI), 1994.

[15] B.N. Bershad, D.D. Redell, and J.R. Ellis. Fast mutual exclusion for uniprocessors. In
Proc. of the Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 223-237, October 1992.

[16] Brian N. Bershad. Private Communication, December 1994.

[17] Brian N. Bershad, Dennis Lee, Theodore H. Romer, and J. Bradley Chen. Avoiding
conflict misses dynamically in large direct mapped caches. In Proceedings of the Sixth

International Conference on ASPLOS, pages 158-170, 1994.

[18] Brian K. Bray, William L. Lynch, and M. J. Flynn. Page allocation to reduce access
time of physical pages. Technical Report CSL-TR-90-454, Stanford University, 1990.

[19] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.

Scheduling and page migration for multiprocessor compute servers. In Sixth Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS-VI), 1994.

[20] Jeffrey S. Chase, Henry M. Levy, Michel Baker-Harvey, and Edward D. Lazowska.
How to use a 64-bit virtual address space. Technical Report TR 92-03-02, University

of Washington, 1992.

[21] D.L. Chaum and R.S. Fabry. Implementing capability-based protection using encryp-

tion. Technical Report UCB/ERL M78/46, University of California at Berkeley, July

1978.

[22] D. Cheriton and K. Duda. A caching model of operating system kernel functionality.
In Proceedings of the Sixth SIGOPS European Workshop, September 1994.

[23] D. R. Cheriton. An experiment using registers for fast message-based interprocess

communication. Operating Systems Review, 18:12-20, [10] 1984.

[24] D. R. Cheriton, G. R. Whitehead, and E. W. Sznyter. Binary emulation of unix using

the v kernel. Proceedings of the Summer 1990 USENIX Conference, pages 73-85,
June 1990.

[25] D.D. Clark. On the structuring of systems using upcalls. In Proceedings of the Tenth

ACM Symposium on Operating Systems Principles, pages 171-180, December 1985.

[26] Eric Cooper, Robert Harper, and Peter Lee. The Fox project: Advanced development
of systems software. Technical Report CMU-CS-91-178, Carnegie Mellon University,

Pittsburgh, PA 15213, 1991.

100

[27] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM J. Research and
Development, 25(5):483-490, September 1981.

[28] H. Custer. Inside Windows/NT. Microsoft Press, Redmond, WA, 1993.

[29] R.H. Halstead D.A. Kranz and E. Mohr. Mul-t: A high-performance parallel lisp. In
Proceedings of the SIGPLAN '89 Conference on Programming Language Design and
Implementation, 1989.

[30] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The logical disk: A new
approach to improving file systems. In Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, 1993.

[31] P. Deutsch and C.A. Grant. A flexible measurement tool for software systems. Infor-
mation Processing 71, 1971.

[32] R. Draves. The case for run-time replaceable kernel modules. In Fourth Workshop on
Workstation Operating Systems, pages 160-165, October 1993.

[33] Richard Draves. Private Communication, December 1994.

[34] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Experiences with a high-speed
network adaptor: A software perspective. In SIGCOMM'94, pages 2-13, 1994.

[35] D. R. Engler, M. F. Kaashoek, and J. O'Toole. The exokernel approach to extensibility
(abstract). In Proceedings of the First Symposium on OSDI, November 1994.

[36] D. R. Engler, M. F. Kaashoek, and J. O'Toole. The operating system kernel as a secure
programmable machine. In Proceedings of the Sixth SIGOPS European Workshop,
September 1994.

[37] D. R. Engler, M. F. Kaashoek, and J. O'Toole. The operating system kernel as a
secure programmable machine. In Operating systems review, January 1995.

[38] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. 'C: A language for
high-level, efficient, and machine-independent dynamic code generation. Submitted
for publication.

[39] D.R. Engler and T.A. Proebsting. DCG: An efficient, retargetable dynamic code
generation system. Proceedings of ASPLOS-VI, pages 263-272, October 1994.

[40] R. Goldberg. Architecture of virtual machines. 1973 NCC AFIPS Conf. Proc., 42:309-
318, 1973.

[41] Susan L. Graham, Peter B. Kessler, and M. K. McKusick. gprof: a call graph exe-
cution profiler. In Proceedings of the ACM SIGPLAN '82 Symposium on Compiler
Construction, pages 120-126, Boston, MA, June 1982.

[42] David Gudeman. Representing type information in dynamically typed languages.
Technical Report TR 93-27, University of Arizona, October 1993.

[43] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of
the ACM, 13(4):238-241, April 1970.

101

[44] J.H. Hartman, A.B. Montz, David Mosberger, S.W. O'Malley, L.L. Peterson, and T.A.
Proebsting. Scout: A communication-oriented operating system. Technical Report
TR 94-20, University of Arizona, Tucson, AZ, June 1994.

[45] K. Harty and D.R. Cheriton. Application-controlled physical memory using external
page-cache management. In Proceedings of the Fifth International Conference on
ASPLOS, pages 187-199, October 1992.

[46] G. J. Henry. The fair share scheduler. AT&T Bell Laboratories Technical Journal,
October 1984.

[47] D. Hildebrand. An architectural overview of QNX. In Proceedings of the Usenix
Workshop on Micro-kernels and Other Kernel Architectures, April 1992.

[48] W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. The persistent relevance of IPC per-
formance: New techniques for reducing the IPC penalty. In Fourth Workshop on
Workstation Operating Systems, pages 186-190, October 1993.

[49] J. Huck and J. Hays. Architectural support for translation table management in
large address space machines. In Proceedings of the 19th International Symposium on
Computer Architecture, 1992.

[50] D.H.R. Huxtable and M.T. Warwick. Dynamic supervisors - their design and con-
struction. Proceedings of the First ACM Symposium on Operating Systems Principles,
1967.

[51] SPARC International. The SPARC Architecture Manual Verson 8. Prentice Hall,
Englewood Cliffs, New Jersey 07632, 1992.

[52] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In 17th Annual International
Symposium on Computer Architecture, pages 364-373, May 1990.

[53] M.F. Kaashoek, R. van Renesse, H. van Staveren, and A.S. Tanenbaum. FLIP: an

internetwork protocol for supporting distributed systems. ACM Trans. Comp. Syst.,

11(1):73-106, Feb. 1993.

[54] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

[55] J. Kay and P. Lauder. A fair share scheduler. Communications of the ACM, January

1988.

[56] G. Kiczales, J. Lamping, C. Maeda, D. Keppel, and D. McNamee. The need for cus-

tomizable operating systems. In Fourth Workshop on Workstation Operating Systems,

pages 165-170, October 1993.

[57] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation model

of the HP 97560 disk drive. Technical Report PCS-TR94-220, Dartmouth, 1994.

[58] Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson. Tools for

development of application-specific virtual memory management. In Proceedings of

OOPSLA, pages 48-64, October 1993.

102

[59] B. W. Lampson. Hints for computer system design. In Proceedings of the Eighth ACM
Symposium on Operating Systems Principles, pages 33-48, December 1983.

[60] Butler W. Lampson. Scheduling and Protection in Interactive Multi-Processing Sys-
tems. PhD thesis, Berkeley, 1967.

[61] Butler W. Lampson. Private Communication, November 1994.

[62] B.W. Lampson. Dynamic protection structures. AFIPS Conf. Proc. 1969 FJCC,
35:27-28, 1969.

[63] B.W. Lampson. On reliable and extendable operating systems. State of the Art
Report, 1, 1971.

[64] B.W. Lampson. Protection. In Proc. 5th Princeton Conf. on Inform. Sci. and Syst.,
pages 437-443, March 1971.

[65] B.W. Lampson and H.E. Sturgis. Reflections on an operating system design. Com-
munications of the ACM, 19(5):251-265, May 1976.

[66] Jay Lepreau, Mike Hibler, Bryan Ford, and Jeff Law. In-kernel servers in Mach 3.0:
implementation and performance. Proc. of the Third Usenix Mach Symposium, 1993.

[67] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of the Fourteenth
ACM Symposium on Operating Systems Principles, pages 175-188, 1993.

[68] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed Object Management, chapter
Distributed Object Management in Thor, pages 79-91. Morgan Kaufman, 1993.

[69] Steven Lucco. High-performance microkernel systems (abstract). In Proc. of the first
Symp. on OSDI, November 1994.

[70] C. Maeda. Thesis proposal, January 1994.

[71] C. Maeda and B. N. Bershad. Protocol service decomposition for high-performance
networking. In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles, pages 244-255, 1993.

[72] H. Massalin. Synthesis: an efficient implementation of fundamental operating system
services. PhD thesis, Columbia University, 1992.

[73] Dylan McNamee and Katherine Armstrong. Extending the mach external pager in-
terface to accommodate user-level page replacement policies. In Mach Workshop
Conference Proceedings, pages 17-30, Burlington, VT, October 4-5 1990. USENIX.

[74] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet filter: An efficient mechanism
for user-level network code. In Proceedings of 11th SOSP, pages 39-51, Austin, TX,
November 1987.

[75] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and
Richard Brown. Design tradeoffs for software-managed TLBs. 20th Annual Inter-
national Symposium on Computer Architecture, pages 27-38, 1993.

103

[76] J. K. Ousterhout. Why aren't operating systems getting faster as fast as hardware?
In Proc. Summer Usenix, pages 247-256, June 1990.

[77] M. Pagels. Private Communication, October 1994.

[78] G.J. Popek et al. UCLA data secure UNIX. In Proc. of the 1979 National Computer
Conference, pages 355-364, 1979.

[79] D. Probert, J.L. Bruno, and M. Karzaorman. SPACE: A new approach to operating
system abstraction. In IWOOS, 1991.

[80] R.F. Rashid and G. Robertson. Accent: A communication oriented network operating
system kernel. Proceedings of the Eighth ACM Symposium on Operating Systems
Principles, pages 64-75, December 1981.

[81] D.D. Redell, Y.K. Dalal, T.R. Horsley, H.C. Lauer, W.C. Lynch, P.R. McJones, H.G.
Murray, and S.C. Purcell. Pilot: An operating system for a personal computer.
Communications of the ACM, 23(2):81-92, February 1980.

[82] Duncan Stuart Ritchie. The Raven kernel: a microkernel for shared memory multi-
processors. Technical Report TR 93-36, University of British Columbia, Vancouver,
B.C., Canada V6T 1Z2, April 1993.

[83] Theodore H. Romer, Dennis Lee, Brian N. Bershad, and J. Bradley Chen. Dynamic
page mapping policies for cache conflict resolution on standard hardware. In Proceed-
ings of the First Symposium on OSDI, pages 255-266, June 1994.

[84] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-
rmann, C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Chorus distributed
operating system. Computing Systems, 1(4):305-370, 1988.

[85] J. Saltzer. Naming and Binding of Objects, chapter 3.A., pages 99-208. Lecture Notes
in Computer Science. Springer-Verlag, 1978.

[86] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in com-
puter systems. Proc. of the IEEE, 63(9):1278-1308, September 1975.

[87] Margo Seltzer et al. An introduction to the architecture of the VINO kernel, November
1994.

[88] R.L. Sites. Alpha axp architecture. Comm. of the ACM, 36(2), February 1993.

[89] M.J. Spier, Thomas N. Hastings, and David N. Cutler. An experimental implementa-
tion of the kernel/domain architecture. In Fourth Symposium on Operating Systems

Principles, October 1973.

[90] Richard Stallman. Using and porting GCC.

[91] M. Stonebraker. Operating system support for database management. CACM,
24(7):412-418, July 1981.

[92] Michael Stonebraker. Readings in Database Systems, chapter Inclusion of new types
in relational data base systems, pages 480-487. Morgan Kaufmann Publishers Inc.,
1988.

104

[93] M. Talluri, S. Kong, M.D. Hill, and D.A. Patterson. Tradeoffs in supporting two
page sizes. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, pages 415-424, May 1992.

[94] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of super-
pages with less operating system support. In Proceedings of the Sixth International
Conference on ASPLOS, 1994.

[95] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp, S.J. Mullender,
A. Jansen, and G. van Rossum. Experiences with the Amoeba distributed operating
system. Communications of the ACM, 33(12):46-63, December 1990.

[96] C. Thekkath. Private Communication, November 1994.

[97] C. A. Thekkath and Henry M. Levy. Hardware and software support for efficient
exception handling. In Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VI), 1994.

[98] C.A. Thekkath, T.D. Nguyen, E. Moy, and E. Lazowska. Implementing network
protocols at user level. In SIGCOMM '93, pages 64-73, 1993.

[99] K. Thompson. UNIX implementation. Bell Systems Technical Journal, 57(6):1931-
1946, July 1978.

[100] K. Thompson, R. Pike, et al. Plan9 Manual Page, 1991.

[101] Richard Uhlig, David Nagle, Trevor Mudge, and Stuart Schrest. Trap-driven sim-
ulation with tapeworm II. In Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
VI), pages 132-144, October 1994.

[102] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages: a
mechanism for integrated communication and computation. In Proceedings of the 19th
International Symposium on Computer Architecture, pages 256-267, May 1992.

[103] V.A. Vyssotsky, F.J. Corbato', and R.M. Graham. Structure of the multics supervisor.
AFIPS FJCC 1965, pages 203-212, 1965.

[104] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault
isolation. In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles, pages 203-216, 1993.

[105] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-
share resource management. In Proceedings of the First Symposium on Operating
Systems Design and Implementation, pages 1-11, 1994.

[106] D.W. Wall. Systems for late code modification. CODE 91 Workshop on Code Gen-
eration, 1991.

[107] B.A. Wichmann. A modular operating system. Proc. IFIP Cong. 1968, 1968.

[108] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
HYDRA: The kernel of a multiprocessing operating system. Communications of the
ACM, 17(6):337-345, July 1974.

105

[109] Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient packet demultiplexing for
multiple endpoints and large messages. In Winter USENIX 94, 1994.

[110] C. Yarvin, R. Bukowski, and T. Anderson. Anonymous RPC: Low-latency protection
in a 64-bit address space. In Proceedings of the Summer 1993 USENIX Conference,
June 1993.

(4c

106

