
Real-Time Embedded Sensor Processing for an
Autonomous Helicopter

by

Chin San Han

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering
in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 26, 1998

Copyright @ 1998 by Chin San Han. All Rights Reserved.

Author
'' ament oeVrical Engineering and Computer Science

,- May 26, 1998

Approved by
Paul A. DeBitetto

Senior Technical Staff, Charles Stark Draper Laboratory
Thesis Supervisor

Certified by
Stephen K. Burns

Senior Research Scie , ssachusetts titute of Technology
/ , Thpis SUpervisor

Accepted by
C. kAihur C. Smith

S74 INSTITUTE Chairman, Departmental Committee on Graduate Theses

JU 141lW

Real-Time Embedded Sensor Processing for an
Autonomous Helicopter

by
Chin San Han

Submitted to the
Department of Electrical Engineering and Computer Science

May 26, 1998

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering

in Electrical Engineering and Computer Science

Abstract

In 1997, the Charles Stark Draper Laboratory in Cambridge, Massachusetts continued

its research in autonomous agents by designing and constructing the second-generation Draper

Small Autonomous Aerial Vehicle (DSAAV). This aircraft, based on a commercially produced

model helicopter, has been outfitted with numerous navigational systems to achieve autonomous

flight between waypoints established by a ground control station. One such system, known as

the Sensor Processing Unit (SPU), was developed as part of the 1997 effort to redesign the

DSAAV. This device consolidates and integrates three electronic sensors, an accelerometer,

compass, and sonar altimeter, along with other related components into a single device that

administers both sensor control and data processing, thus relieving the on-board navigational

computer of these tasks. Unfortunately, the 1997 SPU revealed an inability to achieve its

objectives satisfactorily due to flaws in both hardware and software that resulted in part from the

lack of an appropriate design methodology. Therefore, this thesis establishes a framework for

understanding and realizing sensor integration in autonomous vehicles, and formulates a

procedural basis for both evaluating the 1997 SPU and reengineering its architecture from

foundation through implementation to achieve real-time embedded sensor processing for an

autonomous helicopter.

-3-

Acknowledgment

This thesis was prepared at the Charles Stark Draper Laboratory, Inc.

Publication of this thesis does not constitute approval by The Charles Stark Draper

Laboratory, Inc. of the findings or conclusions contained herein. It is published for the exchange

and stimulation of ideas.

Permission is hereby granted by the author to the Massachusetts Institute of Technology

to reproduce any or all of this thesis.

-5-

4 :

Forward

This thesis, undertaken at the Charles Stark Draper Laboratory, began in the fall of

1997 during my sixth academic year at the Massachusetts Institute of Technology. I have many

to thank for not only their assistance during this project but also my development as an

engineer, researcher, and student over the course of my undergraduate and graduate

experience. My gratitude and sincerest thanks:

To Paul Debitetto, for your guidance and constructive criticism which kept this

thesis on track, and for your encouraging words which lifted my spirits;

To Stephen Bums, for your patient reading, analysis, and supervision of my last

thesis drafts;

To Robert Faiz, for your experience and sense of humor which always knew how

to handle things when they broke, and when they did not;

To my lab companions, for your helpful, friendly, and knowledgeable presence in

the lab;

To my teachers, academic and artistic, intellectual and spiritual, for your advice

and direction that helped me to learn what I love;

To my friends, for your constant encouragement and care throughout and

especially during a term full of uncertainty and questions about the future;

To my family, for your ever-present, ever-surprising love for a young man who is

trying to find his way in life;

To my Abba, for teaching me to choose Life at every moment, for always leading

me in the Way, for walking right beside me no matter what the cost.

-7-

Contents

Chapter 1 - Autonomy and Sense: Machines that Feel

1.1 Introduction.

1.2 Autonomous Devices.

1.1.1 Autonomous Agents

1.1.2 Autonomous Vehicles

1.3 Sensors.

1.4 Sensor Control and Integration in Autonomous Vehicles

1.5 Summary

15

Chapter 2 - Distributed Processing: Teamwork 19

2.1 Introduction. 19

2.2 Overview of Distributed Processing . . . 19

2.3 Design of Distributed Systems . . . 20

2.3.1 Modularity 20

2.3.2 Autonomy 21

2.3.3 Cooperativeness 21

2.4 Role of Distributed Processing in Autonomous Vehicles 22

2.5 Summary 23

Chapter 3 - 1997 DSSAV and SPU: Integration by Parts

3.1 Introduction

3.2 Overview of the 1997 DSAAV Distributed Systems

3.2.1 On-Board Navigation

3.2.2 Ground Guidance

3.2.3 Vision Processing

3.2.4 Sensor Processing

3.3 DSSAV Sensor Integration and Control

24

24

24

25

25

26

26

27

-9-

3.3.1 Overview of Sensor Processing Unit

3.3.2 SPU Objectives .

3.4 1997 SPU Hardware Design and Implementation

3.4.1 Component Selection

3.4. 1a Microprocessor Selection

3.4. lb A/D Converter Selection

3.4. 1c Anti-Aliasing Filter Selection

3.4. 1d Other Considerations

3.4.2 System Design

3.4.3 Circuit Design

3.4.3a Analog Design

3.4.3b Digital Design

3.5 1997 SPU Software Design and Implementation

3.5.1 Compass-Sonar Subsystem Software

3.5.2 IMU Subsystem Software

3.6 Summary

Chapter

4.1

4.2

27

28

29

29

29

30

30

31

32

32

32

32

36

36

38

42

42

42

42

43

44

45

48

50

4 - Evaluating the 1997 SPU: Cracks in the Wall

Introduction

Evaluating 1997 SPU

4.2.1 Consolidation and Integration of Sensors

4.2.2 Distribution of Sensor Processing Load

4.2.3 Augmentation of System Accuracy and Bandwidth

4.2.3a Modeling Inertial Errors

4.2.3b Applying the Error Model to the 1997 SPU

4.3 Summary

Chapter 5 - The 1998 Sensor Processing Unit: Building Blueprints 51

5.1 Introduction 51

5.2 Objectives 52

5.3 System Proposal for the 1998 SPU 53

5.3.1 1997 SPU System 53

5.3.2 1998 SPU System 54

5.4 Implementation Considerations . 55

5.4.1 Hardware Considerations 55

5.4. 1a Microprocessor vs. Microcontroller 55

5.4.1b A/D Converter 56

5.4. 1c Anti-Aliasing Filters 57

5.4.2 Software Considerations 57

-10-

5.4.2a Software Architecture

5.4.2b Software Characteristics

5.4.3 Hardware Component and Software Implementation Guidelines

5.5 Hardware Design

5.5.1 Microcontroller Options .

5.5.1a PC-104 Compliant Microcontroller

5.5.1b Enhanced Microcontroller

5.5.1c PIC17C756 Microcontroller

5.5.2 The PIC17C756 and the SPU

5.5.2a Overview of PIC 17C756 Capabilities

5.5.2b Comparison ofPIC17C756 to 1997 SPU

5.5.3 Design and Implementation

5.6 Software Design.

5.6.1 Sensor Protocols

5.6. 1a Flux Magnetometer (Electronic Compass)

5.6.1b Sonar Altimeter

5.6. 1c Inertial Measuring Unit

5.6. 1d Optimal Sensor Sampling Rates

5.6.2 Software Event Categorizations .

5.6.2a Period-Based Events

5.6.2b Occurrence-Based Events

5.6.3 Software Implementation Concerns .

5.6.3a Communication with Navigational Computer

5.6.3b Interrupt Handlers versus Linear Code

5.6.4 Software Control Schemes and Schematics

5.6.4a Overall Implementation

5.6.4b Technical Details

5.7 Reviewing the 1998 SPU..

5.7.1 Comparing the 1998 SPU to the 1997 SPU

5.7. 1a Hardware Comparison

5.7. lb Software Comparison

5.7.2 1998 SPU Advantages Over 1997 SPU

5.7.3 1998 SPU Disadvantages Over 1997 SPU

5.8 Summary

Chapter

6.1

6.2

6.3

6 - 1998 SPU Design Realization: Pipe Dreams

Introduction

SPU Hardware Prototyping Considerations

Software Simulation and Analysis

57

58

59

59

60

60

61

61

62

62

62

64

67

67

67

68

69

69

70

70

71

71

72

72

73

73

74

76

76

76

77

77

77

78

79

79

79

80

-11 -

6.4 Summary

Chapter 7 - Conclusion: Matters to Mind

Appendix A: 1998 SPU PIC 17C756 Software: 17c756.h

Appendix B:

References

1998 SPU PIC17C756 Software: spu-p l7.asm

- 12-

81

84

93

123

.. . 80

List of Figures and Tables

Figures

3.4.2-1:

3.4.3a-1:

3.4.3b-1:

3.5.1-1:

3.5.1-2:

3.5.2-1:

4.2.2-1:

4.3.2b-1:

5.3.1-1:

5.3.2-1:

5.5.3-1:

5.5.3-2

5.6.1a-1:

5.6.1b-1:

5.6.4-1:

1997 SPU System Diagram .

1997 SPU Analog Circuit Schematic .

1997 SPU Digital Circuit Schematic .

1997 SPU Compass-Sonar Service Control Diagram

1997 SPU Compass-Sonar Interrupt Control Diagram.

1997 SPU IMU Service and Interrupt Control Diagram.

1997 SPU Transmitted IMU Data.

1997 SPU Transmitted IMU Data w/ Errors

1997 SPU System Diagram (same as Figure 3.4.2-1)

Generalized SPU System Diagram

1998 SPU System Architecture .

1998 SPU Proposed Circuit Schematic

Compass Signal Timing Schedule

Sonar Signal Timing Schedule

1998 SPU Software Control Diagram.

33

. . . 34

35

. . . 37

. . . 39

. . . 40

45

49

53

55

65

66

67

68

75

Tables

5,5,2a- 1: PIC 17C756 Microcontroller and Peripheral Features .

5.6. 1d-1: 1998 SPU Optimal Sensor and Status Sampling Rates

-13-

Chapter 1

Autonomy and Sense:

Machines that Feel

1.1 Introduction

Autonomous devices play an integral role in modern times. Often responsible for tasks

once relegated to human operators, autonomous machines have demonstrated an aptness for

replacing a human's actions. But, by implication, an "autonomous" agent does more than mimic

movement, but is also capable of some form of intelligence. Granted that the level of intelligence

is relative to the application, but the assumption is that a machine fundamentally replaces not

only human manipulation but also motive. This idea has direct implication for not only the way

a machine "thinks", but also the way it interacts with its surrounding environment. Since

complete autonomy requires an ability to perceive the world in which it operates, autonomous

devices should be capable of some form of sensory perception. This chapter outlines

autonomous devices from a very generalized perspective and narrows to a specific focus on

autonomous vehicles, and discusses how sensors fit into their makeup.

1.2 Autonomous Devices

1.1.1 Autonomous Agents

An "autonomous agent" is any entity capable of existing independently, carrying on

without outside control, having self-government. In essence, an autonomous agent acts without

human direction and behaves only in response to its purpose. This definition immediately

implies two component features of autonomous devices. First, autonomous agents must have

-15-

some form of intelligence in order to carry out its mission. While "intelligence" is a relative term,

in the context of autonomous agents it refers to a capacity to apprehend the information

necessary to execute its mission and respond accordingly. The second feature of autonomous

agents is an ability to evaluate itself in light of its purpose not simply in an intellectual sense,

but also in a physical one as well. Simply put, the device must be able to observe its state and

its environment space. Of course, a rather large arena of possible autonomous agent candidates

present themselves given the two aforementioned qualifications but the issue at heart lies in

machine autonomy that replaces human intelligence and intervention. And while this can be

interpreted in many ways and applied to a number of possible autonomous agents, the field can

be narrowed further given the understanding that replacement of human control and action, and

not necessarily human form, is of concern, as in autonomous vehicles for example.

1.1.2 Autonomous Vehicles

Autonomous vehicles are a specialized breed of autonomous agents that seek to mimic

the intelligent motion control of living creatures. While their purposes might vary depending on

the vehicle, all distinguish themselves from the general class of autonomous agents by two

additional characteristics, namely independent mobility and interactiveness. These two

qualities attributed to intelligent vehicle motion are ones which strike at the core dilemma in the

development of autonomous vehicles: Replacing human mind and sight with a machine. Truly,

the autonomous mobility and interaction of a vehicle encapsulate parts of the basic notion of a

robot: "An automatic apparatus or device that performs functions ordinarily ascribed to human

beings or operates with what appears to be almost human intelligence" [1].

The mobility of autonomous vehicles implies that these devices are capable of physical

movement. In fact, motion of autonomous vehicles is key in defining their autonomy since

intelligent mechanical motion control is normally ascribed solely to living creatures. The modern

view of a mechanical vehicle is one in which a human intercedes in some capacity to control or

assist the device's actions. For instance, automobiles, aircraft, and bicycles typically have a

person somewhere in the control scheme and in the case of bicycles, humans also provide

locomotive power. In these scenarios, the vehicle often acts as an amplification or extension of

the human pilot, providing a means of travel which is directed by the human mind. Consider the

automobile: A person controls the movement of the vehicle, just as he controls his own two-

footed steps; a person supplies the automobile's fuel, just as he directs his own food intake; a

person monitors the car's gauges to verify proper functioning of all systems, just as he monitors

his own senses to determine good health. But, the automobile alone is inanimate and ill-

equipped to direct its movement intelligently within a given environment. Therefore, the

complete automation of vehicle motion control ultimately attempts to replace human control and

as such to achieve true autonomy, and quite possibly intelligence.

-16-

Interactiveness, the second characteristic of autonomous vehicles, is crucial to the

evolution of autonomy and comes almost as a prerequisite for independent mobility. In order for

an autonomous vehicle to move with purpose, it must be able to interpret and respond to its

environment. A truly autonomous vehicle must be equipped to observe its surroundings in as

many dimensions as necessary to not only ensure survival but also carry out its intended

mission. Otherwise, intelligent motion control is impossible. This sensory perception lies at the

heart of autonomy since intelligent observation of environment by autonomous vehicles seeks to

imitate that typically demonstrated only by living beings. For instance, while automobiles,

aircraft, and even some bicycles may be equipped with instrumentation that monitor both

internal and external environmental status, a person must ultimately process and interpret such

data. Consequently, these machines can hardly be labelled as autonomous. Further, a human

often acts as the sole source of sensory reception and processing. For example, an automobile

has no way of detecting roads. The driver is totally responsible for recognition of the path and

directing an appropriate course of action. This indirectly articulates a major barrier to the

development of autonomous vehicles: Devising devices and methods for sensing environmental

conditions. Without this machinery, more commonly known as sensors, environmental

interaction, both in observation and response, could not be possible and autonomous motion

control is left out of reach. Consequently, sensors in autonomous vehicles are of paramount

importance for while they cannot replace human sensory processing, they can provide sensory

perception. Sensors place the lofty goal of autonomous motion control within technology's grasp

and as such are the focus of much research and development.

1.3 Sensors

Sensors, or devices that respond to physical stimulus such as heat, light, and motion by

transmitting a resulting impulse [1], typically fill the role of being an electronic or mechanical

counterpart to biological sensory nerves. Just as these nerves are a fundamental building block

of biological sensory perception, sensors play the equivalent role for electromechanical sensing.

They act as an integral part of systems that must interact with the physical world, providing the

electronic or mechanical "nerve" response which allow devices to observe and react to their

environments. Without sensors, man-made systems cannot hope to respond to their

surroundings without human intervention.

In this electronic age, sensors have seen great technological innovation and innumerable

creative applications. In certain applications, sensors diminish or even remove the need for

human intervention in systems requiring real-world feedback and control loops. Indeed, sensors

often exceed the capabilities of human perception! For example, in quality control of ultra-high

precision machining, a position probe provides feedback to a controller indicating cutting errors

in machined parts that can be compensated for in the next cutting cycle. This sensor removes

-17-

the need for a human to measure the cut part and provide the necessary error compensation.

Further, the probe resolution of micrometers greatly exceeds that detectable by the human eye

and as such can provide more detailed and accurate part information. In this situation and

many others, even though a human operator commands the device, a sensor replaces a human

in providing sensory data for control. Similarly, in the context of autonomous vehicles, sensors

afford these machines with information about their internal and external environments.

Everything from compass-heading to temperature can be observed and relayed to a sensory

processing unit. But, while in the case of precision machining a human acted as the "processing

unit," who or what plays the equivalent part in machines and, more specifically, in autonomous

vehicles? Furthermore, how does it function? These questions lie at the heart of sensor control

technique, an integral design consideration in the development of autonomous vehicles.

1.4 Sensor Control and Integration in Autonomous Vehicles

Typically limited to the observation of one type of physical phenomena i.e., temperature,

velocity, electromagnetic field strength, sensors are usually designed with a high degree of

autonomy in and of themselves. Since a single sensor typically focuses on the monitoring of one

environmental aspect, its control lends itself to being completely contained as an inherent part of

the sensor itself. Due to this high degree of autonomy, sensors can often be transported between

applications requiring their functionality virtually at will, the major limiting factor being

differences in interface protocol. Nevertheless, while sensors operate with much independence,

they are typically used in conjunction with other sensors to increase the ways in which the

surrounding environment can be observed. Using multiple sensors of similar and different types

creates pathways for more diverse modes of observation and can consequently improve data

variety, redundancy, and resolution. But, due to the autonomous nature of individual sensors, a

synthesis of sensory information cannot simply occur as a matter of fact. A cooperative network

of various sensors requires an appropriate control and integration methodology that will harness

both the functionality and diversity of these devices. In applications involving high degrees of

autonomy, distributed processing stands out as such a design methodology.

1.5 Summary

Indeed, autonomous agents and autonomous vehicles aspire to be machines that feel.

These devices are not only intelligent, capable of interpreting and acting upon given

circumstances, but are also able to sense those conditions whether internal or external. Yet,

development of such devices and their sensory perception are no easy feats and call for a

research methodology suited to attacking the inherent problems involved in creating autonomous

instruments and, more specifically, autonomous vehicles.

18-

Chapter 2

Distributed Processing:

Teamwork

2.1 Introduction

Distributed processing techniques take advantage of autonomy as a tool for

organizational structure and development. By dividing larger systems into smaller, autonomous

sub-systems, each component can be researched and implemented separately thus reducing

design time and overall complexity, and increasing robustness. For example, since autonomous

vehicles require a variety of sensors in order to achieve a multi-faceted view of its surrounding

environment, these sensors can be organized into a single, centralized unit with the intent of

simplifying both the structure and control of the entire vehicle. While this may not be

immediately obvious, distributed processing applied to the organization of autonomous vehicles

presents unique advantages which clearly demonstrate the benefit of centralized sensor

processing, and should be investigated.

2.2 Overview of Distributed Processing

Distributed processing is a model for the handling of a complex system by dividing it into

smaller component sub-systems. Typically, each component is specified and designed such that

its operation is not dependent on any other sub-system and can therefore stand alone. Of

course, the sub-systems's independence in carrying out its assigned duties does not preclude an

ability to interact with other components. Indeed, this interaction between sub-systems is the

basis for distributed processing: that the resultant machinery would be greater than the mere

sum of its parts.

- 19-

Ideally in distributed processing, each of the component systems work in tandem as

parallel processes. This obliterates the traditional linear view of systems which requires each

step of a complex operation to flow from one to another. Under a process-oriented rubric,

complex systems cannot be divided solely by operation types as in traditional programming

styles. Such programming methods identify operations in the overall program and formalize

them as subroutines. While this does provide space savings and increases modularity, the code

is fundamentally structured upon a linear progression of commands and subroutines. Of

course, identification and formalization of subroutines within a distributed processing

architecture has value, bringing the same efficiency in space and modularity that traditional

linear programming offers. Nevertheless, a process not only involves commands and subroutines

in its programming but also must be capable of handling events in real time as the occur. Since

events may or may not be predictable or repeatable, processes cannot be a mere collection of

linear operations since this presumes a completely predictable universe. In essence, distributed

processing is about individual, self-sufficient real-time processes that cooperate in parallel with

one another to accomplish a larger, more complex task.

2.3 Design of Distributed Systems

Rather than dealing with all functions simultaneously both in implementation and

operation, a distributed processing approach simplifies a complicated system by dividing it into

multiple, function-focused sub-systems. While the identification and implementation of such

sub-systems is often unobvious and requires careful thought, several sub-system characteristics

clearly present themselves and must be considered during design, namely modularity,

autonomy, and cooperativeness.

2.3.1 Modularity

Modularity refers the quality of being standardized to allow flexibility and variety in use.

As applied to distributed processing, a modular sub-system would be clearly defined in role,

having a specified function or operation that is not context dependent. Ideally, this implies that

sub-systems are easily transferred between applications which require similar functionality. For

example, the navigational guidance system of a autonomous land rover should be easily

transferred to an autonomous aerial helicopter. Of course, this notion seems ridiculous due to

the extreme difference in both operating environments and navigational considerations of

autonomous land and aerial vehicles. But, fundamentally, the example ignores a key

assumption in modular theory: the degree to which a sub-system is independent of context is a

function of its interpreted application realm. In other words, the identification of subsystems

and thus the extent of their modularity is bounded by the determination of its application

species. For instance, autonomous land rovers could plausibly be derived from the

-20-

generalization of "autonomous terrestrial vehicles." Therefore, a navigational guidance system

designed with the terrestrial vehicle model in mind could ideally be transferred between a four-

wheeled land rover and a quadruped robot. This navigational system could be considered

modular within the domain of autonomous terrestrial vehicles, but not necessarily enough to

traverse the gap between ground and aerial agents. So, in short, modular design of sub-systems

requires standardization of system functionality within the scope of its application species, thus

allowing both flexibility and variety in use within that application sphere.

2.3.2 Autonomy

Self-government or self-rule is the crux of autonomy, and autonomy is a key feature of

distributed process sub-systems. An autonomous sub-system should be able to operate

independently of external systems with all requisite operations for proper functionality lying

within its control. This characteristic of sub-systems derives itself in part from the idea of

modularity. Ideally, modular systems are extremely flexible and reusable from one application to

the next. Therefore, the functionality of the sub-system must be completely transportable

between agents. If a sub-system is dependent on other devices for proper function, it could not

be exchanged between applications without altering either the system or the application itself.

Furthermore, such a transport could prove impossible for sub-systems relying on other systems

since there is no guarantee that the necessary components will be available from one application

to the next. Consequently, by formalizing system autonomy as a design requirement in

distributed processing, a sub-system should be independent in carrying out its functions and

can therefore be transparently exchanged in or between applications requiring it. Futhermore,

due to its autonomy, the sub-system carries with it all necessary components for its own

processing needs. This distributes the overall computational load over the various sub-systems

of a larger application and as such becomes the feature from which the term "distributed

processing" is largely derived.

2.3.3 Cooperativeness

While autonomy is an established design principle, this cannot be equated with

autocracy which refers to unlimited and complete government by a single entity. While an

autonomous sub-system is indeed self-ruled and independent, this does not imply a qualification

for governing the entire operation of a given application arena. Granted that this may be

obvious, but the intent in distinguishing "autonomy" from "autocracy" in sub-systems is to not

only acknowledge the difference but also clarify the need for cooperation. Distributed systems

function on a basic "division-of-labor" principle: that each sub-system tackles a certain portion

of the larger task at hand, and that together they would accomplish a greater feat that no single

one could accomplish alone. But, of course, this synthesis of labor does not simply occur. A

-21 -

plan for cooperation must be detailed as an integral part of the infrastructure of the larger

application. This might encompass everything from determining a proper communication

protocol to choosing an appropriate hardware interface. Regardless, the pathways for

coordination of sub-system operation cannot be ignored in design since distributed processing

methodology requires that each sub-system be autonomous in operation but cooperative in

application.

2.4 Role of Distributed Processing in Autonomous Vehicles

In many electromechanical applications, numerous functions, internal and external

interactions, and computations are necessary to achieve intricate, coordinated, and highly

complex behavior. Without an appropriate plan of attack, the application's development can

require long design times and extremely involved research due to its complicatedness. But, if an

application exhibits an aptness for being divided into modular and autonomous sub-systems, a

distributed processing methodology can be utilized to simplify the overall design and

implementation, as in the case of autonomous vehicles.

Autonomous vehicles, falling under the regime of autonomous agents, have several

defining characteristics previously identified as intelligent, self-evaluative, mobile, and

interactive. Each of these characteristics imply possible sub-system implementations that

realize these properties, and together generate an intelligent, self-controlled vehicle. For

example, an intelligence hints at some form of central processing or directing device dedicated to

interpreting, evaluating, and commanding the vehicle for its intended purpose. Of course, the

level of intelligence is relative to the design specifications, and in the case of autonomous

vehicles is limited to an ability to independently direct movement in response to a given mission.

This central processing unit is both autonomous as a device in itself and modular since its

functionality can be transported from one autonomous vehicle to another. Similarly, since

autonomous vehicles must be able to evaluate themselves with respect to and interact with the

environment, the means of detecting surrounding conditions could be consolidated into a single

sensory perception device. Even the mechanical apparatus can be seen as a system component

of the larger application. In each case, sub-systems implicitly carry some part of the larger

computational burden required by the entire application thus preventing the load from being

placed entirely on the CPU as would occur in a completely centralized structure. Consequently,

all of the aforementioned sub-systems, while autonomous and modular, must cooperate in order

to generate an intelligent, self-governed vehicle. Therefore, autonomous vehicles are immediately

suited to applying distributed processing techniques for the simplification, organization, and

distribution of electromechanical and computational structure. Furthermore, these very

generally outlined sub-systems themselves may be subdivided into component parts in a

recursive application of distributed processing, as in the case of sensor processing. This multi-

- 22 -

layered view of distributed processing in autonomous vehicles becomes a basis for evaluating the

effectiveness of such devices and their design.

2.5 Summary

In short, distributed processing applied to autonomous vehicles is about teamwork. It

involves the identification of players and their roles not only as individual components but also

as members cooperating for the accomplishment of the same purpose. This design methodology

can be a powerful tool not only for developing autonomous vehicles, but also for evaluating the

effectiveness of other designs such as the Draper Small Autonomous Aerial Vehicle.

-23 -

Chapter 3

1997 DSAAV and SPU:

Integration by Parts

3.1 Introduction

The first-generation Draper Small Autonomous Aerial Vehicle (DSAAV) was a preliminary

attempt by the Charles Stark Draper Laboratory to develop a autonomous helicopter flight

system. Unfortunately, while functional, the original DSAAV posed numerous dilemmas which

made the vehicle unsuitable for long-term use. Plagued by a confused electromechanical and

organizational architecture, the first aircraft served well as a proof-of-concept but not as a model

for production. As a result, the Charles Stark Draper Laboratory began construction of a second-

generation aircraft in 1997. The 1997 DSSAV, based on a commercially manufactured model

helicopter, was designed to fly, hover, and maneuver autonomously between waypoints specified

by a programmed flight plan. In the development of this system, distributed processing

methodology was applied in order to facilitate its implementation, improve organization, and

increase robustness. This led to the construction of the 1997 Sensor Processing Unit.

3.2 Overview of the 1997 DSAAV Distributed Systems

An aircraft is a complicated machine with a variety of interactions both mechanical,

electrical, and directional. Under normal circumstances, the vehicle provides the mechanical

and electrical structure while a human pilot acts as the directional head. In developing an

autonomous aircraft, and especially helicopters, the machinery that replaces human guidance

adds tremendous complexity that touches every aspect of the aircraft. By applying distributed

processing methodology to these vehicles, a tangled web of interactions throughout the vehicle

-24-

can be separated into subsystems that consolidate components and simplify the overall

framework. This is key in autonomous vehicles since tighter, stronger electromechanical and

computational architectures can better survive the hostile environments afforded by the aircraft

and its surroundings that challenge both mechanical integrity as well as computational

robustness in these machines. As a result, the 1997 DSAAV attempts to achieve a more

cohesive and robust design by formalizing and implementing four major navigational sub-

systems: on-board navigation, ground guidance, vision processing, and sensor processing.

3.2.1 On-Board Navigation

The 1997 DSAAV, like virtually all autonomous vehicles, has a centralized processing

core dedicated as its directional head. Ideally modular in function, autonomous in operation,

and cooperative with other vehicle control elements, the central processing unit (CPU) becomes a

naturally defined sub-system. In terms of the DSAAV, the on-board CPU runs navigational

algorithms for determining the most appropriate course of action within the vehicle's means to

traverse from one point to another as specified by a flight plan. In addition, the on-board

navigational CPU must issue the commands necessary to implement the desired actions. In the

case of the 1997 DSAAV, a PC-104 compliant computer stack is the vehicle's navigational

engine. With its Intel-type 486, 100 megahertz processor, the stack is adequate for the timely

execution of all necessary navigational algorithms and commands. More quantitatively, optimal

operation of the autonomous helicopter requires navigational algorithms be performed and

commands issued at rate of 50 hertz. Since navigational commands only change with new

environmental information, the optimal system frequency is tied directly to the optimal sensor

data rate, and in fact are equivalent. Because vehicle hardware limitations dictate sensor data

rates greater than 50 hertz as excessive', both the optimal data update and system control

frequencies are 50 hertz.

3.2.2 Ground Guidance

In most autonomous vehicles, autonomy does not imply self-established purpose or self-

awareness in the sense of artificial intelligence. These machine are autonomous only to the

extent that the actual navigation is without human control. As such, the vehicle's mission or

flight plan must be determined by human intelligence and as a result, requires some form of

user interface. This interface becomes another readily established sub-system due to its

conceptual modularity, autonomous operation, and cooperative interaction with the vehicle itself.

The DSAAV utilizes the Ground Control Station (GCS) to instruct the vehicle with

1. "Electronics Design for an Autonomous Helicopter", p.86 [2].

-25-

guidance commands based upon waypoints established by a human user. Beyond instituting

these flight markers, the user has no part in controlling the actual flight of the vehicle. The

ground computer solely determines the vehicle's course based on the user-specified destinations

and transmits guidance information to the autonomous helicopter. Having received this

instruction, the vehicle independently responds to these commands by adjusting its flight

accordingly. The GCS also receives flight telemetry from the DSSAV and presents it for

monitoring purposes. Everything from vehicle battery voltage to actual flight heading is relayed

from the vehicle to the GCS for graphical presentation, thus facilitating and expediting

interpretation of the vehicle's status for the human user.

3.2.3 Vision Processing

Vision processing is an advanced form of sensory perception that many autonomous

vehicles do not incorporate due to its complexity and high production and computational cost.

But, properly implemented, vision processing is a powerful method of observing the surrounding

environment and, with the appropriate analytical tools, can be used for refining motion control.

Due to the intensive computations typically required of image processing algorithms, the vision

unit is established as a sub-system itself, separate from other sensors, in order to localize its

calculational load, thus preventing an exorbitant centralized processing overhead. At bare

minimum, a vision system incorporates a camera for capturing visual images, but should also be

equipped the necessary electronics for image preprocessing. Without a self-contained

computational engine, the visual processing must be conducted by another unit (most likely the

main navigational computer), defeating the attempt to distribute the overall application load and

circumventing distributed processing methodology. Unfortunately, though demonstrated with

hardware in loop simulation, the 1997 DSAAV did not incorporate vision processing even though

it had been planned to be included in the final design.

3.2.4 Sensor Processing

Without the environmental perception afforded by sensors, the DSAAV, nor any other

autonomous vehicle, could hope to achieve flight independent of human control. Even people

themselves could not function properly without some form of sensing ability. Indeed, a lack of

sense is a key barrier to overcome in the development of any self-intelligent agent capable of

motion. Consequently, sensory perception becomes central to sustaining autonomous movement

for without this ability there would be no basis for evaluating motive actions with respect to the

environment or, for that matter, any external frame of reference. In short, sensors allow

machines to interact with their surroundings, and this interactive ability is an essential trait that

must be possessed by all autonomous vehicles.

- 26-

3.3 DSAAV Sensor Integration and Control

While all sub-systems play an integral part of the 1997 DSAAV, the Sensor Processing

Unit (SPU) became the focus of much attention due to its integral role as the electromechanical

"nervous system" for the vehicle. For the most part, the first generation aircraft subsystems

follow a distributed architecture to a limited degree except for sensor processing. These

functions are centralized within the on-board navigational computer thus burdening the CPU

with sensor administration and taking away computational resources that could be used for

evaluating complex flight algorithms. Furthermore, sensor errors are not easily localized since

the aircraft's framework buries them within a sea of navigational code and twisted wires. But, as

one of the most important evolutionary changes in the DSSAV design from the first- to second-

generation models, the SPU has the potential to address these problems.

Basically, the Sensor Processing Unit isolates all necessary components for sensory

perception into one device thereby creating a highly modular and autonomous machine

dedicated to the delivery of environmental data to other navigational systems. By integrating

three separate sensors, namely sonar altimeter, flux magnetometer, and inertial measurement

unit, the SPU consolidates sensor functions providing the overall navigational system with a

three-fold benefit: increased organizational order, reduced central processing load, and more

robust design.

3.3.1 Overview of Sensor Processing Unit

Originally created by Christian A. Trott, the Sensor Processing Unit (SPU) results more

as a natural consequence of an inertial system revision of the first-generation DSAAV than from

a desire to achieve efficient distribution of systems [2]. Nevertheless, the SPU's effects and

potential benefits are clear. While the first vehicle had centralized control of all sensors, the SPU

of the second-generation aircraft takes on two major functions which remove sensor processing

overhead from the on-board CPU, namely taking data from sensors and preparing that

information for transmission to the central processor.

The SPU administers three sensors essential for the autonomous navigation of the

DSAAV, the inertial measurement unit (or accelerometer), sonar altimeter, and flux

magnetometer (or electronic compass). Manufactured by Systron-Donner, the IMU provides the

system with linear acceleration data for the x, y, and z directions as well as angular acceleration

data for rotation about the x-, y-, and z-axes. The sonar altimeter produced by Precision

Navigation, Inc. projects ultrasonic pulses and captures the echoed signal to determine the

aircraft's altitude. And lastly, the electronic compass, based upon the Polaroid Corporation's

sonar ranging module, is a 2-axis magnetometer that senses the earth's magnetic field to

- 27-

calculate vehicle heading. These devices communicate their data to the SPU before being

packaged for transmission to the on-board CPU via an RS-232 serial link. The SPU is designed

to forward these packets at a rate of 50 hertz with new inertial data in each transmission (all

other sensors are too slow). Assumed to be stable and accurate, this data rate is the central

synchronizing mechanism as well as the limiting system rate for the entire navigational system

as discussed previously in Section 3.2.1.

3.3.2 SPU Objectives

Convoluted architecture ran amuck on the original DSSAV and presented several

difficulties that the next-generation 1997 vehicle sought to overcome. Since necessity directed

much of the design process and available space along with weight distribution dictated

component placement, the consolidation of devices into systems became a key issue to address

in redesign, and whose proposed solution lead to the objectives for the Sensor Processing Unit

(SPU).

By consolidating sensors and formalizing a sensor system, the SPU seeks to overcome

the barriers presented by sensor processing on the first-generation aircraft. First and most

obvious, greater electronic organizational order should immediately result thus simplifying the

overall design. As was the case with the first-generation DSAAV, sensors would no longer be

wantonly connected to both the aircraft and a central processor dedicated to handling all

computational and directional tasks. Instead, these components would be drawn together into a

single dedicated and cohesive sensing unit. This theoretically increases electronic robustness by

disassociating sensors from the on-board CPU. Further, since the SPU hypothetically isolates all

requisite functionality for proper sensor operation to itself, this localization should facilitate the

identification and debugging of sensor errors since only the SPU need be examined, as opposed

to the entire navigational system. By controlling and preprocessing sensor data autonomously,

the SPU would unlink the devices from both dependency to and failures of a central processor.

Finally, an autonomous SPU also has the advantage of distributing computational load away

from the on-board CPU, the benefits of which come immediately from following a distributed

processing methodology.

As part of an inertial system revision of the first-generation DSAAV, the SPU would also

improve navigational performance by increasing both accuracy and bandwidth of sensor

measurements. While the aircraft relies heavily on the Global Positioning System (GPS) for

location data, GPS has also shown itself to be periodically unreliable due to environmental

conditions or interference from the helicopter avionics. During such GPS failures, the inertial

system readings become the main source of inertial data (in fact, vision processing was pursued

since it could also be used to augment the navigational system by providing velocity data during

- 28 -

GPS faults). Consequently, any improvements to the inertial system readings would be a boon to

the DSAAV especially amid GPS faults. Since inertial system measurements have drift

associated with them, attempts at increasing accuracy could involve reducing drift error to

improve the vehicle's positioning precision. Furthermore, any reduction of electromagnetic or

mechanical noise in accelerometer readings would refine inertial system readings. In addition,

boosting sensor bandwidth would provide obvious gains by allowing for an increased control

system bandwidth thus improving the aircraft's maneuverability.

Thus, in summary, the 1997 DSAAV Senor Processing Unit (1997 SPU) objectives are:

* To consolidate and integrate sensors in order to simplify design, increase

robustness, and facilitate debugging,

* To effectively distribute computational load away from the main navigational

processor, and

* To increase both overall system accuracy and bandwidth.

3.4 1997 SPU Hardware Design and Implementation

3.4.1 Component Selection

3.4. 1a Microprocessor Selection

The Sensor Processing Unit attempts to supplant the first-generation central computer

in part by transporting the sensor processing load away from the central computer to

microprocessors on the SPU. These microprocessors would execute numerous functions

associated with sensor control and data handling formerly assigned to a single on-board CPU, as

on the original DSAAV. Consequently, both microprocessor selection and implementation

become a paramount consideration in SPU design since the microprocessors directly affect the

distribution of sensor processing. While these devices can govern sensor administration, their

limitations can also present restrictions on how effectively the SPU tackles sensor processing

that has been distributed away from the on-board computer.

With this in mind, the PIC16C73 microcontroller manufactured by Microchip

Technology, Inc. presents itself as a candidate component for the 1997 SPU. This integrated

circuit is a low-cost, high-speed processor having a plethora of features including but not limited

to a 5 Mhz instruction rate, 22 digital I/O ports, 5-channel analog-to-digital (A/D) converter,

serial I/O, 192x8 bytes of data RAM, and reprogrammability [3]. Nevertheless, even with this

multitude of options, an examination of the hardware requirements for the microprocessor

clearly demonstrates how a single PIC16C73 proves insufficient for managing all SPU sensor

- 29-

functions.

Each of the three sensors that the SPU must control, the inertial measurement unit

(IMU), flux magnetometer or compass, and sonar altimeter, have I/O pins which must be routed

to the SPU processor in order to establish sensor control. The compass, with five control pins,

and the sonar, with three control pins, require a total of eight digital I/O lines for operation,

which a single PIC16C73 can easily accommodate. The IMU calls for six analog inputs, and the

temperature and battery voltage measurements require an additional two. But unfortunately, a

single PIC16C73 falls short of this need since each microprocessor only carries five analog-to-

digital conversion channels. While this dilemma could be circumvented by using two

microprocessors in tandem, the PIC 16C73 A/D converter only has a resolution of 8-bits. Since a

minimum resolution of 10-bits is necessary for reasonably accurate conversions, no number of

PIC16C73 microprocessors would prove adequate. As a result, the SPU employs a separate

analog-to-digital converter for translating IMU signals into discrete values.

3.4. lb A/D Converter Selection

Manufactured by Analog Devices, the AD7891 is an 8-channel, 12-bit A/D converter.

While in a relatively large 44-pin PLCC package, the converter's other features, including a 1.6

microsecond conversion time and -5 to +5 voltage range, make it desirable for converting IMU

signals. But, though the six IMU analog inputs can be easily accommodated by the AD7891, the

SPU microprocessor must accept the converter's twelve digital output lines (one for each bit of

resolution) as well as an additional four for control purposes. These sixteen inputs and outputs,

in addition to the eight required by the compass and altimeter, saturate the available I/O

resources of a single PIC16C73. Nevertheless, in this case, two such microprocessors working

together would prove adequate for sensor management. This two-processor solution was

implemented to create the directional and computational core of the 1997 SPU.

3.4. 1c Anti-Aliasing Filter Selection

The inertial measurement unit (IMU) generates high-bandwidth data which can be

problematic for A/D converters sampling at a relatively low rate. Specifically, unless removed

from the IMU readings, high-frequency signal content typically produced by mechanical or

electromagnetic noise will be aliased into lower frequencies leading to significant errors in the

discrete IMU signal issued by the A/D converter. Consequently, IMU analog outputs require low-

pass filtering prior to A/D conversion in order to prevent aliasing. To that end, a single-pole, low-

pass filters with 3dB points well below that of the IMU sampling frequency prove more than

adequate. But since the AD7891 A/D converter has low-impedance inputs, the IMU filters must

accordingly be low impedance. Operational amplifiers meet both this qualification and the

- 30 -

capability requirements for implementation of IMU anti-aliasing filtering. While most any op-

amp could prove acceptable for the task, the LM614 stands as an ideal candidate due to its

availability and accessibility.

The frequency cutoff of the anti-aliasing filters derives itself from the desired navigational

rate of the DSAAV. While the original aircraft limited this rate to 5 hertz, the 1997 redesign set a

50 hertz navigational frequency goal. Consequently, any spectral content above 50 hertz from

the IMU should be removed with filters whose cutoffs prevent aliasing of higher frequency signals

during sampling. This seems valid since, in most cases, the choice of cutoff would simply be that

of the highest rate of interest - 50 hertz in the case of the IMU. Of course, to further increase the

navigational update rate and thus the inertial accuracy, a higher cutoff frequency could be

chosen since the IMU provides data at up to - 1700 hertz. But, there is a trade off between

navigational performance and IMU noise rejection in deciding upon filter breakpoints that is

revealed with an analysis of the three main sources of inertial signal noise: internal IMU noise,

vibration, and electromagnetic interference. As indicated by device specifications, the internal

IMU noise has frequency content spanning a range of 10 hertz to 100 hertz [4]. Further,

experiments involving the placement of the 1997 DSAAV on a shaker table revealed the second

source of noise, vibration, occurs most strongly at a fundamental mode of 20 hertz and

harmonics of that frequency. Finally, most appreciable electromagnetic interference is assumed

to occur in relatively high frequency ranges, above and beyond both the spectrum for internal

IMU noise and the fundamental vibrational mode. As a result, the only "noiseless" information

in the 1997 DSAAV inertial system exists in the frequency band below 10 hertz. Therefore, a 50

hertz cutoff filter unavoidably passes noise whose sources include the internal IMU fluctuations

and mechanical vibration. Note that the fundamental vibrational mode of the aircraft of 20 hertz

is passed by single-pole 50 hertz filters, but by mechanically isolating the IMU from the chassis,

the degenerative effects are diminished. So, while a 50 hertz breakpoint frequency does pass

some noise, the relatively faster rate of sampling provides more inertial information since useful

IMU data occurs in frequency bands up to -~ 1700 hertz.

3.4. 1d Other Considerations

While not especially notable in form or function, connectors play an integral role in the

proper functioning of the SPU and the DSAAV in general. Due to helicopter vibration, any

component attached to the aircraft has the potential for being exposed to extremely high

mechanical stresses. These forces not only burden the linkages and machinery associated with

producing flight but also strain electrical connections between components. Therefore, due to

their integral role as electronic interconnections, connectors must be very trustworthy being

highly tolerant to vibration and resistant to breakage.

-31 -

3.4.2 System Design

With these components in mind, the SPU can be broken down into roughly two sections

that define its system layout and ultimately direct circuit design: the IMU, and the compass-

sonar subsystems. As previously mentioned, two PIC16C73 microprocessors are needed for

controlling sensors due to their digital I/O requirements and the limitations posed by a single

PIC16C73. Each microprocessor is assigned to the control of one subsystem. Together, these

processors cooperatively manage processing and transmission of sensory information to the on-

board navigational CPU. Figure 3.4.2-1 depicts the organization of each subsystem and clearly

indicates both the flow of control and the flow of data as well as illustrates the subsystem

hierarchy. While both subsystems function autonomously to read sensor data, the IMU

subsystem must transmit its data to the compass-sonar subsystem. The compass-sonar

subsystem then packages that data along with the other sensor data for transmission to the on-

board navigational computer. Finally, as an aside, the system battery voltage and IMU

temperature are states that must be monitored by the SPU. Since they are for the detection of

internal SPU conditions not directly related to navigation, they are identified with dotted lines

and one-way arrows. Though the decision is arbitrary, monitoring of battery voltage and IMU

temperature is accomplished by the compass-sonar subsystem and IMU subsystem respectively.

3.4.3 Circuit Design

3.4.3a Analog Design

The analog design for the 1997 SPU is relatively straight forward. Much of it is

concerned with the anti-aliasing filters necessary for the IMU output signals. Figure 3.4.3a-1

shows the analog circuit schematic and clearly indicates the six IMU filters, three linear

acceleration channels and three gyro channels. All filters are identical with approximately 50

hertz cutoff frequencies (as discussed in Section 3.4.1 c) except that the accelerations channels

include a 450 ohm resistor to convert the IMU linear acceleration current signals into voltage

signals. While this resistor does affect the filter cutoff frequency, the change is only slight and

therefore negligible.

3.4.3b Digital Design

In many ways, the digital design derives itself from the system design shown in Figure

3.4.2-1. Granted that other necessary components are included in the final circuitry that have

not been discussed, but the major parts of the design including interconnect clearly present

themselves in the final layout as shown in Figure 3.4.3b-1.

- 32 -

Figure 3.4.2-1: 1997 SPU System Diagram

- 33-

Expansionl

Expansion2 K

Jumper Batte
port I atery

. 32K

Gyro X 0-

32K

Gyro Y Analog Ground

Gyro Z

7f SS v2 V3 V4 V5 3 Digital Ground

. : NC vs
32K U REF- VDD (A) V7

Accel X" -E AD7891 vs

32K DN /CCAST
D7 z CS

IMU-PIC

>=. luF

* LM614: Quad Op-Amp Powered by +- 15v from Power Board

* Accuracy of single ended signals dependent upon short signal paths from IMU

* Offset Errors and Temperature Coefficients to be nulled in software

Figure 3.4.3a-1: 1997 SPU Analog Circuit Schematic [2]

-34-

Figure 3.4.3b-1: 1997 SPU Digital Circuit Schematic [2]

-35-

3.5 1997 SPU Software Design and Implementation

While the SPU hardware is important, the software cannot be ignored since it is

ultimately responsible for initiating control. The 1997 SPU uses PIC16C73 microcontrollers that

can be programmed with a proprietary pseudo-assembly language developed by Microchip

Technology, Inc. Using this language, appropriate initializations and functions can be executed

on the microprocessors as dictated by the user. Since the 1997 SPU employs two PIC16C73

microcontrollers, each must be programmed according to its assigned function.

3.5.1 Compass-Sonar Subsystem Software

The compass-sonar subsystem microprocessor, or peripheral PIC, has code that can be

broken into two major divisions. The first division is formed of the peripheral PIC interrupt

routines. These interrupts occur as a result of the global millisecond timer, a sonar echo

reception, a completed on-chip analog-to-digital conversion, a data transmission received from

the IMU PIC, and a successful serial transaction with the on-board navigational computer. The

second software division is the linear program which runs from line to line as directed by the

main loop. This main loop conducts four different servicing features: compass polling, sonar

polling, A/D conversion for the on-board battery voltage, and data transmission to the

navigational computer.

At start-up, the peripheral PIC software runs the appropriate initializations and variable

declarations before entering the main loop. In this loop, each service routine is called when

allowed by its service flag. During a millisecond interrupt, all flags are set to request servicing,

and counters keeping track of elapsed time since the beginning of each service cycle are

incremented. Consequently, servicing is requested for each of the four main routines every

millisecond, even if no service is to be done at that time. After a service is requested, the specific

service phase to execute (if any) can be determined by its counter since the elapsed time within a

given service period indicates which phase to conduct. Once completed, the routine cancels the

service flag and lies in wait for the next interrupt to set the marker again. Upon the conclusion

of the entire routine sequence (i.e., all phases have been discharged) and once the service period

elapses, the next service cycle is initiated. This control scheme applies to all four service

routines and can be seen in Figure 3.5.1-1.

The compass polling routine, named service_Compass in the peripheral PIC software, is

basically a chain of if-then statements. Each if clause compares the compass timer value with a

phase event time to determine if that phase event has been reached and needs to be executed.

For example, if the compass timer indicates five milliseconds have passed since the beginning of

a compass service period, then the microcontroller would identify that as the appointed time to

-36-

clear the compass PC line from the corresponding if-then conditional. But, if the compass timer

is at six milliseconds, then all the if-then statements would return false since six milliseconds is

not associated with any compass service phase and is therefore non-significant.

For the most part, the sonar polling routine, named service_sonar, works in the same

manner as Service_Compass. Each service phase of the sonar cycle is executed at the proper

time as indicated by the sonar timer. The one major difference is that the complete sonar service

is divided between the service_sonar function and an interrupt handling subroutine called

Echo_Int. When triggered by an ultrasonic echo received by the altimeter, this interrupt quickly

begins the determination of the echo arrival time. Without this interrupt, the echo signal can

only be recognized when the software bothers to check and this might occur well after the fact

thus causing altitude reading errors.

Main:

Service_Compass

Service_Sonar

Service_AD

Send_Data

Service Flags
(open if set)

I I

i/i

I I

-- I

Send Data:

set transmission service flag;
if transmission timer == 40 milliseconds,

reset transmission timer;
move data into transmission buffer;
send first data byte;
increment to next data byte.

Service AD:

set A/D service flag;
if battery timer == 250 milliseconds,

start A/D conversion.

Service_Compass:

set compass service flag;
if compass timer == 5 milliseconds,

start compass cycle.
else if compass timer == 15 milliseconds,

reset PC and check for EOC low.
else if compass timer == 125 milliseconds,

check for EOC high.
else if compass timer == 135 milliseconds,

set SS low.
else if compass timer == 145 milliseconds,

get upper byte of data.
else if compass timer == 150 milliseconds,

get lower byte of data.
else if compass timer == 250 milliseconds,

reset compass timer.

Service Sonar:

set sonar service flag;
if sonar timer == 1 millisecond,

set INIT (start ping).
else if sonar timer == 2 milliseconds,

set BINH.
else if sonar timer == 30 milliseconds,

clear INIT and BINH (reset sonar);
if no sonar echo arrived,

save sonar data as max. value;
disable echo interrupt.

else if sonar timer == 60 milliseconds,
reset sonar timer.

Figure 3.5.1-1: 1997 SPU Compass-Sonar Service Control Diagram

- 37 -

-0-

|

Battery voltage conversion and serial transmission to the navigational computer also

function very similarly. In both cases, at the beginning of their respective service cycle periods,

the service is simply initiated. For the battery voltage, this means that the on-chip analog-to-

digital converter begins a sample and conversion of the battery voltage level. For the serial

transmission, all data is copied into a transmission buffer and the first data byte is sent.

Futhermore, both routines require the use of separate interrupts to handle completion of the

service, similar to the sonar. The conclusion of an A/D conversion triggers an interrupt that

saves the voltage data, and the successful communication of a data byte to the on-board

computer begins the transmission of the next byte available. All this occurs as a result of

interrupts and not by looped code.

Obviously, interrupts play an integral part in the proper functioning of the peripheral

PIC. They act in the background to tackle much of the work involved in polling sensors and

transmitting data, but are not necessarily part of any linear code progression or software loop.

As Figure 3.5.1-2 illustrates, they are independent routines that respond to events. For example,

the IMU received data interrupt is one function that the peripheral PIC directs, but it is not a

part of the main service loop. Executed upon the reception of IMU data, the IMU_int interrupt

simply stores this information upon its receipt from the IMU subsystem.

3.5.2 IMU Subsystem Software

The IMU subsystem microprocessor, or IMU PIC, follows the same control methodology

as the peripheral PIC. The software is divided into two sections: the interrupt routines and the

linear program. Of the two interrupts, one is a 30.2 microsecond global timer and the other is a

serial transmission interrupt. The linear program contains a single servicing feature for

collecting IMU data from the A/D converter. Both interrupt and service control diagrams appear

in Figure 3.5.2-1.

As with the peripheral PIC, initializations and variable declarations are executed upon

startup before beginning the main loop. Once in this loop, the Read_Data service routine is

called if its corresponding service flag has been raised. This flag is set upon each 30.2

microsecond timer interrupt and, during the interrupt, a sampling counter is incremented. This

sampling counter determines which event phase is to be executed in the Read_Data subroutine.

In the case of the sampling counter, all significant, event-associated values initiate the sampling

of a given A/D converter channel, and each channel is read in succession one after each timer

interrupt. Once all the channels have been read, non-significant sampling counter values are

traversed until the service period of 0.635 milliseconds has elapsed (equivalent to 20 timer

interrupts) and the cycle begins anew. This sampling period implies that all converted IMU

channels and temperature are read and stored consecutively at a rate of 1.6 kilohertz.

- 38 -

Interrupt_Handler:

AD_int

Milli_int

Echo_int

Transmit int

IMUint

AD_int:

clear A/D interrupt flag;
store battery data;
reset batter timer.

71

IMU_int:

determine which packet byte
incoming from the IMU PIC,

if the last byte (checksum),
store checksum;
verify checksum;
transfer temporary data
bank to packet data bank.

else receive and store data in
temporary data bank.

Milli int:

clear millisecond interrupt flag;
reset millisecond timer;
increment sonar counter 1 ms;
increment compass timer 1 ms;
increment sonar timer 1 ms;
increment battery timer 1 ms;
increment transmit timer 1 ms;
clear all service flags.

Echo int:

if echo interrupt not disabled
(i.e., sonar timer < 30 milliseconds),

determine offset into current
millisecond and add to sonar
counter;
flag echo arrived.

Transmit_int:

if not done sending packet data,
send current data byte;
increment to next data byte.

Figure 3.5.1-2: 1997 SPU Compass-Sonar Interrupt Control Diagram

- 39 -

Read_Data

I _ Service Flag
Interrupt_Handler: (open if set)

Time_int

TransmitInt

Transmit_int:

if not done sending packet data,
send current data byte.
increment to next data byte.

Time int:

clear service flags;
reset 30.2 microsecond timer;
increment imu timer;

Read Data:

set imu service flag;
if imu timer == 3 units*,

select A/D channel 0;
read and store channel.

if imu timer == 5 units,
select A/D channel 1;
read and store channel.

if imu timer == 7 units,
select A/D channel 2;
read and store channel.

if imu timer == 9 units,
select A/D channel 3;
read and store channel.

if imu timer == 11 units,
select A/D channel 4;
read and store channel.

if imu timer == 13 units,
select A/D channel 5;
read and store channel.

if imu timer == 14 units == 1 / 1.6khz,
clear imu timer;
increment transmit timer;
if transmit timer == 40 milliseconds,

call Send_Data.

Send Data:

clear transmit timer;
move data into transmission buffer;
send first data byte,
increment to next data byte.

Figure 3.5.2-1: 1997 SPU IMU Service and Interrupt Control Diagram

Unfortunately, the Read_Data function effectively downsamples this 1.6 kilohertz rate by

incrementing a transmission timer such that IMU data is only transmitted to the peripheral PIC

every 40 milliseconds. Once the first byte of data has been transmitted, each successful serial

transaction between the IMU and peripheral PICs triggers an interrupt that begins the

transmission of the next available byte until all information has been sent. Of course, this

occurs rapidly enough such that the time to send all data bytes is much less than a transmission

period. Once completed, the next transmission commences after the 40 millisecond period has

-40-

* 1 unit == 30.2 microseconds

elapsed. Consequently, the IMU PIC transmits new inertial data to the peripheral PIC at a rate of

25 hertz. This transmission rate is different from the 1.6 kilohertz sampling frequency

accomplished between reading successive IMU channels. The actual rate of new IMU data arrival

for all A/D conversion channels from the IMU PIC to the peripheral PIC is 25 hertz. Of course,

this is contrary to the specified 50 hertz rate mentioned in Section 3.4.1c and is a fundamental

design flaw.

3.6 Summary

The 1997 Draper Small Autonomous Vehicle stands as an attempt at developing a truly

autonomous vehicle. With its many functions, the aircraft applies distributed processing

techniques to organize its various mechanical, electrical, and algorithmic components into

coherent subsystems thus achieving "integration by parts" - the collection of hardware, software,

and architectural ingredients to form an aerial vehicle capable of independent flight. The 1997

Sensor Processing Unit is such an ingredient that endeavors to integrate navigational sensors

into a single device that removes the burden of sensor processing away from the on-board

navigational computer and increases overall system accuracy and bandwidth. But, further

examination of the 1997 SPU's organization and implementation reveals much to be desired.

-41 -

Chapter 4

Evaluating the 1997 SPU:

Cracks in the Wall

4.1 Introduction

The 1997 Sensor Processing Unit is a first attempt at integrating all the DSAAV

navigational sensors and their administration into a single device. Unfortunately, the actual

1997 SPU falls short of meeting its objectives. These failures are revealed by evaluating the 1997

SPU design as well as its organization.

4.2 Evaluating 1997 SPU

The 1997 Sensor Processing Unit implements both the hardware and software plans

discussed in the previous chapter. These schemes can be evaluated to determine the

effectiveness of the final design by comparing the product and its performance against the stated

objectives for the SPU which are restated below:

* To consolidate and integrate sensors in order to simplify design, increase

robustness, and facilitate debugging,

* To effectively distribute computational load away from the main navigational

processor, and

* To increase both overall system accuracy and bandwidth.

4.2.1 Consolidation and Integration of Sensors

-42-

The Sensor Processing Unit consolidates electronics by confining or attaching all sensor-

related components to a single printed circuit board (PCB). Using commercial software, all SPU

constituents (i.e., microprocessors, op-amp filters, connectors, etc.) can be mapped efficiently

and effectively to minimize space consumption prior to construction as well as ease the location

and identification of parts after construction. This reorganization simplifies vehicle layout and

enhances robustness since sensors are no longer randomly connected to either the aircraft or the

on-board navigational computer. Also, since PCBs reduce and confine interconnection wires,

electromechanical robustness is further improved over that of the first-generation DSAAV.

Additionally, as problems are discovered in testing and preparing the DSAAV for flight, sensor

debugging is aided by the physical isolation of the SPU and its associated components from other

on-board systems. Indeed, from a hardware perspective, the 1997 SPU achieves the goal of

consolidating electronics thus simplifying design, increasing robustness, and facilitating

debugging.

From a software perspective, the SPU misses the mark. While sensor hardware has been

effectively integrated into one central apparatus, much of the software is considered unified

simply by virtue of being on board the SPU. Granted that this might have been the case with a

single microprocessor, but the SPU has its code divided between two separate PIC16C73s. This

immediately adds a programming overhead for achieving interprocessor communications as well

as unnecessarily confusing overall code structure. And while sharing software between

microprocessors could provide legitimate benefits by further distributing sensor processing load,

this cannot occur as a matter of fact, but rather requires thoughtful planning. In the case of the

1997 SPU, the software split cannot be justified as a conscious design decision since it comes

only as a consequence of using two microprocessors to alleviate the I/O insufficiencies of one.

Ultimately, the choice to use multiple PIC16C73s reflects the hardware advantages alone,

ignoring both the software advantages and disadvantages. As a result, the SPU software acts as

a fix or work-around solution, but not as an integrated part of the design process. The code is

divided, not distributed, and fails to meet the objective of sensor consolidation and integration at

the software level.

4.2.2 Distribution of Sensor Processing Load

From a purely hardware systems perspective, the 1997 SPU successfully distributes

sensor processing load away from the navigational computer and stands in stark contrast to the

completely centralized processing structure of the first-generation DSAAV. But, the 1997 SPU

and the on-board navigational software together produce unfortunate limitations on the vehicle.

As mentioned in Section 3.3.1, the SPU is designed to transmit data packets to the

navigational computer at an optimal rate of 50 hertz with new inertial data in each packet. This

-43-

data rate is the central timing mechanism for the entire flight control software. Consequently,

any adjustments, deviations, or errors in the SPU must be accounted for in the navigational code

since the software relies on a pre-established data rate in calculating flight commands. There

are fundamental problems with this avionics control approach, namely that both the modularity

and autonomy of distributed systems are circumvented. The dependency of the navigational

computer on a pre-determined data rate of the SPU produces problems if either the SPU is

removed or if the SPU produces a data rate other than prescribed. Granted that the on-board

computer can function without the SPU, but it can only do so by completely ignoring the SPU. In

doing so, the on-board computer ceases to be navigational, and solely computational.

Consequently, the on-board computer is neither modular nor autonomous as an avionics control

computer. On the other hand, being able to function independent of a navigational CPU and any

other system, the 1997 SPU is both modular and autonomous. Nevertheless, the unit fails to

operate under the agreed system framework; it must output data at a rate of 50 hertz. In fact,

testing reveals that the 1997 SPU only transmits information packets at rate of -24.3 hertz,

below half that deemed ideal (see Figure 4.2.2-1)! As a result, the on-board navigational

computer must not only be recalibrated, but it also cannot run the flight algorithms at the

optimal rate of 50 hertz since it is not receiving inertial updates at 50 hertz. Obviously,

cooperativeness - the third characteristic of distributed systems - has been hindered by the 1997

SPU since the unit fails to abide by the operation terms established between itself and the on-

board computer.

To further aggravate the situation, the downsampling of the IMU 1.6 kilohertz conversion

rate by none other than the IMU PIC itself incurs an absolutely unnecessary run-time overhead

caused by excessive sampling and converting, and then resampling. Simply put, the IMU PIC

software could have read and transmitted the IMU channel data at 25 hertz instead of

oversampling at 1.6 kilohertz and then downsampling by sending that information at 25 hertz.

In examining the distribution of sensor processing load, the 1997 SPU has both its

successes and failures. While the device has succeeded in moving sensor control away from the

navigational computer, the 1997 SPU as well as the on-board CPU itself have managed to defeat

all three characteristics of distributed systems.

4.2.3 Augmentation of System Accuracy and Bandwidth

The SPU seeks to improve overall system accuracy and bandwidth by decreasing errors

in inertial system measurements. In order to accomplish this, a model for inertial error can be

developed to compare the differences in accuracy and bandwidth between the 1997 SPU

implementation and a proposed 1998 SPU design.

-44-

,-0.04

0.06

x -0.08'

S1.4

I
N 1.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time (min)

I -7298 Data Packets in 5 Minutes
== -24.3 hertz

All data transmitted at the same time belong to the same data
packet transmitted by the SPU to the navigational computer.

Figure 4.2.2-1: 1997 SPU Transmitted IMU Data

4.2.3a Modeling Inertial Errors1

Sources for error which reduce inertial sensor accuracy include: inherent sensor noise

(Ps), mechanical vibration (Pv), electromagnetic interference or EMI (PEMI), sampling quantization

(PQ), integration errors (IE), instrument non-linearity, sensor bias drift, and miscalibration. The

last three errors, assuming proper calibration and software corrections, can be assumed

negligible and ignored in quantifying accuracy. But, the remaining error types, Ps, Pv, PEMI, PQ,

1. "Electronics Design for an Autonomous Helicopter", pp. 73-76 [2].

-45-

and IE, can be examined probabilistically to determine their behavior, and how best to reduce

noise effects on inertial precision.

Inherent sensor noise, mechanical vibration, and EMI are assumed to be continuous,

independent, and gaussian in distribution with zero mean. The accumulated drift error due to

these noise sources is represented by a simple function:

,K-1

T - (Ps[n]+P[n]+PEMI[n])

(T = Sample Period, K = Number of Samples)

Consequently, their sum can also be considered gaussian with zero mean whose standard

deviation is defined as oc. Thus, the combined drift error of inherent sensor noise, mechanical

vibration, and electromagnetic interference can be characterized as:

(T = Sample Period, K = Number of Samples)

where KT represents a period of time.

Sampling quantization errors are differences between analog signal values and their

converted digital values that result from rounding losses inherent with any finite precision

analog-to-digital conversion. Values for quantization error run between -VMAx/ 2N and +VMAX/2N

where VMA x is the maximum voltage output and N is the number of bits per discrete value.

Since none of the infinite quantization error values is more likely than another, the probability

density function (PDF) for this type of noise is uniformly distributed over a quanta with a value of

2 N-1/VMAx. Consequently, the quantization error PDF has zero mean and an a standard

deviation of:

L - VMAX
UpQ - ,J..2 N

(L = Constant [relates sensor voltage to angular velocity or acceleration,

VMAx = Maximum Voltage Output, N = # of bits per discrete value)

Similar to the previous errors analyzed, accumulation of quantization noise leads to further drift

-46-

error characterized by:

(T = Sample Period, K = Number of Samples)

Finally, integration errors result from differences between the continuous-time inertial

signal (P(t)) and its discrete-time representation. The discrete signal ignores the continuous-

time values between samples, and this lost information accumulates to generate an integration

error. Assuming that the slope of the continuous-time signal is a gaussian random variable,

then the standard deviation of that slope can be defined as o8. Granted, consecutive slope

measurements are not statistically independent meaning positive and negative accumulation of

errors cancel, but some o 8 exists such that integration contributes to drift error and can be

described as:

3

!T2JKg = T - a

(T = Sample Period, K = Number of Samples)

With these five error type and their contributions to drift error determined, the net effect

can be computed by summing drift sources. The total drift error is modeled by:

S71[k] = KT 2C + pQ+ + T3 2)

Clearly, this equation identifies several possible methods for reducing drift errors. One of the

most notable involves increasing the sampling frequency and thus decreasing the sampling

period T. By raising the sampling rate, contributions to drift error by integration are minimized.

Further, increasing the number of bits per discrete value generated by analog-to-digital

conversion immediately reduces aQ resulting in reduced overall drift. And while internal sensor

noise can only be diminished with difficulty, both mechanical vibration and electromagnetic

interference contributions to drift error can be lessened by mechanical dampeners and electronic

filters respectively.

In summary, the three possible measures for improving inertial system accuracy by

decreasing drift error are:

-47-

* Increasing the sampling frequency of the inertial measurement unit,

* Increasing the number of bits in analog-to-digital conversion, and

* Utilizing filters to reduce mechanical and electromagnetic noise.

Each of these become evaluating guidelines for both the hardware and software of the 1997 SPU

since they are directly concerned with improving sensor accuracy, and thus system accuracy as

well.

4.2.3b Applying the Error Model to the 1997 SPU

In comparing the proposed SPU design against the actual 1997 realization, the 1997

SPU clearly does not meet the specified design objectives and, as a result, fails to achieve the

best theoretical inertial system accuracy possible as can be determined by the error model

previously developed. The proposed SPU design establishes a baseline data sampling rate

performance of 50 hertz specifically intended to ensure inertial data updates of 50 hertz. To that

end, the actual 1997 SPU presents two difficulties. The IMU PIC has been programmed in

software to transmit inertial data at only 25 hertz, and the peripheral PIC reaches its maximum

transmission rate at -24.3 hertz. Since higher inertial sampling rates increase system accuracy

and the 1997 SPU has clearly fallen below specifications, the 1997 SPU has yet to achieve the

error reduction possible to attain better inertial accuracy.

In addition to flaws that reduce the IMU data update rate and peripheral PIC

transmission frequency, the 1997 SPU anti-aliasing filters poles have been revealed to be at the

wrong cutoff frequency for the IMU sample rate encoded in the IMU PIC. For any signal whose

spectrum is band-limited to F, the Nyquist criterion specifies a sampling resolution of at least

twice F in order to completely capture all frequency data contained in that signal. Consequently,

since the IMU data rate has been verified both in software and empirically to be -25 hertz, the

filter cutoff points should consequently be at 12.5 hertz to prevent aliasing of frequencies higher

than the breakpoint. But, since the anti-aliasing filter poles lie at 50 hertz, a frequency four

times greater than the maximum 12.5 hertz allowed, the spectrum between 12.5 and 50 hertz

is aliased into the sampled IMU signal thus generating significant inertial measurement errors.

Further, this aliasing error is compound by the additional internal, electromechanical, and

vibrational IMU noise that passes through due to filter poles which are unnecessarily and

incorrectly placed at 50 hertz.

Finally, extended bench tests monitoring the transmission of 1997 SPU data packets

revealed the presence of random impulses of bad data (see Figure 4.2.3b-1) even with SPU

software safeguards i.e., data checksums. Unfortunately, during experiments both in the lab

and some in flight, these bad packets have communicated sensory misinformation to the

-48-

navigational computer causing erratic responses. In the field, such chance happenings can

result in extremely dangerous, unpredictable, and wild flight behavior. So, as an extra

precautionary measure, the navigational computer could scan incoming data and reject those

with bad data bytes. Though slight, this solution unfortunately presents a two-fold

disadvantage. First, the on-board flight computer must take some of the sensor processing

burden, against the tenants of distributed processing methodology. Second, the navigational

CPU loses an entire packet of data even if only one bit is in error and consequently, the data rate

is reduced. This also decreases system accuracy since inertial information is lost.

, -0.02
X -0.0 .I I .., I I I I I

7298 Data Packets in 5 Minutes
== -24.3 hertz

All data transmitted at the same time belong to the same data
packet transmitted by the SPU to the navigational computer.

Figure 4.2.3b-1: 1997 SPU Transmitted IMU Data w/ Errors

-49 -

As far as can be determined, the spurious data packets may be caused by out-of-phase

communications between the IMU and the compass-sonar subsystem PICs. The 1997 SPU

attempts to correct for these by sending extra, non-relevant bytes from the IMU PIC to prepare

the compass-sonar PIC for data reception. Interestingly, these "empty" bytes do not appear at

the compass-sonar subsystem even though they are indeed sent by the IMU subsystem, and are

a mystery. But unfortunately, they still do not completely correct for the bad data problem.

4.3 Summary

In examining and evaluating the structure, performance, and implementation of the

1997 Sensor Processing Unit, cracks in the wall of its design clearly present themselves. Since

much of the 1997 SPU architecture resulted as a mere a consequence of the inertial system

revision, the SPUs development process unfortunately defaulted to one in which the immediate

needs defined the goals for the next design step. This very short-sighted design philosophy does

not approach the SPU with all its objectives and control nuances from a holistic perspective, and

produces a product with excessive components in both hardware and software. The 1997 SPU

design process clearly demonstrates a bias toward hardware advantages and blindness toward

software concerns, and is further frustrated by a lack of adherence to proper distributed

processing methodology by both the 1997 SPU and the on-board navigational software.

Obviously, a definite need for SPU redesign exists.

-50-

Chapter 5

1998 Sensor Processing Unit:

Building Blueprints

5.1 Introduction

Evaluation of the 1997 SPU reveals several design deficiencies which must be addressed

in its revision. As discussed in Chapter 4, these shortcomings occur in three categories:

consolidation and integration of sensors, distribution of sensor processing load, and

augmentation of system accuracy bandwidth. In reviewing the 1997 SPU sensor integration,

while the hardware implementation proves somewhat successful, this happens at the expense of

dividing the SPU software thus adding interprocessor communication overhead and also

confusing the overall code structure. Furthermore, distributed processing methodology is

violated by both the 1997 SPU and the navigational computer. While the correction of the

navigational computer's dependency upon the SPU transmitted data rate is beyond the scope of

this thesis, the 1997 SPU's failure to sustain a 50 hertz data packet transmission rate make the

device a prime target for refit. Finally, an insufficient IMU update rate, incorrect anti-aliasing

sample rates, and spurious data packets have been recognized by an inertial error model and

other criterion as hindrances to inertial system accuracy and only add to the growing list of

reasons for the revision of the 1997 SPU.

But, the revision of electronic sensor integration for the 1997 DSAAV should ultimately

lead to a proposal for the 1998 Sensor Processing Unit that seeks to accomplish more than

simply fix the errors discovered in its predecessor. Throughout the 1997 SPU's development,

plans for SPU realization came as a result of linear problem solving where one design decision

led to another, but not necessarily a best solution. In fact, the 1997 SPU resulted as a side effect

of the first-generation inertial system revision and clearly not as a direct fruit of a systematic

-51 -

approach to SPU design. Especially in software development, the final 1997 SPU implementation

was dictated by the decision to use a dual-microprocessor computational engine which

ultimately ignored the effects upon overall SPU architecture. Consequently, the 1998 Sensor

Processing Unit establishes its objectives with the intent of not only correcting the errors of its

forerunner but also attacking the SPU design by iteratively analyzing the systematic effects of

design choices in both hardware and software, with the hope of ultimately arriving at a best,

overall SPU system arrangement.

5.2 Objectives

At the most fundamental level, the 1998 Sensor Processing Unit aspires to fulfill nothing

less than all of the original SPU objectives: the consolidation and integration of sensors, the

effective distribution of sensor processing load away from the navigational computer, and the

increase of system accuracy and bandwidth. Each of these goals represents a basic

characteristic of any SPU or similar device, but the 1998 SPU revision aspires to reach these

objectives with a holistic approach to system design contrary to the linear methodology followed

for the 1997 SPU.

Though very different in nature, both the SPU hardware and software contribute towards

the achievement of the same end, and should therefore be reflected by a development perspective

that unifies their functionality, not treating one merely as a consequence of the other. This

approach can reduce both the hardware and software overhead that can result from a linear

procedure that produces bridges or patches to connect segments. These cumbersome and

confusing add-on features that join linear design solutions are removed and superseded when a

unified technique that brings about conciseness and compactness to design is applied. A more

consolidated SPU design should result in a less complex system control flow which can be

formalized and compared to the precursor model. Also as a natural consequence of revising the

1997 SPU architecture, the 1998 SPU should not only correct 1997 SPU implementation errors

but also enhance the overall performance characteristics. And while this augmentation focuses

on improving the SPU's abilities, it should also address the issue of expandability. A good design

for any system normally includes room for upgradeability to extend the product's useful lifetime

thus guaranteeing its longevity. Finally, in order to preserve downward compatibility with the

1997 SPU, the 1998 SPU should provide the exact same data output format and respond to the

same control commands as its predecessor (though the 1997 SPU has no provision for receiving

instruction).

All of the aforementioned considerations should directly affect the 1998 SPU design

process. By doing so, the 1998 Sensor Processing Unit endeavors to be a potent system that not

only meets the original SPU objectives but is also both superior in its capabilities and

- 52 -

effectiveness and more cohesive in design than its ancestor, the 1997 SPU. By performing

hardware and software redesign, the 1998 SPU should ultimately:

* Reduce hardware and software overhead by trimming excessive

design components,

* Simplify and formalize system control flow,

* Correct and enhance performance characteristics,

* Allow for future expandability, and

* Maintain backward compatibility with 1997 SPU.

5.3 System Proposal for the 1998 SPU

In order to realize both hardware and software redesign, an abstracted systems model

should be formed to aid in steering the implementation decisions that satisfy the 1998 SPU

objectives. But, prior to doing so, revisiting the 1997 SPU system layout might provide useful

insight which should not be ignored. Jumping headlong into reengineering could possibly result

in a design which repeats the errors of the 1997 SPU.

5.3.1 1997 SPU System

As shown in Chapter 3, the 1997 SPU system diagram depicts the control hierarchy

between various devices and is reprinted in Figure 5.3.1-1.

Figure 5.3.1-1: 1997 SPU System Diagram

- 53 -

This system diagram results directly from an analysis of the SPU hardware structure

and clearly describes the control scheme of the 1997 implementation. Unfortunately, the design

process did not establish this layout as a guide prior to the actual realization of the 1997 SPU;

the schematic is merely a consequence of the hardware. This should be avoided in the 1998

development methodology by fabricating a generalized archetype for SPU systems. With such a

model, all future modifications have a basis for comparing the evolution of the SPU architecture.

The 1997 SPU's lack of such a model make refit and upgrade difficult since there is no reference

for editing the composition. Lamentably, the 1997 SPU system schematic presented in Figure

5.3.1-1 is far too specific to act as a system abstraction. Changes in the 1997 SPU would be

limited to the control hierarchy dictated by and limited to the major system components already

in place.

5.3.2 1998 SPU System

In compliance with sound design methodology, the 1998 SPU development process

begins by establishing a complete, albeit simple, blueprint for the system interactions of the

SPU. In order to construct this map, all fundamental systems or components must be identified

before a control network can be determined. Five components which immediately present

themselves are the three sensors to be governed by the SPU, the inertial measurement unit,

electronic compass, and sonar altimeter, and the two system states to be monitored such as

flight battery voltage and IMU temperature. Each of these must be controlled or observed by a

some device which has yet to be determined but, in the meantime, can be termed the

"processor". Of course, it cannot be assumed that a direct link between the processor and

sensors or battery will be satisfactory for directional, observational, or implementation purposes

and consequently leads to the third and final component of the system layout, the interlink

systems. These intermediary elements are responsible for preparing the sensor data or control

signals for the processor as necessary and vice versa.

These five constituent parts or states of the SPU system design, sensors, battery level,

IMU temperature, processor, and interlinks, comprise the full scheme for the SPU since the unit

cannot be abstracted beyond these members until more information has been garnered. The

1997 SPU is able to specify its layout in more detail since it results from a post-analysis of the

implemented system; no attempt was made at establishing a system skeleton, resulting in design

choices with little foresight in their effects. Consequently, the 1998 SPU development process

begins by laying a foundation for the project by depicting in Figure 5.3.2-1 a system interaction

framework for determining the most appropriate hardware and software components and

configurations.

-54-

To On-Board CPU

Figure 5.3.2-1: Generalized SPU System Diagram

5.4 Implementation Considerations

The Sensor Processing Unit is a complicated device both in terms of control and

components. In developing such an apparatus, many factors arise which directly affect the

formation of the instrument. As such, the hardware and software needs of the SPU should be

identified in order to generate guidelines for laying out the next generation model. This allows for

sober judgement in identifying both hardware and software components that effectively realize

the generalized system model previously developed.

5.4.1 Hardware Considerations

5.4. la Microprocessor vs. Microcontroller

Throughout much of this thesis, the terms "microprocessor" and "microcontroller" have

been used interchangeably, but there is a definite distinction which must be explored in order to

clarify the direction of the 1998 SPU revision. A microprocessor refers to an electronic device

which is fundamentally computational in nature with its primary purpose being the evaluation of

simple expressions. Using an internal archive of mathematical or logical operatives, the

microprocessor manipulates mathematical or logical expressions to generate values for use by

other electronic devices. On the other hand, the microcontroller goes a step further by including

a library of utilities which have specific application to interaction with physical systems either

- 55 -

natural or man-made. Nevertheless, while also able to manipulate values, the microcontroller

does not typically carry the versatility in mathematical or logical evaluation that a

microprocessor would have since its facilities are more focused to the control, monitoring, and

interaction of systems. Yet, microcontrollers accomplish this without any of the additional

hardware or software support that a microprocessor would need to achieve such capability. As a

result, the microcontroller enjoys functionality that would have no place on a conventional

microprocessor. For example, an analog-to-digital converter would be a natural part of a

microcontroller's architecture, allowing for interaction between physical and digital systems, but

would never be integrated into a microprocessor.

Applying this understanding to SPU design, a question arises as to whether a

microprocessor or microcontroller is more suited to the task of sensor processing. This requires

further insight which can be garnered by examining the intent of the SPU. The SPU's primary

goal as a processing instrument is to distribute computational load away from the navigational

computer. In this case, the word "computational" is something of a misnomer since the SPU is

computational more for directional control than for mathematical manipulation ("directional

control" refers to the polling and administration of sensor data and functions respectively).

While data can be manipulated mathematically by the SPU, this does not precede the primary

role of the SPU as a sensor integrating device which is more clearly suited to a microcontroller.

The low-level abstraction of microprocessors would make them unsuitable as a viable alternative

for direct interfacing with the navigational computer, let alone sensors, without significant

additional hardware and software overhead. Consequently, a microcontroller is preferable over

the microprocessor as the computational and directional engine for the SPU.

5.4.1b A/D Converter

The 1997 SPU utilizes a separate analog-to-digital converter in its design instead of the

PIC16C73 on-chip A/D converter due to the microcontroller's insufficient resolution.

Nevertheless, it is important to note that the PIC16C73 is indeed a microcontroller with its on-

board A/D converter being a natural extension of its role as a device that interacts with physical

systems. Consequently, the use of another converter in the 1997 SPU seems not only

redundant, but also defeats the purpose of utilizing a microcontroller to reduce the overhead a

microprocessor would require in accomplishing analog-to-digital conversion. Therefore, a

microcontroller with an on-board A/D converter would prove more effective than employing an

independent chip. As mentioned in Section 3.4.1, a minimum resolution of ten bits and eight

channels are necessary for adequate precision in A/D conversion for all IMU channel,

temperature, and battery voltage readings.

- 56 -

5.4. 1c Anti-Aliasing Filters

Anti-aliasing filters on the inertial sensor outputs attempt to reduce aliasing errors due

to analog-to-digital conversion. Unfortunately, they add to the hardware components necessary

for proper operation. The only possible means of removing them would be to increase the

sampling rate to twice that of the highest frequency component contained in the IMU output

signals thus preventing aliasing. Once accomplished, digital filters could be applied to extract

useful spectral data. However, while the IMU produces signals with a maximum frequency of

approximately 1700 hertz, this is not the determining rate for the highest frequency in the IMU

output signals. The lines carrying the IMU data are susceptible to electromagnetic interference

from many sources including those with spectral content greater than a megahertz.

Consequently, without an external filter, the sampling frequency for A/D conversion necessary to

completely avert aliasing errors would be unreasonably high. Therefore, the anti-aliasing filters

are necessary and justifiable components to the SPU design that must intercede between IMU

outputs and A/D conversion inputs.

5.4.2 Software Considerations

As explained in Chapter 4, the 1997 SPU allows much of its software architecture to be

dictated by hardware implementation. This places software design in a secondary role and thus

belies its importance as an integral part of the entire SPU package. Studying the programming

concerns of the SPU prior to implementation directly impacts the formation of the final product

not only in software but also hardware. This notion is implicitly contradicted in the methodology

followed in forging the 1997 SPU. Consequently, the 1998 SPU design process looks at SPU

software considerations to assist in directing the actual drafting of the final device.

5.4.2a Software Architecture

Due to the various control and data interactions associated with the SPU, the software

architecture can become rather cumbersome and complicated without a plan of action to aid its

development. Consequently, software design objectives should be clearly defined to guide the

actual structural implementation and coding. But, in order to do so, a technique for arriving at

those objectives should be determined and utilized. Since the 1997 DSAAV attempts to follow

distributed processing methodology, this is an appropriate place to begin to ultimately set the

SPU code objectives.

As mentioned in Chapter 2, distributed processing concerns itself with the creation of

systems formed of individual, self-sufficient real-time processes that cooperate in parallel with

one another to accomplish a larger, more complex task. Applied to software, a distributed

57-

processing methodology involves the identification and formalization of processes. Such

processes typically interact with and respond to events in real-time as opposed to being directed

or called upon from within a linear sequence of software commands. The main advantage of

process-based, event-driven software is that code is not limited to a predictable, looped structure

dependent on a prespecified progression of commands. In such a linear framework, the software

must have the appropriate values and inputs available at each step in the code. If these

preconditions are not satisfied, then a program stall or crash could result thus yielding

undesired and possibly chaotic results. But, a process and event based architecture does not

stipulate any prerequisites for proper functioning. Instead, once a process is identified and

associated with an event, the software need only be concerned with administering the

appropriate response. Since the event itself is the triggering mechanism for the process handler,

the immediate conditions surrounding the occurrence, such as available data, can be presumed

to exist since the event is implicitly associated with the arrival of these conditions.

Since the SPU has many event associated processes, the unit becomes a prime target for

the application of distributed processing methodology. For example, all of the sensors are

sampled on a specific time schedule or rate, therefore the passage of a sampling period for any

given sensor becomes an event to which the handling of that sensor can be associated. Also,

since the sensors are not dependent on each other for proper functioning, their sampling can be

run concurrently as independent processes. Furthermore, independent processes also facilitate

the handling of multiple sensor transaction rates that would be more difficult to manage with

purely linear programming. Consequently, the SPU software architecture seems ideally suited to

using an multi-process, event-driven approach.

5.4.2b Software Characteristics

In addition to the design methodology, the SPU code (and most other forms of software)

have general characteristics for efficacious coding namely efficiency, modularity, reusability, and

robustness. Efficient software has several features including but not limited to usage of

resources and speed. Program code that is efficient makes good use of all resources including

data and program memory space. Such software has no redundant, useless, or dead code and

minimizes the amount of storage space necessary for proper execution. Efficient programs also

employ algorithms to encapsulate functions using as few commands as possible consequently

affecting code speed, another trait for determining software effectiveness. Programs should not

be so unwieldy as to be unable to manage its functions. For example, an SPU event process

should run fast enough during its handling such that an unreasonable number of other events

will not accumulate.

Though very similar, modularity and reusability are two other characteristics of good

58-

programming whose subtle connotations make them worthy of recognition as separate and

distinctive characteristics. Modular code can be easily transported between applications

requiring the software's functionality. But, reusable code, while also easily adapted for use

within the same or different applications, is normally considered to be an elemental or

fundamental construct. Modular code is not necessarily a foundational construct and can in fact

be extremely complex and specific in nature. Consequently, reusable code may be viewed as a

specific type or refinement of modular code.

Lastly, robustness alludes to a program's ability to manage, tolerate, and reject fault or

unpredictable run-time conditions. Without an appreciable degree of robustness, programs in

volatile, erratic, or unforeseeable environments can be subject to capricious behavior. While this

is less often the case with linear code that operates with assumed prerequisite states, process-

oriented code can be extremely susceptible to unforeseeable conditions that trigger events that

are difficult to track and debug. Therefore, the 1998 SPU software should be especially

conscious of robust design.

5.4.3 Hardware Component and Software Implementation Guidelines

As discussed, both hardware and software considerations directly affect the evolutionary

process of the 1998 SPU. They suggest component selection or implementation guidelines for the

next generation product and are summarized as follows:

Hardware Selection Guidelines:

* Microcontroller or microcontroller-based computational engine,

* Integrated or on-chip 10-bit, 8-channel A/D converter,

* Interceding anti-aliasing filters (between IMU and A/D

converter),

Software Implementation Guidelines:

* Process-oriented, event-based architecture, and

* Efficient, modular, reusable, and robust code.

5.5 Hardware Design

Having achieved a generalized SPU system design, the parameters for hardware selection

and software implementation may be applied to conclude what specific components will conform

to and function effectively within the system framework as well as fulfill the 1998 SPU objectives.

- 59 -

5.5.1 Microcontroller Options

The 1998 SPU system diagram in Figure 5.3.2-1 has the "processor" as the

computational and directional center for the SPU. From the discussion in Section 5.4.1a, the

microcontroller clearly plays the role of "processor" in the 1998 SPU design. But, the wide

variety of microcontrollers can make the final choice a difficult one. Nevertheless, a large search

through the available microcontrollers revealed three options that seemed most promising for the

application at hand: a PC-104 compliant microcontroller, an enhanced microcontroller, and a

PIC 17C756 microcontroller.

5.5.1a PC-104 Compliant Microcontroller

PC-104 is a standardized printed circuit format for small, compact computer stacks.

CPUs that conform to this type of layout, though typically not as computationally powerful, are

capable of all the normal functionality of conventional desktop machines including video output,

serial communications, and ethernet hookup. The navigational computer for the DSAAV is PC-

104 compliant and executes algorithms for flight control and directs much of interaction between

systems. An interesting feature of PC-104 computers is that additional hardware can be added

by simply stacking them on the device bus lines. As long as these add-ons comply with the PC-

104 form factor and bus communication protocols, they can be easily integrated for control by

the stack CPU.

A PC-104 compliant microcontroller is basically a microcontroller integrated circuit with

additional external features merged together on a PC-104 printed circuit board. For instance, a

PC-104 microcontroller running at a clock speed of 20 megahertz is relatively fast and can be

programmed in C for supposedly handling SPU functions independently of the computer stack's

main processor. Since this device is directly connected to the navigational computer bus lines,

the on-board CPU can quickly and easily access data from the PC-104 microcontroller. Looking

at the 1998 system diagram in Figure 5.3.2-1, this clearly facilitates and quite possibly removes

the communication overhead between the SPU processor and the on-board CPU thus allowing for

faster data access.

Unfortunately, the PC-104 microcontroller can have several limitations which override its

potential as an SPU processor. For example, some models bound the total number of stackable

circuit boards to two. Since the DSAAV on-board computer can have up to four circuit cards not

including the microcontroller itself (i.e., CPU, memory, ethernet, and serial ports), this clearly

precludes the microcontroller from being used as part of the 1998 SPU. Furthermore, even

without the stack limit, it is not clear that a PC-104 microcontroller can coexist with a true

microprocessor on the same bus line. And while the navigational algorithms and flight control

- 60-

command could possibly be ported to the microcontroller, it would be completely unsuited for

evaluating the complex mathematical equations necessary for autonomous flight. Normally, this

duty would be assigned to a full-function microprocessor that is more adapted for complex

mathematical and logical evaluation. Consequently, the PC-104 microcontroller is not a viable

option for the SPU processor.

5.5. lb Enhanced Microcontroller

An enhanced microcontroller is very similar to the PC-104 compliant microcontroller and

can in fact be viewed as a generalization of the PC-104 device. Built around a RISC-based

microprocessor and a microcontroller coprocessor, the enhanced version incorporates additional

features which increase its usability especially as a mathematical engine. Also, since the device

lacks a PC-104 bus, it is capable of stand-alone operation and implicitly has an ability to

communicate with other devices. With serial ports, built in analog-to-digital conversion, C-

programmability, and digital I/O, the enhanced microcontroller seems well suited to acting as

the SPU processor.

Regrettably though, the enhanced microcontroller is an extremely proprietary device

which includes much internal overhead in both hardware and software that might ultimately

hinder the SPU (this is unlike the PC-104 microcontrollers that conform to a standard

architecture that is proven and accepted). For instance, the enhanced microcontroller

architecture is highly dependent on other components which ultimately reduces its mechanical

robustness since added interconnects and parts increase the possibility of failure caused by the

hostile operating environment produced by the DSAAV. Furthermore, as in the case of the 1997

SPU, extra hardware and software overhead adds complexity to the generalized system and

devours possible resources. This should be avoided since it can ultimately foil the simplicity of

design and make future modification or expansion difficult.

5.5.1c PIC17C756 Microcontroller

The PIC 17C756 is an integrated circuit designed to be a microcontroller. Developed and

manufactured by Microchip Technology, Inc., this device represents the next-generation

superseding the PIC16C7X series. Equipped with a 12-channel, 10-bit on-chip analog-to-digital

converter and 50 digital I/O lines, the PIC17C756 microcontroller easily satisfies the hardware

selection guidelines. Furthermore, with its multiple interrupt system, various types of events,

both internal and external, can be responded to allowing for a process-oriented software

architecture thus partially satisfying the software implementation considerations. Nevertheless,

these hardware and software features do not alone stand as convincing arguments for choosing

the PIC17C756 over the enhanced microcontroller. But, the additional criterion that ultimately

-61 -

reject the enhanced microcontroller instead support the nomination of the PIC 17C756.

The PIC17C756 is a single integrated circuit completely embedded within a ceramic

leadless chip carrier. Therefore, unlike the enhanced microcontroller, the PIC microcontroller is

a physically compact product that is also highly immune to vibrational damage since there are

no attached parts. Furthermore, not only is hardware overhead reduced, but due to the simple,

minimalistic assembly-like coding language, PIC operations carry no compiling or interpretation

overhead. Instead, each operator is a fundamental part of the PIC17C756 function library and

cannot be further abstracted. On the other hand, the enhanced microcontroller utilizes higher

level languages such as C or BASIC whose functions are formed from a series of assembly-like

operators. These functions compose a library of routines that constitute the basis for higher

level languages. But, since underlying each function is assembly code, the enhanced

microcontroller must utilize an interpreter or compiler to deconstruct the routines into their

fundamental operations. Consequently, the efficiency of the code is highly dependent on the

interpreter or compiler and cannot be predicted, compensated, or controlled as readily as PIC

software that only contains elementary operators. Of course, the efficiency as well as modularity,

reusability, and robustness of PIC software is therefore the programmer's burden.

Finally, since the PIC17C756 is a completely self-contained microprocessor capable of

fulfilling all SPU hardware and software considerations as previously specified, it can act as the

processor in the generalized SPU system architecture. As an added bonus, the use of a single

microprocessor delinks the software architecture from the hardware implementation since the

software can be completely contained within the device and not divided between multiple

microprocessors as in the 1997 SPU. Consequently, in looking for a product that not only meets

the capability requirements of the SPU and its revision goals, but also works well in the

abstracted system architecture previously developed, the PIC17C756 stands out as an excellent

selection.

5.5.2 The PIC17C756 and the SPU

5.5.2a Overview of PIC 17C756 Capabilities

The PIC17C756 provides numerous microcontroller core and peripheral features which

make it well suited for immediate application to the 1998 SPU and future enhancements. Table

5.5.2a-1 itemizes these characteristics and capabilities.

5.5.2b Comparison of PIC17C756 to 1997 SPU

As can be seen by its features themselves, the PIC17C756's functionality quite easily

- 62 -

outmatches the 1997 SPU's capabilities. While this performance gain results in part from a

faster instruction rate, a quicker clock frequency in tandem with new components and a more

streamlined system architecture make for an even more potent and powerful 1998 SPU with a

greater potential for future enhancement.

Microcontroller Core Features: Peripheral Features:

* 33 Mhz Clock Input
* 121 ns Instruction Cycle * 50 Bidirectional I/O Pins
* 58 Single Word Instructions * High Current Sink/Source for

* All Single Cycle Instructions direct LED drive

Except Program Branches * Four 16-bit Capture Inputs
and Table Read/Writes (2 * Three 10-bit Max PWM

Cycles) Outputs
* Hardware Multiplier * TMRO: 16-bit Timer/Counter
* Interrupt Capability with 8-bit Programmable
* 16 Level Deep Hardware Stack Prescaler
* Direct, Indirect, and Relative * TMR1: 8-bit Timer/Counter

Addressing Modes * TMR2: 8-bit Timer/Counter
* Internal/External Program * TMR3: 16-bit Timer/Counter

Memory Execution * Two USARTs
* Capable of Addressing 64K x * 10-bit, 12 Channel A/D

16 Program Memory Converter
Space * Synchronous Serial Port and

* 902 x 8 Bytes Data RAM 12C Modes

Table 5.5.2a-1: PIC 17C756 Microcontroller and Peripheral Features [5]

For instance, the PIC 17C756 includes a new set of mathematical instructions which take

advantage of its "hardware multiplier". This on-chip device is basically a math coprocessor that

is specifically designed to decrease the number of instruction cycles per multiplication thus

increasing code speed. This new feature opens the door to more efficient and powerful digital

signal processing techniques not attainable with the older PIC16C73 microprocessor.

Additionally, an increased number of independent hardware interrupts allows for greater

flexibility and variety in developing interrupt-triggered event handlers. Unlike the PIC16C73

which has only one interrupt and therefore cannot implicitly distinguish between event types

except via software, the PIC17C756's multiple interrupts can be associated to different triggering

mechanisms. This simplifies code structure by localizing process handlers with a specific

interrupt. This is an obvious boon to an process-oriented, event-based software architecture

which the 1998 SPU embraces. Furthermore, using a single microcontroller eliminates the split-

processor 1997 SPU architecture and reduces both hardware and software communications

- 63 -

overhead thus increasing software execution and allowing faster sampling and transmission

rates.

Finally, it should be noted that the PIC17C756 coding language is very similar to that of

the PIC16C73 since both microcontrollers are manufactured by Microchip Technology, Inc. This

has both an advantage and disadvantage. The assembly-like instruction set of the PIC-type

microcontrollers can be very difficult to follow. Especially in light of higher level languages which

have greater readability, PIC code is rather cryptic. Nevertheless, because the coding language is

native to the 1997 SPU, this reduces the learning curve for the 1998 SPU implementation.

Furthermore, some of the code in the 1997 SPU can be ported to the 1998 SPU thus taking

advantage of reusability.

5.5.3 Design and Implementation

The circuit design for the 1998 SPU can be guided in part by the generalized system

architecture developed earlier. Since the compass and sonar both utilize digital control and data

lines and do not require any prefiltering, their interlink systems are simply wires connecting the

sensors to the appropriate digital I/O ports on the PIC 17C756. Similarly, being a passive source

of relatively static data, the battery and IMU temperature detector voltages can be connected

directly to the microcontroller A/D converter. On the other hand, with its high frequency analog

signals, the IMU output signals must ultimately be guided to the PIC17C756 A/D converter

inputs through anti-aliasing op-amp filters. Consequently, these filters form the IMU interlink

system. In the 1998 SPU system architecture shown in Figure 5.5.3-1, the two-way arrows

between the compass, sonar, and microcontroller indicate data flow to and command flow from

the PIC17C756 respectively. In contrast, battery level, temperature, and inertial signals travel in

only one direction, either directly to or through the anti-aliasing filters toward the

microcontroller, since they all continuously dispense information without the need for control

signals.

Figure 5.5.3-2 illustrates the circuit implementation for the 1998 SPU based the system

architecture just introduced. Several features in the 1998 SPU schematic are worthy of mention

but three requiring special attention are the linear acceleration IMU channels, the anti-aliasing

filters, and the battery voltage scaler. All linear IMU outputs are tied to ground with a 450 ohm

resistor as in the 1997 SPU to convert current into voltage. While this resistor can alter the -50

hertz filter poles, the shift in breakpoint frequency would be slight and therefore negligible. Also,

while the anti-aliasing filters are passive, the op-amp buffers are necessary to ensure low input

impedance to the PIC17C756 A/D converter (maximum analog source impedance of 10kohms).

Again, as in the 1997 SPU, the 32k ohm resistors acting as the negative feedback path for the op-

amp buffers compensate for bias current in the amplifiers but may be removed if compensated

for in software. Finally, the battery voltage scaler dimensions the battery voltage range to that of

-64-

the A/D converter. The 1998 SPU achieves a negative 0.25 scale factor using an inverting

amplifier rather than a voltage divider as in the 1997 SPU. This ensures a low input impedance

as required by the PIC17C756 A/D converter. Also, as a word of caution, in order to maintain

downward compatibility with the 1997 SPU data format, the scaled battery voltage must be

multiplied by a factor of -1 in order to remove the inverting effect caused by the amplifier.

r- - - -I
I I

Temp
L - - -

To On-Board CPU

Figure 5.5.3-1: 1998 SPU System Architecture

- 65-

AN9 < RC3 :3- - Compass SDO

IAN8 RC4 Compass SCLK

AN7 RC5 Compass SS
AN6 L " RC6 Compass EOC
AN5 z RC7 Compass PC

AN4 m 0 0 0 <0

PIC17C756 Microcontroller

o

All op-amps are LM614 powered w/ +/- 15v.

All resistors 32k unless indicated otherwise.

All capacitors O. 1 F unless indicated otherwise.

Figure 5.5.3-2: 1998 SPU Proposed Circuit Schematic

-66-

IMU Linear Z

IMU Linear Y

IMU Linear X

IMU Gyro Z

IMU Gyro Y

IMU Gyro X

IMU Temp.

Battery

5.6 Software Design

5.6.1 Sensor Protocols

Each sensor controlled by the 1998 SPU is an electronic device with specific control and

communication protocols that must be adhered to in order to guarantee proper operation. These

procedural rules for interacting with the sensors are encoded in the SPU software and enable the

handshaking and coordinating necessary to properly extract and store sensory data.

Consequently, each of the three SPU sensors should be briefly reviewed.

5.6.la Flux Magnetometer (Electronic Compass)

Produced by Precision Navigation, Inc., the electronic compass uses two orthogonal coils

to detect the earth's magnetic field and determine its heading. While having a relatively slow

update rate of 5 hertz, the compass has a 2 degree accuracy under reasonable measurement

conditions i.e., proper calibration, no ferrous materials nearby, approximately level with respect

to earth's surface.

Correct sampling of the electronic compass necessitates conforming to a rather rigid

timing schedule for transmission and reception of both commands and data. The electronic

compass has five digital I/O lines used for control and data reception namely PC, EOC, SS, C-

CLK, and C-SDO. Figure 5.6. la-1 exhibits a timing schedule for these I/O lines.

Figure 5.6. la-1: Compass Signal Timing Schedule [6]

- 67-

PC:

EOC:

SS:

C-CLK:

C-SDO:

Don't Care MSB LSB

To summarize a single operation cycle, the PC begins a compass sampling cycle by being

set low. While in this state, the EOC, or End Of Conversion, line should follow suit and go low as

a result of the compass' internal functions. The EOC will remain unchanged until new data is

available, at which point EOC reverts to high. Once this occurs, SS can be brought low and data

can be transferred by clocking the C-CLK line low and high repeatedly 16 times. With each

cycle, data is sent from the compass to the controller on C-SDO with the first 7 values being non-

significant. The following 9 bits represent the compass heading from most to least significant.

After all 16 its have been received, SS can be reasserted and the compass sampling cycle can be

restarted.

5.6. lb Sonar Altimeter

The sonar altimeter is a device that transmits ultrasonic pulses and senses their echoes

to determine height. This sensor's usage is somewhat similar to the compass in that its

operation cycle calls for the repeated issuance of commands on a specific time schedule in order

to attain the desired information as Figure 5.6. lb-1 shows.

I I I I

INIT:

BINH:

ECHO:

I I

I I
I I

IT2' T3

T1

Figure 5.6. lb-1: Sonar Signal Timing Schedule [7]

Like the compass, the sonar altimeter is sampled repeatedly, where T1 is the period

length. Each period of sonar operation begins with an initiation of an ultrasonic pulse, or ping,

by asserting the INIT line. Once this pulse is transmitted, the sonar awaits the arrival of an echo

which is indicated by a low-to-high transition on the ECHO signal line. But, in the time span

- 68 -

II

i I

immediately following the INIT initiated ping, transient signals on the ultrasonic transducer can

cause false ECHO triggers. Consequently, all possible echo signals are suppressed for an initial

period of length T2 by holding the blanking inhibit, or BINH, line low. Once BINH goes high,

echoes can be received. The time between starting the ping and receiving an echo, T3,

determines the altitude of the aircraft.

5.6. 1c Inertial Measuring Unit

Compared to the other sensors, sampling the IMU is rather trivial. Since the IMU

requires no command signals to initiate data transfer, the SPU must simply poll the device at a

rate which would allow the complete data frequency spectrum to be obtained i.e., twice the rate

of the maximum IMU frequency content. Since anti-aliasing filters remove data above 50 hertz,

the IMU must be polled at a minimum of 100 hertz. But, due to the imperfect nature of filters,

some degree of high frequency aliasing errors result albeit small. Consequently, a higher IMU

sampling rate behooves the inertial reading accuracy.

5.6. 1d Optimal Sensor Sampling Rates

All navigational and internal status information must be acquired by sampling the

various SPU components for data. But, this polling cannot simply happen as a matter of fact.

Instead, optimal rates for sampling must be found in order to effectively gather sensor data. For

example, essential navigational sensors use an optimal sampling rate that removes aliasing

errors i.e., twice the maximum sensor signal frequency content. The IMU channels are

prefiltered to attenuate the frequency band above 50 hertz. As a result, a minimum 100 hertz

sampling rate would be necessary to prevent sampling errors due to aliasing. Nevertheless, since

anti-aliasing filters on the IMU lines cannot completely remove spectral content above 50 hertz,

there are some residuals of the higher frequencies that pass. Consequently, since increased

sample rates reduce aliasing effects, the optimal sampling frequency of the IMU channels is the

highest achievable above the minimum 100 hertz without overburdening the microcontroller.

Unfortunately, it is difficult to determine what this ideal IMU sample rate is without a test bed to

verify, but a good first guess is 100 hertz for both linear and angular acceleration channels. At

this rate, the Nyquist criterion is satisfied thus allowing the frequency bands of the IMU

channels below 50 hertz to be captured without aliasing. But, this rate is not so high as to be

excessively taxing to the microcontroller and in fact minimizes the amount of time the

PIC 17C756 spends sampling IMU channels, freeing it to manage its various other tasks.

As for the compass and sonar altimeter, the anti-aliasing consideration does not apply at

all. Unlike the IMU channels that continuously provide data, the other two sensors provide data

only on command. Consequently, their optimal data rate is the maximum frequency at which

- 69 -

the sensors can be polled. For the compass, this rate is 4 hertz, and for the sonar-altimeter, it is

approximately 16.7 hertz. Finally, as for the internal SPU status readings, the battery voltage

level and IMU temperature have long enough time constants such that their sampling can be

relatively slow, up to a limit of approximately one update per second. All of the optimal sensor

and status sampling rates for the 1998 SPU are summarized in Table 5.6. 1d-1.

Table 5.6.ld-1: 1998 SPU Optimal Sensor and Status Sampling Rates

5.6.2 Software Event Categorizations

In examining the software architecture for the 1998 SPU, a process-oriented, event-

driven approach has been established to be an ideal methodology for laying out code structure.

With this in mind, the actual SPU program implementation can begin by identifying SPU-

associated events and proposing a process handler for those occurrences.

5.6.2a Period-Based Events

A period-based event is associated with the moment of a periodic phenomenon's

occurrence. For the most part, such events are predictable to the extent that they happen on a

regular, consistent basis, but are nevertheless unpredictable in terms of their circumstantial

causes or conditions. In the case of the SPU, the sensors, temperature, and battery sampling fall

into the category of period-based events since each of the three sensors and two system states

are polled at their most optimal sampling rates as previously determined.

With the polling frequencies of all three sensors and two SPU states in mind, a basis

exists for developing software handlers that respond to the elapse of the various sampling

periods. In the case of the 1998 SPU, the software sensor handlers could be called in response

to a periodically invoked timer interrupt that detects the arrival of a given sensor sampling

-70-

1998 SPU Optimal Sensor and Status Sampling Rates

IMU Acceleration Channels: 100 hertz

Electronic Compass: 4 hertz

Sonar Altimeter: 16.7 hertz

Battery Voltage Level: <= 1 hertz

IMU Temperature: <= 1 hertz

period. Therefore, this timer interrupt would need to keep track of sensor or status period

stopwatches. At each invocation, the timer interrupt with an assumed period of T would

increment all stopwatches by T and check to see if any sensor or status has reached the end of

its polling cycle. If so, an appropriate handler would be called to begin the next sample for that

device and its associated stopwatch would be reset. This approach works well for reading the

IMU acceleration channels as well as the battery voltage and IMU temperature since they must

simply be read at each sample period. But, the compass and sonar altimeter cannot be sampled

for data as easily. In order to receive information, they must adhere to the specific command

signal protocols previously described.

In the case of the compass, all of its control protocol is bound to a strict timing

schedule. Consequently, each phase of the compass' command sequence can be invoked

periodically by the timer interrupt as already explained. Of course, every control signal occurs

cyclically with the same period as the overall compass cycle, but each command is issued with a

unique phase shift relative to the beginning of the compass period in accordance with the timing

schedule portrayed in Figure 5.6. la-1.

The sonar altimeter also has a command sequence which it must follow in order to

function properly. Since the sonar control signals follow a tight timing schedule just as those of

the compass, the same handling methodology can be applied to both devices. But, while the

sonar's control signals are executed periodically, its data signal, or echo, has an arrival time that

is a function of the sensor's distance from the ground and is therefore inherently unpredictable.

This requires another form of event handling involving occurrence interrupts.

5.6.2b Occurrence-Based Events

Occurrence-based events are associated with the happening or arrival of prespecified

conditions, information, or time. Unlike period-based events, the moment at which these

incidents appear cannot be predetermined, but their arrival is always associated with a specific

occurrence. For example, the SPU's sonar altimeter echo response is an occurrence-based event

that is predicated by the detection of a bounced ultrasonic ping on the sonar transducer. The

SPU can be equipped to handle such a happening by defining an interrupt that is activated by a

low-to-high transition on the sonar altimeter's ECHO line, indicating the presence of a bounced

ping. This echo interrupt can then proceed to administer the event by calculating the time

between the ping transmission and its bounced return. Using this elapsed time, the distance

between the sonar altimeter and the bouncing object (i.e., ground) can be calculated.

5.6.3 Software Implementation Concerns

-71 -

5.6.3a Communication with the Navigational Computer

The SPU is designed to package and transmit sensor data to the navigational computer

via serial lines. In order to form a data package, the SPU must take the most recently acquired

sensory information and copy it into a transmission buffer for sending to the on-board

computer. These packets should be sent at a rate which allows all data from the fastest sampled

sensor (i.e., 100 hertz IMU data) to be transmitted. Of course, the Nyquist criterion can be

invoked to set the minimum transmission rate at twice that of the maximum data sampling

frequency. But, if the transmission frequency is set to be the same rate as the fastest sensor

sample rate and the two are in phase (i.e., data is gathered and sent immediately), then the SPU

data packet transmissions can occur at the fastest sampled sensor rate as opposed to twice that

value, without losing information. But, these rates must be identical and in phase to achieve the

communications overhead savings.

But, while the Nyquist rate does not apply to the fastest sampled sensor as long as its

sample frequency is equal and in phase with the transmission rate, it does apply to the sensors

polled more slowly. If the fastest sampled sensor is used as the transmission rate, this rate must

be at least twice the frequency of the sensor with the second fastest sample rate in order to

ensure that all of the slower sensors' data is captured. If the sensor with the second fastest

sampling rate is being polled at its Nyquist rate, then all sensors sampled more slowly are

implicitly being prompted for data at better than their Nyquist frequencies. Consequently, if the

fastest sensor sampling rate is at least twice that of any other sensor, then the transmission rate

is equivalent. Otherwise, the transmission rate must be twice that of the fastest sampled sensor

to ensure that all of the slower sampled sensors' have their Nyquist rates satisfied. In the case of

the 1998 SPU, since the IMU channels are the fastest sampled at 100 hertz and all other sensors

are sampled at well below half that rate (i.e., compass at 4 hertz, sonar altimeter at 16.7 hertz),

packet transmission can also occur at 100 hertz thus saving the transmission overhead from a

200 hertz Nyquist data rate.

As an aside, since the packet data is sent at regular intervals, transmissions can be seen

as a periodic events as described in the previous passages. Consequently, the sending of packets

can also be seen as an process that can be executed via a period-based interrupt handler.

5.6.3b Interrupt Handlers versus Linear Code

As discussed, interrupts are well suited to the handling of period- and occurrence-based

events. Unlike linear code, interrupts are called and executed when prespecified conditions are

met. Once the requisite circumstances occur, the appropriate interrupt is immediately invoked

regardless of the current location of the program during run-time. Once its duties are complete,

- 72 -

the interrupt proceeds to return control to the part of the program into which it intervened and

the software continues as normal. But, now that the 1998 SPU periodic and occurrence events

have been identified and associated with interrupt handlers, the linear code content must be

determined. But, in the case of the 1998 SPU, all functions except microprocessor initializations

can be described as events with associated interrupts. So, beyond the necessary preparatory

routines for the PIC 17C756, no linear code should be necessary!

Without linear code, the 1998 SPU code can be entirely described as various interrupt

handlers that manage independent event-invoked processes. This is completely in line with

distributed processing methodology which indicates that independent systems should be

modular, autonomous, and cooperative. Clearly, since the individual processes can be exported

to other applications simply by transplanting the interrupt handler as a complete package, they

demonstrate modularity. Further, by being implemented as individual processes, each sensor or

status event handler can be generalized to an autonomous system. And finally, by virtue of

working together to generate SPU packet data, the interrupts are cooperative. Consequently, the

almost complete usage of interrupt handlers banishes the need to understand code flow as in

linear programs and only requires the programmer to know which handler is associated with

what event. This ultimately generates a simpler, more efficient, and robust software architecture

whose control scheme can be easily depicted.

5.6.4 Software Control Schemes and Schematics

5.6.4a Overall Implementation

Having identified all the possible processes that can be handled via interrupts, namely

the sampling of the IMU, compass, sonar altimeter, battery and IMU temperature and the

transmission of data packets to the navigational computer, the 1998 SPU software can be

realized. Since all these processes except the altimeter sampling are completely period-based

events, they can be assigned to one of the four separate timers and associated interrupts.

Since IMU, battery, and temperature sampling all involve A/D conversion, their handling

can be combined under a single conversion-time interrupt. Of course, the highest sampling rate

of 100 hertz for the IMU will be the frequency at which this conversion-time interrupt is invoked

and should not be a hindrance for the battery and IMU temperature since they will only be

harmlessly oversampled. Once started, the interrupt handler begins the first A/D conversion

and exits. After this first conversion is completed, a "conversion done" interrupt occurs (an

inherent PIC 17C756 hardware feature) and can be used to trigger the next A/D conversion. This

conversion cycle repeats itself until all conversions have been implemented and does not begin

anew until the next conversion-time interrupt is conducted.

- 73 -

The compass control sequence is based entirely on a time schedule and can therefore be

handled totally by a timer interrupt. Since the optimal sampling rate for the compass is 4 hertz,

the compass timer interrupt begins a fresh sampling every 250 milliseconds. But, note that the

compass timer interrupt is always being called at a rate greater than 4 hertz. This allows the

interrupt handler to check for and execute intermediary command phases if one is pending. If

no control job is waiting, the interrupt exits without effect. In any case, once a compass

sampling cycle is begun, the compass interrupt executes its first command phase to initiate a

reading and exits. Subsequent compass timer interrupts determine if the next command phase

time has been reached. If so, the appropriate command signal is applied or data is captured by

the handler and again the interrupt exits. Each command occurs according to the control

schedule described in Section 5.6.1a until the last data bit has been recovered. At that point,

the compass timer interrupt has executed all its commands and does not restart until another

compass period is reached.

As discussed before, the sonar works in a manner very similar to the compass except

that it also must incorporate a second type of interrupt - an occurrence-based interrupt. The

sonar uses a periodic timer interrupt in the same way as the compass to implement its command

sequence according to the timing schedule specified in Section 5.6.1.b. But, the sonar also

utilizes the occurrence interrupt. This interrupt is generated by an echo signal sent by the sonar

altimeter and received by the PIC17C756 on its external interrupt pin (RAO/INT). Once started,

the echo interrupt handler determines the exact arrival time with respect to the ping

transmission time in order to calculate altitude. Since the sonar sampling rate is 16.7 hertz,

each sonar cycle of 60 milliseconds must pass before another period can begin.

Figure 5.6.4-1 depicts the interrupts and their handlers that form the software control

schematic for the 1998 SPU and Appendices A and B contain the actual code.

5.6.4b Technical Details

One aspect of the 1998 SPU software implementation that needs further explanation is

the choice to establish a base sensor interrupt timer resolution of 1 millisecond, similar to the

resolution of the 1997 SPU peripheral subsystem. The 1997 SPU uses a 1 millisecond interrupt

base to keep track of elapsed time. This was a somewhat arbitrary decision but provided a high

enough resolution to satisfy the timing needs of sensor sampling (which occurs on a tens of

milliseconds rate) but low enough to prevent excessive timer interrupt overhead. To a certain

extent, the decision to use a 1 millisecond resolution on the 1998 SPU comes out of a desire to

satisfy those same needs. But, the resolution of the sensor interrupt timers for the 1998 SPU

has definitive affects on sensor accuracy that should be quantified.

-74-

Millisecond_Interrupt_Handler:

increment sample rate timers by 1 ms;
if A/D conversion not in-progress,

call AD_Handler;
call Sonar_Handler;

call Compass_Handlerandler
if transmission not in-progress,

call Transmit_Handler.

TransmitHandler:

reset transmit timer;
transfer packet data to over

transmission buffer;
enable transmission interrupt;
set transmit in-progress and

begin transmission of first byte
of buffered data.

Sonar Echo Interrupt_Handler:

set echo-received;
determine offset into current millisecond;
add offset to sonar counter;
store counter in sonar data.

Conv_Transmit_Interrupt_Handler:

if A/D conversion done,
call Next AD Conversion_Handler

if transmission done,
call Next_Transmit_Handler

NextTransmit Handler:

if last transmitted byte was the last,
disable transmit interrupt; 4
and clear transmit in progress.

else increment to next data byte;
begin transmission of byte.

Next AD Conversion_Handler:

store current converted channel;
if last channel has been sampled,

disable A/D conversion interrupt;
and clear A/D in-progress.

else increment to next channel;
begin A/D conversion of channel.

I ___

.

Figure 5.6.4-1: 1998 SPU Software Control Diagram

75-

- -- - -J

AD_Handler:

reset A/D timer;
enable A/D conversion interrupt,
set A/D in progress and begin A/D

conversion of first channel.

SonarHandler:

increment sonar counter by 2000
(# of increments per millisecond);

if sonar timer == 1 millisecond,
goto SonarPhase_lms:
set sonar INIT (send ping)
enable sonar echo interrupt.

else if sonar timer == 2 milliseconds,
goto SonarPhase_2ms:
set sonar BINH.

else if sonar timer == 30 milliseconds,
goto Sonar_Phase_30ms:
clear INIT and BINH;
if echo-received not set,

save sonar counter;
disable sonar interrupt.

else disable sonar interrupt.
else if sonar timer == 60 milliseconds,

goto Sonar_Phase_60ms:

clear INIT, BINH, sonar timer,
and sonar counter.

Compass_Handler:

if compass timer == 5 ms,
goto Compass_Phase_5ms:
clear PC.

else if compass timer == 15 ms,
goto Compass_Phase_l5ms:
set PC and check for EOC clear.

else if compass timer == 125 ms,
goto Compass_Phase_125ms:
check for EOC high.

else if compass timer == 135 ms,
goto Compass_Phase_13 5ms:
clear SS.

else if compass timer == 145 ms,
goto Compass_Phase_145ms:
get most significant bit of data.

else if compass timer == 150 ms,
goto Compass_Phase_l5 0ms:
get lower data byte and set SS.

else if compass timer == 250 ms,
goto Compass_Phase_250ms:
set SCLK, SS, and PC;
reset compass timer.

The oscillator rate that drives the PIC17C756 microcontroller is 32 megahertz. The

microcontroller scales this frequency down by a factor of four and again by a prescale factor of 4

to produce an instruction rate of 2 megahertz. For both the PIC16C73 and PIC17C756, each

instruction cycle increments the internal timer registers thus producing an update rate of 2

megahertz. These timer registers differ from the sensor interrupt timers. The timer registers

increment until their values match a comparison amount established in code. Once this occurs,

the timer registers generate an interrupt and roll over to start accumulating instruction cycles all

over again. The interrupt rate caused by the overflow of the timer registers is used as the basis

for incrementing the sensor interrupt timers of the SPU.

By choosing a 1 millisecond sensor timer interrupt resolution, their corresponding timer

registers must have a comparison value of

2,000, 00instructond) x 1 (millisecond) = 2, 000(instructions)

Consequently, since the timer registers generate an interrupt every 2000 instruction cycles, the

sensor timer interrupts occur every 1 milliseconds. This has significance for the sonar because

its echo arrival time must be determined as accurately as possible in order to produce good

altitude predictions. Since the speed of sound is 330 meters/second, every millisecond

corresponds to 0.33 meters, or 33 centimeters, of sound travel. Consequently, if the sonar

arrival time is determined with a finite resolution of 1 millisecond as given by the sensor timer

interrupt rate, this arrival time could contain a time error of +/- 1 millisecond corresponding to

+/- 33 centimeters of altitude error which is unacceptable. To avoid this problem, the actual

offset into the current millisecond can be determined by looking at the number of accumulated

instructions in the timer register. Since the register increments once every instruction and

therefore at a rate of 8 megahertz, the register carries a finer time resolution of 1 / (2,000,000

instructions/second) = 0.5 microseconds. This corresponds to 165 micrometers of sound travel

and should be more than adequate resolution to provide reasonable sonar altitude prediction.

5.7 Reviewing the 1998 SPU

5.7.1 Comparing the 1998 SPU to 1997 SPU

5.7. 1a Hardware Comparison

For the most part, the hardware variations in the 1998 SPU from the 1997 SPU

ultimately reduce the hardware overhead necessary. Contrary to the 1997 implementation, only

one microprocessor is used and the need for an separate A/D converter has been eliminated. As

- 76-

a natural consequence, this also lowers the number of interconnections required. In short, the

slimmer 1998 SPU hardware implementation allows for a simpler layout and design and increase

robustness by removing excess parts.

5.7. lb Software Comparison

Immediately, the 1998 SPU software presents several differences when compared to that

of the 1997 SPU. First and foremost, the code architecture is completely reworked to move all

major functionality to the interrupt handlers, thus dismantling the combined interrupt and

linear code layout of its predecessor. This comes from a distributed processing design

methodology that identifies sensor processing on the SPU as event-driven as opposed to a simple

progression of commands as in linear code. Furthermore, the 1998 software lacks the

communication overhead that the 1997 dual-microcontroller layout incurred from transferring

data from one PIC 16C73 to the other. Clearly, this not only reduces the overall code size and

execution rate but increases the simplicity of design. In addition, since the 1998 SPU uses the

PIC17C756 to carry out its own A/D conversion, this adds a computational burden to the

microcontroller that the 1997 SPU circumvents by using a separate converter chip. But this

added liability takes the place of the 1997 SPU communication overhead between the PIC16C73

and the off-board converter making it a one-to-one trade. Finally, both the data and

transmission frequencies from the SPU have been increased.

5.7.2 1998 SPU Advantages Over 1997 SPU

The 1998 Sensor Processing Unit poses several advantages to the 1997 implementation.

Most obviously, the hardware and software errors of its predecessors should no longer exist.

This includes the correction of the anti-aliasing sampling rates, increased IMU and SPU packet

transmission rates, as well as possibly removing spurious data packets by eliminating

multiprocessor communications (see Section 4.2.3b). But more importantly, all of the original

and revision objectives for the SPU have been fulfilled: Sensors are integrated into a simpler yet

effective and robust design, computational load has been effectively distributed to a single

microcontroller with an integrated A/D converter, and system accuracy and bandwidth have

been increased via higher sampling rates and corrected 1997 implementation errors.

Furthermore, the 1998 software package has been reengineered to follow a distributed

processing approach that produces a process-oriented, event-driven architecture that is efficient,

modular, reusable, and robust.

5.7.3 1998 SPU Disadvantages Over 1997 SPU

- 77-

While the proposed 1998 Sensor Processing Unit purports to have distinct advantages to

the 1997 design, the 1998 SPU has a singular disadvantage: it is not built. While the next-

generation SPU has undergone and extensive development process, no prototype exists as a

proof-of-concept. Without this model, experimental testing and evaluation cannot be carried out.

5.8 Summary

The 1998 Sensor Processing Units builds blueprints for the next generation in SPU

design. In devising its architecture, the 1998 SPU addresses not only the original SPU objectives

but also the revision concerns raised by the evaluation of the 1997 SPU. By following a holistic

approach to design that incorporates distributed processing techniques, a generalized model for

SPU structure has been developed from which the 1998 SPU bases its implementation. The final

result is a product intended to effectively consolidates and administers the DSAAV navigational

sensors, thus removing computational load away from the on-board computer, and uses less

hardware and software to afford more accuracy and bandwidth than the 1997 SPU.

- 78 -

Chapter 6

1998 SPU Design Realization:

Pipe Dreams

6.1 Introduction

While the 1998 Sensor Processing Unit looks promising on paper, it lacks a physical

proof-of-concept and proper experimental analysis both in hardware and software. Nevertheless,

speculations can be made for the most appropriate courses of action in realizing and

investigating the actual implementation of the 1998 SPU.

6.2 SPU Hardware Prototyping Considerations

In developing any hardware device, several consideration exist which can guide the final

implementation process. On a aircraft as small as the DSAAV, weight is a fundamental concern

since this directly affects the load on the vehicle and, as a result, the aircraft's maneuverability.

A lighter helicopter is much more agile than a similar but heavier aircraft. Power consumption is

a large concern especially for autonomous systems since there is a limited power supply.

Determining the power needs to adequately sustain the hardware directly affects the methods for

delivering that energy. In addition, when dealing with a small autonomous vehicle, space is truly

a commodity. As a result, the packaging technique becomes paramount in making efficient use

of available real estate. Further, the packaging material itself adds to the weight of the aircraft

thus reducing its nimbleness. Finally, due to the highly volatile environment caused by

mechanical vibration, electronic interconnects must be extremely reliable and resistant to

fatigue. This cannot be stressed enough since a simple connector failure can render the entire

sensor processing system dysfunctional.

- 79 -

Each of these aspects of SPU prototyping should be considered when final

implementation proceeds. In doing so, the resultant product will benefit in physical layout,

reliability, as well as efficiency in power.

6.3 Software Simulation and Analysis

While the hardware for the SPU requires a physical prototype for experimental analysis,

the 1998 software can be tested using simulation techniques. Applications for limited evaluation

of PIC17C756 software is available from Microchip Technology, Inc. With these in hand,

interrupt timing and responses as well as event handling can be examined for bugs.

Furthermore, the software can be more quantitatively analyzed to determine whether or not the

actual sensor interactions and timing rates are realizable. If so, the simulation programs could

also be used as a tool to further refine and optimize these interactions in both speed and

algorithmic efficiency thus producing more effective and powerful code.

6.4 Summary

While the 1998 SPU is in some ways a pipe dream, it is one which is founded in solid

design methodology. Nevertheless, research and theories must ultimately be put to fire not with

the intent to destroy, but rather refine and temper. Though well investigated and evaluated with

respect to past designs, the 1998 SPU should be prototyped both in hardware and analyzed in

software to further refine its implementation details. Nevertheless, the architectural foundation

established for the 1998 SPU should prove to be a good basis for confirming, testing, and

inspecting speculated behavior patterns as well as understanding any anomalies that might

present themselves.

- 80 -

Chapter 7

Conclusion:

Matters to Mind

By exploring the derivations of autonomous vehicles, the fundamental ideas and

concepts that form the basis of these agents appear and clearly indicate the complexity of such

machines. Able to make intelligent decisions as directed by their mission and scope,

autonomous vehicles interact with their surroundings independent of human control. In order

to do so, these devices clearly require a mode or modes of sensory perception that allow them to

apprehend and interpret their environment, whether internal or external. But, achieving

autonomous intelligent sensing is no easy task.

In revising the electronic sensor integration for the Draper Small Autonomous Vehicle,

the 1998 Sensor Processing Unit came to fruition. By taking a holistic and systematic view of

design, the 1998 SPU development process established a clear plan of attack for both SPU

hardware and software implementation that circumvented the pitfalls inherent with the 1997

SPU's linear design approach in which one solution led to another, but not necessarily a best end

result. Distributed processing techniques were applied to identify, formalize, and implement

subsystems within the DSAAV to consolidate functions and functionality. This clarified the role

of the SPU in the context of the overall application and formed the basis for evaluating the 1997

SPU. After revisiting the 1997 Sensor Processing Unit, a more effective architecture for a new

real-time embedded sensor processing unit evolved which fulfilled and exceeded the original

goals for the device. Designed to consolidate sensors into a single unit that removes the burden

of sensor administration away from the navigational computer, the 1998 SPU works in tandem

with the on-board CPU to provide the DSAAV with sensory perception that surpasses the system

accuracy and bandwidth of its progenitor.

-81 -

Interestingly, the framework for the 1998 SPU came not simply out of a reengineering

process, but rather a fundamental discussion of autonomy, autonomous agents, and what they

entail. As mentioned in Chapter 1, autonomous vehicles are complex devices that in some ways

attempt to mimic both human mind and sight. Almost by definition, these machines implicitly

carry some intelligence and an ability to interact with its environment. Both are required for

handling even the most mundane of situations, let alone those that present hazards or evidence

hostility. And while for the purposes of design the levels of intelligence and environmental

awareness are limited to the scope of the project at hand, an underlying question remains: Can

a machine operate and interact with human intelligence and purpose? While the answer may be

unclear, the obvious point remains: technology has its limits, and these limits are ultimately

human in nature.

In striving to reproduce in ways beyond the biological, mankind cannot avoid the bounds

of its own being, including misconceptions and misunderstandings of self. In reaching for true,

man-made autonomy, humans press on these confines whether technological or philosophical in

nature. Some claim these restrictions are only temporary, capable of being broken with human

advancement, and others accept different views. But even as people push on this fence, trying to

see what lies behind, more questions appear, one after another. "Who created these limits?"

"What and who is out there?" "Can man ever go beyond the heavens, or even ourselves?"

"How?" "Why ask?" These matters to mind have enormous implication in many realms,

metaphysical or even spiritual. But ironically, though hidden behind a veil of numbers and

equations, the engineering world also faces them in many of its "real world" problems. As in the

development of autonomous agents - machines that mirror men, the questions lie in wait for a

very real answer.

-82 -

- 83 -

Appendix A

1998 SPU PIC17C756 Software:

17c756.h

17C756.H: Ver. 1.00

Header File for the PIC17C756 microprocessor.

Programmer: Chinsan Han
Original Release Date: May 26, 1998

Notes:

- Future modified versions of this file should be
identified with a new version number. Also, a
modification date should be added along with the
name of the programmer.

#ifndef _17C756_H

#define _17C756_H

processor 17c756

Interrupt Vector Assignments

#define

#define

#define

#define

RESET_VECTOR

RA0_INT_INTERRUPTVECTOR

TMRO_INTERRUPT_VECTOR

TOCK1_INTERRUPTVECTOR

0x0000

Ox0008

Ox0010

0x0018

-84-

#define PERIPHERAL_INTERRUPT_VECTOR 0x0020

I---

Register File Map

--------- ---------------------

; Unbanked: Ox00 through OxOF

CBLOCK Ox00

indf0, fsr0, pcl, pclath, alusta, t0sta, cpusta, intsta

indfl, fsrl, wreg, tmr0l, tmr0h, tblptrl, tblptrh, bsr

ENDC

; Bank 0: Oxl0 through 0x17

CBLOCK Oxl0

porta, ddrb, portb, rcstal, rcregl, txstal, txregl, spbrgl

ENDC

; Bank 1: Ox10 through 0x17

- - - - - - - - - - - - - - - - -

CBLOCK Oxl0

ddrc, portc, ddrd, portd,

ENDC

; Bank 2: Oxl0 through Ox17

CBLOCK Oxl0

tmrl, tmr2, tmr31, tmr3h,

ENDC

CBLOCK Oxl0

tmrl, tmr2, tmr31, tmr3h,

ENDC

; Bank 3: Oxl0 through 0x17

ddre, porte, pirl, piel

prl, pr2, pr31, pr3h

prl, pr2, call, calh

CBLOCK Oxl0

pwldcl, pw2dcl, pwldch, pw2dch, ca21, ca2h, tconl, tcon2

ENDC

; Bank 4: Oxl0 through 0x17

- - - - - - - - - - - - - - - - -

CBLOCK Oxl0

pir2, pie2

ENDC

-85-

CBLOCK 0x13

rcsta2, rcreg2, txsta2, txreg2, spbrg2
ENDC

; Bank 5: Oxl0 through 0x17

;---------------------------------

CBLOCK Oxl0

ddrf, portf, ddrg, portg, adcon0, adconl, adresl, adresh
ENDC

;---------------------------------

Bank 6: Oxl0 through 0x17

;---------------------------------

CBLOCK Oxl0

sspadd, sspconl, sspcon2, sspstat, sspbuf
ENDC

i---------------------------------
; Bank 7: Oxl0 through 0x17

i---------------------------------

CBLOCK Oxl0

pw3dcl, pw3dch, ca31, ca3h, ca41, ca4h, tcon3
ENDC

i---------------------------------

Unbanked: 0x18 through 0x19

;---------------------------------

CBLOCK 0x18

prodl, prodh
ENDC

Status and Control Register Bit Assignments

i--
; ALUSTA: ALU Status Register

#define ALUSTA_C alusta,------------------------------------
#define ALUSTA_DC alusta,l
#define ALUSTA_Z alusta,2

#define ALUSTA_OV alusta,3
#define ALUSTA_FSO alusta,4

#define ALUSTA_FSl alusta,5

#define ALUSTA_FS2 alusta,6

#define ALUSTA_FS3 alusta,7

; TOSTA: TimerO Status Register

;--

-86-

#define TOSTATOPSO t0sta,l

#define TOSTA_TOPS1 t0sta,2

#define TOSTA_TOPS2 t0sta,3

#define TOSTATOPS3 t0sta,4

#define TOSTA_TOCS t0sta,5

#define TOSTA_TOSE t0sta,6

#define TOSTA_INTEDG t0sta,7

;--
; CPUSTA: CPU Status Register

#define CPUSTABOR cpusta,0

#define CPUSTAPOR cpusta,l

#define CPUSPA_PD cpusta,2

#define CPUSTA__TO cpusta,3

#define CPUSTA_GLINTD cpusta,4

#define CPUSTA_STKAV cpusta,5

; INTSTA: Interrupt Status Register

#define INTSTA_INTE intsta,0

#define INTSTA_TOIE intsta,1

#define INTSTATOCKIE intsta,2

#define INTSTA_PEIE intsta,3

#define INTSTA_INTF intsta,4

#define INTSTA_TOIF intsta,5

#define INTSTA_TOCKIF intsta,6

#define INTSTA_PEIF intsta,7

;--
; PIE1: Peripheral Interrupt Enable Registers

#define PIE1_RC1IE piel,0

#define PIE1_TX1IE piel,l

#define PIE1_CAlIE piel,2

#define PIE1_CA2IE piel,3

#define PIE1_TMR1IE piel,4

#define PIE1_TMR2IE piel,5

#define PIE1_TMR3IE piel,6

#define PIE1_RBIE piel,7

;--
; PIE2: Peripheral Interrupt Enable Registers

#define PIE2_RC2IE pie2,0

#define PIE2_TX2IE pie2,0

#define PIE2_CA3TIE pie2,2

#define PIE2_CA4IE pie2,3

#define PIE2_ADIE pie2,5

#define PIE2_BCIE pie2,6

#define PIE2_SSPIE pie2,7

; PIRl: Peripheral Interrupt Registers

-87-

#define PIRI_RClIF pirl,0

#define PIR1_TX1IF pirl,l

#define PIRI_CAlIF pirl,2
#define PIRI_CA2IF pirl,3

#define PIRI_TMRlIF pirl,4

#define PIRI_TMR2IF pirl,5
#define PIRI_TMR3IF pirl,6

#define PIR1_RBIF pirl,7

;--

; PIR2: Peripheral Interrupt Registers

#define PIR2_RC2IF pir2,0

#define PIR2_TX2IF pir2,0

#define PIR2_CA3IF pir2,2

#define PIR2_CA4IF pir2,3

#define PIR2_ADIF pir2,5

#define PIR2_BCLIF pir2,6

#define PIR2_SSPIF pir2,7

;--
; TXSTA1: Transmit Status Registers

#define TXSTA----------------------------TX9D txstal-----------
#define TXSTAl_TRMT txstal,1

#define TXSTAl_SYNC txstal,4

#define TXSTA1_TXEN txstal,5

#define TXSTA1_TX9 txstal,6
#define TXSTAl_CSRC txstal,7

i--

; TXSTA2: Transmit Status Registers

define TXSTA2_TX9D txsta2---------------------------------------
#define TXSTA2_TRMT txsta2,0

#define TXSTA2_SYNC txsta2,4
#define TXSTA2_TXEN txsta2,5

#define TXSTA2_TX9 txsta2,6

#define TXSTA2_CSRC txsta2,7

; RCSTA1: Receive Status Registers

#define RCSTAl_RX9D rcstal,0

#define RCSTA1_OERR rcstal,l

#define RCSTA1_FERR rcstal,2

#define RCSTA1_CREN rcstal,4

#define RCSTA1_SREN rcstal,5

#define RCSTA1_RX9 rcstal,6

#define RCSTA1_SPEN rcstal,7

-------------------------------------RCSTA2: Receive Status Registers
SRCSTA2: Receive Status Registers

-88-

#define RCSTA2_RX9D rcsta2,0

#define RCSTA2_OERR rcsta2,1

#define RCSTA2_FERR rcsta2,2

#define RCSTA2_CREN rcsta2,4

#define RCSTA2_SREN rcsta2,5

#define RCSTA2_RX9 rcsta2,6

#define RCSTA2_SPEN rcsta2,7

;--
; TCON1: Timer Control Registers

#define TCON_TMR-----------------------------CS tcon,0----------
#define TCON1_TMR2CS tconl,l

#define TCONl_TMR3CS tconl,2

#define TCON1_T16 tconl,3

#define TCON1_CA1EDO tconl,4

#define TCON1_CA1ED1 tconl,5

#define TCON1_CA2EDO tconl,6

#define TCONI_CA2ED1 tconl,7

; TCON2: Timer Control Registers

#define TCON2_TMR-------------------------------N tcon2,

#define TCON2_TMR2ON tcon2,1

#define TCON2_TMR3ON tcon2,2

#define TCON2_CAM PR3 tcon2,3

#define TCON2_PWCA1PRON tcon2,4

#define TCON2_PWM2ON tcon2,5

#define TCON2_CAPWM0VF tcon2,6

#define TCON2_CA2OVF tcon2,7

; TCON3: Timer Control Registers

#define TCON3_PWM30N tcon3,0

#define TCON3_CA3EDO tcon3,1

#define TCON3_CA3ED1 tcon3,2

#define TCON3_CA4EDO tcon3,3

#define TCON3_CA4ED1 tcon3,4

#define TCON3_CA30VF tcon3,5

#define TCON3_CA40VF tcon3,6

; ADCONO: Analog-to-Digital Control Registers

;--

#define ADCONO_ADON adcon0,0

#define ADCONO_GO_DONE adcon0,2

#define ADCONO_CHSO adcon0,4

#define ADCONO_CHS1 adcon0,5

#define ADCONO_CHS2 adcon0,6

#define ADCONO_CHS3 adcon0,7

-89-

; ADCON1: Analog-to-Digital Control Registers

---------------------------------------define ADCONPCFGO adcon

#define ADCON1_PCFGl adconl,0

#define ADCON1_PCFG2 adconl,l

#define ADCON1_PCFG2 adconl,2

#define ADCON1_PCFG3 adconl,3

#define ADCON1_ADFM adconl,5
#define ADCONIADCS0 adconl,6

#define ADCON1_ADCSl adconl,7

;--
; SSPSTAT: SSP Status Register

#define SSPSTAT_BF sspstat,0

#define SSPSTAT_UA sspstat,l

#define SSPSTAT_ RW sspstat,2

#define SSPSTAT_S sspstat,3

#define SSPSTAT_P sspstat,4

#define SSPSTAT_ DA sspstat,5

#define SSPSTAT_CKE sspstat,6

#define SSPSTAT_SMP sspstat,7

; SSPCON1: SSP Control Registers

#define SSPCON1_SSPMO sspconl,0

#define SSPCONl_SSPM1 sspconl,1

#define SSPCON1_SSPM2 sspconl,2

#define SSPCONl_SSPM3 sspconl,3

#define SSPCON1_CKP sspconl,4

#define SSPCONl_SSPEN sspconl,5

#define SSPCON1_SSPOV sspconl,6

#define SSPCONI_WCOL sspconl,7

; SSPCON2: SSP Control Registers

#define SSPCON2_SEN sspcon2,0

#define SSPCON2_RSEN sspcon2,1

#define SSPCON2_PEN sspcon2,2

#define SSPCON2_RCEN sspcon2,3

#define SSPCON2_ACKEN sspcon2,4

#define SSPCON2_ACKDT sspcon2,5

#define SSPCON2_ACKSTAT sspcon2,6

#define SSPCON2_GCEN sspcon2,7

Port Bit Assignments

Port A

-90-

#define RAO

#define RAl

#define RA2

#define RA3

#define RA4

#define RA5

Port B

#define

#define

#define

#define

#define

#define

#define

#define

RBO

RB1

RB2

RB3

RB4

RB5

RB6

RB7

Port C

#define

#define

#define

#define

#define

#define

#define

#define

Port D

#define

#define

#define

#define

#define

#define

#define

#define

; Port E

#define

#define

#define

#define

RCO

RC1

RC2

RC3

RC4

RC5
RC6
RC7

RDO

RD1

RD2

RD3
RD4

RD5
RD6
RD7

REO

RE1

RE2

RE3

Port F

-91 -

porta, 0

porta, 1

porta,2

porta,3

porta,4

porta,5

portb, 0

portb, 1
portb, 2

portb, 3

portb, 4
portb, 5

portb, 6

portb, 7

portc,0

portc,1

portc,2

portc,3

portc,4

portc,5

portc,6

portc,7

portd, 0

portd, 1

portd, 2

portd, 3

portd, 4

portd, 5

portd, 6

portd, 7

porte,0

porte,1

porte, 2

porte,3

#define

#define

#define

#define

#define

#define

#define

#define

RFO

RF1

RF2

RF3

RF4

RF5

RF6

RF7

Port G

#define

#define

#define

#define

#define

#define

#define

#define

RGO

RG1

RG2

RG3

RG4

RG5

RG6

RG7

Analog Input Assignments

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

ANO

AN1

AN2

AN3

AN4

AN5

AN6

AN7

AN8

AN9

#define AN10

#define AN11

#define AN_VREF_NEG portg,2

#define AN_VREF_POS portg,3

Equivalence Assignments

equ

equ

#endif

-92-

portf,0

portf,1

portf,2

portf,3

portf,4

portf,5

portf,6

portf,7

portg, 0

portg,1

portg,2

portg,3

portg,4

portg,5

portg,6

portg,7

portg,3

portg,2

portg, 1

portg, 0

portf,0

portf,1

portf,2

portf,3

portf,4

portf,5
portf,6

portf,7

Appendix B

1998 SPU PIC17C756 Software:

spu-p 17.asm

SPU-Pl7.ASM: Ver. 1.00

PIC17C756 microprocessor controller code for the

Sensor Processing Unit.

Original Programmer:

Original Release Date:

Chinsan Han
May 26, 1998

Notes:

Future modified versions of this file should be

identified with a new version number. Also, a

modification date should be added along with the

name of the programmer.

#include "17c756.h"

Aliases

'---

; Sensor Enable Aliases

Each sensor may enabled or disabled by assigning a value of

one or zero respectively to their corresponding enable alias.

'---

-93-

#define IMU_ANGULAR_ENABLE 0x01

#define IMU_LINEAR_ENABLE 0x01

#define SONAR_ENABLE 0x01

#define COMPASS_ENABLE 0x01

#define BATTERY_ENABLE 0x01

#define TEMPERATURE_ENABLE 0x01

;---

Sample Period Aliases

All sample periods must be given in integer global timer
periods per sample and should be stated in hexidecimal. The
minimum number of periods per sample is one. As a result,
the minimum sample period is equal to the global timer period.

Currently, the global timer period is one millisecond.

See "Calibrate_Global_Timer" subroutine for details.

Example: Global Timer Period == 1 millisecond

Desired Sample Rate == 25 Hertz

Sample Period = 1 / (25 Hertz) == 40 milliseconds

Sensor Timer Increments Per Sample Period
== Sample Period / Global Timer Period

== 40 milliseconds / 1 millisecond

== 40 (0x28)

#define AD_PERIOD OxOA ; 10 milliseconds (100 hertz)
#define SONAR_PERIOD 0x32 ; 50 milliseconds (20 hertz)
#define COMPASS_PERIOD OxC8 ; 200 milliseconds (5 hertz)

#define TRANSMIT_PERIOD OxOA ; 10 milliseconds (100 hertz)

;---
; TimerO Offset Aliases

;---

#define TMRO OFFSET_HIGH OxF8

#define TMRO_OFFSET_LOW Ox2F ; OxF82F == 2000

;---

; Pin Aliases

i---

#define SERIAL_PORT RB5

#define SONAR_ECHO RA0

#define SONARBINH RCO

#define SONAR_INIT RC1

#define COMPASS_SDO RC3

#define COMPASS_SCLK RC4

#define COMPASS_SS RC5

#define COMPASSEOC RC6

#define COMPASS_PC RC7

#define IMUGYROX AN4

#define IMUGYROY AN5

-94-

#define

#define

#define

#define

#define

#define

IMUGYRO Z
IMU LINEAR X

IMU_LINEAR_Y

IMULINEAR_Z

IMU TEMPERATURE

BATTERY

AN6

AN7

AN8

AN9

AN10

AN11

--

; First Analog Channel Alias

Currently, analog channel 4 is the first.
--

#define ANALOG_CHANNEL_START

"sensor_status" Bit Aliases

See "Sensor Status Variable Address Assignments" for

variable declaration.

Note: "sensor_status" is unbanked.

IMU_ALIVE

COMPASS_ALIVE

SONARFRESH

IMU_FRESH

COMPASSFRESH

sensor_status, 0

sensor_status, 1

sensor_status, 2

sensor_status, 3

sensor_status, 4

;---
"in_progress" Bit Aliases

See "Sensor Status Variable Address Assignments" for

variable declaration.

Note: "in_progress" is unbanked.

#define AD_IN PROGRESS

#define TRANSMIT_IN_PROGRESS

in_progress, 0

in_progress, 1

--

Sensor Information Bit Aliases

See "Sensor Status Variable Address Assignments" for

variable declaration.

Note: "sensorinfo" is unbanked.

'---

#define SONAR_ECHO_RECEIVED

#define COMPASS_ERROR

sensor_info, 0

sensor_info, 1

--

; Data Address Aliases

#define AD_DATA_START_ADDRESS 0x49

-95-

#define

#define

#define

#define

#define

#define NON_IMU_DATA_START_ADDRESS 0x55 ; Temperature
#define AD_DATA_END_ADDRESS 0x56

#define CHECKSUM_START_ADDRESS 0x43 ; Starts w/ size
#define CHECKSUM_END_ADDRESS 0x57

#define PACKET_DATA_START_ADDRESS 0x40
#define PACKET_DATAENDADDRESS 0x57

#define TRANSMIT_DATASTARTADDRESS 0x60
#define TRANSMIT_DATA_END_ADDRESS 0x77

; Data Variable Address Assignments

--

; Sensor Status Variable Address Assignments: Unbanked

Sensor Status Variable Information:

sensor_status: Sensor status information

Bit 0: IMU alive

Bit 1: Compass alive
Bit 2: Sonar data fresh

Bit 3: IMU data fresh

Bit 4: Compass data fresh
in_progress: Sensor sampling state information

Bit 0: AD in progress

Bit 1: Transmission in progress
sensor_info: Sensor Information

Bit 0: Sonar Ping Received

Bit 1: Compass error

CBLOCK OxlA

sensor_status ; @ OxlA, unbanked
in_progress

sensor_info ; @ OxlC, unbanked
ENDC

; Temporary Variable Address Assignments: Unbanked

CBLOCK OxlD

tempO ; @ OxlD, unbanked

templ

temp2 ; @ OxlF, unbanked
ENDC

i---

; Interrupt Register Save Variable Address Assignments: GPR Bank 0

CBLOCK 0x20

alusta_save ; @ 0x20, GPR bank 0
wreg_save

fsr0_save

-96-

fsrl_save

indf0_save

indfl_save

bsr_save ; @ 0x26, GPR bank 0

;---------------------------------- ---------------------

; Timer Variable Address Assignments: GPR Bank 0

--- ---

CBLOCK 0x30

ad_timer ; @ 0x30, GPR bank 0

sonar_timer

compass_timer

transmit_timer ; @ 0x33, GPR bank 0

ENDC

; Packet Data Variable Address Assignments: GPR Bank 0

All sensor and packet data is stored in this bank of variables.

Packet Data Variable Information:

startl: First packet header byte (OxAB)

start2: Second packet header byte (0xCD)

start3: Third packet header byte (0xCD)

packet_size: # of packet bytes excluding

start bytes

status: Sensor status information

Bit 0: IMU alive

Bit 1: Compass alive

Bit 2: Sonar data fresh

Bit 3: IMU data fresh

Bit 4: Compass data fresh

sonar_high/low: High/low byte of sonar data

compass_high/low: High/low byte of compass data

gyro xhigh/low: High/low byte of IMU x-gyro data

gyro_y_high/low: High/low byte of IMU y-gyro data

gyro_zhigh/low: High/low byte of IMU z-gyro data

linear x high/low: High/low byte of IMU x-linear data

linear_y_high/low: High/low byte of IMU y-linear data

linearz high/low: High/low byte of IMU z-linear data

temperature: Vehicle temperature data

battery: Battery voltage data

checksum: Packet data checksum

CBLOCK 0x40

startl

start2

start3

packet_size

status

sonar_high

sonarlow

compass_high

compass_low

gyroxhigh

gyroxlow

;@ 0x40, GPR bank 0

; @ 0x49, GPR bank 0

-97-

ENDC

gyro_y_high

gyro_y_low

gyro_zhigh

gyroz_low

linear x high

linear x low

linear_y_high

linear_y_low

linear z high

linear zlow

temperature

battery

checksum

; @ Ox4E, GPR bank 0

; @ Ox4F, GPR bank 0

0x54,

0x55,

0x56,

0x57,

GPR bank

GPR bank

GPR bank

GPR bank

; Transmission Variable Address Assignments: GPR Bank 0

When a packet is ready for transmission, the individual data

values are copied to a transmission bank which is protected

from updates during the transmission.

All transmission bank variables add the prefix "tx_hold" to

their corresponding packet data identifiers.

;---

CBLOCK 0x60

txholdstartl

txholdstart2

txholdstart3

tx_hold_packet_size

tx_hold_status

tx_hold_sonar_high

txholdsonarlow

tx_hold_compass_high

tx_hold_compass_low

tx_holdgyro_x_high

tx_hold_gyroxlow
tx_hold_gyro_y_high

tx_hold_gyro_y_low

tx_hold_gyro_z_high

tx_hold_gyro z_low

tx_hold_linear x high

tx_hold_linear x low

txhold_linear_y_high

tx_hold_linear_y_low

tx_hold_linear z high

txholdlinear z low

tx_hold_temperature

tx_hold_battery

txholdchecksum

ENDC

;@ 0x60, GPR bank 0

; @ 0x77, GPR bank 0

;---------------------------------------Temporary Sensor Data Address Assignments: GPR Bank 0

CBLOCK 0x80

sonar_counter_high ; @ 0x80, GPR bank 0

-98-

ENDC

sonarcounterlow

sonar_offsethigh

sonaroffsetlow

compass_temp_high

compass_temp_low

AD_data_temp ; @ 0x84, GPR bank 0

; Miscellaneous Variable Address Assignments: GPR Bank 0

CBLOCK 0x90

current_channel ; 0x90, GPR bank 0

currentchanneldataaddress

current_packet_byte_address ; @ 0x92, GPR bank 0

ENDC

; Vector Directives

This is the code starting point after any reset of the

PIC17C756 microprocessor.

ORG

GOTO

ORG

GOTO

ORG

GOTO

ORG

GOTO

RESET_VECTOR

Main

RA0_INTINTERRUPTVECTOR

Sonar_Echo_Interrupt_Handler

TMRO INTERRUPTVECTOR

Millisecond_Interrupt_Handler

PERIPHERAL_INTERRUPT_VECTOR

Conversion_Transmission_Interrupt_Handler

Initialize_Microprocessor

InitializeVariables

CalibrateGlobalTimer

init. microprocessor
init. variables
prepare tmr0 for first

millisecond interrupt

Initialize_Sonar
Initialize_Compass

CPUSTA_GLINTD ; enable all interrupts

Main_Loop:

-99-

ENDC

Main

Main:

; BEGIN Main

CALL

CALL

CALL

CALL
CALL

BCF

GOTO Main_Loop

; END Main

; Initialize_Microprocessor

Carry out necessary microprocessor initializations for the

control registers, ports, etc. upon microprocessor reset.

Initialize_Microprocessor:

; BEGIN Initialize_Microprocessor

Control Register Initializations

Erring on the side of caution, ALL control register values are

initialized regardless of whether or not they are utilized.

Consequently, any future modification which seeks to take

advantage of currently unimplemented registers will need to

make initialization code corrections as necessary.

; ALUSTA Register: Unbanked

BSF ALUSTA_FSO

BCF ALUSTA_FS1

BSF ALUSTA_FS2

BCF ALUSTA_FS3

; TOSTA Register: Unbanked

BCF TOSTA_TOPSO

BSF TOSTA_TOPS1

BCF TOSTA_TOPS2

BCF TOSTA_TOPS3

BSF TOSTA_TOCS

BCF TOSTA_TOSE

BSF TOSTA_INTEDG

; CPUSTA Register: Unbanked
BSF CPUSTA_GLINTD

INTSTA

BCF

BSF

BCF

BSF

BCF

BCF

BCF

Register: Unbanked
INTSTA_INTE

INTSTA_TOIE

INTSTA_TOCKIE

INTSTA_PEIE

INTSTA_INTF

INTSTA_TOIF

INTSTA_TOCKIF

; PIE1 Register: SFR Bank 1

MOVLB 1

BCF PIE1_RC1IE

BCF PIE1_TXlIE

BCF PIEl_CAlIE

BCF PIE1_CA2IE

BCF PIE1_TMR1IE

;**FSRO, AUTO POST-INCREMENT

;**FSR1, AUTO POST-INCREMENT

;**1:4 PRESCALE ON TMRO

;**TMRO SOURCE IS INTERNAL (Fosc/4)

; not used (don't care)

;**RAO/INT INTERRUPT ON RISING EDGE

;**ALL INTERRUPTS DISABLED

;**RAO/INT INTERRUPT DISABLED
;**TMRO OVERFLOW INTERRUPT ENABLED

; not used (no ral/t0ckl int)

;**PIE INTERRUPTS ENABLED

; not used (no edge on ra0/int)

;**TMRO NOT OVERFLOWED

; not used (no edge on ral/tockl)

switch to SFR bank 1

; not used (no usartl receive int)

;**USART1 TRANSMIT INT. DISABLED

; not used (no capturel int)

; not used (no capture2 int)

; not used (no tmrl int)

- 100-

BCF PIE1 _TMR2IE

BCF PIE1_TMR3IE

BCF PIE1_RBIE

; PIE2 Register: SFR Bank 4

MOVLB 4

BCF PIE2_RC2IE

BCF PIE2_TX2IE

BCF PIE2 CA3IE

BCF PIE2_CA4IE

BCF PIE2_ADIE

BCF PIE2_BCLIE

BCF PIE2_SSPIE

; PIRI Register: SFR Bank 1

MOVLB 1

BCF PIR1 _CAlIF

BCF PIR1 _CA2IF

BCF PIR1 _TMRlIF

BCF PIR1 _TMR2IF

BCF PIR1 _TMR3IF

BCF PIR1 RBIF

; PIR2 Register: SFR Bank 4

MOVLB 4

BCF PIR2_CA3IF

BCF PIR2_CA4IF

BCF PIR2_ADIF

BCF PIR2_BCLIF

BCF PIR2_SSPIF

; TXSTA1 Register: SFR Bank 0

MOVLB 0

BCF TXSTA1_TX9D

BCF TXSTA1 SYNC

BCF TXSTA1_TXEN

BCF TXSTA1_TX9

BCF TXSTA1_CSRC

; TXSTA2 Register: SFR Bank 4

MOVLB 4

BCF TXSTA2 TX9D

BCF TXSTA2 SYNC

BCF TXSTA2_TXEN

BCF TXSTA2_TX9

BCF TXSTA2_CSRC

; RCSTA1 Register: SFR Bank 0

MOVLB 0

BCF RCSTA1_CREN

BCF RCSTA1_SREN

BCF RCSTA1_RX9

BCF RCSTA1_SPEN

; RCSTA2 Register: SFR Bank 4

MOVLB 4

BCF RCSTA2_CREN

BCF RCSTA2 SREN

BCF RCSTA2_RX9

not used (no tmr2 int)

not used (no tmr3 int)

not used (no int on PORTB change)

switch to SFR bank 4

not used (no usart2 receive int)

not used (no usart2 transmit int)

not used (no capture3 interrupt)

not used (no capture4 interrupt)

**A/D CONVERSION INTERRUPT DISABLED

not used (no bus collision int)

not used (no ssp int)

not

not

not

not
not
not

not

not

*A/D

not

not

used

used

used

used

used

used

(capturel int flag)
(capture2 int flag)
(tmrl interrupt flag)

(tmr2 interrupt flag)

(tmr3 interrupt flag)

(portb change int flag)

used (capture3 int flag)
used (capture4 int flag)
MODULE INTERRUPT FLAG

used (bus collision int flag)

used (ssp interrupt flag)

switch to SFR bank 0

not used (usartl 9th bit is 0)

**USART1 IN ASYCHRONOUS MODE

**USART1 TRANSMIT DISABLED

**USARTl 8-BIT TRANSMIT

not used (don't care in asynch)

switch to SFR bank 4

not used (usart2 9th bit is 0)

not used (usart2 in asynch mode)

not used (usart2 tx disabled)

not used (usart2 8-bit transmit)

not used (don't care in asynch)

switch to SFR bank 0

not used (no continuous receive)

not used (don't care in asynch)

not used (usartl 8-bit receive)

**USARTl DISABLED

switch to SFR bank 4

not used (no continuous receive)

not used (don't care in asynch)

not used (usart2 8-bit receieve)

- 101 -

BCF RCSTA2_SPEN

; TCON1 Register: SFR Bank 3

MOVLB 3

BCF TCON1_TMR1CS

BCF TCON1_TMR2CS

BCF TCON1_TMR3CS

BCF TCON1_T16

BCF TCON1_CAlEDO

BCF TCON1_CA1ED1

BCF TCON1_CA2EDO

BCF TCONl_CA2ED1

; TCON2 Register: SFR Bank 3

MOVLB 3

BCF TCON2_TMR1ON

BCF TCON2_TMR2ON

BCF TCON2_TMR3ON

BCF TCON2_CA1 PR3

BCF TCON2_PWM1ON

BCF TCON2_PWM2ON

; TCON3 Register: SFR Bank 7

MOVLB 7

BCF TCON3_PWM30N

BCF TCON3_CA3EDO

BCF TCON3_CA3ED1

BCF TCON3_CA4EDO

BCF TCON3_CA4ED1

; ADCONO Register: SFR Bank 5
MOVLB 5
BCF ADCONO_ADON ;*

BCF ADCONO_GO_DONE ;*

BCF ADCONO_CHSO ;*

BCF ADCONO_CHS1

BCF ADCONO_CHS2

BCF ADCONO CHS3

; ADCON1 Register: SFR Bank 5

MOVLB 5

BSF ADCON1_PCFGO ;*
BCF ADCON1 PCFG1 ;*

BCF ADCON1_PCFG2

BCF ADCON1_PCFG3

BSF ADCON1_ADFM ;*

BCF ADCON1_ADCSO ;*

BSF ADCON1_ADCS1

; SSPSTAT Register: SFR Bank 6

MOVLB 6

BCF SSPSTAT_CKE

BCF SSPSTAT_SMP

; SSPCON1 Register: SFR Bank 6

MOVLB 6

BCF SSPCON1_SSPMO

BCF SSPCON1_SSPM1

BCF SSPCON1_SSPM2

; not used (usart2 disabled)

; switch to SFR bank 3

; not used (tmrl at Fosc/4)

; not used (tmr2 at Fosc/4)
; not used (tmr3 at Fosc/4)

; not used (tmr2/tmrl 8-bit timers)
; not used (falling edge capture)

not used (falling edge capture)

switch to SFR bank 3

not used (tmrl disabled)

not used (tmr2 disabled)

not used (tmr3 disabled)
not used (tmr3 period register)

not used (pwml disabled)

not used (pwm2 disabled)

switch to SFR bank 7

not used (pwm 3 disabled)

not used (falling edge capture)

not used (falling edge capture)

switch to SFR bank 5

*A/D CONVERTER OFF

*NO A/D CONVERSION IN PROGRESS

*ANALOG CHANNEL 0 SELECTED

switch to SFR bank 5

*A/D REFERENCE IS Vref+ and Vref-
*AN<0:11> ARE ANALOG INPUTS

*A/D RESULT RIGHT JUSTIFIED

*A/D CONVERSION CLOCK AT Fosc/64

switch to SFR bank 6

not used (SCK falling edge tx)

not used (middle of time sample)

switch to SFR bank 6

not used (SPI master mode,Fosc/4)

-102 -

BCF SSPCON1_SSPM3

BCF SSPCON1_CKP

BCF SSPCON1_SSPEN

; SSPCON2 Register: SFR Bank 6

MOVLB 6

BCF SSPCON2_SEN

BCF SSPCON2_RSEN

BCF SSPCON2_PEN

BCF SSPCON2 RCEN

BCF SSPCON2_ACKEN

BCF SSPCON2_ACKDT

BCF SSPCON2_GCEN

not used (clock idle state low)

not used (ssp disabled)

switch to SFR bank 6

not used (start condition idle)

not used (restart condition idle)

not used (stop condition idle)

not used (receive idle)

not used (acknowledge seq idle)

not used (acknowledge)

not used (no gen call address)

Port Register Initializations---------------------------------------
Port Register Initializations

Port A

MOVLB

MOVLW

MOVWF

Port B
MOVLB

CLRF

MOVLW

MOVWF

Port C

MOVLB

CLRF

0
OxFF

porta

0

portb

OxFF

ddrb

1

portc

MOVLW Ox4C

MOVWF ddrc

Port D

MOVLB

CLRF

1

portd

MOVLW OxFF

MOVWF ddrd

Port E

MOVLB

CLRF

1

porte

; switch to SFR bank 0

; inputs/floating outputs: RA<0:5>

RA<0> == SONAR_ECHO (input)

RA<5> == TX1 (output)

; switch to SFR bank 0

; init. port B data latches

; before setting DDRB

; inputs: RB<0:7>

outputs: none

; switch to SFR bank 1

; init. port C data latches

; before setting DDRC

; inputs: RC<2:3>, RC<6>

; outputs: RC<0:1>, RC<4:5>, RC<7>

RC<0> == SONAR_BINH (output)

RC<l> == SONAR_INIT (output)

RC<3> == COMPASS_SDO (input)

RC<4> == COMPASS_SCLK (output)

RC<5> == COMPASS_SS (output)

RC<6> == COMPASS_EOC (input)

RC<7> == COMPASS_PC (output)

; switch to SFR bank 1

; init. port d data latches

; before setting DDRD

; inputs: RD<0:7>

; outputs: none

; switch to SFR bank 1

; init. port E data latches

- 103-

; before setting DDRE
MOVLW OxOF

MOVWF ddre

Port F

MOVLB 5

CLRF portf

MOVLW OxFF

MOVWF ddrf

Port G

MOVLB
CLRF

5
portg

MOVLW OxFF

MOVWF ddrg

; inputs: RE<0:3>

; outputs: none

RE<4:7> always read as '0'

; switch to SFR bank 5

; init. port F data latches
; before setting DDRF

; inputs: RF<0:7>

; outputs: none

; switch to SFR bank 5

; init. port G data latches
; before setting DDRG

; inputs: RG<0:7>

outputs: none

; END Initialize_Microprocessor, return

RETURN

InitializeVariables

InitializeVariables:

; BEGIN Initialize_Variables

; Unbanked Variables

CLRF sensor_status

CLRF in_progress

CLRF sensor_info

CLRF

CLRF

CLRF

; GPR Bank

MOVLR

CLRF
CLRF

CLRF

CLRF

MOVLW

MOVWF

MOVLW

; clear sensor status

; assumes IMU and compass are dead
; assumes no fresh data available

; assumes no sample or transmission

in progress

; assumes no sensor info

current_channel

current_channel_data_address

current_packet_byte_address

0 Variables

ad timer

sonar_timer

compass_timer

transmit_timer

OxAB

startl

OxCD

switch to GPR bank 0

; clear all timer values

; data packet header bytes

- 104-

start2

OxEF

start3

0x15

packet_size

MOVWF

MOVLW

MOVWF

MOVLW

MOVWF

CLRF

sonar_high

sonar_low

compass_high

compass_low

gyrox_high

gyrox_low

gyro_yhigh

gyro_y_low

gyroz_high

gyro_z_low

linear x high

linear x low

linear_y_high

linear_y_low

linear z high

linear z low

temperature

battery

checksum

current_channel

status

; END Initialize_Variables, return

RETURN

Calibrate_Global_Timer

The "Global Timer" is a millisecond interrupt generated by an

overflow (roll over from OxFFFF to Ox0000) in the 16-bit timer0

register, TMROH:TMROL.

The 16-bit timer0 register increments at a rate of Fosc/4.

This register needs to be initialized with an offset value

such that number of increments between the offset and the

overflow value OxFFFF is equal to the number of timer

increments per millisecond.

Example: FtmrO == (Fosc / 4) * (1/4) [prescale]

== 32 megahertz / 16

== 2 megahertz

- 105-

; packet size == 21 (0x15) bytes

; clear sensor status

; assumes IMU and compass are dead

; assumes no fresh data available

; sonar data initialized zero

; compass data initialized zero

; IMU gyro data initialized zero

; IMU linear data initialized zero

; temperature initalized zero

; battery initialized zero

; checksum initialized zero

; current_channel initialized zero

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

CLRF

Ttmr0 == 1 / Ftmr0

== 1 / 2 megahertz

== 0.5 microsecond

of Timer Increments Per Millisecond

== 1 millisecond / Ttmr0

== 1 millisecond / 0.5 microsecond

== 2000 (0x7DO)

TimerO Offset Value

== Maximum TimerO Value -

of Timer Increments/Millisecond

== OxFFFF - 0x7DO

== OxF82F

As seen in this example, each timer increment
has a period of Ttmr0 == 0.5 microseconds.

By initalizing the timer to OxF82F, the total

number of timer increments between this

inital value and the rollover at OxFFFF is

Ox7DO, or 2000 in decimal. This difference

represents a total time of:

2000 * 0.5 microseconds == 1 millisecond.

After each rollover, an interrupt is

generated and timer0 is at Ox0000.
Consequently, timer0 must be reinitialized to
OxF82F after each rollover to maintain the

one millisecond interrupt period.

CalibrateGlobalTimer:

; BEGIN CalibrateGlobalTimer

MOVLW TMRO_OFFSET_LOW to generate 1 millisecond int,
MOVWF tmr01 move literal OxF82F into

; tmr0h:tmr01 (see comments above)
MOVLW TMRO_OFFSET_HIGH
MOVWF tmr0h

; END Calibrate_Global_Timer, return
RETURN

Initialize_Sonar

Initialize_Sonar:

; BEGIN Initialize_Sonar

MOVLB 1 ; switch to SFR bank 1

BCF SONAR_INIT

BCF SONAR_BINH

BCF SONARECHORECEIVED

BCF SONAR_FRESH

- 106-

; switch to GPR bank 0

CLRF sonartimer

CLRF sonar_counter_high

CLRF sonar_counter_low

CLRF sonar_offset_high

CLRF sonaroffset_low

; END Initialize_SONAR, return

RETURN

Initialize_Compass

Initialize_Compass:

; BEGIN Initialize_Compass
MOVLB 1

BSF

BSF

BSF

BCF

BCF

BCF

MOVLR

CLRF

CLRF

CLRF

; switch to SFR bank 1

COMPASS_SCLK

COMPASS_SS

COMPASS_PC

COMPASSFRESH

COMPASS_ALIVE

COMPASSERROR

; switch to GPR bank 0

compass_timer

compass_temp_high

compass_temp_low

; END Initialize_Compass, return

RETURN

Millisecond_Interrupt_Handler

Millisecond_Interrupt_Handler:

; BEGIN Millisecond_Interrupt_Handler

; Save Key Registers

MOVFP alusta, tempO

MOVFP bsr, templ

MOVLR

; save ALUSTA register;

; since MOVPF affects

; Z-bit (MOVFP does not

; affect Z-bit)

; save BSR register since

; need to switch to GPR

; bank 0 in order to

access

; switch to GPR bank 0

- 107-

MOVLR

tempO, alusta_save

wreg, wreg_save

fsr0, fsr0_save

fsrl, fsrl_save

indf0, indf0_save

indfl, indfl_save

templ, bsr_save

Begin Interrupt Handling

CALL Calibrate_Global_Timer

MOVLR

MOVLW

CPFSEQ

INCF

MOVLW

CPFSEQ

INCF

MOVLW

CPFSEQ

INCF

MOVLW

CPFSEQ
INCF

; Handle A/D C

BTFSS

CALL

; Handle Sonar
CALL

AD_PERIOD

ad_timer

ad_timer

SONAR_PERIOD

sonartimer

sonar_timer

COMPASS_PERIOD

compass_timer

compass_timer

TRANSMIT_PERIOD

transmit_timer

transmit_timer

onversion

ADIN_PROGRESS

AD_Handler

Sonar_Handler

; Handle Compass

CALL Compass Handler

; Handle Data Transmission

BTFSS TRANSMIT_IN_PROGRESS
CALL Transmit_Handler

; Restore Key Registers

MOVLR 0

MOVFP

MOVFP

MOVFP

MOVFP
MOVFP

MOVFP

MOVFP

; prepare tmr0 for next

; millisecond

switch to GPR bank 0

increment A/D timer up

; to max value of

; AD_PERIOD

increment sonar timer up

; to max value of

; SONAR_PERIOD

; increment compass timer

; up to max value of

; COMPASS_PERIOD

; increment transmit timer

; up to max value of

; TRANSMIT PERIOD

; if A/D conversion not in
; progress, handle A/D

; handle sonar

; handle compass

; if transmission not in

; progress, handle txmt

; switch to GPR bank 0

alusta_save, alusta

wreg_save, wreg

fsr0_save, fsr0

fsrlsave, fsrl

indf0_save, indf0

indfl_save, indfl

bsr save, bsr

; END Millisecond_Interrupt_Handler, return
RETFIE

- 108-

MOVPF

MOVPF

MOVPF

MOVPF

MOVPF

MOVPF

MOVPF

AD_Handler

AD_Handler:

; BEGIN AD_Handler

MOVLR 0 switch to GPR bank 0

MOVLW AD_PERIOD if timer has not reached sample

CPFSEQ ad_timer time i.e., timer != sample

RETURN period, then return

; Begin A/D Channel Conversions

CLRF ad_timer reset A/D timer

MOVLB 4 switch to SFR bank 4

BSF PIE2_ADIE enable A/D interrupts

MOVLB 5 switch to SFR bank 5

MOVLW OxOF

ANDWF adcon0, F

MOVLW ANALOGCHANNEL_START

BTFSC wreg,0 set first analog channel

BSF ADCONO_CHSO

BTFSC wreg,l

BSF ADCONO_CHS1

BTFSC wreg,2

BSF ADCONOCHS2

BTFSC wreg,3

BSF ADCON0_CHS3

MOVLW ANALOG_CHANNEL_START ; store starting channel

MOVWF current_channel ; (channel 4)

MOVLW AD_DATA_START_ADDRESS

MOVWF current_channel_data_address

BSF ADINPROGRESS

BSF ADCONO_GO_DONE

; END AD_Handler, return

RETURN

store starting channel data

addr. (AD_DATA_START_ADDRESS)

set conv-in-progress flag

start AD conversion

Sonar_Handler

Sonar_Handler:

; BEGIN Sonar_Handler

MOVLR 0 switch to GPR bank 0

-109-

; Increment Sonar Data by 0x7DO (== 2000) since there are 2000
; increments per millisecond

MOVLW OxDO ; add lower byte
ADDWF sonar_counter_low,F check for carry
BTFSC ALUSTA_C

INCF sonar_counterhigh,F

MOVLW 0x07 ; add high byte

ADDWF sonar_counterhigh,F

; Determine Sonar Phase

MOVLW 0x01

SUBWF sonar_timer, W

BTFSC ALUSTA_Z

GOTO Sonar_Phase_lms

MOVLW 0x02

SUBWF sonar_timer, W

BTFSC ALUSTA_Z

GOTO Sonar Phase 2ms

MOVLW OxlE

SUBWF sonar_timer, W

BTFSC ALUSTA_Z

GOTO Sonar Phase 30ms

MOVLW 0x3C

SUBWF sonar_timer, W

BTFSC ALUSTA_Z

GOTO Sonar_Phase_60ms

; END Sonar_Handler, return
RETURN

Sonar_Phase_lms

SonarPhase_ ms:

; BEGIN Sonar_Phase_lms
MOVLB 1

BSF

BSF

SONAR_INIT

INTSTA_INTE

; switch to SFR bank 1

; start ping

; enable external sonar echo

interrupt on RA0/INT pin

; END Sonar_Phase_lms, return

RETURN

Sonar_Phase_2ms

110-

Sonar_Phase_2ms:

; BEGIN Sonar_Phase_2ms

MOVLB 1 switch to SFR bank 1

BSF SONAR_BINH enable blank inhibit

; END Sonar_Phase_2ms, return

RETURN

SonarPhase_30ms

Sonar Phase 30ms:

; BEGIN Sonar_Phase_30ms

MOVLB 1 ; switch to SFR bank 1

BCF SONAR_INIT

BCF SONAR_BINH

BTFSC SONAR_ECHO_RECEIVED ; if sonar echo received,

GOTO Sonar_Complete ; done.

MOVLR 0 switch to GPR bank 0

MOVFP sonar_counter_high,W

MOVWF sonar_high

MOVFP sonar_counter_low,W

MOVWF sonar_low

BCF INTSTA_INTE disable external sonar echo

; interrupt on RAO/INT pin

BSF SONAR_FRESH

; END Sonar_Phase_30ms, return

RETURN

Sonar Phase 60ms

Sonar Phase 60ms:

; BEGIN Sonar_Phase_60ms

CALL Initialize_Sonar

; END Sonar_Phase_60ms, return

RETURN

Sonar_Complete

Sonar_Complete:

-111 -

; BEGIN Sonar_Complete

BCF INTSTA_INTE ; disable external sonar echo

; interrupt on RAO/INT pin

; END Sonar_Complete, return

RETURN

CompassHandler

Compass_Handler:

; BEGIN Compass_Handler

MOVLR 0 switch to GPR bank 0

; Determine Compass Phase

MOVLW Ox05

SUBWF compass_timer, W
BTFSC ALUSTA_Z

GOTO Compass_Phase_5ms

MOVLW OxOF

SUBWF compass_timer, W
BTFSC ALUSTA_Z

GOTO Compass_Phase_15ms

MOVLW Ox7D

SUBWF compass_timer, W
BTFSC ALUSTA_Z

GOTO Compass_Phase_125ms

MOVLW Ox87

SUBWF compass_timer, W
BTFSC ALUSTA_Z
GOTO Compass_Phase_135ms

MOVLW 0x91

SUBWF compass_timer, W
BTFSC ALUSTA_Z

GOTO Compass_Phase_145ms

MOVLW Ox96

SUBWF compass_timer, W

BTFSC ALUSTA_Z

GOTO Compass_Phase_150ms

MOVLW OxFA

SUBWF compass_timer, W

BTFSC ALUSTA_Z

GOTO Compass_Phase_250ms

; END Compass_Handler, return
RETURN

-112-

Compass_Phase_5ms

CompassPhase_5ms:

; BEGIN Compass_Phase_5ms

MOVLB 1 ; switch to SFR bank 1

BCF COMPASS_PC ; clear PC

; END Compass_Phase_5ms, return

RETURN

Compass_Phase_15ms

Compass_Phase_15ms:

; BEGIN Compass_Phase_15ms

MOVLB 1 switch to SFR bank 1

BSF COMPASS_PC set PC

BTFSC COMPASS_EOC ; if EOC not clear, then error

GOTO Compass_Error

; END Compass_Phase_15ms, return

RETURN

Compass_Phase_125ms

Compass_Phase_125ms:

; BEGIN Compass_Phase_125ms

BTFSC COMPASS_ERROR return if in error state

RETURN

MOVLB 1 ; switch to SFR bank 1

BTFSS COMPASS_EOC if EOC not set, then error

GOTO Compass_Error

; END Compass_Phase_125ms, return

RETURN

Compass_Phase_135ms

Compass_Phase_135ms:

; BEGIN Compass_Phase_135ms

BTFSC COMPASS_ERROR return if in error state

- 113-

RETURN

MOVLB

BCF

; switch to SFR bank 1

COMPASS_SS

; END Compass_Phase_135ms, return

RETURN

Compass_Phase_145ms

Compass_Phase_145ms:

; BEGIN Compass_Phase_5ms

BTFSC COMPASS_ERROR

RETURN

MOVLB 1

CALL Clock_Compass_Data

CALL Clock_Compass_Data

CALL Clock_Compass_Data

CALL Clock_Compass_Data

CALL Clock_Compass_Data

CALL Clock_Compass_Data

CALL Clock_Compass_Data

MOVLR

CALL

BTFSC

BSF

Clock_Compass_Data

COMPASS_SDO

compass_temp_high,0

; return if in error state

switch to SFR bank 1

ignore first seven bits

; switch to GPR bank 0

; Get most Significant Bit

; END Compass_Phase_145ms, return
RETURN

CompassPhase_l50ms

Compass_Phase_l50ms:

; BEGIN Compass_Phase_150ms

BTFSC COMPASS_ERROR

RETURN
; return if in error state

; switch to SFR bank 1
switch to GPR bank 0

Clock_Compass_Data

COMPASS_SDO

compass_temp_low,7

Clock_Compass_Data

COMPASS_SDO

compass_temp_low,6

-114-

; clear SS

MOVLB

MOVLR

CALL

BTFSC

BSF

CALL

BTFSC

BSF

CALL Clock_Compass_Data

BTFSC COMPASS_SDO

BSF compass_temp_low,5

CALL Clock_Compass_Data

BTFSC COMPASS_SDO

BSF compass_temp_low,4

CALL Clock_Compass_Data

BTFSC COMPASS_SDO

BSF compass_temp_low,3

CALL Clock_Compass_Data

BTFSC COMPASS_SDO

BSF compass_temp_low,2

CALL Clock_Compass_Data

BTFSC COMPASS_SDO

BSF compass_temp_low,l

CALL Clock_CompassData

BTFSC COMPASS_SDO

BSF compass_temp_low,0

CALL Clock_Compass_Data

MOVFP compass_temp_high, wreg

MOVWF compass_high

MOVFP compass_temp_low, wreg

MOVWF compass_low

BSF COMPASS_ALIVE

BSF COMPASSFRESH

BSF COMPASS_SS

END Compass_Phase_150ms, return

RETURN

Compass_Phase_250ms

Compass_Phase_250ms:

; BEGIN Compass_Phase_250ms

CALL Initialize_Compass

; END Compass_Phase_250ms, return

RETURN

Compass_Error

Compass_Error:

; BEGIN Compass_Error

BSF COMPASS_ERROR

BCF COMPASS_ALIVE

-115-

; END Compass_Error, return

RETURN

Clock_Compass_Data

Note: The number of NOP's necessary is highly dependent on
clock speed. 10 NOP's were used on the PIC16C73 code,
but since the PIC17C756 uses a faster oscillator,

15 NOP's are used (arbitrary choice).

Clock_Compass_Data:

; BEGIN Clock_Compass_Data

MOVLB 1 ; switch to SFR bank 1

COMPASS_SCLK

COMPASS_SCLK

; END Clock_compass_Data, return

RETURN

Transmit_Handler

Transmit_Handler:

-116-

BCF

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

BSF

NOP

NOP

NOP

NOP
NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

; BEGIN Transmit_Handler

MOVLR 0

TRANSMIT_PERIOD

transmit_timer

transmit_timer

; switch to GPR bank 0

; if timer has not reached transmit

; time i.e., timer != transmit

; period, then return

; reset transmission timer

; Compute Che

MOVLW

MOVWF

CLRF

Checksum_Loop:
MOVFP

ADDWF

MOVFP

cksum

CHECKSUMSTART_ADDRESS

fsr0

checksum

indf0, wreg

checksum

CHECKSUM_END_ADDRESS, wreg

copy last data address to wreg

CPFSGT fsr0

GOTO Checksum_Loop

; Move Packet

MOVLW

MOVWF

MOVLW

MOVWF

MOVFP

; if current position in packet

; data exceeds address of the last

data in packet, done (fsr0 is

; compared to wreg containing

; last data address)

Data into Transmission Buffer

PACKETDATASTARTADDRESS

fsr0

TRANSMITDATASTARTADDRESS

fsrl

PACKET_DATA_END_ADDRESS, wreg

; copy last data address to wreg

Packet_CopyLoop:

MOVFP indf0, indfl

CPFSGT fsr0

GOTO Packet_Copy_Loop

Begin Transmission of First Byte

MOVLB 0

MOVLW OxlA

MOVWF spbrgl

BSF RCSTA1_SPEN

; copy indirectly addressed packet

; data to indirectly addressed

; transmission buffer (both

; indf0 and indfl automatically

; incremented)

; if current position in packet

; data exceeds address of the last

; data in packet, done (fsr0 is

; compared to wreg containing

; last data address which was

; copied immediately prior to

; entering loop)

; otherwise, copy next data

; switch to SFR bank 0

spbrgl == OxlA (26) -> 19.2Khz

enable serial port

-117-

MOVLW

CPFSEQ

RETURN

CLRF

1

PIE1 TXlIE

; switch to SFR bank 1

; enable transmission interrupt

TRANSMIT_DATA_START_ADDRESS

current_packet_byte_address

; store starting transmission addr.

; for future reference
fsr0

; store transmission start address

; for indirect reference

0
indf0, txregl

switch to SFR bank 0

move first data byte into

transmission buffer

TRANSMIT_IN_PROGRESS

set transmission-in-progress flag

BSF TXSTA1_TXEN begin transmission

; END TransmitNandler, return

RETURN

Conversion_Transmission_InterruptHandler

Conversion_Transmission_Interrupt_Handler:

; BEGIN Conversion_Transmission_Interrupt_Handler

; Save Key Registers
MOVFP alusta, tempO save ALUSTA register since MOVPF

MOVFP bsr, templ

MOVLR 0

MOVPF tempO, alusta_save

MOVPF wreg, wreg_save

MOVPF fsr0, fsr0_save

MOVPF fsrl, fsrl_save

MOVPF indf0, indf0_save

MOVPF indfl, indfl_save

MOVPF templ, bsr_save

; affects Z-bit (MOVFP does not

affect Z-bit)

save BSR register since need to
; switch to GPR bank 0 in order to

access

; switch to GPR bank 0

Begin Interrupt Handling

MOVLB 4 switch to SFR bank 4
BTFSC PIR2_ADIF

CALL NextADConversion_Handler

MOVLB 1 ; switch to SFR bank 1
BTFSC PIR1_TXlIF

CALL Next_Transmit_Handler

-118-

MOVLB
BSF

MOVLW

MOVWF

MOVWF

MOVLB

MOVPF

BSF

; Restore Key Registers

MOVLR 0

MOVFP alusta_save, alusta

MOVFP wreg_save, wreg

MOVFP fsr0_save, fsr0

MOVFP fsrl_save, fsrl

MOVFP indf0_save, indf0

MOVFP indfl_save, indfl

MOVFP bsr_save, bsr

; switch to GPR bank 0

; END Conversion_Transmission_Interrupt_Handler, return

RETFIE

NextADConversion_Handler

Next_AD_Conversion_Handler:

; BEGIN Next_AD_Conversion_Handler

MOVLR 0

MOVLB 5

MOVLW
CPFSLT

GOTO

; switch to GPR bank 0

; switch to SFR bank 5

NON_IMU_DATA_START_ADDRESS

current_channel_data_address

NonIMUChannels

IMU_Channels:

MOVFP

MOVFP

MOVFP

GOTO

current_channel_data_address, fsr0

adresh, indf0

adresl, indf0 ; automatic post-increment

Next_Conversion

NonIMUChannels:

CLRF AD_data_temp

adresh, 1

AD_data_temp,7

adresh, 0

AD_data_temp,6

adresl, 7

AD_data_temp,5

adresl, 6

AD_data_temp,4

adresl, 5

AD_data_temp,3

adresl, 4

AD_data_temp,2

adresl, 3

AD_data_temp,l

adresl, 2

AD_data_temp,0

store data but drop

two least significant

bits

MOVFP current_channel_data_address, fsr0

MOVFP AD_data_temp, indf0

MOVLW AD_DATA_END_ADDRESS

-119-

BTFSC

BSF

BTFSC
BSF
BTFSC

BSF
BTFSC
BSF

BTFSC
BSF

BTFSC

BSF
BTFSC

BSF

BTFSC

BSF

SUBWF

BTFSC

GOTO

current_channel_data_address

ALUSTA_Z

AD_Conversion_Complete

if current channel data is

last, then done

NextConversion:

INCF current_channel

INCF currentchanneldataaddress

MOVLW OxOF

ANDWF adcon0, F

BTFSC

BSF

BTFSC

BSF

BTFSC

BSF

BTFSC

BSF

BSF

RETURN

current_channel,0

ADCONO_CHSO

current_channel,l

ADCONO_CHS1

current_channel,2

ADCONO CHS2

current_channel,3

ADCONO_CHS3

ADCONO_GO_DONE

; END Next_AD_Conversion_Handler,

RETURN

; clear analog channel

select

; select next channel

; start conversion

return

AD_ConversionComplete

AD_Conversion_Complete:

; BEGIN AD_Conversion_Complete
MOVLB 4

BCF PIE2_ADIE

MOVLR

BCF
0

AD_IN_PROGRESS

switch to SFR bank 4

disable A/D interrupts

switch to GPR bank 0

clear conversion-in-progress flag

; END AD_ConversionComplete, return
RETURN

NextTransmitHandler

Next Transmit Handler:

; BEGIN Next_Transmit_Handler

MOVLR 0

TRANSMIT_DATA_END_ADDRESS

currentpacket_byte_address,W

ALUSTA_Z

; switch to GPR 0

; if last data byte sent,

; then done.

- 120-

MOVLW

SUBWF

BTFSC

Transmit_Complete

current_packet_byte_address

current_packet_byte_address, fsr0
; move current data

; address for indirect

; reference

0 switch to SFR bank 0

indf0, txregl ; move data into

; transmission buffer

; END Next_Transmit_Handler, return

RETURN

Transmit_Complete

Transmit_Complete:

; BEGIN Transmit_Complete

MOVLB 0 ; switch to SFR bank 0

BCF RCSTAl_SPEN ; disable serial port

MOVLB 1 ; switch to SFR bank 1

BCF PIElTXlIE ; disable transmit int

MOVLR 0 ; switch to GPR bank 0

BCF TRANSMIT_IN_PROGRESS clear txmt-in-progress

; END Transmit_Complete, return

RETURN

Sonar_Echo_Interrupt_Handler

Sonar_Echo_Interrupt_Handler:

BEGIN Sonar_Echo_Interrupt_Handler

MOVLR 0 switch to GPR 0

BSF SONARECHO_RECEIVED calculate offset by finding

tmr0h, W

sonar_offset_high

tmr0l, W

sonaroffsetlow

sonar_offset_high

sonar offset_low

OxFF

; time elaped since last

; millisecond

get twos complement

; subtract by adding twos

- 121-

GOTO

INCF

MOVFP

MOVLB

MOVPF

COMF

MOVWF

COMF
MOVWF

INCF

INCF

MOVLW

ADDWF
BTFSC

INCF

MOVLW

ADDWF

MOVFP
ADDWF

BTFSC

INCF

MOVFP
ADDWF

MOVFP

MOVWF
MOVFP

MOVWF

BSF

; END Sonar

RETFIE

sonar_offset_low, F
ALUSTA_Z

sonar_offsethigh

OxFF

sonar_offset_high, F

sonar_offset_low, wreg

sonar_counter_low, F

ALUSTA_Z

sonar_counterhigh

sonar_offset_high, wreg

sonar_counter_high, F

sonar_counter_high, wreg

sonar_high

sonar_counter_low, wreg

sonar_low

SONAR_FRESH

; complement

; add offset to current sonar

time

; add in the carry bit

Echo_Interrupt_Handler, return

END SPU-P17.ASM

END

- 122-

References

[1] Webster's 7th English Dictionary, Software Edition.

[2] Trott, Christian A.

June 1997.

Electronics Design for an Autonomous Helicopter,

[3] 8-Bit CMOS Microcontrollers with A/D Converter. Microchip Technology,

Inc., 1996.

[4] MotionPak: Final Test Data Sheet.

1995.

Systron Donner Inertial Division,

[51 High-Performance 8-Bit CMOS EPROM Microcontrollers. Microchip

Technology, Inc., 1997.

[61 Vector Electronic Modules: Application Notes. Precision Navigation, Inc.,

January 1997.

[7] Phan, Long. High Speed, High Accuracy Ultrasonic Sonar Altimeter.

-123 -

