1,241 research outputs found

    Constraint-wish and satisfied-dissatisfied: an overview of two approaches for dealing with bipolar querying

    Get PDF
    In recent years, there has been an increasing interest in dealing with user preferences in flexible database querying, expressing both positive and negative information in a heterogeneous way. This is what is usually referred to as bipolar database querying. Different frameworks have been introduced to deal with such bipolarity. In this chapter, an overview of two approaches is given. The first approach is based on mandatory and desired requirements. Hereby the complement of a mandatory requirement can be considered as a specification of what is not desired at all. So, mandatory requirements indirectly contribute to negative information (expressing what the user does not want to retrieve), whereas desired requirements can be seen as positive information (expressing what the user prefers to retrieve). The second approach is directly based on positive requirements (expressing what the user wants to retrieve), and negative requirements (expressing what the user does not want to retrieve). Both approaches use pairs of satisfaction degrees as the underlying framework but have different semantics, and thus also different operators for criteria evaluation, ranking, aggregation, etc

    Bipolarity in ear biometrics

    Get PDF
    Identifying people using their biometric data is a problem that is getting increasingly more attention. This paper investigates a method that allows the matching of people in the context of victim identification by using their ear biometric data. A high quality picture (taken professionally) is matched against a set of low quality pictures (family albums). In this paper soft computing methods are used to model different kinds of uncertainty that arise when manually annotating the pictures. More specifically, we study the use of bipolar satisfaction degrees to explicitly handle the bipolar information about the available ear biometrics

    Bipolar querying of valid-time intervals subject to uncertainty

    Get PDF
    Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition

    On various forms of bipolarity in flexible querying

    Get PDF
    International audienceThe paper discusses the modeling of “if possible" in requirements of the form “A and if possible B". We distinguish between two types of understanding: either i) A and B are requirements of the same nature and are viewed as constraints with different levels of priority, or ii) they are of different nature (only A induces constraint(s) and B is only used for breaking ties among items that are equally satisfying A). We indicate that the two views are related to different types of bipolarity, and discuss them in relation with possibilistic logic. The disjunctive dual of the first view (“A or at least B") is then presented in this logical setting. We also briefly mention the idea of an extension of the second view where B may refer both to bonus conditions or malus conditions that may increase or decrease respectively the interest in an item satisfying A

    Combining quantifications for flexible query result ranking

    Get PDF
    Databases contain data and database systems governing such databases are often intended to allow a user to query these data. On one hand, these data may be subject to imperfections, on the other hand, users may employ imperfect query preference specifications to query such databases. All of these imperfections lead to each query answer being accompanied by a collection of quantifications indicating how well (part of) a group of data complies with (part of) the user's query. A fundamental question is how to present the user with the query answers complying best to his or her query preferences. The work presented in this paper first determines the difficulties to overcome in reaching such presentation. Mainly, a useful presentation needs the ranking of the query answers based on the aforementioned quantifications, but it seems advisable to not combine quantifications with different interpretations. Thus, the work presented in this paper continues to introduce and examine a novel technique to determine a query answer ranking. Finally, a few aspects of this technique, among which its computational efficiency, are discussed

    A Decision Support System to design modified atmosphere packaging for fresh produce based on a bipolar flexible querying approach

    Get PDF
    UMR IATE Axe 3 : Transferts de matière et réactions dans les systèmes aliment/emballage UMR IATE Axe 5 : Application intégrée de la connaissance, de l’information et des technologies permettant d’accroître la qualité et la sécurité des alimentsInternational audienceTo design new packaging for fresh food, stakeholders of the food chain express their needs and requirements, according to some goals and objectives. These requirements can be gathered into two groups: (i) fresh food related characteristics and (ii) packaging intrinsic characteristics. Modified Atmosphere Packaging (MAP) is an efficient way to delay senescence and spoilage and thus to extend the very short shelf life of respiring products such as fresh fruits and vegetables. Consequently, packaging O2/CO2 permeabilities must fit the requirements of fresh fruits and vegetable as predicted by virtual MAP simulating tools. Beyond gas permeabilities, the choice of a packaging material for fresh produce includes numerous other factors such as the cost, availability, potential contaminants of raw materials, process ability, waste management constraints, etc. For instance, the user may have the following multi-criteria query for his/her product asking for a packaging with optimal gas permeabilities that guarantee product quality and optionally a transparent packaging material made from renewable resources with a cost for raw material less than 3 e/ kg. To help stakeholders taking a rational decision based on the expressed needs, a new multi-criteria Decision Support System (DSS) for designing biodegradable packaging for fresh produce has been built. In this paper we present the functional specification, the software architecture and the implementation of the developed tool. This tool includes (i) a MAP simulation module combining mass transfer models and respiration of the food, (ii) a multi-criteria flexible querying module which handles imprecise, uncertain and missing data stored in the database. We detail its operational functioning through a real life case study to determine the most satisfactory materials for apricots packaging

    Bipolarity in the querying of temporal databases

    Get PDF
    A database represents part of reality by containing data representing properties of real objects or concepts. To many real-world concepts or objects, time is an essential aspect and thus it should often be (implicitly) represented by databases, making these temporal databases. However, like other data, the time-related data in such databases may also contain imperfections such as uncertainties. One of the main purposes of a database is to allow the retrieval of information or knowledge deduced from its data, which is often done by querying the database. Because users may have both positive and negative preferences, they may want to query a database in a bipolar way. Moreover, their demands may have some temporal aspects. In this paper, a novel technique is presented, to query a valid-time relation containing uncertain valid-time data in a heterogeneously bipolar way, allowing every elementary query constraint a specific temporal constraint

    A Decision Support System to design modified atmosphere packaging for fresh produce based on a bipolar flexible querying approach

    Get PDF
    UMR IATE Axe 3 : Transferts de matière et réactions dans les systèmes aliment/emballage UMR IATE Axe 5 : Application intégrée de la connaissance, de l’information et des technologies permettant d’accroître la qualité et la sécurité des alimentsInternational audienceTo design new packaging for fresh food, stakeholders of the food chain express their needs and requirements, according to some goals and objectives. These requirements can be gathered into two groups: (i) fresh food related characteristics and (ii) packaging intrinsic characteristics. Modified Atmosphere Packaging (MAP) is an efficient way to delay senescence and spoilage and thus to extend the very short shelf life of respiring products such as fresh fruits and vegetables. Consequently, packaging O2/CO2 permeabilities must fit the requirements of fresh fruits and vegetable as predicted by virtual MAP simulating tools. Beyond gas permeabilities, the choice of a packaging material for fresh produce includes numerous other factors such as the cost, availability, potential contaminants of raw materials, process ability, waste management constraints, etc. For instance, the user may have the following multi-criteria query for his/her product asking for a packaging with optimal gas permeabilities that guarantee product quality and optionally a transparent packaging material made from renewable resources with a cost for raw material less than 3 e/ kg. To help stakeholders taking a rational decision based on the expressed needs, a new multi-criteria Decision Support System (DSS) for designing biodegradable packaging for fresh produce has been built. In this paper we present the functional specification, the software architecture and the implementation of the developed tool. This tool includes (i) a MAP simulation module combining mass transfer models and respiration of the food, (ii) a multi-criteria flexible querying module which handles imprecise, uncertain and missing data stored in the database. We detail its operational functioning through a real life case study to determine the most satisfactory materials for apricots packaging
    • …
    corecore