126 research outputs found

    Hand eye coordination in surgery

    Get PDF
    The coordination of the hand in response to visual target selection has always been regarded as an essential quality in a range of professional activities. This quality has thus far been elusive to objective scientific measurements, and is usually engulfed in the overall performance of the individuals. Parallels can be drawn to surgery, especially Minimally Invasive Surgery (MIS), where the physical constraints imposed by the arrangements of the instruments and visualisation methods require certain coordination skills that are unprecedented. With the current paradigm shift towards early specialisation in surgical training and shortened focused training time, selection process should identify trainees with the highest potentials in certain specific skills. Although significant effort has been made in objective assessment of surgical skills, it is only currently possible to measure surgeons’ abilities at the time of assessment. It has been particularly difficult to quantify specific details of hand-eye coordination and assess innate ability of future skills development. The purpose of this thesis is to examine hand-eye coordination in laboratory-based simulations, with a particular emphasis on details that are important to MIS. In order to understand the challenges of visuomotor coordination, movement trajectory errors have been used to provide an insight into the innate coordinate mapping of the brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic image projections and the “fulcrum” effect of the instruments, accentuate movement generation errors. Obvious differences in the quality of movement trajectories have been observed between novices and experts in MIS, however, this is difficult to measure quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the underlying characteristic movement details of a particular MIS manoeuvre and how such features are exaggerated by the introduction of rotation in the endoscopic camera. The proposed method has demonstrated the feasibility of measuring movement trajectory quality by machine learning techniques without prior arbitrary classification of expertise. Experimental results have highlighted these changes in novice laparoscopic surgeons, even after a short period of training. The intricate relationship between the hands and the eyes changes when learning a skilled visuomotor task has been previously studied. Reactive eye movement, when visual input is used primarily as a feedback mechanism for error correction, implies difficulties in hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye movements then become predictive of the action generated. The concept of measuring this spatiotemporal relationship is introduced as a measure of hand-eye coordination in MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the instrument tip position on the laparoscopic screen. Further validation of this concept using high fidelity experimental tasks is presented, where higher cognitive influence and multiple target selection increase the complexity of the data analysis. To this end, Granger-causality is presented as a measure of the predictability of the instrument movement with the eye fixation pattern. Partial Directed Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first time to measure hand-eye coordination. Experimental results are used to establish the strengths and potential pitfalls of the technique. To further enhance the accuracy of this measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed for enhancing the signal matching algorithm and trajectory segmentations. The proposed framework incorporates high frequency noise filtering, which represents non-purposeful hand and eye movements. The accuracy of the technique has been demonstrated by quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons. Experimental results supporting visual search behavioural theory are presented, as this underpins the target selection process immediately prior to visual motor action generation. The effects of specialisation and experience on visual search patterns are also examined. Finally, pilot results from functional brain imaging are presented, where the Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy techniques. PPC has been demonstrated to involve in the calculation of the coordinate transformations between the visual and motor systems, which establishes the possibilities of exciting future studies in hand-eye coordination

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    Computational Modeling Approaches For Task Analysis In Robotic-Assisted Surgery

    Get PDF
    Surgery is continuously subject to technological innovations including the introduction of robotic surgical devices. The ultimate goal is to program the surgical robot to perform certain difficult or complex surgical tasks in an autonomous manner. The feasibility of current robotic surgery systems to record quantitative motion and video data motivates developing descriptive mathematical models to recognize, classify and analyze surgical tasks. Recent advances in machine learning research for uncovering concealed patterns in huge data sets, like kinematic and video data, offer a possibility to better understand surgical procedures from a system point of view. This dissertation focuses on bridging the gap between these two lines of the research by developing computational models for task analysis in robotic-assisted surgery. The key step for advance study in robotic-assisted surgery and autonomous skill assessment is to develop techniques that are capable of recognizing fundamental surgical tasks intelligently. Surgical tasks and at a more granular level, surgical gestures, need to be quantified to make them amenable for further study. To answer to this query, we introduce a new framework, namely DTW-kNN, to recognize and classify three important surgical tasks including suturing, needle passing and knot tying based on kinematic data captured using da Vinci robotic surgery system. Our proposed method needs minimum preprocessing that results in simple, straightforward and accurate framework which can be applied for any autonomous control system. We also propose an unsupervised gesture segmentation and recognition (UGSR) method which has the ability to automatically segment and recognize temporal sequence of gestures in RMIS task. We also extent our model by applying soft boundary segmentation (Soft-UGSR) to address some of the challenges that exist in the surgical motion segmentation. The proposed algorithm can effectively model gradual transitions between surgical activities. Additionally, surgical training is undergoing a paradigm shift with more emphasis on the development of technical skills earlier in training. Thus metrics for the skills, especially objective metrics, become crucial. One field of surgery where such techniques can be developed is robotic surgery, as here all movements are already digitalized and therefore easily susceptible to analysis. Robotic surgery requires surgeons to perform a much longer and difficult training process which create numerous new challenges for surgical training. Hence, a new method of surgical skill assessment is required to ensure that surgeons have adequate skill level to be allowed to operate freely on patients. Among many possible approaches, those that provide noninvasive monitoring of expert surgeon and have the ability to automatically evaluate surgeon\u27s skill are of increased interest. Therefore, in this dissertation we develop a predictive framework for surgical skill assessment to automatically evaluate performance of surgeon in RMIS. Our classification framework is based on the Global Movement Features (GMFs) which extracted from kinematic movement data. The proposed method addresses some of the limitations in previous work and gives more insight about underlying patterns of surgical skill levels

    Automated robot‐assisted surgical skill evaluation: Predictive analytics approach

    Full text link
    BackgroundSurgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot‐assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise.MethodsEight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise – novice and expert. Three classification methods – k‐nearest neighbours, logistic regression and support vector machines – are applied.ResultsThe result shows that the proposed framework can classify surgeons’ expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task.ConclusionThis study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/1/rcs1850.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/2/rcs1850_am.pd

    Distance‐based time series classification approach for task recognition with application in surgical robot autonomy

    Full text link
    BackgroundRobotic‐assisted surgery allows surgeons to perform many types of complex operations with greater precision than is possible with conventional surgery. Despite these advantages, in current systems, a surgeon should communicate with the device directly and manually. To allow the robot to adjust parameters such as camera position, the system needs to know automatically what task the surgeon is performing.MethodsA distance‐based time series classification framework has been developed which measures dynamic time warping distance between temporal trajectory data of robot arms and classifies surgical tasks and gestures using a k‐nearest neighbor algorithm.ResultsResults on real robotic surgery data show that the proposed framework outperformed state‐of‐the‐art methods by up to 9% across three tasks and by 8% across gestures.ConclusionThe proposed framework is robust and accurate. Therefore, it can be used to develop adaptive control systems that will be more responsive to surgeons’ needs by identifying next movements of the surgeon. Copyright © 2016 John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/1/rcs1766.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/2/rcs1766_am.pd

    Gaze gesture based human robot interaction for laparoscopic surgery

    No full text
    While minimally invasive surgery offers great benefits in terms of reduced patient trauma, bleeding, as well as faster recovery time, it still presents surgeons with major ergonomic challenges. Laparoscopic surgery requires the surgeon to bimanually control surgical instruments during the operation. A dedicated assistant is thus required to manoeuvre the camera, which is often difficult to synchronise with the surgeon’s movements. This article introduces a robotic system in which a rigid endoscope held by a robotic arm is controlled via the surgeon’s eye movement, thus forgoing the need for a camera assistant. Gaze gestures detected via a series of eye movements are used to convey the surgeon’s intention to initiate gaze contingent camera control. Hidden Markov Models (HMMs) are used for real-time gaze gesture recognition, allowing the robotic camera to pan, tilt, and zoom, whilst immune to aberrant or unintentional eye movements. A novel online calibration method for the gaze tracker is proposed, which overcomes calibration drift and simplifies its clinical application. This robotic system has been validated by comprehensive user trials and a detailed analysis performed on usability metrics to assess the performance of the system. The results demonstrate that the surgeons can perform their tasks quicker and more efficiently when compared to the use of a camera assistant or foot switches

    Smart Navigation in Surgical Robotics

    Get PDF
    La cirugía mínimamente invasiva, y concretamente la cirugía laparoscópica, ha supuesto un gran cambio en la forma de realizar intervenciones quirúrgicas en el abdomen. Actualmente, la cirugía laparoscópica ha evolucionado hacia otras técnicas aún menos invasivas, como es la cirugía de un solo puerto, en inglés Single Port Access Surgery. Esta técnica consiste en realizar una única incisión, por la que son introducidos los instrumentos y la cámara laparoscópica a través de un único trocar multipuerto. La principal ventaja de esta técnica es una reducción de la estancia hospitalaria por parte del paciente, y los resultados estéticos, ya que el trocar se suele introducir por el ombligo, quedando la cicatriz oculta en él. Sin embargo, el hecho de que los instrumentos estén introducidos a través del mismo trocar hace la intervención más complicada para el cirujano, que necesita unas habilidades específicas para este tipo de intervenciones. Esta tesis trata el problema de la navegación de instrumentos quirúrgicos mediante plataformas robóticas teleoperadas en cirugía de un solo puerto. En concreto, se propone un método de navegación que dispone de un centro de rotación remoto virtual, el cuál coincide con el punto de inserción de los instrumentos (punto de fulcro). Para estimar este punto se han empleado las fuerzas ejercidas por el abdomen en los instrumentos quirúrgicos, las cuales han sido medidas por sensores de esfuerzos colocados en la base de los instrumentos. Debido a que estos instrumentos también interaccionan con tejido blando dentro del abdomen, lo cual distorsionaría la estimación del punto de inserción, es necesario un método que permita detectar esta circunstancia. Para solucionar esto, se ha empleado un detector de interacción con tejido basado en modelos ocultos de Markov el cuál se ha entrenado para detectar cuatro gestos genéricos. Por otro lado, en esta tesis se plantea el uso de guiado háptico para mejorar la experiencia del cirujano cuando utiliza plataformas robóticas teleoperadas. En concreto, se propone la técnica de aprendizaje por demostración (Learning from Demonstration) para generar fuerzas que puedan guiar al cirujano durante la resolución de tareas específicas. El método de navegación propuesto se ha implantado en la plataforma quirúrgica CISOBOT, desarrollada por la Universidad de Málaga. Los resultados experimentales obtenidos validan tanto el método de navegación propuesto, como el detector de interacción con tejido blando. Por otro lado, se ha realizado un estudio preliminar del sistema de guiado háptico. En concreto, se ha empleado una tarea genérica, la inserción de una clavija, para realizar los experimentos necesarios que permitan demostrar que el método propuesto es válido para resolver esta tarea y otras similares

    Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions

    Get PDF
    PURPOSE: Advances in technology and computing play an increasingly important role in the evolution of modern surgical techniques and paradigms. This article reviews the current role of machine learning (ML) techniques in the context of surgery with a focus on surgical robotics (SR). Also, we provide a perspective on the future possibilities for enhancing the effectiveness of procedures by integrating ML in the operating room. METHODS: The review is focused on ML techniques directly applied to surgery, surgical robotics, surgical training and assessment. The widespread use of ML methods in diagnosis and medical image computing is beyond the scope of the review. Searches were performed on PubMed and IEEE Explore using combinations of keywords: ML, surgery, robotics, surgical and medical robotics, skill learning, skill analysis and learning to perceive. RESULTS: Studies making use of ML methods in the context of surgery are increasingly being reported. In particular, there is an increasing interest in using ML for developing tools to understand and model surgical skill and competence or to extract surgical workflow. Many researchers begin to integrate this understanding into the control of recent surgical robots and devices. CONCLUSION: ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments

    HUMAN-ROBOT COLLABORATION IN ROBOTIC-ASSISTED SURGICAL TRAINING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore