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SUMMARY 
 

The paradigm of surgical training has gone through significant changes due 

to the advancement of technologies. Virtual reality-based surgical training 

with relatively low cost over long term is now a reality. However, the training 

quality of such training technologies still heavily relies on the guidance / 

feedback given by the instructor, normally an expert surgeon, who teaches the 

user the right surgical techniques. Training quality is subjective to the 

qualification / experiences of the expert surgeon and his / her availability.  

An image guided robot-assisted training system is proposed in this thesis. 

Our new approach uses a robotic system to learn a surgical skill from an 

expert human operator, and then transfer the surgical skill to another human 

operator. This training method is capable of providing surgical training with 

consistent quality and is not dependent on the availability of the expert. The 

proposed surgical training system consists of image processing software to 

construct a virtual patient as a subject for operation, a simulation system to 

render a virtual surgery, and a robot to learn and transfer the surgical skills 

from and to a human operator. This thesis focuses on the mechanism of 

robotic learning and the transferring of surgical skills to human operator and 

the related topics.  

The robotic surgical trainer was designed and fabricated to resemble the 

tools and operating scenario of a laparoscopic surgery. Tactile sensation is one 

of the features that a surgeon relies upon for decision making during surgery. 

Haptic function was incorporated into the robotic surgical trainer to provide 

user with tactile sensation. The friction of the system is mitigated by motion-

based cancellation method for haptic rendering. 
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In order to enable the robot to learn a surgical skill and provide guidance-

based on the learnt skills, the surgical skills need to be generalized and 

modeled mathematically. A mean shift based method was proposed to identify 

the motion primitives in a surgical task. Gaussian Mixture Model was then 

applied to model the surgical skills based on the identified motion primitives 

and Gaussian Mixture Regression was applied to reconstruct a generic model 

of the specific surgical skill. Hidden Markov Model method was applied to 

recognize the intention of a user when he / she was operating on the virtual 

patient. Proper guidance can be executed based on the recognized motion 

intention and the general model of the corresponding surgical task. 

The proposed surgical training method was evaluated using two 

experiments. In the first experiment, the performances of two groups of lay 

subjects are compared. In order to eliminate the subjective bias during the 

evaluation process, Hidden Markov Model method was applied in the 

performance evaluation. The second experiment is a clinical evaluation 

involving medical residents operating on a porcine model. Two groups of 

residents were trained by the proposed method and conventional method 

separately, and then operate on the animal. These operations were recorded in 

video and evaluated by two experienced surgeons. Both studies show that the 

subjects who underwent the proposed training method performed better than 

that of the subjects underwent conventional training. 
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1 INTRODUCTION  

Surgical training is one of the key components in the life of a medical staff. 

"See one, do one, teach one" [1] used to be a common technique in surgical 

training. However, training strategies have been changed in the past decades 

due to the advancement of surgical techniques, robotic and computer 

simulation technologies. The medical education providers are expected to 

enable the students to "see one, simulate many, do one competently, and teach 

everyone" [1]. 

Robotic technologies have been widely applied in surgery. It has been 

playing a significant role in robot-assisted surgery, teleoperation [2, 3] and 

robotic surgical training [4, 5]. Many of the technical limitations of surgery 

might be circumvented with the advent of robotic technologies [3]. 

Researchers have explored the application of robotic assistance to train motor 

skills, such as teaching calligraphy [6, 7]. However, robotic assistance for the 

honing of surgical skills, especially laparoscopic motor skill, to our knowledge, 

has not been well studied. In this thesis, the robotic technologies and its 

applications in laparoscopic surgical training involving human-robot 

collaboration are explored. 

1.1 Surgical Training 

The challenges of open surgery and Minimally Invasive Surgery (MIS) are 

different. A surgeon who performs MIS is required to confront challenges in 

open surgery and challenges associated with MIS, such as hand-eye 

coordination and depth perception.  
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Laparoscopy surgery is a minimally invasive surgical techniques commonly 

used for many abdominal surgeries, including cholecystectomy (removal of 

gallbladder for stone and other disease), liver tumour treatment (ablation, 

resection etc.), pancreas surgery, gastrointestinal (stomach and large intestine) 

and urologic surgery. Laparoscopic surgery provides several major benefits to 

the patients as compared to open surgery, such as shorter recovering time and 

smaller scar. It has been widely adapted in clinical practice due to the benefits 

that this technology brought to the patients. Ninety-five percent of 

cholecystectomy was performed laparoscopically as reported in [8]. However, 

Laparoscopic surgery could benefit the patients only on the condition that the 

surgeons are competent to perform the laparoscopic surgery safely. Therefore, 

laparoscopic surgery is suggested to be performed by experienced surgeons [9].  

There are many natural constraints inherent to laparoscopic surgery. 

Intensive training is required to overcome the natural constraints imposed on 

the surgeon, and it is crucial for the surgeon to obtain the necessary level of 

proficiency to perform laparoscopic surgeries safely and effectively [10]. 

Traditionally, such surgical training is done with the ‘master-apprentice’ 

strategy. However, the traditional strategy and the "See one, do one, teach 

one" method could not meet the requirement in acquiring laparoscopic skills 

considering patient safety.  

With advanced computer simulation and virtual reality technologies, 

various surgical simulators, such as LapVR [11], Lap Mentor [12] and RoSS 

[13], are available for the surgical students to practice with a generic anatomic 

model. These simulators provide a good practicing environment for novice 

surgeons to practice their skills. Although some supervising features are 
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available in these simulators, such as audio, text or video, the novice surgeons 

or residents have to fine tune their skills through practicing on real patients 

under the guidance of the experts in the operating theatre. With increasing 

complexity of the surgical operations, it becomes increasingly dangerous for 

the novice surgeons to ‘learn’ and gain experiences while operating on a real 

patient despite being supervised during the operation. The experienced 

surgeon may teach the novice surgeons by holding and guiding their hands to 

perform tasks or corrections in order to train their motor skills in the operating 

theatre. Although there are various advantages associated with each of the 

simulators / training methods, none of them mimic the conventional ‘hand-by-

hand’ guidance that surgeons applied in the operating theatre.  

Physical guidance plays an important role in the surgical training where the 

experienced surgeon corrects the motion of the novice while conducting a 

procedure. Physical guidance is necessary when the novice surgeon learns how 

to use the surgical tool and the necessary techniques to conduct a specific 

procedure. ‘Hand-by-hand’ guidance training strategies are reliable and 

effective techniques in laparoscopic surgical training, especially for difficult 

surgical scenarios. However, this type of training strategy is time consuming 

for the experienced surgeons to teach every medical student ‘hand-by-hand’ in 

the training course. This training strategy also introduces risks to the patient in 

the operating theatre. Unfortunately, there are no other means for a novice 

surgeon to gain expertise and become an expert besides gaining experiences 

by practicing on real patients. Therefore, a training media is required to bridge 

the gap by acquiring the expertise of the experienced surgeons and physically 

guide the novice surgeon for training. A new surgical training method was 
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proposed and developed to bridge such a gap - the image guided robotic 

assisted surgical (IRAS) training method which is capable of acquiring 

surgical skills and guiding the novice in honing their motor skills for 

laparoscopic surgery.  

1.2 Overview of IRAS Training Method 

The platform of the IRAS training method includes a patient-specific 

virtual patient and a robot-assisted surgical training system, as shown in 

Figure 1-1. The patient-specific virtual patient provides a training object for 

the robotic surgical trainer and trainee to operate on. The robotic surgical 

trainer plays two roles in the system: (1) it is a learning platform in between 

the experienced surgeon and virtual patient; and (2) it is also a teaching 

interface in between the trainee and the virtual patient that he / she is 

practicing upon. 

 
 

Figure 1-1 The image guided robotic assisted surgical training method. 
 

The IRAS training method is designed to facilitate surgical training with the 

robotic learning methods to achieve similar outcome as that of ‘hand-by-hand’ 

physically guided training. There are two modes in the IRAS train system: 

Acquisition Mode and Guidance Mode. In the Acquisition Mode, the master 

operates on a 3D virtual patient model which is reconstructed from patient’s 
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Computed Tomography (CT) images, and has his / her hand motions recorded 

and learned by the IRAS training system. Complete guidance and haptic cue 

guidance are provided by the Guidance Mode. In the complete guidance mode, 

the robotic surgical trainer replays the acquired instrument manoeuvre (such as 

trajectory of the instrument), and the novice surgeon experiences the tool 

manipulative motion of a master surgeon kinaesthetically by holding onto the 

surgical instrument. This provides a deeper appreciation to the master 

surgeon’s motion than mere visual and didactic guidance. In haptic cue 

guidance, the novice is allowed to operate on the patient-specific anatomical 

model based on his / her own knowledge. The robotic surgical trainer provides 

him / her with some degrees of motion guidance, i.e. haptic could imply 

through the robotic surgical trainer if the novice’s operation deviates severely 

from the experienced surgeon’s operation. It is advantageous that the novice 

surgeon can be trained via ‘hand-by-hand’ method without the experienced 

surgeon being physically presented in the training premises. Although there 

has not been any conclusive evidence of benefits to laparoscopic training 

through kinaesthetic guidance from recorded motion, subjects appear to 

perform tasks better after going through it as suggested in [14]. 

1.3 Objective and Scope 

Robot-assisted surgical training is a machine-mediated motor skill training 

system which uses the similar concept of robotic-assisted teaching calligraphy 

[6, 7]. Robotics assistance in laparoscopy surgery training can transfer the 

skills of experienced surgeons to the novice surgeons as the experienced 

surgeons do, and reduce the working load of experienced surgeons in training. 
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The objective is to research, develop and experiment robot-assisted surgical 

training through the IRAS system. In order to achieve the goal of the IRAS 

training method, a new robotic mechanism was designed, developed and 

examined. The robot is required to have the capability of acquiring knowledge 

on manoeuvring of surgical instrument from the human. With the knowledge 

acquired by the robot, the robot should have the capability to recognize the 

intention of user / novice surgeon when the robot observes a novice surgeon 

performing the task which the robot has the knowledge of. Robotic learning 

and intention recognition are two challenging tasks in developing the IRAS 

training system. A robotic mechanism has been designed and developed for 

the IRAS, and it has been investigated in the three main components: 

mechanism, machine learning and human-robot collaboration.  

Figure 1-2 shows the overall structure of the robotic surgical trainer. It 

consists of the robot hardware, the knowledge representation and the human 

robot collaboration. The hardware has been designed for a specific category of 

task with both input and output mechanisms to interact with the environment / 

user. In the knowledge representation part, A framework that enable the robot 

to acquire knowledge of the skills and represent the skill with mathematical 

models was developed. In the human robot collaboration part, an intention 

recognition method was developed that enables the robot to realize the 

intention of the user based on the motion trajectory while the user performs a 

surgical task.  
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Figure 1-2 Structure of robot-assisted surgical training system. 
  

1.4 Thesis Contributions 

The contributions of this thesis are as follows: 

� An innovative robotic surgical trainer was proposed and developed. 

This robotic surgical trainer has been awarded a US patent 8,764,448 

on 1st July 2014;  

� A new framework for robotic learning based on demonstration was 

proposed to model a surgical skill; 

� A stacked Hidden Markov Model method was proposed to recognize 

motion intention in surgical training; and  

� Experimental results demonstrated the feasibility of the proposed 

surgical learning method.  

1.5 Thesis Organization 

This thesis discusses the important technical components and engineering 

challenges in the IRAS training system. The thesis is organized as follows:  

� Chapter 2 reviews the components in the IRAS training system, 

including medical simulation, robotics in surgery and training, robot 

learning from demonstrations, motion intention recognition, and 

surgical performance evaluation method;  
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� Chapter 3 describes the system design and mechanism for surgical 

training in details; 

� Chapter 4 presents a new framework in identifying the motion 

primitives from surgical motion trajectory;  

� Chapter 5 discusses the issues raised to recognize the intention of the 

users when the user operates on the virtual patient during training;  

� Chapter 6 presents the effectiveness of the IRAS training system 

evaluated through technical study and clinical evaluation; Finally,  

� Robotic-assisted surgical training method was discussed and 

concluded in Chapter 7. 
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2 LITERATURE REVIEW  
 

The three main components for building a robotic surgical trainer are robot 

mechanism, machine learning and human-robot collaboration. This chapter 

reviews the existing works for the above three components associated with 

medical simulation, robotics and surgery, and surgical skill evaluation.  

2.1 Medical Simulation  

Medical simulation is a branch of simulation technology related to 

education and training in medical fields. It includes simulated human patient 

[15, 16], simulated clinical environments [15] and simulated task trainers [16]. 

The main purpose of medical simulation is to train medical professionals to 

reduce accidents during surgery, prescription, and general practice. Simulation 

provides medical educator with a controlled training environment under a 

variety of circumstances, such as uncommon or high-risk scenarios. Nowadays, 

patients increasingly concern on medical students practicing on them. Medical 

educator has faced the challenges by restructuring curricula, to bridge the gap 

between the classroom and the clinical environment. Medical simulation has 

been the solution identified to bridge the gap. Simulation-based training was 

demonstrated to lead to clinical improvement in two areas [17]. One of the 

areas is that those residents trained on laparoscopic surgery simulators showed 

improvement in procedural performance in the operating room [17]. Simulated 

human patient and simulated task trainer are reviewed in the following section. 

Mannequin and computerized virtual patient are two major simulated 

human patients for medical education. Mannequin used to be a simple training 

device for medical educators. With the advancement of technologies, the 
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training devices have changed from simple organ models to high-fidelity 

mannequin simulators. These mannequin simulators are equipped with life-

like features which are capable of recreating physical examination findings, 

such as normal and abnormal heart and lung sounds, pupil diameter, sweating, 

and cyanosis, as well as physiological changes, such as changes in blood 

pressure, heart rate, and breathing [17]. The mannequin simulators may be 

designed for general physical examination purpose and for specific tasks, such 

as the Endovascular Simulator [18] which is for endovascular surgery 

simulation. These high fidelity mannequin simulators assist the user in 

understanding the anatomy, pathological reaction of patients, and hence, have 

improved the quality of medical education. 

Virtual patient is another important innovation that has advanced medical 

education. The visible human project laid a great foundation for computerized 

virtual patient which has been applied as part of simulated task trainer. 

Simulated task trainers are commonly seen for surgical training. There are a 

wide range of such simulators in both the research and commercial market [19, 

20]. It ranges from camera-based training box to virtual reality based 

simulators, to robotic-assisted training devices [21-23].  

Simulated human patient is used in the simulated task trainer as a medical 

object. However, for the simplicity and stability of the simulation system, 

generic human patient model are usually employed. With the advances in 

image processing, computer graphic and 3D reconstruction technologies, 

patient-specific simulator are getting more attentions from researchers [19], 

such as patient-specific simulator for cerebral artery [24], plastic surgery [25], 

fracture surgery [26], laparoscopic colectomy [27] and carotid artery stenting 
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[28], etc. The development of such medical simulation involves medical image 

processing which extracts the anatomical information from the CT / MRI 

images; 3D reconstruction of anatomical model; simulation of deformation; 

recording and evaluation of simulated procedure. Each component links to 

numerous interesting research challenges to be explored. 

Patient-specific simulators bring incomparable benefits to the medical 

student, patient, and the medical staff. The patient-specific simulator allows 

preoperative rehearsal of actual and upcoming patient cases on the simulator. 

These simulators bring the virtual reality (VR) simulation concept of 

simulated rehearsal to allow practice of a specific event. It is a great 

improvement of VR comparing merely acting as a generic training tool to 

practice for a specific skill. The patient-specific simulators not only allow 

procedure planning but also allow a 'hands-on' rehearsal of the actual 

procedure [19]. Hence, user can conduct both cognitive rehearsal and 

psychomotor rehearsal. These characteristics could enhance patient’s safety by 

boosting the level of physician’s preparation work, and preventing 

complications or suboptimal surgery. 

However, all these training technology only provides a tool to the medical 

students. To achieve better training quality, it still relies on the coaching from 

the experienced medical staff, i.e. surgeons. The surgical training process is 

labour intensive from the perspective of medical staff. The training quality is 

subjected to the quality of the expert surgeon. 
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2.2  Robotics in Surgery and Training 

2.2.1 Robotic-Assisted Surgery and Training 

Robotic-assisted surgery is an application of robotics in medicine with an 

aim to assist clinicians during surgery. Many surgical robots have been built 

for Minimally Invasive Surgery (MIS) [29]. The robots have played different 

roles in robotic-assisted surgery. They can be divided into two groups 

according to their roles:  

1. Master-slave robot system. These robots emulate the dexterous motion 

of the surgeon’s hand movement from a user-comfort space to a confined 

space. Such as da Vinci [29] and Flexible Robotic Endoscopy [30]; and  

2. Assistive robots. These robots focus on providing assistance during 

surgery, such as constraining or enhancing the mobility of surgical 

instrument’s motion [31, 32], or performing some repetitive tasks like 

suturing [32, 33]. 

Both da Vinci and Flexible Robotic Endoscopy [30] have a control console 

and a robotic mechanism to accept the surgeon’s input motion, and an end 

effector which directly operates on patient’s pathological site, as illustrated in 

Figure 2-1 and Figure 2-2. This type of robotic-assisted surgery extends the 

Degree-of-Freedom (DOF) of traditional surgical tools, and hence releases the 

potential of surgeon’s technical capability in a confined space. These robots 

require innovative design on both user end (master robot) and surgical end 

(slave robot). The robots can also be built with haptic feedback function at the 

user end to give the user a sensation of palpation. However, they do not 
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provide direct guidance on how to improve the quality of operation, for 

example guiding the user to cut according to a planned path or avoiding 

certain places.  

Endobot [31], as shown in Figure2-3, is capable of restricting the motion of 

the surgical tool, and moving the surgical tool according to a predefined 

profile or within a predefined zone for controlling the tissue cutting procedure. 

Liu et al. [32] studied the robot for reducing the tremor of the surgeon’s hand 

in vitreoretinal surgery. The robotic system can minimise the damages on the 

optic nerve. Hermann et al. [33] describes a robot that can learn surgical knot 

tying with laparoscopic surgical instrument. The second group of robots focus 

on robot learning and human robot collaboration.  

 

Figure 2-1 da Vinci surgery system with user handle, and endowrist instrument 

presented in its website [29, 34]. 
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Figure 2-2 Flexible robotic endoscopy [30]. 
 

 

 

Figure 2-3 Endobot for assistance in minimally invasive surgery [31]. 
 

2.2.2 Surgical Training 

Surgical training is a significant component in the career of a clinician. The 

learning curve is long for a novice surgeon to execute the surgical skills at 



15 

 

certain proficiency level. A successful surgeon may also spend a large amount 

of time in conveying his / her skills to the next generation of surgeons.  

Surgical skills consist of theoretical skills and practical skills. Theoretical 

skills are often taught and tested through classroom and examinations. 

Practical skills are acquired through motor skill training. Learning motor skills 

is an iterative process of improving the performance [35]. Mark et al. [35] 

found that verbal feedback and demonstrations from experienced surgeon is 

more effective than self-accessed feedback of motion efficiency in learning 

new surgical skills. In their study, one group of students were given verbal 

feedback and demonstrations regarding to the training skills. This group of 

students demonstrated good retention of skill when they were tested one 

month later [35]. The surgical skills can be effectively taught through 

demonstration and physical guidance. Currently, the medical students, 

residents or novice surgeons practice on surgical simulators [20, 36-40] and 

cadavers to gain and fine tune their motor skills. However, all these simulators 

provide rather a practice environment rather than servicing as an active 

teaching tool.  

With developed robotic technologies, researchers have devoted a lot of 

efforts in robotic-assisted methods for motor skill training, such as 

handwriting training [6, 41-43]. There are two types of robotic-assisted motor 

skill training described in [7]: 

1. Haptic Guidance by position (HGP) which uses position information of 

trajectory for guidance to learn; and  

2. Haptic Guidance by force (HGF) which uses force generated by teacher 

to control the training’s performance (HGF).  
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 Teo et al. [6] applied a robotic guidance method to teach Chinese 

cartography. They applied both types of robotic-assisted motor skill training, 

i.e. motion guidance (HGF) and path guidance (HGP). Both guidance methods 

utilised the writing trajectory acquired from the experts. Some freedom was 

given to the user to follow the trajectory and hence learn the motor skills. 

Wang et al. [42] applied both haptic and graphic cue methods in the teaching 

of handwriting. The characters used for motor skill training is a computer 

generated model. They proposed that a combination multimedia is more 

effective for motor skill training [42, 44]. 

Researchers have also devoted efforts in robotic-assisted surgical training, 

such as medical simulators and robotic surgical training systems. Basdogan et 

al. [45] developed a robot surgical training system (MISST) with haptic 

guidance. They applied haptic feedback to guide the user to move along the 

pre-recorded trajectory. Figure 2-4 illustrates the haptic recording and 

playback method in [45]. 

Lee et al. [22] applied robot-assisted training method to train subjects with 

fundamental laparoscopic surgical (FLS) skills through maze games, as shown 

in Figure 2-5. The subjects were divided into two groups. The first group 

performed FLS training on their own without guidance. The second group 

received guidance from a pre-recorded expert’s performance. The 

experimental results showed that the second group which received guidance 

achieved a performance closer to that of the expert’s performance in terms of 

spatial and temporal derivation. However, this test was only conducted for 

FLS skills training.  
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Figure 2-4 Haptic recording and playback of MISST [45]: (a) A human operator 

manipulates a laparoscopic tool equipped with sensors, making indentations for 

measuring and recording interaction forces; (b) a haptic device interfaced with a 

probe and sensors can be programmed to make controlled indentations for measuring 

and recording interaction forces; and (c) haptic playback involves the display of 

programmed forces to a user for guidance and control during training. 

 

 

Figure 2-5 Endoscopic view of maze game presented in [22]. 
 
 
2.2.3 Haptics for Surgical Robots and Simulators  

Hardness, color and morphology of the pathology site are the important 

cues in a laparoscopic surgery. Tactile sensing helps the surgeon to perceive 

the hardness of the pathology site. The tactile information conveys the tool-

tissue interaction status to the surgeon through the sense of touch. This 

information always plays an important role in decision making during surgery. 
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In MIS, the surgeon has limited access to the pathological site. The tactile 

feedback provides information not only on pathology but also the depth of the 

MIS instruments. During a training process, the training instructor also teaches 

the medical residents to perceive the tactile information. There are several 

simulators with haptic feedback function available in the market or have been 

studied by the researchers, such as Xitact [46], Lap Mentor [47], EndoBot [31] 

and Sofie force-feedback surgical robot [48]. Different simulator or robotic-

assisted surgery systems use different mechanical designs to facilitate the 

haptic function. However, the famous surgical robot da Vanci [49] was not 

built with haptic function initially. Nowadays, due to the advent of computers, 

robotic and virtual reality technologies, various types of simulators and 

robotics assisted surgery and training devices have been developed for MIS 

surgical training purpose. Most of the surgical simulators and surgical robots 

are designed with haptic output capability that enables the system to give 

tactile feelings to the user.  

Xitact [46], developed by Mentice, is a haptic simulation hardware for 

minimally invasive surgical procedures, such as laparoscopy, nephrectomy, 

arthroscopy, and even cardiac surgery. Xitact makes the haptic medical 

simulation realistic and real-time. Action and reaction are synchronized so that 

the resistance of virtual organ is recreated in the ‘touch’ sensations 

experienced by the user. The Xitact applied a unique mechanical design in 

moving the instrument about the trocar point. The haptic output of Xitact is 

generated by motors actuators and transmitted by strings and linear bearings. 

Ball bearings and linear bearings were applied at its moving joint to reduce 
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friction in the design, as shown from a picture of its product in Figure 2-6. Lap 

Mentor series of products [47] use the Xitact as its actuator in its simulator.  

 

Figure 2-6 Bearings on Xitact product for the purpose of supporting and minimizing 

the friction. 

 
 

EndoBot [31, 50], developed by Rensselaer Polytechnic Institute, was 

designed to assist surgeons during minimally invasive procedures. The robot is 

able to assist the surgeon to complete some specific tasks, such as suturing, or 

constraining manual suturing in certain path. Major components of the robot 

tilting on top of a spherical mechanism, sliding friction occurred in between of 

the moving components. Sofie [48] is another surgical robot developed by the 

Eindhoven University of Technology. It made use of a serial robot to assist 

surgeon in performing tasks. Haptic output is given to the user while 

performing the tasks. Friction on each robot joint has been minimized and 

compensated for haptic feedback. MASTER [30, 51] is a master and slave 

transluminal endoscopic robot developed by Nanyang Technological 

University of Singapore. Haptic output is given at the master robot so that the 

user could have a tactile feeling. The master robot was constructed by a serial 
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robotic mechanism. There was no special consideration on friction control in 

the design [30]. 

2.3 Robot Learning from Demonstrations 

The learning of human gestures by imitation for a humanoid robot has 

attracted intensive research efforts in the past decades [52, 53]. Researchers 

have devoted their efforts into enabling robots to perform motions or 

manipulations like a human does. 

Demonstration-based learning techniques [53] are methods that enable a 

robot with a motion learning capability. It is achieved through modelling the 

demonstration; and then reconstructing an optimal motion trajectory for a 

robot. Research in demonstration-based learning has long been studied in the 

field of neural networks [54-58] and statistical representation [59-65]. 

Reinforcement learning methods have also been implemented for motor 

skills learning for robotics [55-58]. However, the motor skills learned by 

reinforcement learning do not encode the character of human’s motion. It is 

successful in programming robot’s motor skills but these motor skills might 

not be suitable to be taught to humans, especially for surgical skills. Therefore, 

the reinforcement learning methods are not discussed here. 

Various statistical methods have been explored by researchers, such as the 

Hidden Markov Models (HMM) [60, 66-69] the Gaussian Mixture Modules 

(GMM) [59, 61] and the node transition graphs method [62]. Mayer et al. [54] 

applied a recurrent neural network to learn the tying of surgical knots based on 

a human operation trajectory.  
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In recent research, learning by demonstration technology has also been 

applied in robot-assisted surgery in helping to recognize, learn and evaluate 

the motion trajectory of a surgical instrument during surgery. Reiley et al [59, 

63] applied a statistical modelling method in learning and categorizing motion 

in surgery. Lin et al. [64] applied Linear Discrimination Analysis (LDA) and 

Bayes classifier methods in motion modelling for the purpose of skill 

evaluation in robot-assisted surgery. The following subsections review the 

various methods discussed above. 

2.3.1 Statistical Approach 

Hidden Markov Models and Gaussian Mixture Models are the common 

statistical approaches utilized in Learning from Demonstration. The general 

data flow for statistical approach of learning from demonstariton is described 

in Figure 2-7. It includes the following steps: reduction of dimensionality, 

probabilistic data encoding, determinition of task constraint, reconstruction of 

optimal trajectory and recovery of dimensionality.  

Principal Components Analysis (PCA) can be applied to identify the 

pricipal axis of data and reduce the dimensionality. In order to model the 

motion acquired from demonstrations, it is essential to identify the motion 

primitives. Motion primitive is a motion segment which contains the similar 

characteristics of motion, such as velocity, accelation and direction. Clustering 

of demonstrated motion is required before that statistical modelling approach. 

In a HMM or GMM based approach, a left to right model or single-chain 

cyclic model with a predefined number of motion primitives can be assumed, 

and arbitrary numbers of interconnected motion primitives are not considered 

[62]. Different methods have been proposed to identify the number of mixture 
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components to model the motion, such as the cross validation, the Akaike 

information criteria and the Bayesian information criteria. The cross validation 

method requires independent trials of demonstration to form a complete test 

set. Calinon et al. [61, 70] applied Bayesian Information Criterion (BIC) 

scoring method to determine the optimal number of clusters / states. The BIC 

scoring method is a trade-off of a log-likelihood and the number of parameters 

to model the motion. The clusters / states are decided by the BIC function 

Equation (2.1) which gives the lowest score [61]: 

   2log(L) log( )p
BIC

nS N� � + ,    (2.1) 

where ( | )L P O ��  is the likelihood of the model �  given the observed dataset 

O , pn  is the free parameter required for the modelling method, and N  is the 

number of observation data used in fitting the model. However, the BIC score 

method requires multiple trials of the modelling process to determine L  and 

pn , and hence to find the optimal number of clusters / states which gives the 

lowest BIC score. 

 

Figure 2-7 Information flow for robotic learning by demonstration described by 

Calinon et al. [61]. 
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2.3.1.1 Hidden Markov Model 

Hidden Markov Model has been widely used in data processing. HMM 

which is derived from Markov chain process assumes the current state kz  of a 

system only depends on its prior state 1kz � . A HMM is a double stochastic 

process, and the stochastic process is unobservable and only the emission is 

observable. The observation can be in the form of discrete data, or a 

probability density function (PDF). HMM is usually denoted by � , 

{ }� �� A B  for discrete observations, where �  is prior probability which 

states the initial probability of being in a certain state at time 0t � . A  is a 

n n�  matrix of transition probabilities. B  is a n m�  observation matrix which 

states the probability of observing a particular state kz .  

HMM for continuous observation with Gaussian distribution is denoted as 

� �, , , ,� �� A Γ μ Σ , where Γ  is the mixture coefficient for every probability 

density function describing the Gaussian distribution, μ  is the mean vector, Σ  

is the covariance matrix. 

The observation sequence O , HMM model � , the probability of the 

observed sequence ( | )P O �  are the three key components in the HMM 

applications. By knowing or constraining the other two, the remaining 

components can be found. L.R. Rabiner et al. [71, 72] had systematically 

described the three problems and solutions formed by the components:  

1. The probability of the observation sequence ( | )P O �  can be found by 

giving observation sequence O  and HMM model � ;  
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2. The optional state transition sequence S  can be found by giving 

observation sequence O  and HMM model � ; and 

3. The parameters in HMM model �  that gives maximum ( | )P O � with 

given observation sequences O . 

The above three problems can be solved by forward-backward algorithm, 

Viterbi algorithm and Expectation Maximization algorithm, respectively [71]. 

Forward-backward algorithm is applied to estimate ( | )P O �  in addressing the 

first problem with the assumption that the initial probability and observation 

probability and transition probability are known. The observation probability 

( | )P O �  is expressed as 
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Forward-backward algorithm consists of a forward algorithm and a 

backward algorithm. The forward algorithm computes the joint distribution 

probability 1:(z , )k kP O , 1...k m� � , and the backward algorithm computes 

conditional distribution probability 1:( | z )k n kP O � , 1...k m� � . (z | )kP O  is 

proportional to 1:k(z , )kP O , and it can be written as 

1: 1:(z , ) (z , ) ( | z ), 1...k k k k n kP O P O P O k m�� � � ,          (2.3) 

where 1:(z , )k kP O  which is denoted by (z )k k�  can be found using forward 

algorithm  

1
1 1 11

(z ) ( | z ) (z | z ) (z ), 2...
k

n
k k k k k k k kq

P O P k m� �
�

� � ��
� � �� ,          (2.4) 
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and 1:( | z )k n kP O �  denoted by (z )k k�  is found using backward algorithm  

1
1 1 1 1 11

(z ) (z ) ( | z ) (z | z ), 1... 1
k

n
k k k k k k k kz

P O P k m� �
�

� � � � ��
� � � �� .       (2.5) 

(z ) 1m m� � .    
Viterbi algorithm is used to solve the second problem to find the states that 

produce the maximum probability with the given observation,  

arg max[ (z | )]i kP O .             (2.6) 

However, the problem in Equation (2.6) can be simplified by solving  

arg max[ (z , )]i kP O , 1... , 1...i n k m� � � � ,                         (2.7) 
 

since (z )i kP ,O  and 1:(z )i kP |O  are proportional.  

 
Expectation Maximization method has been applied to estimate the 

parameters in HMM model. Baum-Welch algorithm is one of the Expectation 

Maximization methods. With an initial model �  and estimated model � , 

Baum-Welch algorithm estimates the parameter �  to produce

( | ) ( | )P O P O� �� , the HMM parameter is estimated by using �  to replace 

�  iteratively until the algorithm converges. The selection of initial model �  

is critical in obtaining optimal parameters to represent the HMM but there is 

no guarantee that global maximum can be reached by Baum-Welch algorithm. 

Researchers have also applied different methods in searching the optimal 

parameter, such as Tabu search [73, 74], Genetic Algorithm [75] and hybrid 

particle swarm optimization method [76]. In practice, initial model �  can be 

selected based on the assumption that the observation data follow certain 

distribution property such as Gaussian distribution.  
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With the state transition model B , the HMM works with full transition 

model, left to right model and others. Figure 2-8 illustrates the different states 

transition patterns. In the implementation of HMM, only the corresponding 

ijb  indicated on the transition patterns has a probability value, the rest of the 

elements in the transition matrix B  are all zero. Full transition model allows 

transition to occur from any state to any other states or itself. There is no 

constraint on the transition between states. It can be applied to model the 

'mental state' in motion intention recognition where the user could actually 

revisit the same 'mental state' for different tasks.  

   

(a)                                        (b) 
Figure 2-8 State transition patterns (a) full transition, (b) left to right transition. 

 

2.3.1.2  Hidden Markov Model Approach 

Calinon et al. [70] and Hundtofte et al. [68] applied HMMs to model the 

gestures of human. Aarno et al. [69] applied HMMs to model the motion 

trajecotries of a user in picking / putting subjects. K-means method was 

applied to cluster the demonstration trajectories. A set of time series 

{ ( ), ( )}x t t�� �  clusters expressed in latent space was applied to train a fully 

connected continuous HMM with xK K��  output variables. ( )x t�  and ( )t��  

is the hand path and joint angle of the robot, respectively, in Calinon’s study 

[70]. The HMM is expressed by the parameters set { , }� � π,A Γ,μ,Σ  
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representing the initial states distribution, the states transition probabilities, 

the means of the output variables, and the standard deviations of the output 

variables, respectively. For each state, the output variables are described by 

multivariate Gaussians, i.e. ( ) ~ ( , )i i iP N� � �� � �  and ( ) ~ ( , )x x x
i i iP N� � � . The 

transition probability ( ( ) | ( 1) )P q t j q t i� � �  and the observation distribution 

( ( ) | ( ) )P t q t i� �  can be estimated by the Expectation Maximization 

algorithm. 

The trained HMM can be used to recognize whether a new gesture is 

similar to the ones encoded in the model. For each HMM, Calinon et al. 

applied a forward algorithm to estimate the likelihood L  that the observed 

data O  could have been generated by the model � , i.e. log( ) log( ( | ))L P O �� . 

A gesture is said to belong to a given model when the associated log 

likelihood is greater than a given threshold. In order to compare the prediction 

of two concurrent models, a minimal threshold for the difference across log-

likelihoods of the two models needs to be set ( log( ) 100L� �  was set in [70]). 

Thus, for a gesture to be recognized by a given model, the voting model must 

be very confident (i.e. producing a high log( )L� ), while other model 

predictions must be sufficiently low in comparison. However, the method of 

setting the threshold values for log likelihood and difference of log likelihood 

of concurrent models was not discussed in the paper.  

After a gesture has been recognized, Calinon et al. [70] applied the 

following steps to reconstruct an optimal trajectory for the gesture:  

1. The best sequence of states (according to the model’s parameters

{ , }π,A Γ,μ,Σ ) is extracted using the Viterbi algorithm; 
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 2. A time-series of xK K��  variables ''' '''{ ( ), ( )}x t t�� �  is generated by 

computing the mean values �  of the Gaussian distribution of each 

output variable at each state;  

3. The time series in step 2 is reduced to a set of key-points '' ''{ ( ), ( )}x t t�� �  

in between each state transition;  

4. A set of output variables ' '{ ( ), ( )}x t t�� �  is generated by interpolating 

between these key-points and normalizing in time; and  

5. Dimensionality of ' '{ ( ), ( )}x t t�� �  is recovered into the robot’s 

workspace for execution. 

2.3.1.3  Gaussian Mixture Approach 

There are two components in Gaussian Mixture approach: Gaussian 

Mixture Model (GMM) and Gaussian Mixture Regression (GMR). Gaussian 

Mixture approach has been used in humanoid robots to learn and execute some 

tasks, such as grasping an object [59, 61, 77].  

A. Gaussian Mixture Model  

Gaussian Mixture Model is a linear superposition of Gaussian components

pK , defined by probability density function  

    1( ) ( ) ( | )K p
i ik pp pP P k P k�� �x x ,   (2.8) 

where ( )p pkP k ��  is the prior probability. 
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 is the conditional probability density 

functions for component pk . ( )iP x  is the probability that the trajectory data 

point iX is constructed by the model.  

The parameters of the GMM are expressed as { , , , }
p p p pk k k kEπ μ Σ , where 

pkπ  is 

the prior probability, 
pkμ is the mean vector, 

pkΣ is the covariance matrix and 

1 ( | )pp

N
k i iE p k�� � x  is the cumulated posterior probability. The number of the 

components pK is obtained by K-means clustering method [61]. The trajectory 

data ix  contains the temporal and the spatial information. It is expressed as 

, ,{ , }N N
t i s i�x x x , and hence the mean vector is expressed as , ,{ , }

p p pk t k s k��μ μ , 

the covariance matrix is expressed as , ,

, ss,

tt k ts kp p
p

st k kp p
k

� ��� �
� �� �
 !

�
Σ

Σ Σ
Σ .  

The GMM’s parameters { , , , }
p p p pk k k kEπ μ Σ  can be estimated by Expectation 

Maximization algorithm (EM) [61] with the demonstration trajectories as the 

training data.  

B. Gaussian Mixture Regression  

Gaussian Mixture Regression (GMR) can be applied to reconstruct a 

trajectory represented by the GMM. The regression method estimates the 

conditional expectation of ˆ sx  with given tx , and hence the entire trajectory 

can be reconstructed with motion’s major characteristics preserved. For the 

th
pk  component at given time tx , the expected distribution of , ps kx  is  
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, , ,, ,
ˆˆ( | ) ( ; , )s k s k ss kp p ppps k t kP � �x x x xN ,               (2.9) 

where , ps kx and , pss kΣ  is the conditional expected value of the component pk  

and expected covariance. They are expressed as 

1
, , , tt, ,( ) ( )p p p p p

s k s k st k k t t k��� � � �x μ Σ x  ,             (2.10) 

1
, , , , ,( )p p p p p

ss k ss k st k tt k ts k
�� � � �Σ Σ Σ .               (2.11) 

, ps kx  and , pss kΣ  are combined based on the probability that the component pk  

for the given time tx :  

, , ,1
ˆˆ( | ) ( ; , )p

s k s k ss kp p pp

K
s t kP �

�
� �x x x x ΣN ,                             (2.12) 

where 
, ,

, ,1 1

( ; , )( ) ( | )
( ) ( | ) ( ; , )

p p p p

p p p
i

t t k tt kt p k
k K K

t t t i tt ii i

P k P k
P i P i

� �
�

�� �

�
� �

� � �

xx
x π x

N
N .

 

An estimation of the conditional expectation of sx  at the given time tx  for 

component th
pk  in the mixture model is  

   1 ,
K p

pkp p
s s kk��� �x x , 1

2
,

K p
pkp p

ss ss kk��� �Σ Σ .                         (2.13) 

The generalized form of the motion trajectory can then be expressed as 

ˆ ˆ ˆ{ , }t s�x x x . 

 
C. Motion Imitation 

Billard et al. [78] proposed a general formalism for evaluating the 

reconstruction of a task  

'

1

1 ( , )
K

i i i ii
H w H x x

K �
� � '( , )'i i i( ,,H (i ( , ,            (2.14) 

where ix and '
ix are the candidate trajectory and the generalized trajectory, 

respectively, and w  is the weight vector. 
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The generic similarity measure H  takes into account the variations of 

constraints and the dependences across the variables which have been learned 

over time. The matrix is continuous, positive, and can be estimated at any 

point along the trajectory. In the latent space, let ˆ ˆ ˆ{ , , }x y
s s s
�� � �  be the vector of 

generalized joint angle trajectories, the generalized hands paths, and the 

generalized hands–object distance vectors extracted from the demonstrations, 

respectively. Let { , , }x y
s s s
�� � �  be the candidate trajectories for constructing the 

motion. The metric of imitation performance H  is given by 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )T x x T x x x y y T y y y
s s s s s s s s s s s sH W W W� � � � �� � � � � � � � � � � �� � � � � � � � � ,  (2.15)

where T  is the number of observations.  

Calinon et al. [61] further proposed to transfer the imitation performance H  

from position domain into velocity domain by setting  

, , , , , , 1

, , , , , , 1

, , , , , , 1

ˆ

ˆ

ˆ

i j s i j s i j

x x
x i j s i j s i j

y y
y i j s i j s i j

r

r

r

� �
� � �

� �

� �

�

�

�

� �

� �

� �

, 1... pi n� , 1....j T� ,               (2.16) 

and 

1 1 2 2 2 3( ) ( ) ( ) ( ) ( ) ( )T x T x x y T y y
s s s s s sH c W r r W r r W r� � �� � � � � �� � � � � � � � � 3) ( ) ( ) ( ) ( ) ( )3

x T x x y T y y) ( ) ( ) ( ) (s s s s s s1 1 2 2 21 2 2 2 3
� � �T� ) ( ) ( ) ( ) (s 1 1 2 2 21 2 21 2 2 21 1 2 2 21 211 21 1 2 2 21 2 2 21 2 2 21 2 2 2) ( ) ( ) ( ) (1 1 2 2 21 2 2 21 2 21 2 2 21 2 2 2) () () ( ) ( ) ( ) ( ) () ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( ) () ( ) ( ) ( ) (1 1 2 2 21 2 2 21 2 2 21 2 2 22 2( ) ( ) ( ) ( ) () (( . (2.17) 

The optimal trajectory of the robot with object constraint can be obtained by 

finding { , , }x y
s s s
�� � � with minimum H . Calinon et al. [61] solved it using 

Lagrange optimization method.  

 
2.3.2 Neural Networks Methods 

Herman et al. [54] applied Recurrent Neural Networks (RNNs) to learn 

tying surgical knots in MIS. Long Short-Term Memory (LSTM) approach was 
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used to overcome the problem with standard gradient descent techniques in 

RNNs. The specialized linear memory cells in LSTM can maintain their 

activation indefinitely. Enforce Subpopulation algorithm (ESP) was applied to 

train the LSTM networks. Figure 2-9 showed the application of ESP to train 

LSTM with given knot tying trajectories demonstrated by the surgeon.  

 
Figure 2-9 Enforced Sub Populations (ESP) neuroevolution method. The Long Short-

Term Memory (LSTM) network architecture (shown with four memory cells), and the 

pseudo inverse method to compute the output weights. When a network is evaluated, 

it is first presented with the training set to produce a sequence on network activation 

vectors that are used to compute the output weights. Then the training set is presented 

again, but now the activation also passes through the new connections to produce 

outputs. The error between the outputs and the targets is used by ESP as a fitness 

measure to be minimized (source: [54]). 

 

2.4 User Intention Recognition for Human Robot 

Collaboration 

With the skills learnt by the robot, the next step is to recognize the intention 

of the users / residents / novice surgeons during training, so that, the robot can 

react according to the skills it has learnt to provide assistance. Research on 

intention recognition has been going on for more than three decades. It has 
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been applied in understanding the intention in language, context of story, 

motion, etc. In this study, the objective is to understand the intention of user 

from their motion trajectory. 

Intention recognition problem can be classified as intended and keyhole [79] 

problem. In the intended case, the observed agent wants his / her intentions to 

be identified and intentionally gives signals to be sensed by the other 

observing agent. For example, in the case of language understanding where the 

speaker wants to convey his / her intentions and captured by the other 

observing agent. In the keyhole case, the observed agent either does not intend 

for his / her intentions to be identified or does not care. The observed agent 

focuses on his / her own activities. The observed agent may provide only 

partial observability to the observing agent. This might be relevant to 

assistance systems that provide unsolicited guidance. In our robot-assisted 

surgical training system, the user / novice surgeon’s purpose is to perform and 

complete a specific surgical task. The user / novice surgeon does not purposely 

communicate his / her intention to the robotic surgical trainer. Therefore, the 

robot needs the capability of intention recognition with keyhole. 

There are two approaches for intention recognition in the literature: logic-

based approach [79] and probabilistic approach [80-84]. Logic-based intention 

recognition constructs the problem in the form of plan libraries [85, 86], 

situation calculus [87], event calculus [88], causal Bayers nets [89, 90] or 

multi-context logical theories with bridge rules [91] etc., and using abductive 

[85, 86, 88, 91], Baysian [89, 90] or probabilistic [87] approaches for 

reasoning. Logic-based intention recognition methods are more suitable for 

high level activities’ intension recognition which the events in an activity can 
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be identified easily, such as context of language [88, 91], story understanding, 

tactical plan recognition (enemy’s plans) [86], terrorist intention 

recognition [85] and elder care [89]. 

Charniak and Goldman suggested that the problem of intention recognition 

is largely a problem of inference under conditions of uncertainty [92]. 

Probabilistic reasoning approaches have profound advantages in solving 

problems where uncertainties are intrinsic [93]. Researchers [80-84] have been 

devoting efforts in probabilistic-based intention recognition for low level 

motion intent recognition, such a HMM [41, 80, 81] probabilistic state 

machine [82, 83] and dynamic Bayesian Network [84, 94]. In the following 

subsections, the intention recognition method using probabilistic approach is 

reviewed. 

 
2.4.1  Hidden Markov Model 

HMM has been widely studied for intention recognition. He et al. [95] 

applied a double layered HMM to recognize the intention of a driver during 

driving. Hou et al. [96] applied continuous HMM to recognize the driver’s 

intention to change lane. Aaron et al. [69, 80, 97] applied K-means, Support 

Vector Machine (SVM), HMM to automatically extract the motion primitive, 

and intention of operator. A virtual fixture was constructed based on the 

motion primitive and intention of operator for assistance in teleoperation tasks. 

Zhang et al. [98] applied HMM to recognize potential intrusion activities for 

cyber security. Aaron et al. [69, 80, 97] applied a Layered HMM to observe 

the positional trajectory generated by user, and extract the intention of the user.  

In the Layered HMM, each layer has its own functionality. In a trajectory 

tracking task, the observations are acquired from classification of the previous 
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layer, except the lowest layer where the observations are acquired directly 

from measurements of the observed process. Figure 2-10 illustrated the 

Layered HMM by Aaron et al. [80, 97]. Figure 2-11 illustrated a two level 

layered HMM. At Level 1, a single HMM is used to model the task, where 

each state in the HMM corresponds to a subtask. At Level 2, there is a HMM 

for each possible gesteme that may occur during execution of the task. The 

observation sequence for the Level 2 HMMs is generated from the motion 

direction of the trajectory recorded during task operation. The index of the 

HMM with highest likelihood among the various HMMs at Level 2 is then 

taken to be the observation symbol for the Level 1 HMM. The Level 1 HMM 

is then used to compute the probability of a certain state as a function of time 

given the observation sequence produced by the HMMs at Level 2. Since each 

state in the Level 1 HMM corresponds to a mental stage of the operation task, 

this information can be used to understand the operator’s intention. The 

winning HMM at Level 2 which is the one with the highest likelihood will be 

chosen. An observation symbol corresponding to this gesteme is generated for 

the Level 1 HMM. The alternative would be to use the complete probability 

distribution and have the HMMs at Level 2 act as a probability estimator for 

the Level 1 HMM. However, Oliver et al. [99] found that using the complete 

distribution does not give any apparent advantage over the simpler winner 

takes all models.  
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Figure 2-10 Structure of layered hidden Markov Model proposed in [80]. 

 

In this layered HMM, HMMs at different layer was assigned with different 

objectives. For example, the HMMs in layer 2 are classifiers by classifying the 

trajectory signals into gestemes [80, 97]. The HMMs in layer 1 recognize the 

intention related to mental state.  

 
Figure 2-11 Two-level layered hidden Markov model implemented by D. Aaron et al. 

[80], modelling gestemes at level 2 and task a level 1. Level 2 acquires signal from 

trajectory [80]. 

 
Feature representation is an important factor in the application of HMM. 

There are two basic approaches to determine the input presentation for 

recognition problem [100]. One approach is using the raw data as the input. It 

is named as ‘template’ in [100]. ‘Template' is one of the major features in 

gesture recognition. The 'template' can be formed by the coordinate points of 

the trajectory path. Yang et al. [100] noted that one of the drawbacks of using 
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'template' data as feature is the low robustness within a given class. The other 

approach is using the extracted important features, such as frequency 

information. The advantage of using features from frequency domain is the 

stability of recognition. Feature for training HMM will be discussed in Section 

2.5.1. 

2.4.2  Probabilistic State Machine 

Probabilistic state machine approach is another method applied by 

researchers for intention recognition from the motion. A general form of 

probability state machine is illustrated in Figure 2-12. It is described by a tuple 

{ , , , , , }A A A A AA Z I F P�� � ,           (2.18) 

where AZ  is a finite set of states. 

�  is the alphabet / a set of actions, 

A A AZ Z� " ���  is a set of transitions, 

: IRA AI Z �#  is the initial-state probabilities, 

: IRA AP � �#  is the transition probabilities, 

: IRA AF Z �#  is the final -state probabilities, 

The state machine system meets the condition: 

( ) 1
A

A
q Q

I z
$

��  and 
, '

, ( ) ( , , ') 1
A

A A A
a z Z

z Q F z P z a z
$� $

� $ � �� . 

 
Figure 2-12 General representation of probabilistic state machines in transition [83]. 
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Wais et al. [83] applied the probabilistic state machine approach to enable 

the robot to recognize the intention of human collaborator when the human 

and robot are collaborating to complete a specific task. They divided the 

intentions into explicitly communicated intentions and implicitly 

communicated intentions which are similar to the intended or keyhole 

intention recognition defined by Cohen et al. [79]. Examples with the two 

different communicated intentions were studied in their work [83]. They 

studied an explicitly communicated intention example that a human user 

pointed an object to the robot, and then robot picked up the object and placed 

the object at a specified location. In implicitly communicated intention 

example, the robot observes human arm movement, and also the changes of 

objects numbers, the intention of pilling and unpilling is represented by 

probabilistic state machines. Figures 2-13 (a) and (b) show the probabilistic 

state machine.  

 
(a)       (b) 

Figure 2-13 Probabilistic state machines for piling and unpiling intentions in [83]. (a) 

State machine for explicitly communicated human intentions (picking and placing an 

object). (b) Implicitly communicated human intentions. 
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Figure 2-14 Intention recognition algorithm presented in [83]. 

 

Wais et al. [83] proposed an algorithm to detect the intention of the human 

user from observation data. The intention recognition algorithm represents 

each state machine as a unique explicitly / implicitly communicated human 

intention. The weights of the state machine are the same. When an observation 

is made, and feature information is extracted, the weights of the state machines 

are updated. The weights are normalized so that they add up to unity. The state 

machine for which the observation is most probable gets higher weight as 

compared to the other state machines. If an observation is equally probable for 

some state machines then those state machines get the same normalized weight. 

After an observation, if there is no human action observed or an irrelevant 

human action is observed, no state transition occur in any state machine. If a 

relevant human action is observed, then the current active states of all the state 

machines will be checked. If the observation has the highest probability for the 

current active state then the state transition will occur in that state machine. If 

the observation is highly probable for more than one state machine (current 

active state) then the state transition will occur in more than one state machine. 

In other state machines, no state transition will occur. This is explained in 

Figure 2-14. 
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Changing of intentions is taken care of by making transition in most the 

probable state machines. For example, if the human has an intention and 

performs an action then the concerned state machine (intention) gets high 

weight, and a transition occurs only in that state machine. If the human 

changes his / her intention then the new action sequence can be evaluated with 

the related state machine and the changed intention can be easily recognized. 

The strategy in handling of changing intention may cause a recognition fault. 

For example, a user changes from intention I1 into I2, and an action performed 

in the action sequence of I2 is required for I1, then the false intention will only 

be recognized if I1 reaches its final state and has a high weight. If the end state 

of a state machine is reached and the state machine has the highest weight then 

that intention is recognized and state machines are reinitialized. If the end state 

is reached but the weight is not the highest then the re-initialization is 

performed without intention recognition [83].  

Nguyen et al. [101] applied probabilistic state machine approach to 

recognize the intention of a computer game player, and hence to derive a 

policy to select an action for a computer collaborator’s execution in a game 

task. The task was divided into subtasks manually. In his research, the subtask 

is defined by catching one counter party of the player. At each time instance, 

the player is assumed to be likely to continue on the subtask that he or she is 

currently pursuing. However, there is a small probability that the player may 

decide to switch subtasks. The Probability that Player intends to continuously 

pursuing his / her chosen sub-goal is 80%, and the probability of switching to 

other sub-tasks is 20%, as illustrated in Figure 2-15. The transition probability 

distributions of the nodes need not be homogeneous, as the human player 
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could be more interested in solving some specific subtask right after another 

subtask. For example, if the counter party needs to be captured in a particular 

order, this constraint can be encoded in the state machine. The model also 

allows the human to switch back and forth from one subtask to another during 

the course of the game, modelling change of mind. 

 
Figure 2-15 A probabilistic state machine that models the transitions between 

subtasks in [101]. 

 
Belief function has been applied in Nguyen’s study. The belief at time t  is 

denoted by ( | )t i tB w � , where iw  is the i th subtask and t�  is the game history. 

The belief function is the conditional probability of that the player is 

performing subtask iw . The belief update operator takes 1 1( | )t i tB w �� �  as input 

and carries out two updating steps:  

 1. The next subtask belief distribution is obtained by the following 

equation  

  1 1 1( | ) ( ) ( | )t i t j i t j t
j

B w T w w B w� �� � �� #� ,          (2.19) 

where ( )j iT w w#  is the switching probability from subtask j  to 

subtask i .  

2. The posterior belief distribution is calculated by using Bayesian 

update after observing the players action a  and subtask state ,i ts  at time 

t , as follows  

     1 1 ,( | , , ) . ( | ). ( | , )t i t t t t i t t i i tB w a a s B w P a w s� � � �� �� � � ,             (2.20) 
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where a  is a constant for normalization. Current human action a  and 

current state and game history 1t� �  forms the game history t�  at time t . 

 

With a belief distribution on the player targeted subtasks as well as 

knowledge to act collaboratively and optimally on each of the subtasks, the 

computer agent chooses the action that maximizes its expected reward to 

achieve the purpose of collaboration, 

  * arg max { ( | ) ( , )}i
a t i t i t

i
a B w Q s a�� � ,           (2.21) 

where iQ   is the expected long term reward of an action �  when executed in 

states s . 

 

2.4.3  Dynamic Bayesian Networks Approach 

A Bayesian Network (BN) is a directed acyclic graph encoding 

assumptions of conditional independence. To define a BN, as shown in Figure 

2-16, structure of the network, the conditional probability distribution and the 

prior probability distribution of the top nodes are required. The nodes in BN 

represent stochastic variables; whereas the lines connected two nodes 

represent causal dependence. Associated with each node is a specification of 

the distribution of its variable conditioned on its predecessors in the graph. 

Such a network defines a joint conditional probability distribution (CPD); that 

is the probability of an assignment to the stochastic variables is given by the 

product of the probabilities of each node conditioned on the value of its 

predecessors according to the assignment.  
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Figure 2-16 An illustration of general form of Bayesian Networks in [102]. 

 

In the application of BNs for intention recognition, the intentions are 

represented by top nodes. The result of the intention is a desired state. Actions 

and changes in states that follow from these intentions and desired states are 

represented by nodes below which are connected causally to intention nodes. 

Bottom nodes are usually connected to the observable signals from sensors. 

The prior probability distribution of the intention nodes reflects the intending 

agent’s mental state. Here, only the values of the observed nodes are used to 

compute the posterior probability distribution for intention nodes.  

Intention recognition is always a temporal dynamics process. Dynamic 

Bayesian Network (DBN) has been applied to solve the intention recognition 

problem. DBN is the architecture of Bayesian networks (BN) for representing 

the evolution of variables over time. It consists of a sequence of time slices 

where each time slice contains a set of variables representing the state at the 

current time. A DBN is formed by three information: the prior distribution 

over the variables, the transition model (from one time slice to the next), and 

the conditional probability distribution. 

Tahboub et al. [84] applied Dynamic Bayesian Network to recognize the 

intention from user for the human-machine interaction. They applied DBN to 
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model the intention recognition process “intention–activity–state” which is 

proposed by Heinze [103]. They proposed a time delay method to eliminate 

the cycles that arise due to the feedback of sensed states to the intention and 

action nodes which violate the definition of DBN. Figure 2-18 illustrates the 

changes made on the process flow. The cycles are eliminated by feeding back 

the sensed states from a previous time slice instead of the current one. 

 
 

Figure 2-17 Work path of intention recognition in [103]. 
 
 

 
 
Figure 2-18 Human’s intention-action-state flow and DBN corresponding to human 

intention recognition model with time-delay presented in [84]. 

 

2.5 Performance Evaluation Methods  

An objective evaluation method is required to evaluate the effectiveness of 

a surgical training system. Such evaluation is achieved by measuring the 

performance of user / surgeon’s surgical skills before and after being trained 
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by the surgical training system. Surgical skills are traditionally evaluated 

manually. The common practice in such evaluation is to conduct a scoring 

process by several experts based on a performance matrix.  

The evaluation of intraoperative laparoscopic surgical skill has been well 

established. Vassiliou et al. [104] presented a global assessment tool to rate the 

performance of the surgeon in laparoscopic cholecystectomy. He summarized 

the assessment criteria for intraoperative laparoscopic skills. It consists of a 

5-item global rating scale and a task-specific check list as shown in Table 2-1 

and Table 2-2, respectively. Five aspects were considered during the rating 

process, such as depth perceptions, bimanual dexterity, efficiency, tissue 

handling and autonomy. Table 2-2 shows a task-specific checklist for 

laparoscopic cholecystectomy skill assessment [104]. The presented method is 

a summary of expertise in the field. It gives a very detailed view from the 

medical staff’s perspective. However, such evaluation results are subjected to 

bias, experience and perspective of the evaluator. Although the effect can be 

minimized by increasing the number of evaluators, it increases the cost of 

evaluation dramatically.  

The evaluation results from manual evaluation are hardly free from 

subjective bias carried by the evaluator. Other researchers also tried to develop 

objective methods that can assess the performance of a surgeon during the 

surgery or exercise on the surgical simulator. Motion trajectory [105-108], 

force torque signature [109-111] and video [107] were taken as the study 

objects. HMM [107-109, 111], Fuzzy logic [105, 112] and LDA [106] have 

been used in various studies.  
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Table 2-1 Five-item global rating scale described by Vassiliou et al. [104]. 

Depth perception 
Bimanual 
dexterity Efficiency Tissue handling Autonomy others 

No of 
Overshooting 

Distance 
difference to 
expert's liver 
fixation point 

 Time to fix 
the liver Tissue tearing Completeness  

Perforation 
of 
GB/Spillage 
of 
Gallstones/un
desired 
injuries 
  

Wide swing 
angles 

Deformation of 
Gallbladder  

Time to 
expose the 
ducts 

Tissue trauma / 
bleeding Guidance 

Time taken to 
correct the 
overshooting 

No. of attempts 
for Clipping 

Time to 
complete 
clipping Grasper slip   Hesitation 

  
No. of attempts 
for cutting 

Time to 
complete 
cutting 

Force torque 
signature     

 
Table 2-2 Task-specific checklist presented in [104]: dissection of the gallbladder 

from the liver bed. 

Tasks  Done 
(1 point) 

Not Done 
 (0 point) 

1. Uses cautery only when all conducting areas are in field of view   

2. Has good control of the instrument, minimizes recoil   

3. Grasps gallbladder near clips to begin dissection   

4. Readjusts tension on gallbladder to optimize exposure   

5. Avoids dissecting into liver causing undue bleeding   

6. Avoids perforation of the gallbladder    

7. Avoids spillage of gallstones   

8. Maximizes useful dissection in 1 area before changing approach   

9. Performs dissection in appropriate plane the majority of the time   

10. Obviates the need for surgeon takeover   

Total (10)   

 

Chuan et al. [105, 112] developed a fuzzy logic-based framework to 

evaluate the performance of a surgeon. Motion information from a virtual 

simulator and motion information acquired from tracking system on the 

surgical instruments were used for evaluation. The framework looked into the 

basic assessment criteria in surgery, such as total time, total path length, 

average speed, instant speed and motion area radius. 
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HMM is another popular instrument that has been applied to compare and 

evaluate the performance of surgeons. Reiley et al. [59] applied GMM method 

to learn suture tying task from expert surgeons’ demonstration, and HMM 

method to classify the motion trajectory performed by other surgeons into 

three levels based on log likelihood distance. This method provides an 

objective evaluation of the subjects. However, it is unable to give detailed 

evaluation as descried by Vassiliou et al. [104]. The three levels indicated the 

general similarity between the test subject and a generic mode. 

 

2.5.1 Features for Evaluation Methods 

Different features have been used in evaluating the surgeon's performance, 

including velocity, frequency, force / torque. Lin et al. [106] applied the LDA 

method to distinguish the proficiency level of expert surgeon and novice 

surgeon in using a surgical simulator for training. Motion data of user's upper 

body were tracked in the study. Seven features were used in the study: left and 

right shoulder average angular speed; left and right shoulder angular speed 

cumulative distribution function (CDF); left and right shoulder angular speed 

frequency, and right-shoulder-used ratio; and the average power spectrum 

density (PSD) of joints' angular speed which can be extracted to determine the 

right-shoulder-used ratio. It is defined as 

( ) / ( ) ( )PSD shoulder PSD elbow PSD wrist% � � .           (2.22) 

Features used for HMM method varies, such as force / torque [111], bag of 

words from the surgical training video [107], and spatial trajectory.  

Rosen et al. [111] took the force / torque applied on the instrument as 

observation features for HMM training. In his study, each observation was 
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composed of seven components vector of data 

( )x y z x y z gf f f f	 	 	�f . Force / torque were continuous stream of 

data distributed normally, each HMM state could be defined by seven normal 

distributions functions chartered by a mean and a standard deviation ( ( , )iN � �  

1...7)i � . The 7 element vector was combined into a joint multivariable 

distribution function ( )f f . It was done by using Equation (2.23): 

( ) ( )/2
1/2

1( )
( 2 )N

f e
�

� � � �� f μ f μf
�

 ,             (2.23) 

where f  is the Force / torque observation vector; μ  is the mean vector; Σ  is 

the covariance matrix, and N  is the observation vector size. 

Megali et al. [108] defined the observation feature as the cluster center of 

motion trajectory in the frequency domain. Qiang et al. [107] took the “bag of 

words” approach for feature extraction from the videos taken from surgery. 

The spatiotemporal interest point detector [113] was applied to obtain the 

histogram-of gradient (HoG) features. K-means was then used to build a 

codebook for the descriptors of the interest points. Finally, the codebook was 

used to obtain a histogram of interest points for each frame, and thus each 

video is represented as a sequence of histograms. This representation could 

better capture the temporal information of the video. 

 

2.5.2 Evaluation Methods 

Towards an objective evaluation of surgeon's performance, several methods 

has been studied by the researchers, such as HMM [107-109, 111], Fuzzy 

logic [112] and LDA [106] methods. In the following section, these methods 

are reviewed. 
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2.5.2.1 Hidden Markov Model for Evaluation 

The concept of using HMM method is motivated by the 3 problems that 

HMM can solve stated in [71, 72]. Feature extracted from expert surgeon's 

execution were applied to train a HMM S� . Probability of the observation 

sequence from the novice surgeon ( | )SP O �  was taken as a basic 

measurement of similarity between the novice surgeon and the expert surgeon 

in the scope of the observation feature. 

In using HMM methods to evaluate the surgeon's performance, it is 

essential to train the model stable in representing one surgeon or several 

surgeon skills. Megali et al. [108] verified the expert surgeon's model by 

minimizing a distance function of two expert surgeon's model 1S�  and 2S� , i.e.

1 2, ,
min ( , )sm S SN obs Wl

D � � . He proposed the distance function as 

2

2 2
1 2 1 2

1( , ) [log ( | ) log ( | )]
S

S S
sm S S S S

O

D P O P O
T

� � � �� � ,          (2.24) 

where 2SO
T  is the duration of observation 2SO , 1S  and 2S  denote the expert 

surgeon 1 and 2, respectively. 

The performance was measured by ( | )SP O � , the higher probability 

indicated the closer to the expert surgeon's performance. However, HMM 

tends to give higher likelihood to shorter observation sequences. In order to 

compare the observation sequences having difference observation frames, 

normalization is required. The simplest normalization is normalizing by the 

number of observation frames. However, it is not suitable for non-periodic 

observations [107]. Megali et al. [108] proposed to normalize by the mean 
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value of the log-likelihood mL  of the optimal observation sequence ˆ S
iO  

generated by the expert surgeon's model S� , the mean value of the log 

likelihood mL  was expressed as  

   
1

1 ˆ( , ) log ( | )
N

S
m S i S

i
L O P O

n
� �

�

� � ,                (2.25) 

where N  is the length of the observation sequence to be evaluated. 

Hence, the evaluation metric was written as in [108]: 

1

| log ( | ) ( , ) |( , ) 1 ˆ| log ( | ) ( , ) |
S m S

m S
N S
i i S m S

P O L OS O
P O L O

n

� ��
� ��

�
�

� �
.                (2.26) 

The denominator indicated the average distance of the optimal observation 

sequence from the mean log likelihood mL . 

Qiang et al. [107] proposed a relative HMM method in scoring the 

performance of the surgeon. Instead of training HMMs with explicit class 

labelled training sequences, the following was proposed by Qiang et al. [107], 

  
: max ( | ),

. . : ( | ) ( | ), ( , ) ,

i

i

i j

P

s t P P i j
�

� �

� �
$
&

� � $
O

O

O O

((
$

,
         (2.27) 

where ( | )iP �O  is the observation likelihood with model ( | )iP O � ; it is a 

score function for observation data O  given by model � . The purpose of the 

function in the model is to maintain the ranking of the observation data pair 

,i jO O .  is the set of training sequences.  is the set of given pairs with 

prior ranking constraints.  
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( | )iP �O  is bias towards the shorter observation sequences, Qiang et al. [107] 

used the ratio of likelihood with different model to decide the label of the data, 

the author further improved the model as  

 
1 21,2

1 2 1 2

1 1

2 2

ˆ, : max[ log ( , | ) log ( , | )],

ˆ ˆ( , | ) ( , | ). . : log log , ( , ) ,
( , | ) ( , | )

i i i j

i j

i i j j

i j j j

P z P z

P z P zs t i j
P z P z

�
� � � �

� �
� �

$' $'
� � �

� � $

O O

O O
O O

2| )],2
j | 22

2 2

)
| ) ( , | )2 2

log , ( ,,1 gg
| 22

gg
,

)log , ( ,log 1

| 2|| 2

gg
) (22 ) (

gg ,
          (2.28) 

where 1' is the set of data associated with model 1� , ˆ iz is the optimal path for 

sequence iO  with model 1� , iz iz  is the optimal path with model 2� . 

2.5.2.2 Liner Discriminant Analysis Method 

LDA [106] has been applied to distinguish the performance of expert 

surgeons and novice surgeons according to the subjects' basic psychomotor 

skill expertise. LDA approaches the problem by assuming that the conditional

( | 0)P O y �  and ( | 1)P O y �  are both normally distributed with mean and 

covariance of the respective class y . In the evaluation application, LDA is 

trained by the features extracted from the experienced surgeon's execution. In 

Lin et al.’s [106] application, PCA was applied to extract the principal 

components to reduce the dimensionality. LDA uses the training data to learn 

the distribution of components and classify the subjects into each group: 

experts or novices. 

2.6 Summary 

In this chapter, a comprehensive review was conducted on medical 

simulation, robotic in medical filed, robot learning from demonstrations, 
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intention recognition and performance evaluation which will be applied to 

build the IRAS training system. 

Although there is extensive research on robot or machine-mediated motor 

skill training, the robots were all pre-programmed or pre-recorded to perform a 

defined task, such as handwriting or a specific motion. The trajectories are 

obtained either directly from the experts or computer generated models. The 

robot does not model or learn the skills, and hence the robot cannot provide 

assistance as the teacher does. To our best knowledge, there is no robot-

assisted surgical training system with the robot learning the skill through an 

autonomous learning process. Therefore, we would like to model the skills 

from the spatial trajectory perspective and equip the robot with the capability 

of recognizing the intention of the novice surgeon when he / she is performing 

a task. With the knowledge of the skills and awareness at the user’s intention, 

the robot could be built with capability of providing the necessary assistance.  

Statistical and neural networks approaches have been reviewed for 

Learning from Demonstration. They could enable the robot to possess 

knowledge of a surgery in terms of motion trajectory. HMM and GMM 

methods were reviewed in details. The current approaches use a left to right 

model or single-chain cyclic model with a predefined number of motion 

primitives to model a task, and arbitrary numbers of interconnected motion 

primitives were not considered [62]. The probabilistic approach requires the 

demonstration trajectories to be classified. In order to make the learning 

process require fewer user interventions, a classifier that can account for the 

characterisic of the motion data is required to identify the motion primitives. 
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Intention recognition is largely a problem of inference under conditions of 

uncertainties [92]. Researchers are trying to use the statistical method to model 

the mental process of the user while he / she is carrying out some specific 

tasks. HMM, DBN and probabilistic state machine are reviewed for intention 

recognition.  

The objective of the evaluation methods which are reviewed in Section 2.5 

is to distinguish the performance between the expert surgeons and novice 

surgeons, or the trained and untrained subjects, or to determine the proficiency 

level of the skills. The essential concept in this evaluation is classification. 

HMM method is a suitable method for such evaluation. However, the bias of 

likelihood towards shorter observation sequence in HMM method need to be 

taken care of. Researchers applied different normalization methods to 

minimize the bias. Another important component in the evaluation process is 

the observation feature. The observation feature decides the perspective of the 

evaluation method. 
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3 IMAGE-GUIDED AND ROBOT-ASSISTED SURGICAL 

TRAINING SYSTEM 

This chapter presents our robot-assisted surgical training system known as 

the IRAS training system. In Section 3.1, the implementation and functions of 

the Image guided robot-assisted Surgical (IRAS) training system is explained. 

The current system is intended for laparoscopic skill training. It is capable of 

providing active guidance for surgical training. In Section 3.2, the design and 

development of the robotic surgical trainer, kinematics and control 

implementation are discussed. Subsequently, Section 3.3 discusses the friction 

mitigation for haptic rendering. Section 3.4 discusses the performance of the 

robotic surgical trainer through experimental validation. The friction 

mitigation method is also evaluated in this section. Section 3.5 summarizes the 

work in this chapter.  

3.1 IRAS System 

The IRAS system comprises of the robotic surgical trainer and the surgical 

simulation platform as shown in Figure 3-1. The system allows a user to 

conduct a virtual laparoscopic procedure by operating on a virtual patient 

through the robotic surgical trainer. The virtual laparoscopic procedure can be 

acquired and reproduced for training and analysis purposes. 
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Figure 3-1 Overview of the IRAS surgical training system: (a) robotic surgical trainer 

and (b) virtual surgical simulation platform. 
 

The robotic surgical trainer serves as a human-machine interface in both 

processes of acquiring surgical procedure and providing guidance to the users 

[114] in a training process. The robot was designed with two robotic 

laparoscopic instruments. Each of the instruments has 5 DOFs, namely pitch, 

yaw, roll, translation and grasping motion of the handle as indicated in Figure 

3-3. It is capable of mimicking the motion kinematics of the laparoscopic 

instruments in real surgery. Users can operate with the robotic handles (Figure 

3-1 (a)) and use them to perform a virtual surgery. The motion information of 

the robotic handles is sent to the surgical simulation platform to drive the 

virtual instruments and operate on the virtual patient. Motion trajectories of 

the robotic handles and virtual instruments, and status of the tool-organ 

interaction are recorded for the purpose of training and analysis. The robotic 

surgical trainer is one of the key components in the IRAS training system. The 

details are explained in Section 3.2. 

The surgical simulation platform comprises of virtual patients, a tool library 

of laparoscopic instruments and a physics simulation engine. The tool library 

contains common instruments required for laparoscopic surgery, such as 
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forceps with different shapes and sizes, hook electrode, clip applicator and 

scissors. Tool-tissue interactions, organ deformation, tissue division, 

deployment of clips and other activities executed during surgery are simulated 

in the surgical simulation platform. In order to enhance the training 

performance of the system, the surgical simulation platform incorporates 

smoking, bleeding, perfusion and audio effects for the operations involving 

hook electrodes and scissors. Activation of bleeding and perfusion effects is 

triggered by remarkable events during the simulation, such as the collision 

between the objects, angle threshold of handle opening, contact pressure 

between the tool tip and organ surface. A basic assessment is provided after 

every surgical simulation; including time spent, average velocity of the tool tip, 

number of bleeding sites and perfusions that occurred.  

A simulated surgical procedure can be reproduced for training and 

demonstration. Motion of the robotic handle and tool-tissue interaction can be 

replayed on the robotic surgical trainer and the surgical simulation platform 

simultaneously. The user can hold on to the moving robotic handles while 

watching the simulated surgical procedure to appreciate the manoeuvres 

conducted by the experienced surgeon. Motor skills training can be conducted 

through such a record and replay procedure. 

The IRAS training system is designed for patient-specific laparoscopic 

surgery training and simulation in which a model of any patient can be 

generated based on CT data and configured for a virtual surgery [115]. This 

allows medical residents to be exposed to a variety of surgical cases and 

provides them with a preview of any variation in anatomy before they start the 
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real surgery. A framework has been established to generate patient-specific 

anatomical models for virtual surgical procedure [116].  

3.2 Robotic Surgical Trainer for Laparoscopic Surgery 

The robotic surgical trainer serves as a human-machine interface in the 

IRAS system. In order for the robotic surgical trainer to function as an 

effective training platform, it should have the following two capabilities: 

1. The robotic surgical trainer shall allow the user to operate on a virtual 

patient by manipulating a robotic device. This capability allows the 

experienced surgeon to pass the surgical skills to the robot, and also 

allows the novice surgeon to practice on the robot; and  

2. The robotic surgical trainer shall be able to execute a trajectory. This 

capability enables the robot to provide guidance to the user for training 

purposes. 

The robotic surgical trainer was designed with the above two requirements. 

The design considerations, kinematics, control hardware and methods will be 

discussed in this section.  

3.2.1 Design Considerations 

Laparoscopic instruments are long and slender tools. Its applicator is driven 

by a lever mechanism through a handle. Generally, the mobility of a 

laparoscopic instrument constrained at the insertion point (trocar) includes five 

DOFs, namely roll, pitch, yaw, translation and grasping motion of the handle. 

(Trocar is a surgical instrument in laparoscopic surgery. It is place on the 

abdominal wall of the patient. Surgical tools are interred into the abdominal 
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cavity through the trocar.) Figure 3-2 illustrates the mobility of one 

laparoscopic instrument during the surgical process. The robotic surgical 

trainer which consists of two manipulators representing the surgical 

instruments is designed with the five DOFs to fulfill the required mobility. 

Details of the kinematics of the mechanism are presented in Section 3.2.2. 

 
Figure 3-2 Motion of surgical instrument in laparoscopy procedure. 

 

(a)      (b) 

Figure 3-3 (a) Mechanical mobility of the robot. The travelling limit for pitch, yaw, 

roll, translation, handle grasping motion are 120º, 120 º, 360 º, 350mm and 60º, 

respectively. (b) Kinematic model of surgical instrument. 
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The mechanism, as shown in Figure 3-3 (a), is designed to mimic the 

kinematic motion of laparoscopic instruments. Spherical mechanism, rack 

and pinion system, and modified instrument handle, which are highlighted in 

Figure 3-4, have been used. The mobility of the mechanism is designed as an 

exact mimic of the kinematics of laparoscopic procedure. Since the task space 

of laparoscopic procedure can be readily expressed in spherical coordinates, an 

ideal mechanism design will be one with axes of control corresponding to the 

spherical coordinates. The orientation joints should coincident at a point for 

optimal geometric workspace efficiency [117]. Hence, the hybrid spherical 

mechanism as shown in Figure 3-4 is adopted. This hybrid mechanism 

possesses the advantages of both serial and parallel manipulator as explained 

in [117]. Similarly, this spherical mechanism is advantageous for both 

hardware and software performance. Unlike most general manipulators, the 

spherical mechanism is highly decoupled with each of the actuated axes of 

control corresponding to task-oriented space coordinates. This direct mapping 

of joint space to task-oriented space allows high frequency control and enables 

fast data updating from the actuation and sensory unit to the graphic and haptic 

rendering module without being burdened by space domain transformation.  

In laparoscopic surgery, the instrument is manipulated at substantial 

moment arm about the insertion point (trocar). This requires high operational 

torque range for the pitch and yaw axis of control. Although closed-chain 

mechanism generally provides structural stability, the structural redundancy is 

workspace inefficient and collision prone with at least two manipulators 

simulating the laparoscopic instruments. The argument for parallel mechanism 
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to improve manipulator stiffness is therefore ineffective as it either increases 

structural link length index or reduces workspace [118]. This may also raise 

safety concern in user interaction due to the high manipulator stiffness 

associated with parallel linkage configuration. The proposed structure enables 

a more even and appropriate sizing of actuators for the range of operation 

configurations.  

Apart from kinematic requirements, user centric design attributes like 

ergonomics and usability are considered. The modified handle is the only 

physical user interface in the user workspace. All other actuation and control 

mechanisms are concealed underneath the insertion point (trocar). This user 

centric configuration produces a more realistic operating environment during 

training.  

     

 
Figure 3-4 Details of the robotic surgical trainer. 
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The force range for haptic feedback on each axis is designed for general 

laparoscopic simulation. Existing literature has shown that the maximum 

pulling forces along the translation direction, grasping and cutting force are 

about 17 N, 16 N [110] and 14 N [119], respectively. The actuators are 

specified based on these guidelines to permit wide range of haptic feedback.  

 

3.2.2 Kinematic Analysis 

The designed robotic laparoscopic surgical instrument has 5 DOFs. 

However, the grasping motion of the handle does not contribute to the 

kinematic analysis. Hence, the grasping motion of the handle is not included in 

the kinematic analysis. In a laparoscopic procedure, the task space 

configuration can be defined with four DOFs through Euler angles, pitch, yaw, 

roll and translation ( , , , )� � ( % . Figure 3-3 (b) illustrates the frame 

assignment of the multibody system for kinematic analysis. The actuators are 

mounted such that their axes of control are aligned to the respective axis of 

transformation in our robot. Hence, the joint variables ( )1 2 3 4q , q , q , q  

correspond to the Euler angles and translation ( , , , )� � ( % .  

Homogenous transformation matrix (3.1) expresses the forward kinematics of 

Frame E in Cartesian coordinates, 

1 2 3 2 3 1 2 3 2 3 1 2 4 1 2ˆ ˆ ˆ

ˆ ˆ ˆ 1 3 1 3 1 4 10
E ˆ ˆ ˆ

1 2 3 2 3 1 2 3 2 3 1 2 4 1 2
0 0 0 1

( )

( )
0 0 0 1

X Y Z Ex x x x
X Y Z Ey y y y

X Y Z Ez z z z

s s s c c s s c c s c s q c s
c s c c s q s

s c s s c s c c s s c c q c c

) *
+ ,
+ ,
+ ,
+ ,
+ ,
+ ,
+ ,- .

� �) *
+ ,� �+ ,� �
+ ,� �
+ ,
- .

T ,

          

(3.1) 

 

where is ic , 1,2,3i �  denote sin( )iq  and cos( )iq , respectively.  

The Jacobian matrix to map the joint space 1 2 3 4( , , , )q q q q  into task space 
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is formulated as shown in Equation (3.2):  

  

4 1 2 4 1 2 1 2

4 1 1

4 1 2 4 1 2 1 2
E

( ) ( ) 0
0 0

( ) ( ) 0
1 0 0 0
0 1 0 0
0 0 1 0

q s s q c c c s
q c s

q s c q c s c c

�) *
+ ,� �+ ,
+ ,� �

� + ,
+ ,
+ ,
+ ,
- .

J .          (3.2)   

The force sensor is located right below the instrument handle, the distance 

between the handle and force sensor is ignored during kinematic modelling. 

With a given homogeneous matrix acquired from the sensory unit 0
ET , the 

inverse kinematics is listed as follows: 

/ 01 2arctan 2 , / cosy zq E E q� � ,    

/ 02 arctan 2 ,x zq E E� ,                       (3.3)

/ 03
ˆ ˆarctan 2 ,y yq X Y� ,  

4 1 2/ (cos sin )xq E q q� 1 .  
 

3.2.3 Dynamics Analysis 

The robot has only one prismatic link 4q  composed of the rotational joints, 

the dynamic model is simplified as shown in Figure 3-5.  

 

Figure 3-5 Dynamic model of the robot in inertia frame II . l  is the distance from 

the gravity center of tool to the trocar. 1O  is the rotational link attached to the center 

of the semi-spherical mechanism (see Figure 3-3). 2O  is the translational link 

attached to the gravity center of the prismatic component. 
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For simplicity of discussion, the mass of handle hoop is ignored during 

modelling, therefore the inertia tensor of the laparoscopic instrument is a 

diagonal matrix and expressed as  

0 0
0 0
0 0

x

y

z

I
I

I

) *
+ ,� + ,
+ ,- .

I  .                     (3.4) 

The mass inertia matrix ( )iqD  is expressed as  

11 12 13

21 22 23

31 32 33

44

0
0

( )
0

0 0 0

D D D
D D D

q
D D D

D

) *
+ ,
+ ,�
+ ,
+ ,
- .

D ,           (3.5) 

where 2 2 2 2
11 2 2 4 2x zD I c I s mq c� � � , 12 21 1 2zD D I s s� � � , 

13 31 2zD D I s� � , 2 2 2 2
22 1 1 4 1x zD I c I s mq c� � � , 

23 32 1zD D I s� � � , 33 zD I� , 

44D m� ,   

m  is the mass of the laparoscopic instrument. 

The Coriolis and centrifugal force vector u  is expressed as  

( ),

2 2 2
1 z x 2 2 1 2 2 1 4 x z 1 1 2

2
z 1 2 3 2 2 3 1 2 2

u (q,q)q = 2(I - I - ml )c s q q +2mlc q q +(I - I +ml )c s q

I c q q +c q q - s c q�

2 2 2
z x 2 2 1 2 2 1 4 x z 1 1 2q)q = 2(I - I - ml )c s q q +2mlc q q +(I - I +ml )c s q2 2 22
z x 2 2 1 2 2 1 4 x z 1 1z x 2 2 1 2 2 1 4 x z 1 1

),2
2 3 2 2 3 1 2 22 3 2 2 3 1 2
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2 1 1 1 2 2 1
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I c s q +c q q +c q q +c s q

�

�
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1 1 1 2 2 1

2 2 2
z x 1 2 1 4 x1 1 11 1 1q)q = 2(I - I - ml )c s q q +2mlc q q (I +ml )c s q1 1 1 2 21 1 1 2 2

2 2 22
1 1 11 1 11 1 1

),2 2
1 1 1 3 2 1 3 2 2 11 1 1 3 2 1 3 2 21 1 1 3 2 1 3 2 2

 

 

3 1 2( )z 1 2u (q,q)q = I c c q q�1 2 1 21 2q)q = I c c q q( ) 111 2 )1 21 , 
 

2 2 2
4 1 1 2( )u (q,q)q = m lq c q� �2 2 2

1 1 2 )2 2 2
2q)q = m 1 11 1( 2 2

1 11m( 2
1 .                       (3.6) 

The potential energy vector g  is expressed as 
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1( ) m g 1 2g q l s c� � , 

2 1 2( ) m gg q l c s� � , 

3 ( ) 0g q � , 

4 1 2( ) m gg q l c c� ,                      (3.7) 
 

 
3.2.4 Control Hardware  

The robotic surgical trainer is programmed in Labview 2010 and controlled 

with National Instrument CompactRIO. The CompactRIO consists of Xilinx 

Virtex-5 LX110 reconfigurable I/O FPGA core and real-time embedded 

controller with 400 MHz processor, 128 MB DRAM memory. Each robotic 

arm is equipped with a six DOF high precision force sensing unit, ATI 

Nano17. The force sensor is calibrated at a force resolution of 0.0125 N and 

torque resolution of 0.0625 N.mm. A Keyence FS-N11 laser sensor is installed 

on each robotic handle to detect the presence of the user. Each of the 5 DOFs 

was driven by one actuator. The resolutions of the actuators are listed in Table 

3-1. The robot is able to execute a high accuracy in motion trajectory with the 

high resolution from the actuators. 

Table 3-1 Resolution of the actuators for each DOF 

 Pitch Yaw Translation Roll Grasping 

Resolution (Degree) 0.008 0.008 0.015 0.008 0.008 

 

This hardware configuration allows high speed control loop execution, and 

ensures task determinism for managing communication flow crucial to haptic 

fidelity and human-machine interface applications in the IRAS system. The 

FPGA based real-time hardware platform is effective in the implementation of 

reliable controls including force feedback signal processing. The parallelism 
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nature of the FPGA operation mechanism facilitated fast and robust 

coordination amongst axes simplifying the issue of joint synchronization.  

Control operation and computational task were mostly hard programmed in 

FPGA. This allows minimal delay in the compensation of the parasitic forces. 

Control of the manipulator is implemented with FPGA at a rate of 20 kHz to 

ensure determinism and maintain fidelity. 

3.2.5 Control Methods 

The robot is designed to work with two modalities, i.e. the active mode and 

the passive mode, to meet the two requirements stated in the beginning of this 

section. The passive mode is defined as the robot being operated by the user. 

The user takes the robotic surgical trainer as surgical platform for the virtual 

patient. In the passive mode, the robotic surgical trainer passes the position 

signal of the laparoscopic instruments to the surgical simulation platform. 

While the user performs a virtual surgery, the IRAS system records the 

procedure, includes trajectories of the robotic handles and virtual instruments, 

and statues of the tool-organ interaction. The active mode is defined as the 

robot executing a recorded or preplanned trajectory for complete guidance for 

surgical training. The user takes the robotic surgical trainer as a training 

provider. 

Dynamics of the robot with non-rigid body effects, such as the parasitic 

forces, expressed in joint space as  

         ( ) ( , ) ( ) ( , )dis hapq q q q q q q q 	� � � � �D u g f f( ) ( ) ( )dis hap 	�hu g f f( ) ( ) ( )dis h)q q q q q( , ) ( )( , ) (( , ) dis ( ,, �( , ) ( ) ( , )( ) ( )( ) ( ) h)( , ) ( ) ( ,, ) ( ) ( ,( , ) ( )( , ) ( ) ( ,, ,                  (3.8) 

where D  is the inertial tensor obtained from the kinetic energy of the robot 

expressed in Equation (3.5); u  is the coriolis and centrifugal force vector 

expressed by Equation (3.6); g  is the potential energy vector expressed by 
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(3.7); disf  is the non-rigid force, such as frictional force. hapf  is the interactive 

force for haptic output. 	  is the control law for control design. Haptic and 

frictional forces are discussed in Section 3.3. The two modalities are achieved 

through different control scheme. 

Position control was implemented for the active mode. The controller for 

position control was designed using the computed torque method by setting 

the  

u	 � �� � ,                     (3.9) 

with u q� q  and ( , ) ( ) ( , )disq q q q q q� � � �u g f) ( ) ( , )dis q q( ,,disg) ( ) dq q q) ( )) (( ) d) ( )( )) ( )) (( ) . �  is the inertial tenor D  in this 

case. hapf  is not applicable in pure trajectory tracking task. 

Figure 3-6 shows the detailed diagram for the controller described in 

Equation (3.9). dq  is the desired trajectory parameter in joint space. 

 

 
Figure 3-6 Implementation block diagram of the position control for active mode of 

the robot. 

 

A PID position control is implemented to reproduce the master surgeon’s 

trajectory. All actuators for joints 1 2 3 4( , , , )q q q q  and handle grasping 

joint are commanded to move as per the desired trajectory and velocity which 

are acquired from the master surgeon’s operation. A position control is 

appropriate as there is no need for variation in intensity of guidance. In the 
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active mode, the robot follows the trajectory planned or recorded by the expert 

surgeon.  

Force control was implemented for the passive mode. In the passive mode, 

the robot is operated by the user, and it outputs haptic force. The dynamical 

equation for the robot with haptic output expressed in joint space is expressed 

as 

1
e e e dismk � � � �f f f f1

e ef f f� � ,              (3.10) 
where ef  is force acting with the environment, in our case it is the haptic force 

acting with the user, e hap�f f , e hapk k�  is the stiffness from the environment. 

With the controller u� �� �f  and Equation (3.10), the parameter in the 

controller are expressed as  

hap vf f pf fu k e k e� � �fhap vfk eh fk eh ffh f pf fe k ef f ff fefe , 

dis hap� � �f f ,                (3.11) 
1

hapmk� �� , 
where f des hape � �f f  is the force error between the desired haptic output force 

desf  and the interaction haptic force measured by the force sensor hapf .  

With Equation (3.10) and (3.11), the system dynamical equation can be 

rewritten as   

 1 1 ( )e hap hap dis hap des vf f pf f desmk mk k e k e� �� � � � � �f f f f f1 1
hap hap dis hap des vf(mk1 1 (h h di h (1 mk 1 (h h di hmk 1 (h di hhh ( )f pf f ))))f .      (3.12) 

Figure 3-7 shows the block diagram for Equation (3.12). However, in the real 

implementation, the haptic force variation is assumed noncritical, i.e.

0des des� �f f 0des des �f fd d� . Hence, the block diagram shown in Figure 3-7 can be further 

simplified during implementation. The implemented control diagram with 

frictional force compensation is shown in Figure 3-8. 



68 

 

 
Figure 3-7 Block diagram of the force control for passive mode of the robot. 

 

For haptic cue guidance, shared controls of the manipulators are required. 

Both the user and the predetermined trajectory work as the inputs to the robot 

to achieve the varying intensity of motion guidance. It can be achieved by the 

following strategy: when user operates on a virtual patient, the current position 

of the manipulator nt  is compared with the predetermined trajectory mt  which 

is acquired from the master surgeon’s operation. If the difference is greater 

than a prescribed threshold value, haptic cue force is provided based on the 

difference of the two trajectories as follow 

 ( )d m n�� �f t t                              (3.13) 

where �  is the coefficient to adjust the force magnitude with respect to 

trajectory differences. It is determined experimentally, so that the magnitude 

of df  is bounded in a range which is comfortable to the user. 

3.3 Friction Mitigation for Haptic Rendering  

The haptic function built into the robotic surgical trainer is a force output 

function that simulates the tool-tissue interaction although there is no direct 

real tool-tissue interaction under the hand held device. Haptic output involves 

mechanical moving parts. Hence, friction is inevitable in such systems. 

Unfortunately, friction is highly nonlinear. It is important to achieve a stable 

haptic output, especial high haptic output at low velocity. Friction 
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compensation has been studied thoroughly in the past decades [120]. Various 

friction models have been proposed and tested. However, the friction is 

difficult to model and compensate in reality due to the nature of wear and tear. 

Frictional force between moving parts can be categorized as two basic 

categories: rolling friction and sliding friction, 

Rolling friction roll rr N�f c f ,        (3.14) 

 Sliding friction slid s N�f μ f ,        (3.15) 

where rrc  is the rolling resistance coefficient, and sμ  is the sliding frictional 

coefficient. Nf  is the normal force acting on the contact force. In our case, Nf  

varies as the haptic output varies.  

The rolling resistance coefficient rrc  depends on material elasticity, in other 

words, the deformation of the moving part. The sliding frictional coefficient 

sμ  depends on material pair and surface condition. sμ  is usually much larger 

than rrc . Special material pair produces very low frictional coefficient. 

Therefore, it is always preferred to have rolling motion for all possible moving 

parts when friction is a concern.  

The relationship between the stable state friction and velocity is expressed 

as in [121]: 

2( )( ( ) )sgn( )ss c s c e�� � � v/ vsf f f f v ,                   (3.16) 

where ssf  is the steady state friction. cf  is the Coulomb frictional force, sf  is 

the stribeck force, sv  is the relative velocity at stribeck, and v  is the relative 

velocity of two moving components.  
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In the robot system, the haptic output can cause the change of contact force 

of two moving parts, and hence the frictional force. Therefore, cf  and sf  are 

dependent on the magnitude of haptic output and the relative velocity of the 

two moving components in our application. They can be written as a function 

of desired haptic output desf . A second order polynomial equation is applied to 

represent the stricbeck force in the system sf . Hence, Equation (3.16) is 

expanded as  

2
0

(
2 1

)2[ [( ] ]sga )a a ) n(desss e des ees e sd d e v�� �� � � v/ vsf f fμ f μ f ,                (3.17) 

where eμ  is the equivalent frictional coefficient for the system; In a complex 

system which consists of both sliding friction and rolling friction, it is hard to 

be simply determined by the material pair. Furthermore, due to imperfectness 

of manufacturing, wear and tear, the frictional coefficient e�  needs to be 

determined from experiments in real application. 2
2 1 0a a ades des� �f f  is the 

polynomial introduced to represent the stribeck frictional force sf . They will 

be determined in Section 3.4.2 by fitting Equation (3.17) with the measured 

frictional force. 

Although our design has minimized the effect due to friction, friction 

compensation is still required for high haptic output that will lead to high 

friction between the moving parts. The resultant frictional force in our robot is 

a combination of sliding friction from the bushing and rolling friction from the 

rollers. Hence, stribeck phenomena would affect the performance of haptic 

output, especially when the output force is large and moving velocity is low. 

In this study, a motion-based friction cancellation method [121] was applied to 
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compensate the frictional forces in the system. The control diagram of such 

compensation method and force control is as shown in Figure 3-8. 

Experiments were conducted to measure residual frictional force while robot 

was commanded to output haptic force with different magnitude. Experimental 

details are explained in Section 3.4.2. 

 

Figure 3-8 Control diagram for friction compensation and haptic output. desf is the 

desired haptic output reference force, hapf  is the haptic output force, uf  is the user's 

interaction force. 

 

3.4 Experiments 

3.4.1 Robotic Performance Analysis 

The kinematics and dynamics profiles were acquired and analysed for a 

given path execution in a specified operational workspace. To evaluate the 

efficacy of the control mechanism, a recorded trajectory was executed by the 

robot under the condition with and without user interaction. Kinematic 

trajectories were acquired through the encoder with joint control scheme at a 

frequency of 100 samples / second and subsequently transformed to 3D 

Cartesian coordinates for analysis. The force profile was acquired by the 6-

DOF force sensor through FPGA based DAQ module. 

The robot was tested when it was working under complete guidance. When 

there was no interaction with the user, the maximum positional errors of 
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execution on the left and right manipulators were 2.12 mm and 1.55 mm, 

respectively. The robot was also tested by guiding a user to perform the 

recorded path. In order to minimize the effect of visual guidance, the trajectory 

was neither displayed nor known to the user prior to the test. Figure 3-9 

depicts the 3D trajectory and the force profile in Cartesian coordinates when 

the robot was interacting with a user. The mechanical components and motion 

control mechanism are capable of precise and accurate execution. The 

maximum errors of execution on both right and left manipulators are 1.87 mm 

and 2 mm, respectively. The maximum errors of each joint in the left and right 

manipulators are tabulated in Table 3-1. This trajectory spanned an 

approximated (0.2 x 0.2 x 0.2) m3 workspace and was subjected to a maximum 

interaction force of 3.6 N and torque of 73.7 Nmm.  

 
(a)                           (b) 

Figure 3-9 (a) Execution and force on handle of left manipulator, (b) execution and 

force on handle of right manipulator. Red line is the recorded trajectory, black line is 

the execution results, blue arrow indicates the force vector on handle, and green arrow 

indicates the moment vector on handles. 

Table 3-2 Maximum positional error of each joint. 

Joint Manipulator 
Left Right 

Pitch (q1) 0.230o 0.425o 
Yaw (q2) 0.241 o 0.313 o 
Roll (q3) 1.66 o 1.67 o 
Translation (q4) 0.524 mm 1.35 mm 
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3.4.2 Experiment of Friction Mitigation for Haptic Rendering 

Experiments were conducted to measure the frictional force on the pitch 

and yaw axes of the robot with and without friction compensation. The robot 

was set to output a series of haptic force exerted on a user. The haptic output 

was set from 1N to 7N with 1N increment for each experiment. The user 

pushed the robotic handle (as shown in Figure 3-4) to move against the 

direction of haptic output, and move the sliding block from one end of the arc 

to the other end as shown in Figure 3-10. The force was measured while the 

robotic handle was moving. Frictional force was obtained by subtracting the 

desired haptic output. This procedure was repeated for 50 times at each haptic 

output level. The velocity span was varied from 0 to 0.125 m/s. The maximum 

velocity in the experiment was relatively low. Therefore, viscous friction was 

not taken into consideration. 

 

Figure 3-10 Relative velocity at the contacting area of each axis. The velocity 

measured was the relative linear velocity at the contacting area. 
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Figure 3-11 (a) and (b) show the measured mean frictional force along pitch 

and yaw axis, respectively. The red vertical bars show the standard derivation 

of the frictional force at the respective velocity and haptic output level. The 

frictional force ramped up when the object started to move, and reached its 

maximum at a velocity of 0.02m/s approximately. This is the stribeck velocity 

described in Equation (3.16). The frictional force started to drop after the 

stribeck velocity. It is noticed that the frictional force is higher when the haptic 

output is increased. It is due to the normal contact force NF  acting on the 

friction surface is increased as the haptic output is increasing. Surface fitting 

was performed to fit Equation (3.17) with the experimental data using a curve 

fitting toolbox in Matlab. Nonlinear least squares method was applied in the 

curve fitting process. Figure 3-12 (a), (b) and Table 3-2 show the fitting results. 
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(a) 

 

 (b) 
 
Figure 3-11 Mean frictional force from current design with haptic output from 1N to 

7N. The frictional force is larger when the components are just to move, and it is 

reduced significantly and tends to stabilize when the components moving at higher 

velocity. The frictional forces are generally higher when the robot outputs a higher 

haptic force. Vertical bars are the standard deviations at the specific velocity and 

haptic output. (a) Frictional force for pitch axis. (b) Frictional force for yaw axis. 

0
0.02

0.04
0.06

0.08
0.1

0.12 0

2

4

6

8
-1

0

1

2

3

4

5

haptic (N)

Friction on Pitch axis without Compensation

velocity(m/s)

fri
ct

io
n 

(N
)

0
0.02

0.04
0.06

0.08
0.1

0.12 0

2

4

6

8
-1

0

1

2

3

4

5

haptic (N)

Friction on Yaw axis without Compensation

velocity(m/s)

fri
ct

io
n 

(N
)



76 

 

 
(a) 

 

 
 (b)  

Figure 3-12 Surface fitting result with Equation (3.17). Experimental results shown 

in Figure 3-11 were fitted with Equation (3.17) using Matlab curve fitting toolbox. 

Black dots are the down sampled experimental measurements. The meshed surface is 

the fitting results. (a) Frictional force fitting for pitch axis with e�  =0.08, 2a  =-0.032, 

1a  =0.403, 0a =1.476. (b) Frictional force fitting for yaw axis with e� =0.086, 2a =-

0.019, 1a =0.351, 0a =1.82. 

Table 3-3. Frictional force fitting results with Equation (3.17). 
 2R  Adjusted 2R  RMSE 
Pitch 96.75% 96.65% 0.14 
Yaw 93.92% 93.72% 0.24 
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Motion-based friction cancellation method, as shown in Figure 3-8, was 

implemented with the fitting results. Same experiments as described in the 

beginning of this section were conducted to illustrate the residual friction after 

compensation. Figure 3-13 showed the mean measured frictional force 

collected from experiments. Comparing with the frictional force shown in 

Figure 3-11 which has no compensation, the frictional force and the stribeck 

phenomena have been mitigated significantly. The total volume covered under 

the surface were reduced by 49.46% and 62.08% for pitch and yaw axis, 

respectively. The maximum residual force is about 1N.  

Although the frictional force has been mitigated significantly, some 

residual frictional forces are not removed due to the limitation of motion-based 

cancellation method. This is because the motion-based cancellation method 

needs a velocity input before it can estimate the friction for compensation, but 

the frictional force is already there before velocity is detected. The 

compensation is therefore always later than the actual frictional forces. 

Comprehensive system model and friction model are required to further 

improve the performance of this motion-based cancellation method. Advanced 

friction compensation methods need to be explored.  
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(a) 

 
(b) 

Figure 3-13 Mean residual frictional force measured with compensation. Vertical 

axis is the measured frictional force after compensation. Vertical bars are the standard 

deviations at the specific velocity and haptic output. (a) Frictional force for pitch axis. 

(b) Frictional force for yaw axis. 
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3.5 Summary 

A new robotic surgical trainer for hand-by-hand guidance in laparoscopic 

surgical training is introduced in this chapter. The robot is designed with 

appropriate specifications and implemented as an interactive platform that can 

adequately meet the training needs of laparoscopic surgeries. The robot can be 

passively operated under the force control method, and it can also actively 

move itself by the position control method. 

The robot is developed with the provision of complete guidance method 

capable of guiding the novice surgeon according to a recorded trajectory. This 

complete guidance method could provide the novice surgeon with deep 

appreciation of how an experienced surgeon deals with specified surgical 

scenarios. The robot is also designed with haptic features to render the force 

feedback for tool-tissue interaction. Frictional force of the system is measured 

at different levels of haptic output, and it has been mitigated significantly 

using a motion-based cancellation method.  
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4 MOTION MODELLING, LEARNING AND GUIDANCE 

Robotic technologies have been widely applied in surgery, playing a 

significant role in robot-assisted surgery, teleoperation [2, 3] and robotic 

surgical training [4]. However, it is a challenging task for the robot to learn the 

complex manipulation of surgical instruments during surgery. To equip our 

robotic surgical trainer presented in the previous chapter with knowledge of 

surgical skills, the robot needs to have the capability of observing a surgical 

procedure, extracting the skill set, representing and then repeating the 

execution of the skills. In this chapter, the methods for representing and 

reconstructing the surgical skills are discussed.  

A key technical contribution is the proposed motion learning method that 

uses adaptive mean shift method to identify the motion primitives. Section 4.1 

introduces the proposed method for surgical motion trajectory learning and 

illustrates the various techniques in each module of the proposed method. 

Section 4.2 describes the application of this method with the experimental 

results of a tissue division task and a clip deployment task in the IRAS training 

system. In Section 4.3, the generic motion model which is trained using 

primitives determined by adaptive mean shift method is compared with that of 

K-means method and fixed bandwidth mean shift method. Finally, our motion 

modelling and learning approach is summarized in Section 4.4. 
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4.1  Methods 

Figure 4-1 describes the proposed method for the clustering, modelling and 

reconstruction of the motion trajectory in the robotic learning of laparoscopic 

surgery.  

 

Figure 4-1 Data processing procedure to model and reconstruct the motion 

trajectories. 

Suppose that the motion trajectory of the laparoscopic instrument is 

expressed as  

 , ,{ , }t i s iX�X X , 1i N� N ,             (4.1) 

where tX  and sX  are the time and spatial components of the trajectory, 

respectively. N  is the number of the observations. In order to eliminate the 

effect of the non-homogeneity of motion speed among the trials of the same 
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task, Dynamic Time Warping (DTW) is performed to align the trajectories 

according to its features. The Principal Component Analysis (PCA) is applied 

to reduce the dimensionality of the high dimensional data and to preserve their 

features. The aligned motion data sets are therefore transformed into latent 

space by the PCA. The motion data sets in latent space are then clustered by 

the adaptive mean shift method with optimal bandwidth to identify the motion 

primitives. The number of motion primitives is defined as the number of 

mixture components for statistical modelling. Gaussian Mixture Model (GMM) 

is trained with the clustered motion data to estimate its parameters. When the 

GMM model is trained, the estimated parameters in latent space are then 

projected back to their original space. With the motion data represented by 

GMM, Gaussian Mixture Regression (GMR) can be applied to retrieve smooth 

trajectory in original space with given temporal information. 

4.1.1 Data Processing  

Motion speed in execution of a given task varies from one trial to another. 

Therefore, the features in the motion trajectories do not appear in the same 

region across the trials. Hence, DTW is required to align the features from 

different trails in the same time span. The DTW measures the similarity 

between two trajectories which may vary in temporal information. It 

eliminates the constraint of distortions in time, between separate trajectories, 

which reduce the capability of the statistical models. To avoid misalignment 

during DTW, the trajectory data of each trial is divided into several subtasks 

with landmarks, such as approaching tissue, holding tissue, division of tissue. 

Each subtask is temporally aligned by the DTW. The trajectory candidate with 
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the longest time span is chosen as the reference trajectory during the DTW. 

The results of the DTW of each subtask are joined together accordingly, and 

expressed as , ,{ , }t i s iT�T T .  

PCA is required to reduce the dimensionality for high dimensional data, 

reduce noise, and identify the principal axis of the temporal aligned trajectory 

data. With PCA, ,{ }s iT  is expressed in latent space. The spatial component in 

the latent space is written as  

'
, ,{ } { }s i p s i� 1x A T , 1i N� N ,   (4.2) 

where 1,d 2,d ,d{ , , }p i
 
 
�A ,d},d  is a transformation matrix, and i
  is the 

eigenvectors of the covariance matrix of the centered motion data set ,{ }s iT  

[61], and subscript d  is the minimum number of the dimensionality required 

in the latent space. Hence, the motion trajectory data after PCA can be 

expressed as 

, ,{ , }t i s ix�x x , 1i N� N ,    (4.3)  

where ,s ix  is the spatial component expressed in the latent space. 

4.1.2  Adaptive Mean Shift Clustering of Motion Trajectory  

Mixture model is a mixture distribution that represents the probability 

distribution of the observations in the overall population. The number of 

mixture components pK  and the number of observations are two basic 

parameters for any mixture model. In this study, the number of motion 

primitives in a task is the number of mixture components used in modelling 

the task. Identification of motion primitives is required for application of 
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mixture model in modelling motion trajectories. However, the number of 

motion primitives is not known for a demonstration of real tasks. The adaptive 

mean shift method can be applied to cluster the motion trajectories and to 

identify the number of components based on the bandwidth of the data set.  

The mean shift method first defines a window around each data point and 

computes the mean of the data points, after which the centre of the window is 

shifted to the mean according to the mean shift vector  and the algorithm is 

repeated until the mean shift vector is less than a specified threshold value. 

The data points in the feature space are considered as a probability density 

function. Kernel function is applied to estimate the density. The kernel density 

estimation is a non-parametric way to estimate the density function of a 

random variable. The kernel ( )k x  is a positive definite bounded function 

satisfying ( ) 1K d �2 x x  and ( ) 0K d �2x x x  [122]. Given a kernel 

2( ) (|| || )K k�x x  with bandwidth parameter h , the kernel density estimator for 

a given set of D-dimensional data is expressed as  

 2
1

1( ) (|| || )N i
id

f x K
Nh h�� �

x - x .   (4.4) 

where d  is the dimensionality of the data. 

There are several variants of exact kernel function [122]. Research [123] 

had shown that the profile of the kernel is not crucial to the kernel density 

estimation. The quality of the kernel estimation depends on the value of the 

bandwidth h  instead of the profile of the kernel. Although the kernel density 

estimation has been commonly applied in data analysis, the determination of 

the optimal choice of the bandwidth for the kernel is still an active research 

topic [123-125].  
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The adaptive bandwidth introduced by Comaniciu et al. [126] was applied 

in this study. The adaptive bandwidth, a non-random sequence of positive 

numbers, is expressed as  

  

1
2

( )
( )i o

i

h h
f
) *

� + ,
+ ,- .

x
x

, 1i N� N , 
  (4.5) 

where   is the proportionality constant and defined as 

1
1log log ( )N

iiN f �
�� � x , and oh  is the initial bandwidth. The plug-in-rule 

methods [127] were applied to determine an appropriate initial bandwidth in 

this study.  

With Equations (4.4) and (4.5), the density estimation function for the 

adaptive bandwidth is written as  

  2
1

1( ) (|| || )
( ) ( )

N i
id

i i

f K
Nh h�� �

x - xx
x x

.                 (4.6) 

Hence, the mean shift vector is expressed as  

 

2
1 2

2
1 2

(|| || )
( )( ) 1 (|| || )
( )

N i i
i d

i
v

N i
i d

i

g
h h

g
h h

� �

� �

� �
�

�

x x - x
xm x xx - x
x

.

   (4.7)

 

where '( ) ( )g K� �x x . The details of the derivation of the Equation (4.7) is 

available in [126]. 

4.1.3  Statistical Modelling and Parameter Estimation  

4.1.3.1  Gaussian Mixture Model  

Gaussian Mixture Model is a linear superposition of pK  Gaussian 

components, defined by probability density function  
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 1( ) ( ) ( | )p

p

K
i p i pkP P k P k�� �x x , 1i N� N ,  (4.8) 

where ( )
pp kP k ��  is the prior, and 

1
1

1[( ) ( )]
21( | ) ( ; , ) e

(2 ) | |

T
i k i kk p pp

p p

p

i p i k k d
k

P k x
�

�
�� � � �

� �
x μ x u

x u Σ
Σ

N  is the conditional 

probability density functions for component pk , and ( )iP x  is a probability that 

the data point ix  is constructed by the model.  

The parameters of the GMM are expressed as: 1{ , , } p

p p p p

K
k k k k� �μ Σ , where 

pk�  

is the prior probability, 
pk�  is the mean vector, and 

pk�  is the covariance matrix. 

The cumulated posterior probability of the GMM is expressed as 

1 ( | )
p

N
k p iiE P k�� � x . The number of the components pK  is obtained by the 

adaptive mean shift clustering method described above. The trajectory data ix  

contains the temporal and the spatial information, as shown in Equation (4.2), 

and hence the mean vector is expressed as , ,{ , }
p p pk t k s k��μ μ , and the 

covariance matrix can be expressed as 
, ,

, ,

p p

p

p p

tt k ts k

k
st k ss k

�� �
� � �� �
 !

Σ
Σ

Σ Σ
.  

The GMM parameters { , , }
p p pk k k� μ Σ  are estimated by Expectation 

Maximization algorithm [72] with the demonstration trajectory data in 

Equation (4.3). As the estimated parameters are for the data in the latent space 

and expressed as " " "{ , , }
p p pk k k� μ Σ , they are projected back into the original 

space by  



87 

 

'
, ,

p p

p p

p p

k p k

ss k ss k

k k� �

33� 1

33� 1 1

33�

μ A μ

Σ B Σ B , 1p pk K� pK , (4.9)

where 
pk� 33 , 

pk
33μ  and , pss k

33Σ are the prior probability, mean vector, covariance 

matrix of motion data set in the latent space respectively. The covariance matrix 

in latent space is the form of , ,

, ,

" "

"
" "

tt k ts kp p

kp

st k ss kp p

�� �
� ��
� �
 !

Σ
Σ

Σ Σ
. In order to recover the 

,ss kp
Σ which 

is covariance matrix of the spatial information, the transformation matrix is written in 

the form 
p

) *
� + ,

- .

1 0
B

0 A
, pA  is the transformation matrix described in Equation 

(4.2).  

4.1.3.2  Gaussian Mixture Regression  

GMR is applied to reconstruct a trajectory represented by the GMM. The 

regression method estimates the conditional expectation of sX  with given tX , 

hence the entire trajectory can be reconstructed with its characteristics 

encoded by the GMM. For the pk th component at given time tX , the expected 

distribution of , ps kX  is  

, ,, , ,( | ) ( ; , )p p
p pp

s k ss ks k t k s kP X �X X X ΣN ,          (4.10)

where , ps kX  and , pss kΣ are the conditional expected value and expected 

covariance of the mixture component pk , respectively. They are expressed as  

1
, , , , ,

1
, , , , ,

( ) ( )),
( ) ),

p
p p p p

p
p p p p

s k s k st k tt k t t k

s k s k st k tt k ts k

X� ��

�

� �� � �
� � �

X
Σ Σ Σ Σ

                   (4.11) 
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, ps kX  and , pss kΣ  are combined based on the probability that the component pk  

for the given time tX , which is expressed as  

, ,,1( | ) ( ; , )p

p p
p pp

K
s k ss ks t k s kkP X ����X X X ΣN ,          (4.12)

 
where , ,

, ,1 1

( ; , )

( ; , )

( ) ( | )
( ) ( | )

p p

p

p

k t t kp tt kp t p
k Kp Kp

t i t t i tt ikp k

X

X

P k P X k
P i P X i

�

�

�
�

�� �

�

�
� �
� �

N
N

. 

An estimation of the conditional expectation of sX  at the given time tX  for 

the pk th component in the mixture model is  

,1
p

p
pp

K
s s kkk ��� �X X , 2

,1
p

p
pp

K
ss ss kkk ��� �Σ Σ ,          (4.13) 

The generalized form of the motion trajectory in its original space can be 

expressed as { , }stX�X X . 

4.2  Experiments and Results  

Experiments were conducted to evaluate the proposed method. Three 

subjects (30±3 years old) have participated in the experiments. Subject 1 

performed a tissue division task, while Subject 2 and Subject 3 performed a 

clip deployment task. Tissue division and clip deployment are common tasks 

in surgical procedure; they are commonly found in laparoscopic 

cholecystectomy, sectionectomy of liver and colostomy etc. Based on our 

experience, more than 20 repeats of a demonstration will be sufficient for the 

purposes of modelling and analyses. Hence, 22 trajectories were collected 

from Subject 1 and Subject 2 each, and 24 trajectories from Subject 3. The 

motion trajectories collected from Subject 1's demonstration were used to 

show the feasibility of the method described in Section 4.1 with details. In the 
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following section, the experimental method and the modelling results are 

presented. 

4.2.1 Experiments and Data Acquisition 

Experiments were conducted on the IRAS system described in Section 3.1. 

The training system was built with a laparoscopic cholecystectomy procedure. 

A tissue division procedure and a clip deployment procedure within the 

cholecystectomy surgery were modelled in the experiment. In the tissue 

division procedure, as shown in Figure 4-2, a left hand laparoscopic grasper 

was used to stretch and hold a cystic duct, while the right hand laparoscopic 

scissors was used to divide the cystic duct. The motion trajectory data for this 

tissue division task was subsequently used in the modelling process. The 

motion trajectory of each trial was recorded in , ,{ , }t i s iX�X X  format, where 

the spatial data ,s iX  consisted of { , , , , }p y t h rX X X X X  from 5 axes, i.e. pitch, 

yaw, translation, handle’s grasping angle and roll, respectively (See Figure 3-3 

(a) ). The trajectories of motion surgical instruments were sampled at 8.3 Hz. 

Figure 4-3 (a) and (c) depict the trajectories of the tissue division task for 

the left hand and the right hand instruments, respectively. The time taken to 

complete each trial of the same task was different. Features from different 

trials appeared to overlap each other, as shown in the plot of handle's grasping 

angle in Figure 4-3 (a) and (c). This reduced the capability of GMM / GMR to 

model and extract the key feature of the motion. Figure 4-3 (b) and (d) are the 

motion data after the multi-dimensional DTW of the tissue division tasks, with 

the motion features aligned. 
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Figure 4-2 A tissue division simulation on a virtual patient in the surgical 

simulation system. 

 
(a)    (b)   (c)   (d) 

Figure 4-3 Comparison of the raw motion data collected from the simulator and 

the motion data after multi-dimensional Dynamic Time Warping. (a) and (c) are 

raw motion data, (b) and (d) are the motion data after DTW. The circled sections 

indicated the overlapped features in the raw motion data, and the results after 

DTW. 

4.2.2 Results 

In order to obtain the principal axis of the motion data, the PCA described 

in Section 4.1.1 was applied, maintaining 95 percent of the variance for the 

motion trajectories. The initial bandwidth oh  which was obtained using plug-

in-rule method based on the distance in the latent space data ,{ }s ix , is 10.97 
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and 9.95 for left and right instruments, respectively. The adaptive bandwidth 

was determined using Equation (4.5). Figure 4-4 shows the adaptive 

bandwidth for one of the trials. The spatial data in the latent space ,{ }s ix  was 

then grouped in clusters using the adaptive mean shift method described in 

Section 4.1.2.  

 

Figure 4-4 The adaptive bandwidth value for the left and right trajectories of the 

instrument in one demonstration. 

The GMM method described in Section 4.1.3.1 was applied to model the 

spatial data ,{ }s ix  and the parameters of the GMM model were estimated by 

the Expectation Maximization algorithm [72]. Figure 4-5 (a) and (c) show the 

Gaussian Mixture Models trained with the motion primitives identified by the 

adaptive mean shift method. Eight and thirteen primitives were identified in 

the left and right instruments trajectories. The estimated parameters were for 

the data set in the latent space. For GMR regression process, they were 

projected back into the original space by Equation (4.9). 
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The GMR method described in Section 4.1.3.2 was then applied to 

reconstruct the trajectories in the original space. Figure 4-5 (b) and (d) show 

the GMR regression results of the GMM models which were trained to encode 

the surgical skills demonstrated. Figure 4-6 shows the 3D plot of the tissue-

division task with the demonstration trajectories and the reconstructed 

trajectories. The implementation of the GMM and the GMR is based on a 

Gaussian mixture tool kit [61] available in the public domain [130].  

In order to further evaluate the robustness of the proposed method, the 

method was applied to model a surgical task of deploying a clip with 

laparoscopic instruments in laparoscopic cholecystectomy using the system 

described in Section 3.1. In the experiment, the left instrument was used to 

grab and hold the gallbladder, while the right instrument approached the cystic 

duct and deployed a clip. The surgical task was carried out by Subject 2 and 

Subject 3 with the same virtual patient setup. Each subject repeated the task a 

number of times. Twenty two and twenty four trajectories were recorded from 

Subjects 2 and 3, respectively. Figure 4-7 and Figure 4-8 show the raw motion 

trajectory data and the mean reconstructed model of Subjects 2 and 3, 

respectively. Comparing the mean reconstructed model of each subject's left 

instrument, it is noticed that each subject manipulated the instruments 

differently; Subject 2 tends to focus on controlling the span of instrument 

swing more closely than that of Subject 3. 



93 

 

     
(a)   (b) 

   
(c)   (d) 

Figure 4-5 The GMM modelling and the GMR regression results based on the 

proposed method. (a) and (c) are the GMM encoding for the tissue division task of 

the left and right instruments, respectively, based on the adaptive mean shift 

clustering results. The spot is the mean of each Gaussian component, and the patch 

is the square root of covariance matrix of the corresponding Gaussian component. 

(b) and (d) are the GMR regression results, the solid line is the expected mean of 

each Gaussian model at the given time t, and the patch is the expected square root 

of the covariance matrix at the given time t. 
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  (a)    (b) 

Figure 4-6 Raw motion trajectories and mean reconstructed model of Subject 1: (a) 

22 motion trajectories (positional only) of the surgical tool tip in the tissue 

division task, (b) reconstructed mean trajectory by GMM and GMR. The 

orientation of instruments and open angle of the handles are not reflected in this 

plot. The plot in red represents the positional information of the left instrument, 

and the plot in blue represents that of the right instrument. The arrows indicate the 

direction of motion. 

 

    
(a)      (b) 

Figure 4-7 Raw motion trajectories and mean reconstructed model of Subject 2. (a) 

22 motion trajectories (positional only) of the surgical tool tip in the clip 

deployment task. (b) Reconstructed mean trajectory by GMM and GMR. The 

orientation of instruments and open angle of the handles are not reflected in this 

plot. The plot in red represents the positional information of the left instrument, 

and the plot in blue represents that of the right instrument. 
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(a)     (b) 

Figure 4-8 Raw motion trajectories and mean reconstructed model of Subject 3: (a) 

24 motion trajectories (positional only) of the surgical tool tip in the clip 

deployment task, (b) reconstructed mean trajectory by GMM and GMR. The 

orientation of instruments and open angle of the handles are not reflected in this 

plot. The plot in red represents the positional information of the left instrument, 

and the plot in blue represents that of the right instrument. 

4.3  Discussion 

The adaptive mean shift method was applied to identify the motion 

primitives in the study. The adaptive mean shift method provides an intuitive 

way in determining the number of motion primitives based on the initial 

bandwidth which was obtained by the plug-in-rule method [124]. However, 

the performance of the adaptive mean shift method relies on its initial 

bandwidth and the adaptive bandwidth function [126]. It can be obtained by 

several methods, such as plug-in-rule, iterative, maximal smoothing, biased 

cross-validation, least square cross-validation and Asymptotic MISE 

approximation [125]. The bandwidths obtained from different method vary 

slightly. Smaller bandwidth is preferred to avoid missing tiny features in the 

data. 
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Root Mean Square (RMS) error was applied to evaluate the quality of the 

motion model through the reconstructed motion model [65]. RMS error of the 

reconstructed trajectory with respect to the demonstrated trajectory after DTW 

were calculated as follows  

 
2

, ,1 1

1 ( )M N
s i s ij iRMS

MN � �� �� � X X ,           (4.14) 

where M  is the number of trials, N  is the number of observations in each 

trial, sX  and sX  are the expected spatial components and the spatial 

components from the demonstrations, respectively. 

The quality of the motion model obtained based on different methods in 

identifying the motion primitives were compared, i.e. adaptive bandwidth 

mean shift method, fixed bandwidth means shift method and K-means method. 

The number of primitives required for K-means method was determined from 

the tests using adaptive means shift method. Figure 4-9 (a)-(d) show the GMM 

modelling results based on K-means method and fixed bandwidth mean shift 

clustering method. Comparing with Figure 4-5, it is noticed that adaptive mean 

shift-based method captured motion primitives with more focused Gaussian 

components than that of K-means and fixed bandwidth-based methods. The 

fixed bandwidth mean shift identified 6 and 14 primitives from the motion 

trajectory of left and right instruments, respectively. Although the three 

methods employed similar number of motion primitives, Table 4-1 shows the 

GMMs with adaptive mean shift method produces smaller RMS error 

comparing with that of the K-means method and fixed bandwidth methods. In 

addition to the smaller errors compared to other methods, the Adaptive mean 

shift method is preferred because the Adaptive mean shift-based method 
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begins the motion primitive identification from the trajectory data. This 

enables the entire modeling process to require minimal user intervention. In 

contrast, K-means-based method requires the user to manually specify the 

number of motion primitives contained in the data.  

The adaptive mean shift method also showed advantages in preserving the 

dexterous features in motion. For example, the handle motion (Figure 4-3 (d)) 

showed several open and close actions. These features have been encoded and 

reconstructed by the GMM / GMR with adaptive mean shift method, as shown 

in Figure 4-5 (c) and (d). However, these features were not captured in GMM 

with K-means and fixed bandwidth methods (Figure 4-9 (b) and (d)), even the 

number of primitives used for K-means method was the same as the number of 

primitives obtained by the adaptive mean shift method, and the fixed 

bandwidth method obtained similar number of primitives with the adaptive 

mean shift method. 

Another advantage of the Gaussian mixture modelling method based on the 

adaptive mean shift method is that it does not need to specify the number of 

the Gaussian components required to model the demonstration. While it is 

possible to have a better fit of the trajectory with a high number of Gaussian 

components, this will be at the expense of poor generalization capability and 

potential risks of over fitting. However, the adaptive mean shift-based method 

required an initial bandwidth to be determined in pre-processing. A tool kit 

from [127] took about 5-6 minutes on a PC with Intel i7-2653QM 2.0 GHz 

processor to calculate the bandwidth of a vector with 8538 rows.  
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(a)    (b) 

 
(c)    (d) 

Figure 4-9 GMM modelling based on K-means method and fixed bandwidth 

mean shift method. (a) and (b) are the GMM modelling results with K-means 

clustering method for the left and right instruments trajectories, respectively. (c) 

and (d) are the GMM modelling results with fixed bandwidth clustering method 

for the left and right instruments trajectories, respectively. 
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Table 4-1 The RMS error of the rotational joints of the reconstructed trajectory to 
the demonstrations after DTW. 

 
Left Tool Trajectory 

(Degree) 
Right Tool Trajectory 

(Degree) 

Fixed bandwidth mean shift ±3.13 ±3.19 
K-means ±3.08 ±3.66 
Adaptive mean shift ±3.05 ±3.08 
 

PCA is necessary in the analysis of the motion trajectory data. The PCA 

can be applied for reducing the dimensionality and the noise, and also to rotate 

the data to the axis that allows the clustering algorithm to identify the motion 

primitives effectively. When dimensionality reduction is not required for the 

data set, PCA is necessary to rotate the data set according to the eigenvector of 

covariance matrix of the data set, and to align the data in its principal axis. The 

tissue division trajectories were applied with the adaptive mean shift method 

directly without PCA and the identified motion primitives were used to train 

the GMM models. Figure 4-10 shows trained GMM modelling and GMR 

regression results. The data across large time spans were grouped in the same 

motion primitive which significantly reduced the capability of the Gaussian 

Mixture Regression model. Table 4-2 shows that the RMS error of the 

reconstructed trajectory from the demonstrations without PCA analysis is 

larger than that with the PCA analysis. Therefore, the PCA is an important 

component of the solution.  
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(a)    (b) 

Figure 4-10 The GMM modelling results of the tissue division trajectory without 

the PCA analysis. The data across large time span were grouped in same motion 

primitive. (a) and (b) are the GMM modelling of trajectories for left and right 

instruments, respectively. 

Table 4-2 Effect of PCA on RMS error of rotational joints of the reconstructed 

trajectory to the demonstrations after DTW. 

 Left Tool Trajectory 
(Degree) 

Right Tool Trajectory 
(Degree) 

With PCA Analysis ±3.05 ±3.08 
Without PCA Analysis ±3.14 ±3.77 

 

Our approach is suitable for modelling of surgical skills with a specific 

sequence of motion primitives, such as the division and clipping tasks 

modelled in this study. Both tasks require grabbing and holding onto the object 

first, before performing the task at certain locations. While performing the task, 

the pattern of opening and closing of instrument handle is consistent among 
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the user’s executions. Clear motion sequences can be identified from the 

user’s demonstration. Surgical suturing could also be modelled by the 

proposed method, as it required both hands to conduct the motion in sequences. 

Surgical operations in which the sequence of motion is not critical, may not be 

represented by GMM effectively. The proposed method focuses on extraction 

and reconstruction of a generic model from demonstrations conducted by the 

user. It does not include the collaboration between two instruments and tool-

tissue interaction. In order to consider these factors, the velocity of each 

instrument and the deformation of organ or tissue have to be modelled. 

Although the robustness of our method was evaluated with different surgical 

tasks, the study was still limited by the size of sample, the complexity and the 

range of surgical procedures. With the development of the surgical simulator 

in our experiment, more surgical procedures could be studied in the future to 

demonstrate the generalizability of the proposed method. 

4.4 Summary 

Learning from experienced surgeons is an efficient way of transferring 

surgical skills from the experienced surgeons to the novice surgeon. The 

method of robotic learning by demonstration is an approach to model the 

surgical skills and facilitate it for surgical training from the perspective of 

motion trajectory. The trained motion model in learning by demonstration 

approach can serve as a generic model representing surgical skills. The motion 

model can then be used by the robots to provide guidance to the novice 

surgeon. Experimentation of our robotic surgical training system and the 

underlying technology with novice surgeon is ongoing.  
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The method proposed in this study demonstrates the feasibility of 

modelling skills without specifying number of motion primitives. This has 

contributed to the robustness of our robotic surgical training system. Adaptive 

mean shift method has been applied to identify the motion primitives, and the 

Gaussian Mixture Models is trained by demonstrations to represent a surgical 

skill. However, collaboration among multiple instruments is essential in the 

execution of many surgical tasks. Developing collaborative models to 

represent the cooperation of multiple surgical instruments is required. The 

various spatial and temporal constraints in surgery also have to be taken into 

consideration for a complete simulation of a surgical operation. For example, 

in situations where a certain location / obstruction has to be avoided, or a 

specific location that must be passed through in order to reach the targeted site, 

constraints dependent on individual patient anatomy have to be considered.  
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5 MOTION INTENTION RECOGNITION AND ITS 

APPLICATION IN SURGICAL TRAINING 

A user could benefit from working on a task with a robot if the robot could 

perceive the needs of the user. Therefore, understanding the intention of the 

trainee or surgeon in a surgery is a critical step to bring the robot-assisted 

technology into surgical training or real surgery. The robotic surgical trainer 

needs the capacity of recognizing the motion intention of the surgeon. In this 

chapter, Hidden Markov Models (HMM) was applied to study the motion 

intention based on the trajectory of the surgical instruments in a laparoscopic 

surgery. A stacked HMM method is proposed to recognize the motion 

intention at different levels. Observation feature is the key component in 

successful HMM application. There are two approaches to determine the 

observation feature for the recognition problem [100]. One approach is to use 

the raw data as the input, it is named 'template' in [100]. Such 'template' 

includes coordinate points of the trajectory path. It is one of the major feature 

representations in gesture recognition. The drawback of using 'template' data 

as feature is that the recognition is not robust within a given class [100]. The 

other approach is to use the extracted important features, such as features in 

frequency information. The advantage of using features from the frequency 

domain is the stability of recognition. The effect of both types of observation 

features are studied in this chapter. 

This chapter is arranged as follows: Section 5.1 introduces the stacked 

HMMs for motion intention recognition; Section 5.2 describes the 

configuration of the HMMs in the stacked structure; Section 5.3.1 describes 
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the experiment design and surgical simulation; Section 5.3.2 discusses the 

performance of the stacked HMMs and the work is summarized in Section 5.4. 

5.1 Stacked Hidden Markov Models  

5.1.1 HMM for Motion Intention Recognition 

The target of motion intention recognition process is to identify the motion 

fragment which is represented by an observation sequence O. This is achieved 

by identifying the HMM with the highest probability in a recognition model 

with the given motion fragment, i.e. 

arg max ( | )
all

g P O
�

�� ,    (5.1) 

where �  is a HMM trained to represent the motion intention, and O  is the 

observation sequence to be recognized. Hence this process relies on the 

computation of ( | )P O� . From the Bayes formula, the posteriori probability 

given the observation sequence can be written as  

( | ) ( )( | )
( )

P O PP O
P O
� �� � .    (5.2) 

In Equation (5.2), P(O)  is a constant for a given observation sequence, ( )P �  

is the probability of the motion primitive which characterizes the likely 

sequence of motion primitive described by the features in the observation 

sequences. The probability of the observation sequence generated by an 

HMM, ( | )P O�  is the only variable in Equation (5.2). It can be obtained by 

the forward-backward algorithm. The problem of intention recognition can 

then be simplified as 

arg max ( | )
all

Intention P O
�

�� ,   (5.3) 
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where �  is the HMM trained to represent different intentions. 

5.1.2 Stacked Hidden Markov Models  

In a laparoscopic surgery, each hand performs a specific role, and both 

hands collaborate to accomplish the task. With this observation, a stacked 

HMMs was proposed, as illustrated in Figure 5-1, to model the motion 

intention from instruments trajectories. The structures shown in Figure 5-1 

can be extended to multi-layer stacked HMMs. There are multiple groups of 

HMMs in each layer running in parallel. Each group of HMMs is a 

recognition model. Each recognition model is formed multiple HMMs. Each 

HMM represents one particular intention in the recognition model. The output 

from each HMM can be taken as one of the observation features for the next 

level of recognition models, or a winner-takes-all strategy can also be used to 

generate observation features for the next level of recognition models.  

The advantage of the stacked HMMs is that it reflects the intention of the 

individuals in a common task group as well as reflects the relationship on the 

collaboration among the individuals. For example, there are multiple 

individuals working together to achieve a simple goal, and multiple groups of 

such individuals working together in achieving a common goal. The stacked 

HMMs can be applied to represent the collaboration among the individuals 

and the groups. In the first level, each individual's intention is recognized by a 

recognition model which consists of numbers of possible intentions. Different 

individuals at the same layer may have different intentions, hence there are 

multiple recognition models running in parallel to recognize the intentions of 

each individual. Each recognition model is fed with the observation sequences 

from the sensors or features extracted from the sensed data. The HMM which 
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produces the highest likelihood represents the intention of the observation. 

The output of the recognition model from different individuals at layer one 

are combined and formed as an observation feature and fed to the recognition 

models at the next layer. Such combination can be formed with different 

format as suggested by the collaboration relationship among the individuals, 

such as the weight of the individual in the group. In the next layer, the 

recognition model takes the observation sequences and recognizes the 

intention of the group. The recognition model formed by the HMMs at 

different layers are utilized to recognize the intentions at different levels. The 

frequency of changing intentions at different levels is different. Therefore, 

recognition frequency at different layers can be different. 

 
Figure 5-1 Stacked HMMs for motion intention recognition. 

5.2 Stacked HMM for Laparoscopic Surgical Training 
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A two layer stacked HMM, as shown in Figure 5-2, is configured for 

motion intention recognition in laparoscopic surgical training. Layer 1 is 

named as primitive layer, and the recognition model is called the primitive 

recognition model. Layer 2 is named as subtask layer and the associated 

recognition model is called the subtask recognition model. There are two 

recognition models in the primitive layer for the left and right instruments, 

respectively. They are respectively denoted as L�  and .R� , each recognition 

model consists of k  HMMs required to represent the motion, or in other 

words, the number of motion intentions. Note that k  could be different for 

left and right instruments.  

 
Figure 5-2 Stacked HMMs for motion intention recognition in laparoscopic surgical 

training. 
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The motion intention is determined by identifying the maximum likelihood 

produced by the HMMs in the respective recognition model. The subtask 

recognition model sub�  in subtask layer is used to recognize the subtasks, 

where the subscript sub  is the number of HMMs in the subtask recognition 

model. It corresponds to the number of subtasks.  

5.2.1 Observation Features for the HMMs  

The observation features in this research are extracted from a virtual 

surgery described in Section 5.3.1. They can be expressed in the spatial 

domain and the frequency domain for the primitive recognition model. 

Observation features in the spatial domain includes: position and orientation 

of tool tip relevant to a specific point on the organ, opened angle of grasping 

handle expressed by p ; velocity and acceleration of instrument, including the 

velocity and acceleration of grasping handle, expressed in v  and � , 

respectively. The individual elements in p , v  and �  are not express in the 

same measuring units: velocity of tool tip is in m/s, the velocity of grasping 

handle is in rad/s. They are normalized to remove the weight effect induced 

by the measuring units. Let O  be the vector representing the information of 

each motion frame, it is expressed as 

{ }O p v �� .               (5.4) 

In addition to using the features in the spatial domain, the intention 

recognition using features extracted in the frequency domain were also 

studied. Power Spectral Density (PSD) is taken as the observation features in 

this research. The human motion frequency bandwidth is narrow, therefore 16 

point Fast Fourier Transformation (FFT) is performed on the observation 
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sequences described by Equation (5.4). The result of the FFT is expressed by 

the complex vector 0 1 15[ . . . ]n nz z z�Z , where n  is the number of 

observations in the trial. The PSD is expressed as  

 0 1 /2(Z) [ (z) (z) (z)]kP P P P�Z) [ (Z) [ ( ) (z) (z)]z) (z)11)z) /2 (z/2 (z/2 ,   (5.5) 

where k =16, 0 0(z) / ssP z H� /) H/z) 0 ; (z) ( ) /i i k i ssP z z H�� �) (z) (z) (( , 1 7i � 7 ; 

/2 /2(z) /k k ssP z H� /) /z) //2 ; 2

1

k

ss k
i

H k H
�

� � . kH  is a hamming window of width 16. 

The recognition results from the primitive layer are fed to the subtask layer 

to recognize the motion intention in the subtask level. The features fed to the 

subtask layer could be either the recognized motion primitive which is the 

index of the recognized HMM from the primitive recognition model, or the 

observation probability ( | )P O �  from the primitive recognition model. The 

normalized observation probabilities LP  and RP  of both primitive recognition 

models are combined as an observation feature for the subtask recognition 

model sub� . However, observation probabilities LP  and RP with similar 

magnitude do not necessary relate to different motion primitives because the 

observation probabilities LP  and RP are obtained from different primitive 

recognition model which are trained by the features obtained from the left and 

right instrument, respectively. In order to make the observation probabilities 

LP  and RP  distinguishable when combining them together, the observation 

probabilities produced by primitive recognition model R�  are multiplied with 

a constant factor of -1. The observation feature for the subtask layer is 

expressed as 
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� �sub L RO P P� � ,              (5.6) 

where .1 .2 .k{ .. . }L L L LP P P P� , { .. . }R R.1 R.2 R.kP P P P� , and k  is the 

number of HMMs in the primitive recognition model. 

5.2.2 HMM Configuration  

Continuous HMM with Gaussian distribution are applied to construct the 

recognition models. The states in the primitive recognition models represent 

the 'mental state' of the subject which might relate to motor imagery. Motor 

imagery is a mental process that an individual rehearses a required task. The 

subject may apply identical mental state at different stages during the 

execution of a task. Therefore, full transition pattern is applied to model state 

transition probability. The states in the subtask recognition model represent 

the motion primitives. Although the two primitives in a motion trajectory 

might be very similar in certain means such as moving direction and speed, 

they are still distinguishable when they are considered in the scope of hidden 

Markov process. The primitives prior to them make them distinguishable 

from each other. 

5.2.3 HMM Training and Recognition 

Data collected from a virtual surgery for both instruments denoted by LO  

and RO  are classified into k  clusters each using K-means algorithm. The 

number of clusters is determined empirically. If too many clusters are 

specified, the clustering algorithm may not be able to converge or produce an 

empty cluster. Each cluster is taken as one motion primitive. Training and 

testing data to the recognition models are obtained by continuously taking 
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windows of the data from the motion primitives .L kO  and .R kO  in the thk  

cluster, as illustrated in Figure 5-3. The width of the window can be varied. 

The k th HMM in primitive recognition model L.k�  and R.k�  were trained with 

observation sequence obtained directly from the sensors. The subtask 

recognition model sub�  are trained by the observation features formed by 

Equation (5.6) with the whole subtask.  

 

Figure 5-3 Observation sequence formed by data windows. 

5.3 Experiments 

Experiments were conducted to verify the effectiveness of the proposed 

motion intention recognition model. In the following subsections, the virtual 

surgery used for the experiment is presented first, and then the experimental 

results on motion intention recognition with different model configurations.  

5.3.1 Surgical Simulation and Experiment Design 

Surgery is a systematic process. The entire surgical procedure can always 

be divided into several subtasks in pre-surgical planning. Each subtask 

consists of numerous motion primitives. In this study, the surgical task 

described in Section 3.1 was executed on the IRAS training system. Data were 

acquired at 14 Hz by the system. Collected data were later re-sampled to 42 

Hz. The motion intention of experimental subjects were studied based on the 

motion trajectories of the virtual surgical procedure. 
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A segment of the cholecystectomy surgical procedure was selected as the 

experimental scenario in the simulation. This segment begins with the liver 

and the gallbladder lifted up and exposed. A grasping forceps (Figure 5-4 (a)) 

is inserted from the left port to grasp the Hartman's pouch of the gallbladder 

and pulled to stretch the cystic duct. A small hook electrode (Figure 5-4 (a)) is 

inserted from the right port to ablate the connective tissue and dissect the 

cystic duct. When the ablation process is completed, the instrument in the right 

port is changed to a curved forceps (Figure 5-4 (b)). This forceps is inserted 

between the cystic duct and the liver for inspection to ensure that all 

connective tissue has been fully ablated. A clip applicator (Figure 5-4 (c)) is 

then inserted from the right port to deploy three clips onto the cystic duct. 

While the clips can also be deployed on the cystic artery in real surgeries, the 

artery is not modelled in this scenario. After deployment of the clips, the 

instrument in the right port is changed to a laparoscopic scissors (Figure5-

4 (d)), and the cystic duct is divided. Two clips are left on the cystic duct to 

ensure that the cystic duct has been clamped securely.  

Special requirements from medical perspective such as the location of 

grabbing, the orientation of curved forceps, need to be taken into consideration 

while using each instrument. During the entire virtual surgery, the main task of 

the instrument in the left port is to grab onto the gallbladder and stretch the 

cystic duct, providing room and allowing the instrument from right port with 

more access to carry out the procedure. The procedure described above was 

chosen as the evaluation procedure as it is a critical procedure in 

cholecystectomy surgery. Collaboration of the two instruments, and tool tissue 

interaction appeared in these simple tasks. The stacked structure takes into 
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consideration the individual instrument motion and the collaboration of 

instruments as well. The entire series of tasks can be further divided into 4 

subtasks based on the instrument in the right port as follows: 

Subtask 1: ablation of the connective tissue and dissection of the cystic duct; 

Subtask 2 : checking the clearance between the cystic duct and the liver; 

Subtask 3 : deployment of three clips on the cystic duct; and 

Subtask 4 : division of the cystic duct.  

Each subtask was modeled by a state flow diagram as shown in Figure 5-5. 

They can be represented using 6-7 states. 

 

  
(a)           (b) 

   
(c)     (d) 

Figure 5-4 (a) Grasping forceps and hook, (b) Curved forceps, (c) Clip applicator, (d) 

Scissors. 



114 

 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

 
(e) 

Figure 5-5 (a): State diagram for the surgical procedure; (b) (c) (d) (e): state diagrams 
for the respective sub tasks in Section 5.3.1. 
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5.3.2 Experiment Evaluation and Discussion 

Twelve subjects, with an average age of 22.3±3.1 years participated in a 

study to evaluate the proposed motion intention recognition method. Each 

subject performed the virtual surgery described in Section 5.3.1 for 10 

repetitions. A total of 120 trajectories were collected. Sixty trajectories were 

randomly chosen for training the HMMs, the rest of the 60 trajectories were 

used for testing purposes. In the following subsection, the effect of various 

HMM configurations to the recognition rate are presented, such as the number 

of HMMs applied to construct the recognition models, the number of states in 

a HMM, and the number of Gaussian components applied to model the 

training and testing data. 

5.3.2.1 Primitive Layer 

Three set of recognition tests was performed as an initial study to 

investigate the effect of  

1. Number of HMMs in the recognition model; 

2. Number of Gaussian components in representing the data; and  

3. Number of states in constructing a HMM in the recognition model.  

Figure 5-6 (a) and (b) show the effects of the number of HMMs used to 

construct primitive recognition model in the frequency and spatial domain, 

respectively. The recognition rate decreases as the number of HMM increases. 

When the virtual surgical procedure is represented by a small number of 

intentions, the difficulty level of distinguishing the intentions is lower, hence 

the recognition rate is higher.  
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   (a)                                   

  
        (b) 

Figure 5-6 Effects of HMM numbers to recognition rate in primitive recognition 

model. HMMs were configured with 3 states, with 3 Gaussian components for 

observation sequence. (a) Recognition rates in the frequency domain. (b) Recognition 

rates in the spatial domain.  

The recognition model was tested by modelling the data with different 

number of Gaussian components. Table 5-1 and Table 5-2 are the recognition 

rates in the frequency domain and spatial domain, respectively. The 

experimental results show the number of Gaussian components has no 

significant effect on recognition rate.  
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Table 5-1 Recognition rates of the primitive recognition model in the frequency 

domain. Training and test data were represented by different number of Gaussian 

components. Three HMMs were applied to represent the motion intentions. Each 

HMM was set with 3 states. Twenty frames were taken for each observation. 

 No. of Gaussian components 
Instrument 3 4 5 6 

Left 91.5±7.2% 91.5±7.2% 91.5±7.2% 91.5±7.2% 
Right 90.9±3.5% 90.9±3.5% 90.9±3.5% 90.9±3.5% 

 

Table 5-2 Recognition rates of the primitive recognition model in the spatial domain. 

Three HMMs were applied to construct the recognition model. Each HMM was set 

with 3 states. Twenty frames were taken for each observation. 

 No. of Gaussian components 
Instrument 3 4 5 6 

Left 88.4±7.2% 88.2±7.2% 88.6±7.2% 88.7±7.2% 
Right 95.0±3.5% 95.0±3.5% 95.2±3.5% 95.3±3.5% 

 

The number of states in a HMM represents the mental state which drives 

the motion. Primitive recognition models were tested with number of states 

from 3 to 6 in both spatial and frequency domains. Since Table 5-1 and Table 

5-2 show that the number of Gaussian components has no significant effect to 

recognition rate when the number of Gaussian components is set to 3 for 

examining the effect of number of states in HMM. Table 5-3 shows that the 

recognition rate is consistent with respect to number of states when 

observation features are taken from the frequency domain. The standard 

deviation is also smaller than that of the spatial domain shown in Table 5-4. 

Experimental results have shown that the recognition rate is stable when 

representing the data in the frequency domain. However, pre-processing of 

data is required for the recognition to be conducted in frequency domain. 

Figure 5-7 shows an example of primitive recognition result when the features 

were represented by PSD. Table 5-4 shows that the recognition rate gradually 
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improves as the number of states increases from 3 to 6 when the observation 

features are represented in the spatial domain. This result is in line with the 

state diagram shown in Figure 5-5 that represents the process of the subtasks. 

Figure 5-8 shows an example of primitive recognition result when the features 

are represented in the spatial domain. 

Table 5-3 Recognition rates of the primitive recognition model in the frequency 

domain. HMMs in the primitive recognition were configured with different number of 

states. Intentions were represented by 8 HMMs. Twenty frames were taken for each 

observation. 

Number of States in each HMM 
Instrument 3 4 5 6 

Left 88.7±3.2% 88.7±3.2% 88.7±3.2% 88.7±3.2% 
Right 81.1±4.7% 81.1±4.7% 81.1±4.7% 81.1±4.7% 

 

Table 5-4 Recognition rates of the primitive recognition model in the spatial domain. 

HMMs in the primitive recognition were configured with different number of states. 

Intentions were represented by 8 HMMs. Twenty frames were taken for each 

observation. 

Number of States in each HMM 
 Instrument 3 4 5 6 

Left 80.7±17.1% 81.0±16.9% 81.1±16.9% 81.6±16.3% 
Right 89.2±6.5% 89.5±4.9% 90.1±4.4% 90.0±4.5% 
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(a) 

 
(b) 

Figure 5-7 Sample of recognized intention for left (a) and right (b) motion trajectory 

in the frequency domain. Eight HMMs were used to represent the intention. Each 

HMM was set with 3 Gaussian components and 3 states. 
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(a) 

 
       (b) 

Figure 5-8 Sample of recognized intention for left (a) and right (b) motion 

trajectories in the spatial domain. Eight HMMs were used to represent the intention. 

Each HMM was configured with 3 states and data were modeled by 3 Gaussian 

components. 
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5.3.2.2 Subtask Layer 

From above, it is found that the recognition results based on observation 

feature from the frequency domain is consistent. Recognition rate improves 

slightly in the spatial domain when the number of states and Gaussian 

component increases. The training time for recognition model varies with 

different model configurations. The time can differ by up to an hour with the 

current experimental data. It is found from the experiment that the training 

time increases with more states and Gaussian components. Training of the 

recognition models is often done off line, training time has minor impact to the 

performance of the overall recognition method. However, in consideration of 

real time implementation and updating of the recognition model in future, the 

observation likelihood produced by the primitive recognition model setting 

with 3 states and 3 Gaussian components was chosen to form observation 

features for the subtask layer. Figure 5-6 showed that the recognition rate of 

the primitive recognition model decreases when the number of HMMs 

increases. This observation has been taken note of and studied its effects to the 

recognition rate in subtask recognition model. 

Emission from Spatial Representation  

The subtask recognition model was configured with number of states from 

3 to 17, and training data were model with number of Gaussians components 

from 3 to 9. Figure 5-9 and Figure 5-10 show the recognition results with 

observation window of 600 frames (14.2 seconds). In Figure 5-9, observation 

features for the subtask recognition model were formed by the observation 

probabilities from the primitive recognition model with 8 HMMs. The subtask 

recognition model with 7 states and 3 Gaussian components is able to produce 
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the highest average recognition rate of 77.1±14.5%. The recognition rate is 

low when the recognition model is configured with more than 7 states. This 

could be because the entire process only needs 6 to 7 states to model it; more 

states do not help the modelling of the process but made the Expectation 

Maximization algorithm difficult to determine a global optimal result. In 

Figure 5-10, the observation features for the subtask recognition model were 

formed by the observation probabilities from the primitive recognition model 

with 3 HMMs. It shows that the subtask recognition model with 13 states and 

9 Gaussian components is able to produce the highest average recognition rate 

of 73.7±12.9%.  

The effect of observation window width was also studied. Figure 5-11 

shows the recognition rate of subtask recognition model with observation 

window width from 100 to 600 frames. The recognition rate increases by 

23.9% and 23.1% for the subtask recognition models based on the 3 and 8 

HMMs in primitive recognition model, respectively, as the width of the 

observation window increases. Figure 5-12 shows an example of results for 

the subtask recognition. 
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Figure 5-9 Recognition rate of the subtask recognition model trained based on 

primitive recognition model in the spatial domain. Primitive recognition models were 

constructed by 8 HMMs. Subtask recognition model was configured with 3 to 17 

states and 3 to 9 Gaussian components.  

 

Figure 5-10 Recognition rate of the subtask recognition model trained based on 

primitive recognition model in the spatial domain. Primitive recognition models were 

constructed by 3 HMMs, Subtask recognition model was configured with 3 to 17 

states and 3 to 9 Gaussian components.  
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Figure 5-11 Recognition rate with respect to the width of observation window. Red 
lines: the subtask recognition model was configured with 7 states, three Gaussian 
components and the respective primitive recognition model was constructed with 8 
HMMs. Blue lines: the subtask recognition model was configured with 13 states, nine 
Gaussian components, and the respective primitive recognition model was 
constructed by 3 HMMs. 
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(a) 

 
(b) 

Figure 5-12 Sample of recognized motion intention in subtask level. The subtask 
recognition model was configured with 7 states and 3 Gaussian components. (a) 
Normalized log likelihood of four subtasks, (b) recognition result. 
 

Emission from Frequency Representation 

Although the primitive recognition model with observation feature in the 

frequency domain produced high and consistent recognition rate, the 

recognition rate of the corresponding subtask recognition model is low. Figure 

5-13 and Figure 5-14 show the effect of state number and Gaussian 

components on the recognition rate of the subtask recognition model. 

Figure 5- 13 shows the result based on the primitive recognition model 

constructed by 3 HMMs. The subtasks recognition model was configured with 

7 states and 7 Gaussian components; it produces the highest average 

recognition rate at only 56.2±20.0%. Figure 5-14 shows the results based on 
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the primitive recognition model constructed by 8 HMMs. The subtasks 

recognition model was configured with 9 states and 9 Gaussian components; it 

produces the highest average recognition rate at only 50.4±21.1%. Figure 5-15 

shows the recognition rate of subtask recognition model with observation 

window width from 100 to 600 frames. The recognition rate increases by 

16.8% and 19.1% for the subtask recognition models based on the 3 and 8 

HMMs in primitive recognition model, respectively, as the width of the 

observation window increases. 

 

Figure 5-13 Recognition rate of the subtask recognition model trained based on 

primitive recognition model in the frequency domain. Primitive recognition models 

were constructed by 3 HMMs. Subtask recognition model was configured with 3 to 

17 states and 3 to 9 Gaussian components. 
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Figure 5-14 Recognition rate of the subtask recognition model trained based on 

primitive recognition model in the frequency domain. Primitive recognition models 

were constructed by 8 HMMs. Subtask recognition model was configured with 3 to 

17 states and 3 to 9 Gaussian components. 

 

Figure 5-15 Recognition rate with respect to the width of observation window. Red 

lines: the subtask recognition model was configured with 9 states and 9 Gaussian 

components and the respective primitive recognition model was constructed with 8 

HMMs. Blue lines: the subtask recognition model was configured with 7 states and 7 

Gaussian components, and the respective primitive recognition model was 

constructed by 3 HMMs. 
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5.4 Summary 

A stacked HMM was proposed for motion intention recognition in this 

chapter. Experiments were conducted on the IRAS training system to study the 

effectiveness of such recognition model with different configurations and 

feature representations. In the primitive layer, we observed from Figure 5-6 

that the recognition rate decreases as the number of HMMs to construct the 

recognition model increases for both cases when the features are represented 

in the frequency domain and spatial domain. Table 5-1 and Table 5-2 show 

that the number of Gaussian components which represent the observation 

window data has no significant effect on recognition rate. The number of 

states in the HMMs in the primitive recognition model also has very limited 

effect on the recognition rate as shown by Table 5-3 and Table 5-4. 

In the subtask recognition layer, the recognition rate is highly affected by the 

settings of the primitive recognition model. Figure 5-9 and Figure 5-10 show 

respectively the effect of HMM configuration in subtask recognition model, 

and effect of HMM numbers used in the primitive recognition model in the 

spatial domain. Figure 5-13 and Figure 5-14 show such effects in the 

frequency domain respectively. The performance of the subtask recognition 

model is better when its primitive recognition model is working in the spatial 

domain. 

Overall, the recognition for primitive recognition model and subtask 

recognition model are good when the features are represented in the spatial 

domain. When the features are represented by PSD, the recognition rate for the 
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primitive is consistently high. The recognition rate for the subtask recognition 

model is low when the observation likelihood from the primitive recognition 

model is taken as the observation features. Further investigation on the 

proposed stacked HMM on IRAS is on-going.  
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6 SURGICAL SKILLS EVALUATION AND ANALYSIS 
 

In previous chapters, a complete robotic-assisted surgical training system 

has been discussed. The effectiveness of such a training system is studied and 

discussed in this chapter. The Image guided Robot-Assisted Surgical (IRAS) 

training method is effective for surgical training if it could help to enhance the 

performance of a surgeon. Therefore, the effectiveness of the IRAS training 

method should be investigated by examining the performance difference 

between surgeons who have been trained by the IRAS and those who have 

been not trained by the IRAS training system. An objective assessment 

method to evaluate the surgeon’s performance is required. Manual and 

computational evaluation methods have been reviewed in Section 2.5. Basic 

evaluation criteria, such as total task time, path length, path smoothness and 

traumas on the organs were applied by other researchers in evaluating virtual 

reality surgical simulators [20] and robotic-assisted surgery [128]. While these 

evaluation criteria provide information in overall performance, they hardly 

reflect how close the trainee's performance is to the experienced surgeon's 

performance, especially from the medical staff's perspective. Another 

commonly applied technique in evaluating surgical performance is the Hidden 

Markov Model (HMM) method. Researchers applied HMM technologies in 

evaluating the proficiency levels of the participants in using LapSim simulator 

for minimally invasive surgical training [129] and the proficiency levels of 

surgeons in using the da Vinci surgical system [59].  

The objective of this chapter is to study the difference of the IRAS training 

method and the conventional training method in acquiring laparoscopic 
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surgical skills. Two experiments were conducted, namely technical evaluation, 

and clinical evaluation. The technical evaluation aims to validate the 

hypothesis that the IRAS training method is effective from an engineering 

perspective. In the technical evaluation, the participants were trained on the 

IRAS training system and the tests were also performed on the IRAS training 

system. All participants’ surgical procedure was recorded in terms of their 

motion trajectory. The clinical evaluation aims to prove that the IRAS training 

method could enhance the medical student’s performance in real surgery. 

Therefore, the participants were trained on the IRAS training system, and they 

had their tests on real animal model in operating theatre. All participants’ 

surgical procedures were recorded by video and assessed by experienced 

surgeons. 

HMM techniques and Vassiliou’s [104] methods were applied to compare 

the performance of two groups of participants in the technical evaluation and 

the clinical evaluation, respectively. The rest of this chapter is organized as 

follows: Section 6.1 discusses the technical evaluation of the training method. 

Section 6.1.1 - 6.1.3 describes details of technical evaluation including 

experiment method, HMM evaluation method, and the performance of the 

participants. Section 6.2 discusses the clinical evaluation. Finally, the work is 

summarized in Section 6.3.  

6.1 Technical Evaluation  

HMM was applied to model the surgical skill acquired from an experienced 

surgeon and evaluated the performance of the participants with the HMM. The 
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surgical scenario described in Section 5.3.1 was applied for this evaluation 

experiment.  

6.1.1 Evaluation Method 

The concept of this evaluation is to use the HMM trained by the 

experienced surgeon's operation to measure the participants’ operation. A 

virtual surgery conducted by an experienced surgeon was taken to train 4 

HMMs s t�  for the 4 subtasks described in Section 5.3.1. The trained HMMs 

s t�  were then used to find out the likelihood of the observation sequence 

( | )stP O �  extracted from the participants’ operation in the same subtask. All 

the probabilities of the observation sequences were ranked. The ranking 

indicates the similarity of the participant’s operation to the experience 

surgeon’s. 

In a manual evaluation, the examiner looks in to how the surgical 

instruments are positioned relative to the organ and also relative to the other 

instrument. The HMM evaluation method was designed to evaluate the 

participants’ performance with the features which the examiner are interested 

in. Hence, observation features for training the HMMs s t�  represent the 

perspective of the examiner. For this study, the observation features include 

the relative position of the left and right instruments to the specified points on 

the organ, LOP  and ROP ; the position and orientation of the left and right 

instruments' tip, LPO  and RPO ; the opened angle of surgical instrument's 

handle, L�  and R� ; the angle of the instrument's tip vector to the specific 

vectors on the organ, L�  and R� ; the status of footswitch, RF ; the vector from 
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left instrument's tip to the right instrument's tip, LRP . These features are 

illustrated in Figure 6-1. It is expressed as  

{ }st LO RO L L R R L R LRO P P PO PO P� � � �� ,         (6.1) 

where st  denotes for subtasks in this evaluation process. 

These features are selected to capture the operation performed on the organ, 

such as the places where the instruments operate on, status of the instrument 

(such as grabbing, ablation, deploying and cutting), relative position of the left 

instrument with respect to the right instrument and the instruments to organs. 

It characterizes the tool-tissue relationship and the appropriate way in 

manipulating the surgical instruments. As a hook electrode is used in subtask 1, 

the angle of the instrument's handle has no effect to the ablation process. The 

signal from footswitch and the position of hook electrode can be used to 

indicate whether the user activates the ablation process at the right places. 

Therefore the observation feature R�  in expression (6.1) is replaced with the 

status of footswitch RF  for subtask 1 only.  

 
Figure 6-1 Instruments' tip to the specified points on the organ, LPO  and RPO ; 

relative position vector from the left instrument's tip to the right instrument's, LRP ; 

angle between the instrument's tip vector and the specific vectors on the organ, L�  

LPO

RPO

LRP

L�

R�
R�

L�
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and R� ; angle of the instrument handle opened, L�  and R� , they are proportional to 

the angle of applicator's jaws formed. 

 
 

HMM with full transition using Gaussian distribution is applied to model 

the surgeon's operation procedure. In order to construct HMM models that 

could adequately represent the surgeon's performance, cross validation is 

applied to determine the optimal number of states for the HMM models. Each 

HMM model is set with 3 states as illustrated in Figure 6-2. The initial 

parameters are estimated by K-means classification method for the Gaussian 

distribution. The Expectation Maximization algorithm is applied to estimate 

the parameters of the HMM models [72].  

 
Figure 6-2 Three states full transition HMM. π  is the prior probability, a  is the state 

transition matrix and b is the observation probability. 

Observation sequences stO  extracted from the participants’ operation are 

input into the respective HMM model s t� to find out their probabilities. The 

probability of the observation sequence generated by the surgeon's HMM 

model is expressed as . .( | )st i st i stP O � , where 1...120i �  is the serial number of 

the participants’ operation. The probability of the observation sequence is 

taken as a measure of the similarity of the participants' performance to the 

surgeon's performance. 
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6.1.2 Experiments  

One experienced surgeon and twelve participants participated in the 

experiment. In the first step of the experiment, the experienced surgeon 

performed the procedure described in Section 5.3.1 for a total of 10 times. The 

surgeon performed the virtual surgery with the same requirements as in real 

surgery such as selecting the tissue grasping location, orientation of the 

instrument tip during ablation and visibility of the instrument tip for different 

instruments. The entire virtual surgical procedure was recorded. Features 

extracted from the acquired data were taken to train HMM models. These 

HMM models serve as a reference model for comparison with the participants' 

performances.  

 

Figure 6-3 Convergence of log likelihood for each subtask in parameter estimation 

process.  

 
Twelve participants, with an average age of 22.3±3.1 years and no medical 

experiences participated in the study. They were randomly divided into two 

groups with 6 participants in each group, namely Group A and Group B. Since 

neither participant had medical background, they were first introduced with 

cholecystectomy and the function of each laparoscopic instrument as 

mentioned in Section 5.3.1. All participants were given 3 hours each to 

familiarize themselves with the training system one day before the experiment. 
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In order to obtain a sense of how the laparoscopic instruments worked and 

how to use the robotic system to perform virtual surgery, they practiced on 

pointing, grabbing, moving, clipping and dividing operations with the training 

system. After familiarization with the robotic system, the surgical task 

described in Section 5.3.1 was then informed to all participants.  

Participants in Group A underwent the IRAS training method using the 

system described in Section 3.1. The handles of the robotic system moved 

along the recorded trajectories of the experienced surgeon while the virtual 

surgical scene corresponding to the movement of surgical instruments and 

tool-organ interaction was also replayed on a wide screen monitor 

simultaneously. Participants were required to place their hands on the robotic 

handles to experience the motion of the surgical instrument while watching the 

surgical simulation scene at the same time. Conversely, the participants in 

Group B received their training by watching a video of the virtual surgery. The 

video contains the virtual surgery conducted by the experienced surgeon. All 

participants were informed to concentrate on how the instruments were 

manipulated, including relative position to the organ, orientation of the 

instrument's tip and angle of the instrument's handle opened. The simulated 

surgical procedures shown to both Group A and B were identical  

During the training process, all participants were required to experience one 

session of training, followed by one session of practice on the virtual patient. 

This training and practice cycle was repeated 5 times. Upon completion of the 

5 cycles of training and practice sessions, all participants were required to 
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complete 10 tests of the entire task. Therefore, there were 12 5�  practices and 

120 tests data acquired in total.  

6.1.3 Performance Analysis and Discussions 

Observation sequences in the form of Equation (6.1) were extracted from 

the recorded operations of participants. There were 120 observation sequences 

in total. These observation sequences were fed to the surgeon's HMM model to 

obtain the probabilities of observation sequences . .( | )st i st i stP O � , 1.. .120i � . 

They were obtained using forward-backward algorithm [72] and expressed in 

log likelihood. The mean log likelihoods of each of the two groups’ test 

session (from Test Session 1 to Test Session 10) for each subtask are shown in 

Figure 6-4. The average log likelihoods of the 10 sessions are generally stable. 

There is no indication showing that the performance gets better (higher log 

likelihood) when the participants conduct more virtual surgery during the test. 

Therefore, 5 training sessions are enough for the participants to get familiar 

with the training system to achieve consistent performance. Participants from 

Group A generally produced higher log likelihood and smaller standard 

deviation than that of Group B in all 4 subtasks. These 120 log likelihoods 

were also ranked from high to low. Percentages of the observation sequences 

from Group A and their ranking at top 20, top 40 and top 60 of the 120 sets of 

observation sequences are listed in Table 6-1. Based on the results, Group A 

obtained the majority of the top 20, 40 and 60 of the 120 sets of observation 

sequences for all 4 subtasks. This suggests that the participants from Group A 

tried to execute their virtual surgery in a similar way to the surgeon. The 

performance of Group A is closer to the surgeon's performance in terms of the 

observation features. 
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Figure 6-4 Mean log likelihood and standard deviation of each test session. Dark 

solid lines represent Group A, dash lines represent Group B and vertical bars 

represent the standard deviation of the likelihood for each test session. 

Table 6-1 Percentages of the observation sequences from Group A and ranked at top 
N of the 120 observation sequences (N=20, 40, 60). 

 
Top 20  Top 40 Top 60 

Subtask 1 65.0% 67.5% 65.0% 
Subtask 2 90.0% 77.5% 70.0% 
Subtask 3 60.0% 52.5% 53.3% 
Subtask 4 70.0% 72.5% 58.3% 

 

Basic evaluation techniques were also applied to measure the performance 

of the participants. Average task time and trajectory length travelled by the left 

and right instruments were calculated for both the participants' and the 

surgeon’s operations. They are shown in Table 6-2 and Table 6-3 respectively. 

The participants in Group B took longer task time and utilized longer 

trajectory length to complete the task as compared to Group A. This finding 
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indicates that the participants from Group B may have behaved more 

hesitantly in performing the tasks; they may have exercised more trial-and-

error attempts while navigating the instrument to approach the organ due to 

the constraints in depth perception [104]. Similarly, due to the limited depth 

information inherently obtainable from watching training videos, the 

participants of Group B may have spent more time establishing their sense of 

depth during the practice and test sessions, resulting in the utilization of longer 

time and trajectory length. In contrast, Table 6-2 and Table 6-3 show that the 

task time and trajectory length for participants in Group A to complete the 

tasks is closer to the surgeon's performance. This might suggest that the motor 

skills required to perform the tasks have been demonstrated and transferred 

from the surgeon to the participants.  

Using T-test, it is found that the difference between both groups in 

trajectory length is statistically significant in terms of motion economics 

(p<0.05). On the other hand, task time may not be an effective evaluation 

criteria (p>0.05) to identify the difference between both group's performances. 

Although Table 6-2 shows that there Group A's performance is closer to the 

surgeon's model than Group B, more tests are required to confirm the results 

statistically. 

Table 6-2 Participants' performance evaluated by average task time, trajectory length 
of the left and right instruments. 

Participants Time (s) Left (mm) Right (mm) 

Test session 
Group A 247.6±70.9 579.8±275.4 1578.3±369.0 
Group B 268.4±149.5 978.7±861.4 1850.6±824.0 
p value 0.18 <0.001 0.011 
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Table 6-3 Surgeon's performance evaluated by average task time, trajectory length of 
the left and right instruments. 

Time (s) Left (mm) Right (mm) 
Surgeon 239.5±38 530.1±184.4 1512±144.2 

 

6.2 Clinical Evaluation 

Clinical evaluation has been conducted with medical students working on 

animal models. The aim of the clinical evaluation is to verify the effectiveness 

of the IRAS training method with real medical scenario. The evaluation 

method described in [104] was applied in this evaluation.  

6.2.1 Experimental Method 

Twelve medical students participated in the clinical evaluation. They were 

not trained with practical laparoscopic skills prior to this study. All 

participants were randomly divided into 2 groups, namely the Control Group 

and the IRAS Group. The two groups of participants underwent the 

experimental procedure as described in Table 6-4. Each participant in both 

groups watched a video taken in a real laparoscopic surgery for 1 hour before 

the exact date of experiment. The laparoscopic procedure in the video was 

conducted by an expert laparoscopic surgeon. The major difference of the 

experimental procedure focused on Step 2 where the Control Group received 

training with laparoscopic train box (as shown in Figure 6-5) which are 

commonly used in the medical curriculum, and the IRAS Group received 

training with the IRAS training system. Each participant was given two hours 

in Step 2. The Control Group spent two hour on the laparoscopic training box 

with fundamental laparoscopic skill. The IRAS Group spent their first half 
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hour in getting adapted to the operation of the IRAS training system and the 

simulation environment. In the rest of the one and a half hour, the participant 

was first guided by a pre-recorded procedure to complete a surgical procedure 

(The pre-recorded procedure was performed by an expert surgeon prior to this 

training session). After the guided training, the participant was required to 

practice on his / her own using the IRAS training system. This procedure was 

repeated in the remaining 1.5 hours. Once the training session was completed, 

all participants were required to perform a laparoscopic cholecystectomy on a 

real porcine model as stated in Table 6-4 step 3. The entire surgical procedures 

carried out by these two groups of participants in Step 3 were recorded by 

video camera for manual evaluation.  

 

Figure 6-5 Laparoscopic training boxes for Control Group's training. 
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Table 6-4 Summary of experiment procedure for clinical evaluation. 

 
Control Group IRAS Group 

Step1 Each participant watched a video (1) 
of laparoscopic cholecystectomy for 1 
hour one day prior the training 

Each participant watched a video 
(1) of laparoscopic 
cholecystectomy for 1 hour one day 
prior the training. 

Step2 Each participant received training and 
practiced on laparoscopic train box for 
2 hours. 

Each participant received the IRAS 
training for 2 hours (First 0.5 hour: 
get adapt to the operation of the 
simulation system.  
The following 1.5 hours: training 
and practice). 

Step3 Each participant performed a 
laparoscopic cholecystectomy on a 
porcine model. 

Each participant performed a 
laparoscopic cholecystectomy on a 
porcine model. 

Note (1): the video contains a full procedure of a laparoscopic cholecystectomy 
conducted by an expert surgeon. 
 

6.2.2  Performance Analysis and Discussions 

The procedural videos recorded in Table 6-4 step 3 were evaluated 

according to the assessment criteria shown in Table 2-1 and Table 2-2 [104]. 

In order to minimize any possible subjective bias during evaluation, the 

evaluators who assessed the procedural videos were not involved in the project 

development, and they were not given any information on the grouping 

information of the participants either. Table 6-5 shows the average score of the 

two groups over 5 global assessment criteria. Besides the 5 global assessment 

criteria, the entire procedure was divided into 10 subtasks as stated in Table 2-

2, each subtask was given a mark of 1 or 0 which corresponding to done or not 

done. Table 6-6 shows the average score of the two groups. Note that the 

procedural videos of participant no. 6 in the Control Group and participant no. 

4 in the IRAS Group were corrupted and hence, they were excluded from the 

study.  



143 

 

The evaluation results in Table 6-5 and Table 6-6 show that the IRAS 

Group has received higher marks than that of the Control Group in both the 

global assess scale and the subtask assessment scale. This experimental result 

suggests that the IRAS Group generally performed better than the Control 

Group. Hence, we can conclude that the IRAS training method is effective. 

Table 6-5 Average score of the students in the surgeries. 

 Reviewer1 Reviewer2 Average 

 
Control 
group 

IRAS 
group 

Control 
group 

IRAS 
group 

Control 
group 

IRAS 
group 

Depth Perception /5 2.8±0.84 3.2±0.84 3.2±0.84 3.6±0.89 3.0±0.82 3.4±0.84 
Bimanual dexterity /5 2.0±0.71 2.2±0.84 3.2±0.84 3.6±0.55 2.6±0.97 2.9±0.99 
Efficiency /5 2.8±0.45 3.2±0.84 3.8±0.45 3.4±1.52 2.9±0.68 3.3±1.16 
Tissue Handling /5 2.0±0.71 2.8±0.45 3.2±0.84 3.4±1.14 2.6±0.97 3.1±0.88 
Autonomy /5 3.0±0.00 3.0±0.00 4.8±0.45 4.2±0.84 3.9±0.99 3.6±0.84 
Total (25 marks) 12.6±1.52 14.4±2.61 18.2±2.77 18.2±4.60 15.4±3.63 16.3±4.06 

Note: each assessment criteria carries 5 marks, with 5 represents the best. 
 

Table 6-6 Average score of 10 subtasks. 

 Reviewer1 Reviewer2 Average 

 
Control 
group 

IRAS 
group 

Control 
group 

IRAS 
group 

Control 
group 

IRAS 
group 

Subtask1 0.6±0.55 0.8±0.45 1.0±0.00 1.0±0.00 0.8±0.42 0.9±0.32 
Subtask2 0.8±0.45 1.0±0.00 0.8±0.45 1.0±0.00 0.8±0.42 1.0±0.00 
Subtask3 0.6±0.55 0.6±0.55 1.0±0.00 1.0±0.00 0.8±0.42 0.8±0.42 
Subtask4 0.6±0.55 0.6±0.55 1.0±0.00 1.0±0.00 0.8±0.42 0.8±0.42 
Subtask5 0.0±0.00 0.2±0.45 0.4±0.55 0.8±0.45 0.2±0.42 0.5±0.53 
Subtask6 0.0±0.00 0.0±0.00 0.0±0.00 0.2±0.45 0.0±0.00 0.1±0.31 
Subtask7 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 
Subtask8 0.6±0.55 0.6±0.55 1.0±0.00 0.6±0.55 0.8±0.42 0.6±0.52 
Subtask9 0.2±0.45 1.0±0.00 0.8±0.45 1.0±0.00 0.5±0.52 1.0±0.00 
Subtask10 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 
Total 
 (10 marks) 5.4±1.52 6.8±0.84 8.0±1.22 8.6±0.89 6.7±1.89 7.7±1.25 
Note: see Table 2-2 for the details of the subtasks. 

 

There are several limitations raised in the experiment: (1) Levels of 

operation difficulty to each participant were different. The level of operation 

difficulty is subjected to the morphology of the porcine model. One of the 

solutions to mitigate the effect of such differences is to normalize the 
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evaluation score by a difficulty level. However, the difficulty level assigned to 

the task is still very subjective; and (2) the number of experiment participants 

and evaluator is small. A larger scale of such experiment is required to prove 

that the experimental results are statistically significant. Although the 

experiment suggested that the IRAS training method is effective, further 

experiments are required due to the above limitations.  

6.3 Summary 

Experiments were conducted on the IRAS training system to compare the 

efficiency between the IRAS training method and conventional training 

method. 

In technical evaluation, participants who received the IRAS training took 

lesser task time and shorter trajectory length to complete the tasks. The 

difference in utilized trajectory length between the two groups has been found 

to be statistically significant. HMM was also applied to characterize and 

compare the performance of participants with the surgeon’s. Group A that 

received the IRAS training produced higher average probability of observation 

sequence as compared to Group B. The results suggest that the IRAS training 

system is more effective in transferring motor skills to the user than that of the 

conventional training method. In this technical evaluation, relatively simple 

tasks were used for the evaluation. More comprehensive scenarios can be 

constructed for future studies.  

A well accepted clinical evaluation method was applied in the clinical 

evaluation. The clinical evaluation also shows that the performance of the 

participants trained by the IRAS training method is better than that of the 
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participants trained by conventional methods. However, the number of 

participants and reviewer in the clinical evaluation is limited. More 

participants and reviewer's participation are required to draw a conclusion with 

statistical significance. 
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7 DISCUSSION AND CONCLUSION 

This thesis systematically proposed, designed, developed and validated an 

innovative surgical training method (IRAS) described in Chapter 1. 

Customized surgical simulation robot and surgical simulation system were 

built for the IRAS training method. The human operator and robot 

collaborated in this training method. Both technical evaluation and clinical 

evaluation have shown that the IRAS training method is effective in 

transferring the motor skills from expert surgeon to novice surgeons. However, 

there are limitations with the IRAS training system.  

The robotic surgical trainer was built with the capability of recording and 

rendering the recorded instruments’ trajectory precisely, and the robot was 

also built with the capability of haptic output to render the tool tissue 

interaction for the human operator to obtain a sense of interacting with real 

objects. New motion learning and intention recognition algorithms were 

proposed and investigated. However, the robotic surgical trainer still lacks the 

capabilities to conduct comprehensive training, such as assisted training and 

assessment of performance with experts’ knowledge automatically. The robot 

needs to be equipped with more intelligence to understand and react with the 

human operator for specific surgical procedure. This may involve the 

development of a specific cognitive engine that possesses the situational 

knowhow of an expert surgeon. 

The IRAS training method has been validated through technical evaluation 

and clinical evaluation. Both studies show that the participants’ performance is 

better while trained by the IRAS training method. The participants trained by 
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the IRAS required shorter time and tool travelling length in completion of 

same tasks, and they also received higher marks when they were assessed by 

the expert surgeon with the clinical assessment criteria. However, the 

participants trained by the IRAS obtained slightly lower marks when assess by 

Autonomy [104] in the clinical evaluation. There could be risks that the trainee 

may develop dependency to the robotic guided motion. This risk needs to be 

taken care of when deploying the system for medical education. Training 

curriculum shall be carefully designed so that the IRAS training method can 

help the trainee shorten the learning curve and still retain his / her autonomy in 

a surgery. 

The technical evaluation compared the similarity of the participants’ 

performance with the surgeon’s performance in terms of observation features 

designed. This evaluation method could not identify the critical steps since all 

steps are assigned equal weight. Stringent requirement shall be imposed for 

surgical procedure. When the observations from different participants produce 

very closed log likelihoods, the method used in the technical evaluation may 

not able to identify the participants who did not perform well on the critical 

steps. Assessment method used in the clinical evaluation gives an overall 

assessment of the surgical procedure from different aspects. The marks given 

by the evaluator also makes this method subjective to the bias of the evaluator. 

Due to the limitation of resources, clinical evaluation was only conducted 

with 6 participants in each group. Each participant operated on one porcine 

model. Each porcine model presented unique features for the surgery. The 

difficulty level of each surgery is therefore different. It imposed a larger 

variation on the testing environment to our clinical evaluation. Although the 
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expert surgeons who examine the performance of the trainee have already tried 

to take this into consideration, the effects of such variations are hard to be 

completely eliminated. Furthermore, this consideration is also subjected to the 

opinion of individual evaluator. Therefore, a large scale multiple institutions 

study with more participants and examiners is preferred to eliminate the 

effects of such variation. The clinical evaluation is very time consuming, labor 

and cost intensive.  

A fully intelligent system with more training scenarios and objective 

assessment method will contribute to the provision of consistently high quality 

surgical training, and relieve the workload of medical staff for medical 

education. Our robotic surgical trainer could serve as a general platform for 

the laparoscopic surgical training and simulation. It can be used for other 

laparoscopic simulation scenarios in addition to cholecystectomy. Medical 

images processing and real time surgical simulation will be required to build 

more surgical scenarios.  
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