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Resumen 

 

La cirugía mínimamente invasiva, y concretamente la cirugía laparoscópica, ha supuesto 

un gran cambio en la forma de realizar intervenciones quirúrgicas en el abdomen. Actualmente, 

la cirugía laparoscópica ha evolucionado hacia otras técnicas aún menos invasivas, como es la 

cirugía de un solo puerto, en inglés Single Port Access Surgery. Esta técnica consiste en realizar 

una única incisión, por la que son introducidos los instrumentos y la cámara laparoscópica a 

través de un único trocar multipuerto. La principal ventaja de esta técnica es una reducción de la 

estancia hospitalaria por parte del paciente, y los resultados estéticos, ya que el trocar se suele 

introducir por el ombligo, quedando la cicatriz oculta en él. Sin embargo, el hecho de que los 

instrumentos estén introducidos a través del mismo trocar hace la intervención más complicada 

para el cirujano, que necesita unas habilidades específicas para este tipo de intervenciones. 

Esta tesis trata el problema de la navegación de instrumentos quirúrgicos mediante 

plataformas robóticas teleoperadas en cirugía de un solo puerto. En concreto, se propone un 

método de navegación que dispone de un centro de rotación remoto virtual, el cuál coincide con 

el punto de inserción de los instrumentos (punto de fulcro). Para estimar este punto se han 

empleado las fuerzas ejercidas por el abdomen en los instrumentos quirúrgicos, las cuales han 

sido medidas por sensores de esfuerzos colocados en la base de los instrumentos. Debido a que 

estos instrumentos también interaccionan con tejido blando dentro del abdomen, lo cual 

distorsionaría la estimación del punto de inserción, es necesario un método que permita detectar 

esta circunstancia. Para solucionar esto, se ha empleado un detector de interacción con tejido 

basado en modelos ocultos de Markov el cuál se ha entrenado para detectar cuatro gestos 

genéricos. Por otro lado, en esta tesis se plantea el uso de guiado háptico para mejorar la 

experiencia del cirujano cuando utiliza plataformas robóticas teleoperadas. En concreto, se 

propone la técnica de aprendizaje por demostración (Learning from Demonstration) para 

generar fuerzas que puedan guiar al cirujano durante la resolución de tareas específicas. 

El método de navegación propuesto se ha implantado en la plataforma quirúrgica 

CISOBOT, desarrollada por la Universidad de Málaga. Los resultados experimentales obtenidos 

validan tanto el método de navegación propuesto, como el detector de interacción con tejido 

blando. Por otro lado, se ha realizado un estudio preliminar del sistema de guiado háptico. En 

concreto, se ha empleado una tarea genérica, la inserción de una clavija, para realizar los 

experimentos necesarios que permitan demostrar que el método propuesto es válido para 

resolver esta tarea y otras similares. 
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Abstract 

 

Laparoscopic surgery has been considered a breakthrough for performing abdominal 

surgeries. Now, surgery has evolved towards less invasive techniques, such as Single Port 

Access Surgery, which is on the cutting edge of this type of technique. This procedure involves 

only one incision, through which all surgical instruments as well as a laparoscopic camera are 

introduced using a multiport trocar. The primary advantage of this technique is a reduction in 

the hospital stay and better cosmetic results, i.e., only one scar is needed, which is hidden in the 

umbilicus. However, because the instruments are introduced through a single trocar, the surgery 

becomes more difficult for surgeons, who need specific skills to perform this type of surgery. 

Thus, teleoperated surgical robotic platforms have emerged as a solution. 

This thesis is focused on the navigation of surgical instruments by teleoperated surgical 

robotic platforms in Single Port Access Surgery. In particular, the proposed navigation method 

is based on a virtual Remote Centre of Motion, which coincides with the insertion point 

(fulcrum point) that is estimated using abdominal interaction forces along the surgical 

instruments. Because these instruments also interact with the soft tissue inside the abdomen, 

which affects the fulcrum point estimation, a method is needed to determine whether the 

instrument tip interacts with the soft tissue inside the abdomen. To this end, we have used a soft 

tissue interaction detector based on a Hidden Markov Model. Furthermore, this thesis proposes 

the use of haptic guidance to improve the surgeon's experience when using teleoperated robotic 

platforms. Thus, Learning from Demonstration is proposed to generate guidance force 

references that guide the surgeon during the reproduction of a task. 

The proposed navigation method has been implemented in the CISOBOT surgical 

platform, which was developed by the Universidad de Málaga. The obtained experimental 

results validate the proposed navigation method and the soft tissue interaction detector. 

Additionally, a preliminary study of the haptic guidance system has been performed. 

Specifically, a generic and complex task, i.e., peg-in-hole insertion, has been used to perform 

the necessary experiments that demonstrate that the proposed methodology can solve this task, 

among others. 
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1 Introduction 

 

1.1 Smart Navigation in Surgical Robotics 

Over the last two decades, surgical procedures have evolved from laparotomies (open 

surgery) to minimally invasive surgeries following the hypothesis that reducing the number and 

size of incisions leads to a reduction in both patient recovery time and the likelihood of 

postoperative complications. Laparoscopic surgery involves the use of specialized instruments 

and a camera introduced through the abdominal wall via, at least, three small incisions that 

allow the surgeon to manipulate the inner organs. However, current trends are leading towards 

the development of different approaches. One new method is known as single port access 

surgery (SPAS) (Gomes, 2011), a laparoscopic surgical procedure in which a single incision is 

performed, and all surgical instruments and a camera are inserted by a multiport trocar. In this 

way, reducing the number of incisions in the abdominal wall provides some benefits, such as 

better cosmetic results, reduced postoperative pain and shorter hospital stay (Halim, 2008) 

(Kahnamoui et al., 2007). Despite these advantages, this technique has some drawbacks for 

surgeons because the instruments are inserted through the same trocar and can collide inside and 

outside of the abdomen, i.e., “sword fighting”. Moreover, the close proximity of the instruments 

to the endoscope entails a loss of triangulation and a reduction in the field of view (Shussman et 

al., 2011). This fact implies constrained movements of the instruments, which requires more 

skill of the surgeons. Thus, teleoperated robotic platforms are a useful tool for surgeons. In 

these platforms, a smart navigation system can be integrated within the robotic platform to 

improve surgeon skill using a guidance system that assists surgeons during the teleoperation. 

Furthermore, the smart navigation system may be able to recognize the gesture that is 
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performed, move the instruments while considering the SPAS constraints, and correctly guide 

the surgeon during the reproduction of the recognized gesture. These features require a previous 

knowledge of the surgical procedure. So, a method that is able to learn this knowledge would be 

needed. 

Therefore, different technological fields can be extended and integrated to achieve the 

proposed smart navigation system for SPAS as follows: 

Navigation 

As stated previously, the inherent constraints of SPAS may be considered when 

manipulators are handling the instruments. The most important constraint is the fulcrum point, 

which is the point at which the surgical instruments are inserted. It is commonly determined 

using a Remote Centre of Motion (RCM), which coincides with the fulcrum point. The RCM 

reduces the number of degrees of freedom to four: three rotations and one longitudinal 

displacement along the instrument. The da Vinci, as well as other surgical robotic systems use a 

mechanical RCM based on a dedicated kinematic design that is adjusted before the surgery, and 

it remains fixed during the operation (Chin-Hsing et al., 2012). This solution is primarily used 

in clinical applications owing to its robustness and safety, i.e., a fault in the robot controller 

would not damage the patient. However, this solution requires specific, large and complex 

kinematic structures that are not useful for SPAS because of their volume. For example, the da 

Vinci system uses four arms that are attached to the main structure by a parallelogram RCM 

kinematic structure. Although it has been used for SPAS, it has several limitations due to its 

volume, i.e., a reduction in the range of motion inside the abdomen and collision of the arms 

during the movements (Kroh et al., 2011). Thus, lightweight robotic surgical systems based on 

generic kinematic structures use a virtual or software RCM, where the fulcrum point is 

estimated online and can be changed during surgery. This solution is useful when the entry 

point is moving, as the abdominal wall does during breathing. Nevertheless, when a virtual 

RCM is used, the fulcrum point location has to be known. Thus, the use of an online estimator 

based on multi-axial Force-Torque (F/T) sensors placed between the end effector and the 

surgical instrument appears to be a solution. The primary advantage of this method is that the 

same sensor would be used for different purposes, i.e., bilateral teleoperation, fulcrum point 

estimation and/or force control. In fact, different authors ((Krupa et al., 2004), (Cortesao et al., 

2006) and (Ruiz Morales and Correcher, 2012)) performed an extensive study of the use of F/T 

sensors to estimate the fulcrum point using different control strategies. However, none of these 

contributions considers the interaction of the instrument with the soft tissue inside the abdomen 

during the motion of the surgical tools. This is an important fact to be considered because it 

leads to errors in the fulcrum point estimation and, consequently, to undesirable forces on the 
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patient’s abdomen. Furthermore, none of these studies has been adapted for use in SPAS, where 

several instruments are inserted by the same trocar, and redundant information would be used to 

improve the estimation of the fulcrum point. 

Human-Robot Interaction 

In teleoperation, a surgeon performs a task by remotely controlling a robotic platform. 

For efficient operation, surgeons need to receive rich sensory information from the robots. Thus, 

the platforms can be classified as follows:  

 Direct teleoperation: this is the basic teleoperation system. The surgeon provides 

movements by handling a master device during the surgery, and the robot (slave) 

follows its movements in real time. Generally, the surgeon operates the robot using a 

console that contains the master devices that are used to move the manipulators and 

screens to provide visual information. This type of teleoperation has evolved towards 

telesurgery, where a surgeon can perform surgery even though he is not physically in 

the same location. This technique involves not only a master console and slave robots 

but also communication and information technologies.  

 Bilateral teleoperation: this is an evolution of direct teleoperation. In this case, the 

surgeon feels the forces that are exerted on the instruments during the surgery. Thus, 

force sensors are placed on the slave robots, and haptic devices are used to teleoperate 

them and provide force feedback to the surgeon. The force sensors can be classified 

depending on their proximity to the instrument tip and sensing capabilities. The first 

type is a multi-axial force-torque sensor placed on a robot’s wrist (Krupa et al., 2004), 

i.e., between the end effector and the instrument. The sensor can feel the exerted forces 

and torques throughout the instrument and do not need to be sterilized because it is not 

introduced into the abdomen. However, they do not provide enough sensitivity to 

differentiate between different types of tissue and different force interactions through 

the instrument, i.e., forces exerted on the abdominal wall during movement could affect 

the measured forces. Conversely, the second type of sensor has been designed to be 

installed on the instrument tip in order to feel the soft tissue inside the abdomen and, 

thus, to enable the surgeon to feel the tissue in the same way as in a laparotomy 

(Berkelman, 2003). However, there are two primary disadvantages to this type of 

sensor: sterilization is needed because the sensor is inserted into the abdomen, and 

temperature changes affect the force measurements when transducers are used 

(Puangmali et al., 2008).  
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As described, this kind of teleoperation allows reproduction of only the surgeon’s hand 

movements using the instruments. However, a method that provides additional support during 

the teleoperation would be advantageous. Haptic guidance is an evolution of bilateral 

teleoperation. It is used to provide guidance forces to limit the workspace or to assist the 

surgeon during the execution of a predefined trajectory to solve a task. This technique is 

commonly known as virtual fixtures (Abbott et al., 2007). It improves the accuracy and safety 

of surgery and reduces the time needed for surgical tasks because it combines the precision of a 

robotic system and the intelligence of humans (Casals, Basomba et al., 2011). The use of virtual 

fixtures is based on the premise that the reference trajectories and forbidden regions are 

previously known, i.e., relies on an accurate reference position that is typically obtained from 

images or marks (Park et al., 2001; Abbott et al., 2007). However, there are tasks in which this 

position can be affected by estimation errors or cannot be estimated. Thus, other methods to 

generate haptic guidance are needed. 

Machine Learning 

Machine learning has been widely used in robotics. It primarily consists of using sensory 

information to retrieve movements from multiple demonstrations, which are encoded into 

probabilistic models. Then, these models are used to recognize these movements or to provide a 

previously trained trajectory to a robot.  

In the case of movement recognition, machine learning has been used to detect and 

classify a surgeon’s movements to identify the stage of the surgical procedure during its 

execution (Lin et al., 2005). Moreover, it has been used to perform a robot-human collaboration, 

where a manipulator is able to assist the surgeon depending on the surgical procedure stage 

(Bauzano et al., 2014). However, the use of machine learning algorithms to detect the 

interaction of instruments with the patient has not yet been investigated. It will be useful during 

the estimation of the fulcrum point to determine whether the instrument is interacting with soft 

tissue, which signifies that the fulcrum point cannot be estimated using the measured forces 

along the instrument. 

Machine learning has also been widely used to generate temporally continuous 

trajectories based on the manipulator position or contact force measurements. Thus, the 

Learning from Demonstration (LfD) approach was defined (Calinon, 2009). It demonstrated that 

robots can perform tasks that have been previously trained by a human, such as pouring a glass 

of water using a bimanual robot (Jakel et al., 2010), hitting a table tennis ball, feeding a robotic 

doll (Calinon et al., 2010) or placing a ball in a hole inside a box (Rozo et al., 2013). However, 

none of these studies addressed the use of the LfD approach for haptic guidance. The key 

difficulty is to generate appropriate guidance force references to aid the task in real-time while 
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considering the momentary input of the teleoperator, i.e., a desirable guidance system should 

not encourage the operator to follow a time based trajectory but rather provide support in 

response to operator commands. 

These technologies, once extended and integrated, could solve inherent issues that arise 

during SPAS and result in a smart navigation system that can assist surgeons during SPAS 

procedures. 

 

1.2 Contributions 

This thesis provides theoretical and experimental results related to the smart navigation of 

surgical instruments handled by robots in SPAS. The instrument navigation has to consider the 

inherent constraints of SPAS to avoid undesirable forces on the patient and to perform the 

movements accurately. Moreover, the use of haptic guidance to assist the surgeon during the 

teleoperation appears to be a promising method that has not been thoroughly investigated. 

Therefore, this thesis proposes a smart navigation approach that integrates these issues into a 

global architecture, therefore, the main contributions of this thesis are: 

- Position control algorithm for surgical instruments in SPAS 

A navigation method based on a parallel force-position control that has been adapted to 

SPAS is proposed. This method uses a parallel force-position control to perform the 

instrument’s movements taking into account the fulcrum point constraint and minimizing the 

forces exerted on the abdominal wall. Moreover, taking advantage of SPAS (i.e., both 

instruments are inserted by the same trocar) the fulcrum point is estimated using a soft tissue 

interaction detector and a fusion measurement method. 

- Soft tissue interaction detector 

It is necessary to detect interactions between instruments and soft tissue in order to reduce 

fulcrum point estimation errors. Thus, a machine-learning algorithm based on previously trained 

surgeon movements is proposed. These movements are divided into different states that provide 

information about the interactions of the instruments with the soft tissue inside the abdomen. 

Therefore, the purpose of this algorithm is to recognise the surgeon’s movements and the 

current state in real time during the surgery and thereby to detect whether any interaction with 

soft tissue occurs. 
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- Learning from Demonstration haptic guidance approach 

To extend the surgeon’s capabilities during teleoperation, a generic approach for haptic 

guidance using the learning from demonstration methodology has been defined. This approach 

takes into account previously trained movements and their relation to sensory information 

during the movement. Using this information, haptic forces are generated and transmitted to the 

surgeons to assist them during teleoperation. 

- Implementation of the proposed smart navigation method and experimental 

results 

The proposed methods were implemented in two teleoperated robotic platforms. To 

experimentally validate the proposed smart navigation method for SPAS, the CISOBOT 

platform, which was developed by the Universidad de Málaga, was used. Its experimental 

results demonstrated the performance of the navigation method. The haptic guidance approach, 

based on the LfD method, was implemented in the LWR Taskboard, which was developed by 

the Telerobotics and Haptics Laboratory at ESA-ESTEC. Using this platform, a generic task 

(i.e., peg-in-hole insertion) was performed to validate the proposed method for haptic guidance. 

 

1.3 Context and Motivation 

This thesis has been conducted in the context of research studies on surgical robotics in 

the System Engineering and Automation research group at the Universidad de Málaga. 

Furthermore, a three-month research stay was performed in the Telerobotics and Haptics 

Laboratory at the European Space Agency to research the use of haptic guidance in space 

teleoperation. 

The results of this thesis extend previous studies related to the teleoperation of surgical 

robotic platforms (Bauzano, 2012) and surgeon gesture detection (Estebanez, 2013). These 

studies formed part of the surgical robotic research activities performed at the Universidad de 

Málaga, whose first primary achievement was the design and implementation of a laparoscopic 

camera robotic assistant that was successfully used in human surgeries (Muñoz et al., 2006). 

Currently, the activities of this team are focused on developing perceptual, navigational and 

cognitive technologies for application to surgical robotics. This thesis was supported by Spanish 

national projects under action DPI2010-21126-C03-01 and DPI2013-47196-C3-1R. The 

primary objective of these projects has been to provide autonomy in surgical navigation using 
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cognitive and machine learning algorithms (Rivas-Blanco et al., 2014) (Bauzano et al., 2013) 

(Bauzano et al., 2014). 

Furthermore, the Telerobotics and Haptics Laboratory at ESA-ESTEC are involved in 

different projects related to the teleoperation of robots using haptic devices. One of them is the 

METERON project, which consists of developing technology for haptic teleoperation from 

space. During the performed research stay, a generic approach for haptic guidance was 

developed. It has been used to solve generic tasks, e.g., peg-in-hole, and it is proposed in this 

thesis to solve specific tasks in surgical teleoperation. 

 

1.4 Thesis Outline 

This thesis is divided into six chapters, six appendices and bibliographical references. 

Each chapter, except this one, starts with an introduction that presents the problem to be solved, 

followed by the structure of the chapter, and ends with the conclusions that highlight the 

contributions and/or results that have been obtained. 

The structure of this thesis is focused on solving different issues that arise when a 

teleoperated surgical robotic platform is developed for SPAS: a navigation method that 

considers the fulcrum point constraint as a virtual Remote Centre of Motion, a soft tissue 

interaction detector based on Machine Learning, used to improve the fulcrum point estimation, 

and a haptic guidance system based on Learning from Demonstration that is able to assist the 

surgeon during teleoperation. Then, Chapter 2 introduces the background to the current and past 

history of surgical teleoperation, providing a brief description of the most important surgical 

robotic platforms. Later on, the state of the art in Machine Learning for surgical robotics is 

described. This methodology has been specifically used to solve two issues that are relevant to 

this thesis: the use of Hidden Markov Models for gesture recognition and the use of Learning 

from Demonstration for robot trajectory generation based on previous training. Finally, this 

chapter describes the use of haptic guidance in surgical robotics. 

Chapter 3, titled “Smart Navigation for Single Port Access Surgery”, proposes a 

navigation method for robotic SPAS that can perform movements of two surgical instruments 

inserted through a multiport trocar based on the fulcrum point constraint that is estimated from 

the forces and torques measured along the instrument. To improve the fulcrum point estimation, 

the proposed navigation method uses a measurement fusion method that takes advantage of the 

fact that both instruments are inserted through the same trocar. However, the use of the forces 

and torques along the instrument to estimate the fulcrum point requires that the instruments 
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interact only with the patient’s abdomen. Therefore, a soft tissue interaction detector, also 

presented in this chapter, is used to detect whether the instrument tip interacts with the soft 

tissue inside the abdomen. Finally, a parallel force-position control scheme is used to minimize 

the forces exerted on the patient’s abdomen. 

Having defined a navigation method for teleoperation in SPAS, Chapter 4 proposes the 

use of Learning from Demonstration for haptic guidance. Thus, a generic approach is presented 

in this chapter for solving generic tasks. This approach is divided into two stages. The first stage 

consists of dividing the task into different gestures and training them by expert demonstrations, 

and the second stage uses this training during the reproduction of the task to assist the operator 

in haptic guidance. 

Chapter 5, “Implementation and Experiments”, describes the experiments that were 

conducted to validate the proposed smart navigation system for SPAS. The navigation method 

for SPAS was tested by analysing the exerted forces, fulcrum point estimation errors and soft 

tissue interaction detector delays. Conversely, the haptic guidance method, which is based on 

LfD, was validated using the generic peg-in-hole insertion task, whose experimental results 

demonstrate the performance of the training and reproduction stages.  

 Chapter 6 highlights the most relevant contributions of this thesis and proposes future 

research topics. Finally, the appendices provide a stability analysis of the position control 

scheme used in Chapter 3 and the theory of the mathematical models that have been used. 
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2 Background 

2.1 Introduction 

It has been nearly 30 years since robotic systems were first used in surgery, and they have 

been adapted to different surgical techniques, which have evolved from laparotomy (open 

surgery) to Minimally Invasive Surgery (MIS) or Laparoscopic Surgery (LS). This evolution 

followed the hypothesis that reducing the number and size of incisions reduces both patient 

recovery time and the likelihood of postoperative complications (Reza et al., 2006; Eskicorapci 

et al., 2007). The LS technique involves the use of specialized instruments and a camera that are 

introduced into the abdomen through small incisions to allow the surgeon to manipulate the 

inner organs. Three primary LS approaches are currently considered: 

 Single Port Access Surgery (SPAS), a laparoscopic surgical procedure in which the surgeon 

operates almost exclusively through a single incision or entry point, typically the patient’s 

navel. 

 Natural Orifices Trans-luminal Surgery (NOTES), which is performed with a flexible 

endoscope that is passed through a natural orifice (mouth, urethra, anus, etc.) with the 

instrument introduced into the abdominal cavity through an internal incision in the stomach, 

vagina or colon. 

 Hand Assisted Laparoscopic Surgery (HALS), a recent approach that combines a mini-

laparotomy with laparoscopic surgery: the surgeon inserts one hand into the abdominal 

cavity to directly manipulate the inner organs while the other hand uses a standard 

laparoscopic instrument.  

Although current trends are moving towards the development of the previously described 

techniques, several studies (Perino et al., 1999; Schlachta et al., 2001; Agachan et al., 1997) 

have revealed that the implied difficulty in the use of instruments for manipulating the organs 
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using standard video image feedback implies that surgeons need an extensive training process to 

acquire the skills required to successfully perform these surgical procedures. In fact, the 

surgeon’s learning curve significantly increases when performing LS compared with NOTES.  

Hence, teleoperated robotic systems for laparoscopic surgery have been designed with the 

goal of addressing the above difficulties by providing higher precision and intuitive movements, 

i.e., a more natural management of the surgical instruments and a three-dimensional view of the 

surgical area. However, although the enthusiasm for laparoscopic techniques is rapidly 

increasing, the use of robotic assistants presents several issues. The first one is related to the 

navigation of instruments inside the abdomen. Depending on the approach, these instruments 

are moved considering their inherent constraints, e.g., in traditional LS, each instrument is 

moved based on the fulcrum point at which each instrument is inserted. However, in SPAS, all 

of the instruments are inserted through the same fulcrum point, which could lead to more 

constraints and collisions between the instruments inside and the manipulators outside the 

patient, e.g., the current commercialized surgical robotic platform (da Vinci) uses a mechanical 

remote centre of motion that entails large kinematic structures that could collide during SPAS. 

Moreover, the fact that both instruments are inserted through the same trocar and crossed, as 

indicated in Figure 2-1, requires better surgical abilities when the instruments are handled in this 

manner. 

 

Figure 2-1. Position of instruments in SPAS 

 

These issues have implied that teleoperated surgical robotic systems have not experienced 

a substantial growth in the number of procedures that can be performed by new minimally 

invasive techniques. Moreover, these systems do not provide the required assistance to 

surgeons, which would be useful in improving surgeons’ skills. In fact, it should be noted that 

robotic surgery is currently stagnant owing to the lack of available commercialized teleoperated 

robots: current robotic technologies are not useful for new minimally invasive surgical 

procedures such as SPAS or NOTES. The following table presents the current state of the 
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application of robotic technologies for each of the mentioned surgical techniques considering 

the stated issues. 

Table 2.1. Current Applications of Robotics in Different Surgical Techniques 

 Minimally invasive surgery (MIS) 

LS HALS SPAS NOTES 

Kinematic 
Structures 

• Specific kinematic 
structures with 
mechanical RCM 
(clinical applications) 

• Generic kinematic 
structures with a 
virtual RCM 
(research purposes) 

• None 

• Specific kinematic 
structures for LS 
adapted to SPAS 

• All-in-one 
instruments 

• Robotic flexible 
endoscopies and tele 
mini-robotic systems 
that navigate inside the 
abdominal cavity 

Surgeon 
Assistance 

• Haptic assistance by 
forbidden regions and 
trajectory tracking 
(virtual fixtures) 

• None 
• No haptic 

assistance 
• No haptic assistance 

 

Consequently, and considering the previous information, it is clear that it is necessary to 

develop new navigation methods that use lightweight structures to perform instrument 

movements based on the inherent constraints of these new surgical techniques. Moreover, 

robotic technologies need to lead to a more natural interaction involving greater comfort for 

surgical staff, thus making the learning process quick and effective (Gomes, 2011). In this 

context, the use of robotic assistance appears to be an appropriate tool for improving the 

surgeon’s experience by taking advantage of robotic precision and human intelligence. 

Therefore, a smart navigation system integrated with a teleoperated robotic platform is 

needed. This smart navigation system should be able to move surgical instruments by 

teleoperation, taking into account the inherent constraints of the surgical technique and assisting 

surgeons during the procedure to improve their skills. Different technologies must be combined 

and expanded to achieve the proposed smart navigation system, as depicted in Figure 2-2 and 

described below. 

The navigation of surgical instruments inside the patient’s abdomen has been addressed 

using different methods that have been implemented in surgical teleoperated robotic platforms, 

as described in Section 2.2. These navigation methods are primarily based on specific large 

kinematic structures or robotized all-in-one instruments, which are not useful for SPAS because 

lightweight structures based on external manipulators that apply enough forces to push up 

organs are required, as described in Section 2.2.3. 
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Figure 2-2. Use of different technologies to create the proposed smart navigation system 

Therefore, a new smart navigation method for generic and lightweight structures that 

takes into account the inherent constraints of the surgical technique is needed. Thus, the 

proposed navigation method should recognize the movements of the surgeon and detect the 

interaction between the instrument and the patient to adapt the movements to the required 

constraints. In this sense, machine-learning algorithms has been widely used in robotic surgery 

to recognize the stage of a surgical procedure that is being performed, as explained in Section 

2.3.1. However, these algorithms have not yet been used to detect the interaction of the 

instrument with the patient, which is useful for performing instrument-constrained movements. 

Once the navigation problem is solved, the surgical instruments must be moved by 

surgeons using a human-robot interaction that allows constrained teleoperation in an easy and 

comfortable way for the operator. For this purpose, several master consoles, which provide 

human-robot interactions, have been developed, as described in Section 2.2. These consoles 

provide direct or haptic teleoperation, with certain consoles providing force feedback to the 

surgeon. The force feedback can be used to perform haptic guidance during the reproduction of 

a task to follow a predefined trajectory or avoid forbidden regions that were previously defined 

using images or marks, as described in Section 2.4. However, the use of sensory information 

from the robot, e.g., position, velocity, and force and/or torque, to derive haptic guidance 

trajectories in real-time has not been explored. The primary problem is to generate guidance 
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force references based on sensory information. Learning from demonstration is a machine 

Learning based approach that is able to learn human skills by guiding a robot to perform a task 

using its sensory information. This approach has been successfully used to learn and reproduce 

human skills such as pouring a glass of water, hitting a table tennis ball or feeding a robotic 

doll, as described in Section 2.3.2. However, this approach remains to be investigated for 

providing haptic guidance trajectories that depend on sensory information and have been 

previously learned from multiple demonstrations. 

 

2.2 Teleoperated Surgical Robotic Platforms 

Although the use of autonomous robotic systems to perform surgeries is in the distant 

future, we currently cannot simulate human intelligence using computers. Meanwhile, robotic 

systems are remotely controlled by humans that use master devices to guide them. This 

methodology is commonly known as teleoperation or telesurgery. Since the first teleoperated 

surgical robotic platform (in the 1990s), different platforms have been developed for either 

commercial or research purposes. 

2.2.1 Commercialized Robotic Platforms 

The first commercialized surgical robotic platform was the AESOP arm (Mettler et al., 

1998) (Figure 2-3.a). It was developed by Computer Motion in the 1990s under a NASA 

contract. AESOP was approved by the US Food and Drug Administration (FDA) to perform 

surgeries in 1994, and it was the first robot used to perform a surgery. The primary limitation of 

AESOP was that it was designed to handle only the laparoscopic camera, and it was guided by 

voice. This was the initial step towards ZEUS (Butner and Ghodoussi, 2001), which was the 

first teleoperated surgical robotic platform; its first prototype was shown in 1995 and tested on 

animals in 1996. In 2001, after several clinical trials on humans, the FDA approved its 

commercialization. The ZEUS was composed of a master console (Figure 2-3.b) with which the 

surgeon could handle two passive devices with his hands (no haptic feedback), and these 

movements were reproduced by two slave arms (Figure 2-3.c). Moreover, visual information 

was provided by a laparoscopic camera and two screens embedded within the master console, 

which were used to show the laparoscopic image and provide information about the robotic 

system. 
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(a)            (b)        (c) 

Figure 2-3. (a) Aesop; (b) ZEUS master console; and (c) ZEUS slave arms 

 

In 2003, the ZEUS system was discontinued because Computer Motion and Intuitive 

Surgical merged into a company to use their efforts in developing the most well-known 

commercialized surgical robotic platform, the da Vinci surgical system (Guthart and Salisbury, 

2000). In 1995, Intuitive Surgical started licensing technology from IBM, NASA, SRI 

International and several universities to develop the first prototype of a surgical platform in 

1997. This prototype, called Lenny, was used for animal trials. Afterwards, a new prototype for 

human trials was developed and used in vascular and gynaecological procedures in the same 

year. The market-ready version of the robot was called da Vinci, and clinical tests started in 

1999. The FDA approved its use on humans in 2000. Since then, the system has been improved 

with HD-3D vision, advanced ergonomic features and the possibility of using two consoles for 

assisted surgery. As of December 31st, 2014, this company had sold approximately 3,000 units 

worldwide, and more than 1.5 million surgeries had been performed (Intuitive Surgical, 2014). 

The most successful application of this platform is the prostatectomy, approximately 90% of 

these surgeries are performed using this platform in the USA (Haidegger, 2011).  

The da Vinci system is composed of a master surgeon’s console (Figure 2-4.a) and four 

slave robotic arms (Figure 2-4.b) that hold the surgical instruments. The surgeon’s fingers grasp 

the master console controls (Figure 2-4.c), and his movements are reproduced by the slave arms, 

thus providing enhanced dexterity, better precision and ergonomic comfort. Although this 

system was conceived for telesurgery, only the latest version, the da Vinci Si (launched in April 

2009), provides further displacement of the master console. Previous versions used optic fibre-

based short-distance protocols to communicate between the master and slave systems. 
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                  (a)                     (b)            (c) 

Figure 2-4. (a) da Vinci master console; (b) slave arms; and (c) master console controls 

None of these described platforms has been conceived for SPAS, which provides some 

benefits for patients, as explained in Section 1.1. In the case of the da Vinci system, even though 

several SPAS procedures have been performed using special instruments (Kroh et al., 2011), the 

system is too large to perform SPAS without its arms colliding. The primary reason for its large 

structure is the use of a mechanical Remote Centre of Motion (RCM), which is managed by 

parallelogram arms. Furthermore, this system does not provide haptic feedback to surgeons, 

which could improve tissue characterization (Tholey et al., 2005). 

Currently, Titan Medical Inc. is developing the SPORT (Single Port Orifice Robotic 

Technology) Surgical System (Figure 2-5), which is expected to be commercialized in 2017 

(Titan Medical, 2015). The goal of this company is to extend SPAS into general surgeries, such 

as cholecystectomies or appendectomies. This system is composed of a slave robotic system and 

a master console. The slave robotic system includes one arm that holds an all-in-one instrument 

composed of two articulated tips and a 3D camera. Additionally, the master console provides a 

3D endoscopic view of the patient’s body, as well as two haptic devices that are used to 

teleoperate the instrument tips. 

 

                             (a)          (b)              (c) 

Figure 2-5. (a) SPORT slave robotic system; (b) master console; and (c) instrument tips with a 

camera 
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2.2.2 Research Prototypes 

In addition to the previously described surgical systems in the research field, the Trauma 

Pod was one of the most ambitious projects related to surgical robotics (Garcia et al., 2009). The 

goal of this project was to create a teleoperated surgical robotic platform that would be 

integrated into an unmanned mobile robot to assist soldiers in the battlefield (Figure 2-6.a). This 

robotic platform would be controlled by a human surgeon from a distance (telesurgery), and 

they would perform vital surgery to save the soldier’s life. This project was initiated in 1994 by 

the Defence Advanced Research Projects Agency (DARPA). The first stage, which was 

completed in 2008, used a da Vinci surgical system with a Mitsubishi robot that provided the 

surgical tools to the da Vinci platform using a tools exchange machine, as depicted in Figure 

2-6.b.  

 

   

            (a)              (b) 

Figure 2-6. Trauma Pod project: (a) Frame of the video; and (b) First stage demonstration 

Others approaches have focused on lightweight structures. SRI International developed 

the M7 (Figure 2-7.a) surgical robot in 1998, which is a portable and deployable lightweight 

robot that consists of two 7 DOF arms equipped with motion scaling, tremor filtering and haptic 

feedback. This system has been primarily used to test telesurgery under variable gravity (King 

et al., 2008). However, the most famous lightweight robot currently used for research is the 

Raven II (Figure 2-7.b), which was developed by the University of California at Berkeley, 

Davis and Santa Cruz (Lum et al., 2009). It has two articulated arms fitted with a shaft for 

different surgical tools. This system has been designed for research, and the manufacturer 

provides full access to its software interfaces using ROS (Robotic Operating System). 
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(a)      (b) 

Figure 2-7. (a) M7; and (b) Raven II 

The German Aerospace Centre (DLR) has developed a lightweight manipulator-based 

surgical system known as MiroSurge (Hagn et al, 2010). The primary objective of this system is 

to provide a versatile platform for open and minimally invasive surgery. This versatility 

involves the following parameters: 

- Multiple surgical procedures: visceral, orthopaedic and neurosurgery 

- Adaptable setup: the number of manipulators and their location can vary 

- Different modes: position, compliance and admittance control 

- Different interactions: hands-on, teleoperation and haptic 

- Additional technologies can be integrated: e.g., visual servoing, augmentation, etc. 

To achieve these features, this system is composed of specific manipulators for medical 

applications (Figure 2-8.a) known as MIRO robots, which were also designed by the DLR 

(Hagn et al., 2008). These manipulators hold a specific instrument (Figure 2-8.b), called the 

MICA, whose tip is articulated and serves as an end effector inside the abdomen, thus extending 

the dexterity of the system. In 2010, this instrument was a gripper; however, the DLR was 

developing three different instruments: a Metzenbaum scissor, a Maryland dissector and a 

conventional needle holder. Moreover, these instruments could provide force and torque 

feedback inside the body using a sensor placed on the instrument tip (Seibold et al., 2008). 

Owing to its position, the measured data are affected by neither friction in the trocar nor exerted 

forces in the abdominal wall, which improves the haptic perception. However, as stated in the 

previous section, this type of sensor causes several issues related to sterilization and temperature 

changes when the sensor is in contact with tissue.  

To teleoperate this system, the DLR also developed a surgical master console that uses 

two sigma.7 haptic devices (Figure 2-8.c). These haptic devices, which have been developed in 

collaboration with Force Dimensions Inc., have seven fully actuated degrees of freedom: three 
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for translational motion, three for the rotation of the wrist and one for the gripper. Using this 

configuration, the device can provide up to 20 N of force feedback and a rotational sphere of 

approximately 120 mm diameter (Tobergte, et al., 2011). 

The main advantage of this system is the flexibility of its slave arms (MIRO robots) 

because they can be placed in different locations based on the surgical procedure to be 

performed. In comparison with the da Vinci surgical system, their arms are thinner because they 

use a generic kinematic structure with a virtual RCM that is calculated using the force-torque 

information from the manipulator end-effector. 

   

                                         (a)      (b) 

 

(c) 

Figure 2-8. (a) DLR Miro Robots; (b) MICA instrument tip; and (c) mirosurge master console. 

All of the previously described platforms were conceived for traditional laparoscopic 

surgery and have not been used in SPAS. Several robotic platforms have been developed within 

the last five years that are more suitable for SPAS. These platforms are typically all-in-one 

robotized instruments that contain everything to perform a simple surgery. 

The novel Insertable Robotic Effectors Platform (IREP) has been developed (Xu et al., 

2009) and improved (Ding et al., 2010) by Columbia University since 2009. This system is 

composed of a 3D stereo vision module mounted on a 3 DoF articulated arm that provides pan, 

tilt and zoom and two 8 DoF dexterous arms with two grippers (Figure 2-9). These arms are 

initially folded in a cylindrical configuration that allows the instrument to be introduced through 

a 15 mm diameter trocar. Once inserted, two five-bar mechanisms deploy the dexterous arms 
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and adjust the distance between them. Furthermore, the two dexterous arms can exert a force of 

up to 56.2 N with an average of approximately 20 N. The maximum force is reached only for a 

concrete articular configuration of the arm. 

 

Figure 2-9. IREP Surgical system 

The Imperial College of London is involved in the iSnake project, which consists of 

designing different multitasking robotic platforms for Minimally Invasive Surgery (MIS). In 

(Kwok, 2013), they developed a system similar to the IREP. The primary advantage of this 

system is the use of two flexible arms based on tendons driven by DC motors. This system is 

wider than the IREP because it is introduced through a 30 mm diameter trocar. The maximum 

exerted forces of the arms have not been documented. However, this is the only system that 

currently provides haptic guidance to avoid manipulation limits during teleoperation. It has been 

validated through in vivo trials with pigs, as depicted in Figure 2-10. 

 

Figure 2-10. iSnake experimental trials (Kwok, 2013): (a) In vivo trial; (b) Grasping the uterine 

horn; (c) and (d) Laser endomicroscopy; and (e) Diathermy conducted on the liver 

Another all-in-one instrument has been developed by the BioRobotics Institute at the 

Scuola Superiore Sant’Anna (Piccigallo et al., 2010; Niccolini et al., 2012). The SPRINT 

(Single-Port lapaRoscopy bimanual robot) is a teleoperated surgical system that is composed of 

two high-dexterity 6 DoF arms and a 3D camera (Figure 2-11). The arms are controlled by two 

external DC motors that actuate the shoulders, as well as four internal motors that actuate the 
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elbows and the wrists. This configuration provides forces of up to 5 N at the instrument tip, 

which is not sufficient for complex surgeries where organs need to be pushed up. The result is a 

robotic system that can be introduced through a 30 mm diameter trocar. It is teleoperated by a 

dedicated master console that uses two Phantom Omni devices (Sensable Technologies Inc.) to 

provide haptic teleoperation. To improve the end-effector control, each Phantom Omni device 

has been modified by adding a customized handle interface that converts the position of the 

surgeon’s fingers into movements of the slave arm end-effectors. This system has internal 

motors to actuate the arms whereas the previously described systems for SPAS are actuated 

using external motors and tendons or cables. 

 

Figure 2-11. SPRINT surgical system 

2.2.3 Comparison of Described Platforms 

As stated in this section, surgical robotic platforms can be divided into all-in-one 

instruments and external robotic platforms. The primary advantage of the first type is size; they 

are compact and do not need special features in the operating room. However, external robotic 

platforms have a larger size and typically require special features in the operating room because 

they are composed of a minimum of three manipulators: two for surgical tools and one for the 

camera. Nevertheless, because of their size, the manipulators can apply higher forces inside the 

abdomen. In fact, in the case of a cholecystectomy, the required peak forces inside the abdomen 

are higher than 20 N (Richards, C. et al., 2000). These forces are easily applied by external 

manipulators owing to their dimensions; however, in the case of internal robots, size is a 

significant limitation that effects the maximum torque of its motors, which are unable to exert 

enough forces to hold organs during a surgery; e.g., during a cholecystectomy, the liver needs to 

be pushed up. However, the use of external robotic platforms for SPAS involves several issues. 

One issue is the RCM, which is needed to move the surgical instruments correctly and has been 

determined using a mechanical RCM involving specific kinematic structures (da Vinci) and 

virtual or software RCMs used in generic kinematic structures (DLR MiroSurge).  
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2.3 Machine Learning in Surgical Robotics 

Machine learning is a scientific discipline and a subfield of Artificial Intelligence, which 

studies the use of algorithms that learn from previous information, thus building a probabilistic 

model that can predict, decide and/or recognize with high accuracy. These algorithms have been 

widely used in surgical robotics for recognizing gestures, i.e., movements that provide 

information about the surgical procedure stage, and robotic assistance, e.g., to evaluate the 

surgeon’s skills, thus comparing the performed gestures with ones that have been previously 

trained by expert surgeons. In human-robot collaboration, it has been used to detect the 

performed gesture and the stage of the surgical procedure when moving a robot to assist the 

surgeon. Finally, machine learning has been used to perform automatic movements that have 

been previously trained by an expert surgeon and encoded using the Learning from 

Demonstration (LfD) approach. In this section, recent contributions in gesture recognition and 

LfD are presented. These contributions will be extended in this thesis for two purposes. The first 

one is the recognition of surgeons’ gestures to detect instrument interactions with the patient’s 

body, which is useful to perform constrained navigation taking into account the limitations of 

SPAS. The second one is the use of this recognition and the LfD approach to detect the gesture 

that is being performed and to derive haptic guidance trajectories based on sensory information 

from the robot. 

2.3.1 Gesture Recognition 

In general, a gesture can be defined as a corporal expression composed of the physical 

movements of the fingers, hands, arms, head, face or body that provides meaning in a similar 

way to the use of language to communicate with other people. In MIS, these gestures can be 

performed using surgical instruments (e.g., pushing up the liver, holding or cutting tissue, or 

tying knots), and these gestures provide information about the stage of the surgical procedure 

and even about the ability of the surgeon if the gesture is analysed. Therefore, the use of 

machine learning algorithms appears to be a useful tool for encoding surgical procedures into 

statistical models and detecting the stage of a procedure by recognizing the surgeon’s gestures.  

Some studies have demonstrated the use of different machine learning methods, such as 

Markov Models and Bayes classifiers, to detect and classify a surgeon’s gestures. In particular, 

(Rosen et al., 2001) proposed the use of Markov Models to classify surgeons’ skills into two 

sets: novice surgeons and expert surgeons. For this purpose, a laparoscopic grasper was 

equipped with a three-axis force/torque sensor that was used to measure the forces and torques 

at the hand-tool interface; these measurements were synchronized with a video that was used to 

identify the performed manoeuvres. An analysis of the video and a vector quantization 
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algorithm allowed 14 different types of tool-tissue interactions to be defined with their 

corresponding force-torque signatures. Two Markov Models were developed for each type of 

interaction, which represented the performance of the surgeons (grouped into novices and 

experts). Then, these models were used to generate an index that indicated the level of 

experience during the surgical procedure. In the field of teleoperation, (Lin et al., 2005) used the 

da Vinci surgical system to develop a method for detecting and segmenting surgical gestures, 

which were used to evaluate overall proficiency and specific skills during teleoperation. To do 

this, they used a Bayes classifier to recognize the performed gestures using the Cartesian 

position of the da Vinci master manipulators by classifying them into two sets (expert and 

intermediate). When using this technique, nearly 90% of gestures were recognized, and the use 

of the Hidden Markov Model was proposed to increase the recognition rate to 95%. 

Some researchers have modelled a surgical procedure or a particular surgical task as a set 

of basic actions or subtasks, which can be combined to form the overall task (Muradore et al., 

2011). Depending on the current state of the procedure, the robotic assistant will perform the 

corresponding action. Based on this paradigm, collaboration during a suturing task has been 

proposed in (Padoy and Hager, 2011) using the da Vinci Surgical System. In (Weede et al., 

2012), the different phases of a single-port sigma resection were identified based on the 

instruments and coagulation analysis. Other studies proposed a sensor platform to detect the 

procedure stage using a range of sensors located in different elements of the operating room, as 

well as attached to the clinicians’ bodies (Bardram et al., 2011).  

By considering the modelling of a surgical procedure as a state chart, (Ko et al., 2010) 

proposed a surgical procedure model that provided awareness of the current surgical stage being 

performed. To do this, they defined a surgery procedure model (SPM) that is modelled using a 

state-transition diagram, where states are defined as sub-procedures and transitions are defined 

as changes in state. These transitions are triggered by events obtained from the image analysis, 

i.e., detecting the surgical tool and the tip position, as well as voice commands. This model was 

integrated within a robotic surgical system, and its performance was experimentally 

demonstrated in a modelled porcine cholecystectomy, as depicted in Figure 2-12. In this figure, 

each procedure stage has been defined as a node, and their transition probabilities are 

represented by arrows. 



2. Background  

23 

 

 

Figure 2-12. Proposed cholecystectomy state-transition diagram by (Ko et al., 2010) 

As stated previously, image analysis and voice commands were used to detect the state 

transitions during the experiments. However, (Bauzano et al., 2014) extended this study by 

defining a workflow manager for robot-human collaboration that was able to follow the Rosser 

suture procedure (Fischer and Bland, 2007) online, thereby giving commands to a robot to assist 

the surgeon during the surgical procedure. To do this, the procedure was divided into four steps, 

known as manoeuvres, which were also subdivided into a sequence of gestures that was  

modelled as a state-transition diagram, as indicated in Figure 2-13. 

  

Figure 2-13. State-transition diagram that models the Rosser suture procedure (Bauzano et al., 

2014) 
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To identify the surgeon’s gestures, a recognition system was proposed. It is based on a set 

of previously trained gestures that was modelled using the Hidden Markov Model (HMM) and 

stored in a gestures library. Figure 2-14 illustrates the different modules that compose the 

gesture recognizer. Gesture acquisition was used to obtain the needed information from the tool 

position 𝑟𝑡 to recognize the performed gesture. Once this information was obtained, the forward-

backward algorithm was used to calculate the most likely gesture from the library, and the 

trigger condition activated the signal 𝑇𝑘 if the recognized gesture corresponded to the reference 

gesture 𝑆𝑘
𝑆. 

  

Figure 2-14. Gesture recognizer diagram (Bauzano et al., 2014) 

To validate this recognizer, 15 trials were conducted by two non-specialized participants, 

resulting in an average of 81.25% of successfully recognized gestures. These results indicate 

that the recognizer is useful for reducing the use of voice commands to communicate with the 

robot assistant, as proposed in previous contributions, which allows the surgeon to concentrate 

during surgery. 

As previously explained, machine learning has been used in the field of surgical robotics 

for gesture recognition to evaluate surgeons’ skills or to recognize the surgical procedure stage. 

The experimental results have demonstrated the usefulness of this approach; however, it 

remains unclear whether the use of machine learning algorithms remains would be useful for 

dividing a gesture into states and for recognizing these states. 

2.3.2 Learning from Demonstration 

Learning from Demonstration (LfD) or Programming from Expert Demonstration (PED) 

is a methodology that consists of teaching a robot the movements that need to be performed to 

solve a task. Traditionally, a human programmer would have to code the task procedure for each 

concrete case, divide them into multiple subtasks and test them. If errors or new cases arise, the 

robot would have to be coded again. To solve this issue, LfD allows users to reproduce tasks by 
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showing a robot how to do it without using code. If an error or a new case occurs, the user only 

has to provide new demonstrations. 

Research on the LfD approach began in the 1980s with the goal of reducing the 

development and maintenance costs of manufacturing robots. Using this methodology, a 

company could avoid the traditional methodology for programming robots and replace it with a 

programming by demonstration approach. The first approaches to the LfD were based on 

teaching, guiding or playback (Segre, 1988). In these approaches, the demonstrations were 

performed through a teleoperated control and the primary task was divided into subgoals. The 

end-effector position and the forces applied during the movements were segmented into 

trajectory keypoints defined as primitives to achieve these subgoals. Later, probabilistic 

machine learning algorithms were proposed for the LbD approach in humanoid robotics (Shon 

et al., 2005). 

One of the most used approaches for LfD in robotics was proposed by (Calinon et al., 

2007). Essentially, this approach consists of creating a probabilistic model of a task using a 

Gaussian Mixture Model (GMM) and training it with multiple demonstrations that have been 

temporally aligned using Dynamic Time Warping (DTW) (Sakoe and Chiba, 1978). Then, the 

trained model is used to reproduce the task using Gaussian Mixture Regression (GMR). 

Afterwards, (Calinon et al., 2010) modified this approach by replacing the DTW with an HMM 

to handle the spatial and temporal variabilities of the task. 

These approaches have been widely used to generate temporally continuous trajectories 

based on the manipulator position or the contact force measurements. Results of these 

developments have allowed robots to perform previously trained human tasks, such as pouring a 

glass of water using a bimanual robot (Jakel et al., 2010), hitting a table tennis ball, feeding a 

robotic doll (Calinon et al., 2010) or placing a ball in a hole inside a box (Rozo et al., 2013), as 

depicted in Figure 2-15. In human-robot collaborations, this approach has also been used to 

solve specific tasks. (Rozo et al., 2014) presented a modified LfD approach that allowed a robot 

to learn the desired path and the needed forces to collaborate with a human during the 

movement of bulky loads (Figure 2-16.a), and (Gu et al., 2011) solved the table-lifting task 

through the collaboration of a humanoid robot and a human (Figure 2-16.b). The latter task was 

divided into two stages: the first one enabled the robot to hold the table using the previously 

stated LfD approach, and the second stage involved the robot learning how to collaborate with 

the human to hold the table using a guided reinforcement learning algorithm. 
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(a) Pouring a glass 

 

(b) Feeding a doll 

 

 

(c) Ball in box task 

 

Figure 2-15. Examples of LfD with applications in robotics 
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(a) Movement of bulky loads 

 

(b) Table-lifting task 

Figure 2-16. Examples of collaborative robots using an LbD approach 

In the field of surgical robotics, these LfD approaches have been used to collaborate with 

the surgeon and even to perform simple tasks during the surgery. (Reiley et al., 2010) proposed 

a robotic assistance system that used a generic LfD approach to generate smooth trajectories 

from expert demonstration. They used the da Vinci surgical system to record the performed 

surgical tasks, which were divided into several subtasks (called surgemes in their report). Each 

surgeme was trained several times, and the obtained expert human demonstration was 

temporally aligned using Dynamic Time Warping. Then, the motion model was encoded by 

Gaussian Mixture Models, and Gaussian Mixture Regression was used to generate the robot’s 

trajectory. Finally, this trajectory was validated by a Hidden Markov Model trained with 

different surgeon skill levels (expert, intermediate and novice) and used to compare the quality 

of the generated trajectory to that of the surgeon skills. This workflow is illustrated in Figure 

2-17. The experimental results were limited to simple trajectory generation without solving any 

concrete surgical tasks. 
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Figure 2-17. Workflow of the method proposed by (Reiley et al., 2010) 

Furthermore, (van den Berg et al., 2010) proposed the use of LfD to allow surgical 

robotic assistants to execute specific tasks with superhuman performance in terms of speed and 

smoothness. Thus, they addressed this proposal by extending the previously stated LfD 

approach as follows: they used a Kalman smoother (Evensen, 2000) to improve the 

demonstration trajectories and a Linear-Quadratic Regulator (LQR) (Anderson and Moore, 

1989) to execute the trajectory using a quadratic cost function to penalize deviations and non-

smoothness in the execution. Using this approach, the Berkeley Surgical Robot was trained to 

tie a knot in a thread around a ring following the three-stage procedure shown in Figure 2-18. 

The results of this experiment demonstrated that the robot was able to successfully execute this 

task up to 7x faster than the demonstration.  

 

Figure 2-18.Three-stage knot-tying decomposition (van den Berg et al., 2010): first (1), robot 

loops the thread around the robot B gripper; second (2, 3), robot B grasps the thread and closes 

its gripper; and finally (4), both robots are moved away to tighten the knot. 
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Lastly, (Osa et al., 2014) proposed an extension of the previous approaches by adding 

Locally Weighted Regression (LWR), which was used to model the spatial variance in the 

trajectories over the initial conditions and allowed previously demonstrated trajectories to be 

generated regardless of the initial conditions. Using this approach, the task of bimanual looping 

of a surgical thread was tackled by changing the initial position of the manipulators in 

simulation and using an actual robotic surgical system. 

Although these LfD approaches have demonstrated great potential in the use of surgical 

robots to assist in surgeries, they are still limited to simple tasks. Therefore, the use of 

autonomous robots in clinical applications is far from reality owing to the limitations of these 

types of approaches and the ethical issues that involve care of patients by surgeons. For 

example, it would be difficult to obtain approval for an automated surgical procedure performed 

by a robot from the ethical review board of any hospital or government (Senapati and 

Advincula, 2005). However, the use of artificial intelligence to guide a surgeon in performing a 

surgical task using the intelligence of humans and the accuracy of robots appears to be an 

intermediate solution that would be accepted by surgeons and ethical committees. Thus, haptic 

guidance arises as a novel methodology that uses force feedback to assist users in solving 

specific tasks by robotic teleoperation. 

 

2.4 Haptic Guidance 

In robotic teleoperation, a human operator performs a task using a master console, which 

controls a slave robot remotely. To allow efficient operation of the system, the operator needs to 

receive rich sensory information from the remote site. Despite several years of research on 

optimizing this feedback, teleoperation is still associated with a high workload for the operator 

owing to the lack of sensory information. Therefore, methods to provide additional (synthetic) 

support during task execution are being investigated. Haptic guidance was demonstrated to be a 

promising method to reduce operator workload and improve performance in teleoperated tasks 

(O’Malley et al., 2005; Boessenkool et al., 2013). Conventionally, it is implemented as a 

collaborative control strategy that improves and assists teleoperation by analysing the operator’s 

motions with respect to predefined trajectories or known forbidden regions and guiding these 

motions using a haptic device. This control strategy, which is commonly known as Virtual 

Fixtures or Active Constraints (Bowyer et al., 2014), has been used to solve specific tasks in 

surgical robotics by the following approaches. 
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The first contribution to haptic guidance with applications in surgical robotics was 

(Taylor et al., 1999). The authors described the development of a surgical robotic system with 

the goal of extending a human’s ability to perform tasks that require small-scale movements 

based on human judgement, sensory information and hand-eye coordination. Thus, they defined 

a novel approach, called steady-hand micromanipulation, which focused on hands-on 

micromanipulators that assisted the surgeon in providing smooth, tremor-free, precise position 

control and force scaling. The result of this contribution was a hands-on surgical robot with the 

accuracy and sensitivity of a machine and the manipulative transparency of hand-held surgical 

instruments. Once the first prototype of the robotic system was completed, they performed an 

experimental study comparing the ability of unassisted humans and steady-hand 

micromanipulation to insert a surgical needle into holes ranging from 150 to 250 𝜇𝑚 in 

diameter. This study demonstrated that the steady-hand approach improved the success rate 

from 43% unassisted to 79% for the 150 𝜇𝑚 holes and from 49% unassisted to 78% for the 250 

𝜇𝑚 holes (Kumar et al., 1999). Two years later, (Park et al., 2001) proposed the use of virtual 

fixtures in robot-assisted coronary artery bypass graft procedures to define forbidden regions. 

To do this, they used CT scans to locate forbidden regions relative to metal pins that were 

placed into the patient as reference frames. This approach was implemented in the ZEUS 

surgical system, and virtual walls were used to define the forbidden regions. During the 

teleoperation, the robot-handled instrument was free to follow the positional references provided 

by the surgeon using the master console outside the forbidden region. However, if the position 

reference from the master console was within the forbidden region, only lateral movements on 

the virtual wall surface were allowed. The primary objective of this approach was to reduce 

surgery time. To demonstrate this improvement, four subjects were trained to dissect a segment 

from a simulated tissue by avoiding penetrating the wall, which was marked with lines on the 

simulated tissue. The use of virtual fixtures on this task reduced the completion time by over 

27% and avoided overruns beyond the desired region. Although there have been numerous 

contributions on this topic in recent years, only (Chowriappa et al., 2013) used Prediction from 

Expert Demonstration (PED) for haptic guidance in surgical robotics. In particular, they used 

this approach to solve the trocar placement in MIS. To do this, they collected a set of force, 

torque and trajectory data from multiple demonstrations of the task and encoded them into a 

GMM. Then, a generalization of this set of trajectories with its associate parameters was 

generated using GMR and was used to perform haptic guidance through virtual fixtures. Figure 

2-19 illustrates the training trajectories: the green lines in (a), (d) and (g) represent the encoded 

GMM; the green ellipses are the same as in the previous graphs; and the profiles obtained by the 

GMR are presented in (b), (c), (e), (f), (h) and (i). 
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Once the trajectory profiles were obtained, the haptic guidance forces were provided by 

the master console taking into account the difference between the performed trajectory and the 

predicted trajectory using LfD as follows: 

𝑀𝑚 = 𝑀𝑠 + 𝐾 · 𝑃𝑛 + 𝑏 · 𝑃𝑛̇ (2.1) 

In this equation, a simple mass-damper system is used to provide assistance forces, where 

𝑀𝑚 is the force and torque reflection, 𝑀𝑠 is the force and torque sensed by the slave robot, 𝑃𝑛 is 

the difference between the estimated model prediction forces and torques 𝑝𝑛 and the real 

exerted forces and torques by the slave robot 𝑝𝑠 as 𝑃𝑛 = (𝑝𝑛 − 𝑝𝑠). 𝐾 is the stiffness, and 𝑏 is 

the damping constant. 

 

Figure 2-19. Force and torque trajectories (Chowriappa et al., 2013): (a), (d) and (g) represent 

the encoded GMM; and (b), (c), (e), (f), (h) and (i) represent the force-torque GMR generated 

profile 

This approach was tested experimentally in two different scenarios: telesurgery, where 

information could be delayed or lost due to communication failures, and haptic guidance, where 

excessive force-torques could be avoided during the trocar insertion. The first experiment was 

conducted with different transmission error rates; although associated with low error rates 

(lower than 20%), the use of the PED approach and haptic feedback alone yielded similar 

performances during the execution of the task. However, in the case of error rates between 20% 

and 30%, the performance of the task improved when the PED approach was used, as indicated 

in Figure 2-20. 
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Figure 2-20. Task performance (Chowriappa et al., 2013): (a) Mean penetration depth; (b) trocar 

deviation; and (c) peak force 

The second experiment was conducted to validate haptic guidance when the surgeon 

exceeded the predicted penetration depth during the insertion, the insertion trajectory deviated 

from the predicted model and the applied force-torque was different from the predicted one. To 

perform this experiment, three groups of 5 participants were created to perform three trials and 

compare the results. The first group performed the task with neither haptic guidance nor haptic 

feedback, the second one used only haptic feedback, and the last one used both haptic guidance 

and haptic feedback. Overall, the last group performed the task better and more consistently 

than the other groups in terms of maximum penetration depth and trajectory deviation. 

In conclusion, although there have been numerous studies related to haptic guidance, they 

are primarily focused on virtual fixtures, which means that the guidance is performed using 

predefined trajectories or regions. However, the use of approaches such as LfD could lead to the 

use of haptic guidance by previous demonstrations based on the relationship between the sensor 

measurements (e.g., F/T sensors, velocity sensor, etc.) and the expert demonstration. 

 

2.5 Summary 

As demonstrated in this chapter, research on surgical robotics has evolved into two 

primary topics: the design of new robotic platforms that allow surgeons to perform MIS by new 

techniques, such as SPAS, which improve patient outcomes by reducing the number of scars 

and the duration of the hospital stay, and the use of Machine Learning Algorithms, which allow 

robots to collaborate or assist surgeons using previously trained information.  

However, more progress is needed to place smart surgical robots into operating rooms on 

a large scale. Thus, the use of lightweight manipulators with generic kinematic structures would 

reduce the robot dimensions, thus allowing teleoperated SPAS to be performed. Nevertheless, 

using generic kinematic structures, the estimation of the fulcrum point (virtual RCM) becomes a 
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problem for which, even though it has been solved in different ways, there is currently no 

definitive solution.  

Furthermore, it is desirable that these teleoperated surgical robotic systems assist or 

collaborate with the surgeon in an intelligent way. Thus, Machine Learning appears to be a 

useful tool for retrieving knowledge from surgeons to create recognition systems or learning 

models that can be used to provide intelligence for robotic assistance. Therefore, haptic 

guidance emerges as a promising method of assistance that would reduce surgeons’ workload 

and improve the performance of teleoperated surgical tasks. However, this methodology has not 

yet been sufficiently applied to surgical robotics. 
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3 Smart Navigation for SPAS 

  

3.1 Introduction 

In most laparoscopic surgery procedures, surgical instruments are inserted through small 

incisions in the abdomen. Because of this, the working environment is constrained when rigid 

instruments are used. When manipulators are handling these instruments, their movements are 

restricted by the entry port, which is commonly known as the fulcrum point because the 

instrument must pivot around it to avoid undesirable forces on the abdominal wall. Therefore, 

an instrument with no distal joints (no articulated tip) is limited to four DoF: three rotational 

(Figure 3-1.a, b and c) and one translational (Figure 3-1.d). Thus, such instruments cannot be 

moved freely to any position and orientation inside the patient’s abdomen. Therefore, surgical 

instruments with distal joints are used, and the fulcrum point constraint is solved by a remote 

centre of motion (RCM) that coincides with the fulcrum point. 

The RCM can be implemented in different ways. One of them is the use of a mechanical 

RCM, i.e., the robotic system arms are designed with a specific kinematic structure that allows 

them to perform movements based on a mechanical fixed RCM. Accordingly, the surgeon has 

to match the robot RCM with the fulcrum point, which remains invariant during the surgery. 

This method has demonstrated its utility in clinical applications because of its robustness, e.g., a 

fault in the system will not damage the patient. In fact, the most used surgical systems in clinical 

applications, the da Vinci Surgical System and Zeus, implement this method. However, these 

kinematic structures are larger than generic structures, which are composed of lightweight arms 

that are useful for performing surgeries by SPAS and avoiding collisions. 
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(a) and (b) Rotational DoF

(d) Translational D
oF

(c) Rotational DoF

Fulcrum point
Remote Centre of Motion (RCM)

 

Figure 3-1. Four DoF workspace constraint of an inserted surgical instrument through a trocar 

However, when generic kinematic structures are used, a virtual RCM is commonly 

implemented (Locke et al., 2007). The virtual RCM consists of estimating the fulcrum point 

position to perform the movements of the manipulator pivoting around it. This estimation has 

been typically performed using the measured force-torques throughout the surgical instrument, 

which allows estimation of the fulcrum point when the instrument is inserted into the patient’s 

abdomen.  

Nevertheless, if only these sensors were used to estimate the fulcrum point, the estimation 

could be wrong when the instrument interacts with the soft tissue inside the abdomen because 

the sensor measures not only the interaction forces between the instrument and the abdomen but 

also the interaction forces of the instrument tip with the soft tissue. Therefore, a method is 

required that can determine whether the instrument tip is interacting with soft tissue.  

 In SPAS, all of the instruments are inserted through a multiport trocar. Taking advantage 

of this aspect, the RCM estimation can be improved using redundant information provided by 

the F/T sensors from the manipulators that handle each inserted instrument. 

Consequently, a navigation method for surgical teleoperation in SPAS is proposed in this 

chapter. This method has been designed for the haptic teleoperation of surgical robots with 

generic kinematic structures, where the fulcrum point is estimated using F/T sensors placed on 

the manipulator end effectors. Additionally, a soft tissue interaction detector has been included 

to detect when there is interaction with soft tissue. Using this information and a measurement 

fusion method, the accuracy of the RCM estimation has been improved. 
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Therefore, this chapter introduces the previous contributions and the problems that are 

solved in this thesis. Then, the interaction forces during the teleoperation of surgical instruments 

are stated. Using them, the proposed navigation method is described based on two manipulators 

that handle instruments inserted through a multiport trocar. Finally, a soft tissue interaction 

detector is described. 

 

3.2 Previous Work 

This section introduces the previous contributions related to surgical instrument 

navigation using a virtual RCM, which have been considered to be a starting point to develop a 

new smart navigation method that solves the previously stated issues. (Krupa et al., 2004) 

presented a contribution in which they addressed the virtual RCM for generic kinematic 

structures. In particular, they used a 6 DoF robot with a generic kinematic structure and an F/T 

sensor placed between the manipulator end effector and the instrument to perform a 

proportional force feedback control and to estimate the fulcrum point. This experimental setup 

is shown in Figure 3-2. 

 

Figure 3-2. Experimental setup (Krupa et al., 2004) 

The objective of the proposed force feedback control was to minimize undesirable forces 

exerted by the instrument on the abdomen during execution of the movements. Their 

experimental results demonstrated that this controller reduced the forces exerted on the 

abdomen even if the fulcrum point was not correctly estimated. Figure 3-3 illustrates the exerted 

forces during the movement of an instrument inserted through a trocar with three different 

estimation errors. In this experiment, the fulcrum point was estimated using the distance 

between the F/T sensor and the real fulcrum point. Thus, 𝑑 is the distance from the F/T sensor 
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to the real fulcrum point, and 𝑑̂ is the distance from the F/T sensor to the estimated fulcrum 

point. Therefore, the error between the real and estimated fulcrum points can be represented by 

𝑑̂ − 𝑑. The first configuration (first row of Figure 3-3) used 𝑑̂ = 0.15 𝑚 and 𝑑 = 0.2 𝑚, and, as 

shown, the maximum measured forces on the sensor were approximately 2 N for 𝐹𝑥 and 𝐹𝑦. In 

the second configuration (second row), these values were changed to 𝑑̂ = 0.3 𝑚 and 𝑑 = 0.1 𝑚 

with maximum obtained forces of 𝐹𝑥 ≈ 4 𝑁 and 𝐹𝑦 ≈ 5 𝑁. Finally, the third configuration was 

𝑑̂ = 0.02 𝑚 and 𝑑 = 0.2 𝑚, where the maximum obtained forces in this configuration were 

𝐹𝑥 ≈ 5 𝑁 and 𝐹𝑦 ≈ 4 𝑁.  

 

Figure 3-3. Proportional force feedback control experiment (Krupa et al., 2004) 

The estimation of the fulcrum point was performed using the force and torque 

measurements provided by an F/T sensor placed on the manipulator end effector, which allows 

estimation of the distance between the F/T sensor and the fulcrum point as follows: 

𝑑̂ =
√𝑇𝑥

2 + 𝑇𝑦
2

√𝐹𝑥
2 + 𝐹𝑦

2

 (3.1) 

where 𝑇𝑥 and 𝑇𝑦 represent the measured torques on the F/T sensor. To improve the accuracy of 

the estimation, the authors used a weighted least-squares algorithm with a sliding window and a 

dead-zone. Using this algorithm, they performed two experiments in which the forces exerted 

on the abdomen and the estimation error were analysed. Figure 3-4 shows the results. The left 
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column represents an experiment in which the initial estimation was 𝑑̂0 = 0.3 𝑚, and the real 

fulcrum point distance was 𝑑 = 0.1 𝑚. The right column parameters are 𝑑̂0 = 0.02 𝑚 and 𝑑 =

0.2 𝑐𝑚. It can be observed that the estimation converges as soon as the instrument starts to 

move, and the maximum peak forces are approximately 2 N. 

 

Figure 3-4. Fulcrum point estimation experiment (Krupa et al., 2004) 

This contribution shows how an F/T sensor that is placed on the manipulator end effector 

can be used to estimate the fulcrum point and perform force control to minimize the forces on 

the abdomen. A similar method has been used in a recent patent to control the movements of 

surgical instruments using manipulators (Ruiz and Correcher, 2012). 

(Michelin et al., 2004; Michelin et al., 2006) proposed the use of joint torques to estimate 

the fulcrum point using a dynamic task/posture decoupling control algorithm. Thus, the contact 

forces applied to the trocar were minimized, hence guaranteeing that the fulcrum point 

constraint was satisfied. They tested this algorithm in a generic kinematic 5 DoF robot (Figure 

3-5.a) that was teleoperated by a Phantom master device (Figure 3-5.b). 

The experimental results demonstrated that this method was also suitable for estimating 

the fulcrum point. Figure 3-6 depicts the results for a 20 cm lateral straight-line path. It can be 

observed that the maximum error between the estimated fulcrum point and the real point was 

approximately 1.25 cm. However, the forces exerted on the patient’s abdominal wall were not 

addressed in this study. 
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                                            (a)                                                               (b) 

Figure 3-5. Experimental setup (Michelin et al., 2004): (a) D2M2 slave robot; and (b) Phantom 

master device 

(Cortesao et al., 2006) proposed a null space control scheme with Active Observers 

(AOBs) to estimate the fulcrum point in a similar way to that used by the previously described 

contribution. This approach was implemented in the same manipulator as the previous 

contribution (D2M2) and used the same experimental setup as illustrated in Figure 3-5. The use 

of AOBs improved the fulcrum point estimation by reducing this error (𝑑𝑡𝑟) to below 8 mm, as 

shown in Figure 3-7. 

The DLR MiroSurge addresses this issue by using a position and force control method 

based on integrated joint torque sensors, similar to the studies described above (Hagn et al., 

2009). 

More recent studies refer to the RCM as a fixed point without proposing any estimation 

method. In particular, (Chawaphol et al., 2011) developed a new robot for laparoscopic surgery 

using a parallelogram mechanism that performed constrained movements with respect to the 

RCM. To adjust the RCM with the fulcrum point, they used two laser pointers for visual 

alignment, i.e., when both laser dots, which are projected onto the patient’s skin, converge 

towards one dot, the RCM is aligned with the abdominal wall. Figure 3-8 illustrates this effect. 
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Figure 3-6. Joint torque fulcrum point estimation experiment (Michelin et al., 2006). Left 

column: Distance between the estimated fulcrum point and the actual one; and right column: 

Tracking error at the instrument tip 

 

Figure 3-7. AOBs experimental results (Cortesao et al., 2006) 

 

Figure 3-8. Laser pointers for RCM alignment in (Chawaphol et al., 2011): (a) the RCM is 

closer to the fixed RCM using the robot; (b) the robot RCM is aligned with the hand; and (c) the 

RCM is too far from the robot 
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In another study, (Dalvand and Shirinzadeh, 2012; Dalvand and Shirinzadeh, 2013) 

proposed a navigation system for milli/micro-manipulations under the constraint of the RCM 

using a generic kinematic structure with 10 DoF. Figure 3-9 depicts the developed robot, which 

was used to perform different experiments. The results of this study showed that the robot was 

able to perform precise movements under the RCM constraint; however, the RCM was 

programmatically fixed, i.e., it was not estimated during the experiments. 

 

 

Figure 3-9. Proposed parallel robot for minimally invasive surgery (Dalvand and Shirinzadeh, 

2013) 

Therefore, it is necessary to achieve estimation of the fulcrum point, which coincides with 

the robot’s RCM. Previous contributions have demonstrated the feasibility of using force and 

torque information to estimate the fulcrum point and to minimize the forces exerted on the 

patient’s abdomen. However, in these contributions, it is assumed that there is no interaction of 

the instrument tip with the soft tissue inside the abdomen, which means that this method cannot 

be used when this interaction occurs. However, they do not propose a method for detecting this 

interaction during the surgery. Furthermore, when several instruments are introduced by the 

same trocar, the fulcrum point estimation could be improved using redundant information from 

the estimation of the fulcrum point using several F/T sensors. These are the issues that will be 

addressed in this chapter. 
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3.3  Force Interaction 

This section presents the interaction forces and torques in an instrument that is handled by 

a manipulator and has been inserted into a patient’s abdomen. First, all of the used reference 

frames are described to show the interaction forces during the movement of the instrument. 

Then, the interaction force equations are obtained, which have been used to estimate the fulcrum 

point and analyse the interaction of the instruments with the soft tissue inside the abdomen. 

Figure 3-10 illustrates the instrument movement from an initial point A to a final point B, 

where {𝑂} is the orthonormal reference frame, which corresponds to the base of the manipulator 

platform, and {𝐻𝐴} and {𝐻𝐵} are the manipulator end effector positions in A and B, respectively. 

The instrument is attached to the end effector such that the Z-axes of {𝐻𝐴} and {𝐻𝐵} coincide 

with the longitudinal axis of the instrument. Moreover, a sensor is placed between the end 

effector and the instrument to provide force and torque measurements. Finally, {𝑃𝐴} and {𝑃𝐵} 

represent the position and orientation of the instrument tips, whose orientations coincide with 

{𝐻𝐴} and {𝐻𝐵}, respectively. These frames are represented by a tuple (3.2) that contains the 

Cartesian position vector 𝑝𝑖
𝑗

 and orientation 𝜎𝑖
𝑗

 of the reference frame 𝑖 based on the 

reference frame 𝑗. Moreover, these frames can be represented by the homogeneous 

transformation matrix 𝑇𝑖
𝑗

 as follows: 

𝑇𝑖
𝑗

= ( 𝑝𝑖
𝑗

, 𝜎𝑖
𝑗

); {𝑖} = 𝑇𝑖
𝑂  

 𝑖, 𝑗 ∈ {𝑂,𝐻𝐴, 𝐻𝐵, 𝑃𝐴, 𝑃𝐵, 𝐹𝐴, 𝐹𝐵, 𝐹′
𝐴, 𝐹′

𝐵} 

𝑝𝑖
𝑗

= ( 𝑥𝑖
𝑗

, 𝑦𝑖
𝑗

, 𝑧𝑖
𝑗

); 𝜎𝑖
𝑗

= ( 𝛼𝑖
𝑗

, 𝛽𝑖
𝑗

, 𝛾𝑖
𝑗

) 

(3.2) 

At the initial point A, the estimated fulcrum location is {𝐹′𝐴}, which is different from the real 

point {𝐹𝐴} because of estimation errors. It should be noted that each reference frame placed 

along the instrument has the same orientation. If a movement from A to B were conducted, 

undesirable forces 𝑓𝐹𝐵
 would be exerted on the patient’s abdomen owing to the estimation error. 

It can be observed that this movement causes a displacement from the real fulcrum point {𝐹𝐴} to 

{𝐹𝐵}, and the distance between them is represented by 𝑟𝐹⃗⃗⃗⃗ . If the abdomen is modelled as a linear 

spring (Huang et al., 2007), 𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗ represents the lateral exerted forces from {𝐹𝐵} that are 

calculated by (3.3), where 𝐾𝑎 is the skin elasticity constant, which depends on the patient’s skin.  

𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗ = 𝐾𝑎 × 𝑟𝐹⃗⃗⃗⃗  (3.3) 
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Figure 3-10. Movement of the instrument from A to B 

Moreover, when there is an interaction with the soft tissue, additional forces 𝑓𝑃𝐵
⃗⃗⃗⃗⃗⃗⃗ are 

exerted on the tip of the instrument. Assuming that the flexibility of the instrument is negligible, 

the sum of 𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗ and 𝑓𝑃𝐵

⃗⃗⃗⃗⃗⃗⃗ is transmitted to the end effector {𝐻𝐵}; thus, (3.4) is obtained, where 𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

can be measured using a F/T sensor placed on {𝐻𝐵}. 

𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝑓

𝐹𝐵
⃗⃗ ⃗⃗ ⃗⃗ + 𝑓

𝑃𝐵
⃗⃗ ⃗⃗ ⃗⃗  (3.4) 

Additionally, because of this movement, a torque 𝜏𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗ is generated (3.5) that can be measured 

using the F/T sensor. In this equation, 𝑝𝐹𝐵
′

𝐻𝐵  represents the distance between the position of the 

manipulator end effector and the position of the new estimation of the fulcrum point {𝐹′𝐵}. 

𝜏𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑓𝐻𝐵

⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑝⃗𝐹𝐵
′

𝐻𝐵 = 𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗ × 𝑝𝐹𝐵

𝐻𝐵 + 𝑓𝑃𝐵
⃗⃗⃗⃗⃗⃗⃗ × 𝑝𝑃𝐵

𝐻𝐵  (3.5) 

Taking into account that {𝑃𝐵}, {𝐹𝐵} and {𝐹′
𝐵} are placed along the Z-axis of {𝐻𝐵}, the distance 

vectors along the instrument 𝑝𝐹𝐵
′

𝐻𝐵 , 𝑝𝐹𝐵

𝐻𝐵  and 𝑝𝑃𝐵

𝐻𝐵  have magnitudes only on the Z-axis. 

Therefore, | 𝑝⃗𝐹𝐵
′

𝐻𝐵 | can be defined as follows:  

| 𝑝⃗⃗⃗
𝐹𝐵

′
𝐻𝐵 | =

|𝑓
𝐹𝐵

⃗⃗ ⃗⃗ ⃗⃗ |

|𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗|

· | 𝑝⃗⃗⃗
𝐹𝐵

𝐻𝐵 | +
|𝑓

𝑃𝐵

⃗⃗ ⃗⃗ ⃗⃗ |

|𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗|

· | 𝑝⃗⃗⃗
𝑃𝐵

𝐻𝐵 | (3.6) 

where the Z component of the force vectors has not been considered because this component is 

aligned with the distance vectors. Using (3.6), the estimation error can be represented as 
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| 𝑝𝐹𝐵

𝐹𝐵
′

|. Figure 3-11 illustrates an example of this error, where the instrument length | 𝑝𝑃𝐵

𝐻𝐵 | is 

240 mm, the real fulcrum point distance | 𝑝𝐹𝐵

𝐻𝐵 | is 120 mm, the exerted forces on the fulcrum 

point |𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗| are 1.5 N, and the exerted instrument tip forces |𝑓𝑃𝐵

⃗⃗⃗⃗⃗⃗⃗| depend on different surgeon 

tasks, i.e., between approximately zero during thread handling and greater than 10 N for tissue 

grasping (Brown et al., 2004; Richards et al., 2000). It can be observed that the estimation error 

increases with the forces on the instrument tip. Owing to this effect, the instrument movements 

will not be performed correctly. In fact, this example indicates that a force of 2 N on the tip 

generates a fulcrum point estimation error of 80 mm. Thus, a method to detect soft tissue 

interaction is needed to reduce the estimation error. 

 

Figure 3-11. Example of estimation errors for different surgical tasks 

Finally, by analysing (3.6), the conditions in (3.7) could be used to detect when an 

interaction occurs with the soft tissue. However, this detection depends on the difference 

between |𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗| and |𝑓𝑃𝐵

⃗⃗⃗⃗⃗⃗⃗|. In the case of a small difference, i.e., the fulcrum point is close to the 

instrument tip or there are low abdominal and instrument tip forces, an interaction with the soft 

tissue would not be detected. Moreover, a variation in | 𝑝𝐹𝐵
′

𝐻𝐵 | would not provide information 

on an interaction with tissue when forces on the tip are extremely low, e.g., during thread 

handling. Therefore, a method that is not only based on force and torque measurements may be 

used to detect this situation. The proposed method will be explained in Section 3.5. 

|𝑓𝐹𝐵
⃗⃗⃗⃗⃗⃗⃗| ≫ |𝑓𝑃𝐵

⃗⃗⃗⃗⃗⃗⃗| → | 𝑝𝐹𝐵
′

𝐻𝐵 | ≈ | 𝑝𝐹𝐵

𝐻𝐵 | 

|𝑓𝑃𝐵
⃗⃗⃗⃗⃗⃗⃗| ≫ |𝑓𝐹𝐵

⃗⃗⃗⃗⃗⃗⃗| → | 𝑝⃗𝐹𝐵
′

𝐻𝐵 | ≈ | 𝑝𝑃𝐵

𝐻𝐵 | 
(3.7) 

When there is no interaction with the soft tissue (|𝑓𝑃𝐵
⃗⃗⃗⃗⃗⃗⃗| ≈ 0), the distance between the end 

effector and the fulcrum point | 𝑝𝐹𝐵

𝐻𝐵 | can be estimated by (3.8); therefore, using (3.9), {𝐹𝐵} ≈

{𝐹′𝐵} is obtained. 
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| 𝑝⃗𝐹𝐵

𝐻𝐵 | ≈ | 𝑝⃗𝐹𝐵
′

𝐻𝐵 | =
|𝜏𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗|

|𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗|

  (3.8) 

𝑇𝑂
𝐹𝐵

= 𝑇𝑂
𝐻𝐵

· [
𝐼 𝑝⃗𝐹𝐵

′
𝐻𝐵

0 1
] (3.9) 

Thus, the estimation of the fulcrum point when there is no interaction with the soft tissue inside 

the abdomen can be performed using equations (3.8) and (3.9). Considering that a force |𝑓𝐻′
⃗⃗ ⃗⃗ ⃗⃗ | ≈

0 causes | 𝑝𝐹𝐵

𝐻𝐵 | → ∞, a dead zone may be defined around zero to avoid this behaviour when 

these equations are used to estimate the fulcrum point position. This dead zone is fixed 

depending on the precision of the F/T sensor when it measures lower forces. Moreover, taking 

advantage of the fact that both manipulators are inserted through the same trocar (in SPAS), the 

fulcrum point could be estimated by neither, one or both, as stated in the next section. 

 

3.4 Navigation Method 

Once the estimation of the fulcrum point has been defined, a navigation method is 

proposed that modifies the orientation of the instrument to minimize abdominal forces resulting 

from estimation errors. This method is based on a parallel force-position control scheme that is 

represented in Figure 3-12. 
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Figure 3-12. Jacobian-based parallel Force-Position control scheme 

In this figure, the position reference of the instrument tip 𝑝𝑃𝑟𝑒𝑓

𝑂  and the estimated 

fulcrum point position 𝑝𝐹′
𝑂  are used to obtain the instrument tip pose, whose orientation is 
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calculated using an Euler ZYZ orientation reference 𝜎𝑃𝑟𝑒𝑓

𝑂 = ( 𝛼𝑃𝑟𝑒𝑓

𝑂 , 𝛽𝑃𝑟𝑒𝑓

𝑂 , 𝛾𝑃𝑟𝑒𝑓

𝑂 ) and can 

align the instrument tip orientation with the estimated fulcrum point as follows: 

𝛼𝑃𝑟𝑒𝑓

𝑂 = 𝑎𝑡𝑎𝑛2 [( 𝑦𝑃𝑟𝑒𝑓
− 𝑦𝐹′

𝑂𝑂 ) , ( 𝑥𝑃𝑟𝑒𝑓
− 𝑥𝐹′

𝑂𝑂 )] (3.10) 

𝛽𝑃𝑟𝑒𝑓

𝑂 = 𝑎𝑡𝑎𝑛2 [√( 𝑥𝑃𝑟𝑒𝑓
− 𝑥𝐹′

𝑂𝑂 )
2
+ ( 𝑦𝑃𝑟𝑒𝑓

− 𝑦𝐹′
𝑂𝑂 )

2
, ( 𝑧𝑃𝑟𝑒𝑓

− 𝑧𝐹′
𝑂𝑂 )] (3.11) 

𝛾𝑃𝑟𝑒𝑓

𝑂 = − 𝛼𝑃𝑟𝑒𝑓

𝑂  (3.12) 

When there is no interaction with the soft tissue, a Proportional-Integrative controller, 

whose input is the difference between the abdominal force reference 𝑓𝑟⃗⃗⃗ ⃗ = 0𝑁 and the F/T 

sensor measured forces 𝑓𝐻⃗⃗⃗⃗⃗, is used to modify the instrument orientation and thereby to minimize 

the forces exerted on the abdomen. This controller modifies the reference to {𝑃′} =

( 𝑝𝑃𝑟𝑒𝑓

𝑂 , 𝜎𝑃𝑟𝑒𝑓
+ 𝑉𝑃𝐼)

𝑂 , where 𝑉𝑃𝐼 is the force controller output. Using this reference, the 

position control scheme can provide the joint velocities 𝜃̇ and positions 𝜃 based on the 𝐾𝐽 

matrix that fixes the position control dynamic using a first-order system with a time constant 

𝜏 = 1/𝐾𝐽 as follows: 

∆𝑃′̇ = −𝐾𝐽 · ∆𝑃′ + {𝑃′} 

{𝑃′
𝑀

} = 𝐾𝐽 · ∆𝑃′ 

(3.13) 

This control scheme is based on the inverse Jacobian and the forward kinematic function. 

Owing to the nonlinearity of these functions, its stability is demonstrated in Appendix A. 

SPAS consists of introducing two or more surgical instruments through the same trocar. 

Therefore, the proposed navigation method has been extended to consider two manipulators, as 

indicated in Figure 3-13.a. In this figure, {𝐵1} and {𝐵2} are the base reference frame of each 

manipulator, {𝐻1} and {𝐻2} are the end effector reference frames, {𝐹} is the common fulcrum 

point reference frame for both manipulators, and {𝑃1} and {𝑃2} are the instruments tip reference 

frames. The relationships between each frame are represented in Figure 3-13.b. 
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Figure 3-13. (a) SPAS scenario with reference frames; and (b) Kinematic model graph, which 

represents the relation between the different frames  

 Figure 3-14 shows the proposed navigation method for the two manipulators that handle 

the surgical instruments in SPAS. In this figure, each manipulator is teleoperated by a Haptic 

Guidance system (explained in Chapter 4) that provides the instrument tip position in reference 

to a Parallel Force-Position Control Scheme, as indicated in Figure 3-12. This control scheme 

is used to move both manipulators, whose sensors provide a tuple for each instant j in time and 

can be defined as follows: 

𝜙𝑚 = ( 𝑝𝑃 , 𝜎𝑃
𝑂𝑂 , 𝑝̇𝑃 , 𝜎̇𝑃

𝑂𝑂 , 𝑓, 𝜏), 𝑚 = 1,2 (3.14) 

where 𝑚 refers to each manipulator; 𝑝𝑃
𝑂  is the position of the instrument tip; 𝜎𝑃

𝑂  represents 

the manipulator orientation; 𝑝̇𝑃
𝑂  represents the Cartesian velocity of the instrument tip; 𝜎̇𝑃

𝑂  is 

the angular velocity of the instrument tip; 𝑓 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) are the measured forces on the 

manipulator end effector {H}; and 𝜏 = (𝜏𝑥 , 𝜏𝑦, 𝜏𝑧) represents the measured torques on the same 

location. This tuple includes the information necessary to estimate the fulcrum point position by 

(3.8) and (3.9) using a Least Square estimator (Fulcrum Point Estimator in Figure 3-14). 

Moreover, this information is used in the Tissue Interaction Detector, which is explained in the 

next section. The fulcrum point estimation has been improved by considering the interaction of 

each manipulator with the soft tissue (Interaction Cases), as indicated in Table 3.1, and a 

Measurements Fusion Method, which takes advantage of the fact that both manipulators are 

inserted through the same trocar. 
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Figure 3-14. Extended navigation method 

Depending on the interaction with the soft tissue, four interaction cases have been defined 

(Table 3.1). When both manipulators interact with the soft tissue, the fulcrum point cannot be 

estimated, and the previous estimation is used. Additionally, force control cannot be performed 

because the forces from the sensor are composed of the forces exerted on the tip, and they are 

not useful for compensating the fulcrum point estimation errors. In this situation, haptic 

feedback is provided by both manipulators to allow the surgeon to feel the interaction. 

However, when only one manipulator interacts with the soft tissue, only information from the 

other manipulator is used to estimate the fulcrum point. Furthermore, force control can be 

performed on the manipulator that is not interacting with the tissue, and haptic feedback is 

provided only for the manipulator that is interacting with soft tissue. 

Fulcrum point estimation is performed for each manipulator, as previously mentioned. 

However, taking advantage of both instruments being inserted by the same trocar without soft 
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tissue interaction, a Kalman filter measurement fusion method (Gan and Harris, 2001) has been 

implemented to improve its accuracy. 

Table 3.1. Interaction Cases 

Interaction with Soft Tissue Fulcrum Point 
Estimation 

Force Control Haptic Feedback 

Manip. 1 Manip. 2 

Yes Yes No estimation No Both 

No Yes Manip. 1 Only Manip. 1 Only Manip. 2 

Yes No Manip. 2 Only Manip. 2 Only Manip. 1 

No No 
Measurement 
fusion method 

Yes No 

 

The fulcrum point estimation for each manipulator is modelled using a discrete time state-

space model in (3.15) and (3.16), where k represents the discrete-time index, and I is a 3x3 

identity matrix. The state vector that represents the space coordinates for the estimated fulcrum 

is 𝑝𝐹
𝑂 , the fulcrum point space coordinates of each manipulator is defined by [ 𝑝𝐹1′

𝑂 𝑝𝐹2′
𝑂 ]

𝑇
, 

and 𝑤𝑘 and 𝑣𝑘 are zero-mean white Gaussian noise with covariance matrices 𝑄𝑘 and 𝑅𝑘, 

respectively, which are used as parameters of the Kalman filter and can be estimated from a set 

of preliminary measurements through a trial and error procedure. Using these equations, the 

Kalman filter behaves as an observer, where the observable variables are [ 𝑝𝐹1′
𝑂 𝑝𝐹2′

𝑂 ]
𝑇
, and 

the state variable is the fulcrum point position 𝑝𝐹
𝑂 , which can be estimated by the Kalman 

filter. 

 

𝑝𝐹
𝑂

𝑘+1
= 𝐼 · 𝑝𝐹

𝑂
𝑘

+ 𝑤𝑘 (3.15) 

[
𝑝𝐹1′

𝑂

𝑝𝐹2′
𝑂 ]

𝑘

=

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

𝑘

· [ 𝑝𝐹
𝑂 ]

𝑘
+ 𝑣𝑘 (3.16) 
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3.5 Soft Tissue Interaction Detector 

As previously stated, a method to detect interactions with the soft tissue inside the 

abdomen is needed to avoid fulcrum point estimation errors when different forces and torques 

are exerted on the surgical instrument. To solve this problem, a method based on the surgeons’ 

gestures is proposed. This method divides each gesture into different states and, depending on 

these states, the interaction with soft tissue is detected. For this purpose, the Hidden Markov 

Model (HMM) has demonstrated high flexibility for modelling and recognition of surgeon 

gestures performed by manipulators (Bauzano et al., 2014). This probabilistic model is 

explained in Appendix B. 

3.5.1 Gesture Encoding by HMM 

By considering a gesture as a movement of the surgical instruments inside the abdomen 

to achieve an objective, e.g., pushing up the liver, cutting tissue or tying a knot, the stage of the 

gesture can be used to determine whether the instrument is touching the soft tissue. For 

example, if a surgeon is going to push down the liver, the instrument will not be in contact with 

the liver until the surgeon moves the instrument towards it. Hence, a gesture can be divided into 

several states based on the interaction of the instrument tip with the soft tissue during its 

reproduction. To detect the current state of the gesture that is being performed, a model that 

encodes each gesture and provides the most likely state for each instant in time is needed. The 

discrete Hidden Markov Model (HMM) has demonstrated high flexibility for modelling and 

recognizing surgeon gestures performed by manipulators (Bauzano et al., 2014). Therefore, a 

gesture library 𝛺 = {𝜆1, 𝜆2, … , 𝜆𝑝} has been created, where each gesture 𝜆𝑖 is encoded into an 

HMM (Rabiner, 1989) with parameters as follows: 

𝜆𝑖 = (𝑄, 𝐴𝑖 , 𝐵𝑖, 𝜋𝑖, 𝐸) (3.17) 

where 𝑄 represents the hidden states; 𝐴𝑖 denotes the state transition distribution matrix, i.e., 

probabilistic relationship between the states; 𝐸 is the set of discrete observations; 𝐵𝑖 is the 

observation distribution probability matrix, which stores the likelihood between each discrete 

observation and each state; and 𝜋𝑖 is the initial state distribution vector. 

The considered gestures have been divided into a set of five hidden states 𝑄 =

{𝑞1, 𝑞2, … , 𝑞5} that provide the best relationship between the forces exerted during the execution 

of the gesture. Hence, each state represents the following information: 

 𝑞1: The beginning of the gesture, when there is no interaction with tissue.  
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 𝑞2: The interval between the initial interaction with the tissue and the maximum 

exerted force. 

 𝑞3: The maximum exerted force interval. 

 𝑞4: The interval between the maximum exerted force and the end of the interaction. 

 𝑞5: Starts when there is no interaction with the tissue and determines that the gesture 

has finished. 

In summary, the transition between states one and two signifies the start of the tissue 

interaction, and the transition between states four and five signifies the end of the tissue 

interaction. Thus, during the reproduction of a gesture, a sequence of hidden states 𝑄̂(𝑘) =

𝑞(1), 𝑞(2), … , 𝑞(𝑗),… , 𝑞(𝑘); 𝑞(𝑗) ∈ 𝑄 is generated. Figure 3-15 shows an example of a pushing 

down gesture, with the interaction forces and the instrument tip velocity represented during the 

state sequence evolution. Thus, the first and second rows represent the vertical and lateral forces 

exerted throughout the instrument, respectively, as referred to in frame {𝐻}, and the third row 

depicts the Z-axis velocity at the tip of the instrument, as referred to in frame {𝑂}. 

The state transition distribution matrix 𝐴𝑖, whose dimensions depends on the number of 

states and have been fixed to five, is calculated for each gesture. This matrix provides the 

probabilistic relationship between the states, which configures the HMM topology. Thus, 

element 𝑎𝑚𝑛 of 𝐴𝑖 represents the probability of jumping from 𝑞𝑚(𝑘) to 𝑞𝑛(𝑘 + 1), as indicated 

in (3.18), where 𝑘 represents the current instant in time.  

𝑎𝑚𝑛 = 𝑃(𝑞𝑛(𝑘 + 1)|𝑞𝑚(𝑘)) (3.18) 
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Figure 3-15. Example of the relation between the measurements and the HMM states. |𝑓𝑧⃗⃗⃗ ⃗| and 

|𝑓𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗ | are the longitudinal and transversal exerted forces on the instrument, respectively; 𝑧̇𝑃

𝑂  is 

the longitudinal velocity of the instrument; and 𝑞1, 𝑞2, … , 𝑞5 are the five hidden states that have 

been considered in the HMM 
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To allow for the fact that that a gesture could be incomplete, a modified left-right 

topology has been used to allow jumping between states during the execution of the gesture. 

Figure 3-16 presents the defined topology, where each arrow defines that the probability of 

jumping between states is greater than zero. 
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Figure 3-16. Modified left-right HMM topology 

The defined HMM is based on a set of discrete observations 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑟} that are 

used to establish a probabilistic relationship between each observation and state, as will be 

explained later. However, the used measurement tuple (3.14) is based on continuous values. 

Therefore, a method to translate continuous measurements into a set of discrete observations is 

needed. To solve this issue, the use of Vector Quantization (VQ) is proposed. This technique 

has been widely used to obtain a set of discrete symbols for speech (Rabiner et al., 1983) and 

gesture (Mitra et al., 2007) recognition based on HMMs. It creates a partition of the 

measurement feature space using the k-means algorithm (Appendix C). Thus, during the 

reproduction of each gesture, a sequence of measurements 𝜙̂(𝑘) =  𝜙(1), 𝜙(2),… , 𝜙(𝑘) is 

obtained. It is used to create a partition of the measurement feature space and to obtain 𝐸, which 

represents the set of 𝑟 discrete observations that cover the measurement feature space. Hence, 𝜙̂ 

can be translated into an observation sequence 𝐸̂(𝑘) = 𝑒(1), 𝑒(2), … , 𝑒(𝑗), … , 𝑒(𝑘); 𝑒(𝑗) ∈ 𝐸, 

which replaces each measurement tuple by its corresponding observation. Once 𝐸 is obtained, 

the probabilistic relationship between each observation and state is defined by the observation 

probability distribution matrix 𝐵𝑖, whose element 𝑏𝑚𝑛 represents the probability of measuring 

the observation 𝑒𝑚(𝑘) ∈ 𝐸 in the state 𝑞𝑛(𝑘) ∈ 𝑄 as follows: 

𝑏𝑚𝑛 = 𝑃(𝑒𝑚(𝑘)|𝑞𝑛(𝑘)) (3.19) 

The dimension of this matrix is 𝑟 𝑥 5, and its value can be estimated during the training stage. 

Finally, the initial state distribution 𝜋𝑖 represents the probability of starting for each state. 

It is defined by a five-element vector that is estimated during the training stage. Owing to the 

predefined HMM topology, 𝜋𝑖 = [1,0,0,0,0], which indicates that the HMM always starts at 𝑞1. 
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3.5.2 Interaction with Soft Tissue Training and Recognition 

Once the method of encoding each gesture into the HMM is defined, the proposed 

training and recognition block diagram can be obtained, as illustrated in Figure 3-17. First, the 

obtained measurement sequence 𝜙̂(𝑘) is discretized into an observation sequence 𝐸̂(𝑘) by VQ, 

as previously explained. It is used in the next two procedures: offline training, which is 

performed during the training stage to obtain the gesture library Ω, and online interaction with 

soft tissue detection, which recognizes the gesture 𝜆𝑖 that is being performed and identifies the 

state sequence of the recognized gesture 𝑄̂(𝑘) to detect whether there is an interaction with the 

soft tissue 𝐼(𝑘). 
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Figure 3-17. Block diagram of the interaction with the tissue detector. 

During the offline training stage, the parameters of each gesture (HMM) have to be 

estimated through a training procedure. Thus, each gesture is reproduced 𝑛 times, and the 

obtained training observation sequences 𝐸̂1(𝑘), 𝐸̂2(𝑘), … , 𝐸̂𝑛(𝑘) with their corresponding 

previously known hidden state sequences 𝑄̂1(𝑘), 𝑄̂2(𝑘), … , 𝑄̂𝑛(𝑘) are used to train each HMM 

using the Baum-Welch algorithm. This algorithm provides the HMM parameters 𝐴𝑖, 𝐵𝑖, and 𝜋𝑖 

using an iterative procedure based on the training observation sequences and the hidden state 

sequence to maximize 𝑃(𝐸̂(𝑘)|𝜆𝑖), which is the probability that an observation sequence 𝐸̂(𝑘) 

belongs to the HMM of the performed gesture 𝜆𝑖. Using this algorithm to train each gesture, the 

gesture library 𝛺 can be obtained. 

Once each gesture is trained and stored in 𝛺, this gesture library can be used to recognize 

the gesture that is being performed and the corresponding state. Thus, the gesture recognition 

block (Figure 3-17) calculates the most likely gesture 𝜆𝑖 using the forward-backward algorithm 

(Rabiner, 1989). This algorithm is based on dynamic programming and calculates 𝑃(𝐸̂(𝑘)|𝜆𝑖), 

which can be used to select the most likelihood performed gesture 𝑖 as follows: 

𝑖 = argmax
1≤𝑖≤𝑝

[𝑃(𝐸̂(𝑘)|𝜆𝑖)] (3.20) 
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Once the gesture is obtained, the sequence of the most likely hidden states 𝑄̂(𝑘) =

𝑞(1), 𝑞(2), … , 𝑞(𝑗),… , 𝑞(𝑘); 𝑞(𝑗) ∈ 𝑄 is estimated using the Viterbi algorithm (Viterbi, 1967). 

This algorithm provides the most likely sequence of hidden states for a given HMM 𝜆𝑖 and an 

observation sequence 𝐸̂(𝑘). The last state 𝑞(𝑘) represents the current state during the gesture 

reproduction. 

Finally, the interaction sequence 𝐼(𝑘) = 𝑖(1), 𝑖(2), … , 𝑖(𝑗), … , 𝑖(𝑘); 𝑖𝑗𝜖 {𝑦𝑒𝑠, 𝑛𝑜} is 

obtained by the function 𝐼(𝑘) = 𝑓(𝑄̂(𝑘), 𝝀𝒊), which establishes a relationship between each 

state 𝑞(𝑗) and the interaction with soft tissue, taking into account the recognized gesture 𝜆𝑖. 

Because this method can be executed in real time, its computation complexity is 

important for maintaining the minimum sample time. Thus, there are three blocks whose time 

complexities are analysed. The complexity of the VQ is 𝑂𝑉𝑄(𝑟) because this algorithm consists 

only of searching for the nearest observable feature element 𝑒𝑗. The complexity of the forward-

backward algorithm is 𝑂𝐹𝐵(𝑟 · 𝑢2 · 𝑝), and that of the Viterbi algorithm is 𝑂𝑉(𝑟 · 𝑢2) (Rabiner, 

1989), where 𝑟 is the size of the set of observable features, 𝑢 is the number of states and 𝑝 is the 

number of trained gestures. Therefore, the computational complexity 𝑂𝐷 of the soft tissue 

interaction detector can be given as follows: 

𝑂𝐷 = 𝑂𝑉𝑄 + 𝑂𝐹𝐵 + 𝑂𝑉 (3.21) 

For example, for the case of an observation codebook of 512 elements (r = 512), 4 trained 

gestures (p = 4) and 5 states of the HMM (u = 5), a total of 64,512 computational units are 

executed during the sampling period. Considering that each computational unit takes no longer 

than 10 ns (a typical RISC 20 MHz microcontroller computes one instruction in 0.5 ns), a 0.65 

ms minimum sample time may be used. Therefore, this computation can be executed in real 

time. 

 

3.6 Summary 

This chapter proposes a navigation method for generic kinematic structures that handle 

surgical instruments introduced through a multiport trocar to perform SPAS. This navigation 

method is based on a parallel force-position Jacobian-based control scheme whose objective is 

to minimize the forces exerted on the abdomen. This navigation method implements a virtual 

RCM that is calculated online using the information provided by two F/T sensors placed on the 

manipulator end effector. However, when this type of sensor is placed on the manipulator end 

effector, the provided measurements could be distorted when there are several interaction forces 
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throughout the instrument, e.g., the forces exerted during the interaction of instruments with the 

soft tissue inside the abdomen. To solve this issue, a soft tissue interaction detector is proposed. 

It is based on surgeon gestures that have been divided into internal states and encoded by the 

HMM. Using this detector, each gesture is trained into a HMM, and once the gesture is 

reproduced, the current internal state is calculated, which provides information on the 

interaction of the instrument with the soft tissue. 

Finally, sensory information from the manipulators and the F/T sensors can be used to 

assist the surgeon through haptic guidance, as explained in the next chapter. 
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4 Learning from Demonstration 

for Haptic Guidance 

 

4.1 Introduction 

In surgical teleoperation, surgeons need to receive rich sensory information from the 

robotic system to perform a surgery optimally. Although there has been considerable research in 

this field, surgeons currently do not have all of the required information during teleoperation. 

This lack of information causes the surgeon’s learning process to be slow and ineffective. To 

compensate for this shortcoming, haptic guidance has been demonstrated as a promising method 

to improve performance in generic teleoperated tasks, which indicates a reduction in the 

learning process that is achieved by robotic assistance. Conventionally, haptic guidance is 

implemented though virtual fixtures, which use a virtual spring to guide the operator to follow a 

prescribed reference trajectory or avoid forbidden regions. Currently, this method is position-

based, i.e., it relies on an accurate reference position or trajectory, which is obtained offline 

using images or marks on the patient’s body. However, the location of forbidden regions or 

defined trajectories can be affected by measurement errors. To mitigate this problem, 

(Oosterhout et al., 2015) suggested combining force feedback with guidance forces, to enable 

the operator to perform a task despite inaccurate guidance. Therefore, it could be assumed that a 

guidance system that would use force information directly and correct the inaccuracy of the 

guidance would require less effort from the operator.  
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This chapter explores the use of the Learning from Demonstration approach (LfD) to 

generate haptic guidance references that have been previously trained. Currently, this approach 

is widely used in robotics for generating temporary continuous trajectories based on 

manipulator position (Calinon et al., 2010; Jakel et al., 2010) or contact force measurements 

(Chowriappa et al., 2013, Rozo et al., 2013). However, straightforward implementation of LfD-

based haptic guidance into a surgical teleoperation system has not yet been achieved. The key 

difficulty is the use of sensory information to generate appropriate haptic guidance references 

that have been previously trained and modelled. The proposed LfD approach in this chapter uses 

only the exerted force/torque measurements on the surgical instrument to provide the guidance 

force references to the master device that is handled by the surgeon. Therefore, this study 

focuses on the description of a new LfD-based method to derive guidance reference trajectories 

for haptic teleoperation in surgical robotics.  

This chapter explains the proposed method, which uses sensory information to generate a 

model of a manoeuvre to guide the surgeon to perform it during teleoperation. Thus, the surgeon 

will receive only guidance forces instead of direct force feedback from the instrument 

interaction. The proposed method is divided into two stages. The first stage consists of training 

a model of the manoeuvre from previous surgeon demonstrations, as explained in Section 4.2.1. 

The second stage consists of providing haptic guidance to the surgeon during the reproduction 

of the manoeuvre, as explained in Section 4.2.2. Finally, a summary is provided in Section 4.3. 

 

4.2 Method 

The proposed method provides position-based haptic guidance to assist in the execution 

of manoeuvres of surgical instruments that are handled by slave manipulators and teleoperated 

by master haptic devices. For example, in NOTES, it would be difficult to introduce an 

instrument through a natural orifice while exerting minimal forces on the patient’s body. 

Another example is the necessity of pulling the gallbladder with a constant force to perform a 

bile duct resection during a cholecystectomy. Although these manoeuvres are easy when the 

instruments are directly handled by surgeons because they can feel the forces on their own 

hands, the lack of sensory information in teleoperation causes certain manoeuvres to be 

difficult. Therefore, the surgeon’s master console is commonly equipped with haptic devices 

that are used for two purposes: to send the position reference of the instruments to the slave 

manipulators, and to provide direct force feedback from the instruments to the surgeon. 

However, this force feedback could be replaced by haptic guidance to assist the surgeon during 

the execution of the manoeuvres. 
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The proposed method divides a manoeuvre into several gestures that are executed by the 

surgeon. For example, during gallbladder pulling, the instrument has to first reach the 

gallbladder and hold it. Then, it has to pull it with a constant force that keeps the gallbladder 

tense without exerting high forces to avoid harming the patient. These gestures are then trained 

and reproduced in the following manner. 

1. Training (offline): the surgeon demonstrates each gesture several times in a simulated 

environment. The demonstrations can be performed using different training platforms, 

e.g., kinaesthetic movement of a manipulator, direct teleoperation or direct handling of a 

surgical instrument provided with sensors. During the 𝑢 demonstration of the 𝑖 gesture, a 

training sequence of 𝑘 elements 𝜉𝑖𝑢(𝑘) = 𝜉(1),… , 𝜉(𝑗),… , 𝜉(𝑘) is generated. The 

training sequence is composed of 𝜉(𝑗) = [𝑓(𝑗), 𝜏⃗⃗(𝑗), ℎ⃗⃗(𝑗)]; 1 ≤ 𝑗 ≤ 𝑘, where 𝑓(𝑗) =

(𝑓𝑥 , 𝑓𝑦, 𝑓𝑧) and 𝜏(𝑗) = (𝜏𝑥 , 𝜏𝑦, 𝜏𝑧) represent the instrument’s exerted forces and torques 

(interaction measurements), respectively. Assume that the objective of each gesture is to 

move the instrument tip towards a goal position defined as 𝑝(𝑘), where specific 𝑓(𝑘) 

forces and torques 𝜏(𝑘) are exerted, and ℎ⃗⃗(𝑗) = (ℎ𝑥, ℎ𝑦, ℎ𝑧) is defined as the ideal 

guidance reference. ℎ⃗⃗(𝑗) is calculated using the difference between the obtained position 

at each instant in time 𝑝(𝑗) and the goal position 𝑝(𝑘) as an elastic force that attracts the 

instrument tip towards the mentioned goal position, as explained in Section 4.2.1.1. 

Having obtained the training sequences, the objective of the training stage is to build a 

probabilistic model 𝜌𝑖 through a Gaussian Mixture Model (GMM), which stores the 

relationship between the interaction measurements with the ideal guidance references at 

each instant 𝑗 in time. Finally, each gesture model is then evaluated to analyse how it fits 

with the performed demonstrations, and it is then stored into a gesture library that will be 

used during the reproduction stage. 

2. Reproduction (online): During teleoperation the surgeon performs a manoeuvre using the 

navigation method proposed in Chapter 3, and the interaction measurements 𝑓(𝑗) and 

𝜏(𝑗), which are obtained online during the teleoperation, are used to detect the gesture 

that is being performed and retrieve its trained model 𝜌𝑖. Then, Gaussian Mixture 

Regression (GMR) is used to derive the haptic guidance reference 𝑔⃗(𝑗) = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) 

from the previously trained gesture model 𝜌𝑖 using the current interaction measurements. 

Next, the obtained haptic guidance reference 𝑔⃗(𝑗) is transmitted through the haptic device 

to the surgeon to assist him during teleoperation. Thus, the haptic device generates a 

homogeneous transformation matrix {𝑃}, which contains the referenced position and the 

orientation of the instrument tip that is sent to the navigation system, as previously 

illustrated in Figure 3-14. 
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Both stages and their interaction with the surgeon and patient are presented in Figure 4-1. 

During the first stage, a training platform is used to obtain the sensory information from surgeon 

demonstrations, i.e., kinaesthetic movements, teleoperation, sensorized instruments, etc. Then, 

during the reproduction stage, the surgeon handles a haptic device that provides haptic guidance 

to the surgeon, whose movements generates the instrument tip position reference {𝑃} to the 

described navigation system in Chapter 3, which interacts with the patient’s abdomen. 
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Figure 4-1. Proposed learning from demonstration for haptic guidance approach 

 

 

4.2.1 Training 

The primary objective of the training stage is to obtain a gesture library that contains a 

model of each 𝜌𝑖 gesture belonging to a surgical manoeuvre. This stage is presented in Figure 

4-2, where a training platform is used to perform the demonstrations of each gesture by 

obtaining the sensory information sequences that will be used to train the gesture, as explained 

below. 
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Figure 4-2. Training stage diagram. Each gesture is independently trained and stored into the 

library. 

 

4.2.1.1 Processing 

During the demonstration of each gesture, the position of the instrument tip 𝑝(𝑗) is 

obtained at each instant 𝑗 in time, as previously stated. Then, this information is used to 

calculate the ideal guidance reference ℎ⃗⃗(𝑗), which represents the elastic attraction forces of the 

instrument tip towards the goal position at each instant in time during the demonstrations. 

Figure 4-3 presents a simple 2D example of the use of haptic guidance to pull the gallbladder. 

During the training stage, the demonstrations place the instrument tip in a goal position 𝑝(𝑘), 

which pulls the gallbladder with a specific force 𝑓(𝑘), as indicated in Figure 4-3.a. Therefore, to 

obtain the ideal guidance references ℎ⃗⃗(𝑗) for each instant 𝑗 in time during the demonstration, the 

Cartesian position of the instrument tip is used. Thus, the difference between the goal position 

𝑝(𝑘) and the obtained position at the j instant in time 𝑝(𝑗) can be used to calculate the ideal 

guidance reference ℎ⃗⃗(𝑗), as indicated in Figure 4-3.b, where ℎ⃗⃗(𝑗) is calculated by (4.1) using a 

spring constant 𝐾𝐻 that is experimentally obtained to scale the haptic guidance forces 

transmitted to the surgeon. 

ℎ⃗⃗(𝑗) = 𝐾𝐻 · (𝑝(𝑘) − 𝑝(𝑗)) (4.1) 
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Figure 4-3. Ideal haptic guidance reference generation example for pulling the gallbladder. (a) 

Final position: the gallbladder is pulled with a specific force 𝑓(𝑘); and (b) Intermediate position 

of the instrument: the spring provides the ideal guidance reference to reach the final position 

 

4.2.1.2 Model Encoding and Evaluation 

As previously defined, the training sequences 𝜉𝑖𝑢(𝑘) are composed of the interaction 

measurements (𝑓(𝑗) and 𝜏⃗⃗(𝑗)) and the ideal guidance reference ℎ⃗⃗⃗(𝑗). It can be observed that the 

dimension of 𝜉 is 𝐷 = 9 elements if all of the interaction measurements and ideal guidance 

references are used. However, the fit of the GMM to the training sequences can be improved by 

removing elements that do not provide relevant information. For example, in the case of the 

gallbladder pulling gesture (Figure 4-3), the torques can be removed because they do not 

provide any useful information. Therefore, the tuple dimension would be reduced to 𝐷 = 6 

elements. 

Figure 4-4 illustrates an example of 4 demonstrations (coloured lines) in the X-axis, for 

the 2D gallbladder pulling gesture (Figure 4-3), where the training sequences 𝜉1𝑢(𝑘); 1 ≤ 𝑢 ≤ 4 

are shown. It should be noted that the Y and Z axes can be represented in the same way. In this 

figure, the abscissa and the ordinate axes represent the component X of the surgeon exerted 

forces 𝑓𝑥 and the ideal guidance references ℎ𝑥, respectively. When the measured force exerted 

by the instrument is zero, the ideal guidance references have a maximum value ℎ𝑚𝑎𝑥 to guide 

the surgeon to the goal position of the instrument tip. When the forces exerted by the instrument 

tip increase towards the final force 𝑓𝑥(𝑘), the ideal guidance references decrease as the 

instrument tip reaches the goal position. 
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Figure 4-4. Four demonstrations of the gallbladder pulling gesture in the X-axis. Each 𝜉1𝑖 

represents the relationship between the exerted forces 𝑓𝑥 and the estimated ideal guidance 

references ℎ𝑥 for each demonstration. 

Once the training sequences 𝜉𝑖𝑢 are obtained for each 𝑖 gesture, they are used to encode a 

Gaussian Mixture Model (GMM) 𝜌𝑖 that will provide the most likely haptic guidance trajectory 

for each gesture based on previous demonstrations. A GMM is a probabilistic model that 

assumes that the training sequences 𝜉1𝑢 can be included in a set of 𝑁 Gaussians distributions, 

where each Gaussian covers a part of the training sequences. Thus, a GMM can be defined as 

𝜌 = {𝜋𝑛, 𝜇𝑛, Σ𝑛}𝑛=1
𝑁 , whose parameters can be given as follows: 

 Number 𝑁 of Gaussians: This is an important parameter; if it is too low, the GMM will 

not fit with the training sequences, and if it is too high, two cases could occur: high 

processing time requirements during the real-time GMR owing to the high number of 

Gaussians in the GMM function and/or a low improvement in the fitness of the GMM 

with respect to the training sequences as 𝑁 is increased. Therefore, to adjust this 

parameter, the Bayesian Information Criterion (BIC) has been used to evaluate how a 

GMM with different number of Gaussians 𝑁 fits the training sequences. 

 Prior probabilities 𝜋𝑛: This represents the weight of each Gaussian with respect to the 

demonstrations, i.e., if a Gaussian 𝑛 covers more elements of the training sequences 

compared with another one, its prior probability will be higher. 

 Means 𝜇𝑛: This represents the centroid of each Gaussian of the GMM. 

 Covariance matrices Σ𝑛: This defines the amplitude of each Gaussian 𝑛.  

The model encoding consists in adjusting the parameters of the Gaussians so that they fit the 

training sequences. It is solved using the Expectation-Maximization (EM) algorithm (Bilmes, 

1998). The algorithm is based on an iterative method that is able to approximate the Gaussians 

to the training sequences, thus maximizing the likelihood of the training sequences belonging to 
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the GMM 𝜌𝑖. It is implemented as a function EM (4.2), as explained in Appendix D.1. The input 

parameters are all of the training sequences 𝜉𝑖1, … , 𝜉𝑖𝑈, where 𝑈 is the number of 

demonstrations, and 𝑁 is the number of Gaussians. 

𝜌 = 𝐸𝑀(𝜉𝑖1, … , 𝜉𝑖𝑈, 𝑁) (4.2) 

Using this function, the relationship between the interaction measurements and the ideal 

guidance references of each gesture are encoded into a GMM 𝜌𝑖. Figure 4-5 depicts how a 

GMM composed of 𝑁 = 3 Gaussians (represented as ellipses) is adjusted to the training 

sequence using the EM algorithm for the gallbladder pulling gesture example, whose training 

sequences are represented by the X-axis in Figure 4-4. Figure 4-5.a depicts the initial 

configuration of each 𝑖 Gaussian (𝑖 = 1,… ,𝑁) at the first iteration, which can be represented by 

the centre 𝜇𝑖
0 (red cross) and the covariance Σ𝑖

0 (ellipse) placed in a random position. During the 

execution of the EM algorithm, the Gaussians are adjusted to the demonstrations, as indicated in 

Figure 4-5.b for the 𝑗 iteration. Finally, the EM algorithm fits the best configuration at iteration 

𝑚; thus, the Gaussians are adjusted to the demonstrations, as indicated in Figure 4-5.c. 
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Figure 4-5. EM Training procedure for a GMM of 𝑁 = 3 Gaussians: 𝜇𝑖 represents the centres 

and Σ𝑖 represents the covariances of the GMM. (a) First EM iteration; (b) intermediate EM 

iteration; and (c) Final trained GMM 

As previously shown, the EM algorithm can be used to encode a gesture into a GMM. 

However, the number of Gaussians is also an important parameter of the model: if it is too low, 

the GMM will not sufficiently fit the training sequence. Hence, Figure 4-6 illustrates an 

example of three encoded GMMs for the gallbladder pulling gesture, as previously illustrated in 

Figure 4-4, in which three number of Gaussians have been taken into account (𝑁 = 1,3,5). It 

can be observed from the figure that the fitness of the GMMs improves according to the number 

of Gaussians, demonstrating the best fitness for 𝑁 = 5 (Figure 4-6.c). However, if the number 

of Gaussians is too high, the computer processing time of the GMR function would be 

excessively long, thus violating the real-time constraint, as explained in Appendix D.2. 
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Therefore, the number of Gaussians must be selected based on the real-time constraint and by 

evaluating how well the GMM fits the demonstrations. Therefore, the Bayesian Information 

Criterion (BIC) (Schwarz, 1978) has been used to evaluate the fitness of the GMM. This method 

provides a score for different estimated GMMs, which can be calculated as follows: 

𝐵𝐼𝐶 = −ℒ(𝜉𝑖1, … , 𝜉𝑖𝑈) +
𝑛𝑝

2
log (𝑘) (4.3) 

where ℒ(𝜉𝑖1, … , 𝜉𝑖𝑈) represents the log-likelihood of the training sequences; 𝜉𝑖1, … , 𝜉𝑖𝑈 belongs 

to the encoded GMM 𝜌, as explained in Appendix D.1; and 𝑛𝑝 = (𝑁 − 1) + 𝑁(𝐷 +

(1 2)⁄ 𝐷(𝐷 + 1)), where 𝑁 is the number of Gaussians in the GMM and 𝐷 is the dimension of 

𝜉, as explained above. The first part of the equation denotes how well the sequence has been 

trained, and the second part penalizes the score based on the value of D. Thus, a lower score 

results in a better model. This criterion can be used for two purposes: to select the optimal 

number of Gaussians and to form a comparison between the different dimensions of 𝜉. 
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 Figure 4-6. Three trained GMMs with different number of Gaussians: 𝑁 = 1, 3, 5  

Finally, once the gesture is encoded into the GMM that fits best with the demonstrations, 

it is stored in the gestures library, which will be used to provide haptic guidance references 

during the real-time reproduction of the manoeuvre. 

4.2.2 Reproduction 

When the gesture library has been obtained for a manoeuvre, a method is needed to 

retrieve the haptic guidance reference from the trained GMMs. The proposed method is 

presented in Figure 4-7. First, the model 𝜌𝑖 of the gesture being performed has to be selected 

from the library using the interaction measurements (𝑓(𝑗) and 𝜏⃗⃗(𝑗) obtained at the instant 𝑗 in 

time, which is provided by the navigation system. The gesture can be identified using different 

methods, e.g., analysing sensory information or using the HMM, as previously explained in 
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Section 3.5. Then, Gaussian Mixture Regression (GMR) is used to generate the haptic guidance 

references 𝑔⃗(𝑗) = (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) from 𝜌𝑖 based on the interaction measurements. The haptic 

guidance forces are then provided to the surgeon through the haptic device, which assists the 

surgeon’s movement, thus providing the instrument tip pose {𝑃} that is transmitted to the 

navigation system described in Chapter 3. 
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Figure 4-7. Haptic guidance reference generation diagram used during the real-time 

teleoperation 

As previously explained, the GMM 𝜌𝑖 of the gesture that is being performed is selected, 

and the objective is to generate the most likely haptic guidance reference 𝑔⃗(𝑗) for the interaction 

measurements provided by the navigation system. For this purpose, a GMR function has been 

defined in (4.4) and explained in Appendix D.2. In the case of the gallbladder pulling gesture 

example (Figure 4-3), 𝜏 was removed to improve the GMM fitness, as described in Section 

4.2.1. 

𝑔⃗(𝑗) = 𝐺𝑀𝑅(𝜌𝑖 , 𝑓(𝑗), 𝜏(𝑗)) (4.4) 

Figure 4-8 presents the obtained haptic guidance trajectory along the X-axis (red line) for 

the gallbladder pulling gesture example that was encoded into a GMM (Figure 4-5). As 

previously indicated, GMR has been used to generate the trajectory that follows the most likely 

path through the Gaussians, which best fits the demonstrations that were initially performed to 

encode the gesture. Depending on the interaction force 𝑓𝑥, a haptic guidance reference 𝑔𝑥 will 

be provided to the surgeon to guide him to move the instrument tip to a goal position, where the 

gallbladder is pulled with a previously trained force 𝑓𝑥(𝑘). In fact, the haptic guidance force is 

close to ℎ𝑚𝑎𝑥 when the instrument tip interaction force 𝑓𝑥 is low, and the haptic guidance force 

decreases as the gallbladder is pulled with the trained force 𝑓𝑥(𝑘). It should be noted that forces 

𝑓𝑥 outside the generated trajectory, i.e., lower than zero or higher than 𝑓𝑥(𝑘), indicate that the 

surgeon is not performing the encoded gesture; therefore, the GMR will not provide any haptic 

guidance reference 𝑔⃗. 
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Figure 4-8. Haptic guidance trajectory obtained from GMR for the gallbladder pulling gesture 

 

4.3 Summary 

This chapter proposes a new method for haptic guidance that assists a surgeon during the 

reproduction of a manoeuvre that has been previously trained by expert demonstrations. The 

primary advantage of the proposed method is that it does not use previously fixed stored 

information from the patient, e.g., processed images taken before the surgery, marks on the 

body, etc., to provide haptic guidance through virtual fixtures. By contrast, it uses interaction 

measurements obtained in real-time during teleoperation to provide guidance forces to assist the 

surgeon. Moreover, these guidance forces are learned using the LfD methodology, which allows 

the system to be trained by experts using kinaesthetic teaching or directly teleoperating the 

robot. For this process, a manoeuvre is divided into several simple gestures that are trained 

separately. Each gesture is encoded into a GMM that is stored in a gesture library, which will be 

used during the reproduction of the manoeuvre. Hence, different haptic guidance references are 

generated depending on the gesture that is being performed taking into account that different 

gestures could generate opposing guidance forces owing to the characteristics of the manoeuvre. 

Once the gesture library has been obtained, it is used during the reproduction stage. First, the 

gesture that is being performed is selected. Then, the haptic guidance references are generated 

using the GMR. 

This method has been implemented in a generic teleoperation system to solve the peg-in-

hole insertion task, which is more complex than the example used in this chapter. The 

experimental results are presented in Section 5.3. 
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5 Implementation and Experiments 

 

5.1 Introduction 

In previous chapters, the theoretical aspects of two approaches that comprise the proposed 

smart navigation method for SPAS have been described. In particular, Chapter 3 proposes a 

navigation method that improves the estimation of the fulcrum point using a soft tissue 

interaction detector and a Kalman filter measurement fusion method, and that also minimizes 

the forces exerted by the instrument on the abdomen using a parallel force-position control 

scheme. Additionally, Chapter 4 detailed an LfD-based approach that was integrated in the 

proposed navigation system to assist the surgeon during the execution of a task using haptic 

guidance. 

This chapter describes how these approaches have been implemented in two robotic 

platforms to obtain experimental results that validate both approaches. Specifically, the 

navigation method for SPAS has been implemented in the CISOBOT platform, which was 

developed by the Surgical Robotics Team from the Universidad de Malaga; and the haptic 

guidance approach has been implemented in the LWR Taskboard Workcell from the 

Telerobotics and Haptics Laboratory at ESA-ESTEC. It should be noted that only a preliminary 

study of the haptic guidance approach has been conducted, i.e., solving a complex task: the peg-

in-hole insertion, which demonstrates that the proposed approach is able to solve similar 

surgical tasks, such as inserting an instrument through the trocar or pulling the gallbladder 

during a cholecystectomy by applying a previously trained force.  
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This chapter describes the experimental results of the proposed smart navigation method. 

Four experiments, which validate the proposed parallel force-position control scheme, gesture 

recognizer and soft tissue interaction detector, are presented in Section 5.2. Section 5.3 

describes how the method for the LfD-based haptic guidance has been used to solve a trained 

generic task, i.e., the peg-in-hole insertion, and its experimental results are provided in this 

section. Finally, a summary of the experimental results are described in Section 5.4. 

 

5.2 Navigation Method for SPAS 

This section describes the experiments performed to validate the proposed navigation 

method. The primary objectives of the performed experiments are explained, and the results of 

four experiments, which validate the navigation method and the soft tissue interaction detector, 

are presented. 

5.2.1 Objectives 

The primary objective of the performed experiments is to validate the navigation method 

proposed in Section 3. This objective can be divided into four sub-objectives as follows: 

- Validation of the inverse Jacobian position control scheme. The goal is to 

perform an experiment that validates the proposed inverse Jacobian position 

control scheme, as described in Section 3.4, thus demonstrating its performance 

in a real manipulator. 

- Comparison of the parallel force-position control scheme with the fulcrum point 

estimation. An experiment is conducted to compare how the parallel force-

position control scheme and the fulcrum point estimation work together using 

sensory information from two manipulators whose instruments are inserted 

through the same trocar. 

- Gesture detector performance analysis. An analysis of the gesture detector is 

needed for the interaction with the soft tissue detector. Therefore, an experiment 

is conducted to demonstrate how the different gestures are detected. 

- Validation of the soft tissue interaction detection algorithm. An experiment to 

validate the soft tissue interaction was performed by measuring the delay between 

the instant when the interaction starts and finishes and the instant when it is 

detected by the proposed algorithm. 
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5.2.2 Parallel Force-Position Control Scheme Validation 

This section describes the experiments that have been conducted to validate the proposed 

parallel force-position control scheme, which has been implemented in the CISOBOT platform, 

as described in Appendix E. Using the control scheme, both manipulators are teleoperated using 

haptic devices. 

The first experiment validates the implementation of the position control scheme (defined 

in Section 3.4) without force feedback to demonstrate the accuracy of the manipulator when it is 

moving around a predefined fulcrum point using the proposed control scheme. Then, the 

fulcrum point estimation and force feedback are included in the control scheme. Using both 

manipulators, a second experiment is conducted to validate that the abdominal forces decrease 

and the fulcrum point estimation improves.  

5.2.2.1 Experiment 1: Position Control Scheme 

The objective of this experiment is to demonstrate the use of the proposed position 

control scheme based on the fulcrum point constraint during the movement of the instrument 

tip. In this experiment, two movements were performed: the first consisted of a predefined 

circular movement of the instrument tip based on the fulcrum point constraint, and the second 

consisted of teleoperation of the instrument by an operator. To demonstrate the feasibility of the 

proposed control scheme, the position error of the instrument tip was analysed during the 

movement. 

As mentioned before, the first movement was defined as a 100 mm circular trajectory in a 

plane starting from 𝑝𝑃
𝑂 = [450 50 − 200] mm, where the fulcrum point position has been 

fixed to 𝑝𝐹
𝑂 = [500 0 0], as shown in Figure 5-1. This movement was performed in 15 

seconds. 

The instrument tip error during the movement is depicted in Figure 5-2. In this figure, the 

first row represents the referenced trajectory (blue line) and the followed position of the 

instrument tip (red line) during the execution of the movement in the three axes. The second 

row indicates the instrument tip position error during the movement. As shown, the peak error 

of the instrument tip position was approximately 1.5 mm in the X and Y-axes, and the error at 

the end of the movement was close to zero in all of the axes. 
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Figure 5-1. Circular trajectory used to validate the position control scheme 

 

 

Figure 5-2. Instrument tip error during the circular movement 
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The second movement was performed by teleoperating a manipulator with a haptic device 

(described in Appendix D.4). The goal of this movement was to validate the performance of the 

control scheme and the manipulator when it was teleoperated, which involved faster movements 

than the obtained from a predefined trajectory. Thus, a human operator handled the haptic 

device and performed a movement based on a fixed fulcrum point as a virtual RCM. In this 

experiment, the instrument tip position error was also analysed. Figure 5-3 presents the 

performed teleoperated trajectory and the position of the fulcrum point. 
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Figure 5-3. Obtained trajectory from teleoperation using a haptic device 

Figure 5-4 shows the Cartesian instrument tip position reference during the movement 

(first row, blue line) and the followed movement of the manipulator (red line). The second row 

shows the error between the position reference provided by the haptic device that is handled by 

the operator and the followed manipulator position, which is obtained from the joint sensors. 

During this movement, the maximum peak error was approximately 3 mm, which can be 

considered normal because it occurs when the instrument tip is quickly changed, as indicated in 

the performed trajectory shown in the first row. The error at the end of the movement was 

between 0.5 mm and 1.5 mm, which is also acceptable. 

As demonstrated, the inverse Jacobian-based position control scheme (presented in 

Section 3.4) has been validated when implemented into the CISOBOT platform, thus allowing 

the manipulators to be teleoperated based on a fulcrum point constraint that is translated into a 

virtual RCM. Therefore, the validation of the entire navigation method taking into account both 

manipulators, the parallel force-position control scheme and the fulcrum point estimation 

method is detailed in the next experiment. 



74 

 

 

Figure 5-4. Instrument tip error during the teleoperated movement 

5.2.2.2 Experiment 2: Navigation Method 

The objective of this experiment is to evaluate the fulcrum point estimator and the 

parallel force-position control algorithm using both manipulators. This experiment starts with 

both manipulators handling the SPAS instruments, which were manually inserted through the 

multiport trocar. Then, both manipulators performed a pre-programmed trajectory that consisted 

of a rotation of π/6 rad about the Y-axis from the fulcrum point in 1.5 seconds. Figure 5-5 

depicts the initial and final positions of both manipulators. The distance covered by both 

instrument tips is 35.8 mm. As shown, each manipulator performed this rotation in the opposite 

direction. To avoid inaccurate fulcrum point estimations due to F/T sensor errors when the 

exerted forces are low, a dead zone was defined between -2 N and 2 N, which indicates that if 

the measured forces are in this interval, they are not used to estimate the fulcrum point, and the 

previous estimation is used. Four trials were performed to compare the performance of the 

proposed navigation method when the Kalman filter fusion method and/or the force control are 

enabled or disabled.  

                     
(a)                                                    (b) 

Figure 5-5. Pre-programmed trajectory to validate the proposed navigation method: (a) initial 

position; and (b) final position 
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During the reproduction of the movements, the exerted abdominal forces were analysed 

to demonstrate that the force control minimizes them when it is enabled. Furthermore, the 

fulcrum point estimation error was analysed to demonstrate how the Kalman filter-based fusion 

method improved its estimation, and the instrument tip position error was analysed to 

demonstrate the accuracy of the performed movements. 

The first trial was conducted with both the force feedback control and the Kalman filter 

fusion method disabled. Figure 5-6 depicts the measured forces (first and second rows) and the 

estimation errors (third and fourth rows) for both manipulators, where the peak forces are 6.5 N, 

which coincides with the final exerted forces. Furthermore, these forces increase during the 

movement owing to the accumulation of the estimation errors. The estimation error changes 

during the movement. As can be observed, it reaches a peak error of 70 mm and 35 mm at the 

end of the movement. 

The second trial was conducted with the Kalman filter fusion method enabled and the 

force feedback control disabled. As shown in Figure 5-7, the maximum peak force and the final 

exerted force are 4.8 N. Moreover, the forces increase during the movement. The fulcrum point 

estimation error reaches a peak of 30 mm and 21.6 mm at the end of the movement. Therefore, 

by comparing this plot with the previous one, the exerted forces and estimation error are 

reduced when the Kalman filter fusion method is enabled; however, the forces increase during 

the movement in the same way as in the previous trial. 
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Figure 5-6. First trial: measured forces and estimation errors when both the Kalman filter and 

the force feedback control were disabled 



76 

 

0 0.5 1 1.5
0

2

4

6

F
o
rc

e
 (

N
)

0 0.5 1 1.5
0

2

4

6

F
o
rc

e
 (

N
)

0 0.5 1 1.5
0

20

40

D
is

ta
n
c
e
 (

m
m

)

0 0.5 1 1.5
0

10

20

30

Time (sec)

D
is

ta
n
c
e
 (

m
m

)

A
b

d
o

m
in

a
l 
F

o
rc

e
s

M
a
n

ip
. 

1
  
  
  

  
  

  
  

M
a
n

ip
. 
2

F
u

lc
ru

m
 P

o
in

t 
E

s
ti
m

a
ti
o

n
 E

rr
o

r

M
a
n

ip
. 

1
  
  
  

  
  

  
  

M
a
n

ip
. 
2

 

Figure 5-7. Second trial: measured forces and estimation errors when only the Kalman filter 

fusion method is enabled 

The third trial, where only the force feedback control was enabled, is depicted in Figure 

5-8. In this movement, the peak exerted force is 3.87 N, and the final exerted force is 1.5 N. In 

contrast to the previous trials, the forces decrease during the movement owing to the 

compensation of the force feedback control. The estimation error is similar to the first 

movement where the Kalman filter was disabled, i.e., approximately 36 mm at the end of the 

movement. It should be noted that the error remains nearly constant during the movement owing 

to the defined dead zone. 

The fourth trial was conducted with both the force feedback control and the Kalman filter 

fusion method enabled. Figure 5-9 presents the results. It can be observed that the peak exerted 

force is 3.18 N and the final exerted force is 1.5 N. The behaviour of the forces during the 

movement is similar to that of the previous movement because of the force feedback control, 

and the fulcrum point estimation improves during the entire movement because of the use of the 

Kalman filter based fusion method, thus reaching 6.5 mm at the end of the movement. 
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Figure 5-8. Third trial: measured forces and estimation errors when only the force feedback is 

enabled 
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Figure 5-9. Fourth trial: measured forces and estimation errors when both the force feedback 

and the Kalman filter fusion method are enabled 

Finally, Figure 5-10 presents a comparison between the instrument tip reference and 

followed trajectory for each movement. The module of the error between them for each 

considered case is presented in the last row. As indicated, during the movement, the error when 

the force control was enabled and the Kalman filter based estimation was disabled was higher 

than that of the case when both were disabled. This result is due to the force compensations, 

which move the instrument tip. At the end of the movements, both errors are similar (5.4 mm) 

because of the accumulation of the estimation errors during the movement. In the case of the 

force control being disabled and the Kalman filter based estimation being enabled, the error was 

reduced to 2.5 mm. Finally, the error was reduced to 0.2 mm when both actions were enabled. 
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Figure 5-10. Referenced versus followed trajectory for each movement. The module of the 

position error is also represented. 
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In summary, Table 5.1 presents the results of these trials. As explained, the best results 

are obtained when both the force feedback control and the Kalman filter fusion estimation are 

enabled, i.e., trial four. However, as is indicated in trial three, when only the force control is 

enabled, the abdominal peak and steady state forces are reduced even with a large fulcrum point 

estimation error. Moreover, if only the Kalman filter estimation is enabled (trial two), the 

fulcrum point estimation error and the exerted forces are higher than during trials three and four 

owing to the accumulation of the error during the movement. 

Table 5.1. Navigation Method Experimental Results 

Trial 

Description  
Force 

Feedback 
Control 

Kalman 
Estimation 

Peak 
Force 

Steady 
State 
Force 

Fulcrum 
Point Est. 

Error 

Instrument 
Tip position 

Error 

1 Disabled Disabled 6.5 N 6.5 N 35 mm 5.4 mm 

2 Disabled Enabled 4.84 N 4.84 N 21.6 mm 2.5 mm 

3 Enabled Disabled 3.87 N 1.5 N 36 mm 5.3 mm 

4 Enabled Enabled 3.18 N 1.5 N 6.5 mm 0.2 mm 

 

This experiment demonstrates how the proposed navigation method works. In particular, 

the Kalman filter measurement fusion method improves the fulcrum point estimation when both 

manipulators handle instruments that are inserted through the same trocar, and the parallel 

force-position control scheme reduces the forces exerted on the abdomen. Finally, the 

instrument tip position error is reduced to 0.2 mm, which is considered low enough to perform 

teleoperated surgeries. 

5.2.3 Soft Tissue Interaction Detection 

Two experiments have been performed to demonstrate the feasibility of the soft tissue 

interaction detector. The first experiment demonstrates the experimental results of the gesture 

recognition, and the second experiment shows the results of the soft tissue interaction detection 

once the gesture is recognized. For these experiments, four gestures were trained, as indicated in 

Figure 5-11. The gestures are divided into two subsets. The first one is composed of the 

longitudinal insertion and extraction movements into the abdomen: nail (Figure 5-11.a) and pull 

(Figure 5-11.b); and the second one represents the vertical movements of the instrument tip: 

push up (Figure 5-11.c) and down (Figure 5-11.d). During the first subset of movements, there 

are low lateral forces |𝑓𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗ | and high vertical forces 𝑓𝑧⃗⃗⃗ ⃗ on the instrument tip. Conversely, in the 

second subset of movements, the lateral forces are high and the vertical forces are low. 

Moreover, it should be noted that during the pull and push up movements, the tissue is picked 

up and moved back to its initial position. 
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Push
Down (    )
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1 2

3 4

 

Figure 5-11. Four trained gestures. Nail: insertion of the instrument until it touches soft tissue; 

Pull: extraction of the instrument while it holds the tissue; and Push up and down: vertical 

movement of the instrument while it holds the tissue 

To evaluate the proposed interaction with the tissue detector, an HMM was trained for 

each gesture in Figure 5-11. Therefore, a set of gestures 𝛺 = {𝜆1, … , 𝜆4} was obtained. The size 

of the observable feature set was fixed to 𝑟 = 512 symbols, which was gathered by the VQ 

using the measurement tuple defined in (3.14). 

To conduct this experiment, 80 movements were performed for each gesture. Half of the 

movements were used for the HMM training and the rest for testing the detector. These 

movements were executed using the teleoperation subsystem and a patient simulator with 

artificial tissue, as depicted in Figure E-1.a. 

5.2.3.1 Experiment 1: Gesture Detection 

The objective of this experiment was to demonstrate that each trained gesture is correctly 

recognized in most cases. The experiment was conducted using 40 samples for training and 40 

for validating the gesture recognizer. The statistical results of the last 40 samples were obtained 

to demonstrate that most of gestures were correctly recognized. 

 Table 5.2 presents the obtained results. During the reproduction of these movements, 

each one was recognized, except for the nail gesture, where three samples were not correctly 

recognized. The primary reason for most of the movements being correctly recognized as 

gestures is related to the sensory information that was used to perform the recognition. As 

explained above, the different magnitudes of forces, torques and velocities are measured during 

the reproduction of each gesture, and they are detected by the HMM. 
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Table 5.2. Gesture Recognition Results 

Gesture Success Failure Percent 

Nail 37 3 92.5% 

Push down 40 0 100% 

Pull 40 0 100% 

Push up 40 0 100% 
 

5.2.3.2 Experiment 2: Hidden States Estimation 

As regards to the estimation of the hidden states, which are used to obtain the interaction 

with the soft tissue inside the abdomen, an experiment was conducted to validate the interaction 

with the soft tissue detector. The transition between states one and two, which represents the 

start of the interaction, and four and five, which represents the end of the interaction, were 

analysed. 

The entire diagram in Figure 3-14 was then implemented, and the 40 samples obtained for 

testing were used. The delay between the instant in time when the interaction with soft tissue 

occured and when it was detected was analysed to demonstrate the performance of the soft 

tissue interaction detector. Figure 5-12, Figure 5-13, Figure 5-14 and Figure 5-15 show an 

example of a reproduction of each gesture and how the proposed interaction with the soft tissue 

detector works. In these figures, the first four rows represent the obtained measurements from a 

manipulator and an F/T sensor, and the fifth row shows the performed movement of the 

instrument tip in the Z-axis (blue line) and the position of the tissue (green line). The estimated 

state at each instant is shown in the sixth row; and the log-likelihood of each gesture ℓ(𝜆𝑖) 

during the movement is represented in the seventh row, where each line represents the log-

likelihood of each gesture. It should be noted that a likelihood close to zero, which implies that 

the log-likelihood tends to minus infinity, is not represented in this plot (ℓ(𝜆𝑖) < −10−308), as 

can be observed in the figures when the coloured lines are not drawn. The transition between 

state one and two represents the start of the interaction with the tissue, and the transition 

between four and five represents the end of the interaction. As indicated, during the 

reproduction of the nail gesture (Figure 5-12), when the interaction with the soft tissue occurs, 

the vertical exerted forces on the instrument |𝑓𝑧⃗⃗⃗ ⃗| between seconds 8 and 10 on the plot are 

negative and higher than the horizontal exerted forces |𝑓𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗ |. The same result occurs for the pull 

gesture (Figure 5-13), but in this case, |𝑓𝑧⃗⃗⃗ ⃗| is positive (for the interval between seconds 6 and 

13). Conversely, when the push down and up gestures are reproduced (Figure 5-14 and Figure 

5-15, respectively), |𝑓𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗ | is higher than or similar to |𝑓𝑧⃗⃗⃗ ⃗|, as indicated in the corresponding plots: 

seconds 7 and 10 for the push down gesture and seconds 2 and 7 for the push up one. Therefore, 
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by training each gesture into an HMM using this information, as previously stated, the gesture 

𝜆𝑖 that is being performed and its corresponding hidden state 𝑞𝑗 are detected in real-time during 

the execution of the gesture, as shown in rows six and seven. 

0 2 4 6 8 10 12 14
-50

0

50

0 2 4 6 8 10 12 14
-10

0

10

0 2 4 6 8 10 12 14
0

5

0 2 4 6 8 10 12 14
0

500

1000

0 2 4 6 8 10 12 14
-400

-350

-300

0 2 4 6 8 10 12 14
0

5

0 2 4 6 8 10 12 14
-4000

-2000

0

Time (sec.)

Zf


xyf


xy


P

Oz

jq

P

Oz
(mm/s)

(N)

(N)

(N·mm)

(mm)

0 2 4 6 8 10 12
-50

0

50

0 2 4 6 8 10 12
-5

0

5

0 2 4 6 8 10 12
0

5

10

0 2 4 6 8 10 12
0

1000

2000

0 2 4 6 8 10 12
-340

-320

-300

0 2 4 6 8 10 12
0

5

0 2 4 6 8 10 12
-4000

-2000

0

Time (sec.)

 

 

Nail

Push down

Pull

Push up

)( i

0 2 4 6 8 10 12
-50

0

50

0 2 4 6 8 10 12
-5

0

5

0 2 4 6 8 10 12
0

5

10

0 2 4 6 8 10 12
0

1000

2000

0 2 4 6 8 10 12
-340

-320

-300

0 2 4 6 8 10 12
0

5

0 2 4 6 8 10 12
-4000

-2000

0

Time (sec.)

 

 

Nail

Push down

Pull

Push up

Instrument

Tissue

 

Figure 5-12. Reproduction of the nail gesture 
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Figure 5-13. Reproduction of the pull gesture 
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Figure 5-14. Reproduction of the push down gesture 
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Figure 5-15. Reproduction of the push up gesture 

Figure 5-16 illustrates the distribution of the delays between the instants when the 

interaction with the soft tissue started and ended and the instants when they were detected, i.e., 

transition between states one and two and transition between states four and five, respectively. 

As indicated, the delay at the beginning of the interaction is lower than the delay at the end of 

the interaction, and the push down movement has the maximum delay when the interaction 

starts and ends. It should be noted that it is important to detect when the interaction starts 

because it is the moment when the fulcrum point estimator stops. Moreover, the average delay is 

between 100 ms and 200 ms depending on the gesture, which is considered sufficient to not 

affect the fulcrum point estimation, which is performed using a least square estimator that has 

been adjusted to take this delay into account.  
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Figure 5-16. Delay distribution between the real interaction and the estimated one. This figure 

shows the difference between the different gestures and delays when the interaction starts and 

ends. 
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5.3 LfD for Haptic Guidance 

This section describes a preliminary study that was conducted to experimentally validate 

the proposed LfD approach for haptic guidance. As stated in the previous chapter, it consists in 

providing guidance forces that have been previously trained from expert demonstrations. This 

approach was implemented in the LWR Taskboard Workcell (Appendix F) located at ESA-

ESTEC. It was used to solve a generic and complex task: the peg-in-hole insertion, which is a 

de facto benchmark test for robotics assembly (Unger et al., 2001). Moreover, despite this task 

being trivial when performed manually, it has proven to be relatively challenging when 

performed by a robot (both teleoperated and automatically). Thus, the primary objectives, which 

are the focus of the performed experiments, are described in Section 5.3.1. Then, the specific 

peg-in-hole insertion task is tackled in Section 5.3.2. Finally, the results of the performed 

experiments are presented in Sections 5.3.3 and 5.3.4 for the training and reproduction stages, 

respectively. 

5.3.1 Objectives 

The primary objective of these experiments is to validate the proposed LfD approach. 

Because this approach is divided into two stages: training and reproduction, the primary 

objectives of these experiments can be given as follows: 

- Training stage validation. To solve a task, it has to be previously trained. 

Therefore, an experiment is defined to demonstrate how well the proposed 

approach is trained to solve a generic task: peg-in-hole insertion. 

- Haptic guidance accuracy. Once the training has been conducted, an experiment 

is needed to test how the guidance is performed by the proposed approach. 

5.3.2 Peg-in-hole Task 

To demonstrate the feasibility of the proposed LfD approach, the peg-in-hole insertion 

task has been selected. This task, despite being trivial when performed manually, has proven to 

be relatively challenging by the use of a robot (both teleoperated and autonomously) (Chhatpar 

and Branicky, 2001). 

First, the task was divided into two gestures, as illustrated in Figure 5-17, which depend 

on the interactions between the peg and the hole during the task. At the beginning, the operator 

attempts to position the peg at the entrance to the hole. In this situation, lateral contacts with the 

hole are performed, and the objective is to guide the operator to place the peg tip in the centre of 

the hole. This gesture is represented in Figure 5-17.a. As shown, the hole surface is pushed with 
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a lateral force 𝐹𝑚
⃗⃗ ⃗⃗ ⃗. Because the peg is rigid, a reaction force of the same magnitude is 

transmitted to the base of the peg as 𝑓. Furthermore, a small torque 𝜏 is generated on the peg. In 

this case, the peg tip has to be moved horizontally to coincide with the hole. On the other hand, 

if the peg is already at the entrance to the hole but is not correctly oriented (Figure 5-17.b), the 

operator has to align the peg with the hole. In this situation, if the peg is ‘pushed’ down with a 

force 𝐹𝑚
⃗⃗ ⃗⃗ ⃗, vertical and opposite lateral forces 𝑓 arise because the peg is locked in the hole, and 

torques 𝜏 arise in the opposite direction because of the lever effect. Thus, the peg may be rotated 

to align it with the hole. 

To summarize, forces and torques of different magnitudes and directions are expected 

depending on the type of contact with the hole, which also require different movements to 

facilitate the insertion. Thus, the proposed task has been divided into two gestures: (a) surface 

contact and (b) lever effect. 

(a) (b)
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Figure 5-17. Peg-in-hole identified gestures: (a) Lateral movement, where the peg is touching 

the surface of the hole surface with lateral forces; and (b) Push down movement, which 

generates a lever effect due to the incorrect orientation of the peg. The blue arrows represent the 

manipulator exerted forces, whereas the green springs and arrows represent the ideal guidance 

forces. 

To simplify the gesture selector (Figure 4-7), vertical forces exerted on the peg base 𝑓𝑧 

have been used to define a threshold that selects the gesture that is being performed. During the 

reproduction of the surface contact gesture, the force 𝑓𝑧 is significantly lower than that during 

the lever effect gesture. 

Second, to obtain the tuple 𝜉, an analysis of both gestures has been conducted to reduce 

the tuple dimension D. In the case of surface contact (Figure 5-17.a), only the lateral force 

vector can be used because the torques do not provide any relevant information during the 
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reproduction of this gesture. Moreover, 𝑓𝑧 can be removed because it is extremely low during 

the movement, and it does not provide any relevant information to generate the haptic guidance 

references. Thus, 𝜉𝑠𝑐 can be defined in the same way, as represented in (D.13), for the surface 

contact gesture as follows: 

𝜉𝑠𝑐 = [𝜉𝑠𝑐
𝑖 ; 𝜉𝑠𝑐

𝑜  ] = [𝑓𝑥, 𝑓𝑦; ℎ𝑥 , ℎ𝑦, ℎ𝑧]  (5.1) 

In the case of the lever effect (Figure 5-17.b), only the torque vector can be used because 

the forces do not provide any relevant information in this gesture. Furthermore, the component 

𝜏𝑧 can be removed because it represents the measured torque of a longitudinal rotation of the 

peg, which does not occur during the reproduction of the task. Therefore, 𝜉𝑙𝑒 can be defined as 

follows: 

𝜉𝑙𝑒 = [𝜉𝑙𝑒
𝑖 ; 𝜉𝑙𝑒

𝑜  ] = [𝜇𝑥 , 𝜇𝑦; ℎ𝑥, ℎ𝑦, ℎ𝑧]  (5.2) 

Once we have defined these tuples, both training sequences can be obtained from 

multiple demonstrations using a robotic teleoperation platform. 

5.3.3 Training the Task 

To obtain the training sequences for both gestures, the LWR was manually guided in 

kinaesthetic mode to demonstrate both gestures, which start from eight 45º displaced initial 

positions. Figure 5-18.a presents the front view of the hole and the defined initial positions that 

cover a circle. Figure 5-18.b and Figure 5-18.c present the starting positions of the peg for the 

surface contact and the lever effect gesture, respectively. Six training movements were 

performed for each gesture and initial position, resulting in 6x2x8 = 96 insertions.  
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                       (a)                                (b)                               (c) 
 

Figure 5-18. Initial training positions: (a) Eight different insertion positions to cover a circle 

over the hole; (b) Initial position of the surface contact gesture; and (c) Initial position of the 

lever effect gesture 
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These movements were grouped so that there was only one sensory information sequence 

for each gesture. These sequences were processed to obtain the training sequences that were 

used to encode both GMMs with a different number N of Gaussians, and they were evaluated 

through the BIC, as outlined in Section 4.2.1. Figure 5-19 shows a comparison of the different 

number of Gaussians and demonstrates how the BIC score is improved when the dimension D 

of 𝜉 is reduced. In this figure, the blue line represents a tuple 𝜉𝑖  of two dimensions instead of 

three, as denoted by the green line. As expected, a lower dimension of 𝜉𝑖  improves the score. 

Specifically, a similar score is obtained using six Gaussians and two dimensions or eleven 

Gaussians and three dimensions, as indicated in Figure 5-19.a. Furthermore, as depicted in both 

plots, the BIC score improves as more Gaussians are used. However, as stated in Section 4.2.2, 

the GMR processing time increases linearly with the number of Gaussians. Owing to the 

processing time constraint of the system (1 ms), several tests were performed, and the maximum 

number of Gaussians that the main computer was able to execute in real time was 𝑁 = 6. 
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(a) Surface contact (Figure 5-17.a) 
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(b) Lever effect gesture (Figure 5-17.b) 

Figure 5-19. BIC scores for different gestures using different tuples in the input sequences. 

Lower values denote a better model fit. 
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Once the best encoded GMMs were selected, they were stored into the gesture library, 

which was validated offline. For this purpose, 𝑀 = 8𝑥2 = 16 new validation movements were 

conducted in kinaesthetic mode, one for each initial position and gesture. These new movements 

were used to calculate the differences between the processed ideal guidance references and the 

obtained haptic guidance references through the GMR. Figure 5-20 depicts an example of both 

gestures starting at position 5 in Figure 5-18.a. The first row plots the ideal guidance force 

references ℎ⃗⃗, which are obtained by kinaesthetic teaching from (4.1) (blue line), and the output 

guidance force references 𝑔⃗, which are obtained from (4.4) using the measured forces and 

torques during the movement (red line) for the Y-axis. As indicated, the generated references 

follow the performed trajectory during the kinaesthetic training. The small oscillations during 

the movement are due to F/T sensor noise and the friction effects between the peg and the hole 

surface during the kinaesthetic movement of the manipulator. The measured forces and torques, 

𝑓𝑦 and 𝜏𝑥, during the movement are shown in row two of each plot. They are used to generate 

the haptic guidance references 𝑔𝑦. 
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(a) Training example for the surface contact gesture 
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(b) Training example for the lever effect gesture 

Figure 5-20. Example of training for each GMM, where a comparison between the ideal 

guidance references with the haptic guidance references is performed. These movements have 

been performed starting from position 5 in Figure 5-18.a. 
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Finally, the Root-Mean-Square (RMS) error was calculated using (5.3) for all of the 

validation movements, where 𝑔⃗𝑖(𝑗) and ℎ⃗⃗𝑖(𝑗) represent the haptic and ideal guidance references, 

respectively, for the movement 𝑖 at an instant 𝑗 in time, and 𝑘𝑖 is the number of elements within 

the validation sequence. 

𝑒𝑟𝑚𝑠 = √
∑ ∑ (𝑔⃗⃗⃗

𝑖
(𝑗) − ℎ⃗⃗𝑖(𝑗))

2𝑘𝑖
𝑗=1

𝑀
𝑖=1

∑ 𝑘𝑖
𝑀
𝑖=1

 (5.3) 

Figure 5-21 illustrates the RMS error for each axis of the guidance references. It can be 

observed that the RMS error is lower than 0.28 N, which is achieved during the lever effect 

gesture. 

 

Figure 5-21. RMS Error between the ideal guidance force references and the forces obtained by 

the GMR 

5.3.4 Reproducing the Task 

Finally, a teleoperated peg-in-hole insertion using haptic guidance was performed to 

validate the proposed methodology. For this purpose, the Kuka LWR slave manipulator was 

configured in compliance mode with a Cartesian stiffness of 𝑘𝑡𝑟𝑎𝑛𝑠 = 500 Nm/rad and 𝑘𝑟𝑜𝑡 =

50 Nm/rad for translations and rotations, respectively. Moreover, the vertical forces threshold, 

which is used to select the gesture that is being performed, was fixed at 5 N. The operator used 

the Sigma.7 haptic master device to insert the peg into the hole on the taskboard, thus receiving 

haptic guidance forces. To keep the focus primarily on the actions of the guidance system, the 

measured force feedback loop was disconnected, and the operator had to rely only on the aid of 

the GMR-obtained haptic guidance references. 

Using this configuration, each gesture was teleoperated starting from positions 1 and 5 in 

Figure 5-18.a, i.e., vertical movements to insert the peg. Figure 5-22 depicts the measured 
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information, where only the implied axes are presented. The surface contact gesture results are 

depicted in Figure 5-22.a. The error in the Y-axis 𝑒𝑦 indicates the difference between the 

current position of the manipulator end effector and the correct one to place the peg tip in the 

hole, and 𝑓𝑦 represents the vertical interaction forces, which are measured by the F/T sensor and 

used to provide haptic guidance references 𝑔𝑦 that reduce the error during the teleoperation. A 

similar result occurs in the case of the lever effect, as illustrated in Figure 5-22.b, where, 𝑒𝑦 

represents the error between the current position of the end effector and the correct position that 

aligns the peg with the hole. In this gesture, the torque 𝜏𝑥 is the interaction measurement that is 

used to generate the vertical haptic guidance references 𝑔𝑦 to align the peg with the hole, thus 

reducing the mentioned error, as illustrated in the figure. 
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(a) Reproduction of two surface contact gestures 
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(b) Reproduction of two lever effect gestures 

Figure 5-22. Example of peg-in-hole insertions from positions 1 and 5 in Figure 5-18.a. The 

first one has been performed starting at the top of the hole (green line) and the second one at the 

bottom of the hole (blue line). 
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5.4 Summary 

In this chapter, the proposed theoretical approaches previously presented have been 

validated. Thus, two different teleoperation systems have been used. The first one, which was 

developed by the Universidad de Málaga, has been used to validate the navigation method with 

soft tissue interaction detection for SPAS. This approach was validated using a patient simulator 

and artificial tissue. The second teleoperation system, which was developed by ESA-ESTEC, 

has been used to validate the LfD for haptic guidance approach by solving a generic and 

complex task: peg-in-hole insertion. 

The navigation method experimental results have been presented in Section 5.2.2, and the 

soft tissue interaction detector results have been provided in Section 5.2.3. As shown in Table 

5.1, the abdominal peak forces, abdominal steady state forces and fulcrum point estimation 

errors are reduced by the proposed control scheme. Furthermore, the proposed methodology for 

soft tissue interaction detection has demonstrated successful results for detecting different 

gestures (Table 5.2), and the mean delays for detecting when the interaction starts and ends are 

approximately 150 ms and 300 ms, respectively, in the performed experiment, as indicated in 

Figure 5-16. Although there are differences between when the interaction starts and ends, it is 

more important to detect when the interaction starts because the fulcrum point estimation stops 

at that moment. 

Additionally, Section 5.3 has confirmed the feasibility of using Learning from 

Demonstration to construct force/torque measurement-based haptic guidance to aid a 

teleoperated generic task, such as peg-in-hole insertion. In fact, the RMS error between the ideal 

guidance force reference, which was obtained during training, and the haptic guidance force 

reference, which was calculated using GMR, was minimal (less than 0.28 N) and independent of 

the direction. We can conclude that training the GMM on demonstrations of peg insertions from 

8 different initial orientations was sufficient to provide uniformly good coverage of the set of 

possible initial conditions. Therefore, the proposed LfD approach could be used to train a 

specific surgical task similar to the method that has been presented, e.g., instrument insertion 

through the trocar, pulling the gallbladder, etc. 
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6 Conclusions and Future Work 

 

6.1 Conclusions 

Minimally invasive surgery (MIS) has been a breakthrough with respect to traditional 

surgery. Although there are several MIS techniques, Single Port Access Surgery (SPAS) is on 

the cutting edge of MIS. It consists in introducing all of the instruments and the endoscope 

through a multiport trocar, thereby reducing the number of scars to one. Therefore, the hospital 

stay is reduced, and the cosmetic results are improved; the scar is concealed in the umbilicus. 

However, this technique entails some drawbacks for surgeons, i.e., they need to improve their 

ability to handle special instruments because they are inserted through the same trocar, which 

means that they are crossed and could collide, i.e., “sword fighting”. Hence, the use of 

teleoperated robotic platforms emerges as an advantage to perform this type of surgery. The use 

of these platforms would help the surgeons to handle the instruments and avoid such problems. 

The da Vinci surgical system has been successfully adapted for SPAS (Kroh et al., 2011). 

Additionally, several platforms are being developed for research (described in Section 2.2.2). 

One of the issues that arise when using these platforms is related to the constrained movement 

of the instruments when they are introduced through a trocar. The da Vinci surgical system 

solves this issue with a large kinematic structure, which uses a mechanical Remote Centre of 

Motion (RCM) that coincides with the fulcrum point (insertion point). Other authors have 

solved this issue using a virtual RCM, which is estimated using the measured interaction forces 

along the instrument (Section 3.2). This method can be implemented in generic and lightweight 
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kinematic structures, which is useful for SPAS because they would reduce collisions between 

the manipulators. 

This thesis proposes a smart navigation method for SPAS that uses the measured forces 

along two instruments to estimate the fulcrum point, thus improving its accuracy by a 

measurement fusion method that takes advantage of the fact that both instruments are inserted 

through the same trocar. This navigation method was implemented in the CISOBOT platform, 

which was developed by the Universidad de Málaga and whose experimental results have 

demonstrated that this method improves fulcrum point estimation. Thus, the fulcrum point 

estimation error was reduced when the measurement fusion method was used. The estimated 

fulcrum point was used to perform movements using a parallel force-position Jacobian-based 

control scheme that takes the fulcrum point as a virtual RCM and reduces the forces exerted on 

the patient’s abdomen. As has been demonstrated in the experimental results, the maximum 

error during the reproduction of different trajectories based on a fixed RCM was low for a 

teleoperated movement. Furthermore, the abdominal forces exerted during the reproduction of 

the instrument’s movements were reduced for a predefined trajectory that was performed with 

and without force feedback. 

As explained in Section 3.3, there are two interaction forces along the instrument. The 

first one is related to the abdominal interaction, which can be used to estimate the fulcrum point 

and minimize the exerted forces on the abdomen. The second one addresses the soft tissue 

interaction forces inside the abdomen, which could be used to provide haptic feedback to the 

surgeon. However, the estimation of the fulcrum point can be performed when there are only 

abdominal interaction forces along the instrument. Thus, a soft tissue interaction detector based 

on the Hidden Markov Model has been trained to detect four generic gestures: nail, pull, push 

up and push down. These gestures have been divided in five states, which provide information 

on the interaction with soft tissue. The proposed method first detects the gesture that is being 

performed during the reproduction of a movement and then estimates the current state, thus 

providing information on the interaction with soft tissue (Figure 3-17). To validate this method, 

it was included in the proposed navigation method for SPAS and implemented into the 

CISOBOT platform. Eighty movements were performed for each gesture; forty movements 

were used for training, and forty were used for testing the detector. Two experiments were 

performed using these movements. The first experiment was used to validate the gesture 

recognition. Each movement was recognized as the correct gesture, except for the nail gesture. 

Three movements were not correctly recognized when this gesture was evaluated (Table 5.2). 

The second experiment consisted of validating the state estimation once the gesture was 

recognized, which was useful to detect the interaction of the instrument with soft tissue. To do 

this, the delay between the instant when the interaction with tissue started and ended and the 
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instant when they were detected was measured, i.e., the transition between states one and two 

and the transition between states four and five, respectively (Figure 3-15). As indicated in 

Figure 5-16, the average delay was acceptable to perform the fulcrum point estimation without 

errors. 

Having defined a navigation method for SPAS, the surgeon’s experience would be 

improved by adding a haptic guidance system that could assist the surgeon during the 

teleoperation of a robotic system. Thus, a Learning from Demonstration approach for haptic 

guidance has been proposed in Chapter 4. The goal of this approach is to use previously trained 

gestures from expert demonstration to provide haptic guidance force references that depend on 

the robot’s sensory information. A Gaussian Mixture Model was used to encode relationships 

between sensory information and ideal guidance references obtained during the training stage. 

Once each gesture was encoded into a GMM, the Gaussian Mixture Regression was used to 

generate force references during the reproduction of the gesture. The proposed approach has 

been used to solve the peg-in-hole insertion task, which is a complex task when it is performed 

using a teleoperated robotic system. Similarly, the proposed approach could be used to solve 

specific surgical tasks, such as instrument insertion through the trocar, holding the gallbladder 

with a previously trained force, etc. 

The LWR Taskboard Workcell from the Telerobotics and Haptics Laboratory at the 

European Space Agency was used to perform a preliminary study of the proposed approach, i.e., 

solving the peg-in-hole insertion task by haptic guidance. For this purpose, the task was divided 

into two gestures (Figure 5-17): the contact surface gesture, which was used to place the peg tip 

on the hole; and the lever effect gesture, which aligned the peg with the hole. Each gesture was 

trained from kinaesthetic demonstrations starting from different initial positions (Figure 5-18) 

and encoded into two GMMs. Then, new validation movements were used to measure the RMS 

error between the trained movements and the output generated by GMR, as indicated in Figure 

5-21. This error was acceptable for using the trained models in haptic guidance. Finally, several 

peg-in-hole insertions were performed using the teleoperation platform. The results shown in 

Figure 5-22 demonstrate that the error decreases during guided teleoperation. 

In summary, this thesis proposes a smart navigation method for SPAS that takes into 

account the fulcrum point constraint using abdominal interaction forces and torques along the 

instrument. Because there are also forces on the instrument tip when the instrument interacts 

with the soft tissue inside the abdomen, a soft tissue interaction detector has been included in 

the navigation method to detect the occurrence of interactions with soft tissue. Moreover, the 

surgeon’s experience may be improved by the use of a haptic guidance approach. Therefore, an 
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LfD approach has been proposed and used to solve a generic and complex task, i.e., peg-in-hole 

insertion, which is similar to specific surgical tasks. 

 

6.2 Future Work 

The research performed in this thesis could be advanced in different ways, as described 

below. 

1. Isolate interaction forces throughout the instrument 

It would be desirable to isolate the interaction forces throughout the surgical instrument 

by obtaining the abdominal interaction forces to estimate the fulcrum point and using the soft 

tissue interaction forces on the instrument tip to provide haptic feedback. Thus, the proposed 

interaction with the soft tissue detector would be modified to provide this information. 

2. Take into account articulated instrument tips in the proposed navigation method 

The proposed navigation method has been tested with rigid instruments; however, in 

SPAS, the instruments typically have articulated tips. Therefore, the proposed navigation 

method would be expanded to address this issue. 

3. Collisions avoidance during the teleoperation of manipulators in SPAS 

Because the surgical instruments are inserted through the same trocar, the external 

manipulators that handle these instruments could collide during teleoperation. Hence, the 

navigation method could be extended to take into account this issue. Moreover, redundant 

kinematic structures would be used to avoid this problem, thus extending the navigation method 

to provide the correct joint positions. 

4. Perform a user study to improve the proposed haptic guidance approach 

Although the proposed haptic guidance approach has been experimentally validated, a 

user study would be desirable to analyse the operator experience when using the haptic 

approach, as described in this thesis. 

5. Use of the haptic guidance approach to solve concrete surgical tasks 

As has been presented in this thesis, the proposed haptic guidance approach has been 

validated by solving the generic and complex peg-in-hole insertion task. However, it would be 

desirable to validate this approach for specific surgical tasks. 
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A. Position Control Scheme 

Stability Analysis 

 

As stated in Section 3.4, a parallel force-position control is proposed. The position control 

scheme (Figure A-1) is based on the inverse Jacobian 𝐽−1(𝜃) and the forward kinematic 

function 𝑇𝑃
𝐵 (𝜃). The use of these functions in the control loop causes the system to be 

nonlinear. Therefore, the stability of this control scheme needs to be demonstrated.  
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Figure A-1. Position control scheme 

Thus, the direct Lyapunov method (Danwei and McClamroch, 1993) consists of defining 

a fictitious energy function that is used to demonstrate the system stability. Generally, this 

function represents the total energy of the system, which will be positive when the system is in a 

transitory status and null when the system reaches the steady state. Moreover, to ensure 

stability, the derivative of this function may be negative. This result indicates that the system 
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loses energy until it reaches a steady state. To demonstrate the stability of the proposed control 

scheme, the selected candidate function can represent the kinetic energy of the Cartesian and 

rotational velocities ∆𝑃′ as follows: 

𝑉(∆𝑃′) =
1

2
(∆𝑃′)2 (A.1) 

To ensure stability using the direct Lyapunov method, this function must verify 

∀(∆𝑃′ ≠ 0) → 𝑉(∆𝑃′) > 0 
(∆𝑃′ = 0) → 𝑉(∆𝑃′) = 0 

(A.2) 

∀(∆𝑃′ ≠ 0) → 𝑉̇(∆𝑃′) < 0 

(∆𝑃′ = 0) → 𝑉̇(∆𝑃′) = 0 
(A.3) 

Thus, the conditions in (A.2) are achieve by (A.1), and the conditions in (A.3) can be 

demonstrated as follows: 

The first derivative of (A.1) is 

𝑉̇(∆𝑃′) =
𝑑

𝑑𝑡
(
1

2
(∆𝑃′)2) = ∆𝑃′ · ∆𝑃′̇  (A.4) 

Using Figure A-1, we can obtain 

∆𝑃′ = 𝑃′ − 𝑃′
𝑚 (A.5) 

which implies 

∆𝑃′̇ = 𝑃′̇ − 𝑃̇′
𝑚 (A.6) 

Because the sample time of the position control is considerably lower than that of the 

force control, 𝑃′̇ ≈ 0, and based on Figure A-1, equation (A.7) can be obtained as follows: 

∆𝑃′̇ = − 𝑇̇𝑃(𝜃)𝐵  (A.7) 

Because of the definition of the forward kinematic function and the Jacobian, the 

following expression can be given: 

𝑇̇𝑃(𝜃)𝐵 = 𝐽(𝜃) · 𝜃̇ (A.8) 

By substituting in (A.7) and considering 

𝜃̇ = 𝐽−1(𝜃) · 𝐾𝑗 · ∆𝑃′ (A.9) 
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(A.10) can be obtained 

∆𝑃′̇ = −𝐾𝑗 · ∆𝑃′ (A.10) 

Therefore, the expression that achieves (A.3) can be obtained from (A.4) and (A.10) as follows: 

   

𝑉̇(∆𝑃′) = −𝐾𝑗 · (∆𝑃′)2 (A.11) 





99 

 

 

 

 

 

 

 

 

B. Hidden Markov Model 

B.1. Introduction 

A Hidden Markov Model (HMM) is a probabilistic approach that is used to model 

stochastic processes. A process is modelled as a sequence of hidden states that have a 

probabilistic relationship with the measured observable information from the process. This 

information can be discrete or continuous, clear or noisy, etc. Therefore, the HMM is a useful 

tool for recognizing patterns that have been previously encoded in an HMM as well as the 

hidden state of a sequence of observable measurements. In practice, this model has been used in 

multiple fields such as voice recognition, computational biology, and telecommunications. 

Therefore, this appendix presents the theoretical aspects of this model that have been used in 

this thesis by describing an HMM and its parameters (B.2), as well as the algorithms used (B.3 

to B.5). 

 

B.2. Description of an HMM 

An HMM represents a stochastic process. It is composed of a finite number of 𝑢 states, 

where each state (𝑞𝑖) represents a basic action with observable features (𝑒𝑖). Additionally, there 

is a probabilistic relationship between the states, which indicates the probability of jumping 

from one to another state. This relationship defines the HMM topology, and it is represented by 

the state transition distribution matrix 𝐴. The probabilistic relationship between the observable 

features (𝑒𝑖) and each state (𝑞𝑖) is represented by the observation symbol probability distribution 

matrix 𝐵. Therefore, an HMM can be represented as follows: 
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𝜆 = (𝑄, 𝐸, 𝐴, 𝐵, 𝜋) (B.1) 

where its parameters are 

- 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑢} is the set of hidden states, where 𝑢 is the number of states. 

- 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑟} is the discrete observable feature set, where 𝑟 is the number of 

observable features in each state. 

- A=[

𝑎11 ⋯ 𝑎1𝑢

⋮ 𝑎𝑖𝑗 ⋮
𝑎𝑢1 ⋯ 𝑎𝑢𝑢

] where 𝑎𝑖𝑗 = 𝑃(𝑞𝑗(𝑘 + 1)|𝑞𝑖(𝑘)) is the probability of being 

at 𝑞𝑖 at the sample time 𝑘 and jumping to 𝑞𝑗 at the next sample time 𝑘 + 1. It 

comprises the state transition distribution matrix. 

- B=[

𝑏11 ⋯ 𝑏1𝑢

⋮ 𝑏𝑖𝑗 ⋮

𝑏𝑟1 ⋯ 𝑏𝑟𝑢

] where 𝑏𝑖𝑗 = 𝑃(𝑒𝑖(𝑘)|𝑞𝑗(𝑘)) is the probability of observing 

𝑒𝑖 and being at 𝑞𝑗 at the same sample time 𝑘, which comprises the observation 

distribution probability matrix. 

- 𝜋 = [𝜋1, … , 𝜋𝑢] where 𝜋𝑖 = 𝑃(𝑞𝑖(1)) denotes the initial state distribution vector. 

An example of a HMM topology using this configuration is presented in Figure B-1, 

where each node represent a state 𝑞𝑖; arrows between the nodes represent the elements of the 

state transition distribution matrix; and arrows between the nodes and an observable feature 𝑒𝑖 

represent the elements of the observation distribution probability matrix. 

 

Figure B-1. Example of a four-state HMM 

Once an HMM and its parameters have been defined, there are three key issues that have 

been solved and are useful in real world applications (Rabiner, 1989):  
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1) Evaluation: Determine the probability that an observed sequence of features belongs 

to an HMM. This is solved using the forward-backward algorithm, which has been 

used in this thesis to detect the gesture that is being performed. 

2) Decoding: Given an HMM and an observation sequence of features, generate the 

states sequence. This is solved using the Viterbi algorithm. Hence, a hidden state 

sequence based on the observation features sequence can be obtained, where each 

state provides information about the stage of the gesture that is being performed and 

whether soft tissue interaction occurs.  

3) Training: Adjust an HMM to maximize the probability that several observed 

sequences of features belong to that HMM. The Baum-Welch algorithm is used to 

solve this issue. It has been used in this thesis to generate an HMM for each trained 

gesture. 

These problems are solved using the following algorithms. 

 

B.3. Forward-Backward Algorithm 

The evaluation problem consists of calculating 𝑃(𝐸̂(𝑘)|𝜆), where 𝐸̂(𝑘) =

𝑒(1), 𝑒(2), … , 𝑒(𝑗),… , 𝑒(𝑘); 𝑒(𝑗)𝜖𝐸 is an observation sequence. The easiest method for 

calculating it is to enumerate every state sequence of the 𝑘 dimension, which is equal to the 

dimension of the observation sequence 𝐸̂(𝑘). Thus, a state sequence can be considered as 

follows: 

𝑄̂(𝑘) = 𝑞(1), 𝑞(2), … , 𝑞(𝑗),… , 𝑞(𝑘); 𝑞(𝑗)𝜖𝑄 (B.2) 

where 𝑞(1) is the initial state. Therefore, the probability of the observation sequence 𝐸̂(𝑘) 

matches with the state sequence 𝑄̂(𝑘) for a given HMM 𝜆, which can be calculated as follows: 

𝑃(𝐸̂(𝑘)|𝑄̂(𝑘), 𝜆) = ∏ 𝑃(𝑒(𝑗)|𝑞(𝑗), 𝜆
𝑘

𝑗=1
) (B.3) 

Taking into account that each observation is independent, this likelihood can be 

calculated as follows: 

𝑃(𝐸̂(𝑘)|𝑄̂(𝑘), 𝜆) = 𝑏𝑞(1),𝑒(1) · 𝑏𝑞(2),𝑒(2) · … · 𝑏𝑞(𝑘),𝑒(𝑘) (B.4) 
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Additionally, the probability of a state sequence belonging to an HMM can be 

represented as follows: 

𝑃(𝑄̂(𝑘)|𝜆) = 𝜋𝑞(1) · 𝑎𝑞(1)𝑞(2) · … · 𝑎𝑞(𝑘−1)𝑞(𝑘) (B.5) 

Therefore, the probability of an observation sequence and a state sequence belonging to a 

HMM together can be expressed as the product of (B.4) and (B.5) as follows: 

𝑃(𝐸̂(𝑘), 𝑄̂(𝑘)|𝜆) = 𝑃(𝐸̂(𝑘)|𝑄̂(𝑘), 𝜆) · 𝑃(𝑄̂(𝑘)|𝜆) (B.6) 

Using this equation to calculate each sequence of possible states for a given observation 

sequence and HMM, (B.7) can be obtained. 

𝑃(𝐸̂(𝑘)|𝜆) = ∑𝑃(𝐸̂(𝑘)|𝑄̂(𝑘), 𝜆) · 𝑃(𝑄̂(𝑘)|𝜆)

∀𝑄

 (B.7) 

This proposed method requires a computer complexity of (2 · 𝑘2 · 𝑢). To improve it, the 

forward-backward algorithm was proposed. This algorithm is based on dynamic programming 

to efficiently compute the required probability. It uses two intermediate variables: the forward 

variable 𝛼𝑗(𝑖), which denotes the probability of the partial sequence of observations 

𝑒(1), 𝑒(2), … , 𝑒(𝑗) and the state 𝑞𝑖 for a HMM 𝜆; and the backward variable 𝛽𝑗(𝑖), which is the 

probability of the partial sequence of observations from j+1 until the end of the sequence for a 

given state 𝑞𝑖 and an HMM 𝜆. Both equations are represented as follows: 

𝛼𝑗(𝑖) = 𝑃(𝑒(1), 𝑒(2), … , 𝑒(𝑗), 𝑞(𝑗) = 𝑞𝑖|𝜆) (B.8) 

𝛽𝑗(𝑖) = 𝑃(𝑒(𝑗 + 1), 𝑒(𝑗 + 2),… , 𝑒(𝑘), 𝑞(𝑗) = 𝑞𝑖|𝜆) (B.9) 

 

Forward variable calculation 

The forward variable 𝛼𝑗(𝑖) calculation can be performed by induction following these 

steps: initialization (B.10), induction (B.11) and conclusion (B.12).  

𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑒(1)) 1 ≤ 𝑖 ≤ 𝑢 (B.10) 

𝛼𝑗+1(𝑖) = [∑ 𝛼𝑡(𝑛)𝑎𝑛𝑖

𝑢

𝑛=1

] · 𝑏𝑖𝑒(𝑗+1) 1 ≤ 𝑖 ≤ 𝑢 1 ≤ 𝑗 ≤ 𝑘 − 1

 

(B.11) 

𝑃(𝐸̂(𝑘)|𝜆) = ∑𝛼𝑘(𝑖)

𝑢

𝑖=1  

(B.12) 
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Backward variable calculation 

The calculation of 𝛽𝑗(𝑖) can be performed similar to that calculated previously: 

initialization (B.13), induction (B.14) and conclusion (B.15): 

𝛽1(𝑖) = 1 1 ≤ 𝑖 ≤ 𝑢 (B.13) 

𝛽𝑗(𝑖) = ∑ 𝑎𝑖𝑛 · 𝑏𝑛𝑒(𝑗+1) ·

𝑢

𝑛=1

𝛽𝑗+1(𝑛) 𝑗 = 𝑘 − 1, 𝑘 − 2,… ,1

 

(B.14) 

𝑃(𝐸̂(𝑘)|𝜆) = ∑𝛽
𝑘
(𝑖)

𝑢

𝑖=1  

(B.15) 

 

In both cases, the computer complexity is 𝑢2 · 𝑙. 

 

B.4. Viterbi Algorithm 

There is no unique optimized sequence of states 𝑄̂(𝑘) for an observation sequence 𝐸̂(𝑘) 

and an HMM 𝜆 (decoding problem). The Viterbi algorithm solves this issue by dynamic 

programming, i.e., it finds an optimized state sequence for a given observation sequence and an 

HMM. To find this sequence, 𝛿𝑗(𝑖) is defined as the most likelihood sequence of states for an 

observation sequence in the instant 𝑗, considering only the first 𝑗 observations and ending in the 

state 𝑞𝑖 (B.16). 

𝛿𝑗(𝑖) = max
𝑞(1),𝑞(2),…,𝑞(𝑗−1)

𝑃( 𝑞(1), 𝑞(2), … , 𝑞(𝑗) = 𝑖, 𝑒(1), 𝑒(2), … , 𝑒(𝑗)|𝜆) (B.16) 

 

By mathematical induction, (B.17) can be obtained as follows: 

𝛿𝑗+1(𝑖) = [  max
𝑛=1,…,𝑢

𝛿𝑗(𝑖)𝑎𝑛𝑖] · 𝑏𝑖𝑒(𝑗+1) 𝑗 = 1,… , 𝑘 − 1 (B.17) 

 

Taking this equation into account, the Viterbi algorithm consists of the following steps, where 

ψ𝑗 is a vector that stores the parameters that maximize (B.17). 
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 Initialization: 

𝛿1(𝑖) = 𝜋𝑖𝑏𝑖𝑒(1) 1 ≤ 𝑖 ≤ 𝑢 (B.18) 

𝜓1(𝑖) = 0 1 ≤ 𝑖 ≤ 𝑢
 

(B.19) 

 Recursion: 

𝛿𝑗(𝑖) = max
1≤𝑛≤𝑢

[𝛿𝑗+1(𝑛)𝑎𝑛𝑖] · 𝑏𝑖𝑒(𝑗) 2 ≤ 𝑗 ≤ 𝑘 1 ≤ 𝑖 ≤ 𝑢 

 

(B.20) 

𝜓𝑗(𝑖) = arg max
1≤𝑛≤𝑢

[𝛿𝑗+1(𝑛)𝑎𝑛𝑖] 2 ≤ 𝑗 ≤ 𝑘 1 ≤ 𝑖 ≤ 𝑢 

 

(B.21) 

 

 Termination: 

𝑞𝑘
∗ = arg max

1≤𝑖≤𝑢
[𝛿𝑘(𝑖)] 

 

(B.22) 

 Backward state sequence: 

𝑞𝑗
∗ = 𝜓𝑗+1(𝑞𝑗+1

∗ ) 𝑗 = 𝑘 − 1, 𝑘 − 2,… ,1  

 

 
  

(B.23) 

B.5. Baum-Welch Algorithm 

This algorithm is used to train an HMM by estimating its parameters (𝐴, 𝐵, 𝜋) to 

maximize 𝑃(𝐸̂(𝑘)|𝜆) using a previously obtained observation sequence 𝐸̂(𝑘) during the 

training stage. There is no known method that calculates the HMM parameters using an 

analytical method. Therefore, the Baum-Welch algorithm is used to estimate HMM parameters 

by taking into account that 𝑃(𝐸̂(𝑘)|𝜆) is locally maximized using an iterative method, which 

means that the initial parameters are needed. To perform the re-estimation of these parameters, 

an intermediate variable 𝜑𝑗(𝑚, 𝑛) is defined in (B.24), which represents the likelihood of being 

in state m at the instant time j and being in state n in the instant j+1 given a HMM 𝜆 and an 

observation sequence 𝐸̂(𝑘). 

𝜑𝑗(𝑚, 𝑛) = 𝑃(𝑞𝑗 = 𝑞𝑚, 𝑞𝑗+1 = 𝑞𝑛|𝐸̂(𝑘), 𝜆) (B.24) 

 

This equation can be represented by Figure B-2. 
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Figure B-2. Required sequence of operations when the HMM is in the m state in the instant k 

and state n in k+1 

 

Using the forward 𝛼𝑗(𝑛) and backward 𝛽𝑗(𝑛) variables, equation (B.24) can be defined 

as follows:  

𝜑𝑗(𝑚, 𝑛) =
𝛼𝑗(𝑚)𝑎𝑚𝑛𝑏𝑛𝑒(𝑘+1)𝛽𝑗(𝑛)

𝑃(𝐸̂(𝑘)|𝜆)
=

𝛼𝑗(𝑚)𝑎𝑚𝑛𝑏𝑛𝑒(𝑘+1)𝛽𝑗(𝑛)

∑ ∑ 𝛼𝑗(𝑚)𝑎𝑚𝑛𝑏𝑛𝑒(𝑘+1)𝛽𝑗+1(𝑛)𝑢
𝑛=1

𝑢
𝑚=1

 

 

(B.25) 

 

By considering that 𝛾𝑗(𝑛) is the probability of being in state n at the instant in time j, 𝛾𝑗(𝑛) can 

be calculated using the observation sequence and the HMM as follows: 

𝛾𝑗(𝑛) = ∑ 𝜑𝑗(𝑛,𝑚)

𝑢

𝑚=1

 (B.26) 

 

By adding 𝛾𝑗(𝑛) for each instant in time k, as stated in (B.27), the number of times the state 𝑞𝑛 

is visited during the observation sequence is obtained, which denotes the number of transitions 

from the state 𝑞𝑛. 

∑ 𝛾
𝑗
(𝑛)

𝑘−1

𝑗=1

 (B.27) 
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Similarly, the sum of 𝜑𝑗(𝑚, 𝑛) in each instant j (B.28) can be interpreted as the number of 

transitions from 𝑞𝑚 to 𝑞𝑛. 

∑ 𝜑
𝑗
(𝑚, 𝑛)

𝑘−1

𝑗=1

 (B.28) 

 

Using these equations, an HMM parameter re-estimation method can be iteratively obtained, as 

presented in (B.29), (B.30) and (B.31): 

𝜋̅𝑛 = 𝛾
1
(𝑛) 

 

(B.29) 

𝑎̅𝑚𝑛 =
∑ 𝜑

𝑗
(𝑚, 𝑛)𝑘−1

𝑗=1

∑ 𝛾
𝑗
(𝑛)𝑘−1

𝑗=1

 

 

(B.30) 

𝑏̅𝑚𝑛 =

∑ 𝛾
𝑗
(𝑚)𝑘

𝑗=1

𝑒(𝑗)=𝑒(𝑛)

∑ 𝛾
𝑗
(𝑚)𝑘−1

𝑗=1

 

 

(B.31) 

 

It should be noted that this re-estimation method is limited to the stochastic constraints for the 

HMM parameters as follows: 

∑ 𝜋̅𝑛

𝑢

𝑛=1

= 1 (B.32) 

∑ 𝑎̅𝑚𝑛

𝑢

𝑛=1

= 1 1 ≤ 𝑚 ≤ 𝑢
 

(B.33) 

∑ 𝑏̅𝑚𝑛

𝑟

𝑛=1

= 1 1 ≤ 𝑚 ≤ 𝑢
 

(B.34) 
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C. Vector Quantization 

As stated in Appendix B, when HMMs are used, a discrete observable features set is 

required. Thus, when sensory information (continuous) is used to encode and recognize 

gestures, a quantization technique, which translates continuously measured information into 

discrete symbols (clustering), is needed. Vector Quantization (VQ) is a technique for signal 

processing that was originally used for data compression; it has also been used to obtain a set of 

discrete symbols for speech recognition (Rabiner et al., 1983) and gesture recognition (Mitra 

and Acharya, 2007) using HMM. 

Assuming a training sequence 𝜗̂= 𝜗1, 𝜗1, … , 𝜗𝑛, which is a good representation of the 

performed movements during the reproduction of a gesture, VQ determines the optimum set of 

discrete observable feature symbols 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑟}, which accomplish that for a given 𝜗𝑖, it 

can be replaced by the closest observable feature point 𝑒𝑗, thus minimizing the average 

distortion over the entire training sequence as (C.1), where 𝑑(𝜗𝑖, 𝜇𝑗) denotes the Euclidean 

distance between 𝜗𝑖 and the centre 𝜇𝑗 of the cluster 𝑒𝑗. 

𝐷̅ =
1

𝑛
∑ min

1≤𝑗≤𝑟
𝑑(𝜗𝑖, 𝜇𝑗)

𝑛

𝑖=1

 (C.1) 

Therefore, equation (C.2) needs to be solved. In this equation, 𝑐𝑗 represents the set of datapoints 

that belong to cluster 𝑒𝑗. 

argmin
𝑐

∑ ∑ 𝑑(𝜗, 𝜇𝑗)

𝜗∈𝑐𝑗

𝑟

𝑗=1

= argmin
𝑐

∑ ∑‖𝜗, 𝜇𝑗‖2

2

𝜗∈𝑐𝑗

𝑟

𝑗=1

 (C.2) 
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The solution of this equation is not trivial in terms of computer complexity (NP-hard); therefore, 

the k-means algorithm (Lloyd, 1982), also known as Lloyd’s algorithm, can determine a local 

minimum in a heuristic way by following these steps: 

1. Initialize the centres of the feature symbol set 𝜇𝑗: 

𝜇𝑗 = 𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒, 𝑗 = 1,… , 𝑟 (C.3) 

2. Include the data points into the nearest cluster 𝑐𝑗 of each feature symbol: 

𝑐𝑗 = {𝑖: 𝑑(𝜗𝑖, 𝜇𝑗) ≤ 𝑑(𝜗𝑖, 𝜇𝑙), 𝑙 ≠ 𝑗, 𝑖 = 1,… , 𝑛} (C.4) 

3. Set the centre of each symbol 𝜇𝑗 to the mean of all datapoints assigned to each 

cluster 𝑐𝑗: 

𝜇𝑗 =
1

|𝑐𝑗|
∑ 𝜗𝑖

𝑖∈𝑐𝑗

, ∀𝑗 (C.5) 

In C.5, |𝑐𝑗| represents the number of elements in 𝑐𝑗. 

4. Repeat steps 2 and 3 until convergence. 

Once the centres of each symbol have been found, partitioning of a plane can be 

performed using a Voronoi diagram, which represents the regions based on the distance to 

specific points. Figure C-1 presents a graphical example using a Voronoi diagram of the training 

sequence to accomplish (C.2) with 𝑟 = 5. 

 

 

Figure C-1. Example of the evolution of the K-means algorithm using a Voronoi diagram 
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Finally, once the region that represents each feature symbol has been obtained, any point 

can be assigned to a feature symbol, which will be used to represent an observable feature in an 

HMM. 
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D. Learning from Demonstration 

Functions 

This appendix defines the two functions (4.2) and (4.4) defined in Chapter 4. The first 

one is used to encode a GMM from previous demonstrations through the Expectation-

Maximization algorithm, and the second one is used to generate the haptic guidance references 

𝑔⃗ using Gaussian Mixture Regression (GMR). 

 

D.1. Expectation-Maximization Algorithm for 

GMM 

A GMM is defined as 𝜌 = {𝜋𝑛, 𝜇𝑛, Σ𝑛}𝑛=1
𝑁 , where 𝑁 is the number of Gaussians,  𝜋𝑛 is 

the prior probability, 𝜇𝑛 is the mean and Σ𝑛 is the covariance matrix of each Gaussian 𝑛. The 

probability that a tuple 𝜉, belongs to 𝜌 can be given as follows: 

𝒫(𝜉) = ∑ 𝒫(𝑛)𝒫(𝜉|𝑛)

𝑁

𝑛=1

 (D.1) 

where 𝒫(𝑛) is the prior probability (D.2); and 𝒫(𝜉|𝑛) is a conditional probability density 

function, whose parameters are defined in (D.3). 

𝒫(𝑛) = 𝜋𝑛 (D.2) 
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𝒫(𝜉|𝑛) = 𝒩(𝜉; 𝜇𝑛 , Σ𝑛) =
1

√(2𝜋)𝐷|Σ𝑛|
𝑒−

1
2
((𝜉−𝜇𝑛)𝑇Σ𝑛

−1(𝜉−𝜇𝑛)) (D.3) 

 

Using these equations, the log-likelihood of a training sequence 𝜉(𝑘), which appends all of the 

training sequences 𝜉1…𝑢, belongs to 𝜌 and can be obtained as follows: 

ℒ(𝜉(𝑘)) = ∑log (𝒫(𝜉(𝑗)))

𝑘

𝑗=1

 (D.4) 

where each 𝒫(𝜉(𝑗)) is obtained from (D.1). Therefore, the objective is to find a set of GMM 

parameters that maximize ℒ(𝜉(𝑘)). Thus, the parameter estimation function can be defined as 

follows: 

𝜌 = 𝐸𝑀(𝜉(𝑘),𝑁) (D.5) 

This function uses the EM algorithm to adjust a GMM composed of 𝑁 Gaussians to the training 

sequence 𝜉(𝑘). This algorithm starts with each Gaussian initialized with random parameters 

{𝜋𝑛
0, 𝜇𝑛

0 , Σ𝑛
0} that can be adjusted to the training sequence 𝜉(𝑘) iteratively as follows: 

- Expectation step: 

𝒫(𝑛|𝜉(𝑗))𝑢 =
𝜋𝑛

𝑢𝒩(𝜉(𝑗); 𝜇𝑛
𝑢, Σ𝑛

𝑢)

∑ 𝜋𝑖
𝑢𝒩(𝜉(𝑗); 𝜇𝑖

𝑢, Σ𝑖
𝑢)𝑁

𝑖=1

 (D.6) 

𝐸𝑛
𝑢 = ∑𝒫(𝑛|𝜉(𝑗))

𝑘

𝑗=1

 (D.7) 

 

- Maximization step: 

𝜋𝑛
𝑢+1 =

𝐸𝑛
𝑢

𝑘
 (D.8) 

𝜇𝑛
𝑢+1 =

∑ 𝒫(𝑛|𝜉(𝑗))𝑢𝜉(𝑗)𝑘
𝑗=1

𝐸𝑛
𝑢  (D.9) 

Σ𝑛
𝑢+1 =

∑ 𝒫(𝑛|𝜉(𝑗))𝑢(𝜉(𝑗) − 𝜇𝑛
𝑢+1)(𝜉(𝑗) − 𝜇𝑛

𝑢+1)𝑇𝑘
𝑗=1

𝐸𝑛
𝑢  (D.10) 

 

In these equations, 𝒫(𝑛|𝜉(𝑗)) is defined as the posterior probability that is obtained from the 

Bayes theorem as (D.11), 𝐸𝑛 is the sum of posterior likelihoods that has been used to simplify 

the notation, and u represents the iteration number.  
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𝒫(𝑛|𝜉(𝑗)) =
𝒫(𝑛)𝒫(𝜉(𝑗)|𝑛)

∑ 𝒫(𝑖)𝒫(𝜉(𝑗)|𝑖)𝑁
𝑖=1

 (D.11) 

The iteration ends when the difference in log-likelihoods (D.4) between the iterations is less 

than a predefined threshold 𝐶: 

ℒ(𝜉(𝑘))
𝑢+1

ℒ(𝜉(𝑘))
𝑢 < 𝐶 (D.12) 

 

D.2. Gaussian Mixture Regression 

The Gaussian Mixture Regression is used to calculate the most likely values for the 

output variables of a tuple 𝜉 for an encoded GMM by specifying the values of the input 

variables. Thus, 𝜉 can be defined as follows: 

𝜉 = (𝜉𝑖, 𝜉𝑜) (D.13) 

where 𝜉𝑖 represents the input variables, whose information can be retrieved from the sensory 

information; and 𝜉𝑜 represents the output variables, which are used to generate an output that 

depends on the encoded GMM 𝜌 and the sensory information 𝜉𝑖. Thus, the GMR function can 

be defined as follows: 

𝜉𝑜 = 𝐺𝑀𝑅(𝜌, 𝜉𝑖) (D.14) 

which has been used in Section 4.2.2 to calculate the haptic guidance references 𝜉𝑜 = 𝑔⃗ from 

the encoded 𝜌 and the obtained interaction measurements 𝜉𝑖 = (𝑓, 𝜏). 

To obtain the GMR of 𝜌, the parameters of a Gaussian 𝑛 that belongs to 𝜌 can be 

represented as follows: 

𝜇𝑛 = [
𝜇𝑛

𝑖

𝜇𝑛
𝑜] ,  Σ𝑛 = [

Σ𝑛
𝑖 Σ𝑛

𝑖𝑜

Σ𝑛
𝑜𝑖 Σ𝑛

𝑜
]  (D.15) 

Using this representation, the expected distribution of 𝜉𝑜 for a given input variable 𝜉𝑖 and a 

Gaussian distribution 𝑛 can be defined as follows: 

𝑃(𝜉𝑜|𝜉𝑖, 𝑛)~𝒩(𝜇′𝑛, Σ′𝑛) (D.16) 
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where 

𝜇′𝑛 = 𝜇𝑛
𝑜 + Σ𝑛

𝑜𝑖(Σ𝑛
𝑖 )

−1
(𝜉𝑖 − 𝜇𝑛

𝑖 ) (D.17) 

Σ′𝑛 = Σ𝑛
𝑜 − Σ𝑛

𝑜𝑖(Σ𝑛
𝑖 )

−1
Σ𝑛

𝑖𝑜 (D.18) 

 

By considering the GMM as N Gaussian distributions, the expected distribution of 𝜉𝑜 for a 

given 𝜉𝑖 can be estimated as follows: 

𝑃(𝜉𝑜|𝜉𝑖)~ ∑ 𝑃(𝑛|𝜉𝑖)𝒩(𝜇′𝑛 , Σ′𝑛)

𝑁

𝑛=1

 (D.19) 

where 𝑃(𝑛|𝜉𝑖) can be given as the probability of an observed input belonging to the Gaussian 

distribution 𝑛 as follows: 

𝑃(𝑛|𝜉𝑖) =
𝑃(𝑛)𝑃(𝜉𝑖|𝑛)

∑ 𝑃(𝑗)𝑃(𝜉𝑖|𝑗)𝑁
𝑗=1

=
𝜋𝑛𝒩(𝜉𝑖; 𝜇𝑛

𝑖 , Σ𝑛
𝑖 )

∑ 𝜋𝑗𝒩(𝜉𝑖; 𝜇𝑗
𝑖 , Σ𝑗

𝑖)𝑁
𝑗=1

 (D.20) 

Therefore, the conditional expectation 𝜉𝑜 can be estimated through the Gaussian distribution 

𝒩(𝜇′
𝑛, Σ′𝑛) as follows: 

𝜉𝑜 = ∑ 𝑃(𝑛|𝜉𝑖)

𝑁

𝑛=1

𝜇′𝑛 (D.21) 

Finally, it should be noted that equations (D.20) and (D.21) are used to estimate the 

haptic guidance references in real time, which indicates that the execution of these equations is 

limited to the time constraints of a real-time system. Hence, computer complexity could help to 

clarify the required processing time. After analysing these equations, there is one sum in (D.21) 

and another sum in the divisor of (D.20). Although (D.20) is calculated inside the sum in 

(D.21), its divisor can be previously calculated because it is independent of the sum in (D.21). 

Therefore, the processing time of the GMR function increases linearly depending on the number 

of Gaussians, which limits the maximum number of Gaussians that can be used depending on 

the available processing time.  
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E. The Cisobot Platform 

The proposed navigation method has been implemented in the experimental robotic 

surgical platform developed by the Universidad de Málaga, as shown in Figure E-1.a. This 

platform is divided into two subsystems: the user handles two haptic devices that teleoperate 

two manipulators using the proposed navigation method (teleoperation subsystem); and a Barret 

manipulator is used to control a camera inside the patient’s abdomen that is held by magnetic 

interaction. To simulate the patient’s body, an abdominal simulator is used with a 4x7 cm 

artificial gallbladder inside. The primary objective of this platform is research into new 

cognitive methods and algorithms for robotic surgery. 

The teleoperation subsystem, whose architecture is depicted in Figure E-1.b, has been 

used to validate the proposed navigation method. It is composed of a main computer, which 

executes the proposed navigation method (Matlab/Simulink), two haptic devices, which are 

used to provide position references to the manipulators and force feedback to the surgeon, and 

two customized manipulators and two multi-axial F/T sensors, which measure the exerted forces 

and torques throughout the instruments. These manipulators are controlled by real-time 

hardware (NI-PXI) that provides an interface between the main computer using UDP and each 

joint controller through CANbus. Each F/T sensor is connected to a Netbox, which is the 

interface that provides UDP and is used to send the measurements to the main computer. 

Finally, the haptic devices are connected to the main computer using a Firewire interface. All of 

these devices are described in more detail in the following subsections. 
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(b) 

Figure E-1. CISOBOT Platform: (a) Image of the whole platform; (b) Teleoperation subsystem 

architecture 

 

E.1. Robotnik Modular Arm 

The CISOBOT platform is composed of two customized manipulators ( Figure E-2) that 

are manufactured by Robotnik Automation S.L. Each manipulator has 6 DoF (𝜃1, … , 𝜃6), whose 

joints consist of a rotational axis in an RRR-RRR with a spherical wrist configuration. This 
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allows a decoupled kinematic configuration in which the first three joints are used to place the 

end effector in a concrete position and the last three joints (spherical wrist) are used to configure 

the end effector orientation. 

1

2

3

4

5

6

 

 Figure E-2. Robotnik Modular Arm  

The rotational joint actuators are comprised of PowerCube servomotors (Figure E-3) from 

Schunk Corp., whose dimensions depend on their location, i.e., torque requirements. Each 

PowerCube includes a position and velocity PID controller that is configured to receive position 

and/or velocity references, thus generating a velocity profile that takes these references into 

account. Therefore, each joint is responsible for accomplishing the referenced position. 

Moreover, each PowerCube provides sensory information, such as position, velocity and state of 

the joint. Communication with the actuators are performed by CANbus. This interface 

guarantees real-time communication and allows the use of a unique bus for each joint. Hence, a 

joint decoupled control can be performed, and the position and velocity references can be sent to 

each joint simultaneously. 
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Figure E-3. Schunk PowerCube actuator 

Although this manipulator was conceived for industry, its features make it extremely 

versatile. It is lightweight (only 19kg), has a wide workspace owing to its kinematic 

configuration, and produces a rapid response. Thus, each PowerCube is able to reach a 

maximum speed between 57 degrees/sec. and 300 degrees/sec. depending on the actuator 

dimensions. Moreover, it needs only a DC 24 V power supply that can be directly provided 

from batteries, which is useful if it is going to be used in an operating room. 

 

E.2. PXI Real-Time Hardware 

PCI eXtension for Instrumentation is an open industry specification that was developed 

by National Instrument in 1998. This specification defines a rugged PC-based platform (Figure 

E-4), whose primary advantages are its modularity, high performance and low cost deployment 

of instrumentation and/or automation. These advantages allow the use of this platform for 

research and industrial purposes.  

 

Figure E-4. PXI platform 

In the CISOBOT platform, a PXI has been used as a manipulators interface, i.e., this 

system controls the communications between each joint of each manipulator and the main 
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computer. Moreover, the use of this system allows standard UDP communications between this 

device and the main computer, which facilitates compatibility with the software used in the 

main computer (described in Section E.5). The PXI has been primarily used to provide position 

or velocity references and obtain the measured position and velocity from the manipulator 

joints. 

The development of the manipulator interface has been performed using LabVIEW. This 

is a graphical environment that is used to develop software for PCs and specific NI hardware, 

such as the NI-PXI. Figure E-5 depicts an example of the application that has been developed to 

communicate between the main computer and the manipulators. This example retrieves the 

position and velocity of each joint using the CANbus interface and sends it to the main 

computer through the UDP. 

 

Figure E-5. LabVIEW-based application 

  

E.3. Force-Torque Sensor 

As stated in Chapter 3, a Force-Torque sensor is used to measure the interaction forces 

throughout the instrument. This sensor is placed between each manipulator end effector and the 

instrument. Thus, a F/T sensor from ATI Industrial Automation Ltd. has been used. In 

particular, the Net F/T Gamma SI 65-5 is a sensor that measures the forces and torques in the X, 

Y and Z-axes,thereby providing six measurements. The dimensions of this sensor are 33 mm 

height and 75 mm diameter. These dimensions allow the sensor to be placed on the manipulator 

end effector, and an instrument can be attached to it, as depicted in Figure E-6. 
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F/T sensors

 

Figure E-6. F/T sensors placed between the manipulator end effector and the instrument 

Each F/T sensor is connected to a NET Box device (Figure E-7), which reads analog 

signals from the F/T sensor and translates them into force and torque measurements that are sent 

through different communication interfaces. This feature is one of the primary advantages of 

this type of sensor, including UDP and CANbus interfaces. In the CISOBOT platform, the UDP 

interface has been used to connect each F/T sensor with the main computer. 

 

Figure E-7. ATI Net Box connected to a Gamma F/T sensor 

 

E.4. Haptic Device 

To teleoperate both manipulators and provide force feedback to the surgeon, two 

Phantom Omni devices (Figure E-8) from Sensable Inc. have been used. These devices are able 

to move in six DoF, and their kinematic configuration allows joint decoupling using a spherical 
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wrist that provides the end effector orientation. Moreover, they have two switches that can be 

programmed for general purposes. 

 

Figure E-8. Phantom Omni haptic device 

The Phantom Omni is held by the operator using its end effector, whose shape is similar 

to a pencil and facilitates teleoperation. Plastic pieces cover its metallic internal structure, thus 

providing good stability during usage. Its kinematic configuration allows a workspace of 

160x120x70 mm, and the end effector can be oriented in any position owing to its wrist 

configuration. The accuracy between adjacent points is approximately 0.055 mm, and it can 

provide forces on the three space axes, reaching a peak of 3.3 N and 0.88 N continuously. 

Both devices are connected to the main computer using an IEEE1394 Firewire interface. 

To calibrate the devices, the manufacturer provides software that allows the parameters to be 

adjusted by calibrating each joint and performing a few tests. Additionally, applications can be 

developed using the OpenHaptics library, which has been used to develop a simple application 

that communicates with Simulink (UDP) to provide the position and orientation of the haptic 

device end effector, receive haptic forces from Simulink and send them to the haptic device. 

 

E.5. Main Computer 

To deploy the defined control schemes for surgical navigation and perform several 

experiments, a generic PC was used, comprising an i5 microprocessor, 4GB RAM and 

Windows 7 OS. The defined control scheme was developed in Matlab-Simulink. Although 

Simulink was conceived as a simulation environment, it has been expanded towards direct 

system control by adding hardware support packages with internal tools that compile and build 

C/C++ applications from Simulink diagrams. Specifically, Real-Time Windows Target (RTWT) 
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has been used to run control schemes on a generic PC. The use of these tools allows rapid 

development and deployment of control schemes owing to the use of different Matlab toolboxes 

compared to standard programming languages, such as C/C++, which are directly deployed into 

Windows or Linux OS. Furthermore, each part of the control scheme can be programmed into 

independent blocks that are connected to make up the entire control scheme. 

Therefore, the control scheme that was developed in Simulink and executed on the main 

computer controls and supervises the entire system. Owing to the limitations of the RTWT, all 

of the communications between devices were performed using a UDP interface. Thus, the main 

computer is connected to a LAN, where the F/T sensors and the NI-PXI are also connected. 

This main computer executes a simple C++ application that communicates with the haptic 

devices by Firewire and Simulink by UDP using the virtual local host network. 
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F. LWR Taskboard Workcell 

The teleoperation system consists mainly of a slave KUKA Lightweight Robot (LWR) 

and a Sigma.7 haptic master device, as shown in Figure F-1.a. Figure F-1.b shows the software 

and hardware architecture of the teleoperation system. The taskboard, on the right of the figure, 

is used to solve generic tasks. It contains different holes, pegs and doors that can be used to 

validate different control algorithms. The interaction with the taskboard is conducted by a Kuka 

LWR, which is described below. An ATI F/T sensor (similar to that described in Section E.3) is 

attached to the manipulator end effector to measure the exerted forces and torques. Both the 

manipulator and the F/T sensor are connected to the main computer that executes the proposed 

LfD approach in real time. Additionally, this computer is connected to a Sigma.7 haptic device 

that is handled by the operator during the reproduction of the task, thus providing guidance 

forces to the operator. All of the subsystems, except the haptic device, which is connected 

directly through a USB, communicate over a one gigabyte LAN network with RTI Data 

Distribution Service middleware, reaching a 1 kHz sample time. 
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(b) 

Figure F-1. LWR Taskboard Workcell: (a) Teleoperation setup; and (b) SW/HW architecture 

 

F.1. Taskboard 

The taskboard used (Figure F-2) is composed of different elements that allow a 

manipulator to interact with it to solve specific tasks. This taskboard can be used to solve 

opening door tasks, connector plugging, switching, etc. For the experiments described in this 

thesis, the peg-in-hole task was selected. This task consists of inserting a peg into a hole in the 

taskboard. 



F. LWR Taskboard Workcell 

125 

 

Peg-in-hole
Task

 

Figure F-2. Taskboard for haptic guidance experiments 

 

F.2. Kuka LightWeight Robot 

The manipulator used to perform the experiments was the KUKA LWR robot. It is a specific 

lightweight robot whose weight is only 22.9 kg. It has 7 DoF with a maximum payload on the 

end effector of 7 kg. This manipulator has two features that are extremely important for the 

performed experiments. The first is the ability to perform kinaesthetic movements, which means 

that an operator can take the end effector and move it freely in space. This feature was useful 

during the training stage because the operator could train the system to solve the peg-in-hole 

insertion task by moving the manipulator and using it to measure the position and velocity of 

the end effector during the movements. The second interesting feature is the active compliance 

mode allowed by this robot. During the reproduction stage, the robot was programmed with a 

Cartesian stiffness of 𝑘𝑡𝑟𝑎𝑛𝑠 = 500 Nm/rad and 𝑘𝑟𝑜𝑡 = 500 Nm/rad for translations and 

rotations, respectively. Hence, the exerted forces of the robot when it is interacting were 

softened. Furthermore, a multi-axial F/T sensor (described in Section E.3) was mounted on the 

manipulator end effector, and a 155 mm long titanium peg was rigidly placed on the F/T sensor. 
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Figure F-3. Kuka Lightweight robot attached to the taskboard 

 

F.3. Main Computer 

The main computer is the centre of the architecture. It receives and store information 

from devices and sends references to the manipulator. This computer is a conventional PC with 

a 3 GHz i7 microprocessor. The operative system is a Linux distribution that is used to execute 

C/C++ code in real time by adding the Xenomai Real-time framework. This framework 

supplements the original Linux kernel with a real time one that works alongside it. Moreover, it 

includes a real-time operative system API to control the process executions. 

The Simulink Coder was used to generate C/C++ code from Simulink diagrams, thus 

making the development procedure easier. Hence, two applications were developed. The first 

application was used to retrieve information from the robot and the F/T sensor to train the 

proposed GMM model using kinaesthetic movements, and the second application was used to 

teleoperate the robot using the Sigma.7 haptic device, thus providing haptic guidance. 

Owing to the low computer complexity of the used algorithms and the features of the 

used computer and OS, a sample time of 1 ms was used during the experiments. 
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F.4. Sigma.7 Haptic Device 

The Sigma.7 haptic device (Figure F-4) was originally conceived as part of the master 

console of the MiroSurge robotic system (described in Section 2.2.3). It is manufactured by 

Force Dimension in cooperation with the German Aerospace Center (DLR). 

This device is a seven DoF fully actuated device that uses a 3 DoF parallel mechanism for 

translational motions, 3 DoF intersecting axis drives for rotational motions, and a grasping unit. 

This structure allows the kinematics and dynamics of the device to be decoupled (Tobergte et 

al., 2011). Its kinematic configuration allows a spherical workspace of approximately 120 mm 

in diameter, and the rotational wrist covers the entire human hand workspace. The haptic forces 

provide up to 20 N within the translational space and approximately 0.4 Nm of maximum 

torque from the rotational wrist. Furthermore, a force sensor is placed on the grasping unit that 

is able to measure up to 8 N. This device was connected to the main computer using a USB 

interface that is able to reach up to a 4 kHz sample time. 

 

 

Figure F-4. Sigma.7 haptic device 
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Glossary of Terms 

AOB: Active Observers 

BIC: Bayesian Information Criterion 

CIS: Computer Integrated Surgery 

CISOBOT: Experimental surgical robotic platform developed by the Universidad de 

Málaga 

DARPA: Defense Advanced Research Projects Agency 

DLR: German Aerospace Centre 

DoF: Degree of Freedoms 

DTW: Dynamic Time Warping 

EM Algorithm: Expectation-Maximization algorithm 

ESA-ESTEC: European Space Agency – European Space Research and Technology 

Centre 

FDA: US Food and Drug Administration 

Fulcrum Point: Point at which the trocar is introduced 

GMM: Gaussian Mixture Model  

GMR: Gaussian Mixture Regression. 

HALS: Hand Assisted Laparoscopic Surgery 

Haptic Guidance: Use of forces to guide the operator during the reproduction of a task 

HMM: Hidden Markov Model 

LabVIEW: Programming language from National Instruments 

LAN: Local Area Network 

Laparotomy: Open surgery 

LfD: Learning from Demonstration 
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LQR: Linear-Quadratic Regulator 

LS: Laparoscopic Surgery 

LWR Taskboard Workcell: Experimental generic task platform developed by ESA 

LWR: Locally Weighted Regression 

Machine Learning: Set of algorithms that are used to make predictions or decisions 

MIS: Minimally Invasive Surgery 

Multi-axial F/T sensor: A sensor that is able to measure forces and torques 

Multiport Trocar: A trocar that is used to introduce all of the necessary instruments and 

laparoscopic camera through the abdomen 

NI-PXI: Real-time hardware developed by National Instruments 

NOTES: Natural Orifices Trans-luminal Surgery 

PED: Prediction from Expert Demonstration  

RCM: Remote Centre of Motion   

RMS: Root Mean Square 

ROS: Robotic Operating System 

RTI: Real Time Innovations Inc. 

RTWT: Matlab-Simulink Real Time Windows Target 

SPAS: Single Port Access Surgery 

Trocar: A sharp-pointed surgical object, used to introduce a surgical instrument into the 

abdomen 

UDP: User Datagram Protocol 

Virtual Fixtures: Haptic guidance methodology that uses predefined trajectories or 

forbidden regions to generate guidance forces 

VQ: Vector Quantization 
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Notation 

{𝑖} = 𝑇𝑖
𝑗

= ( 𝑝𝑖
𝑗

, 𝜎𝑖
𝑗

): reference frame that can be represented by the homogeneous 

transformation matrix 𝑇𝑖
𝑗

 composed of the Cartesian position 𝑝𝑖
𝑗

 and orientation 𝜎𝑖
𝑗

. 

A: Initial position of the instrument 

B: Final position of the instrument 

{𝐹′𝐴}: Estimated fulcrum point at the initial position A 

{𝐹′𝐵}: Estimated fulcrum point at the final position B 

{𝐹𝐴}: Real fulcrum point at the initial position A 

{𝐹𝐵}: Real fulcrum point at the final position B 

𝑓𝐹𝐵
: Abominal forces on the fulcrum point at the final position B 

𝑟𝐹⃗⃗⃗⃗ : Distance between {𝐹𝐴} and {𝐹𝐵} 

𝐾𝑎: Skin elasticity constant 

𝑓𝑃𝐵
⃗⃗⃗⃗⃗⃗⃗: Exerted forces on the instrument tip 

𝑓𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗: End effector exerted forces that can be measured by an F/T sensor 

𝜇𝐻𝐵
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ : End effector torque that can be measured by an F/T sensor 

𝑓𝑟⃗⃗⃗ ⃗: Abdominal force reference equal to zero 

𝑉𝑃𝐼: PI controller output 

𝜃 : Manipulator joint positions 

𝜃̇: Manipulator joint velocities 

𝐾𝐽: Matrix that fixes the control scheme dynamics 

𝜙𝑚: Sensory information provided by manipulator m 

𝑓 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧): Measured forces on instrument 
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𝜏 = (𝜏𝑥 , 𝜏𝑦, 𝜏𝑧): Measured torques on instrument 

𝑝 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧): Measured position on the instrument 

𝛺: Gesture library for the interaction with soft tissue detection 

𝜆𝑖: Encoded gesture into an HMM 

𝑄: Set of hidden states 

𝑞𝑖: Hidden state 

𝑄̂(𝑘): Sequence of k hidden states 

𝐴𝑖: State transition distribution matrix 

𝐸: Set of observable features obtained from Vector Quantization 

𝐸̂(𝑘): Sequence of observation features 

𝐵𝑖: Observation probability distribution matrix 

𝜋𝑖: Initial state distribution vector 

𝐼(𝑘): Sequence that indicates whether interaction occurs with soft tissue at each instant 

𝜉𝑖𝑢(𝑘): Haptic guidance training sequence 𝑢 for the gesture 𝑖 

𝜉(𝑗) = (𝜉𝑖; 𝜉𝑜) = [𝑓(𝑗), 𝜏⃗⃗(𝑗); ℎ⃗⃗(𝑗)]; 1 ≤ 𝑗 ≤ 𝑘: Training sequence tuple at the instant in 

time 𝑗 

ℎ⃗⃗ = (ℎ𝑥 , ℎ𝑦, ℎ𝑧): Ideal guidance reference 

𝑔⃗ = (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧): Haptic guidance reference 

𝜌𝑖: Encoded gesture i into a GMM 

𝜋: Prior probabilities of a Gaussian 

𝜇𝑛: Centre of the n Gaussian of a GMM 

Σ: Covariance of a Gaussian 

N: Number of Gaussians into a GMM 

D: Dimension of the tuple 𝜉 
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Navegación Inteligente en Robótica Quirúrgica 

En las últimas dos décadas, los procedimientos quirúrgicos han evolucionado desde el uso 

de técnicas como la laparotomía (cirugía abierta) hacia el uso de la cirugía mínimamente 

invasiva siguiendo la hipótesis de que reduciendo el número y tamaño de las incisiones 

realizadas sobre el paciente, se reduciría el tiempo de recuperación y las complicaciones 

posoperatorias. La cirugía laparoscópica se basa en el empleo de instrumentos especiales y una 

cámara, los cuales son introducidos dentro de la pared abdominal mediante, al menos, tres 

incisiones pequeñas, permitiendo esto que el cirujano pueda manipular los órganos internos del 

paciente. Sin embargo, la tendencia actual se mueve hacia el desarrollo de nuevos métodos. Uno 

de ellos es conocido como cirugía de un solo puerto (SPAS en inglés), éste es un procedimiento 

quirúrgico en el que se realiza una única incisión, a través de la cual todos los instrumentos y la 

cámara son introducidos mediante el empleo de un trocar multipuerto. De esta manera, la 

reducción del número de incisiones proporciona ciertos beneficios, tales como: mejores 

resultados cosméticos, reducción del dolor posoperatorio así como un acortamiento de la 

estancia hospitalaria. A pesar de estas ventajas, esta nueva técnica proporciona algunos 

inconvenientes para los cirujanos ya que los instrumentos están introducidos a través del mismo 

trocar y estos pueden colisionar dentro y fuera del abdomen. Además, la proximidad de los 

instrumentos a la cámara endoscópica, introducido también por el mismo trocar, provoca una 

pérdida de triangulación y una reducción del campo de visión dentro del abdomen. Estos 

inconvenientes implican una restricción de los movimientos que el cirujano puede realizar con 
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los instrumentos, lo cual requiere una mayor habilidad del cirujano. En este sentido, las 

plataformas robóticas teleoperadas surgen como una herramienta útil para los cirujanos, en las 

que un sistema de navegación inteligente puede ser integrado, mejorando la habilidad del 

cirujano mediante el empleo de un sistema de guiado que lo asista durante la realización de una 

tarea quirúrgica. Además, el sistema de navegación podría ser capaz de reconocer los gestos que 

realiza el cirujano, realizar movimientos teniendo en cuentas las restricciones de SPAS, y guiar 

de forma correcta al cirujano durante la realización del gesto reconocido. Estas características 

requieren un conocimiento previo del procedimiento quirúrgico, y por lo tanto, se necesita un 

método que sea capaz de aprender este conocimiento. 

Para alcanzar este sistema de navegación inteligente, varios ámbitos tecnológicos debe 

ser extendidos e integrados: 

Navegación 

Tal y como se ha comentado previamente, las propias restricciones de SPAS deberán ser 

consideradas cuando los instrumentos son manejados por manipuladores. La restricción más 

importante es el punto de fulcro, el cuál es el punto por el que los instrumentos se introducen 

dentro del abdomen del paciente. Esta restricción es comúnmente resuelta mediante el empleo 

de un centro de rotación remoto (RCM en inglés) el cuál se hace coincidir con el punto de 

fulcro. El RCM reduce el número de grados de libertad de movimiento del instrumento al 

cuatro: tres rotacionales y uno longitudinal a lo largo del instrumento. La plataforma robótica da 

Vinci y otras usan un RCM mecánico basado en una configuración cinemática específica que es 

ajustada antes de realizar la cirugía, y permanece fijo durante toda la operación. Esta solución se 

emplea principalmente en aplicaciones clínicas debido a su robustez y seguridad, un fallo en el 

controlador del robot no dañaría al paciente. Sin embargo, esta solución requiere una estructura 

cinemática específica, voluminosa y compleja, la cual no resulta útil para SPAS debido 

principalmente a su volumen. Por ejemplo, el sistema da Vinci emplea cuatro brazos que están 

adheridos a una estructura principal con una configuración cinemática que desarrolla un centro 

de rotación remoto basado en un paralelogramo. Aunque este sistema ha sido empleado en 

SPAS, existen grandes limitaciones en su empleo debido a su volumen, el rango de 

movimientos dentro del paciente es muy reducido y los brazos pueden colisionar durante el 

movimiento. Por otro lado, sistemas robóticos más ligeros, basados en configuraciones 

cinemáticas genéricas, usan un RCM virtual o por software, en el que el punto de fulcro es 

estimado en línea y puede cambiar durante la cirugía. Esta solución es útil cuando el punto de 

fulcro se mueve, como lo hace la pared abdominal durante la respiración. No obstante, cuando 

se emplea un RCM virtual, la ubicación del punto de fulcro debe ser conocida. Para solucionar 

esto, el uso de un estimador en línea que use la información proporcionada por sensores que 
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midan la fuerza ejercida a lo largo de un instrumento quirúrgico aparece como una solución. La 

principal ventaja de este método es que este sensor se puede emplear para diferentes propósitos: 

teleoperación bilateral, estimación del punto de fulcro y/o control de esfuerzos. En este sentido, 

varios autores han realizado un extenso estudio del empleo de sensores de esfuerzos para 

estimar el punto de fulcro mediante el empleo de varias estrategias. Sin embargo, ninguna de 

estas contribuciones considera la interacción del instrumento con tejido blando dentro del 

abdomen. Este efecto debe ser considerado ya que lleva a errores en la estimación del punto de 

fulcro, y consecuentemente, a la aplicación de fuerzas no deseadas en el abdomen del paciente 

debido a este error. Además, ninguno de estos estudios ha sido adaptado para la técnica SPAS, 

en la que los instrumentos están introducidos por el mismo trocar, lo cual podría ser empleado 

para mejorar la estimación del punto de fulcro a través de la información redundante que se 

obtendría al estimar el punto de fulcro a través de las fuerzas ejercidas en cada instrumento. 

Interacción Humano-Robot 

Durante la teleoperación, el cirujano lleva a cabo tareas mediante el control de una 

plataforma robótica. Para poder realizar estas tareas de forma eficiente, el cirujano necesita 

recibir información sensorial de los robots. Teniendo esto en cuenta, estas plataformas robóticas 

se pueden clasificar así: 

 Teleoperación directa: este es el sistema de teleoperación básico. El cirujano 

proporciona los movimientos a la plataforma manejando un dispositivo maestro 

durante la cirugía, y el robot (dispositivo esclavo) reproduce estos movimientos 

en tiempo real. Generalmente, el cirujano teleopera el robot mediante una consola 

que contiene los dispositivos maestros que son usados para mover los 

manipuladores y una o varias pantallas que proporcionan información visual. Este 

tipo de teleoperación ha evolucionado hacia lo denominado telecirugía, en la que 

un cirujano puede llevar cabo una operación sin tener que estar físicamente 

presente. Esta técnica no sólo engloba una consola maestra y robots esclavos sino 

que necesita de tecnologías de comunicaciones e información. 

 Teleoperación bilateral: ésta es una evolución de la teleoperación directa. En este 

caso, el cirujano también es capaz de sentir las fuerzas que son ejercidas por los 

instrumentos durante la cirugía. Así, se colocan sensores de esfuerzos en cada 

robot esclavo, y se emplean dispositivos hápticos que proporcionan 

realimentación de esfuerzos al cirujano. Estos sensores de esfuerzos se pueden 

clasificar dependiente de proximidad a la punta del instrumento y su sensibilidad. 

El primer tipo engloba los sensores de esfuerzos que son colocados en la muñeca 

del manipulador, es decir, entre el efector final del manipulador y el instrumento 



 

146 

 

quirúrgico. Este tipo de sensores pueden medir las fuerzas y pares ejercidos a lo 

largo del instrumento y no necesitan ser esterilizados ya que no son introducidos 

en el abdomen. Sin embargo, estos sensores no proporcionan suficiente 

sensibilidad para diferenciar entre diferentes tipos de tejidos e incluso para 

diferenciar si las fuerzas obtenidas provienen de la punta del instrumento o de la 

interacción de éste con el abdomen. Por otro lado, el segundo tipo de sensores lo 

conforman aquellos que son instalados en la punta del instrumento, usados para 

sentir el tejido blando dentro del abdomen, haciendo que el cirujano sienta las 

mismas fuerzas que si realizara una laparotomía. Sin embargo, hay dos 

inconvenientes muy importantes cuando se usa este tipo de sensores: es necesario 

que estos se puedan esterilizar ya que se introducen dentro del abdomen, y por 

otro lado, cambios en la temperatura del sensor afectan las medidas de fuerza 

cuando se emplean transductores. 

Como se ha descrito, estos tipos de teleoperación permiten la reproducción de los 

movimientos que realiza el cirujano  con sus manos cuando éste usa instrumentos. Sin embargo, 

sería muy útil un método que proporcionara un apoyo adicional al cirujano. En este sentido, el 

guiado háptico es una evolución de la teleoperación bilateral. Esto se emplea para proporcionar 

fuerzas de guiado que permitan limitar el espacio del trabajo del cirujano o asistirlo durante la 

ejecución de una trayectoria predefinida que resuelva una tarea concreta. Esta técnica es 

comúnmente llamada fijaciones virtuales (virtual fixtures en inglés). Se ha demostrado que 

mediante el empleo de esta técnica se mejora la precisión y seguridad de la cirugía, y se reduce 

el tiempo necesario para realizar tareas quirúrgicas ya que combina la precisión de un robot con 

la inteligencia del ser humano. El uso de fijaciones virtuales se basa en la premisa de que las 

trayectorias de referencia y las regiones prohibidas son previamente conocidas, normalmente 

mediante el procesado de imágenes médicas o marcas realizadas en el paciente. Sin embargo, 

hay tareas en las que estas posiciones pueden verse afectadas por errores de estimación o no 

pueden ser estimadas. Por lo tanto, se necesitan nuevos métodos que generen guiado háptico. 

Aprendizaje Computacional 

El aprendizaje computacional ha sido ampliamente empleado en robótica. Esto se ha 

empleado en robótica quirúrgica para codificar movimientos realizados por el cirujano en un 

modelo que posteriormente es empleado para reconocer estos movimientos o proporcionar 

trayectorias que han sido previamente entrenadas. 

En el caso del reconocimiento de movimientos, el aprendizaje computacional se ha 

empleado para detectar y clasificar movimientos que son realizados por cirujano, de forma que 

se pueda identificar la fase del procedimiento quirúrgico. Además, esto se ha empleado para 
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implementar colaboración entre robots y cirujanos, en el que un manipulador es capaz de asistir 

al cirujano dependiente de la fase del procedimiento quirúrgico en el que éste se encuentre. Sin 

embargo, el uso de estos algoritmos para detectar si los instrumentos interaccionan con tejido 

blando dentro del abdomen no ha sido investigado aún. Esto sería muy útil para la estimación 

del punto de fulcro, ya que ayudaría a determinar si el instrumento está interaccionando con 

tejido blando dentro del abdomen, lo que significa que no se podría estimar el punto de fulcro 

empleando las fuerzas medidas a lo largo del instrumento. 

El aprendizaje computacional también ha sido ampliamente empleado para generar 

trayectorias continuas en el tiempo que se basan en posiciones del manipulador o medidas de 

fuerza realizadas por éste. Así, el método de aprendizaje por demostración (LfD) ha permitido 

que los robots puedan llevar a cabo tareas que han sido previamente entrenadas por un humano. 

Por ejemplo, se ha podido llenar un vaso de agua, golpear pelotas de ping pong, alimentar una 

muñeca o situar una bola en un agujero dentro de una caja. Sin embargo, aún no se ha estudiado 

en profundidad el uso de LfD para guiado háptico. La principal dificultad está en generar las 

fuerzas de guiado apropiadas para ayudar a resolver una tarea en tiempo real, teniendo en cuenta 

la interacción del operador con el sistema, es decir, las fuerzas de guiado háptico no deberían 

llevar al operador a seguir una trayectoria temporal, sino que debería proporcionar un guiado 

que dependa de los movimientos que realiza el operador. 

Estas tecnologías, una vez extendidas e integradas, podrían ayudar a resolver los 

problemas inherentes de SPAS, quedando todo esto integrado en un sistema de navegación 

inteligente que asista a los cirujanos durante la ejecución de procedimientos quirúrgicos basados 

en SPAS. 

 

Contribuciones 

Esta tesis proporciona resultados teóricos y experimentales relacionados con la 

navegación inteligente de instrumentos quirúrgicos que son manejados por robots en técnicas 

SPAS. En este sentido, la navegación del instrumento tiene que considerar las restricciones 

inherentes de SPAS para evitar fuerzas indeseables en el paciente y para llevar a cabo los 

movimientos del instrumento de una forma precisa. Además, el empleo de guiado háptico para 

asistir al cirujano durante la teleoperación aparece como un método prometedor que aún no ha 

sido investigado. Por lo tanto, esta tesis propone un método de navegación inteligente que 

integra una solución a cada uno de estos problemas dentro de una arquitectura global. Por lo 

tanto, las principales contribuciones de esta tesis son: 
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- Algoritmo de control de posición para manejar instrumentos quirúrgicos en SPAS 

Se propone un método de navegación basado en un control paralelo de fuerza-posición 

que ha sido adaptado a SPAS. Este método usa un control paralelo de fuerza-posición para levar 

a cabo los movimientos del instrumental teniendo en cuenta la restricción del punto de fulcro y 

minimizando las fuerzas ejercidas en la pared abdominal del paciente. Además, aprovechando 

SPAS, lo que significa que los instrumentos están introducidos por el mismo trocar, el punto de 

fulcro es estimado empleando un detector de interación con tejido blando y un método de fusión 

de medidas. 

- Detector de interacción con tejido blando   

Se necesita conocer cuando los instrumentos interaccionan con tejido blando dentro del 

abdomen para reducir errores en la estimación del punto de fulcro. Por lo tanto, se propone el 

uso de algoritmos basados en aprendizaje computacional para aprender los movimientos del 

cirujano y detectar esta interacción. Para ello, cada movimiento es dividido en una serie de 

estados que proporcionan información sobre la interacción del instrumento con el tejido blando. 

Así, el propósito de este algoritmo es reconocer los movimientos del cirujano y el estado en el 

que éste se encuentra, de forma que se pueda conocer si existe interacción con tejido blando en 

cada instante de tiempo. 

- Método de guiado háptico basado en aprendizaje por demostración 

Para extender la habilidad del cirujano durante la teleoperación, se ha definido un método 

génerico para guiado háptico que se basa en aprendizaje por demostración. Este método tiene en 

cuenta los movimientos que han sido previamente entrenados junto con su relación con la 

información sensorial obtenida durante el movimiento. Usando esta información se generan 

fuerzas de guiado háptico que son transmitidas al cirujano con el fin de asistirlo durante la 

teleoperación. 

- Implementación del método de navegación inteligente propuesto y sus resultados 

experimentales 

Los métodos propuestos han sido implantados en dos plataformas robótics de 

teleoperación. Para validar experimentalmente el método de navegación inteligente para SPAS 

se empleó la plataforma CISOBOT, la cual ha sido desarrollada por la Universidad de Málaga. 

Los resultados experimentales obtenidos han demostrado el comportamiento del método 

propuesto. Por otro lado, el método de guiado háptico fue implantado en la plataforma “LWR 

Taskboard” desarrollada por el laboratorio de háptica y telerrobótica de la Agencia Espacial 
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Europea. Esta plataforma se empleó para resolver la inserción de una clavija (peg-in-hole en 

inglés) y así validar el método propuesto de guiado háptico. 

 

Contexto y Motivación 

Esta tesis se encuentra enmarcada dentro de los trabajos de investigación en robótica 

quirúrgica que se llevan a cabo en el grupo de investigación en Ingeniería de Sistemas y 

Automática de la Universidad de Málaga. Además, durante la realización de esta tesis doctoral 

se realizó una estancia de tres meses en el laboratorio telerrobótica y háptica de la Agencia 

Espacial Europea en la que se realizaron trabajos de investigación relacionados con el guiado 

háptico en teleoperación espacial. 

Los resultados de esta tesis extienden estudio previos relacionados con la teleopeación de 

plataforma robóticas quirúrgicas y la detección de gestos realizados por cirujanos. Estos 

estudios formaron parte de las actividades de investigación que fueron llevadas a cabo en la 

Universidad de Málaga, cuyo principal logro fue el diseño e implantación de un asistente 

robótico que manejaba la cámara laparoscópica, el cual fue exitosamente usado en cirugías con 

humanos. Actualmente, las actividades de este equipo de investigación se centran en el 

desarrollo de tecnologías perceptuales, de navegación y cognitivas con aplicación en robótica 

quirúrgica. 

Esta tesis ha sido financiada por el Gobierno de España a través de los proyectos 

DPI2010-21126-C03-01 y DPI2013-47196-C3-1R. El principal objetivo de estos proyectos ha 

sido el dotar de autonomía a plataformas robóticas para cirugía mediante el empleo de 

algoritmos cognitivos y de aprendizaje computacional. 

Por otro lado, el laboratorio de háptica y telerrobótica de la Agencia Espacial Europea 

está implicado en varios proyectos relacionados con la teleoperación de robots mediante el 

empleo de dispositivos hápticos. Uno de estos es el proyecto METERON, el cual consiste en el 

desarrollo de tecnologías para la teleoperación de robots desde el espacio. Durante la estancia 

realizada, se desarrolló un algoritmo para el guiado háptico el cual fue empleado para resolver el 

problema de inserción de una clavija. 
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Estructura de la Tesis 

Esta tesis está dividida en seis capítulos, seis apéndices y las referencias bibliográficas. 

Cada capítulo, excepto el primero, comienza con una introducción que presenta el problema que 

se va a resolver, seguido de la estructura propia de cada capítulo, y finaliza con una serie de 

conclusiones que resaltan las contribuciones del capítulo así como los resultados obtenidos. 

La estructura de esta tesis está enfocada en la solución de diferentes problemas que 

surgen cuando se emplea una plataforma robótica teleoperada en SPAS: un método de 

navegación que considera la restricción del punto de fulcro como un centro de rotación remoto 

virtual, un detector de interacción con tejido blando basado en aprendizaje computacional, 

empleado para mejorar la estimación del punto de fulcro, y un sistema de guiado háptico, 

basado en aprendizaje por demostración, que es capaz de asistir al cirujano durante la 

teleoperación del sistema robótico. Así, el capítulo 2 introduce el pasado y presente de la 

teleoperación quirúrgica mediante robots, proporcionando una breve descripción de las 

plataformas robóticas quirúrgicas más importantes. En este mismo capítulo se presenta el estado 

del arte del uso de aprendizaje computacional en robótica quirúrgica. Esta metodología ha sido 

empleada para resolver dos problemas en esta tesis: el uso de modelos ocultos de Markov para 

reconocimiento del gesto y el uso de aprendizaje por demostración para la generación de 

movimientos del robot que se basan en un entrenamiento previo. Finalmente, este capítulo 

describe el uso que se ha realizado del guiado háptico en robótica quirúrgica. 

El capítulo 3, titulado “Smart Navigation for Single Port Access Surgery”, propone un 

método de navegación para el uso de robots en cirugía de un solo puerto, el cual es capaz de 

mover dos instrumentos quirúrgicos que se han introducido a través de trocar multipuerto 

teniendo en cuenta la restricción del punto de fulcro, el cual es estimado mediante la lectura de 

las fuerzas ejercidas a lo largo del instrumento. Para mejorar la estimación del punto de fulcro, 

el método de navegación propuesto emplea un método de fusión de medidas que se aprovecha 

del efecto de tener los dos instrumentos introducidos a través del mismo trocar. Sin embargo, el 

empleo de estas fuerzas para estimar el punto de fulcro requiere que el instrumento únicamente 

interaccione con el abdomen del paciente, por lo tanto, es necesario el empleo de un método que 

sea capaz de detectar cuando la punta del instrumento interacciona con tejido blando. Este 

método se describe también en este capítulo. Finalmente, se describe el esquema de control 

paralelo de fuerza-posición que ha sido empleado para minimizar las fuerzas ejercidas en el 

abdomen del paciente. 

Una vez definido el método de navegación para teleoperación en SPAS, el capítulo 4 

propone el uso de aprendizaje por demostración para el guiado háptico, presentando en este 
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capítulo un método para resolver tareas genéricas. En concreto, este método se divide en dos 

fases. La primera consiste en dividir las tareas en gestos y entrenar cada uno de ellos mediante 

demostraciones, y la segunda fase hace uso de estos entrenamientos para asistir al operador 

durante la reproducción de la tarea. 

El capítulo 5 “Implementation and Experiments” descibe los experimentos que han sido 

llevados a cabo para validar el sistema de navegación inteligente para SPAS propuesto. El 

método de navegación propuesto fue probado mediante el análisis de las fuerzas ejercidas en el 

abdomen, los errores de estimación en el punto de fulcro y el retraso que se obtuvo en la 

detección de la interacción con el tejido blando. El método de guiado háptico basado en 

aprendizaje por demostración fue validado empleando la tarea de inserción de clavija, cuyos 

resultados experimentales demostraron el funcionamiento de las fases de entrenamiento y 

reproducción. 

El capítulo 6 resalta las contribuciones más relevantes de esta tesis y propone una serie de 

trabajos futuros. Finalmente, los apéndices proporcionan al lector el análisis de estabilidad del 

esquema de control planteado en el capítulo 3 y la teoría de los modelos matemáticos que han 

sido empleados en los diferentes capítulos. 

Conclusiones 

La cirugía minimamente invasiva ha supuesto un gran logro con respecto a la cirugía 

tradicional. A pesar de que hay varias técnicas en cirugía minimamente invasiva, la cirugía de 

único puerto es una de las técnicas de cirugía minimamente invasiva más novedosas. Esta 

técnica consiste en introducir todos los instrumentos, así como la cámara laparoscópica, a través 

de un trocar multipuerto, con lo que se reduce el número de cicatrices. De esta manera se reduce 

la estancia hospitalaria y se mejoran los resultados cosméticos. Sin embargo, esta técnica 

conlleva varios inconvenientes para los cirujanos. En este sentido, el uso de plataformas 

robóticas teleoperadas emergen como una ventaja para poder realizar este tipo de técnicas. El 

uso de estas plataformas ayudaría a los cirujanos a manejar los instrumentos quirúrgicos 

evitando los problemas inherentes a este tipo de técnicas. Uno de los problemas que surgen 

cuando se emplean estas plataformas robóticas está relacionado con el hecho de que los 

movimientos están limitados por estar los instrumentos introducidos a través de un trocar. 

Algunas plataformas robóticas como el sistema da Vinci resuelve este problema mediante el 

empleo de estructuras cinemáticas voluminosas, las cuales implementan un centro de rotación 

remoto mecánico que se hace coincidir con el punto de fulcro. Otros autores han resuelto este 

problema usando un centro de rotación remoto virtual el cual se ha estimado mediante el empleo 

de las fuerzas de interacción del instrumento con el abdomen. Este método puede ser 
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implementado en robots más ligeros y con configuraciones cinemáticas genéricas, útiles para 

realizar cirugía de un solo puerto ya que ayudarían a reducir las colisiones entre los diferentes 

brazos robóticos. 

En este sentido, esta tesis propone un método de navegación inteligente para cirugía de un 

solo puerto, el cual emplea las fuerzas ejercidas a lo largo del instrumento quirúrgico para 

estimar el punto de fulcro, mejorando su precisión mediante el empleo de un algoritmo de 

fusión de medidas que se aprovecha del efecto de tener dos instrumentos introducidos por el 

mismo trocar. Este método de navegación ha sido implantado en la plataforma CISOBOT, la 

cual ha sido desarrollada por la Universidad de Málaga y cuyos resultados experimentales han 

demostrado que este método mejora la estimación del punto de fulcro. Así, el error de 

estimación del punto de fulcro se redujo cuando se empleó el método de fusión de medidas. La 

estimación del punto de fulcro fue usada para llevar a cabo movimientos de los instrumentos 

mediante el empleo de un esquema de control paralelo de fuerza-posición basado en la función 

Jacobiana de los manipuladores empleados, el cual emplea el punto de fulcro estimado como un 

centro de rotación remoto virtual y además reduce las fuerzas ejercidas en el abdomen del 

paciente. Como se ha demostrado en los resultados experimentales, el error máximo obtenido 

durante la reproducción de varias trayectorias fue bastante bajo tanto en trayectorias 

predefinidas como las proporcionadas por un operador mediante la teleoperación del sistema 

robótico. Además, las fuerzas abdominales que se ejercieron en el abdomen quedaron reducidas 

mediante el empleo del esquema de control propuesto. 

Como se explica en la sección 3.3, aparecen dos fuerzas de interacción a lo largo del 

instrumento. La primera de ellas es la fuerza que es ejercida en el instrumento debido a su 

interacción con el abdomen del paciente, la cual se puede emplear para estimar el punto de 

fulcro. La segunda interacción se produce cuando la punta del instrumento interacciona con 

tejido blando dentro del abdomen, la cual se puede emplear para proporcionar realimentación 

háptica al cirujano. Sin embargo, la estimación del punto de fulcro sólo se puede realizar cuando 

el instrumento no interacciona con tejido blando dentro del abdomen. Por este motivo, se ha 

desarrollado un detector de interacción con tejido blando basado en modelos ocultos de Markov, 

el cual ha sido entrenado para detectar cuatro gestos genéricos: tirar, empujar, levantar y hundir. 

Cada uno de estos gestos se ha dividido en cinco estados, los cuales proporcionan información 

acerca de la interacción del instrumento con tejido blando dentro del abdomen. Este método 

primero detecta el gesto que se está realizando y después estima el estado que se corresponde 

con ese gesto, proporcionando información sobre la interacción con tejido blando (Figura 3-17). 

Para validar este método se realizaron dos experimentos. El primero de ellos fue empleado para 

validar el reconocimiento del gesto, en el que se reconocieron los cuatro gestos definidos 

exceptuando el gesto “tirar” como se muestra en la Tabla 5.2. El segundo experimento consistió 
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en la comprobación de la estimación del estado una vez el gesto ha sido correctamente 

reconocido. Para esto, fue medido el retraso entre el instante en el que la interacción con tejido 

blando ocurre y ésta es detectada, así como el instante en el que la interacción termina y es 

detectada (Figura 3-15). Como muestra la Figura 5-16, el retraso medio es aceptable para llevar 

a cabo la estimación del punto de fulcro sin errores. 

Una vez definido el método de navegación para cirugía de un solo puerto, la habilidad del 

cirujano se podría mejorar mediante el empleo de un sistema de guiado háptico que asista al 

cirujano durante la teleoperación de un sistema robótica quirúgico. En este sentido, en el 

capítulo 4 se ha propuesto un método que proporcione guiado háptico basado en aprendizaje por 

demostración. El objetivo de este método es usar gestos que han sido entrenados previamente 

por un cirujano experto para proporcionar fuerzas de guiado basadas en la información sensorial 

que proporciona el sistema robótico. Para esto, se emplearon modelos de mezclas Gausianas 

para codificar la relación entre la información sensorial y las fueras de guiado ideales, obtenidas 

durante la fase de entrenamiento. Una vez que cada gesto fue codificado en un modelo de 

mezclas Gausianas, se empleó una regresión de mezclas Gausianas para generar las fuerzas de 

guiado durante la reproducción del gesto. El método propuesto ha sido empleado para resolver 

la tarea de inserción de clavija (peg-in-hole), la cual ha demostrado ser una tarea compleja 

cuando se lleva a cabo usando un sistema robótico teleoperado. De la misma manera que este 

método se ha empleado para esa tarea, se podría emplear para resolver tareas quirúrgicas tales 

como la inserción de un instrumento por un trocar, sostener la vesícula con una fuerza que ha 

sido previamente entrenada, introducir instrumentos por orificios, etc. 

Un estudio preliminar sobre el empleo del método propuesto de guiado háptico fue 

realizado con la plataforma LWR Taskboar Workcell del laboratorio de háptica y telerrobótica 

de la Agencia Espacial Europea, resolviendo la tarea de inserción de clavija (peg-in-hole). Esta 

tarea se dividió en dos gestos (Figura 5-17): gesto de contacto con la superficie, que se empleó 

para colocar la clavija en el agujero; y el gesto de efecto palanca, el cual se empleó para alinear 

la clavija con el agujero. Cada gesto fue entrenado mediante demostraciones kinestésicas 

comenzando desde diferentes posiciones iniciales (Figura 5-18), y estos fueron codificados en 

dos modelos de mezclas Gausianas. Una vez realizado esto, se llevaron a cabo más 

demostraciones con el fin de validar el error entre estas demostraciones y las fuerzas de guiado 

háptico obtenidas a través de la regresión de mezclas Gausianas. Como se muestra en la Figura 

5-21, el error fue reducido y por lo tanto la fase de entrenamiento fue correcta. Finalmente, se 

realizaron varias inserciones de clavijas usando el sistema robótico teleoperado. Los resultados 

obtenidos (Figura 5-22) demostraton que la clavija se introduce con mayor facilidad cuando se 

emplea guiado háptico. 
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En resumen, esta tesis propone un método de navegación inteligente para cirugía de único 

puerto que tiene en cuenta la restricción del punto de fulcro, el cual es estimado mediante el uso 

de las medidas de fuerzas y pares que se ejercen a lo largo del instrumento debido a su 

interacción con el abdomen, las cuales pueden ser leídas mediante un sensor de esfuerzos. 

Debido a que el instrumento también puede interaccionar con tejido blando, se ha incluido en el 

método de navegación un detector de interacción con tejido blando que permite detectar esa 

situación. Además, la habilidad del cirujano se ha mejorado mediante el empleo de un método 

de guiado háptico basado en aprendizaje por demostración con el cual se ha resuelto una tarea 

genérica y a la vez compleja que es la inserción de una clavija, la cual es similar a otras tareas 

quirúrgicas. 
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This thesis is focused on the navigation of surgical instruments by teleoperated surgical ro-

botic platforms in Single Port Access Surgery. In particular, the proposed navigation method 

is based on a virtual Remote Centre of Motion, which coincides with the insertion point 

(fulcrum point) that is estimated using abdominal interaction forces along the surgical in-

struments. Because these instruments also interact with the soft tissue inside the abdo-

men, which affects the fulcrum point estimation, a method is needed to determine wheth-

er the instrument tip interacts with the soft tissue inside the abdomen. To this end, we 

have used a soft tissue interaction detector based on a Hidden Markov Model. Further-

more, this thesis proposes the use of haptic guidance to improve the surgeon's experience 

when using teleoperated robotic platforms. Thus, Learning from Demonstration is pro-

posed to generate guidance force references that guide the surgeon during the reproduc-

tion of a task. 
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