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ABSTRACT

The coordination of the hand in response to visual target selection has always been 

regarded as an essential quality in a range of professional activities. This quality has thus 

far been elusive to objective scientific measurements, and is usually engulfed in the 

overall performance of the individuals. Parallels can be drawn to surgery, especially 

Minimally Invasive Surgery (MIS), where the physical constraints imposed by the 

arrangements of the instruments and visualisation methods require certain coordination 

skills that are unprecedented. With the current paradigm shift towards early specialisation 

in surgical training and shortened focused training time, selection process should identify 

trainees with the highest potentials in certain specific skills. Although significant effort 

has been made in objective assessment of surgical skills, it is only currently possible to 

measure surgeons’ abilities at the time of assessment. It has been particularly difficult to 

quantify specific details of hand-eye coordination and assess innate ability of future skills 

development. The purpose of this thesis is to examine hand-eye coordination in 

laboratory-based simulations, with a particular emphasis on details that are important to 

MIS.

In order to understand the challenges of visuomotor coordination, movement trajectory 

errors have been used to provide an insight into the innate coordinate mapping of the 

brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic 

image projections and the “fulcrum” effect of the instruments, accentuate movement 

generation errors. Obvious differences in the quality of movement trajectories have been 

observed between novices and experts in MIS, however, this is difficult to measure 

quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the 

underlying characteristic movement details of a particular MIS manoeuvre and how such 

features are exaggerated by the introduction of rotation in the endoscopic camera. The 

proposed method has demonstrated the feasibility of measuring movement trajectory 

quality by machine learning techniques without prior arbitrary classification of expertise. 

Experimental results have highlighted these changes in novice laparoscopic surgeons, 

even after a short period of training.

The intricate relationship between the hands and the eyes changes when learning a skilled 

visuomotor task has been previously studied. Reactive eye movement, when visual input 

is used primarily as a feedback mechanism for error correction, implies difficulties in 

hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye
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movements then become predictive of the action generated. The concept of measuring 

this spatiotemporal relationship is introduced as a measure of hand-eye coordination in 

MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the 

instrument tip position on the laparoscopic screen.

Further validation of this concept using high fidelity experimental tasks is presented, 

where higher cognitive influence and multiple target selection increase the complexity of 

the data analysis. To this end, Granger-causality is presented as a measure of the 

predictability of the instrument movement with the eye fixation pattern. Partial Directed 

Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first 

time to measure hand-eye coordination. Experimental results are used to establish the 

strengths and potential pitfalls of the technique. To further enhance the accuracy of this 

measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed 

for enhancing the signal matching algorithm and trajectory segmentations. The proposed 

framework incorporates high frequency noise filtering, which represents non-purposeful 

hand and eye movements. The accuracy of the technique has been demonstrated by 

quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons.

Experimental results supporting visual search behavioural theory are presented, as this 

underpins the target selection process immediately prior to visual motor action 

generation. The effects of specialisation and experience on visual search patterns are also 

examined. Finally, pilot results from functional brain imaging are presented, where the 

Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy 

techniques. PPC has been demonstrated to involve in the calculation of the coordinate 

transformations between the visual and motor systems, which establishes the possibilities 

of exciting future studies in hand-eye coordination.
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Chapter 1

Introduction

Figure 1.1 Photograph of a typical surgical scene.

Major challenges are faced by practising and training surgeons, with the continuous 

improvements in surgical technologies, the shortened training period and work hours, and 

the increased public awareness. One of the most important technological advances was 

the introduction of Minimally Invasive Surgery (MIS), which conveyed the advantages of 

quicker recovery time, smaller incisions and reduced trauma to the patients. However, the 

initial introduction of MIS carried higher complication rate and longer operation time, 

due to the significant learning curve involved in acclimatisation for the MIS environment
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(1,2). The intrinsic setup of MIS requires specialised equipment, which restricts the visual 

information available, dampens haptic feedback, and introduces novel sensorimotor 

transformation to the surgeons. Newer technologies are now becoming available to 

improve surgical outcomes and patients’ morbidity from surgery, these include Natural 

Orifice Translumenal Endoscopic Surgery (NOTES) and robotic assisted surgery, and 

undoubtedly a significant initial learning period would be required. This has renewed the 

debate on the delicate relationship between surgical training, assessment and patient 

safety.

With the introduction of more focused surgical training curricula, trainee selection and 

assessment need to advance with current technologies and become more specific to the 

surgical sub-speciality. Existing research has shown qualitative observation score and 

dexterity measurements can be used to monitor the progress of trainees, although 

predictions of the surgeons’ future abilities remain a challenge. Observation score 

continues to be the ‘gold standard’ of objective skills assessment, as it utilises expert 

judgement in formulating the scores. Despite its reliability and validity, it remains too 

expensive and labour intensive for large scale deployment (3). On the other hand, 

dexterity measurements can be automated using motion tracking devices. These devices 

measure the distance each hand travels, and scoring is based on the principles of economy 

of movement, where shorter distance equates higher dexterity. Dexterity measurement 

using this technique is highly influenced by variations in the tasks, which renders 

assessment of live operations difficult. Cognitive influences are also neglected in these 

measurements, which may explain their lack of predictive validity.

One of the greatest initial challenges in MIS is the coordination of the instruments with 

the visual feedback available from the laparoscopic camera The combination of the 

“fulcrum” effect and distortions resulted from the camera lenses creates an unusual and 

challenging visuomotor coupling. This is akin to the measurement of hand-eye 

coordination in daily living tasks, although in adults this attribute is well developed and 

can only be distinguished when skilled tasks are performed, as in professional sportsmen. 

The measurement of hand-eye coordination in surgery remains the focus of this thesis.

Quantification of hand-eye coordination, however, is difficult. The combinatorial 

problem includes multiple inputs from the visual, tactile and proprioceptive system; 

whilst coordinating motor output through movements across joints of the axial and 

peripheral skeleton. Furthermore, interactions between different brain regions can
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influence motor execution by integrating previously stored memories of the attributes of 

specific motor tasks, hence affecting the final quality of movement trajectories. The study 

of each individual component is complex in itself, hence rendering the task of their 

combined effect near impossible.

Traditional measures of hand-eye coordination adopted a goal directed approach, where 

artificially created complex coordination tasks were used to test the individual's 

capabilities. Quantification relied on their abilities to complete such tasks, and the speed 

in achieving them. These principles underpin the current methods of surgical skills 

assessments, where time measurements and outcomes of the operations performed by 

trainees are assessed. Although this may be useful in assessing performance of specific 

tasks, its generalised application as a measure of hand-eye coordination remains 

unaccepted.

More recent attempts have focused on measuring the quality of movement trajectories in 

laboratory-based tasks. In these studies, simple reaching tasks are performed whilst visual 

input is either distorted or impaired, and the variability and the error of the final hand 

movement output are measured. The extent of the error measured implies the reliance on 

the visual input for motor generation in these tasks. This indirect measure mirrors 

dexterity measurement in surgical skills assessment, where movement economy, or the 

reduction in motion error, equates dexterity. Again, the outcome is highly influenced by 

any variations of the experimental tasks, and tests outside the laboratory environment are 

difficult to standardise.

The spatiotemporal relationship between the hands and the eyes has been introduced as a 

concept for measuring their coordination. In learning a novel task, visual feedback is 

crucial for motor error reduction, especially in the terminal phase of the movement 

trajectory. Reactive eye movements, where hand motion precedes the saccades of the 

eyes, are used for visual feedback and final adjustments of the hand movement towards 

the target. On the other hand, predictive eye movements are displayed in familiar tasks, 

where the initial mental estimation of the target position is accurate enough for reaching 

the target. This relationship remains the most promising method to quantify hand-eye 

coordination, as this measure is direct and cognitively influenced.

Thus far, the measurement of this spatiotemporal relationship remains qualitative. 

Complex motion trajectories are generated in skilled motor tasks, and this is reflected by
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intricate eye movements which are easily influenced by cognitive factors, such as 

distractions, attention and concentration. In order to measure these highly variable data 

streams, simple statistical calculations are not sufficient. A robust signal matching 

algorithm is needed to locate similarities between the two (or three in bimanual tasks) 

time series, then a causality measurement is deployed to identify signal precedence. A 

multidisciplinary approach is necessary, as signal matching and causality are problems 

not confined to movement data, but regularly utilised in economical, neurological and 

computer vision data.

The purpose of this thesis is to provide a method of measurement for analysing the hand- 

eye coordination in surgery. MIS provides a perfect platform to introduce a novel 

visuomotor environment for assessment of hand-eye coordination. It is hypothesised that 

the quality of the movement trajectories produced by novices in MIS changes through 

learning of the MIS environment, and this reflects on the continuing adaption and 

development of the internal mapping of the task. Validation is sought by including data 

from practised MIS surgeons, where the quality improves; and camera rotation tasks, 

where the disruption in hand-eye coordination increases the difficulties of the tasks.

This thesis further aims to quantify the spatiotemporal relationship of the instruments and 

the eyes, as a direct measurement of hand-eye coordination in surgery. Robust signal 

matching and causality algorithms are adapted and developed, in order to provide a 

generalised measurement. The effects of training and coordination disruption are 

examined in detail to provide further validation of the method.

Chapter 2 reviews the historical evolution of MIS; its conception dates back centuries 

ago, although its safe and popular practice only started in the last two decades. Human 

factors involved and the difficulties of MIS are further addressed, specifically related to 

visual and motor learning. In this chapter, the concept of sensorimotor transformation is 

introduced and its importance in relation to MIS explored. In MIS, this is further 

complicated by the coordinate changes presented by the laparoscopic camera setup. This 

chapter concludes by summarising the current status in research into the measurement of 

hand-eye coordination, and its potential application in MIS.

To further understand the human visual behaviour, purposeful eye movements are listed 

in Chapter 3. The selections of the hardware setup for eye tracking are described, along 

with discussions of the relative merits and disadvantages of the different techniques
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available. In terms of the instrument tips, the goal is to track the tip position on the 

laparoscopic screen; due to technical constraints described in the chapter, an indirect 

method of tracking is used. In order to calculate the Two-Dimensional (2D) instrument 

tip projection from its Three-Dimensional (3D) position, intrinsic and extrinsic properties 

of the camera need to be calculated and its position known at all times. Options of 

hardware for tracking the instruments and camera positions are discussed further, and 

camera calibration and robotic hand-eye coordination algorithms are used for 

transforming 3D instrument tip positions. Issues of synchronisation of the data streams 

are raised and bespoke solutions are outlined.

Further to the review in Chapter 2, the sensorimotor transformation involved MIS is too 

complex to model precisely. Chapter 4 introduces the use of a stochastic framework for 

analysing instrument movement trajectories. Hidden Markov Models (HMM) are able to 

predict the state of the model by its observable outcomes and have been extensively used 

for pattern recognition tasks such as speech and handwriting. In this chapter, instrument 

tip trajectories are first transformed to Centroid Distance Function (CDF) to reduce the 

dimensionality of the data and render it rotational and translational invariant. These 

trajectories are then used to train the HMM, using the leave-one-out technique, and in 

turn the trained HMM is used to calculate the quality of each trajectory. To validate this 

method of classification, a simple laparoscopic task is used to test novices and 

experienced surgeons. Screen rotation is introduced to accentuate the difficulty of 

sensorimotor transformation, and the effects of training and screen rotation are measured 

and discussed in details.

Eye movement data is included in the analysis for the first time in Chapter 5. The concept 

of spatiotemporal relationship between the instrument and the eye is introduced, where 

the eye movement lags behind the instruments (reactive) when novel sensorimotor tasks 

are first attempted. As the tasks become familiar, the eyes appear to predict the movement 

of the instruments. Detailed qualitative analysis of the eye and instrument data streams 

provided obvious differences between experts and novices, and also gradual 

improvements during training. Interestingly, initial screen rotation tasks exert the most 

influence on the quality of eye and instrument movements. In terms of spatiotemporal 

relationship, quantitative proof of this observation is provided in simple Cartesian 

distance calculations, as the experiment is designed to avoid complex cognitive 

interactions to influence the movement generated. This method of analysis is possible as
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the target location retrieval and trajectory segmentation are done using bespoke hardware 

modifications, with the compromise of the experimental design.

In order to improve the usability of the measurement of spatiotemporal relationship 

between the hand and instruments based on the findings in Chapter 5, signal matching 

algorithms are explored for data analysis. Partial Directed Coherence (PDC) is used to 

analyse the instrument and eye data for the first time, and is discussed in details in 

Chapter 6. PDC is a frequency-based variation of Granger-causality, which is an 

econometric technique to calculate the relationship between two time series, and whether 

one can be used to forecast another. This technique eliminates the requirements of the 

target coordinates, and analysed the whole data streams in the frequency domain. Data 

from two experiments are collected for validation of this method, where the latter 

experiment resembles more closely to real laparoscopic surgery with complex 

interactions between the two hands and the eyes are analysed.

Chapter 7 is an extension on the analysis in Chapter 6, and models the instrument and eye 

movements into probability distributions using principles based on the Jensen-Shannon 

Divergence (JSD). Measuring the statistical difference between the two distributions 

provides a level of signal matching between them, and an adjustable threshold can be set 

compared to PDC in Chapter 6. Modifications of the JSD are necessary to analyse data in 

different frequencies, which allows for filtering of high frequency noise to improve the 

signal-to-noise ratio. Actual quantification of the temporal difference between the hand 

and the eye is calculated, and larger data sets using both simple and complex laparoscopic 

tasks are collected, and expert data are included to validate the results.

Chapter 8 summarises the findings of the thesis, and systematically discusses each 

chapter presented in terms of strengths and weaknesses. It also highlights the potential 

improvements in the experimental setup for its implementation as an assessment and 

selection tool. In this chapter, a pilot study including preliminary functional brain data is 

outlined as possible future work.

In a skilled motor task, visual search is an essential component primarily used for target 

selection and location, prior to movement generation. Appendix A presents a study on the 

quantification of visual search pattern, based on the Global-focal model. Static medical 

images are used for the study, and X-Ray radiographs are chosen as they are familiar to 

physicians across specialities. The effects of training and specialisation are compared,
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using Kullback-Leibler distance (similar to JSD) and double Gaussian curve fitting 

algorithms.

The original contributions of the thesis are:

• Proposed a novel concept for measuring hand-eye coordination in MIS;

• Modification and development of the hardware essential for synchronous tracking 

of instruments, eyes and camera. Implementation of software algorithm to 

calculate the projection of the instrument tip positions on the laparoscopic video;

• Calculation of the quality of movement trajectories without prior classification of 

the measurements;

• Measurement of the spatiotemporal relationship between the hand and eye 

movement in simulated laparoscopic tasks and validation and modification of this 

measurement for its diversify implementations;

• Quantification of the subtle differences in visual search pattern, as a function of 

experience and training.

Quantification of hand-eye coordination has not been achieved before, even outside the 

field of surgical assessment. This is the first time where the combination of different 

disciplines allows the actual measure of the spatiotemporal difference between the hand 

and eye, compared to previous observational measures. The implementation of this 

method can extend to all aspects of surgery, although MIS is an obvious exemplar with 

disrupted spatial environment presented for the first time.
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Chapter 2

Hand-eye Coordination in 
Minimally Invasive Surgery

“Seeing comes before words. The child looks and recognized before it can speak" -  John 

Berger

2.1 Introduction

Hand-eye coordination is the ability to utilise the information received through the eyes to 

control, guide, and direct the hands to complete a given task. This also involves the 

integration of body and joint position sense (proprioception), as well as continuous visual 

feedback in order to correct any errors made. However, the most important component in 

this feedback loop is the visual system (4).

Measurement of hand-eye coordination is difficult, the traditional method involves using 

tasks that are known to be complex hand-eye coordination problems to measure outcomes 

such as accuracy and reaction time. This type of measurement is indirect and has to be 

applied in context. For example, good hand-eye coordination in one activity does not 

always apply to another (5).

Others have used hand movement trajectory as a surrogate measurement of hand-eye 

coordination. This indirectly implies the point of reference the brain is using to perform 

an action, this point of reference (otherwise known as the internal representation) must 

transform from the input system (eyes) to the output system (hands) to ensure efficient 

movement executions. This transformation is clearly learned at an early age and further 

refined or adapted when highly skilled tasks are performed.
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Hand-eye coordination is developed through infancy. By the age of 2 months, the eyes 

can focus well enough to follow a moving object with their gaze. By 3 months, most 

infants bring their hands into their field of vision, establishing the connection between the 

information received through the eyes as a consequence of the actions of the hands. 

Subsequent refinement develops through the early teenage years and in context of 

specific skilled tasks (6).

Minimally Invasive Surgery (MIS) poses a unique environment where the visuomotor 

axis is disrupted and the hand-eye (in this case, the instrument tips) coordination in the 

normal world no longer applies. Figure 2.1 demonstrates some of this disruption in 

further details, note the surgeon’s action follows the blue arrow, whereas the monitor 

displaying the surgical field follows the red arrow. Furthermore, the assistant standing 

opposite the surgeon is looking at the monitor directly behind him, this would introduce 

complex coordinate transformation for each action to be translated into the surgical field, 

thus impeding the normal hand-eye coordination.

Figure 2.1 A typical laparoscopic operation scene demonstrating the motor axis (blue) and 
visual axis (red) pointing at different directions.

This chapter will give a background of MIS and its development, as well as important 

recent developments to improve the ergonomics of such surgery to improve patient safety 

and shorten the learning curve for trainee surgeons. Arguments will be presented that the 

measure of hand-eye coordination is important in trainee selection and assessment, as it
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represents a direct measurement of the intrinsic skills of the surgeon. Previous work that 

has inspired the development of the hypothesis of this thesis will also be discussed.

2.2 Minimally Invasive Surgery

2.2.1 History

MIS simply describes the use of small incisions in surgery. In order to perform MIS, 

special instruments are needed. Visualisation is achieved through the use of a rigid 

endoscope and the image is captured in the camera attached and projected onto a 2D 

screen. The body cavity is insufflated using specific inert media to expand the working 

space. The surgical instruments are small devices attached to one end of rigid rods and 

controlled by handles attached to the other. These rigid instruments are then inserted into 

the patient’s body cavity through small 5-10mm incisions.

2.2.1.1 Endoscopy

Before the 19th century, the interior of the living body could only be faintly observed 

through natural body orifices, using crude specula and candlelight. The first ideas of 

endoscopy came from Phillip Bozzini of Frankfurt, who published his theories in 1806 on 

its use for examination of natural openings and the organs inside body cavities. He 

constructed an instrument, which he called the “lichtleiter” or light conductor, which 

consisted of a speculum and reflectors using candle light (7).

When endoscopy permitted enough vision inside the urethra, Antonin Desormeaux was 

able to perform the first true endoscopic operation in 1853, removing a papilloma from 

the urethra. He improved the illumination by replacing candle with a lamp powered by 

turpentine and alcohol. In 1865, Adolph Kussmaul of Freiberg pioneered direct 

oesophagoscopy using a tube-shape speculum to which he had attached the endoscope of 

Desormeaux for illumination. As shown in Figure 2.2, for the safety of the patients, he 

enlisted the help of a sword swallower for the development of a safe technique. The 

modem endoscope was invented by Maximilian Carl-Friedrich Nitze, who tried to 

overcome the problem of illumination by putting the light source at the distal tip of the 

instrument in 1877. The main problem with this approach was the heat generated by the 

platinum wire inside the body cavity, which was overcome by a water cooling system, 

and he became the first person to insert the light source to illuminate the bladder directly

(8). Between 1891 and 1894, he constructed an operating cystoscope, where the hot light
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bulb was first used to coagulate a bladder papilloma, and subsequently constructed cold 

and hot wire loops for galvanocautery as an endoscope accessory instrument (9).

Figure 2.2 A schematic illustration of Kussmaul performing direct oesophagoscopy with the 
help of a sword swallower.

2.2.1.2 Laparoscopy

The first documented laparoscopy was undertaken in 1901 by Dimitri Oskarovich Ott of 

St Petersburg, Russia, using a gynaecologic head mirror, an external light source, and a 

speculum to perform the procedure (7). He described the intervention as “ventroscopy.” 

By the end of the decade, he published his first endoscopic inspection of the abdominal 

cavity via a mini-laparotomy in 1909. In 1902, Georg Kelling examined the peritoneal 

cavity of a dog using the Nitze cystoscope. His interest was in the problem of 

gastrointestinal bleeding and a treatment technique called a lufttamponade. By 

insufflating the abdominal cavity with 50mmHg of air in animals, he noted that the 

organs had shrunk and become colourless, also halting the bleeding. He adopted the term 

Kolioskopie to describe the method for safely inducing a pneumoperitoneum as well as 

the location and appropriate technique for port placement (10,11).

However, it was Hans Christian Jacobaeus of Stockholm, Sweden, who coined the term 

laparoscopy and the first clinical applications of the method. In 1910, he performed

30



laparoscopy on 17 patients with ascites for diagnostic purposes (12). In 1912, he 

differentiated between laparoscopic operations on patients with and without ascites, 

where the operations on patients with ascites were easy and problem free. On average, the 

patients had between 8 and 10 litres of fluid, with a maximum of 23 litres. The operations 

on ascites-free patients were much more complicated, however, and the risks of intestinal 

injuries were significantly higher. This is of no surprise, as the design of the trocar for air 

insufflation was rather rudimentary, as shown in Figure 2.3 (10).

Figure 2.3 Design of the Jacobaeus’ trocar.

The next advancement in endoscopy was the development of fibreoptics for flexible 

endoscope. John Logie Baird, most famous for demonstrating the first working television, 

patented the idea of transmitting images through a flexible glass cable in 1928 (British 

patent 285,738) (13). These ideas influenced Harold H. Hopkins and Narinder Kapany 

from Imperial College London who published a letter in Nature in 1954, which laid out 

the principles of coherent image transmission for sending images along an aligned bundle 

of flexible glass fibres (14). They developed the endoscope with these flexible glass 

fibres (fibreoptics) illuminated by a simple light bulb at the proximal end, and called this 

system a flexible fibrescope. In the same issue of Nature, Van Heel also presented a 

similar concept (15). Making use of these principles, Hirschowitz, a gastroenterologist at 

the University of Michigan, and his group created the first prototype of the fibreoptic 

instrument 3 years later for examining the stomach and duodenum. Karl Storz (1911- 

1996) realised that besides transmitting visual information, the system of glass fibres 

could be used for the purpose of light transmission, and he licensed the idea of a 

fibreoptic external cold light transmission (8,16).
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This also coincided with Hopkins’ other invention which revolutionised modem 

endoscopy, the rod-lens system in 1965. The traditional system consisted of a tube of air 

with thin lenses of glass. By contrast, the rod lens system consisted of a glass tube with 

thin lenses of air. The three advantages are: first, the total light transmitted is increased by 

factor 2.72; second, mounting the rod-lenses permitted a greater diameter to be used for 

lenses for a given outer diameter of the telescope, these two factors improved the optic 

efficiency by nine fold (8); lastly, the use of multilayer antireflection coating improved 

the brightness and contrast of the image. Therefore, Hopkins' rod lenses had clear 

advantages over the Nitze system.

Karl Storz was informed of this revolutionary idea and arranged an appointment with 

Hopkins, who then agreed to cooperate and produce the Storz-Hopkins endoscopes, using 

the cold external light source carried by fibreoptics, and the much improved rod-lens 

system. This system is still used in modem laparoscopy.

Many other improvements were made in the field, the 2/3 or 1/2 inch Charge-Coupled 

Device (CCD) camera introduced in 1969 by Bell Laboratories in the US was one of the 

most important. They are lightweight, low-powered, extremely sensitive image sensors, 

and are approximately 15 times more sensitive to light than standard regular photographic 

film. Video technology also permitted transitions of the laparoscopic images to one or 

more television sets, or even remote video displays using digital video recording 

technology. Clinicians were then able to document their endoscopic findings effectively 

with cameras and video systems.

The first laparoscopic appendicectomy was performed by Kurt Semm in Kiel on the 12,h 

September 1980 (17). His technique greatly influenced the first laparoscopic 

cholecystectomy performed by Erich Miihe in 1985 (18). However, in the Society of 

American Gastrointestinal Surgeons (SAGES) convention in 1990, the French surgeon, 

Phillipe Mouret of Lyon was given credit for performing the first laparoscopic 

cholecystectomy. Miihe’s lack of recognition was partly due to the rejection of the 

German Surgical Society in 1986, and also of his lack of publication in English, In 1999, 

he was finally recognised by SAGES for having performed the first laparoscopic 

cholecystectomy and was invited to present the Storz lecture (18,19). Laparoscopic 

cholecystectomy now remains one of the commonest laparoscopic operations performed 

(20) and has overtaken the open procedure as shown in Figure 2.4. Despite the obvious
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advantages of MIS, the uptake of complex laparoscopic surgery is still confined to super

specialist centres, which is largely due to the technical demand of MIS.

■ Open Chole 

□ Lap Chole

Figure 2.4 Performance of primary open and laparoscopic cholecystectomy at a teaching 
hospital in (he Unilcd States from 1991 to 2000. [adapted from (21)]

2.2.2 Advantages of MIS

The advantages of using a series of small incisions are obvious: increased speed of 

recovery, reduced pain and better cosmetic results. In a recent Cochrane review 

comparing laparoscopic versus open cholecystectomy, it was found that there were no 

significant differences in mortality, intra-operative complications, minor complications, 

and bile duct injuries in 38 randomised trials. However, the laparoscopic group had 

shorter incisional wounds, shorter hospital stay and earlier return to work (22).

Advantages Disadvantages

Smaller incision (less trauma) Reduced depth perception

Faster recovery Poor visuomotor axis

Less pain Reduced tactile feedback

Lower incidence of wound dehiscence Fulcrum effect

Lower incidence of adhesions Reduced degrees of freedom

Better access to some areas, e.g. pelvis Steep learning curve

Better cosmetic results Longer procedure

Lower incidence of incisional herniae Higher equipment costs

Table 2.1 Advantages and disadvantages of MIS. [adapted from (23)]
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In a recent prospective cohort study, 360 patients were followed up after either open or 

laparoscopic hernia repair for 30-36 months. There were no differences in recurrence 

rates, but there were lower rates of major morbidity and post operative inpatient 

admission in the laparoscopic group (24). Table 2.1 summarises advantages and 

disadvantages of MIS:

2.2.3 Technical challenges in MIS

The technical difficulties of MIS are intrinsic to the arrangement of the instruments, the 

insertion of elongated instruments through small incisions, and visualisation of the 

operating screen on a 2D screen removed from the actual operating field. Despite the 

introduction of MIS over 20 years ago, many surgeons are still restricted to relatively 

simple procedures, e.g., laparoscopic cholecystectomy and diagnostic arthroscopy, 

whereas complex procedures such as laparoscopic colectomy and arthroscopic soft tissue 

repair are still reserved for highly specialised surgeons (25).

2.2.3.1 Human factors in MIS

First, the alignment of the visuomotor axis can affect the performance of MIS, as 

demonstrated in Figure 2.1 previously, where the surgical field is transmitted remotely in 

a video screen often placed in a different axis than the instruments (26). The OR1™ (Karl 

Storz, Tuttlingen, Germany) has been developed partly to improve this alignment, where 

the video screens are suspended from the ceiling and can be moved freely inside the 

operating theatre.

Second, the instruments are inserted through small incisions which act as fulcrums. This 

‘fulcrum effect’ is demonstrated in Figure 2.5, showing the movement of the instruments 

are opposite to the movement of the hands of the surgeon. This introduces a further 

change in coordinate system for the surgeons to cope with. In a series of experiments, it 

was found that novices’ performance and learning are facilitated if this “fulcrum” effect is 

abolished, using v-axis inversion of the laparoscopic screen image (27,28).
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Figure 2.5 Illustrating the “fulcrum” effect -  blue arrow represents the direction of movement 
of the instrument handle, red arrow represents the instrument tip movement, yellow circle shows 
the trocar pivoting point.

Third, the lack of 3D vision greatly impairs depth perception (29-31), surgeons often 

have to adopt other subtle visual cues to compensate on the 2D view. Monocular cues, 

such as relative size, interposition, familiar size, texture gradient, linear perspective and 

colour have been described by Nicolaou previously (23). Furthermore, by analysing the 

visual fixations of surgeons during MIS, they found that the ‘invisible’ shadow can be a 

useful cue for depth perception (31). Although earlier reports have shown no difference 

between the performances of laparoscopic surgery using a 2D or 3D camera, these earlier 

devices were more prone to induce ocular discomfort and headache (32). More recent 

reports, using newer technologies including the da Vinci Surgical System (Intuitive 

Surgical, California, USA), showed that 3D cameras can significantly improve the 

performance of laparoscopic novices and experts (33,34).

Fourth, the reduced number of degrees of freedom in the relatively primitive 

instrument designs. In open operations, surgeons use short instruments that are afforded a 

wide range of movement through the flexibility of their hands, wrists, shoulders and hips. 

The hand has about 27 degrees of freedom (35). In contrast, laparoscopic instruments are 

long and straight so that they can fit through trocars and reach remote anatomic structures 

within the abdomen. These trocars confine the instruments to motion within a cone,
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reducing the degrees of freedom to 4. The apex of this cone is fixed in space by the 

trocar.

Other factors such as reduced haptic and tactile feedback not only increase the burden 

of the visual system to detect instrument collisions, but also to assess the texture of the 

tissue. The scaling of the instrument movement is determined both by the length of 

instrument inside the body cavity and the magnification of the laparoscopic camera; as 

more instrument length is inserted, movement of the surgeons’ hands would translate into 

longer path length of the instrument tips. These all contribute to the complexity of MIS, 

and highlight the importance of selection and assessment of trainee MIS surgeons which 

are described in further details.

2.2.4 Assessment in Surgery

Surgical skills assessment has been the highlight of our Department’s research for over a 

decade. The need for assessment is continuously motivated by high profile negligent 

cases, the increased public awareness, and changes in the service and training structures. 

Since the introduction of MIS, experienced surgeons found that they had to relearn 

different skills sets required, which provided further drive into the need for assessment. 

However, the existing assessment methodologies rely on indirect measures of technical 

skills, and motor skills evaluation still remains in the research domain.

2.2.4.1 Changes in Service and Training Structure

William Halstead at Johns Hopkins in 1889 developed what is now known as the 

“Halsteadian” model of training, which was based on the pyramidal German training 

system. In those days, of the 8 residents admitted in the first year, only 1 would have 

some prospect of obtaining full surgical training (36). The model was adapted to produce 

one outstanding individual. The competition for training has not necessarily improved 

since, although several major changes in the United Kingdom have been made in the last 

15 years.

First, Kenneth Caiman in 1993 introduced the concept of the National Training Number 

and the Specialist Registrar grade, in order to “produce a shorter, more structured and 

organised training pathway, so that independent clinical competence as a consultant can 

be achieved much earlier than in the past in many disciplines” (37). The 

recommendations included combining the Registrar and Senior Registrar grades, and
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defining training curricula and minimum requirements for each speciality. Formal 

educational agreements were designed to emphasise structured learning as well as 

apprenticeship (38).

The European Working Time Directive (EWTD) is a directive from the Council of 

Europe to protect the health and safety of workers in the European Union. It lays down 

minimum requirements in relation to working hours, rest periods, annual leave and 

working arrangements for night workers. The Directive was enacted into UK law as the 

Working Time Regulations, which took effect from the 1st October 1998. The timeline for 

implementation proposed a 56 hour maximum working week by August 2007 and 48 

hour by 2009, compared to the often quoted 100+ hour working week by junior doctors 

(39).

Modernising Medical Careers (MMC) was launched in February 2003, with the aim to 

establish a more streamlined, competency based training. The Senior House Officer grade 

needed to be modernised, as there was no limit to time spent in the grade, coupled with 

the lack of educational and career pathways. The new changes introduced aims to 

accelerate the entry into specialty training, which would lead to a Certificate of 

Completion of Training seamlessly (40).

Surgeons who become consultants 15 years ago would have trained for an average of 13 

years and over longer hours, which would have amounted to more than 30,000 hours in 

training. The combined effect of the EWTD and MMC will reduce the number of hours to 

around 15,000 hours, also to be taken into account the decrease in case load due to the 

increased number of trainees (41). With these changes in place, training has to be more 

focused and target driven; but more importantly, progress needs to be assessed and 

competencies need to be achieved in an objective manner.

2.2.4.2 Technical Skills Assessment

It has long been acknowledged that technical skills acquisition is difficult to measure 

objectively. It is important to stress that technical skills form only a part of the complete 

assessment of a surgeon (42). Knowledge, decision-making, communication and 

leadership skills are also important qualities that should be taken into account. For 

centuries, the method of surgical assessment and training is based on the apprenticeship 

model and augmented by an examination by the official certifying body. More recently, 

technology has allowed further investigation into the motor and cognitive behaviour of
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the surgeons, and various methodologies have been developed, albeit most of which still 

remain in the research domain.

K n ow ledge E xam in ation s a n d  D irect O bservations

During the 16th and 17,h Century, the criteria for admission to membership of the 

Incorporation of Barbers and Surgeons (later became the Royal College of Surgeons of 

the City of Edinburgh in 1778) were as follows: six years of training by master surgeons 

whilst giving satisfactory service, payment of a statutory fee, and most importantly, 

passing an examination conducted by the senior members (43). Not much has changed 

since then, except the content and format of the examination have adapted with time, and 

the fees have gone up with inflation.

Up to the time of writing of this chapter, the format for the Membership of the Royal 

College of Surgeons (MRCS) examination is undergoing further changes. However for 

the last decade, the examination consists of 2 multiple choice papers (Applied Basic 

Sciences and Principles of Surgery-in-General), a clinical examination, six viva voce  

examinations (Principles of Surgery, Anatomy, Pathology, Physiology, Critical Care, 

Operative Surgery) and a communication skills test. This is usually accompanied by an 

examination of the procedure logbook, which is self recorded and verified by the 

supervising trainers.

Viva voce  examination and multiple choice questions, like the MRCS examinations and 

the American Board of Surgery In-Training examinations, have not been shown to 

correlate with technical skills level (44). Procedural logs merely represent quantity of 

operations performed but lack content validity. The reliability of direct observations 

depends on the subjectivity of the observer, however this can be made valid by addition 

of a criteria based scoring system (45).

O bjective S tru ctu red  A ssessm en t o f  T echnica l S k ill (O SA T S)

The use of checklist and global performance score has shown promise in the last decade. 

Kopta in the 1970’s demonstrated that using checklist to assess performance of 

orthopaedic residents showed high inter-rater reliability (46). However, it was the 

Objective Structured Assessment of Technical Skill (OSATS) (45) by a Toronto group in 

1997, where a g lo b a l assessm ent score  combined with specific  opera tion  checklists 

gained the widest acceptance in skills research. In this study, the reliability and validity of 

these scoring scales were established in both live and bench model surgical tasks. It was
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also found that the g loba l scoring system  had the highest reliability, which consisted of 7 

categories assessing aspects of operative skill on a five-point Likert scale (47), combined 

with behavioural descriptors anchoring points 1, 3 and 5. A modified version of OSATS 

is used in Chapter 4.

OSATS is generally regarded as the ‘gold standard’ of skills assessment (48). Its strength 

lies in its simplicity, and hence the repeatability amongst different surgical specialities, 

even in different institutions across the world. However, it relies on the judgement of the 

“expert OSATS raters”, so cannot be completely devoid of subjectivity. Each procedure 

also needs to be observed by two such raters, whether the performance is live or recorded, 

still adds to a significant amount of time and labour.

M otion  A n alysis

More automated methods of assessing surgical skills led to the development of motion 

tracking of the surgeons’ hands. The idea developed from the observation that expert 

surgeons often demonstrate higher dexterity skills which relates to the concept of 

‘economy of movement’. The Imperial College Surgical Assessment Device (ICSAD) is 

based on an electromagnetic motion tracking system, using an electromagnetic field 

generator and two sensors that are attached to the dorsum of the surgeons’ hands. Using 

bespoke computer software developed at the Imperial College London, kinematic data is 

recorded and filtered of any fine tremor. The number of hand movements made and path 

length travelled in standardised bench models (48), laparoscopic box trainers (49), and 

live laparoscopic surgery (50) were found to decrease with the experience of the surgeon.

Other dexterity measuring devices, like the Advanced Dundee Endoscopic Psychomotor 

Tester (ADEPT), using a dual gimbal mechanism, equipped with potentiometers, which 

accepts regular laparoscopic instruments for surgical assessment, has also shown to be 

valid and reliable (51).

V irtual R eality

Virtual reality computer simulators have been shown to be effective both as assessment 

and training tools. The Minimally Invasive Surgical Trainer -  Virtual Reality (Mentice, 

Gothenburg, Sweden), a low fidelity laparoscopic simulator, has been shown to be valid 

in assessment in MIS, and studies show that the skills acquired from the simulator 

transfers to the operating theatre (52-54). The higher fidelity Procedíais Virtual 

Arthroscopy simulator (Mentice, Gothenburg, Sweden) has been design to replicate the
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critical steps of shoulder arthroscopy with modules testing knowledge of anatomy, 

navigational skills in the shoulder joint, manipulation of virtual objects and some 

therapeutic manoeuvres. In some of the modules, the scoring systems (based on time 

taken and instrument path length) have been shown to correlate with the experience in 

arthroscopic surgery (55,56).

However, all these skills modalities are useful to evaluate a surgeon’s technical skills at 

the time of assessment, they lack the measure of intrinsic components which may predict 

superior performance in the future, which would be paramount for selecting the future 

laparoscopic surgeons.

2.2.5 Trainee Selection

The selection of trainee has been reliant on undergraduate and postgraduate examination 

results, academic excellence, interview skills and references from supervising 

consultants; this, however, can be subjective and lack predictive validity in further 

development of surgical skills. The introduction of the MMC and the accompanying 

selection process called Medical Training Application Service (MTAS) in 2007, has 

renewed further concerns about the validity of the criteria used for admission into 

specialist training.

Previous to 2007, candidates are short-listed for interviews based on some essential and 

desirable criteria, and ranked accordingly. In a 2002 -  2003 study of the candidates for a 

London regional interview for higher training in orthopaedics, the chances of being 

selected for interviews are significantly influenced by the self recorded operative 

experience, the specific regions and hospitals the candidates worked in, and the number 

of years in service since graduation. Furthermore, academic records such as publications, 

presentations and higher degrees did not influence the outcome (57).

In an American study performed in the same time, the top 10 selection criteria ranked by 

Programme Directors in Orthopaedics included: having worked at the director’s 

institution, the United States Medical Licensing Examination (USMLE) Part 1 score, 

letter of recommendation by an orthopaedic surgeon, and membership in an honour 

society called the Alpha Omega Alpha. In terms of the letter of recommendation, the 

most important aspect is when the letter is written by someone known to the Programme 

Director (58).
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These criteria are clearly not validated, and lack subjectivity. Indeed, the USMLE Part 1 

score is shown not to correlate with the Orthopaedic In-Training Examination score, 

which is a yearly residency examination (59). Furthermore, in a recent prospective study 

with a 20 year follow up, A-level grades at high school have long term predictive validity 

for undergraduate and postgraduate careers in medicine, measuring time to achieve 

postgraduate membership qualifications and drop out rate (60). However, this is not 

specific to surgical specialities, and it would be hard to justify its use for surgical trainee 

selection.

The introduction of the MTAS selection process sparked many controversies and was the 

subject of the first junior doctors demonstration in recent years. Professor Sir John Tooke 

was commissioned to perform an inquiry into MTAS, and concluded that “the process 

used for selection into specialty training whilst promoted as theoretically sound was 

lacking in face validity, was rushed in implementation and was technically deficient 

(61).”

The General Medical Council (GMC) released a document called Tomorrow’s doctors, 

emphasising that standards should be set for knowledge, skills, attitude and behaviour for 

doctors (62). Professor Tooke also highlighted the importance of a more comprehensive 

assessment of knowledge, skills and behaviour, as a basis for critical selection process. At 

present, knowledge is assessed by examinations and interview stations; behaviour is 

generally judged by the candidates’ presentations at the interview, and also the feedback 

from their trainers and peers. Skills, on the other hand, are only indirectly measured using 

operative log and trainer assessment.

Recently, the assessment of technical skills has been introduced at the surgical selection 

process. Although at a survey of surgical training programmes in London, testing of 

visuospatial and technical abilities was piloted at selection in only one surgical 

department. Practical skills were tested in 3 out of 9 specialities at selection, however, 

only one speciality continued this assessment during higher training (63). In terms of 

predictive validity of these visuospatial abilities, Madan e t a l studied undergraduate 

medical students concerning the use of non-surgical dexterity skills to predict MIS skills. 

The survey inquired about typing, computer gaming, sewing, musical instruments, 

chopsticks, and operating tools skills. They were then tested in their performances of 

surgical tasks. It was found that only chopsticks skills were associated with better
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performance in one of the surgical tasks, however the authors concluded that it was 

difficult to predict baseline laparoscopic skills (5).

2.3 Yisuomotor learning

The major flaw in the assessment tools developed thus far is the complete separation of 

motor and cognitive components of motor skills evaluation. MIS is not just simply a 

motor task, it involves heavy cognitive influences that rely on visual information 

processing and subsequent skilled, coordinated movement. However, traditional 

disciplines in studying motor learning concentrate on characteristics of movement 

parameters rather than in-depth understanding of visual processing skills. In order to 

understand the cognitive aspect of technical skills development, this section attempts to 

summarise the body of literature on visual and motor learning separately.

2.3.1 Visual learning

In a visuomotor task, vision is mainly used for two functions: first, to search for the target 

for the motor system to action upon; second, to provide sensory feedback for any error in 

the action produced.

2.3.1.1 Visual search

During a visual search, a saccade moves the gaze of the eyes to look at the current area of 

interest. The time order of the fixation points represents the actual visual search that takes 

place, further explanations of eye movements are listed in Chapter 3.

The Feature Integration Theory was introduced by Triesman and Gelade (64), where a 

visual search model consisted of two different stages. In p a ra lle l visual search, the object 

is considered to be significantly different to the distractors, and all objects can be 

processed in parallel to identify the target. The parallel description implies that all of the 

objects are processed concurrently, and the time taken is largely independent of the set 

size. Because of this, it produces a flat Reaction Time (RT)/set size slope that is 

indicative of parallel searches. In serial visual search, the target object is not significantly 

different from the distractors. Each object in the search space has to be attended to 

separately and a decision made as to whether it is the target or not before moving onto the

42



next object. A steeper RT/set size slope is indicative of serial searches. This is illustrated 

in Figure 2.6 (65).
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Figure 2.6 (a), (b) showing an example of a parallel and serial search respectively and their
corresponding RT/set size slope (c), (d). [adapted from (65)]

Wolfe et al later proposed the Guided Search Model (66), which aimed to explain the 

continuum, rather than the strict serial/parallel dichotomy, that was observed. It envisages 

that there exists an early parallel stage, which closely collaborates with later serial 

mechanisms. The model suggests that an activation map is initially pre-attentively created 

to direct attention to the subsequent locations of interest in the visual field either through 

bottom-up (stimulus-driven) or top-down (user-driven processes). In the Guided Search 

Model, a ranking of stimuli is calculated by combining the information derived from the 

bottom-up and top-down processes. Thus, attention is thought to be directed by the visual 

system to highly prioritised regions.

Expert search behaviour

A more systematic framework has been proposed by Nodine and Kundel, modelling 

skilled search behaviour in image understanding. The global-focal model suggested four 

stages of search that include (i) global impression which is defined as the initial search 

using mainly peripheral vision guidance and lasts for less than 200ms; (ii) discovery 

search which utilises the information from step one, and involves a detailed inspection of
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the target; (iii) reflective search  which involves gathering evidence from cross 

referencing other potential targets; and (iv) p o st search recall which describes the period 

when the image is no longer available, and is recalled from memory (67). Appendix A 

studies the effect of training and specialisation on the development of the global focal 

search model, the study includes subjects (including surgeons and radiologists) at 

different experience level, and provides mathematical proof of this model.

There is evidence that it is the global impression phase that improves in experts. In a 

classic study, Chase and Simon found that after viewing chess position for only a few 

seconds, chess masters were able to reproduce these positions much more accurately than 

less-skilled players (68). However, when random board configurations were used, there 

was little difference in performance between experts and novices. They hypothesised 

advantage lies in the early perceptual organisation and internal representation of the chess 

position (68).

Using a combination of the gaze-contingent window paradigm and the change blindness 

flicker paradigm, Reingold e t a l further extended the theory that chess masters had 

dramatically larger visual spans whilst processing structured, but not random, chess 

positions. In addition, in a check-detection task, a minimised 3x3 chessboard containing a 

King and potentially checking pieces was displayed (69). In this task, experts made fewer 

fixations and had a greater proportion of fixations between individual pieces, rather than 

on pieces, as shown in Figure 2.7.

Their results provide strong evidence for a perceptual encoding advantage for experts 

attributable to chess experience, rather than to a general perceptual or memory superiority 

(69). This has indeed been found with other visual context effects (e.g. word, letter, 

object, face and scene superiority effects), a coherent and familiar context enhances the 

perception of constituent elements (70).
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Novice Intermediate Expert

•  Initial Gaze Position —  Scan Path Fixations

Figure 2.7 Showing a check detection task with the fixation and saccades superimposed, 
comparing novice, intermediate and expert in chess, [adapted from (69)]

This kind of perceptual learning theory has been extensively documented before. When 

first encountering a complex perceptual task, humans are typically uncertain about which 

are the relevant cues that will allow them to best perform the visual task. With practice, 

they learn to attend to visual cues that contain information and ignore those cues that are 

not informative. Eckstein et al modelled this learning using an optimal Bayesian learner, 

where the model learns by using the image data in the present trial to modify the weights 

tiiven to a nonlinear transformation of the responses of each sensory unit in future trials. 

This compared similarly with actual human performance, which implied that human 

visual learning relies on fine tuning attention to specific visual features through previous 

experiences (71).

2.3.1.2 Vision used as sensory feedback

Sensory prediction errors occur when an initial motor command is generated but the 

predicted sensory consequences do not match the observed values. When subjects reach 

to a stationary target, it has been reported that gaze is anchored on the target and may 

anticipate the hand motion to the target. Evidence for predictive, saccadic eye movements 

was found in a task in which subjects had to learn coordinated hand movements to control 

a cursor motion on the screen. These authors found that, initially, subjects tracked the 

cursor with their eyes, but as they learned the task, eye movements changed to a 

predictive mode (72). This implies that vision is used initially as sensory feedback to 

correct motor errors, but as these errors decrease through learning, this feedback 

mechanism is less relied on.
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By comparing predicted sensory events with the actual sensory events, the visual system 

can monitor task progression and adjust subsequent motor commands if errors are 

detected. This sensory feedback is not visual alone, but includes tactile, proprioceptive 

and audio feedback. However, there is good evidence that visual feedback is most 

important in the initial learning period (73).

2.3.2 Motor learning

Motor learning is a multifaceted set of internal processes through which there is a 

relatively permanent change in human performance through practice, provided the change 

cannot be attributed to a human’s maturation, temporary state, or instinct. Though motor 

learning is usually implied by improvement in performances, it is not directly observable 

(74).

2.3.2.1 Fitts and Posner model

Paul Fitts and Michael Posner presented the classic learning stages model in 1967 (75). 

The first stage, the cognitive stage of learning, the learner focuses on cognitively oriented 

problems. Performance is characterised by a large number of errors, and the errors are not 

consistent. There is generally a lack of awareness of the ways to improve performance.

The second stage of learning is called the associative stage of learning. There is generally 

a variable amount of practice for transition into this stage. The learner associates specific 

environmental cues with the movements required to achieve the goal of the skill. They 

make fewer and less gross errors since the fundamentals or mechanics of the skill have 

been acquired, although they need to be improved. This is also known as the refining 

stage, in which the individual focuses on performing the skill successfully and being 

more consistent from one attempt to the next.

The last stage of learning is the autonomous stage of learning. Here the skill has become 

almost automatic, or habitual. People in this stage do not consciously think about the 

specific movement characteristics of what they are doing whilst performing the skill. 

They can often perform another task at the same time. Performance variability during this 

stage is very small, additionally these skilled performers can detect their own errors and 

make the proper adjustments to correct them.

46



2.3.2.2 Gentile’s two-stage model

This model was proposed by Gentile (76), in contrast to Fitts and Posner, motor skill 

learning is progressing through at least two stages and they are presented from the 

perspective of the goal of the learner, as illustrated in Figure 2.8.
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Figure 2.8 Gentile's two-stage model showing basic movement coordination, regulatory and 
non-regulatory conditions used in the model.

In the initial stage, the learner has two important goals to achieve. One is to acquire basic 

movement coordination to achieve the goal, these movements must also match the 

regulatory conditions of the environment context in which the skill is performed. 

Regulatory conditions refer to those characteristics that determine the movement 

characteristics to achieve an action goal, for example, the size and shape of the cup are 

important as one reaches and grasps it.

The second goal of the learner is to discriminate between regulatory and non regulatory 

conditions in the environmental context. Non regulatory conditions are those 

characteristics of the performance environment that do not influence the movement 

characteristics required to achieve an action goal, such as the colour of the cup.

In the later stages of learning, the learner needs to acquire three general characteristics. 

First, the person must be adaptable to perform in different situations. Second, the person 

must increase their consistency in achieving the goal of the skill. Third, the person must 

learn to perform the skill with an economy of effort.
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This is characterised by the concept of Fixation and diversification, which depends on the 

type of skills learnt. Closed skills require fixation of the basic movement coordination 

pattern acquired during the first stage of learning. This means that the learner must refine 

this pattern to achieve consistency. On the other hand, open skills require diversification 

of the basic movement pattern. An important requirement is to adapt quickly to the 

continuously changing spatial and temporal regulatory conditions of the skill.

2.4 Hand-eye coordination

“Coordination is an act o f managing interdependencies between activities” (Malone and 

Crowston 1991).

Hand-eye coordination is the mental transformation of the effector’s coordinates, as a 

feedback to the visual paradigm, which in turn guides movement generations. This 

fundamental skill is dependent on the integration of multiple sensory (visual, tactile and 

proprioceptive) and motor (hands, shoulders and body) systems, and the complexity of 

this combinatory problem lies in the numerous possible interactions between them. 

Although it is crucial in everyday tasks, individuals such as professional sportsmen are 

renowned to excel in hand-eye coordination, it is the precision of their actions when 

reacting to a visual or tactile stimulus that make them successful (77-79).

In order to reach a visually perceived target, the brain must transform visual information 

into coordinates appropriate for movement (80). Therefore, in order to study hand-eye 

coordination, the relationship between these coordinate systems should be discussed in 

further details.

2.4.1 Coordination systems

Coordinate systems are different ways of representing a point in the 3D space. The most 

commonly used system is the Cartesian coordinate system, named after René Descartes 

(1596-1650), where the position of a point is represented by three orthogonal coordinates. 

Another way of representing a position is the Polar coordinate system (or the spherical 

coordinate system in 3D), where the coordinates are expressed as the distance from the 

origin and the angles from the baseline.
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2.4.2 Basic model of hand-eye coordination

It is believed that the coordinates of a target is perceived visually as direction and 

distance front the eye, hence in the polar system where the hand would be {0hund,rhimJ)

and the target would be ( @,:lr„e, > r,urt;e, ) as shown in Figure 2.9. There is substantial

evidence that this eye-centred representation of the world is used directly for motor 

control, hence influencing the trajectory and error of the final hand movements (81-83).

Figure 2.9 Illustrating the coordinate transformation from an eye-centred reference in Polar 
Coordinates to an Internal Representation in Cartesian Coordinates H -  hand, T -  target.

However, others have suggested that the eye-centred representation is transformed into a 

master map of coordinates, the Internal Representation (IR) (84), which is believed to be 

the mental estimation of the distance between two targets, probably in the Cartesian 

‘world* coordinate (.r, y) (85). For simplicity, it is assumed that the origin of the IR and 

the visual system are the same.
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Figure 2.10 Illustrating the transformation of the Internal Representation to hand-centred Polar 
Coordinates.

In order to move the hand towards the target, movements are generated in a hand-centred 

(or shoulder-centred) polar coordinate system (83), hence a further transformation from 

the 1R (Cartesian coordinate). However, as the origin of this rotation is at the hand, not 

the head (the origin of the visual world), a translation of the origin is needed to be 

considered, as illustrated in Figure 2.10.

This is a much simplified model of the transformation from a head origin visual system to 

an internal representation, then back to a hand (or shoulder) centred motor coordinate, as 

summarised in Figure 2.11. The assumptions are that: first, the origin of the visual system 

is at one point, however the eyes’ movement in relation to Listing’s plane and the 

binocular systems introduce further complications; second, there is no movement of the 

head or the body introduced in this model; third, no error is introduced in the reaching 

task; forth, joint position sense has not been accounted for, although recent report showed 

that this is of limited influence (4). The term eye-centred representation is also 

misleading. In binocular vision, a virtual cyclopean eye located midway between the left 

and right eyes is often used as the reference point (86).
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Sensorimotor T ransformation

Figure 2.11 Simplified summary of coordinate transformation from visual to motor coordinates.

2.4.3 Listing’s law

The eyes rotate with three degrees of freedom, this further complicates any coordinate 

transformation as described above. This means that the eyes can rotate about the 

following axes: 1) a vertical axis to generate horizontal eye movements (abduction and 

adduction), 2) a horizontal axis to generate vertical eye movements (elevation and 

depression), and 3) the line of sight to generate torsional eye movements (excyclotorsion 

and incyclotorsion). Figure 2.12 illustrates these movements. In theory, the eye could 

assume an infinite number of torsional positions for any gaze direction (87).
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Figure 2.12 (A) A schematic of an eye directed straight ahead at the reader, with the thick black 
vertical (solid) line represents its superior pole, which is at 12 o'clock. There are many different 
torsional positions that the eye can adopt when it looks straight ahead: (B) at I o'clock, (C) 2 
o'clock. (D) 3 o'clock, and so on.

Listing's law states that, when the head is fixed, there is an eye position called the primary 

position, such that the eye assumes only those orientations that can be reached from 

primary position by a single rotation about an axis in a plane called Listing's plane. This 

plane is orthogonal to the line of sight when the eye is in primary position. In other 

words, one can visualize any given eye movement as caused by rotation about an axis, 

and the collection of these axes constitutes Listing’s plane, as shown in green in Figure 

2.13 (87,88).
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Figure 2.13 Illustrates Listing’s Law, note the axes (the bars protruding from the eyes) used to 
rotate from centre to various eccentric positions are confined to a common plane (green), [adapted 
from (87)]

2.4.4 Internal Representation

The Internal Representation (IR) of the world coordinate greatly influences the outcome 

of the motor program generated, there is still ongoing debate as to where the origin and in 

which coordinate the IR is based on. Many authors propose that specific sensorimotor 

maps are used for internal representations, and these maps are probably unique to the 

tasks performed (89,90). Some studies suggested that this is based on the context of the 

movement required and others provided evidence that some movements no IR is needed, 

where there is a direct transformation from the eye-centred coordinates to hand centred 

coordinates (91). As evidence emerges that the IR develops from birth, and continues to 

adapt when the required motor functions and the environment changes, even in adults and 

in extreme conditions (89).

It is hypothesised that that during skilled manual movement in MIS, the point of reference 

(hence, the IR) adapts to produce the most efficient motor control. Measurement of the
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trajectories of the effectors, e.g., the hands or instruments, can provide an insight into the 

final coordinate transformation utilised for this specific visuomotor tasks.

2.4.4.1 Which coordinates: eye or hand?

There are still some disputes between which reference frames are used for sensorimotor 

transformation, as illustrated in Figure 2.14. In order to point to a remembered visual 

target, transformation of binocular visual information into appropriate motor output is 

necessary. However, there is conflicting evidence to demonstrate whether the reference 

frame used for the motor output is centred on the eye or the hand. Furthermore, studies 

have suggested that this motor output could be coded in the Cartesian or the Polar 

coordinate system. As the final stage of movement generation is muscular contraction, 

and these muscles have their stable attachment points either around the elbow or the 

shoulder, perhaps a shoulder-coordinate system is utilised instead.

Development
Adaptability

Figure 2.14 Illustrates the options of coordinate transformation.

Eye centred coordinates

An eye-centred target must be linked to initial hand position before a motor program can 

be formulated that brings the hand towards the target. In a comprehensive set of 

experiments, where subjects were required to perform pointing movements to 

remembered 3D targets after a memory delay using different distances and directions of 

the target, starting positions, head rotation and the effector hand. McIntyre et al
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demonstrated that the orientation of pointing errors indicated an eye-centred Cartesian 

reference was used by the subjects (83).

In a single cell recording experiment, measuring Posterior Parietal Cortex (PPC) neuronal 

activities in monkeys performing a reaching task, where the targets locations are 

manipulated in eye and limb reference frames. They found that in a specific area in the 

PPC, the parietal reach region, neuronal activation was more consistently correlated with 

an eye-centred rather than a limb-centred reference frame (81).

Hand centred coordinates
Analysis of movement errors in reaching tasks has also been examined by others where 

the initial hand position is unknown, in 2D (92,93) and 3D (94,95) reaching tasks. They 

found that the estimation of hand position without vision is consistently biased, and the 

resulting pointing errors reflect significantly on the extent this erroneous estimation of the 

initial hand position. Thus concluding that aimed hand movements are planned as 

direction and distance in reference to the initial hand position, hence the hand-centred 

Polar reference was used by the subjects.

Context based coordinates

Although there seems to be conflicting reports on which frame of reference is used for 

motor planning, evidence seems to support a gradual transformation from an eye-centred 

to body-centred and hand-centred coordinates. However, the frame of reference 

ultimately used depends on the availability of the information of the position of the hand 

and/or the target, whether the movements are constrained (see Figure 2.16), and whether 

cognitive influence is involved.

Carrozzo e t a l , in a virtual reality 3D pointing task, found that the availability of visual 

feedback of the hand affects the frame of reference used (96). By analysing the end-point 

of each trajectory, the spatial distribution of the variance is calculated and modelled into 

ellipsoid distributions, where their orientation and shape were determined by eigenvector 

and eigenvalues of the matrix respectively. As illustrated in Figure 2.15, the Seen Hand 

task, the axes of maximum variability and of maximum contraction of the ellipsoid 

distribution converge toward the mid-point between the eyes (the virtual cyclopean eye). 

This shows that with visual information of the hand available, an eye-centred reference 

was used. In the Unseen Hand task, the axes of maximum variability rotate anti-clockwise
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around the body and the effector arm, hence a body-centred or arm-centred egocentric 

representation was used.

Seen Hand Unseen Hand

Figure 2.15 Average variable errors in the Seen (left) and Unseen Hand (right) conditions, 
viewed from above (top) and from the left side (bottom). Ellipsoids represent the 95%  tolerance 
region of all responses. They are centred on the average final finger position. The dark bars 
emanating from each ellipsoid indicate the axes of maximum variability. Note that these axes 
converge toward the eyes (in Seen Hand), but rotate anti-clockwise around the body and the 
effector arm in the Unseen hand. [Adapted from (96)]

Desmurget el al demonstrated other factors that influence the control strategies used for 

goal-directed movement. They first measured pointing movements in two conditions: in 

the “compliant” condition, the subjects held a hand-held cursor that they displaced 

towards the target; in the “unrestrained” condition, they used their index fingertip freely 

towards the target. It was found that the spatiotemporal characteristics of the compliant 

and unconstrained movements were fundamentally different, where the former produced
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straight spatial path, and the latter trajectories were curved. This demonstrated the control 

strategies differ according to the task.

Interestingly, when the subjects were instructed to move along a straight-line path, this 

modified the characteristics of the “unrestrained movement” as shown in Figure 2.16 

(97). Even in the “unrestrained" movement, near straight trajectories were produced. It 

seems that both “external constraint factor” and “cognitive factor” can modify the 

outcome of the coordinate transformation.

UNRESTRAINED COMPLIANT

Figure 2.16 Movement trajectories with unrestrained and compliant movements, and when asked 
to follow a straight line path (2l,d row). Notice the change in trajectories when the movement was 
unrestrained, but following a straight path. UF -  unrestrained free path. CF -  compliant free path. 
US -  unrestrained straight line. CS -  compliant straight line, [reproduced from (97)]

2.4.4.2 Direct transformation front eye coordinates to hand coordinates

Some authors have suggested that coordination transformation via the IR is redundant, 

and that perhaps a more direct approach would be more efficient. Buneo et al, in a unit 

recording task in monkeys, suggested that this comparison is done at an earlier stage in 

eye-centred coordinates (91). They found that in area 5 in the PPC, remembered target 

locations are coded in both eye and hand coordinates. This suggests that the PPC 

transforms target locations directly between these two reference frames by-passing the
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body centred reference. Data obtained in an adjacent area indicated that this 

transformation may be achieved by computation of a hand “motor error” vector in gaze 

coordinates, as illustrated in Figure 2.17.

Eye centred 
Hand location

Eye centred 
Target location ^ > o ^ >

Hand centred 
Target location

Figure 2.17 Visuomotor transformation schemes. An example of reaching for a cup while 
fixating on a newspaper. The position of the cup is represented in the brain in terms of its location 
on the peripheral retina (T). To reach for the cup, its position with respect to the hand must be 
known (M). This information could be acquired by directly subtracting hand position (H) from 
target position (T) in eye coordinates. [Adapted from (91)]

This has important implications, as eye-centred representation of hand error could be 

directly used as motor commands for hand motion without requiring further comparison 

with eye and head positions. This gives rise to a direct transformation for reaching.

2.4.4.3 Internal Representation: allocentric or egocentric?

In an egocentric frame of reference, locations are represented with respect to the 

particular perspectives of a perceiver, whereas an allocentric reference frame locates 

points within a framework external to the holder of the representation and independent to 

their positions (98).
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Egocentric frame of reference is adequate for movement control, provided the eyes (or 

the head) stay still. However, as soon as the eyes shift in gaze, a disruption is introduced 

in the spatial relationship between the sensory apparatus and the external world. To 

overcome this, representations of the external world must be stored either independent to 

the eye movement or are continuously updated to compensate for eye movement. It is 

thought that the hand-eye coordination system constructs both egocentric and allocentric 

representations of visual space, depending on various factors including the available 

sensory information, task constraints, visual background, memory interval, and the 

cognitive context (86).

In the 3D virtual reality pointing task described earlier by Carrozzo et al, the target was 

presented in the complete absence of allocentric visual cues as to its position in space. 

The subjects were informed prior to the experiment that all targets would fall on a 

“virtual” straight line, although this was never explicitly shown to them. The pattern of 

their movement errors revealed both egocentric and allocentric components of this 

“virtual” object, consistent with the hypothesis that target information can be defined 

concurrently in both egocentric and allocentric frames of reference, resulting in two 

independent, coexisting representations (96,99).

Interestingly, through studies on generating allocentric mental maps by blind and sighted 

subjects, Eardley et al found that subjects who were born totally blinded had no 

difference between their performances with sighted subjects (100), implying that vision is 

not necessary in generating allocentric spatial representation.

2.4.4.4 Development of sensorimotor maps in children

Sensorimotor maps are not in bom, but are slowly learnt and refined from birth. Prior 

developmental studies have shown an important developmental milestone between 6 and 

8 years of age (101,102), by measuring accuracy of movement, reaction and movement 

time.

In a study where four, six and eight-year-old children performed line drawing tasks from 

a common centred position (“centre out task”), under normal (pre and post-exposure), and 

rotated (exposure) visual feedback conditions. During the tasks, direct vision of the hand 

was occluded, and indirect feedback of the pen position was provided by a computer 

screen with a 4 5 °  clockw ise  ro ta tion . The movement parameters (time, accuracy, 

smoothness) improved with increasing age. But on introduction of screen cursor rotation,
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a counter clockwise “spiral-like” pattern emerged in all groups (columns 2 and 3 in 

Figure 2.18).

Pre-exposure Earty-exposure Late-exposure Post-exposure

Figure 2.18 Movement trajectories during pre-, early-, late-, and post-exposure to the 45° screen 
rotation, as a function of age. [reproduced from (101)]

In the post-exposure period, only the older children appeared to show consistent “spiral

like” patterns that mirrored those seen during exposure (column 4 in Figure 2.18). The 

absence of after-effects observed in the younger age group (4 year olds) suggest that these 

children might have less developed (i.e. more broad) internal visuomotor representations 

for hand movements, and that their IR’s are sharpened (i.e. tuned) with visuomotor 

experience (101). The older groups seemed to be able to learn new transformations in 

response to the rotated visuomotor mappings.

2.4.4.S Adaptability of sensorimotor maps in adults

The tuning and acquisition of new visuomotor mappings are also evident in adults. A 

study examined the directional biases in reaching movements on the initial position (left, 

middle or right) of the unseen hand, again using a “centre out task” (92). It was found that 

when the initial hand positions were to the right of midline, movements were 

systematically biased clockwise. Biases were counter clockwise for starting points to the
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left. These biases were temporarily eliminated with vision of the hand before the 

movement or the cursor during the movement. This indicates that visual information 

about hand location relative to the body is necessary for accurate specification of 

movement direction.

In the second stage of the experiment, the subjects were trained to reach accurately from 

either the right or the left starting positions. After training, movements showed a 

reduction of bias reflecting an adaptive change in feed-forward commands generating the 

movements. Interestingly, biases were still found, but now the centres of the new biases 

were shifted to the trained position (92).

2.5 Measuring Hand-eye coordination

Normal hand-eye coordination involves the synergistic function of several sensorimotor 

systems including the visual system, vestibular system, proprioception, and the eye, head 

and arm control systems, plus aspects of cognition such as attention and memory. Even if 

the measure of hand-eye coordination is the understanding of the sum of all these system, 

the task would appear rather daunting. Hand-eye coordination is in fact even more than 

these, it evokes combinatorial problems that do not arise when individual systems are 

studied in isolation. Ultimately, the aim of the study of hand-eye coordination is 

straightforward: the use of the visual system to guide movements of the hand. This 

fundamental fact is the best tool in understanding the function of the whole system (86).

2.5.1 Eye movement measurement only

Land studied eye movements in everyday tasks, and found that in general the eyes search 

ahead, gathering information for the effectors to carry out tasks (103). However, in 

skilled motor tasks, eye movements are sometimes different from the actions that are 

generated, these are usually to fulfil specific cognitive needs. For example, when driving 

a car round a comer, the gaze lands on the inside lane edge (tangent point) of the next 

bend, as its location relative to the driver provides direct information about road 

curvature, and hence how much to turn the wheel (104). Comparing professional and 

amateur cricket batsman, expert eye movement pattern seemed to have faster and more 

accurate predictions of where the ball lands and hence determining the timing and arc of 

the swing of the cricket bat (77).
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2.5.2 Spatiotemporal relationship between hand and eye

It is still a fundamental question, whether visual information is used predictively or 

reactively. If the eye movements predict the hand movement, vision must be used as a 

feed forward system, and vice versa.

2.5.2.1 Feed forward or feedback

In robotic controlled systems, feedback systems significantly reduce the complexity of 

visuospatial transformation, the effector essentially driving to the point where the visual 

error is reduced to zero (86,105). However, this is only possible when the movements are 

relatively slow, and robotic sensory feedback is limited by the speed of electrical flow 

and computer processing time.

Miall and Reckess examined the role of the eye movement as a feed forward system 

(106). A forward model is a representation of the object being controlled, and is used to 

predict the outcome of actions, a prediction of the future state of the effector (e.g. hand) 

after a motor command that has been issued. As temporal delays in the sensory and motor 

pathways suggest that for many human movements, coordination must depend on a 

predictive state estimate, rather than on feedback signals. They further implied that 

signals from the manual control system appear to be sent to the ocular control system, to 

provide predictive information about the required hand movement, and this may be 

coordinated in the cerebellum when observed in patients with cerebellar disease.

In a series of cursor tracking experiments, Miall and Reckess showed that the 

performance is best when the hand followed the same trajectory as the eyes, but with a 

latency of about 75-100ms. If the eyes lead by a greater time offset, manual tracking 

performance is degraded, presumably because the hand then moves too early, compared 

to its own target. If the eyes lead by a lesser amount, or lag behind the hand, performance 

is again degraded; presumably because the predictive information is not available early 

enough to be used by the manual tracking system. These experiments, however, assumed 

that the eyes follow the visual cue provided, and eye tracking data was not confirmed in 

all experimental conditions (106).

This is not to say that sensory feedback has no role in hand-eye coordination. 

Ghaharamani e t a l examined local remapping of coordination transformation (80), when 

visual feedback of finger position was limited to one or two locations, at which
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discrepancies were introduced between the actual and visually perceived finger position. 

They found that these local remapping changed the pointing behaviour, and these changes 

are maximal near areas where the discrepancies were introduced.

2.5.2.2 Measuring spatiotcmporal relationship

In order to measure this combinatorial behavioural pattern of hand-eye coordination 

directly, the relationship between the position of the hand and the eye in the observation 

or actual performance of a task is studied.

Numerous studies have implied that in visual guided actions, task specific proactive eye 

movement (feed forward system) are crucial for planning and control (107.108). 

However, the eye movements become reactive, when the movements of the objects are 

not predictable (109). In a study with a block stacking task, when the subjects are 

performing the task, the coordination between their gaze and the hand is predictive, 

rather than reactive. It was found that on average, gaze arrived 150ms earlier than the 

index finger. An interesting observation arose when the subjects observed the block 

stacking task being performed by an actor, where no part of whom could be seen by the 

subjects. The actions of the actor became unpredictable, and the gaze exhibited a very 

similar spatial pattern, but eye movements were markedly delayed relative to the index 

finger as shown in Figure 2.19 (110).

A ction  Task O bserved  Task

Figure 2.19 Right: gaze behaviour in block observation task. Left: gaze behaviour in action 
task. Median horizontal (.v) positions of gaze (blue) and the index finger (black) as a function of 
time. Red traces represent the raw saccadic data on the x  axis. Median vertical (y) positions of the 
index finger are shown in the bottom subplots in black, [reproduced from (110)]
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2.5.2.3 Learning a new visuomotor task

Sailer et al further extended this framework in learning of novel visuomotor task (72). 

They used a novel apparatus to control the position of a cursor on the screen, in order to 

hit a series of consecutively appearing target boxes. This apparatus is a freely held box 

with a handle at each end. and the subjects were required to apply opposite rotational 

torque to the two handles to move the cursor up and down, whilst compressing and 

stretching forces moved the cursor horizontally. Making oblique cursor movements with 

the tool was very difficult, and required a combination of longitudinal forces and torques. 

This is illustrated in Figure 2.20.

Figure 2.20 Illustrating the apparatus used by the subject to control a cursor on the screen. 
Compressing and stretching forces (green and yellow arrows) control horizontal cursor 
movements, and torques applied around the longitudinal axis of the apparatus (red and blue 
arrows) control vertical movements, [adapted from (72)]

The results showed that the subjects learnt this new task in about 20 minutes. This 

learning process seemed to occur in stages that could be distinguished by changes in 

performance (target-hit rate) as well as by gaze behaviour and hand-eye coordination. The 

three distinct stages: an exploratory stage in which hit rate remained low; a skilled 

acquisition stage in which the rate increased rapidly; and a skill refinement stage in 

which the hit rate increased more slowly. These three phases have distinct patterns of 

both cursor control and gaze movement.

Exploratory stage

During the exploratory phase, most cursor and gaze movements were either horizontal or 

vertical, reflecting the difficulties in making oblique movements. Gaze generally
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followed the cursor, with occasional glances to the target. The saccades sizes were 

generally small 3-4°.

Skill acquisition stage
In the skill acquisition phase, the subjects learnt to move the cursor obliquely. The gaze 

continued to lag behind the cursor at the beginning, although this changed to a predictive 

behaviour, leading the cursor by up to 300ms. Saccades sizes were larger (4° to 12°), and 

more were directed towards the target. This indicates that subjects started to program 

spatially congruent eye and hand motor commands.

Skill refinement stage
The final skill refinement stage, gaze went directly to the next target, with either a single 

saccade, or a large and one small saccade.

It is hypothesised that during the exploratory stage, the learner attempts to establish basic 

rules for visuospatial transformation. As these rules are established in the acquisition 

stage, a gradual transition from a monitoring to an anticipatory role for the eyes is 

observed, when vision acquired a feed forward rather than a feedback role.

2.5.2.4 Using spatiotemporal relationship to examine specific motor tasks

Similar hand-eye behaviour has been observed in a study comparing tracing and drawing 

tasks. During tracing, the pen tip and eyes were tightly coupled, with participants making 

a series of small saccades just in front of the moving pen interspersed with periods of 

smooth pursuit. However, during drawing, saccades were fewer and larger and pursuit 

was less frequent (111).

Tracing depends on external cues such as visual feedback from the eye which is used to 

monitor the pen tip position in relation to the traced line. Drawing employs internal cues 

such as memory to a greater extent, guiding the hand direction rather than closely 

monitoring and comparing its progress.

2.6 Implications for Minimally Invasive Surgery

The complexities of hand-eye coordination were highlighted above, and have been the 

subject of decades of research. MIS introduces changes in both the sensory input and
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motor output aspects of hand-eye coordination. The operating field is transformed 

through the endoscopic camera into a 2D screen, with intrinsic and extrinsic 

characteristics of the camera lens introduced into the equation. The hands of the surgeons 

act indirectly through the endoscopic instruments, the instrument tip movements are 

subjected to changes in angular rotation through the incisions. In MIS, the coordination is 

between the surgeons’ eyes and the instrument tips projected onto the endoscopic monitor 

system.

2.6.1 Endoscopic camera system

3D live images of the internal organs are transmitted to a 2D monitor remote from both 

the operating site and the surgeon. This 3D to 2D transformation introduces 3 broad 

categories of coordinate changes:

Intrinsic factor of the camera
The internal properties of any camera lens are defined by its magnification, calibrated 

focal length, principal point location, radial lens distortion, and de-centring lens distortion 

(see next chapter for further details). Amongst these, magnification of the endoscopic lens 

is most likely to affect the perceived movements of the instrument tips, in relation to the 

surgeons’ hands. Although magnification was introduced to improve the visibility of the 

finer details of the operating scene, this also increases the scale of instrument tip 

movement when projected onto the endoscopic monitor. Radial distortion describes the 

non-uniform magnification of the lenses, as a compromise to increase the field of view. In 

wider angled lenses, especially in fisheye lenses, the image magnification decreases with 

distance from the optical axis, as in Figure 2.21. Theoretically, as the surgical instrument 

tip moves further away from the centre of the lens, it has to travel a further distance to 

produce the same displacement on its image projection on the endoscopic monitor. There 

has been some attempts to correct this distortion, but the relationship between this and 

hand-eye coordination was not explored (112).
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Figure 2.21 The effect of lens distortion; the left image shows a picture without distortion, and 
the right image illustrates the effect of radial distortion.

Extrinsic factor of the camera

This describes the spatial position of the camera in relation to the operating scene, and 

this relationship is highly variable in MIS. During surgery, the endoscope has 4 degrees 

of freedom for movement inside the body cavity. As the endoscope moves, the operating 

scene can be subject to magnification, translational, rotational changes. Of these, the 

effect of rotation is most likely to affect hand-eye coordination in MIS, and will be 

further discussed in Chapter 4.

Visuomotor axis of the surgeon and the monitor

As illustrated in Figure 2.1, the surgeons are not located directly in front of the 

laparoscopic monitor, often the motor axis (the direction of the instrument) is in 90° angle 

from the visual axis (the direction of the surgeons’ gaze) producing further coordinate 

changes (113). As described earlier, when the working space is in the left or right of the 

midline, movements are systematically biased counter-clockwise and clockwise 

respectively. In time, this movement is adapted and recalibrated to the intended motor 

output program.

2.6.2 Endoscopic instruments

The effect of the indirect translation of the surgeons’ hand movements through the 

endoscopic instruments have been described before. Briefly, the insertion point of the 

laparoscopic instrument acts as a pivot, and hence producing the “fulcrum” effect (27). If 

the handle and the tip of the instrument are fixed to the incision, the kinematic link 

between the handle and the tip is spherical. The scale of the instrument tip movement is 

also dependent on the relative length of the instrument inserted through the incision, as
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the instruments are inserted further, the surgeons’ movements are more magnified. Lastly, 

the incision of the abdomen does not provide a perfect pivot for the instruments, as the 

length of this incision increases, the pivot can be subject to translational movements. 

These are summarised in Figure 2.22.

Figure 2.22 Illustrating the effect of the endoscopic instrument on coordinate transformation: 
blue arrows show the “fulcrum” effect, red arrows show the effect of instrument length on scaling 
of its movement, and green arrows show the effect of translation at the incision site.

2.6.3 Internal Representation of MIS

It is not the scope of this thesis to model all the coordination system transformation 

necessary to perform laparoscopic surgery, as shown in Figure 2.23: however, this section 

has illustrated the complexity of the problem. It is logical that multiple sensorimotor 

maps are generated during MIS training, and these maps are fine tuned to improve 

performance. Previously in this chapter, it has been shown that the IR can be both 

egocentric and allocentric, it is not inconceivable that one of the sensorimotor maps is 

referenced on the image projection of the instrument tips, and perhaps this will explain 

the steep motor learning curve in early laparoscopic training.

V  C r  s  Endoscopic instrument effects
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Hand Eye Coordination in 3D
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Figure 2.23 Summary of the different spatial transformations required in MIS

2.7 Conclusions

The historical development of MIS is presented in this chapter, its popularisation in the 

last decade meant that experienced surgeons had to relearn different skills set in order to 

be competent in surgery. Despite its advantages, in the wrong hands MIS can become 

potentially dangerous. The steep learning curve is due to the intrinsic constraints of the 

visualisation method and the ergonomics of the instrument design as highlighted.

Assessment in surgery is still largely based on traditional methods established centuries 

ago, despite recent development of objective skills measurement methodologies, their 

widespread adoption remains elusive. The selection process, so far, lacks data to 

demonstrate predictive validity in technical skills development. Indeed, development of 

large longitudinal trials following trainee surgeons’ progress would provide the most 

convincing evidence, however it is likely that technology would have moved on by the 

completion of these trials. Objective assessments of basic technical skills have been 

reasonably well established, but the lack of cognitive component in these tests may have
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deterred its general use in the surgical community. Perhaps a more in depth research into 

the cognitive aspect of technical skills can provide an alternative solution.

Eye movement experiments done previously in the Department have uncovered specific 

gaze parameters which reflect on the cognitive need to assist in MIS. Visual cues, such as 

shadow perception, have been found to be useful in depth perception, overcoming the 

constraints of the 2D environment (31). Other studies have concentrated on the spatial 

coupling between the eyes and instrument tips (114), understanding the reliance on the 

visual system to generate movements in the laparoscopic instruments.

This chapter has introduced two concepts in relation to hand-eye coordination: reference 

transformation and spatiotemporal relationship. In order to perform a visuomotor task, 

hand and target locations have to transform from a visual-centred reference frame to a 

motor-centred reference frame. Evidence shows that these so-called sensorimotor maps 

develop with age, and continue to adapt when novel visuomotor tasks are learnt. Further 

study suggests the involvement of the PPC in the direct transformation from eye-centred 

to hand-centred reference. In MIS, it is likely that a novel sensorimotor map is developed 

through training, where camera distortion and laparoscopic instrument ergonomics are 

accounted for. This development can be defined by measuring the quality and error of 

movement trajectories (96).

The spatiotemporal relationship between the eye and the hand can be used to measure 

hand-eye coordination. In learning a new visuomotor task, initial reactive eye movements 

are used for feedback mechanisms for motor error. This is later replaced by predictive eye 

movements implying improved initial visuomotor prediction accuracy, through better 

developed sensorimotor maps. A detailed framework of this transition has been described 

in the chapter, dividing learning into three distinct phases. These methods may provide an 

objective measure of the cognitive development of hand-eye coordination.

Currently, the measure of hand-eye coordination remains confined to the laboratory 

settings. Studies demonstrating reference transformation rely on analysing movement 

trajectories, whilst visual input is either distorted or occluded, the generated movement 

error and variability are then measured. Although this provides a perfect platform for 

validating the concept of eye- or hand- centred reference frame, the analysis is limited to 

simple reaching tasks where the dimensionality of the data is low. Complex bimanual 

procedures, encompassing multiple reaching and manipulation tasks, remain too complex
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for this approach. In MIS, additional variables such as camera distortion, physical 

constraints of the instruments, and inter-task variability all combine to influence the final 

movement trajectories.

Only observational data has been presented in measuring the spatiotemporal relationship 

between the hands and the eyes. Eye movement patterns are highly variable, not only 

subject to physical but also psychological influences. These movements are characterised 

by large high velocity saccadic jumps, followed by smooth trajectories of pursuit eye 

movements. Currently, there are no algorithms for automatic calculations of the 

relationship between the eye and the intricately related hand movements. Hence, the 

feasibility for application of this measurement is low outside the laboratory.

Future work needs to focus on the development of algorithms for these measurements. 

Highly variable data is difficult to evaluate using simple statistical tests, other approaches 

have been used in biological data, as in speech or gesture recognition. These approaches 

include the use of stochastic processes, where events are classified as states, and the 

transitions between them are governed by probabilities rather than deterministically. 

Furthermore, time series data comparisons are not only confined to medical sciences, 

other disciplines such as computer sciences and econometrics frequently employ signal 

matching and causality computations. These can be applied to the calculation of the 

spatiotemporal relationship between the eye and the hand movement data streams. 

Finally, cognition and attention are important influences on hand-eye coordination, 

although difficult to assess directly, functional brain imaging can add further dimension 

and contextual meaning to the interpretation of the results.

The next chapter will focus on the basic principles of eye and hand position tracking, and 

the development and adaptation of the hardware best suited for the experimental setup in 

this thesis. One of the greatest challenges is to transform the tracked 3D instrument 

position into its location projected onto the 2D laparoscopic monitor screen, applying the 

distortion produced by the camera and taking into account its position and orientation. 

Interestingly, this 3D to 2D transformation closely mirrors the processing in the surgeons’ 

brain, where the 2D screen trajectories of the instrument tips are interpreted into 3D hand 

movements. In order to understand the basis of eye movement studies, a brief description 

of the human visual system will first be provided.
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Chapter 3

Eye and Instrument movement
tracking

In the previous chapter, an overview of the development and difficulties in MIS was 

presented. Despite its obvious advantages, the ergonomic factors intrinsic to MIS have 

led to a much steeper learning curve than that of traditional open surgery. This, coupled 

with the changes in service and training structures, has led to calls for tighter regulations 

in the selection and assessment of trainees aspired to perform MIS. Further arguments 

were presented to integrate the assessment modalities with cognitive measurements, as 

this could theoretically become a more comprehensive assessment, and perhaps a more 

direct measurement of the intrinsic ability of the individuals.

In order to quantify hand-eye coordination, direct measurements of the eye and hand 

movements need to be obtained individually. This chapter will provide an account of the 

development and selection of the hardware and software components, and their constant 

improvement in an attempt to measure the subtle relationship between the hand and eye 

movements accurately and in a completely unobtrusive way during MIS.

There are three main challenges for the measuring device: first, eye gaze and instrument 

tip position data need to be measured individually; second, the two data streams then need 

to be synchronised temporally; third, the instrument tip positions in the 3D world need to 

be translated into 2D data as projected on the laparoscopic screen, this requires 

simultaneous tracking of the laparoscopic camera position. Each of these challenges is a 

topic of research by itself, the final measuring device is a combination of various 

commercially available components coupled with bespoke software implementation of 

visual processing algorithms.
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As described in the previous chapter, during MIS there are different eye movement 

behaviours, some related to cognitive search for target selection and others to smooth 

pursuit for feedback of instrument handling. To understand these behavioural patterns, it 

is necessary to understand the human vision system, and the purpose of different types of 

eye movements.

3.1 Purpose of eye movement

The human fovea is an area located in the retina with the highest concentration of 

photoreceptors, hence providing the best visual acuity. The foveal vision normally 

represent around 1-2° of visual angle, and the visual acuity drops off dramatically from 

the centre of focus, this is illustrated by the distribution of photoreceptors in Figure 3.1.

Receptor density in the Eye

—Rods
—Cones

Figure 3.1 Diagram illustrating the distribution of photoreceptors as a function of distance from 
the fovea (0 degree), [redrawn from (115)]

Human vision is reliant on the small angle of the fovea, this highlights the necessity of the 

ability to direct the gaze to targets of interests quickly and accurately. Thus the resultant 

saccadic eye fixations are a very instructive behaviour, revealing much about the 

underlying cognitive mechanisms that guide them (116).
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The eyes move within three degrees of freedom, i.e. three rotations within the eye 

sockets. There are six extrinsic muscles responsible for eye movement: the medial and 

lateral recti (for lateral movements), the superior and inferior recti (for vertical 

movements), and the superior and inferior oblique (for rotating on the visual axis). These 

are illustrated in Figure 3.2.

Muscles Surrounding the Human Right Eye

Annular
tendon

M edial rectus

Levator palpebrar  
supenoris

Su/H’rior
n  ( t u \

Superior oblique Trochlea

In ferior rectus In ferior oblique Lateral rectus

Figure 3.2 Illustration of the six extrinsic muscles of the eye for controlling its movements.

3.2 Physiological eye movements

3.2.1 Saccadic eye movements

The common eye movements include saccadic, smooth pursuit, miniature and optokinetic 

(65). The term saccade comes from an old French word meaning "flick of a sail”. These 

are the voluntary rapid eye movement to direct the fovea to a specific point of interest. It 

has fast acceleration at approximately 40,0007s: and a peak velocity of 6007s (65). These 

eye movements are thought to be ballistic, as there is insufficient time for visual feedback 

to guide the eye to its final position. The speed is achieved by the control system in the 

brainstem, the excitatory code consists of a burst of very high-frequency activity, that 

throws the eye to its new position, followed by a tonic signal that holds the eye in 

position once it's there. Flowever, others have suggested an internal copy of head, eye and
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target position is used as feedback to guide the eyes during a saccade. There is evidence 

that the intermediate and deep layers of the superior colliculus may have critical 

components of the neural circuitry initiating and controlling saccadic movements (117).

The speed of saccadic eye movement can be explained by Listing’s law (see Chapter 2) 

which specify an essentially null torsion component in eye movements, requiring 

virtually only two degrees of freedom for saccadic eye movement.

Saccadic eye movement provides important information that implies the underlying 

cognitive process. In static imagery search, the patterns of saccadic eye movement and 

fixations define the visual search process. Using this information, visual search theories 

can be quantified, as studied in Appendix A.

3.2.2 Smooth Pursuit Movement

These are smooth involuntary eye movement that acts to track a moving object. Pursuit 

movements provide an example of a control system with built-in negative feedback. 

Visual search for a moving target usually involves a fast saccadic jump for location of the 

target, followed by smooth pursuit movement for tracking.

3.2.3 Miniature eye movement

These involuntary eye movements have long been the characteristics of fixation. There 

are three types: tremor, drift and microsaccades. Tremor is a periodic wave-like motion of 

the eyes occurring at a frequency of 90Hz and is thought to be independent in the two 

eyes. Drifts are slow motions of the eye which occur simultaneously with tremors, and 

occur between microsaccades. Microsaccades are movement signals that are more or less 

spatially random varying over 1 to 2 minute of arc in amplitude. It has been thought that 

these miniature eye movements may present “noise” in the control system, or used for 

compensation or corrective eye movement. However, recently these small positional 

variations of eye movement are thought to contribute to the hyper acuity in human visual 

system, when compared to the physical constraints of the eye (i.e. the relatively low 

resolution of the fovea) (118).
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3.2.4 Optokinetic nystagmus

These are sawtooth-like eye movements with a combination of pursuit movement 

interspersed with saccades invoked to compensate for the retinal movement of the target. 

Vestibule-ocular reflex is a similar type of eye movement compensation for the 

movement of the head, when an image is moved back and forth on the retina, the eyes 

compensate by equal and opposite movement to hold the gaze on the moving object.

3.3 Eye tracking hardware

One of the first documented studies of eye tracking was published in a psychology 

journal in 1901, based on corneal reflection techniques (119). However, the most famous 

early studies using eye tracking was probably by Alfred Yarbus in 1967. In his 

experiment, subjects viewed Repin’s painting, the “unexpected visitor” returning home 

after a long absence, to demonstrate the task-dependence of eye movement patterns. 

Yarbus reported that subjects’ eye movement patterns varied dramatically with 

instruction, depending on whether subjects were simply examining the painting or were 

preparing to answer a specific question (120). The resulting eye movement data is 

illustrated in Figure 3.3.

Figure 3.3 Illustrating Yarbus' experiment in 1967 when subjects were asked to look at the 
painting and were given specific tasks, [reproduced from (120)]
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There are three main categories of techniques for measuring eye movements: Electro

oculography, scleral contact lens/search coils, and techniques based on light reflected 

from the cornea such as Video-OculoGraphy (VOG) (65).

3.3.1 Electro-oculography

Electro-oculography is based on the measurement of electric potential difference of the 

skin around the eyes using electrodes attached, as illustrated in Figure 3.4. Its accuracy is 

quoted to be around 1.5°, and was once a popular method for eye tracking. Head 

movement has to be measured concurrently if the point of gaze is to be determined. There 

are, however, less invasive and more accurate systems available now.

Figure 3.4 Electro-oculography.

3.3.2 Scleral contact lens/search coil

It is one of the most accurate measurements of eye movements, and also relatively 

straight forward if 3D eye data is required. It requires the attachment of a mechanical or 

an optical reference object on the contact lens worn on the eyes. The modern 

implementation of this technique generally involves a wire coil, which is then measured 

moving through an electromagnetic field.
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Figure 3.5 Illustrating scleral contact lens with search coil.

It is clearly shown in the illustrated photo in Figure 3.5 that this technique is the most 

invasive, and is less likely to be acceptable to the experimental subjects.

3.3.3 Video-oculography

This is perhaps the most popular modern method of eye tracking due to its accuracy and 

non-invasiveness. The general category of this technique involves measurement of 

distinguishable features of the eye under rotation and translation. These features include 

the limbus (the iris-sclera boundary), corneal reflections of often a closely positioned 

Infra-RED (1RED) light source, or the pupil.

Automatic limbus tracking can be achieved using photodiodes, and is only effective in 

horizontal movement, as the eyelids obscure vertical movement of the limbus. Iris 

tracking poses less of a problem, and is generally better defined optically.

A more robust method of tracking is the combination of pupil/iris interface tracking and 

corneal reflection. The corneal reflection of a light source (generally IRED) is known as 

the Purkinje reflection, and is relatively stable with rotation of the eyes. Since the relative 

position between the pupil and the Purkinje reflection remains constant with minor head 

movements, it is therefore possible to determine the point-of-regards without physically 

fixing the head (65). This setup can tolerate a minor amount of head movement, whilst 

other techniques for tracking the head (optically or electromagnetic) are sometimes used 

to supplement the accuracy of the eye tracking data.
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Figure 3.6 (a) Four Purkinje images formed by different layers of the eye. (b) Calibration of the
eye. [reproduced from (65)]

Figure 3.6 illustrates the formation of four Purkinje reflections, by measuring the position 

of the first and the fourth reflections, it is possible to separate out the rotation and 

translation of the eye. It also illustrates the calibration process, where the relative 

positions of the pupil and the reflection changes with movement of the eyes.

Figure 3.7 Left: head mounted eye tracker. Right: remote eye tracker built into a surgical 
robotic system. Blue shade -  scene camera, green shade -  infrared LED. red shade -  infrared 
camera, [remote eye tracker picture courtesy of Mr George Mylonas]

Eye tracking using VOG can be done using a remote eye tracker or a head mounted eye 

tracker, both setups are shown in Figure 3.7. The remote VOG method has been used for 

experiments in this thesis, as it allows moderate head movement using a completely non- 

invasive technique, whilst acquiring reasonably accurate eye movement data. The remote 

system can also avoid distracting the surgeon’s line of sight and introducing extra weight 

on their heads (121).
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Specifically, the Tobii 1750 eye tracker (Tobii Technology, Stockholm, Sweden) was 

used throughout this thesis, as shown in Figure 3.8. It uses binocular video-oculography 

technique with an accuracy of 0.5 degrees and a sampling rate of 30Hz-50Hz. integrated 

with a 17 inch Thin-Film Transistor (TFT) display with a resolution of 1280x1024 pixels. 

It can tolerate moderate head movement within a 30x15x20 cm volume at 60 cm in front 

of the device, thus providing a relatively natural environment for experiments.

ource

Figure 3.8 Tobii 1750 eye tracker (Tobii Technology, Stockholm, Sweden) with a laparoscopic 
experiment scene shown.
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3.4 Instrument movement

In laparoscopic surgery, the effectors of the actions produced are the laparoscopic 

instruments which act as extensions of the hands, hence the tips of these instruments are 

of particular interest in this thesis. However, the actual instrument tips in the 3D world 

are not intimately linked with eye movements, as direct vision of the instruments is not 

possible. Therefore, the projection of the instrument tips on the laparoscopic monitor 

screen (2D) is needed for analysis with eye movements.

3.4.1 Instrument tracking

In general, there are three options to track the instruments: mechanical, electromagnetic 

and optical tracking.

3.4.1.1 Mechanical tracking

The attachment of a physical link to a surgical instrument allows its movements to be 

followed and the position of the tip of that instrument relative to a calibration point can be 

calculated. This principle is used for robotic assisted and virtual reality operating 

environments when the movements of a surgeon’s hands need to be tracked to control a 

remote manipulator or interact with a virtual task. The Advanced Dundee Endoscopic 

Psychomotor Tester (ADEPT) is a dual ‘gimbal’ mechanism that accepts standard 

laparoscopic instruments each consists of four potentiometers to measure three 

translations and the rotation about the axis of the instruments. The laparoscopic 

instrument passes through an opening in the gimbal that acts as a pivot point. The 

restricted freedom of movement of the gimbal mechanism is similar to that experienced in 

real laparoscopic surgery. The exact position of a laparoscopic instrument tip in space 

could be recorded in x, y, and z co-ordinates, and 9  represents the rotation of the 

instrument about its axis (122).
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Figure 3.9 ADEPT [reproduced from ( 122)]

Mechanical trackers are immune from external disturbance such as electromagnetic fields 

or occlusion of line of sight. Mechanical trackers are very accurate, have high 

repeatability, and operate well within a small workspace. However, most existing systems 

are bulky and obtrusive, the mechanical parts produce noise and friction and complete 

freedom of movement is restricted.

Mechanical trackers were not used in this thesis due to the friction and size of the system. 

Similar to laparoscopic surgery, the point of incision becomes a pivot point for the 

instrument, however, there are still possibilities for translation movement of the pivot 

point in real laparoscopic surgery (see Chapter 2), unlike a gimbal system which create a 

less realistic simulated environment.

3.4.1.2 Electromagnetic tracker

Electromagnetic tracking devices function by measuring the strength of the magnetic 

fields generated by three small wire coils, oriented perpendicular to one another. These 

coils are embedded in small units, and are transformed into electromagnet as electric 

current flows through them. By sequentially activating each of the wires, and measuring 

the magnetic fields generated on each of the perpendicular wire coils, it is possible to 

determine the position and orientation of the sending unit.

These tracking units may experience interference operating in the vicinity of monitor 

screens or other devices that produce magnetic fields, as well as metal objects such as the 

operating table that disrupt magnetic fields (123). Another disadvantage to these tracking 

devices is that the working volume tends to be rather small.
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The Fastrak system from Polhemus (Vermont, USA) is the electromagnetic sensor 

technology used in the Imperial College Surgical Assessment Device (ICSAD), where the 

coils are attached to the surgeons’ wrists. This system provides extremely low latency (in 

the order of 5 milliseconds) and has the ability to track multiple objects concurrently.

Electromagnetic trackers would be ideal for this thesis, as this eliminates the line of sight 

problem in optical trackers. The main drawback is the fact that these sensors have to be 

mounted on metal laparoscopic instruments, which will distort the accuracy of the 

system.

3.4.1.3 Optical Tracker

Optical trackers are most commonly used in virtual environments and computer guided 

surgery at present. They are generally divided into four types:

• Active Tracking use InfraRed Light Emitting Diodes (IR-LEDs) as targets 

observed by infrared cameras. IR-LEDs are pulsed sequentially and detected by 

three linear sensors located in the tracker.

• Active Cameras emit infrared light from a ring surrounding each infrared camera 

lens and use balls or discs as targets. The balls or discs are coated with a retro- 

reflective material containing small spheres that mirror the light back to the 

lenses, causing the targets to appear as bright spots in the infrared images.

• Fully Passive Cameras use available light in the visible spectrum to detect and 

pinpoint high-contrast targets printed or painted on any suitable surface. Standard 

video lenses and sensors are used to capture the images, which are then fed into 

the host computer or an extra computing unit for processing. Computer vision 

software detects the presence of target patterns.

•  Markerless Passive Cameras do not require wearing any kind of target or 

markers. Computer vision is used to extract the object's motions and positions. 

Delivered measurements are in this case only raw approximations.

Optical trackers in general have high update rates, and sufficiently short lags. However, 

they suffer from the line of sight problem, in that any obstacle between sensor and source 

seriously degrades the tracker's performance. Ambient light and infrared radiation also
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adversely affect optical tracker performance. As a result, the environment must be 

carefully designed to eliminate these causes of uncertainty.

3.4.1.4 E quipm ent used in this thesis 

NDI Polaris

The NDI Polaris System (Northern Digital Inc. Ontario, Canada) was used for earlier 

experiments. Active cameras with passive markers were used, these markers are retro- 

reflective balls mounted on planar rigid body, as illustrated in Figure 3.10. As translation 

and rotation information are needed to calculate the offset to the instrument tip, at least 3 

passive markers are used for each instrument tracked. The maximum update of the system 

was 60 Hz, which is comparable to the eye tracking system, and the accuracy was quoted 

as 0.33mm Root Mean Square (RMS) (124).

Figure 3.10 The NDI Polaris system with passive markers rigidly attached at the handles of the 
instruments.

In order to track the instrument tips, which are always hidden inside the cavity where the 

operation (or simulated operation) is carried out. The tracking markers have to be 

mounted near the handles of the instruments, without being obtrusive to the surgeons’ 

hands. The offset from the markers to the instrument tips are then calculated using the 

pivot function in the NDI software.
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The accuracy of the instrument tip tracking arrangement was further assessed by 

mounting the laparoscopic instrument on a Staubli RX60L robotic arm with repeatability 

accuracy of +/- 0.02mm and six degrees of freedom. Ten points for calibration were set 

up using the robotic arm to manipulate the instrument whilst the IRED markers were 

being tracked.

Earlier experiments (Chapters 4 and 5) were designed around the technical specifications 

of the NDI Polaris, the measuring volume is in a shape of a pyramid, and at the base of 

the pyramid the widest dimension is 1.5x1.2 meters. This is just enough volume for most 

laparoscopic instrument handle movements, but at extreme movements, the markers lost 

the line of sight from the infrared cameras. The laparoscopic camera was held rigidly 

throughout each experimental episode, as movement of the camera will change its 

extrinsic properties and affect 3D-2D transformation (see 3.4.1.5 -  Camera Calibration), 

which meant that the camera had to be re-calibrated after each repositioning. The camera 

sensor was positioned in the ceiling, where most of the movements of the two instruments 

were captured, but limited amount of rotation about the axis of the instruments were 

allowed (around 120°), hence the experiments were designed to limit the amount of 

rotation necessary to complete the tasks. The experimental hardware setup is illustrated in 

Figure 3.11.

Figure 3.11 Polaris tracking system setup for the experiments conducted in this thesis.
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NDI Optotrak Certus

The NDI Optotrak Certus (Northern Digital Inc. Ontario. Canada) is an active marker 

system demonstrated in Figure 3.12. Passive markers were not used when both 

instruments and the laparoscopic camera were tracked (see 3.4.1.6 -  Robotic Hand/eye 

calibration), this is due to the higher chance of passive markers overlapping each other. 

As the passive markers are not unique in their individual properties, the camera system 

recognises each rigid body by its unique geometric relationships, the more number of 

objects tracked are likely to confuse the system. Active markers eliminate this problem, 

as the IR-LEDs can be identified individually. The accuracy of the system is 0.15mm 

RMS and the volume of tracking extends to 3.6x2.6 meters at the base of the pyramid. 

The maximum update rate is 4600 Hz, depending on the number of markers used (125). 

Bespoke rigid bodies were designed to house 4 markers each, shown in Figure 3.12, to 

increase the amount of rotation allowed for the instruments.

Figure 3.12 The NDI Optotrak Certus with active markers rigidly attached to the handles of the 
instruments and laparoscopic camera.
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The other advantage of the Optotrak Certus system is the ability to use two camera 

sensors in conjunction, this both increased the volume of tracking and the rotation 

allowed for each instrument (around 300°). This system was used for Chapters 6 - 8 ,  

where more complex laparoscopic tasks were designed in the experiments. Both 

instruments and the camera are tracked at all times, which allow for free laparoscopic 

camera movement throughout the experiment after robotic hand-eye coordination.

3.4.1.5 Camera calibration

Physical camera parameters are commonly divided into extrinsic and intrinsic parameters. 

Extrinsic parameters are needed to transform object coordinates to a camera-centred 

coordinate frame. The pinhole camera model is based on the principle of collinearity, 

where each point in the object space is projected by a straight line through the projection 

centre into the image plane. The origin of the camera coordinate system is in the 

projection centre at the location ( X 0,Y0 ,Z 0) with respect to the object coordinate system,

and the ¿-axis is perpendicular to the image plane. The rotation is represented using Euler 

angles to, <p and k  that define a sequence of three elementary rotations around jc, v, z axis 

respectively. In order to express an arbitrary object point P at location (.X j.i'.Z ,) in

image coordinates, it needs to be transformed to the camera coordinates ( x i , y,, z , ). This

transformation consists of a translation and a rotation, and it can be performed by using 

the following matrix equation (126,127):

X l m u m i2 m u X t x u

y , = m 2 l m 22 m 23 Y1 + y0
Z -

J m :n m .V2 Z
z "

where

m  =  cos ip cos k

=  sin u> sin ip cos n  — cos tv sin k 

m 13 =  cos tv  sin ip  cos k  +  sin  tv  sin k  

m 21 =  cos tp sin k

m.,0 =  sin tv  sin p  sin k  +  cos tv  cos k  

m.,3 =  cos tv  sin <p sin k  — sin u> cos k  

m  =  — sin p  

m.i2 =  sin u  cos ip 

m 33 =  cos u) cos p
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The intrinsic camera parameters usually include the effective focal length fc, the image 

centre also called the principal point cc, skew coefficient alpha_c, and distortions (radial 

and tangential distortion) kc.

Once the camera is calibrated, the instrument tip positions can be transformed into the 

camera reference frame, this then eliminates the z-axis (the axis projecting directly in 

front of the camera lens) making a 3D to 2D transformation. The intrinsic parameters 

can then be applied, where the distortions intrinsic to the camera are taken into account.

The camera calibration toolbox for Matlab (128) was used, as the algorithm is accurate 

and simple to perform. A calibration grid is printed and mounted on a “reasonable” planar 

surface, and the camera is required to observe this pattern from a few different 

orientations (10 in this thesis), as shown in Figure 3.13. This setup is also used for the 

Robotic Hand/Eye calibration.

3.4.1.6 Robotic Hand/Eye calibration

The setup described before could only be used in experiments where the laparoscopic 

camera is rigidly held throughout the whole experiment, and also between experiments, 

or a laborious recalibration of the extrinsic parameters needed to be performed. An 

improvement in the design would be to calculate the extrinsic parameters of the camera 

by tracking its 3D position and rotations. This was done by attaching infrared trackers on 

the laparoscopic camera, as shown in Figure 3.13.

In order to calculate the offset between the infrared markers and the camera reference 

frame, the robotic hand/eye calibration was performed. This is the task of computing the 

relative 3D position and orientation between the camera and the robot gripper (in this 

case, the infrared markers) in an eye on hand configuration, meaning that the camera is 

rigidly connected to the robot gripper.
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Figure 3.13 Setup for performing the Robotic Hand/eye calibration

The algorithm outlined by Tsai and Lenz was used (129,130), where the infrared marker 

coordinate system is provided by the tracking device, the endoscopic camera coordinate 

system is calculated from the camera extrinsic calibration as outlined above, and the 

tracker (ND1 Optotrak Certus) world coordinate system is also known. With this setup 

shown in Figure 3.13, the calibration grid remains stationary, and the endoscopic 

camera/infrared marker complex was moved to at least three different positions (10 

positions were used in the experiment), in order to estimate the unknown transformation 

from the tracker coordinate system to the calibration pattern coordinate system, as well as 

the transformation from the camera to the marker coordinate system. The output of the 

algorithm is the rotation and translation (homogenous transformation) between the 

marker and the endoscopic camera.

3.5 Data Synchronisation

There are three data streams simultaneously recorded for each experiment, the video data 

from the laparoscopic camera, the instrument data from the NDI tracking hardware, and 

the eye movement data from Tobii.
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The ClearView software was provided by Tobii for recording and simple analysis of the 

data from the Tobii 1750 eyetracker. Analogue video data from the laparoscopic camera 

was sent via S-Video data cable to the video capture card (ATI 9600 AIW card or the 3D 

Connect Radeon X800 GTO graphics card), where the data was first digitalised and then 

displayed on the Tobii Eyetracker, as illustrated in Figure 3.11 This digitalised video data 

was recorded in synchrony with the eye tracking data by ClearView.

In order to synchronise between the eye and instrument tracking data streams, bespoke 

software was written to achieve this. In earlier experiments, a two-computer configuration 

was used, to ensure low processing demand. One computer was used to run the Tobii 

Eyetracker and the video capture, and another computer was used to run the NDI Polaris 

hardware for instrument tracking. Every 300ms, the NDI computer sent a Polaris data 

frame to the Eye tracking computer, which would be stamped on the eye tracking data 

file. This interface was achieved using the Transmission Control Protocol and the Internet 

Protocol (TCP/IP) standard, with a near constant delay of 83ms.

For later experiments, only one computer was used, due to the increased speed of the 

processor. The NDI Optotrak data was captured by the NDI First Principles software, and 

the eye tracking data by the Tobii ClearView software. As the Optotrak started or stopped 

recording data, a signal was sent to an 18F452 microcontroller based circuit board, which 

in turn provided a timestamp on the eye tracking data file, via RS-232.

3.6 Sample data and pre-processing

Figure 3.14 illustrates a sample data collected in Chapter 5. The raw output data from the 

instrument tip tracking system is shown in the top subplots. Here, 3D data demonstrates 

the experimental task, as the subject locates two fixed targets arranged horizontally in a 

simulated MIS environment. The 3D y-axis data is most representative here, as the left 

instrument starts the task, followed by the right. The x- and z- axes data is a combination 

of the instrument vertical and depth movements respectively, which are important 

features in assessing the quality of the movement trajectories and the skills of the 

operator. Furthermore, eye movement data is collected in 2D, as located on the 

laparoscopic monitor, hence its incorporation is not possible.

After 3D to 2D transformation, the data is shown in middle subplots. As the targets are 

arranged in a horizontal fashion, the x-axis data is most representative of the surgical
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workflow. Eye movement data is plotted in pink, and is tightly coupled with the active 

instrument (first left, then right). Vertical movements are illustrated in the y-axis subplot, 

again these represent deviations from the ideal pathway between the two targets, and are 

important features for qualitative assessment.

Further dimension reduction is done by converting the (x, y) coordinate into Cartesian 

distance from the target, and is shown in the bottom subplot. This is otherwise known as 

the Target Distance Function (TDF), converts the data into single dimension time series 

signals, whilst retaining most of the features of the movement trajectories. The other 

advantage of the TDF is its invariance in direction, hence data points approaching 0 

always represents target reaching behaviour. It is important to note that the instrument 

and eye movements decelerate towards 0 (target), and high density eye movement data 

represents heavy visual burden at the end of each target reaching trajectory.
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3.7 Conclusions

Unlike open surgery, the environment in MIS produces many constraints to the operator, 

the restricted information provided by the laparoscopic camera results in much higher 

demands of the visual system to compensate. Hence, eye movement studies provide the 

implication of underlying cognitive load that underpins the generation of skilled surgical 

hand movements. Studies of hand or instrument movement and eye movement in surgery 

have been done previously, but as individual components rather than concurrently 

(23,48,49,51,114).

This chapter has highlighted the technical challenges in synchronous tracking of 

instrument and eye movements, the final setup chosen was based primarily on accuracy, 

availability and suitability for the individual experiments. The use of optical based 

equipment allowed relatively unobtrusive tracking of the eye and the instrument tips, and 

produced less disruption on the natural visuomotor behaviour of the subjects. The 

coordination of the different commercially available hardware setups remained a 

significant challenge, bespoke additional hardware and software implementations were 

necessary to provide accurate synchronisation between them.

The application of the robotic hand/eye coordination algorithm has allowed accurate 

positioning of the 2D instrument tip projection on the laparoscopic screen, by using the 

information of the camera calibrations and position, and the instrument tip position. This 

mirrors the transformation that the human brain calculates during laparoscopic surgery. 

The algorithm, as its name implies, was originally developed for robotic vision and 

guiding robotic object manipulation.

Overall, the experimental setup has been satisfactory, particularly the high accuracies and 

update frequency of both systems. It has been suggested that the temporal difference 

between the eye and the effector is up to 300ms (72), and the equipment in this thesis 

used has a sampling rate of at least 50Hz (each data frame being 20ms apart), so this 

should be enough to detect this relationship. However, higher update frequencies might 

improve the performance of the signal matching algorithm used in later chapters, as will 

be discussed further.



For the current system setup, the use of wired tracking IREDs has its limitations. Wired 

IREDs precludes their use in the sterile operating environment, although there are now 

commercially available wireless and sterile reusable active optical trackers; however, the 

NDI system allowed more flexible applications due to its available Application 

Programming Interfaces (API), and has been ideal in the laboratory settings. Furthermore, 

the combined cost of the Tobii eyetracker and the NDI Optotrak system was high, this is 

excluding the complete laparoscopic system and disposable materials. The use of 

wearable eye tracker should be explored in future work, as this has the advantage of 

measuring important eye movement data outside the laparoscopic screen, which may 

include occasional hand position referencing, communication with the surgical assistants, 

and disturbances of the operating theatre. The main disadvantage remains the relative 

bulk of the equipment worn on the surgeon’s head, which may interfere with the natural 

head and body movement during data recording.

Current work is being done on minimising the calibration steps prior to data collection. 

Using the current setup, a brief nine point calibration of the eye position is performed at 

the beginning of the experiment, and instrument tracking calibrations can be performed 

offline. This is acceptable in the laboratory setting, however, these extra steps may 

disrupt the flow of live operations. Computer vision based techniques for instrument 

tracking are also being refined, where automatic segmentation of the instrument tips can 

be obtained directly from the video data stream. This will certainly be a welcomed 

addition to the current setup, as hardware based instrument tracking can be eliminated.

In summary, this chapter has provided the basic software and hardware setup for this 

thesis. The next chapter will present an early experiment where only instrument tracking 

data is used, and the quality of these movement trajectories are calculated using computer 

learning algorithms. The experimental procedure is designed around the limitations of the 

earlier tracking system, as the tracking volume of the NDI Polaris system is small, hence 

only relatively restricted surgical manoeuvres are allowed to ensure the quality of the 

data.
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Chapter 4

Assessment of the Quality of 
Movement Trajectory in 

Laparoscopic Surgery in different
screen rotations

4.1 Introduction

In Chapter 2, it has been shown that movement trajectories are affected by the reference 

coordinates used for motion. Furthermore, the quality of visual information can also 

change movement patterns. In the experiments where visual information was restricted or 

distorted, errors were introduced in the trajectories made. However, it seems that this 

sensorimotor map is developed from birth and is continuously subject to adaptation.

Minimally Invasive Surgery (MIS) was introduced over 20 years ago (17,131), however, 

many surgeons are still restricted to performing relatively simple procedures, for example 

laparoscopic cholecystectomy and diagnostic arthroscopy. The uptake of advanced MIS 

procedures, such as laparoscopic colectomy for cancer (25) and arthroscopic soft tissue 

repair, is still very slow in many countries. This may have been resulted from the 

difference in individual’s adaptability to the spatial transformation required in MIS.

The constraints imposed by the MIS environment have been discussed in Chapter 2, 

which include a lack of 3D vision (132), limited haptic feedback (133) and the “fulcrum” 

effect (134) restricting the variety of surgery performed. It is, however, quite clear that 

some surgeons are superior in performing these tasks than others (135). This has 

motivated extensive research into the objective assessment of surgical skills (42). For this 

purpose, the methodology has now evolved from subjective qualitative assessment by the 

trainers and knowledge assessment using post-graduate examinations (44), to objective 

quantitative approaches using time or movement parameters (49). Quantitative methods
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for assessing surgical dexterity have been widely validated for a number of open and 

laparoscopic procedures (136). The validation for these methods, however, relies upon 

prior definition of expertise, and this classification is mostly based on the assumption that 

experience equals technical excellence.

Figure 4.1 Diagram illustrating the Markovian Process. SI, S2 and S3 are the states; al 1, al2,  
a 13 ... a33 are the transitional probabilities.

The mathematical tool to be used in this chapter will be based on Hidden Markov Model 

(HMM), which is a statistical model that has been widely used for pattern recognition, 

e.g., speech, gesture and hand-writing (137-139). It models a system that is assumed to be 

a Markovian Process, as illustrated in Figure 4.1, which is a stochastic process where the 

likelihood of a given future state (SI, S2, and S3) depends only on its present state, and 

not on any past states. The chances of transition between each state are governed by the 

transitional probabilities (al l ,  a 12, a 13 ... a33). A typical example of a Markovian 

process is the weather pattern and each state representing the weather conditions (sunny, 

rainy and cloudy) with the transitional probabilities between them.

In HMM, as illustrated in Figure 4.2, the state is hidden from the observer, but each state 

generates a number of possible observations (Ol, 02, and 03), with their respective 

output probabilities (bl 1, b 12, b 13 ... b33). Using the previous example, the observations 

can be seen as the dampness of the grass, for example, dry, dryish, damp, and soggy. 

There are three main usages of HMMs:
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1. Given the output sequence of observations, find the most likely transitional and 

output probabilities; this is generally used for training the HMM.

2. Given the parameters of the model, find the most likely sequence of hidden states 

that generated the output sequence. In speech recognition, once the HMM is 

trained, the spoken sounds (observation) is then used to deduce the words they 

represent (hidden state).

3. Given the parameters of the model, calculate the probability of a particular output 

sequence is then generated by the HMM. This is used in this chapter as described 

further.

Figure 4.2 Diagram illustrating the Hidden Markov Model. SI. S2. S3 are the hidden states; 
a l l .  al2,  a 13 ... a33 are the transition probabilities; M l, bl2.  b 13 ... b33 are the output 
probabilities; and O l. 0 2 , 0 3  are the possible observations.

Rosen et al applied HMMs using a series of 14 finite states defined by the surgeons’ 

instrument tissue interactions (140). These states were based on the Forces and Torques 

(F/T) signatures collected by using two sensors measuring the forces and torques applied 

at the interface between the surgeon’s hand and the instrument. The HMMs classified the 

actions into specific manoeuvres and the transitions between them. The skill level of each 

surgeon was then calculated by the statistical distance of their HMMs from those of the 

expeit surgeons. The method, however, relied on a previous definition of expertise and
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the scoring system was based on the individual difference from this definition. To obtain 

the F/T signatures, each video frame was also visually analysed by two experts.

The purpose of this chapter is to examine the use of HMMs based on view invariant 

trajectory representations for assessing complex MIS tasks, as the effects of the many 

coordinate transformations in MIS are difficult to quantify by simple means. Identical 

surgical motions performed by different subjects are used as input into the HMM, which 

is treated as a “black box”, this is regarded as the initial training phase. The trained 

HMM will then “recognise” the most represented surgical motions (or the “ideal” 

trajectory), as defined by the initial training datasets. Finally, the output of the HMM is 

the similarity of the testing surgical trajectory from the “ideal” trajectory. Obviously, the 

“ideal” trajectory is influenced by the initial training data, and this is discussed further 

below.

In order to increase further complex spatial transformations affecting hand-eye 

coordination, view rotation tasks have been introduced and the motion trajectories are 

measured. This effect has been studied previously (27,28,134), which indicates a 

detrimental effect on the performance of surgeons and novices. Furthermore, the ability to 

handle mental rotation tasks has been suggested to be indicative of the innate ability in 

mastering laparoscopy (141). In this chapter, the proposed method is demonstrated where 

a probabilistic framework can be formulated to allow the observation of trajectories 

without prior, arbitrary classification of the subjects’ abilities.

4.2 Methods

4.2.1 Modelling Instrument motion trajectory

4.2.1.1 Instrument tip tracking and calibration

In order to obtain the trajectory of the instrument tips in Euclidean space and not interfere 

with the experimental task, a tracking device was attached rigidly to the handles of the 

laparoscopic instruments. For accurate positioning of the tracking device, a Polaris 

(Northern Digital Inc, Ontario) 6 degree-of-freedom InfraRED (IRED) tracker was used. 

The Polaris tracker is able to track a number of passive, active, wired and wireless IRED 

tools in real time simultaneously. Data interfacing was achieved through RS-232 and the 

provided tracking accuracy is 0.33mm RMS at a sampling rate of 60Hz. The offset of the
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instrument tips from the IRED markers was calculated using the Pivot function in the 

NDI ToolViewer Software version 3.02.01.

The accuracy of the instrument tip tracking arrangement was further assessed by 

mounting the laparoscopic instrument on a Staubli RX60L robotic arm with repeatability 

accuracy of +/- 0.02mm and six degrees of freedom. Twelve points for calibration were 

set up using the robotic arm to manipulate the instrument whilst the IRED markers were 

being tracked, an average of 550 measurements were taken for each point divided in 3 

separate sessions to demonstrate the accuracy and repeatability of the tracking system. 

The summary of the results are shown in Table 4.1, where the Root Mean Squared Error 

(RMSE) was around 0.5mm.

Point Number of Measurements RMSE (mm)
1 653 0.45
2 572 0.48
3 582 0.50
4 513 0.46
5 533 0.45
6 575 0.45
7 577 0.47
8 580 0.55
9 573 0.53
10 570 0.52
11 580 0.49
12 312 0.44

Table 4.1 Summary of tracking error using 12 robotic calibrated reference points.

4.2.1.2 Subjects and experimental setup

Eleven subjects were recruited for the study (9 medical student and 2 practicing surgeons, 

2 subjects were left-handed). None of the medical students had previous simulated or real 

laparoscopic experience. They were then randomised into two groups. All subjects were 

consented prior to the study, and were given a short introduction of laparoscopic surgery 

and the instruments used. Both groups were required to perform a laparoscopic task in a 

box trainer, after familiarisation with the instruments and environment. A Karl Storz 

laparoscopic stack with an S 1 camera head, Xenon Nova light source, and Hopkins II 0° 

endoscope was used for the experiment, along with two laparoscopic graspers with IRED 

tracking devices rigidly attached.
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Figure 4.3 Experimental setup showing the arrangement of the IRED markers in relationship to 
the laparoscopic tools, and the plastic small bowel model with a simulated omental flap with and 
without the camera view rotated.

For both groups, the first task was to locate two standardised points (A and B) on a 

simulated plastic small bowel model, as illustrated in Figure 4.3, using laparoscopic 

graspers. Each point was attached to an in-house designed touch sensitive circuit switch 

to mark the beginning and end of each trajectory. Each time the circuit was completed, an 

alarm will indicate a successful contact. The subjects were then asked to locate 

alternatively the points A and B with the left instrument 10 times, and then the right 

instrument, and this step was repeated. A total of 36 trajectories were obtained between 

the two points. The subjects were then required to perform a complex task: first, lift a 

simulated omental flap using the left instrument to grasp the left corner, and touch a third 

point (C) hidden underneath the flap with the right. This was repeated 3 times, however 

the data for this task was not analysed due to its complexity. For the second task, subjects 

of Group 1 were required to repeat the first task with the laparoscopic camera rotated 90 

degrees counter clockwise and Group 2 with the camera rotated 90 degrees clockwise.

Five subjects (3 from Group 1 and 2 from Group 2) underwent further training where a 

total of three sessions with the laparoscopic camera rotated 90 degrees counter clockwise 

and three clockwise were completed, with a final post-training assessment using normal 

camera orientation.

The left column in Figure 4.4 shows the typical instrument tip trajectories of a novice 

(pre-training, first rotation and post-training tasks) and a surgeon (normal and rotation
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tasks). The actual captured data is a Euclidean representation of the 3D instrument tip 

position expressed as mm from the camera origin (0, 0, 0). To simplify the illustration, 

distance from the origin was calculated and whole data sets are plotted in Figures 4.5 and 

4.6 using:

k  =  y j x 1 +  y~ +  z 2

where k is the distance, and x, y, and z  are the coordinates collected.

For the analysis of the trajectories, the experiments were divided into: (1) left instrument 

motion from point A to B; (2) left instrument motion from point B to A; (3) right 

instrument motion from point A to B; (4) right instrument motion from point B to A.

4.2.1.3 View Invariant Representation of 3D trajectories

Prior to HMM analysis, the 3D trajectories were mapped to a view invariant 

representation based on the Centroid Distance Function (CDF) (142). The instrument tip 

positions from IRED tracking after offset correction were modelled as a parametric curve:

r[t] =  { x \ t } , y [ t } , z [ t ] }  

t  =  0 . . . N - 1

CDF is a feature that is affine invariant, and is also widely used in image retrieval 

applications (142). The centroid is defined as the weighted average of all the points of 

each particular trajectory, and in essence, CDF describes a time series of the Cartesian 

distance of each point in the trajectory from the centroid. Scale normalisation transforms 

the CDF values into standard normal distribution which are rotational and translational 

invariant. Other affine invariant representations based on local angle and velocity 

measurements (143) were considered, however, these methods were sensitive to local 

variations of the trajectories and were not used for this study. Previous study compared 

CDF with curvature scale space, and showed that CDF with HMMs yielded better 

recognition of trajectories (142). Both methods, however, offered rotation invariant 

representations of trajectories. CDF significantly simplifies the subsequent HMM 

classification by foregoing cumbersome pre-processing steps. The right column of Figure

4.4 shows the CDF projection of the instrument trajectories for a surgeon and a novice.
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30 Trajectory Nov>ce (Nomtal) COF Novice (Normal)

CDF ■ Novice (Poet framing)

Samp« u i M

Figure 4.4 Left Column: 3D trajectories of the surgeon and novice, where blue shows the left 
hand and red shows the right. Right column: CDF representation of the same trajectories. In order 
from top to bottom: novice pre-training, novice First rotation, novice post-training, surgeon normal 
camera orientation, and surgeon rotated camera orientation tasks.
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4.2.1.4 Hidden Markov Modelling

As mentioned earlier, HMMs are finite state stochastic machines that allow dynamic time 

warping for modelling time series data. HMMs have been used to classify movement 

trajectories, however, segmentation was necessary to avoid violating the Markovian 

property which assumes independence of a current state from past states given the 

previous one (144). Each trajectory was regarded as one independent action, and the CDF 

for the trajectory was used as input signals to the HMM, hence the notion was made that 

each trajectory adhere to the Markovian assumption. In this study, HMM was used to 

learn each trajectory of a given experiment and view rotation. The leave-one-out method 

was used to train the HMM from all subjects excluding the test subject's data. The trained 

HMM was then used to calculate the log likelihood of the test subject and indicate 

similarities or differences to the learned model. For example, for testing Subject 1, the 

HMM was trained using the trajectories from Subjects 2 - 1 1 .  This trained HMM was 

then used to calculate the log likelihood of Subject l ’s dataset. Subsequently, Subject 2’s 

dataset would be tested using the HMM trained by trajectories from Subjects 1 , 3- 11 .

An HMM can be described by three model parameters representing the relationship 

between the hidden states ( h ) and the observed data ( x ). These parameters are:

where 7r, is the initial state probability, a,; the transition matrix between the hidden

states and p ( x  | /?,) the probability of generating an observation given the hidden state. In 

this study, a fixed number of states were used. However, in order to have a more flexible 

model, the observation probabilities were modelled by a Gaussian Mixture Model 

(GMM). Thus p { x  | h)  can be defined as:

where cm is the mixing parameter, p m and are the mean and covariance matrix of 

the component m  of the GMM.

p  ( x  | h )]
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A K-means algorithm was used to initialise the parameters of the observation GMM 

(mainly the means ). Two versions of the K-means algorithm were implemented to 

compare performance, using Euclidean distance and Derivative Dynamic Time Warping 

(145) to calculate the similarity between two trajectories. The second option can take 

signal ‘warping’ into consideration when finding cluster centres, and the length of the 

‘warping’ was then used to normalise the distance between the two trajectories. As the 

resulting cluster centres were identical with both methods, Euclidean distance was used as 

it was more computational efficient. The Expectation Maximisation (EM) algorithm (146) 

was used to calculate the maximum likelihood of the parameters of the HMM, namely the 

means and covariances of the components of the GMM and the parameters 7l{ and a :j .

The parameters of the HMM including the number of Gaussians in the observation 

GMM, as well as the number of the hidden states of the HMM were selected 

experimentally. Parameters that lead to the least variation in the values of the test data 

likelihoods were selected as the parameters that can provide good data representation for 

this dataset. The number of hidden nodes was selected as 4 with a mixture of 2 Gaussians 

for the GMM.

4.2.2 Categorised observational score

The video of all the tasks were scored by two independent observers who were blinded to 

the identity of the subjects, the scoring system used was a modified version of the 

OS ATS global rating scale. This is a widely validated score developed by Martin et  al, 

using 8 categories each with a Likert scale of 1-5 anchored by descriptors (45). The 

modification was necessary as 3 of the categories did not apply to this particular 

experiment (suture handling, knowledge of procedure and quality of final product), see 

Table 4.2. Inter-observer reliability was calculated using Cronbach’s alpha test (147).

Minor modifications of the original OSATS global rating scale have been employed for 

evaluating specific procedures, for example in knee arthroscopy (148), laparoscopic 

salpingectomy (149) and corneal suturing (150). Grantcharov et al shortened the OSATS 

score to only four of the original categories, and validated this video-based scoring 

system in laparoscopic cholecystectomy (52). This is similar to Table 4.2, except an 

added fifth category for evaluating overall performance in this Chapter. The performance 

of this abridged OSATS score and the original generic OSATS global rating scale have
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been compared previously (151), which showed comparable inter-rater and intertest 

reliability.

GLOBAL RATING EVALUATION OF PERFORMANCE
Respect for tissue

1 2 3 4 5
Frequently used Careful handling of Consistently

unnecessary force on tissue but occasionally handled tissues
tissue or caused caused inadvertent appropriately with

damage by damage. minimal damage.
inappropriate use of

instruments.
Time and Motion

1 2 3 4 5
Make unnecessary Efficient time/motion Clear economy of

moves. but some unnecessary movement and
moves. maximum

efficiency.
Instrument handling

1 2 3 4 5
Frequently asked for Competent use of Fluid moves with
the wrong instrument instruments although instruments and no

or used an occasionally appeared awkwardness.
inappropriate stiff or awkward.
instrument.

Flow of operation
1 2 3 4 5

Frequently stopped Demonstrated some Obviously planned
operating or needed forward planning and course of operation
to discuss the next reasonable progression with efficiency

move. of procedure. from one move to
another.

Overall
1 2 3 4 5

Very poor Competent Clearly superior

Table 4.2 Modified version of the Objective Structured Assessment of Technical Skill (OSATS) 
global rating scale.
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4.3 Results

Figures 4.5 and 4.6 illustrate the complexity of the raw data, although in reduced 

dimensions for simpler demonstration. The general shape of the data remains similar, 

where the instrument tips travelled between two points producing a pseudo-sinusoidal 

pattern. The most notable difference is the time scale: in the novice data, the time-to- 

complete the first rotation task more than doubled that of the pre-training task; for the 

surgeon, the task completion times were similar. Another difference is as the instrument 

tip approaches the targets, the peaks and troughs of the trajectories become less distinct in 

the rotated task, this effect is seen in both the surgeon and the novice. The initial part of 

each trajectory, from point A to point B (or vice versa), is mainly controlled by feed 

forward mechanisms, where previously stored proprioceptive information and target 

location were used as a rough guide to movement generation. As the instrument tip 

approaches the target, larger errors were detected due to the effect of the screen rotation, 

visual input was then used as feedback mechanism to reduce the error to zero, when the 

instrument tip arrived at the target.
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N ovice (Pre T ra in ing ) - 3D d is tance fro m  O rig in

Figure 4.5 Motion trajectory of a novice performing pre-training (top), first rotation (middle) 
and post-training tasks (bottom). Illustrated in raw 3D distance data, with pink shaded areas 
magnified and shown in laparoscopic scene as numbered.
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Figure 4.6 Motion trajectory of a surgeon performing normal (top) and rotated (bottom) camera 
orientation tasks. Illustrated in raw 3D distance data, with pink shaded areas magnified and shown 
in laparoscopic scene as numbered.

To demonstrate the extent of view rotation increases the complexity of the tasks. Figure 

4.7(a) illustrates the average time increased for a subject to complete a trajectory when 

the view is rotated. Figure 4.7(b) demonstrates the OSATS global rating scale (with 

strong inter-observer agreement, a -  0.914) decreases with view rotation, however this
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does not completely correlate with the time measurement (r = -0.818, p = 0.002). For 

example, Subject 2 in the rotated task had the third lowest score in OSATS, but had the 

fifth longest average time of trajectory. There is a significant correlation between mean 

(unfiltered) path length and time taken (r = 0.916, p < 0.001), and in the rotated task, 

between path length and OSATS score (r = -0.873. p < 0.001). Interestingly, one subject 

improved slightly in the rotated task (subject 7).
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Figure 4.7 (a) The average time for the trajectories of each subject, (b) The modified OSATS
score for all the subjects involved in the experiments.

CDF representations of motion trajectories are illustrated in Figure 4.8(a). This figure 

shows that the surgeon’s trajectory generally lies closer to the mean of all the CDF than 

the novice’s trajectory in this particular experiment. However, the average CDF trajectory 

has a distinctively different shape to either of the sample trajectories.
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Figure 4.8 (a) The mean of CDF trajectory for one of the experiments with standard deviation.
An example of a practicing surgeon’s trajectory is shown in black and a novice in pink, (b) HMM 
learned curve shown in green.

In Figure 4.8(b). the HMM learnt curve is plotted. This is the average of ten observations 

after training the HMM. Examples of the surgeon’s and novices trajectories are plotted 

for comparison, it shows that the shape of the surgeon’s trajectory is more similar to the 

HMM learnt curve. However, the set of trajectories showed a large variability with effects

1 1 0



of time warping. By calculating the likelihood to the HMM, a measure of similarity of a 

certain trajectory to the whole group can be obtained.

The log likelihoods of the subjects’ trajectories belonging to the training data sets by 

using the leave-one-out method are illustrated in Figures 4.9(a) and (b). Lower values 

indicate the subjects’ trajectories are more likely to match the models learnt by the 

HMMs. The log likelihood values are negative. The effect of view rotation accentuates 

the difference between the subjects as shown in Figure 4.9(b).

(a) N o r m a l  V ie w

S u b je c t  ID

. . .  R o t a t e d  V ie w
(b)

70 i

1 2 3 4 5 6 7 8 9  10 11
S u b je c t  ID

Figure 4.9 (a) The negative log likelihood of the subject in each experiment to belong to the
group in the normal view orientation and (b) rotated.

In this chapter, the log likelihood values are ranked in each experiment independently, 

rank number l represents the most similar and vice versa. The mean rank of experiment



1-4 for each subject is calculated in both normal and rotated view in Figure 4.10(a). In 

order to compare this with the most validated surgical rating scale, this rank plotted 

against the ranking in the OSATS score is shown in Figure 4.10(b). There is a very 

significant correlation between them (r -  0.93, p < 0.001).

(a) Likelihood Rank

S u b je c t  ID

(b)
Rotated View

O S A T S  s c o r e  ra n k

Figure 4.10 (a) The mean rank of subjects’ likelihood of belonging to the test group, (b) scatter 
plot of the rank of likelihood generated by the trained HMM against OSATS score ranking in the 
rotated tasks.



P re- vs. P o st- tra in in g

Figure 4.11 shows the CDF representations of the post-training motion trajectories. This 

series of figures show that the means of the post-training trajectories generally lie closer 

to the means of all the CDF. this appears to be more pronounced in Trajectories 3 and 4. 

which are the movements of the right hand.

Figure 4.11 The means of CDF for all four trajectories with standard deviation. The means of the 
pre- and the post-training data are plotted in black and pink respectively.

The log likelihoods in Figure 4.12 were calculated using the leave-one-out method as 

described above, however only the five novices’ pre- and post-training and the two 

surgeons' trajectories were used as the training data sets. Figure 4.12(a) shows that in all 

4 experiments, the log likelihood is lower (more similar to the training data sets) in the 

post-training sessions, however this isn’t statistically significant. Figure 4.12(b) illustrates 

the likelihood rank of individual subjects’ trajectories before and after training.
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Figure 4.12 (a) Box plot of the negative log likelihood of the subjects pre- and post-training data 
belonging to the test group where the median (line), inter-quartile range (shaded box), range of the 
data (whiskers), outliers (circles) and extreme (stars) are plotted; (b) the likelihood ranks of 
individual subjects' trajectories before and after training.

4.4 Discussion

This chapter has shown that HMM can be used to learn models of surgical motion 

trajectories even in a group of subjects with mixed abilities without prior classification of 

technical skills levels. The proposed models learn all the trajectories between two targets 

from the subjects, and then rank the subjects in terms of consistencies to the trajectories.



As the subjects’ skill levels improve through adaptation to the new sensorimotor 

transformation, their movements between the two targets become more consistent, and 

hence lead to a lower likelihood output. This seems to be particularly effective when the 

tasks are performed in difficult laparoscopic environments, e.g., camera rotation, where 

the difference in skills performance is more pronounced. However, even in such extreme 

conditions, the subjects seemed to learn the visuomotor map needed to improve in the 

task. Furthermore, this technique is shown to be sensitive enough to distinguish the effect 

of the short duration of skills training on the subjects.

Although objective quality scoring systems such as OSATS have been validated and 

shown to be reliable, these methods are labour intensive and require invaluable time from 

surgical experts. The speed of a surgeon has long been used as a benchmark of skills, 

however time is considered a crude metric for performance, whereas OSATS 

concentrates on the quality of technique. Even in this study, discrepancies are shown 

between the ranking of OSATS and time performance. Dexterity analysis has been 

developed to provide a more efficient way for surgical skills assessment, again, 

parameters such as path length and number of movements may have neglected the 

importance of the quality aspect of skills evaluation. It remains an effective tool for 

assessing the performance of simple and highly standardised procedures.

In this chapter, HMM is used to calculate the likelihood of similarity between each 

individual subject and the learnt trajectories of the group using the leave-one-out method. 

This likelihood correlated very well with the observation scores, and perhaps this can 

provide an automated quality scoring system. The second advantage of HMM is the 

ability to learn models of surgical motion trajectories in a group of subjects with mixed 

abilities. The method successfully calculated the likelihood of the practicing surgeons as 

amongst the most representative trajectories (subjects 10 and 11 in Figure 4.10(a)). 

Although Subject 7 had a lower likelihood rank than Subject 11 (surgeon), and this was 

reflected in Figure 4.10(b) where the OSATS score was ranked at 9. This was due to the 

following two factors. First, there may be a ‘ceiling’ effect where the subject’s 

performance was limited by the methodology used, and the scoring system was not 

adequate to discriminate the performance further due to the simplicity of the task (152). 

Second, Subject 7 had unusual spatial awareness, most likely due to her previous training 

as an aeroplane pilot.
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A potential criticism would be the small study population, and the biased numbers of 

novices when compared to surgeons. It should be noted that even with 11 subjects, a 

significant correlation could be found between the HMM calculated likelihood with 

OSATS, which is considered as the ‘gold standard’ in skills assessment. This further 

illustrates the sensitivity of the current method. Furthermore, the inclusion of the data of 

the two surgeons was to demonstrate its ability to differentiate subjects that were both 

within the same and in different skills groups.

One of the important considerations of applying the proposed HMM scheme is the feature 

representation of the trajectories. In general, it should be invariant to affine 

transformation, as this can cope with trajectories with different starting points, rotations 

and approaching directions. In this chapter, CDF was used as a means of invariant feature 

representation. Other approaches based on extrema in acceleration measured by high 

frequency wavelet coefficients are also applicable (153). This technique should be 

explored in complex laparoscopic procedures and validated in a larger scale study.

This chapter has shown that even by measuring the quality and the shape of the 

trajectories, a difference was shown between individual’s ability in performing in the MIS 

environment, and the effect of further coordinate transformation introduced when the 

camera view was rotated. In the next chapter, eye movement data will be included in the 

analysis, and the focus will shift to the relationship between the instruments and the eyes 

during the performance of this experiment. This relationship has been shown to change in 

learning a novel visuomotor task, and has been implied in the measurement of hand-eye 

coordination.
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Chapter 5

Spatiotemporal relationship 
between eye and instrument tip 

position on the laparoscopic screen:
a pilot study

5.1 Introduction

In the previous chapters, evaluation of the spatiotemporal relationship between the hands 

and the eyes as a measure of hand-eye coordination has been described (72,108,111). 

Briefly, in order for the visual system to be used as a feed forward mechanism for 

movement control, precise visuospatial mapping would have to be established, and the 

eyes tend to search ahead of the hand.

In a task comparing drawing and tracing, where drawing was seen as a feed forward 

process and movements are generated internally, whereas tracing depends mainly on 

external cues and constant visual feedback. Gowen and Miall found that in the drawing 

task, the eyes move further ahead from the pen tip; however, in the tracing task, eye 

movements are tightly coupled with the pen tip (111).

In learning a novel visuomotor task. Sailer e t a l found three stages of learning as defined 

by performance of the task and also the gaze-cursor relationship (72). During the early 

exploratory phase, gaze generally followed the cursor, with occasional glances to the 

target. The saccades sizes were generally small (3 to 4°). During the skill acquisition 

phase, this changed to a predictive behaviour, leading the cursor by up to 300ms. 

Saccades sizes were larger (4° to 12°), and more were directed towards the target. Finally, 

at the skill refinement stage, gaze went directly to the next target, with either a single 

saccade, or a large and one small saccade.
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In order to extend this same spatiotemporal relationship in MIS, certain coordination 

transformations need to be performed. In MIS, the visual information is provided 

indirectly by the endoscopic camera and displayed onto a 2D monitor screen. Hand 

movements are used to move the instrument tips, however, these movements are affected 

by the “fulcrum effect", movement scaling, and the effect of incision as described in 

Chapter 2.

Hand Eye Coordination in 3D

Visual data proprioception

Visual search
Fulcrum effect
Scaling
Incision

3D2D transformation

Figure 5.1 Schematic illustration of physical object positions and factors affecting their 
representations in a 2D monitor screen and the Internal Representation.

In order to measure the spatiotemporal relationship between the eyes and the effector 

(instrument tips), eye movement parameters together with the screen projection of the 

instrument tips must be obtained on the laparoscopic screen, as illustrated in Figure 5.1.

5.2 Methods

5.2.1 Eye tracking

A Tobii 1750 eye tracker (Tobii Technology, Stockholm, Sweden) was used to display 

the laparoscopic video. It is a remote eye tracking device using the standard binocular
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VOG technique with an accuracy of 0.5 degrees and a sampling rate of 50Hz, integrated 

with a 17 inch TFT display with a resolution of 1280x1024 pixels. It can tolerate 

moderate head movement within a 30x15x20 cm volume at 60 cm in front of the device.

The experimental hardware setup was similar to that of Section 4.2. Additionally, S- 

Video data obtained from the Karl Storz laparoscopic stack was streamed to a PC with an 

ATI 9600 AIW graphics capture card at a resolution of 640x480 at 30 Hz refresh rate. 

This video data was then displayed live on the Tobii eye tracker using the external video 

function provided with ClearView 2.5.1. Pixel coordinates of the eye tracking data were 

acquired by using the software provided with ClearView 2.5.1. Raw eye movement data 

was used for this study.

5.2.2 Instrument tip tracking and screen projection

The most unobtrusive way to obtain the true instrument tip position (3D) is by rigidly 

attaching a tracking device to the handles of the laparoscopic instruments, as described in 

4.2.1.1. Electromagnetic tracking is not feasible in the presence of metal interference in 

this experimental setup. The tip position can be calculated by applying the rotation matrix 

on a known translation between the tracking device and the instrument tip.

In order to calculate the two dimensional screen projection of the instrument tip, the SI 

camera head attached with the Hopkins II 0° endoscope was calibrated using the 

principles described by Bouget (128), The extrinsic and intrinsic parameters were then 

obtained after the camera setup was rigidly fixed, using two laparoscopic camera holders. 

The 3D instrument tip data was then projected onto 2D data corresponding to its position 

on the laparoscopic monitor screen.

5.2.3 Data Synchronisation

Two computers were used for obtaining instrument position and eye tracking data to 

improve performance of the setup. Synchronisation of the two data streams was achieved 

by using a bespoke software written in Visual Basic, simultaneously collecting the Polaris 

instrument position data and sending regular timestamp (every 300ms) to the eye tracking 

computer using TCP/IP standard (average delay 83ms). This is illustrated in Figure 3.11.
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5.2.4 Subject and experimental protocol

Data from all 5 subjects who completed all eight tasks from Chapter 4 was used in this 

pilot study, all subjects were medical students with no previous simulated or real 

laparoscopic experience.

The pre-training task was to locate two standardised points (A and B) on a simulated 

plastic small bowel model as illustrated in Figure 4.3. Each point was attached to an in- 

house designed touch sensitive circuit switch to mark the beginning and end of each 

trajectory. Each time the circuit was completed, an alarm will indicate a successful 

contact and a unique marker will be added to the data file. The subjects were then asked 

to touch alternatively the points A and B with the left instrument 10 times, and then the 

right instrument, and this step was repeated. A total of 36 trajectories were obtained 

between the two points.

For the training period, the subjects were required to repeat the first task with the 

laparoscopic camera rotated 90 degrees counter clockwise, this was repeated twice. The 

task was then repeated three more times with the camera rotated 90 degrees clockwise. 

The post-training task was identical to the pre-training task. The subject was allowed to 

perform a maximum of two tasks per day and each task at least one hour apart.

5.3 Data Analysis

5.3.1 Qualitative analysis

5.3.1.1 Completion time

Using time as a crude measure of performance, the median time for task completion for 

the pre-training task was 239.4 seconds and for the post-training task was 158.4 seconds 

(Wilcoxon Signed Ranks Test, z = -2.02, p  < 0.05). There appears to be a gradual 

improvement throughout the three training tasks with one camera rotation (90 degrees 

counter clockwise first); however, with the introduction of a new rotation (90 degrees 

clockwise), the performance worsened for the first session and then gradually improved 

throughout the rest of the training period.
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Task Completion Times

Figure 5.2 Box plot representing the time to complete each task in milliseconds, where the 
median (line), inter-quartile range (shaded box), range of data (whiskers), outliers (circles) and 
extreme (starts) are plotted. PRE -  Pre Training task. FR -  First Rotation. SR -  Second Rotation, 
and POST -  Post training task.

5.3.1.2 Target distance function

The screen positions of each target (points A and B) were easily located, as each time the 

targets were touched, a unique electronic mark was stamped on the data file. Figures 5.3 -  

5.5 illustrate the Target Distance Function (TDF), where the distance of the instrument 

tips (and eye fixation point) from the target is plotted against time (or sample number). 

As the distance approached to 0, it indicated that the instrument tips or the eye fixations 

landed on the target. Qualitative analysis of the example data from the pre-training, first 

rotation, and post-training tasks was made. With the introduction of the first rotation task, 

the completion time was more than doubled, whereas the post-training completion time 

was almost halved when compared to the pre-training time.

Furthermore, just examining the instrument tip data, similar to Figures 4.5 and 4.6 using 

3D instrument tip distance data. The trajectories near the targets (distance 0) become 

more disorganised and the troughs are less distinct in the first rotation task, reflecting 

the increased motor errors generated when screen rotation was first introduced. The



instrument trajectory was clearly not coordinated. In the post training task, the downward 

slopes of the trajectories are steeper, as the instrument tips approached the target, which 

represents faster and less error-prone feed forward movements.

The pink crosses in Figures 5.3 -  5.5 represent the eye position data. The most 

pronounced difference is seen in the first rotation task, here the overall density of data 

points is much higher and tightly coupled with the instrument; however, more importantly 

this density increases as the eye position approaches the targets (distance 0). As described 

in the instrument tip data, large movement errors were generated in the final parts of the 

trajectories towards the target, when the screen was rotated. This is when visual feedback 

was most required, to guide the fine tuning of the instrument movements. After training, 

the sensorimotor map was better developed and less visual input was required in the final 

stage of each trajectory, this is reflected by the reduced number of data points near the 

targets (distance 0).

Finally, the post-training eye movement, when compared with the pre-training task, larger 

saccadic jumps were seen with fewer fixations between the targets. It appears that after 

training, the requirement of visual input in movement generation was much less.
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5.3.2 Spatiotemporal relationship

To illustrate the temporal difference between the eye and the instrument position, Figure 

5.6 represents typical trajectories between Points A and B. The red dots on the right 

represent the eye fixations, as they approach the target (black line) with time. The blue 

dots represent the instrument tip positions. These trajectories can be divided into two 

parts: the initial fast ballistic movement towards the target, followed by slower fine 

adjustments near the target for final location.

Novice data is presented in the top three subplots in this figure, showing the pre-training, 

first camera rotation, and post-training tasks. Comparing the pre- and post training 
tasks, smaller eye saccades that are more tightly coupled with the instrument are seen in 

the initial phase of the trajectory in the pre-training task. This is followed by a much 

longer second phase for reaching the target, where the small movements of the instrument 

and the eyes represent fine corrections of motor errors by heavy involvement of the visual 

feedback mechanisms. In the first rotation task, the trajectory is the longest. No distinct 

separation is seen between the first and second phase of movement, and it clearly shows 

mirroring eye pursuit movements with the instrument throughout the whole trajectory. 

Instrument movement errors are characterised by increasing distance from the target, and 

these are presented frequently in this trajectory. In the post-training task, two large eye 

saccades are used to reach the target, and the distance between the eye fixation and the 

target is consistently shorter than the instrument, displaying predictive eye behaviour.

The trajectories in the normal and rotated camera orientations of the surgeon are shown 

in the bottom two graphs in Figure 5.6. Although the time to complete the trajectories is 

similar, with no obvious qualitative differences between the instrument movements are 

seen in the two tasks. The eye movement behaviour is strikingly different: in the normal 
rotation task, the eye movements are ahead of the instrument, and large predictive eye 

saccades are seen similar to the novice post-training data; in the rotated task, again 

pursuit eye movements are seen which are tightly coupled with the instrument throughout 

the trajectory. Movement errors are not seen in the surgeon’s rotated task, unlike in the 

novice data.

In summary, eye movement is ahead of the instrument in the novice post-training and the 

surgeon’s normal rotation tasks. However, the rotation of the camera changes this



relationship, where the distance between the eye fixation and the target remains the same 

as the reciprocal distance between the instrument and the target.

Surgeon Normal Rotation Surgeon Left Rotation

T "
Figure 5.6 Typical trajectories illustrating the spatiotemporal relationship between the 
instrument tip and the eye. Blue dots -  instrument tip position. Red dots -  eye position, Black line 
-  target.

To investigate whether the eyes lead or lag the instrument tip, the Cartesian distance 

between the instrument and the target was compared to the distance between the eye 

fixations to the target. As the instrument tip approaches the target, if the eyes are lagging 

behind, then the distance between the target and the eye fixation would be longer, as 

illustrated in Figure 5.7.
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Figure 5.7 Blue dot illustrating instrument tip moving towards target (T), and Red dot 
representing the eye fixation. If the eyes are lagging behind, E-T would be longer than T-T.

In both the pre-training and the first rotated task, the eye-target (E-T) distance was 

significantly longer than the tip-target (T-T) distance. This represents instrument leading 

behaviour, in other words, the eyes are lagging behind. The T-T distance becomes 

significantly longer after FRI, with FR2 and SR2 having no significant difference 

between T-T and E-T. This is summarised in Table 5.1.

PRE FRI FR2 FR3 SRI SR2 SR3 POST

Median 55.17 67.98 42.42 46.71 53.11 61.02 43.86 48.11

E-T

Median 43.86 61.22 42.15 54.92 57.52 57.42 51.91 48.78

T-T

WSR z=-8.08 z=-9.55 ’=-0.5 Z=-8.91 z=-35.3 ~ 0 ’=-29.4 z-6.93

test pcO.OOl pcO.OOl p> 0.05 /xO.OOl /;<0.001 /?>0.05 /xO.OOl p<0.001

Table 5.1 Summarising results of eye-target and instrument tip-target distance comparisons. 
Yellow highlight signifies statistical significance, and green highlight signifies the larger distance. 
E-T and T-T distances are measured in pixels. PRE -  Pre training, FR -  First Rotation. SR -  
Second Rotation, POST-Post training tasks. WSR -  Wilcoxon Signed Rank
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To illustrate this further. Figure 5.8 represents the error bars with 95% confidence interval 

of the difference of T-T from E-T, i.e., E-T minus T-T. Positive values denotes E-T 

longer than T-T, and symbolises instrument leading behaviour, and vice versa. This 

clearly shows that during the Pre-training and First Rotation tasks, the ET-TT difference 

is larger than in the Post Training task. The data was averaged for clearer illustration, 

hence the absolute numerical values on the y-axis are less meaningful, as the data is non- 

parametric.

Figure 5.8 Error bars plotting the mean ET minus TT distance, with 95% Confidence Intervals. 
PRE -  Pre training. HR 1 -  First Rotation ( I ). POST -  Post training tasks.

5.4 Discussions

The effects of novel coordinate transformations due to the natural setup of laparoscopic 

surgery and the introduction of screen rotations were examined in this chapter. The 

increased complexity of the task was confirmed by simple time analysis of task 

completion, which increased as screen rotation was introduced, but decreased as training 

continued. Qualitatively, the eye movement and instrument trajectories varied 

independently with these effects. However, the intrinsic spatiotemporal relationship 

between the eyes and the effector was further examined.

This chapter demonstrated the feasibility of calculating the spatiotemporal relationship 

between the eyes and the instrument tip using simple Cartesian distance. It has shown that
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the E-T distance was greater than the T-T distance in the pre-training and the first rotation 

task. In the pre-training task, the subject encountered the laparoscopic coordinate system 

for the first time, hence the poor performance in the task. Interestingly, during the first 

rotation task, where further changes in the visuospatial transformation were introduced, 

similar effects were observed. This seemed compatible with the hypothesis that the 

spatiotemporal relationship between the eyes and the instrument tip projection is affected 

by novel visuospatial transformation. However, when the second camera rotation was 

introduced, no significant effect on the spatiotemporal relationship between the eyes and 

the instrument was seen. It should be noted that the direction of camera rotation was 

randomised for the subjects, hence for 3 subjects the first rotation was counter clockwise, 

and 2 were clockwise. The direction of the rotation may bias the results, as most subjects 

tended to tilt their heads to the right when operating, which rendered clockwise camera 

rotation (causing counter clockwise rotation of the surgical scene) tasks more difficult to 

perform. This effect is further examined in Chapter 7. Furthermore, after a brief period of 

training, eye movement seemed to lead the instrument tips. It is hypothesised that the 

visuospatial map has been adapted to the new coordinate system, and hence a more 

predictive eye movement pattern was observed.

This analysis technique can only be used when the location of the target is known, and 

that each movement is aimed at locating the two fixed targets. The experiment was setup 

specifically to test the hypothesis, but it did not represent real laparoscopic surgery. 

During an operation, there are multiple targets which vary between and even within 

operations. The screen locations of these targets are difficult to deduce automatically: first 

these targets are chosen intuitively by the surgeon, and prediction of these targets would 

be impossible, without even considering the order that they would be attended to; second, 

imaging technique for anatomical soft tissue tracking has been proven to be difficult, due 

to the complexity and the highly deformable nature of the structures; third, it is also 

highly possible that the targets can be moved during the procedure, either by the surgeon 

intentionally or un-intentionally; finally, each movement trajectory during a complex 

laparoscopic surgery does not necessarily move towards the targets, for example 

changing instruments, or lifting a flap of tissue to reveal the target.

Despite the weaknesses of the analysis technique, this study remains the first 

measurement of the hand-eye spatiotemporal relationship as a surrogate calculation of 

hand-eye coordination in surgery. In order to apply these principles in general, advanced 

analysis algorithms need to be developed, where prior trajectory segmentation is not
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needed for analysis. Instrument and eye movement can be seen as time series data, and 

algorithms have been developed for forecasting future events, especially in econometrics 

where the opening stock market share price is dependent on past performances. This 

predictability, or causality, may be useful in examining the relationship between the eyes 

and the hand.

The next chapter presents the development of a new analysis framework where the target 

locations are assumed to be unknown. The general pattern of the instrument and eye 

movements will be used for deduction of their spatiotemporal relationships. In order to 

ensure general applicability of the method, a more detailed experiment is to be designed 

to mimic a live laparoscopic procedure, where realistic subtasks are included.
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Chapter 6

Investigation of Partial Directed 
Coherence for Hand-Eye 

Coordination in Laparoscopic
training

6.1 Introduction

Hand-eye coordination is a complex combinatory problem, involving many sensorimotor 

coupling including the visual, proprioceptive, tactile, attention and motor systems. 

However, the study of hand-eye coordination can be simplified to a model describing the 

use of the visual system to guide/validate the movements of the hands. This fundamental 

fact implies a black box approach in the understanding of the function of the whole 

system (86).

Predictive, rather than reactive, eye movements have been implicated in the feed forward 

paradigm of visual assistance in well rehearsed movement generation. In learning a new 

visuospatial task, the spatiotemporal relationship of the eyes and the effector has been 

used to provide a framework to divide learning into distinct phases; where vision is first 

used as a feedback mechanism until the new coordinate transformation becomes 

automated (72). A number of studies have confirmed that the prediction of the sensory 

consequences of actions defines early stages of motor learning (73).

The hand and eye movement data can be depicted as complex interrelated time series, and 

thus far, a generalised quantification of their mutual predictability has not been described. 

Several techniques have been investigated to describe the interdependency between 

multivariate series. For example, Graphical interaction models describe the 

interrelationships among the components of a time series as undirected graphs, where 

vertices depict the components and edges indicate possible dependencies between the
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components (154). Parametric models have been used to illustrate the dependence 

structure of a process as a model selection problem (155). In the frequency domain, cross 

spectrum analysis and coherence have also been used to describe the interdependency 

between two time series.

However, when causality between time series is of relevance, or when more than two 

multivariate time series are being observed, the distinction of indirect and direct 

relationships between them becomes important. While ordinary coherence measures the 

linear dependence between two signals, directed coherence (156-158) focuses on the 

feed forward and feedback aspects of relationships between signals.

Causality in general has three essential criteria: first, the cause must precede the effect in 

time; second, the two variables must be associated; third, the correlation cannot be 

explained by a third variable. It was also defined that if the prior knowledge of a series 

predicts another, the former Granger-causes the latter. The last chapter described the use 

of simple Cartesian distance to measure the relationship between the eyes and the 

instrument tips with known target locations, and the effect of screen rotation and learning 

changed this relationship. The purpose of this chapter is to evaluate the hypothesis of the 

interdependency of hand-eye movement along with the variability of their temporal 

relationships. Partial Directed Coherence (PDC) is used as a frequency domain 

description of Granger-causality for measuring the predictability of hand and eye 

motions.

6.2 Measuring partial directed coherence

6.2.1 Autoregressive Models

The AutoRegressive model (AR) is a linear prediction formula that predicts an output x (

based on the weighted sum of its previous values and an error. The order of the AR 

denotes the effect of the number of previous values that have an effect on the current 

value, hence a first order AR, or AR( 1) could be described as:

x( t )  — kx( t  — 1) -I- e
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where k is constant with an absolute value of less than 1, and e represents the error with 

a mean zero and a finite variance (often a normal distribution). Here, only the immediate 

past value of x  has an effect on the current value.

Hence, AR[p] is:

x { t )  =  k xx ( t  — 1) +  k0x ( t  — 2) +  ... +  k^x( t  — p )  +  e

In this univariate model, x( t )  can be influenced by the all past values of the system to the 

order p.  The multi-equation extension of AR where more than one variable is described, 

the Vector AutoRegressive model (VAR) can be use, a two-variable VAR[1] is:

x ^ i )  =  - 1 )  +  4 ,2z2(i -  1) +  c,

x 2( t )  =  -  1) +  A¡3 x 2( t  -  1) +  e2

* i(0 4,1 4 , x x(t  - 1)
+ el

x. ,{t) 4 , 4-2. x2{t  - 1) e2

6.2.2 Partial directed coherence

PDC was introduced for the inference of Granger-causality in the frequency domain (156- 

158). Granger-causality by definition states that an observed time series x  ( n ) Granger-

causes another series x  ( n )  if the knowledge of x ( n )  ’s past significantly improves 

prediction o f x ( n ) .  This type of predictability is not reciprocal. Assessing Granger-

causality provides a measure of the strength of interaction between time series under the 

rational that predictable variations in a series take place if their mechanisms of generation 

are intrinsically linked. In a linear framework. Granger-causality is related to VAR.

If ( x x( t ) , . . . . x u( t ) ) '  is a stationary n-dimensional time series with mean zero, a vector 

autoregressive model of order p , VAR[p] can be abbreviated by:

134



£,(()
V

x x{t -  r) £ ,(0

=  5>
r = l

x n( t - r )

+

e ( t )

The vector ( f  denotes independent Gaussian white noise, and a  is the

coefficient matrix of the VAR. To guarantee stationarity of the model, where the 

averages, variances and covariances remain constant with time, the assumption was made

that d e t( /  — a ( l) 2 -------- a ( p ) z p) ^  0 , for all z  E C  such that z\ <  1 (159).

In the above equation, the coefficients a (r) describe how the present values of 

x x depend linearly on the past values of the components x  . Thus, if all entries a ( r )  are 

zero for r  — 1... . p , then x, does not Granger-cause x  . In other words, linear prediction 

of x  (t  +  1) based on the past and present values of all variables but x  cannot be 

improved by adding past and present values of x  .

In this chapter, p  , the optimal order of an AR model was chosen as the optimizer of

Schwarz’s Bayesian Criterion. This was investigated by Liitkepohl (159) who found that 

this selection criterion leads, on average, to the smallest mean squared prediction error of 

the fitted model. Baccala and Sameshima (156) introduced the concept of the frequency- 

based PDC, where the difference between the n-dimensional identity matrix and the 

Fourier transform of the coefficient series is:

A(u>) =  I -  ¿ a ( r ) e - '" ’'
r = l

and the PDC is defined as (157):

1A,» 1

> f e j A* » | 2
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PDC takes a value between 0 and 1 due to the normalisation in the equation above. This 

provides a measure of the influence of previous samples of x  on the present samples of

x  with the effect of x  on other variables. Thus, it can measure the strengths of1 C

interactions between two signals in a directed manner. ARfit was used in this study for 

the estimation of the parameters of the AR model (160).

Figure 6.1 provides an illustration of the causal influences between the eyes and the two 

hands with their corresponding PDC calculations. Focusing on the off-diagonal diagrams, 

when causal relationships are present, significant PDC values are highlighted in red. 

Notice that this causality is directional.

F R E Q U E N C Y

R ight han d  Eya LaR hand

F R E Q U E N C Y

R ight han d Lafl hand

F R E Q U E N C Y

Figure 6.1 A schematic illustration of PDC calculations. Left column -  red arrow demonstrates 
the direction of the influence between the eyes and the two hands. Right column -  PDC values 
plotted against frequency, significant PDC values are in red.
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6.2.3 Experiment setup

For assessing basic hand-eye coordination involved in MIS, two experimental datasets 

were used. The first dataset (referred as the Target Location Experiment in this chapter) 

derives from Chapter 4 and 5, involved a task of locating two standardised points on a 

simulated plastic small bowel model using laparoscopic instruments, each point was 

attached to a circuit switch to mark the beginning and end of the trajectories. The subjects 

were asked to locate alternatively the two points with the left instrument 10 times, and 

then the right instrument (Task T.l). View rotation tasks were introduced in order to 

increase the complexity of hand-eye coordination, as the ability to handle mental rotation 

tasks has been suggested to be indicative of the innate capacity in mastering laparoscopy 

(27,28,134). The subjects were required to repeat the task with the laparoscopic camera 

rotated 90 degrees counter clockwise for three training sessions (Tasks T.2 -  T.4), and 

clockwise for three further sessions (Tasks T.5 -  T.7). Finally, a post training assessment 

(Task T.8) using normal camera orientation was completed. Data from nine complete 

novices was used for this experiment, although only 5 subjects completed all eight tasks.

Target Location Experiment Complex Dissection Experiment

T.l Pre-training C.l Skin dissection

T.2 First rotation 1 C.2 Muscle dissection

T.3 First rotation 2 C.3 Tissue removal

T.4 First rotation 3 C.4 Skin reposition

T.5 Second rotation 1 C.5 Return instruments

T.6 Second rotation 2

T.7 Second rotation 3

T.8 Post-training

Table 6.1 Summarises the individual tasks for the two experiments.

For the second dataset (referred as the Complex Dissection Experiment), eight complete 

novices were recruited to perform a more complex laparoscopic procedure. A cadaveric 

avian model was used to simulate dissection and manipulation skills in laparoscopic 

surgery. The procedure was broken down into tasks: (C.l) dissecting the subcutaneous 

connective tissue over the pectoralis muscle, (C.2) dissecting the muscle to reveal a 

simulated tumour tissue, (C.3) removal of the simulated tissue, (C.4) repositioning the 

dissected skin layers, and (C.5) returning the instruments to the start positions. The tasks 

for the two experiments are summarised in Table 6.1. Each subject completed the
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procedure ten times in 3 separate sessions. Figure 6.2 illustrates the experimental setup 

and screenshots of the key tasks.

For both experiments, instrument tip positions were obtained by bespoke designed IRED 

tracking devices that were attached rigidly to the handles of the laparoscopic instruments. 

They were tracked by the Polaris (Target Location Experiment) and Optotrak Certus 

(Complex Dissection Experiment) systems (Northern Digital Inc. Ontario, Canada). The 

offsets of the instrument tips from the IRED markers were calculated using the Pivot 

function of the NDI software. Data interfacing was achieved through RS-232 and the 

provided tracking accuracy was 0.33 mm RMS at a sampling rate of 60Hz for Polaris, and 

0.15 mm RMS at a sampling rate of 50Hz for Optotrak Certus. As in Chapter 5, A Tobii 

1750 eye tracker (Tobii Technology, Stockholm, Sweden) was used to display the 

laparoscopic scene. It is a remote eye tracking device using the standard binocular VOG 

technique integrated with a 17 inch TFT display. It can tolerate moderate head movement 

thus providing a relatively natural environment for laparoscopic tasks (65,141).

Figure 6.2 Experiment setup with screen shots showing the key manipulation steps involved in 
the laparoscopic workflow of Experiment 2.
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6.2.4 Pre-processing

In order to calculate the 2D screen projection of the instrument tips for the Target 

Location Experiment, the laparoscopic camera was calibrated using the camera 

calibration toolbox. The extrinsic and intrinsic parameters were then obtained after the 

camera setup was rigidly fixed, allowing 3D instrument tip data to be projected onto 2D 

data corresponding to its position on the laparoscopic monitor screen. For the analysis 

described above, the Target Distance Function (TDF) was used to reduce the dimensions 

of the data, where the instrument and eye positions were expressed as the normalised 

Euclidean distance from the target. This converts each data stream into single time series 

for PDC analysis.

For the Complex Dissection Experiment, key steps of the workflow were marked 

manually. The time to complete each trial was compared across the trials by using 

repeated Friedman Test for non-parametric related samples. When the trials are no longer 

significantly different from each other, a performance improvement plateau is reached. 

Non-parametric comparisons between 2 related samples were calculated using Wilcoxon 

signed rank test, and Spearman’s rank correlation was used to detect trends. The 

significance level of p  < 0.05 was used throughout the study. TDF was also used for 

dimension reduction of the data, however, as there were multiple targets with unknown 

locations, the origin (0, 0) was used as an arbitrary target.

Figure 6.3 presents a sample instrument movement data with simulated eye movement 

data to illustrate 3 different conditions: (1) the simulated eye data is identical to the 

instrument data, but lagging temporally by 8 samples (top); (2) the simulated eye data is 

completely unrelated to the instrument data (middle); (3) the simulated eye data is 8 

samples ahead of the identical movement data (bottom). The corresponding actual PDC 

calculations are presented in the right column.
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Figure 6.3 Graphical illustration of PDC results related to instrument and simulated eye 
movements: top -  instrument leading behaviour, middle -  no casual relationship between 
instrument and eye. bottom -  eye leading behaviour. Right column illustrates the PDC results, and 
left column illustrates the data illustrations (red -  eye, blue -  instrument).
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6.3 Results

6.3.1 TDF and PDC for the Target Location Experiment

The TDF and the corresponding PDC calculations of the novice data are presented in 

Figure 6.4. In the pre-training task (T .l as shown in the top figures), the TDF data shows 

tight coupling between the instrument and eye movements, where small eye saccades are 

displayed throughout each movement trajectory. The corresponding PDC shows a 

significant effect of the instrument on the eye data, describing reactive type eye 

movements. The middle figures correspond to the first camera rotation task (T.2). This is 

the most difficult task in terms of coordination, as the dissociation of the eye-hand axis 

was introduced the first time to the subject. The instrument movement is shown to 

precede the eye movements when approaching the target (TDF = 0). Here, the 

corresponding PDC analysis detects causal influences of the instrument on the eye 
movements again. However, in the bottom figure, illustrating the post training task (T.8), 
the subject’s improved hand-eye coordination after the training is reflected by the 

predictive eye behaviour, where the eye movement approaches the target before the 

instrument tip. Higher corresponding PDC values when comparing the influence of eye 

movements on instrument are observed. This corresponds to the hypothesis that 

predictive eye behaviour develops after training in laparoscopic skills, reflecting 

improved hand-eye coordination. More detailed qualitative analysis of the data was 

performed in Chapter 5.

In Figure 6.5, expert data is illustrated. In the normal camera orientation task (top), no 

causal influences between the eye and the instrument are detected, hence no appreciable 

temporal between the two data streams are observed. However, in the two rotated tasks 

(middle and bottom), PDC analysis distinguishes a difference in the coordination between 

the instrument and the eyes, where the latter displays a reactive type pattern.
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Figure 6.4 TDF of the instrument and eye data. Left column: example traces from novice pre
training (top), first rotation (middle), and post-training (bottom) data. Right column: the 
corresponding PDC plots showing the interdependence of the eye and instrument data.
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Figure 6.5 TDF of the instrument and eye data. Left column: examples from expert normal 
camera orientation (top), left rotation (middle), and right rotation (bottom) data. Right column: the 
corresponding PDC plots showing the interdependence o f the eye and instrument data.

Figure 6.6 summarises the PDC analysis for all the subjects of the Target Location 

Experiment. In an attempt to quantify the change in PDC throughout the experiment, the 

PDC values examining the causal influence of the instrument on the eyes for all 

frequencies are summarised for all the tasks. Using non-parametric repeated measure 

tests, there is a significant decrease in PDC between Task T. 1 and T.8 (j) < 0.001) when 

compared within the subjects at the same frequencies. A corresponding increase in PDC 

from Task 1.1 to 1.8 was also observed, when the effect of eyes on instrument motion 

was examined (p < 0.001) as shown in Table 6.2. This shows that after training, the eye
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movements are more likely to predict the instrument trajectories, whereas the causal 

influence of the instrument on the eye was stronger before training.

P D C  Results of the Target Location Experiment

Figure 6.6 PDC Results of Target Location Experiment, where the effect of the instrument on 
eye is examined.

Task T.l T.2 T.3 T.4 T.5 T.6 T.7 T.8

Instrument

Eye *

on
123.6 107.7 54.7 24.6 70.5 122.4 58.6 26.5

Eye

Instrument *

on
37.6 29.8 71 35.4 33.8 23.7 23.7 46.5

* Median PDC x 10

Table 6.2 Summary of PDC analysis for all the subjects in the Target Location Experiment. 
Significant difference between T.l and T.8 using Wilcoxon signed rank test are highlighted in 
yellow. Spearman's rank correlation shows significant negative correlation from T.2 -  T.4 and T.5 
-  T.7 are in different shades of green.

Moreover, there is a significant negative correlation between PDC values in Tasks T.2 to 

T.4 (r = -0.48, p < 0.001) and Tasks T.5 to T.7 (r = -0.15, p < 0.001) using Spearman’s 

rank correlation, which represent the three successive training sessions with the first and 

second camera rotations respectively. This describes the decreasing causal influence of
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the instrument on eye movement, as the subjects improved in one camera rotation 

condition and the other. However, the opposite correlation is not observed with the PDC 

measures of the eyes’ influence on instrument movements, which is explained by the fact 

that the subjects were complete novices who required further training to reveal an 

increased eye predicting (feed forward) behavioural model.

6.3.2 PDC analysis for the Complex Dissection Experiment

Figure 6.7 summarizes the time performance improvement of the whole procedure (C.i to 

C.5), showing a plateau effect at the 5th attempt, where there is no further statistical 

significant improvement in time. For individual task analysis, only Task C.3 showed no 

statistical improvement throughout the ten attempts.

Com pletion Tim es for the Com plex D issection Experiment
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Figure 6.7 Completion times of the Complex Dissection Experiment across all 10 attempts. 
Time expressed in ms, with dots representing mean, and error bars representing 95% confidence 
interval.

Figure 6.8 illustrates the complexity of the data streams, displaying the whole procedure 

using distance to origin (0, 0) as a simple method to reduce the dimensionality of the data 

set. In general, the right and left instruments worked in synchrony around the areas of 

interest, with frequent separations of the instruments, for example at sample 3000, 4000
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and 5000. There were large amplitude movements, especially in the left hand, whereas 

the right hand seemed to concentrate mainly in the middle part of the surgical scene. The 

eye fixations (red dots) alternated between the right and left instrument throughout the 

procedure, exhibiting a tightly coupled behaviour with them.

In Task C .l, the subjects were instructed to dissect the skin flap from the right side of the 

screen to the left, this was performed with the intention to produce similar pseudo- 

sinusoidal data as in the Target Location Experiment, for simpler data analysis. This was 

achieved with partial success; however, with the introduction of this bimanual task, the 

eye movement patterns seemed to alternate between the right and left instrument 

frequently. The left instrument was used to lift the skin flap, whilst the right instrument 

started dissecting. At sample 3000, 4000, and 5000, it clearly shows that visual input was 

important for the left hand to grasp the skin flap.

In Task C.2, the subjects used mainly the right instrument to dissect out the simulated 

tissue from the muscle layer. Here, the eye fixations and the right instrument worked 

closely together, whilst little attention was paid to the left instrument.

Task C.3 was a simple task requiring the left instrument to grasp the simulated tissue, and 

remove it from the surgical scene and drop it in an untargeted area at the bottom of the 

laparoscopic training box. It showed that little visual cue was needed, as minimal 

coordination was required, and hence a primarily feed forward ballistic movement.

Task C.4 showed large movements with the instruments and less organised eye fixations. 

This task was to replace the skin flap, and observation of the video data confirmed that no 

systematic way was used to complete this task, and the data was difficult to interpret.

Task C.5 was to place both instruments to the start positions, and interestingly, eye 

movements followed the early part of the right instrument and the latter part of the left, 

implying that more confidence in the control of the right, as the subject was right-handed.
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Figure 6.8 The complete procedure for the Complex Dissection Experiment, blue and green 
lines representing the right and left instrument tip, and red dots shows the eye fixation. All data 
expressed as distance front the origin (0.0). Each task was shaded with a different colour as 
labelled.

Figure 6.9(a) illustrates part of the data streams, with TDF of the eye and left instrument 

data plotted against time for Task C.l for the First attempt. The highlighted windows in 

red show areas where the instrument movements precede eye movements. The 

corresponding PDC analysis is shown where high PDC values are expressed in light 

colours, this is consistent with higher influence of the instrument on eye movements. 

Screenshot examples of two of the highlighted areas are shown in the bottom two rows, 

where the left instrument is shown to lead the saccadic eye movements.

Figure 6.9(b) shows the same TDF and PDC analysis of the effect of the right instrument 

on the eye movements. Here, the blue highlighted windows correspond to low PDC 

values, and are represented by darker colours on the PDC graph in almost all the 

frequencies. Screenshot examples of the two highlighted areas are shown in the bottom 

two rows, representing one high (top) and one low (bottom) PDC window. The 

screenshots of the low PDC window shows that the visual system was used to guide the 

left instrument, whilst the right instrument remained stationary. This substantiates the
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reason for the low causal influence of the right instrument on the eye movements during 

this period, and the corresponding low PDC values.

The PDC analysis of the later attempts did not show a causal influence of the eye on the 

instrument movements. As the subjects improve, visual analysis of the video data showed 

a significant improvement of predictive eye behaviour in the 10th attempt when compared 

to the Is' attempt. However, this type of predictive behaviour is non-sequential: as the 

subjects improve in this complex laparoscopic procedure, the visual system is used for 

target selection, instead of simple feed forward guidance of the instruments. Fixations 

often landed on three to four potential targets, before the instrument was utilised on the 

selected target. This type of non-sequential causality cannot be measured by PDC due to 

the cognitive influence of the manoeuvre.
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Figure 6.9 (a) TDF of eye and left instrument data against time (expressed as sample number)
for a subject performing Task C.l, and moving window PDC analysis (300 time samples with 50% 
overlap) of the causal influence of the left instrument on eye movement, the high PDC values of 
the specific frequencies are expressed in light colours, these areas are highlighted in red. Screen 
shots of two high PDC windows are illustrated in the bottom two rows (red/yellow dot = gaze 
position), (b) TDF and moving window PDC of the causal influence of the right instrument on eye 
movement. Blue highlighted areas represent low PDC levels. Screen shots of one high and one low 
(bottom) PDC windows are illustrated.
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6.4 Discussion and Conclusions

This chapter investigates the interdependency of the hand and eye movements along with 

the variability of their temporal relationships in laparoscopic surgery. PDC reveals the 

subtle effects of improvement in hand-eye coordination, where the causal relationship 

between instrument and eye movements gradually reverses during simple laparoscopic 

tasks in the Target Location Experiment. This method of analysis has been used to 

describe time series data in economics and its forecast based on the concept of Granger- 

causality. PDC is the frequency domain description of Granger-causality, and the data 

presented with the Target Location Experiment is ideal for this type of analysis. Low 

frequency data represents the fluctuation of the time series data between points A and B. 

whilst high frequency jitters in the data correspond to random local variations of 

instrument and eye movements.

In contrast to previous analysis, PDC provided an automatic algorithm for signal 

matching (coherence) and temporal delay detection, this required little data pre

processing. Furthermore, the data set was analysed as a whole, in contrast to Chapters 4 

and 5 where each trajectory was analysed individually, allowing for less constraints in 

experimental designs and artificial data markings. Importantly, the information of the 

target becomes less relevant for PDC to be implemented, as the algorithm matches the 

shape and trajectory of the data series.

In the laparoscopic task in the Complex Dissection Experiment, PDC also successfully 

identified areas where the instrument movements precede the eye movements in early 

skills acquisition of a complex procedure. However, in this bimanual task, both 

instruments often moved in synchrony, and visual input was used to guide each hand 

alternatively as necessary. By definition, at least half of the instrument data would not 

match the eye movement data, which generated significant random noise to affect the 

robustness and the accuracy of the algorithm. Due to these large proportions of non

matching data, it became apparent that very high frequency data, such as miniature eye 

movement, tremor of the instrument tips and error generated by the tracking equipment, 

were classified as matching signals by the algorithm.

As the novices improved in this complex task, the visual behaviour also changed to an 

intricate non-sequential predictive relationship with the instruments, which is difficult to 

be measured using simple PDC analysis. Expert surgeons often visualise multiple 

potential targets prior to definitive instrument movement generation, these eye
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movements may be related to target selection and attention to potential areas of hazard. 

Further investigation is warranted for measuring this complex combinatory behavioural 

pattern by incorporating high-level cognitive inferencing data.

A more robust signal matching algorithm needs to be developed to improve the signal-to- 

noise ratio for this analysis. As in Appendix A, eye movements can be modelled into 

probability distributions, where search patterns are compared mathematically. The theory 

of relative entropy measures the statistical distance between two probability distributions, 

and the lower distance represents higher similarity. This type of analysis may be useful 

for the hand and eye datasets.

The next chapter will concentrate on improving the signal matching technique, using 

principles based on relative entropy to analyse this complex laparoscopic procedure. 

Application results of this technique will be presented, as it is necessary to improve its 

performance for the hand-eye data. Furthermore, improvements on the experimental 

design and hardware setup will also be discussed, along with data from expert surgeons to 

provide validation.
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Chapter 7

Multiscale Jensen-Shannon 
distance to measure the hand-eye 

relationship in Laparoscopic
surgery

7.1 Introduction

The spatiotemporal relationship between the hands and the eyes has been implicated in 

measuring the mental ability to perform visuospatial transformation. In performing a 

novel visuomotor task, reactive eye movements provide feedback mechanisms to correct 

motor errors. However, during the learning of this task, a transition to predictive eye 

movements has been observed. In this scenario, eye saccades tend to move ahead of the 

hand and land on the target without further referencing of the hand position. Previous 

measurements of this relationship have relied on qualitative observations, as the 

complexity of the data deluded its precise measurement (72,73). In the last chapter, 

Partial Directed Coherence (PDC) was used to measure the spatiotemporal 

interdependency between the instrument tips and eye motions during two laparoscopic 

experiments. This technique was initially successful in identifying areas of casual 

relationship between them. However, as the movement trajectories became more complex 

with large areas of non-matching signals, PDC analysis appeared more ambiguous where 

high frequency noise interfered with the results. Furthermore, the numerical results of 

PDC provided an arbitrary implication of causality, as meaningful interpretation remained 

limited whilst no significance levels had been predefined (158).

Camera rotation has been shown to deteriorate surgical performance previously, although 

training substantiates adaptation to the new rotated environment, and performance 

gradually returns to previous levels. The amount of training needed for this adaptation is 

unknown, and is likely to vary between individuals. It is felt that the experimental

152



protocol and hardware setup was suboptimal in the last chapter, and multiple variables 

needed to be controlled to ensure higher quality analysis. The main modifications in 

experimental designs are highlighted below:

In the Two Target Experiment (previously Target Location Experiment):

1. A more robust experimental protocol is designed, with the effect of learning 

compared to the effect of screen rotation further examined.

2. More natural surgical environment is used, where no signal is given to the 

subjects on completion of each trajectory.

3. Using a time-based block designed experiment, instead of task-based, where 

subjects are required to perform and repeat a task within the same time 

constraints, rather than performing the same number of repetitions without the 

constraints of time (which can vary dramatically between individuals, and may 

affect the amount of learning achieved between them).

4. Longer training periods are used in an attempt to achieve learning plateau, 

however, this is limited by factors such as boredom and fatigue.

5. The instrument tracking setup is standardised, where the upgraded hardware is 

used. This allows for more natural movements of the subjects’ hands, as the 

tracking volume is increased and almost complete rotation of the instruments is 

allowed without any data loss.

6. Identical hardware setup is used for both experiments.

In the Complex Dissection Experiment:

1. Only Task C. 1 was analysed in the last chapter, this was due to the complexity of 

the data. In this particular task, the data resembled the Target Location 

Experiment naturally when the instruments moved systematically across the 

screen.

2. The whole procedure is analysed in its totality in this chapter. The proposed 

method of analysis seems to be more versatile and extra steps are taken into 

account to select suitable signals automatically

3. The introduction of laparoscopic expert data to provide validation of the 

measurement methods.
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The purpose of this chapter is to use a novel analysis framework robust enough to analyse 

both experiments automatically. The ultimate goal is to find the spatiotemporal 

relationship between the eyes and the instrument tips in any laparoscopic procedure 

without artificial experimental constraints. In the last chapter, the results were biased due 

to the performance of PDC, where causality relationships were found even in sections of 

poor eye-instrument signal matching

After detailed observations of the data in both experiments, it appears that in the Two 

Target Experiment, a less demanding matching algorithm is required, as the patterns of 

the two signals resemble sinusoidal waves of similar frequencies. However in the 

Complex Dissection Experiment, the eye and instrument signals tend to match in different 

frequencies. There is a general shape matching in the low frequency domain, where the 

eye and instrument data largely follow each other during the whole experiment. However, 

the more relevant parts of the signal lie in the higher frequency domain, where targets are 

selected by a brief visual search and followed by actions of the instruments, these areas 

are usually around 400 -  2000ms. In the signal windows between 10ms and 400ms, 

microsaccades of the eyes and tremor of the instruments become predominant in the data 

streams, where they are regarded as non-purposeful movements.

A different approach is used in this chapter, where the analysis is divided into two passes: 

first, the signals are modelled as probability distributions, and signal matching is achieved 

by measuring their statistical distances using principles based on the Kullback-Leibler 

(KL) distance (161) (see Appendix A); second, the temporal relationship is calculated 

between the instrument tip and the eye position in these matching areas.

7.2 Methods

7.2.1 Hardware setup

This was identical in both experiments. The Optotrak Certus system (Northern Digital 

Inc, Ontario, Canada) described in the earlier chapters was used to track both 

laparoscopic instruments and the endoscopic camera, as shown in Figure 7.1. The use of 

active IRED tracking device rigidly attached to the instruments allowed for simultaneous 

tracking of multiple objects. The offsets of the instrument tips from the IRED markers 

were calculated using the Pivot function of the NDI software. Data interfacing was 

achieved through RS-232 and the provided tracking accuracy was 0.15mm RMS at a
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sampling rate of 50 Hz. As before, a Tobii 1750 eye tracker (Tobii Technology, 

Stockholm, Sweden) was used to display the laparoscopic scene whilst tracking the 

binocular eye movements unobtrusively. The updated version of the eye tracker provided 

an accuracy of 0.5 degrees with a sampling rate of 50 Hz.

Figure 7.1 Illustrating the experimental setup involving two Optotrak Certus tracking systems 
for providing better line of sight and rotation coverage.

7.2.2 3D to 2D transformation

As the IRED markers were rigidly attached to the laparoscopic camera, once the spatial 

relationship between them was obtained, the extrinsic parameter of the camera can be 

continuously updated whilst the camera moved. A bespoke modification of the Matlab 

camera toolbox (128) was used to calibrate the camera, where the intrinsic and extrinsic 

parameters were obtained using an algorithm based on the Tsai and Lenz method 

(129.130,162). With this setup, a stationary calibration grid was used, and the 

laparoscopic camera/lRED marker complex was moved to 10 positions capturing images 

of the calibration grid, this is illustrated in Figure 3.13. This provided the estimation of 

the unknown transformation from the Optotrak Certus coordinate system to the 

calibration grid coordinate system, as well as the transformation from the camera to the 

IRED marker coordinate system. The output of the algorithm was the rotation and 

translation (homogenous transformation) between the IRED marker and the camera.
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As the laparoscopic camera position was updated every 20ms in synchrony with the 

instrument positions, 3D to 2D transformation was calculated for each data point using 

this information with the known intrinsic parameter of the camera.

7.2.3 Experimental Setup

7.2.3.1 Two Target Experiment

14 right-handed subjects (mean age ± SD = 20.77 ±1.15 years) participated. All subjects 

were complete novices in laparoscopic surgery, with only an initial introductory session 

to familiarise the subjects with the instruments used. They were instructed to locate two 

standardised points, repeatedly and accurately, on a simulated plastic small bowel model 

using only their right hand holding a laparoscopic grasper. A block design experiment 

was conducted where motor tasks were separated with blocks of motor rest. In Tasks 

NR1, NR3 and NR5 (recording tasks), after an initial period of motor rest (30s), 3 motor 

task blocks (20s) were interspersed with 2 rest blocks (20s). In Tasks NR2 and NR4 

(training tasks), after the same initial period of rest, the 6 motor task blocks (20s) were 

separated by 5 rest blocks (3s). The length of the tasks were chosen after pilot data 

suggesting learning plateau occurred around the 4,h and 5,h session, effects of fatigue and 

boredom became apparent afterwards. The subjects were then randomised to either left 

rotation (90 degrees counter clockwise camera rotation) or right rotation (90 degrees 

clockwise camera rotation), using the sealed envelope method. The left rotation group 

repeated the 5 tasks with left rotation first, then right rotation, and vice versa. A final 

experiment was run with normal camera rotation as a recording task. Table 7.1 

summarises the experimental protocol for the two groups.

Left rotation group Right rotation group
NR1 -N R 5 Pre-training tasks 1 - 5 Pre-training tasks 1 - 5

LR1 -  LR5 Left rotation tasks 1 -  5 Left rotation tasks 1 -  5

(F irst rotation, FR 1 - 5 ) (Second rotation, SR 1 - 5 )

RR1 -R R 5 Right rotation tasks 1 -  5 Right rotation tasks 1 -  5

(Second rotation, SR 1 - 5 ) (F irst rotation, FR 1 - 5 )

NR6 Post-training task Post-training task

Table 7.1 Summarises the Two Target Experiment protocol. For the First Rotation (FR) tasks in 
the left rotation group represents the Left rotation, and Right rotation in the right rotation group. 
The opposite applies for the Second Rotation (SR) tasks.
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The design of this experiment enables the analysis of three effects:

1. the effect of learning on the hand-eye coordination measurement.

2. by analysing the difference between left and right rotation tasks (which were 

randomised as 1st or 2nd rotation blocks), the effect of 90 degrees of camera 

rotation is illustrated, whilst the difficulty levels and amount of rotation are 

assumed to be the same.

3. by analysing the difference between 1st rotation and 2nd rotation tasks (which 

were randomised as left or right rotation blocks), the effects of 90 degrees (in the 

1st block) and 180 degrees of rotation (in the 2nd block) can be compared, 

assuming that there is no difference between left and right rotations above. This 

is summarised in Table 7.2.

Normal Left rotation Right rotation

Difficulty N + +

Rotation N + +

Normal 1st Rotation 2nd Rotation

Difficulty N + +

Rotation N + ++

Table 7.2 Summarising the effects on task difficulty and coordinate transformation by analysis 
based on the direction of the rotation and the order of the rotation. N = normal.

7.2.3.2 Complex Dissection Experiment

In addition to the eight complete novices, 5 laparoscopic experts (with performance of 

over 100 laparoscopic operations) were recruited to perform a more complex bimanual 

laparoscopic procedure. A cadaveric avian model was used to simulate dissection and 

manipulation skills in laparoscopic surgery. The procedure was broken down into tasks: 

(C.l) dissecting the subcutaneous connective tissue over the pectoralis muscle, (C.2) 

dissecting the muscle to reveal a simulated tumour tissue, (C.3) removal of the simulated 

tissue, (C.4) repositioning the dissected skin layers, and (C.5) returning the instruments to 

the start positions. Each novice completed the procedure ten times in 3 separate sessions, 

and each expert completed 5 repetitions. Table 6.1 summarises the task breakdown of the 

experiment.
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7.2.4 Analysis Method

7.2.4.1 Pre-processing

The distances from the eye and instrument screen coordinate data to a fixed point (0, 0) 

on the screen were calculated, resulting in an eye signal E ( t )  and instrument signals 

L ( t )  and R ( t ) ,  for the left and right instruments respectively. This Target Distance 

Function (TDF) was calculated similar to the last chapter, and thus reducing the 

dimensionality of the data.

7.2.4.2 Problem statement

The aim of the proposed algorithm is to locate matching hand-eye data with a temporal 

delay, different methods have been tested. Linear correlation would provide the simplest 

methodological solution, however it did not account for temporal shifts. Here, an 

extension of the Jensen-Shannon Divergence (JSD) method (163-165) is proposed. JSD is 

a standard metric for matching probability distributions, in order to apply this to the 

experimental data in different frequency domains, a multiscale modification has been 

developed. The main purposes of the proposed method are:

1. Locate matching areas between the time series.

2. Segment the matching areas by deducing the optimal time windows (signal 

lengths) that provide areas of maximum match, given the temporal delay between 

these signals.

3. Calculate the actual temporal delay.

7.2.4.3 The Jensen-Shannon Divergence

For probability distributions P  and Q  of a discrete random variable, the KL distance

(161) of Q  from P  is defined as:

p ( i )

For distributions of a continuous nature, the summations give way to integrals:
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DhL(P\\Q)= f  p(x) log dx
J q(x )q(x)

where p and q are the densities of P and Q respectively.

JSD can be considered a natural extension of the KL distance to a set of distributions, 

where the JSD of a set of distributions is the average KL distance to the mean of the set

(166). Unlike KL distance, JSD is a bounded metric. Consider the set M' (A) of 

probability distributions where A is a set provided with some a — algebra. The Jensen- 

Shannon divergence, JSD : M\ (.4) x Ml+(A) —> [0,1] is defined by:

JSD(P || Q) = \ dkl(P || Q) + \ dkl(Q || M)

where M — —(P + Q) , the JSD can be thought of a square of a metric, as the square

root of JSD fulfils the triangle inequality (167). thus it can be used as a metric for signal 

matching. The JSD(X,Y) between 2 signals A” and Y uses the distributions of signal 

values, so P and Q in the above formula would be the probability distributions of A'

and Y respectively. Figure 7.2 illustrates signal examples of high JSD (poor matching) 

and low JSD values (good matching).

Figure 7.2 Signal examples illustrating poor signal matching (left) with a high JSD value, and 
good signal matching (right) with a low JSD value.
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7.2.4.4 Jensen-Shannon D ivergence M odifications

However, as JSD compares distributions but not time series data; signals as demonstrated 

in Figure 7.3, with similar value distributions but a completely different temporal order, 

would result in a low JSD value (good matching). To overcome this, modifications were 

made to incorporate linear correlation into the algorithm, namely the correlation 

coefficient r, which for 2 signals X and Y can be defined as:

J2 ( X - X ) ( Y - Y )  
__ /______________ _

/ £ ( * - . Y)!( r - f ) !

The correlation coefficient r, ranges between -1 and +1, with high values indicating 

correlating signals. Thus, this new measure of signal similarity JSDr, for signals X and 

Y can be defined as:

JSDr(X.Y) = i ( JSD(X,Y) -  | r (X ,F ) | )

This metric weighs against non-correlating signals and aims at finding signals that both 

correlate and consist of matching distributions.

Figure 7.3 Example illustrating signals (blue and red) with exactly the same values, but in 
completely different temporal order. JSD analysis would indicate high probability distribution 
matching (low JSD value), but w ith a low correlation coefficient, r.
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7.2.4.5 Multiscale JSD r  to locate matching windows

The multiscale approach was used as a solution to overcome the frequency problem as 

described in Section 7.1, as the length of the matching trajectories was variable 

throughout the experiments, depending on the nature of the targets selected for each 

movement episode. In this method, J S D r  was calculated in segments with incremental 

windows sizes from 400ms to 2000ms between the two signals, hence called the 

multiscale approach. As highlighted above, typical movement trajectories were observed 

to last between these time scales.

In order to locate the optimally matching window size (signal length), with the lowest 

J S D r ,  a moving window algorithm was used across the two signals whilst computing 

the multiscale J S D r  (middle subplot of Figure 7.5). Thus for 2 signals X  and Y , the 

J S D r  at time t  for a window size w  would be:

J S D r ( t , w )  =  J S D r ( X [ t  — w  : t +  w ] , Y [ t  — w  : t  +  w ] )

The multiscale values of J S D r ( t , w )  offer a method of observing signal similarities at 

different scales, as well as at different times. Low values of J S D r ( t ,  w )  indicate areas of 

high matching between the 2 signals. In order to find areas with the closest match, the 

local minima of ^  J S D r ( t ,  w )  were located by using a hill climbing algorithm (bottom
W

subplot of Figure 7.5). For each of these minima t  , the window size corresponding to 

the lowest value was found ( w *).

7.2.4.6 Simulated analysis

Figures 7.4 and 7.5 illustrate the analysis of simulated time series data using this 

algorithm. Two signals with 4 matching areas and 1 non-matching area were created for 

this analysis, Gaussian white noise was added in the background to simulate high 

frequency errors of the system, this is shown in Figure 7.4. Multiscale J S D r  is shown in 

the m idd le  subplot of Figure 7.5, where four areas of low values are illustrated in dark 

blue at varying window sizes. The averaged J S D r  is plotted in blue in the bo t tom  

subplot, and local minima are highlighted with red stars. These local minima
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corresponded exactly with the 4 areas of matching signals, as shaded in blue in the top 

subplot, illustrating the performance of the signal-matching algorithm.

Figure 7.4 Shows two simulated signals containing four matching areas with a time-shift. 
Background Gaussian white noise is added simulating high frequency error signals.

1 5 0 0  2 0 0 0
Sample number

2 5 0 0 300 05 00

1

Figure 7.5 Example traces illustrating the JSDr algorithm. The 2 original signals (top), the 
corresponding multiscale JSDr (middle) and the average of the JSDr and locations of the minima 
(bottom). For each of these minima (red stars), the window size with the lowest value was 
selected, and the matching areas with the windows are highlighted in blue (top).
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7.2.-1.7 Tem poral delay

The time delays between two signals were calculated within the output signal windows 

from the above algorithm. As each window represented two matching trajectories, the 

common points between these signals were found by locating the lowest maximum and 

the highest minimum between the two signals. A line was drawn at the midpoint and its 

intersection with each signal was calculated. The length of this segment would indicate 

the time delay between the signals as shown in Figure 7.6.

Example for Calculating the  Temporal Difference
800

600

400

200
0 50 100 150 200 250 300

Sample number

Figure 7.6 Temporal differences are calculated by the difference in value in the v-axis between 
the two signals. These are black lines highlighted in yellow.

7.3 Results

7.3.1 Two Target Experiment

7.3.1.1 Qualitative analysis

The raw data is shown in Figure 7.7 the pre (NR1) and post (NR6) training tasks are 

illustrated together with the first task of each rotation (RR1 and LR1). Similar to Chapter 

5, the effect of training resulted in more distinct peaks and troughs of the data series. As 

the study was performed in fixed time blocks, the number of trajectories increased as the 

subjects improved. As illustrated clearly, the subject was able to locate the two targets 5 

times each in the post training task, compared to 3 in the pre training task.

Camera rotation produced a similar effect as in Chapter 5, when the movement 

trajectories and eye movements became severely disrupted. As a consistent observation 

throughout the data collection period, right rotation tasks created more coordinate
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transformation difficulties for these right-handed subjects, and this is also demonstrated 

in Figure 7.7.

Figure 7.7 Illustrating the raw data plotting the distance from origin against sample number 
(time). Top left -  Pre training task (NR1). top right -  Post training task (NR6). bottom left -  first 
right rotation task (RR1), and bottom right -  first left rotation task (LR1). Red line -  eye position, 
blue line -  instrument position.

7.3.1.2 Multiscale JSDr

Figures 7.8 and 7.9 illustrate the performance of multiscale JSDr in signal matching. 

Similar to Figure 7.5 but using actual experimental data, areas of matching signals are 

shaded in blue in the top subplots. This is achieved by finding the local minima of the 

averaged multiscale JSDr as illustrated in the bottom two subplots. In Figure 7.8. NR I 

and NR6 representing the pre- and post training tasks with normal camera orientation, the 

instrument and eye movements correspond visually throughout the example. However, 

areas of matching were located with high specificity, whilst the algorithm missed out 

other areas where the signals also appeared to be similar. This lowered sensitivity of the 

algorithm was accepted to improve the signal-to-noise ratio, which was problematic with 

PDC in the last chapter. In Figure 7.9, where left (LR1) and right (RR1) rotation tasks are 

examined, right rotation task again appears to be more detrimental to the task
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performance by the subjects, generating more erroneous movement trajectories. The 

algorithm successfully located 3 matching areas even with these difficult signals, 

primarily due to the lower frequency matching signals. The middle subplots show the 

JSDr values in different window sizes, and the lower values (green or blue) indicating 

better signal matching, are concentrated in the longer signals (window size 40 -  60 

samples), or lower frequency data.

Novice Pre-Training

0 ----------------------1----------------- i-------------------------- 1----------------------i----------------------1---------------------- i-----------------1---------------------------i---------------------- —
0 5 0  100  150  2 0 0  2 5 0  3 00  3 5 0  4 0 0  4 5 0

Sample number

Novice Post-Traininq

OJ><
0 L  ------------------- 1-------------------— 1 ------------------------- 1-------------------- _ i ________________4-------------------  - l -------------------------------------  -------------1----------------------------J 

0  5 0  100  150  2 0 0  2 5 0  3 0 0  3 50  4 0 0  4 50
Sample number

Figure 7.8 Novice pre- (NR1, top) and post- (NR6, bottom) training data showing TDF of the 
eye and instrument movements (top subplot), the multiscale JSDr (middle subplot), and the 
average of the JSDr and locations of the minima (bottom subplot). For each of these minima (red 
stars), the window size with the lowest value was selected, and the matching areas with the 
windows are highlighted in blue.
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Novice Left Rotation
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Figure 7.9 Novice left (LR1. top) and right (RR1, bottom) rotation data showing TDF of the 
eye and instrument movements (top subplot), the multiscale J S D r  (middle subplot), and the 
average of the J S D r  and locations of the minima (bottom subplot). For each of these minima (red 
stars), the window size with the lowest value was selected and the matching areas with the 
windows are highlighted in blue.
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7.3.1.3 Exumination by rotation

Figure 7.10 illustrates the temporal relationships between the instrument and the eyes, 

after matching windows were found using the JSD r  algorithm. Only positive values 

were included, which examined the amount of delay of the eye movement from the 

instrument tip. The analysis is based on the direction of camera rotation.

Temporal difference between Instrument and Eye

------- 1--------1------- 1------- 1------- 1------- 1------- 1------- 1------- 1--------r
NR1 NR2 NR3 NR4 NRS LR1 LR2 LR3 LR4 LR5 RR1 RR2 RR3 RR4 RR5 NR6

Task

Figure 7.10 Showing mean and 95% confidence interval of the temporal differences between the 
instrument and eye positions throughout the experiment. NR -  normal rotation, LR -  left rotation, 
RR -  right rotation.

NR 1 -  5 represent the first 5 consecutive tasks with normal camera orientation, this 

illustrates the significantly decreasing temporal delay between the instrument tip and the 

eye position (Spearman’s correlation, r = -0.118, p < 0.01). Higher values represent larger 

delays of the eye positions from the instrument tip positions, where 1 unit equals 20ms. 

LR 1 -  5 represent the 5 consecutive left rotation tasks, which was randomised to either 

the subjects’ first or second rotation. There was an increase in eye movement delay when 

counter clockwise rotation of the camera was introduced for the first time (LR1), and as 

the subjects learned throughout the 5 tasks, the delay decreased (not statistically



significant). RR 1 -  5 represent the right rotation task, similarly an initial increase of the 

eye movement delay was observed (Mann-Whitney Test, z = -3.77, p  <  0.001), followed 

by a gradual improvement (Spearman’s correlation, r  = -0.113, p  < 0.05).

Interestingly, the analysis shows that right rotation affects the hand-eye coordination 

more, and this was also observed during data collection (LR1 versus RR1, Mann-Whitney 

Test, z =  -2.62, p  <0.01). This may be unique to the handedness of the subjects, and will 

be discussed further below.

NR6 represents the last experiment block with normal camera orientation. This shows the 

lowest time difference between the eye and the instrument tip movements, when 

compared to NR1 (Mann-Whitney Test, z = -1.97, p  < 0.05), despite subjects had training 

in camera rotated tasks in between, perhaps this represents the adaptability of motor 

learning throughout the experiment, as the motor task was constant throughout the whole 

experiment.

7.3.1.4 Examination by time order

Figure 7.11 illustrates the temporal relationships between the instrument and the eyes, 

after matching windows were found using the J S D r  algorithm. Again, only positive 

values were included, which examined the amount of delay of the eye movement from the 

instrument tip. The analysis here is based on the order of rotation, rather than the 

direction of rotation as above.

NR 1 -  5, again represent the first normal camera rotation tasks. FR 1 -  5 in this graph 

illustrate the first rotation task (randomised to left or right camera rotation), and SR 1 -  5 

represent the second rotation task. NR6 is the last normal camera orientation task.
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Temporal difference between Instrument and Eye

Figure 7.11 Showing mean and 95% confidence interval of the temporal differences between the 
instrument and eye position throughout the experiment. NR -  normal rotation. FR -  first rotation, 
SR -  second rotation.

Similar trends are observed with the eye movements becoming less delayed from the 

instrument tip movements as the subjects trained, except for the disruptions when camera 

rotations are first introduced. The contrast with the above analysis is the lack of 

difference between the Is' and the 2nd rotation tasks (FR1 versus SRI, Mann-Whitney 

Test, p > 0.4). This is interesting, as it seems that the orientation of the rotation affects the 

subjects’ hand-eye coordination more than the order of the rotation, contrary to the 

hypothesis stated in Table 7.2.

7.3.2 Complex Dissection Experiment

7.3.2.1 Qualitative analysis

Figure 7.12 shows the raw data of a novice’s first and last attempt of the procedure, 

compared to an expert surgeon’s eye and instrument data, again expressed as a distance 

function. The second attempt of the expert data was used for illustration, this is due to the
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inevitable small learning curve in the first attempt to acclimatise to the new simulated 

surgical environment. The general shape of the time series are similar in all of them, 

especially in the first half of the data sets, which represents the first subtask of dissecting 

the subcutaneous tissue of the model (C. 1).

The most notable difference is the amount of time taken to complete each procedure, with 

the novice taking around 880 and 360 seconds to complete the first and tenth tasks 

respectively, and the expert finished at around 120 seconds. Second, the high frequency 

data, which represents small movement corrections and tremor, decreases according to 

experience; although the time scale difference between the three graphs should be taken 

into account. Third, the left instrument movement trajectories appear smoother in the 

novice’s last attempt compared to the right, and less tightly coupled with the eye 

movement data. This is reflected in the subsequent J S D r  analysis where a more notable 

improvement in the left hand is shown. This effect is also seen in the expert data, where 

the left instrument is used as an adjunct to the right, for example to manipulate objects 

surrounding the targets for better exposure, and becomes less reliant on visual guidance.
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Novice First Attempt

Novice Tenth Attempt

1OOO 2000 4000 5000 6000 7000 8000 9000
Sample Number

Expert Second Attempt

Figure 7.12 Illustrating the raw data for the whole procedures in the Complex Dissection 
Experiment, where the data is expressed as a distance function. Blue line -  right instrument, green 
line -  left instrument, red dot -  eye fixations. Three figures are shown, top -  novice’s first attempt, 
middle -  novice’s last attempt, bottom -  expert’s second attempt.

171



The temporal relationship of the data streams is difficult to demonstrate due to the scale 

of the graphs in Figure 7.12. Selected typical examples are shown in Figure 7.13, which 

illustrates clearly novice’s reactive eye movement, compared to the predictive behaviour 

of the expert’s eye movement.

Expert example
•001------------1-------------- 1--------------1------------- i------------- 1 

I — —  MeumeN
MO j

Novice Example

SotCM Numb*

Figure 7.13 Typical examples of the expert’s and novice’s data sets, where the expert displays 
predictive and the novice shows reactive eye movement patterns.

7.3.2.2 Video analysis

Further validation was sought by analysing the video streams captured from the 

experiments, with eye fixations overlaid to assess the spatiotemporal relationship between 

the instruments and the eyes. Two independent observers rated the videos in sections, due 

to the abundance of repetition, only the first and last attempts for all the subjects were 

analysed. The instructions for the observation score were simple: 1 -  large instrument 

leading behaviour, 3 -  no temporal difference between instrument and eye movements, 

and 5 -  large eye leading behaviour. An extra score, 6, was provided when the eye 

fixations appear to fixate only on the targets, without coupling with the instruments. The 

identity of the subjects was blinded to retain anonymity. The inter-observer agreement 

was good, with Cronbach’s alpha of 0.79 (147), this is demonstrated in Figure 7.14 using 

a stacked line graph.
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Scores by Two Independent Observers

Observer 2 Right 
Observer 2 Left 
Observer 1 Right 

Observer 1 Left

1 ll 31 41

Figure 7.14 Stacked line graph showing the independent observation scores, showing good inter
observer agreement.

The observation score significantly increased for the novices’ right instrument from a 

mean score of 2.5 to 4.1 (z = -5.4. p < 0.001) and left from 2.1 to 3.7 (; -  -5.39, p < 

0.001) analysed using Wilcoxon’s signed rank test. This is clearly demonstrated as a box 

plot in Figure 7.15. For the experts, the mean left instrument scores were 4.7 and 5.0 for 

the first and last attempts respectively, with no significant difference. However, the mean 

right instrument scores increased from 5.4 and 5.7 (z = -2.11, p = 0.04). This may be due 

to the lack of familiarity of this specific procedure in the first attempts for the experts.

Observation Scores for Left and Right Instruments

Experience
■Novice
■Expert

Experience
■Novice
■Expert

Figure 7.15 Box plots of the Observation Scores for the left and right instruments. Higher score 
represents eye leading behaviour. Dark line -  median, shaded box -  interquartile range.
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7.3.2.3 Multiscale JSD r

Figure 7.16 illustrates the multiscale J S D r  analysis on the Complex Dissection 

Experiment. The novice’s first and last attempts are shown in each hand separately, 

together with the expert’s data. The length of the signal matching areas are restricted 

between 400ms and 2000ms as defined in the analysis algorithm, and are presented 

throughout the tasks as blue shaded areas in the top subplots. Even allowing for the time 

scale differences in the three sets of data, areas of matching appears to decrease in density 

with experience. This represents eye and instrument movement uncoupling with 

experience, and was described in Chapter 6, where non-sequential eye movements 

develop after training in MIS, as multiple target referencing becomes more prominent.

Examining the middle subplots, where the individual J S D r  values are plotted in colour 

for each signal window. The lower values (green and yellow), indicating better signal 

matching, are seen in the windows between 30 -  50 samples, which correspond to 

1200ms to 2000ms during the experimental tasks.

The performance of the matching algorithm appears to be reasonable, where obvious non

matching areas not selected. Although some visually matching areas are not highlighted, 

again this lowered sensitivity is accepted to compensate for the higher specificity in the 

signal matching algorithm.
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Figure 7.17 illustrates the temporal relationship between the right instrument tip and the 

eye movements. Positive values represent instrument leading eye movements, and vice 

versa. Blue error bars represent the 10 repetitions of the novices, and green bars represent 

the 5 from the experts. This clearly demonstrates that experts consistently display an eye 

leading behaviour (Expert versus Novices, Mann-Whitney Test, z = -3.52, p < 0.001), 

with little change throughout the 5 runs (Spearman’s correlation, p > 0.4). On the other 

hand, the novices significantly improved throughout the first five repetitions (Spearman’s 

correlation, z -  -0.06, p < 0.01). from instrument leading behaviour to around 0 (no lead 

or delay between the instrument and the eye movements). Data from tasks 6 -  10 are 

more variable, which may be the effect of boredom and fatigue (Spearman’s correlation, 

p > 0.4).

7.3.2.4 Temporal relationship

Right Instrument and Eye

Attempt

Experience
I  Novice 
I  Expert

Figure 7.17 Showing mean and 95% confidence interval of the temporal differences of the right 
instrument and the eye position throughout the experiment from Attempts 1 -10  for novices (blue) 
and Attempts I -  5 for experts (green)



Figure 7.18 illustrates the relationship between the left instrument and the eye 

movements. Interestingly, the expert left instrument movements centre around 0 with 

quite wide variance. A consistent slope towards 0 is observed with the novices left 

instrument movements.

Left Instrument and Eye

Attempt

Experience
I  Novice 
I Expert

Figure 7.18 Showing mean and 95% confidence interval of the temporal differences of the left 
instrument and the eye position throughout the experiment from Attempts 1 -10  for novices (blue) 
and Attempts 1 -  5 for experts (green)

7.4 Conclusions

This chapter summarised the development of the method of measurement and analysis of 

the spatiotemporal relationship between the instrument and eye movements in 

laparoscopic surgery. By modelling the data into probability distributions, principles 

based on the JSD proved to be a more robust signal matching algorithm. Novel 

modifications were made to the technique in order to suit the purpose of this study. First, 

in order to segment each trajectory automatically, a multi-scale approach was proposed. 

This allowed for the accommodation of variable movement trajectory lengths and time
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order, and also created a natural filter against high frequency physiologically irrelevant 

movements. Second, the intrinsic problem of modelling time series data into probability 

distributions was addressed. As JSD on its own only considers the distribution of the data 

but not its time order, hence two signals with the same y-axis values but in completely 

different temporal order are considered a perfect match using JSD. In this modified 

technique, the correlation coefficient between the two data sets was included to address 

this problem.

Thus far, this was the first account of an automatic quantitative method for measuring 

hand-eye coordination in complex motor tasks, both within and outside surgery. In the 

Two Target Experiment, the effect of learning was accompanied by a decreasing time 

difference between the eye and the instrument. Echoing the findings of Chapters 5 and 6, 

the introduction of camera rotation significantly disrupted this coordination, and the eye 

movements became more reactive in nature, reflected by the larger time differences 

between the instrument and eye movements. The improved experimental design and 

hardware setup resulted in much higher quality data, and the effects of training and 

camera rotation were accentuated.

It was rather unexpected to observe a difference between left and right camera rotations. 

This is likely due to the right-handedness of the subjects, which is often associated with a 

natural tendency of a right sided tilt of the body and clockwise tilt of the head during 

intense work (e.g. writing). The effect of clockwise camera rotation was a counter 

clockwise rotation of the laparoscopic scene on the monitor, combining with the 

clockwise tilt of the subjects’ heads, would generate more coordinate rotation than the 

opposite camera rotation. Nevertheless, this would require further examination with left 

handed subjects, and the measurement of head tilt during the experiment.

In the Complex Dissection Experiment, a high fidelity bimanual procedure was designed. 

Although specific instructions were given to the subjects on performing each subtask, 

large individual variations were observed in terms of surgical techniques, both within and 

between experience levels. Furthermore, variations in animal tissues were unavoidable, 

these challenges were similar to conducting experiments on live operations. Despite this, 

the proposed measurement algorithm successfully identified areas of matching signals 

throughout the procedure, a relatively high threshold of matching was chosen to increase 

the signal-to-noise ratio, at the expense of sacrificing some useful data.
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In novices, a general decreasing trend was observed in the time difference between the 

instrument and the eye in both the left and right hands, this was consistent with 

improvements in hand-eye coordination as eye movements became less reactive. In 

contrast, experts displayed predictive eye movements consistently in the right hand, and 

less so in the left. Correlating with the observation results, some improvement was seen 

in the right hand, but not the left. It was an unexpected observation, although this may 

represent some adaptations in surgical techniques in performing this novel artificial 

animal model experiment. Another explanation could attribute to the relationship between 

the experts’ left instrument and eye movements, which was likely to be non-sequential. 

As the experts required less visual information of the instrument tips, due to their well 

developed motor and proprioceptive systems, eye and instrument movements became 

more independent. As the left instrument was generally used to support, stretch and 

stabilise surrounding structures to facilitate target manipulation with the right instrument; 

the relationship of the eye and the left instrument may be more subtle to measure with its 

more peripheral role.

Although this method of analysis successfully highlighted the effect of learning, expertise 

and change in coordination in both simple and complex laparoscopic tasks, further 

validation work is needed to include larger subject populations with different surgical 

experience levels. Complete distinction between the experts and novices was not 

achieved using the current measure, as there was significant overlap between their results 

in the Complex Dissection Experiment. This may be due to the “ceiling effect” (152) 

when no camera rotation was introduced, hence a more complex task would have to be 

chosen for surgical skills assessment. However, it can be argued that the important 

difference was the switch from reactive (positive time difference) to predictive (negative 

time difference) eye movements, as this represented the complete adaptation of the MIS 

environment. The actual magnitude of difference may not be critical. Furthermore, one 

parameter of the analysis algorithm had to be chosen contextually, which is the range of 

the window sizes measured. In the laparoscopic tasks, it is unlikely that individual 

movement trajectories extend beyond 2000ms, after observation of the experimental 

recordings. This may change according to the nature of the tasks, although the basic 

framework seemed to be robust enough for two very different laparoscopic tasks.

This improvement in hardware setup has allowed non-intrusive tracking of the eyes, 

instruments and endoscopic camera, whilst allowing complete freedom of movement of 

the laparoscopic tools. The calibration process, although relatively quick and could be
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performed partially offline, may still interrupt the flow of live operations. The 

experiments were mostly conducted with two operators, but further simplification is 

possible. The main practical limitations of the current setup are: the use of wired and non- 

sterile active IRED markers, which can be corrected with a slight modification of the 

setup; the relatively bulky and expensive Optotrak Certus system; and the line of sight 

problem with IRED trackers, although there are ceiling mounted tracking systems with 

multiple cameras to address this.

Future work should focus on bringing this measurement into live operating theatres, 

although further improvements in the setup are needed to be in place. First, instrument 

tracking hardware can be completely eliminated, as computer vision techniques in direct 

instrument segmentation from the video data are becoming available. Second, wearable 

eye trackers can provide vital data in eye movements outside the surgical scene, where 

human interactions, hand position referencing and outside disturbances can be factored in. 

Third, higher update frequency data collection could improve the performance of JSD, as 

the increased data points can provide better distribution matching in relative entropy. 

Finally, the inclusion of cognitive data could add further dimensionality in measuring 

hand-eye coordination. Cortical areas, such as the Posterior Parietal Cortex (PPC), are 

known to be involved in this coordination, and further results validation can be provided 

if cortical activation patterns are similar to the measures provided here.

This method appears robust enough to measure and analyse high fidelity simulations of 

laparoscopic tasks, with no artificial constraints of the operating environment. By slight 

modifications of the equipment, its use in live laparoscopic operations is theoretically 

possible. Even in its current form, this method provides a valid and reliable assessment of 

the subjects’ familiarity of the MIS environment, by measuring their hand-eye 

coordination. It also demonstrates the improvement of hand-eye coordination with 

practice, and its deterioration with camera disorientation. This relationship is intrinsic to 

the brain’s ability to perform the coordinate transformations necessary in MIS, and its use 

can be extended into other forms of surgery, such as NOTES and robotic assisted surgery.
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Chapter 8

Conclusions and future work

8.1 Achievements of the Thesis

The practice of surgery continues to change in a rapid pace; with the introduction of new 

technologies, the increasing public awareness of clinical outcomes, and economical 

pressures for higher efficiency of the delivery of health care. The most notable change in 

surgery is the introduction of MIS over 20 years ago, where smaller incisions and quicker 

recovery are welcomed by both patients and surgeons. However, this has come at a price 

of technical challenges intrinsic to the arrangement of MIS; the misalignment of the 

visuomotor axis, the lack of 3D vision, and the “fulcrum” effect all contribute to the 

disruption of hand-eye coordination in MIS. Although new technologies have been 

developed to overcome some of these restrictions, for example, the da Vinci Surgical 

System (Intuitive Surgical, California, USA), a master-slave surgical robotic system with 

stereoscopic vision and direct movement translation of the surgeons’ hands.

Surgical apprenticeship is also undergoing drastic transformations; the introduction of the 

European Working Time Directive (EWTD) and the shortened training years by the 

Modernising Medical Careers (MMC), surgical training has to be competence-based with 

performance measured objectively. Trainee selection should be more all-rounded, include 

technical skills evaluation which could predict learning curve and future performance. 

The challenge is to make the process more transparent and evidence-based, to ensure 

acceptance by the surgical community.

A large body of work has been published on technical skills assessment in the last decade, 

although the need for assessment is obvious, its actual implementation remains sparse. To 

this end, surgical skills assessment still relies heavily on labour intensive processes from 

experts in the field, whilst automatic scoring remains possible only on simple measures of 

hand movement kinetics. Visual assessment using category-based scoring system remains 

the most widely used method, although this type of manual scoring is difficult to be
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completely devoid of subjectivity, and can be error prone when large numbers are 

involved. Most importantly, whilst these scores are useful for monitoring personal 

progression, they remain less meaningful when used strictly to define competency. Most 

validation studies can group experts, intermediates and novices in different score 

brackets, however there is often overlap between the three score distributions. Hence, it is 

difficult to impose a score threshold to define competency.

To facilitate the measurement of hand-eye coordination, several movement based 

methods have been proposed. These methods depend on modelling the centre of reference 

and the error generated by the movement trajectories, although provided convincing proof 

of the concept of sensorimotor transformation, are difficult to apply in complex skilled 

manoeuvres. Furthermore, these reference points are context-based, and can change 

according to the nature of the tasks, the availability and the quality of the visual input. 

Others have used a more qualitative approach to measure the spatiotemporal relationship 

between the hands and the eyes in relative complex tasks, although automatic 

quantification of this relationship remains unsolved.

The use of mathematical models has enabled the analysis of hand-eye coordination in this 

thesis. Although these models have been used in many different biological data, they have 

eluded researchers in surgical skills assessment. Stochastic (probabilistic) models are 

ideal for modelling human behaviour, as they introduce uncertainty in the human output 

based on probability distributions. In complex human tasks, like MIS, the number of 

variables influencing the ultimate goal directed behaviour is overwhelming, furthermore, 

cognitive influence due to prior experiences would be impossible to model precisely. It is 

perhaps the success of these stochastic models over previous attempts, where no strict 

definitions of behaviour patterns are defined.

In order to model the behavioural changes in MIS during the initial exposure to this 

unique environment, Chapter 4 used HMM to model each movement trajectory of the 

novices and surgeons performing a simple laparoscopic task. To further accentuate the 

difference between the novices and the surgeons, screen rotation of 90 degrees was 

introduced. Although this has successfully produced sufficient information to distinguish 

individuals of different abilities, the screen rotation tasks represent rather extreme 

conditions during MIS. Further training of the novices showed an improvement measured 

by this method, which further validates the model. However, HMM remains an indirect 

method of modelling the complex behaviour to represent the effects of the disruption of
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mental sensorimotor transformation, in contrast to previous study where an exact point of 

reference was calculated, here the problem has become too complex due to the setup of 

the laparoscopic environment. The application of this algorithm in formal skills 

assessment is difficult, as it is an unrealistic task with low face validity.

In Chapter 5, eye movement data was introduced in the analysis for the first time. 

Assumptions were made that eye movements were only used to direct the active 

instrument, and each instrument trajectory was directed towards the target. These 

assumptions were accurate in this particular experimental setup, where the subjects were 

required to locate alternatively between two fixed targets. With this in consideration, 

using a simple target distance function, the eye movements were shown to change from 

lagging behind the instrument (reactive) to preceding it (predictive) with training. 

Without the known target locations and automatic trajectory segmentation this analysis 

would not be possible, although this chapter provided a proof of concept for the chapters 

to follow.

Based on the findings in Chapter 5, PDC was used to analyse the instrument and eye data 

in Chapter 6. PDC is a variation of Granger-causality, which is an econometric technique 

to calculate the relationship between two time series, and whether one can be used to 

forecast another. This technique eliminated the requirements of the target coordinates, 

and analysed the whole data streams in the frequency domain. The nature of the data 

collected presented with high frequency noise, which was a combination of tracking 

error, tremor and miniature eye movements, and can be identified in frequency based 

analysis. However, its performance was suboptimal on complex bimanual laparoscopic 

tasks, due to significantly large areas of non-matching data streams.

Chapter 7 modelled the instrument and eye movements into probability distributions, and 

JSD calculated the similarity between the two distributions. JSD is based on the Kullback 

-  Leibler (KL) distance which is used in Appendix A to calculate consistencies in visual 

search patterns. By applying the modified JSD analysis to data of variable lengths 

enabled signal matching at different frequencies, hence allowing filtering of high 

frequency noise to improve the signal-to-noise ratio. This method seemed more robust, 

and validation with expert data was demonstrated.

In order to reach a target, initial visual search is needed to obtain its physical location 

before movement generations. Appendix A presented a study on the quantitative analysis
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of the quality of visual search, based on a previously established cognitive model. KL 

distance and Gaussian curve fitting algorithms successfully established the changes of the 

quality and consistency of visual search, as a function of the effects of training and 

clinical specialisation.

8.2 Critical Comments and Discussions

In conclusion, this thesis has introduced the concept of measuring hand-eye coordination 

in surgery in the context of visuospatial transformation. This measurement implies the 

operator’s familiarity of the specific movement parameters imposed by MIS, although 

this implication does not equate superior surgical performance, it is certainly a component 

of it. Unlike other scoring systems, it is shown that as soon as this mental transformation 

is achieved, an opposite spatiotemporal relationship occurs between the hands and the 

eyes. This creates a natural threshold of competency. Although only laparoscopic surgery 

is considered throughout the thesis, this measurement can extend to other aspects of 

surgery, including NOTES and robotic assisted surgery.

In terms of instrument trajectory quality measurements, the leave-one-out method was 

used in this thesis to train the HMM from all subjects excluding the test subject’s data. 

The trained HMM was then used to calculate the log likelihood of the test subject and 

indicate similarities or differences to the learned model. This method can be influenced 

by the subjects’ data as a group, hence the trained HMM would be substantially different 

if a group of laparoscopic experts were used. In order to use this method reliably, test 

subjects should have similar abilities and movement parameters, or a large reference 

movement trajectory database will need to be collected prior to testing. Furthermore, the 

measurement lacked context, hence its use in complex laparoscopic procedures would be 

limited. Contextual data could be obtained by using HMM as surgical gesture 

recognition, where basic manoeuvres such as grasping, cutting and lifting can be 

identified.

In this thesis, simple Cartesian distance measurements provided a simple proof of concept 

for the eye-instrument spatiotemporal relationship, its use was confined to simple direct 

reaching tasks with known target locations. The measurement also only provided an 

estimate of the temporal difference between them, as actual eye movement data was more 

complex. In a reaching task, eye saccades first landed on the target for initial location 

coding, and then smooth pursuit eye movement followed the instrument tip for motor
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error feedback. In well rehearsed tasks, the smooth pursuit part of the eye movement was 

no longer necessary. In order to analyse this qualitative observation, segmentation of the 

eye movement into smooth pursuit and saccadic jump can provide further insight.

In order to reveal the intrinsic causality of the time series data collected for this thesis, 

PDC has been used. The major drawback of the technique is the lack of a well defined 

significance level to infer causal relationships, and the absolute value of PDC is of limited 

value. Nevertheless, this technique successfully identified areas of eye-instrument 

spatiotemporal relationship in the experiment with simple reaching tasks, and partially in 

complex bimanual tasks. It was found that large areas of non-matching data significantly 

increased the error of the analysis. Hence, signal pre-processing can improve the 

performance of PDC, where signal matching and segmentation are performed prior to 

PDC analysis.

JSD, thus far, has provided the most robust analysis technique for the instrument-eye 

spatiotemporal relationship. However, this method required a prior arbitrary definition of 

window size range, i.e., only signal lengths of 400 to 2000ms were analysed, although 

this was chosen after careful observations of the data. The accuracy of the method is 

likely to improve, if the sampling rate of the tracking system is more frequent, with 

higher density probability distribution functions for JSD calculations. Furthermore, in 

order to provide better distinction between the novice and expert results, functional brain 

imaging data could provide specific areas of interest for analysis. As discussed further 

below, activation of certain cortical areas may represent intense hand-eye coordination 

processing, and highlight the instrument and eye data for closer scrutiny.

During the development of this thesis, further advances in computer vision have 

facilitated segmentation of the instrument tips directly from the laparoscopic video. This 

allows for direct quantification of the instrument tip position, without the need of optical 

tracking devices and fucidal markers. This will certainly simplify the experimental setup, 

providing a completely non-intrusive environment, whilst eliminating the problem of 

sterilisation of equipment in live operations. However, vision based techniques still rely 

on the visibility of the instrument tips, which is not always possible during surgery.

Further work should also include the use of anatomical target locations, as certain index 

targets, such as the cystic duct/artery and the common bile duct in a laparoscopic 

cholecystectomy, are known areas of focused dissection and avoidance respectively.
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Analysis of gaze patterns around these areas can further reveal the underlying cognitive 

influences on hand-eye coordination, and provide contextually meaningful data. 

Advances in anatomical features and soft tissue deformation tracking can provide 

reasonably accurate information of these targets, these are based on invariant feature 

extraction techniques, such as Scale-Invariant Feature Transform (SIFT), and are being 

refined for such use.

8.3 Future perspectives

8 .3 .1  R o b o tic  a s s is te d  M I S

Due to the constraints of laparoscopic surgery, other forms of MIS have emerged to 

improve the “usability” of this technique. Whilst ergonomic factors such as the “fulcrum” 

effect, monoscopic vision and visuomotor misalignment in laparoscopic surgery greatly 

affect normal hand-eye coordination of the operator; robotic assisted MIS, such as the da 

Vinci Surgical System (Intuitive Surgical, California, USA), was developed to counter 

some of these effects. The master-slave robotic design allows direct translation of 

instrumental movements to mimic the surgeon’s hand movement eliminating the 

“fulcrum” effect. The surgeon is seated at the master console, whilst his fingers grasp the 

master control directly below the surgical scene display, thus creating a more natural 

visuomotor axis. Gross hand movement and tremor can be reduced by downscaling the 

movement generated through microprocessor control, further advantages include the 

additional degree of freedom through the “wristed” instruments, and the addition of 

stereoscopic endoscope. Current work at the Department focuses on further enhancements 

on the robotic system to improve patient safety through improved ergonomics. In 

cardiothoracic off-pump surgery, continuous movement of the heart greatly impedes the 

performance of the surgeon. The concept of gaze-contingent perceptual docking describes 

the use of the surgeon’s eye perceptual behaviour to assimilate with the robot, whereby 

the eye movement vergence information is fed back into the system for 3D depth 

recovery (168) and motion stabilisation (169). Haptic and tactile feedback enhancement 

in the robotic system can also reduce the risk of tissue damage, whilst the current system 

would only allow for direct movement translation disregarding the force generated (170). 

Finally, the use of augmented reality can overlay computer-tomographic images onto the 

surgical scene, through 3D anatomical registration, these additional information can be 

used to define areas of safety and risk to alert the operator during surgery (171). The 

proposed framework of hand-eye coordination measurements can provide an objective 

method to illustrate the ergonomic advantages of robotic assisted MIS.

186



8 .3 .2  N O T E S

Other technological advances have driven the move towards “invisible” surgery, like the 

Natural Orifices Translumenal Surgery (NOTES), where incisions are made through the 

walls of the stomach, vagina or rectum, where no external wounds are created (172). 

Access to internal organs is achieved by specially adapted flexible endoscopes, where 

instruments are tunnelled through additional lumens of the endoscope. Further challenges 

in terms of visual information restrictions, off-axis visualisation, spatial disorientation 

and difficult triangulation of the instruments need to be overcome. Undoubtedly, surgery 

without scars will be welcomed by patient groups, although tight regulations need to be in 

place to control the safety of the procedures, and the necessary technical skills of the 

surgeon to perform such tasks need to be defined ( 173).

The Natural Orifice Ssimulated sSurgical Environment (NOSsE™) is a high fidelity 

inanimate model developed in the Department, specifically designed to simulate the 

various ergonomic challenges in NOTES disposing the need of animal models. Solid and 

luminal organs within the abdominal cavity are modelled using foam and liquid latex 

respectively, with the addition of simulated diaphragmatic movements to be more 

realistic. The endoscope is passed through the model rectum, whilst the NOTES 

instruments are inserted whereby the usual “fulcrum” effect in laparoscopic surgery is 

lost. Figure 8.1 illustrates the NOSsE™ setup in the laboratory, which also depicts the 

glove sensors worn on the subject’s hands for hand gesture tracking during the simulated 

tasks.
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Figure 8.1 Illustration of the setup for NOSsE. Left -  subject performing simulated surgical 
task wearing glove sensors. Top and middle -  inanimate models of abdominal organs inside a 
laparoscopic training box (D -  diaphragm, TC -  transverse colon, SmB -  small bowels, AC -  
ascending colon, DC -  descending colon, L -  liver, S -  spleen). Bottom -  illustrating the 
endoscopic view inside the simulated bowel, [picture courtesy of Mr James Clark]

Using this model, detailed studies of the ergonomic design are possible in the laboratory 

settings. In addition to the usual constraints in laparoscopic surgery, spatial disorientation 

within luminal organs remains most difficult to overcome, as illustrated in bottom right 

picture of Figure 8.1. This is akin to the camera rotation experiments presented in this 

thesis, where hand-eye coordination is impeded. The proposed framework of hand-eye 

coordination measurement can be used to assist in improving the designs of the setup of 

NOTES.
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<V..?..? Functional brain imaging

Figure 8.2 Picture of the Hitachi ETG-400 Optical topography system, 24-channel optodes are 
placed on the table on the left, [picture courtesy of Mr Daniel Leff]

The Posterior Parietal Cortex (PPC) is known to be an area involved in sensorimotor 

transformation (91), whilst the prefrontal cortex is important for complex motor skills 

acquisition. As an extension of Chapter 7, brain activation data was collected during the 

experiment using functional Near InfraRed Spectroscopy (fNIRS), a non-invasive optical 

neuroimaging technique. Oxyhaemoglobin (Hb02) levels are known to increase during 

functional brain activation, which is usually accompanied by a corresponding decrease in 

deoxyhaemoglobin (HHb) levels. These levels were recorded by the ETG-4000 Optical 

Topography System (Hitachi Medical Co., Japan) using a 24-channel array of optodes, 

illustrated in Figure 8.2. These optodes emit near infrared light at 695nm and 830nm 

which penetrate through to the cortical surface, the attenuated light levels detected are 

then used to calculate the HbO: and HHb levels using the modified Beer-Lambert law

189



(174,175). The optodes were placed over the left pre-frontal cortex and the right PPC 

during data collection, as illustrated in Figure 8.3.

Figure 8.3 Illustrating channel placement of the optodes. [illustration courtesy of Mr Daniel 
Leff]

Data from Channel 4 of the pre- and post-training tasks of a subject is shown in Figure 

8.4. The averaged HbO^ concentration is plotted, where the shaded central area represents 

the task period, with the rest periods on either side. An increase in FlbCF concentration is 

seen in the pre-training task, but not in the post-training task.

Channel 4 - Pre-Training Channel 4 - Post-Tralnlna

0 5  10 15 20 25 X  36 «  0 5  10 15 20 25 X  3 5 «

Figure 8.4 Averaged Hb02 concentration measured by Channel 4 plotted in red. Left -  pre
training task, and Right -  post-training task. Shaded areas indicate motor task performance.

Figure 8.5 illustrates a subject’s PPC activations during performance of the Two Target 

Experiment in Chapter 7. Flere, a false-colour map is overlaid on the brain model, where 

the in-task data recordings show clearly an increased activation in the PPC during the pre

training task compared to the post-training task. Although it should be noted that this only 

provides a snapshot of the dynamic changes in the cortical areas throughout the tasks.
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Pre-Training Task Post-Training Task

Figure 8.5 False-colour map overlaid on the PPC of the brain model. Left - pre-training task, 
right -  post-training task. Pink illustrates higher haemoglobin concentrations compared to green, 
[illustration courtesy of Mr Daniel Leff]

Figure 8.6 shows the channels displaying decreasing trends in HbCL concentration, when 

compared with baseline rest periods, as the subjects progressed through the experiments 

(Channels 2, 4, 5 and 7, Spearman’s rank correlation r = -0.22, -0.23, -0.19 and -0.23 

respectively, and p < 0.05). These channels are placed on the PPC as illustrated in Figure 

8.3, and this cortical area has been shown to be involved in visuospatial transformation. 

In this preliminary analysis, cortical activations in certain areas of the PPC decrease 

through training, although the introduction of camera rotation (LI to L3 and R1 to R3) 

has not shown to increase this activation.

Due to the high dimensionality of the data, simple linear correlation is unlikely to reveal 

the intricate activities of cortical areas. Further work in the Department has shown that 

dimension reduction techniques, such as manifold embedding, have been successful in 

identifying individual channel and task activations (176). Extensive validation work has 

shown that pre-frontal cortex activation decreases with experience in simple surgical 

knot-tying tasks (177). Furthermore, after training, novices display more similar brain 

activation behaviour to expert surgeons (176). Inclusion of functional imaging data can 

provide a powerful tool in surgical skills assessment, cortical activations represent 

increases in the “work-load” of the brain during surgery, and this information can be used 

to highlight areas of interest in the eye-instrument data for further scrutiny.
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Figure 8.6 Mean and error bars (95% confidence interval) displaying the HbOi -  baseline 
concentration throughout the training tasks. Channels 2 (top left), 4 (top right). 5 (bottom left), and 
7 (bottom right) are displayed.

8.4 Conclusions

In conclusion, this thesis has provided a framework for quantitative analysis of hand-eye 

coordination in surgery. The resulted measurement implies the subject’s familiarity of the 

specific MIS environment, and may prove to be invaluable for objective testing of the 

ergonomics of new surgical technologies. Validation of the technique has been presented 

through data from expert and novice surgeons performing simple and complex 

laparoscopic procedures. The key contributions of the thesis include the proposal of a 

novel concept for measuring hand-eye coordination in MIS, establishing the 

spatiotemporal relationship between the hand and eye movement in simulated 

laparoscopic tasks, and quantification of subtle differences in visual search pattern as a 

function of experience and training. To our knowledge, this is the first comprehensive 

attempt into automatic calculation of hand-eye coordination within and outside surgery; 

further consolidation of the method is needed through larger scale, long-term longitudinal 

trial. It should be noted however, in order to assess surgical skills comprehensively, hand- 

eye coordination only represents a small but important aspect of the essential abilities 

towards surgical competency.
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Appendix A

Visual Search Behaviour in Skeletal 
Radiographs: experience vs.

training

A .l Introduction

Errors in the interpretation of radiographs in Accident and Emergency Departments are 

estimated to be 1.5% (178). In a busy unit, most radiographs are read by the treating 

physicians as well as radiologists to ensure good consensus, although often with a 

significant delay between the two interpretations. In a report by Williams e t al, 671 cases 

were found with discrepant radiographic reports between the emergency and radiological 

staff in 1 year, of these 286 cases required further actions (179). Factors influencing 

diagnostic accuracies include the duration of training (180,181), and the difference in 

training methods between clinical specialities (182).

It has been estimated that up to 40% of radiographs taken in the hospitals are 

musculoskeletal images (183). Again, most of these radiographs have duplicate readings 

by radiologists and orthopaedic surgeons, and the discrepancies between their 

interpretations are also shown to be significant (184). The use of eye tracking 

methodologies may provide a possible means of understanding the factors involved in 

these inconsistencies.

One of the first documented studies of eye tracking was published in a psychology 

journal in 1901 (119). The technology has since evolved from being invasive, e.g. the use 

of a scleral contact lens with embedded search coil, to accurate and non invasive video 

based eye tracking devices using bilateral VOG methods (65). Existing research has 

shown that eye tracking data implies visual attention, and can provide further insight into
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the cognitive process of image understanding and aberrant or idiosyncratic visual search 

behaviour (185-189).

Kundel and Nodine postulated the global-focal model for describing the behaviour of 

radiograph interpretation, they suggested four stages of search that include: (i) global 

impression which is defined as the initial search using mainly peripheral vision guidance 

and lasts for less than 200ms; (ii) discovery search which utilises the information from 

step one, and involves a detailed inspection of the target; (iii) reflective search which 

involves gathering evidence from cross referencing other potential targets; and (iv) post 

search recall which describes the period when the image is no longer available, and is 

recalled from memory (67). The first and last phases of the model are difficult to capture 

by eye tracking, whereas the discovery and reflective stages can be influenced by the 

ambiguity of the targets. This was demonstrated in a previous study using a low-contrast 

lung nodules detection experiment (67).

The purpose of this study is to provide a detailed quantitative analysis of the discovery 

and reflective stages of the visual search involved in identifying focal fracture sites in 

skeletal radiographs. It is aimed at establishing a numerical framework for the practical 

application of the global-focal model, and evaluating the effects of specialisation and 

training duration on visual search behaviour.

A.2 MATERIALS AND METHODS 

A.2.1 Selection of Radiographs

A total set of 33 digital radiographic images were obtained from a London hospital, 

which consisted of 12 images of the hand (including 2 practice ones), 9 images of the 

knee, and 12 images of the shoulder. All images were converted from the Digital Imaging 

and Communications in Medicine (DICOM) standard to Tagged Image File Format 

(TIFF) format using lossless conversion, and only anteroposterior view was used. The 

images were standardised in size to fit to a screen resolution of 1280x1024 pixels, and 

patient information was removed. All images were reported by a consultant radiologist 

prior to the study. One shoulder, two knee, and two hand radiographs had no fractures, 

and four images had more than one fracture. Data from three images were discarded due 

to ambiguity of the diagnosis.
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A.2.2 Eye Tracking Experiment Setup

A Tobii 1750 eye tracker (Tobii Technology, Stockholm, Sweden) was used to display 

the images. It is a remote eye tracking device using the standard binocular VOG 

technique with an accuracy of 0.5 degrees and a sampling rate of 30Hz, integrated with a 

17 inch TFT display with a resolution of 1280x1024 pixels. It can tolerate moderate head 

movement within a 30x15x20cm volume at 60cm in front of the device, thus providing a 

relatively natural environment for radiograph interpretation.

A total of 25 subjects: five consultant radiologists (Rad), six consultant orthopaedic 

surgeons (Con), five orthopaedic specialist registrars (SpR), four orthopaedic senior 

house officers (SHO) and five accident and emergency department senior house officers 

(A&E) were recruited for the study. Ethical approval was obtained from St Mary’s Local 

Research Ethics Committee, and all subjects signed written consents prior to the study.

The instructions were explained in writing and displayed on screen, all experiments were 

carried out in a darkened room with minimal noise disturbance, and the subjects were 

positioned 60 +/- 10cm in front of the screen, as illustrated in Figure A .l. After written 

consent, and standardised 5 point calibration on the Tobii eye tracker, repeat instructions 

were displayed on screen and two slides were used for familiarisation at the beginning of 

each session. 33 images were displayed sequentially. The subjects were asked to search 

for the fracture(s), and fix their gaze on the fracture(s) and press a button. The subjects 

were then required to report aloud a number from 1 to 5 (with 5 being most confident), 

indicating the confidence level for the diagnosis after each button ‘click’. The image was 

changed when the subjects were satisfied that there was no further fracture. No other 

interactions were available for the subjects.

Pixel coordinates of the eye tracking data were acquired by using the software provided 

with ClearView 2.2.0. Fixations were calculated when gaze points fell within a 1.5° 

visual angle with a minimum duration of 100ms. The location of the fracture identified by 

the observer was indicated by the fixation point coincided with a button ‘click’ within 

200ms.
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Figure A .l Illustrating experimental setup. Subject is examining a hand radiograph displayed on 
the eye tracking screen. The red lines illustrate the infrared light from the unit, and the green line 
represents the reflection captured by the camera in the eye traeker. The blue cone is the subjects 
gaze point.

Time taken to interpret the radiograph, diagnostic performance and eye tracking data 

were analysed for each subject. The dwell time was the amount of time when the 

subject’s fixations fell on the fracture site, and the medians of the group were used for 

comparison using non-parametric tests. Further analysis was performed by plotting the 

Cartesian distance between the gaze positions from the centre of the fracture as a function 

of time, or the Target Distance Function (TDF). The shape of the curves generated was 

used to assess the consistency of visual search strategy of the observer and the effect of 

experience on the search patterns as described further.

A.2.3 Statistical analysis

There were 19 radiographs with single fractures, and they were used in the subsequent 

analyses. Kullback-Leibler (KL) distance has been used to measure the statistical 

similarity between probability distributions (161). In this study, KL distance was used to 

assess the intra-observer search consistencies by comparing the TDF projections of
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individual subject’s eye tracking data, where low KL distances equate high search 

consistencies. The number of data points were standardised by interpolation, and the 

time-scale was normalised prior to analysis. The TDF from each radiograph was used to 

compare with all other 18 datasets from the same subject, this pair-wise comparison 

created KL distances in a 19x19 matrix. Images with multiple fractures, normal and 

ambiguous images were discarded for this analysis. KL distance was calculated by using 

the formula below:

where d  is the KL distance from p , the “true” probability distribution, to q, the “target” 

probability distribution.

Careful observations of the fixation data revealed distinct bimodal distribution in some of 

the datasets, implying two separate search phases. Hence, the TDF data was fitted with a 

two-mode Gaussian mixture model (shown in Figure A.3):

In the above equation, is the mean of the Gaussian component and 0j the covariance.

These parameters were derived from the Expectation Maximisation (EM) algorithm 

(146,190), which was solved iteratively through the following set of equations:

2

p g ( x \ c , 0 )  =  J 2 c . g i( x \ 0 I )
1=1

O

where ^  c. =  1 , and
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where y(x) is the original y value at time x.

The “goodness of fit” was then calculated by the Mean Squared Error (MSE) of the curve 

fitting, with low MSE values indicating better fit. The above analyses were done using 

bespoke software written in C++.

As the output data (KL distances and MSE values) was not normally distributed, Kruskal- 

Wallis test was used to demonstrate the difference between more than two groups, and 

Mann-Whitney test was used to compare between two groups. Non-parametric 

correlations were calculated using Spearman’s rank test. SPSS 11.5 (Chicago, Illinois) 

was used for statistical calculations.

A.3 RESULTS

A.3.1 Qualitative analysis

Figure A.2 illustrates examples of the fixation distributions of a consultant orthopaedic 

surgeon and an orthopaedic senior house officer, whilst examining the same hand 

radiograph with multiple fractures. It illustrates qualitatively the difference in fixation 

patterns: the experienced consultant systematically surveyed all the individual bony 

structures of the hand, and successfully identified both fractures; whereas the junior 

clinician misdiagnosed the fracture and prematurely terminated the search for further 

targets.
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Figure A.2 Fixation plots o f a consultant orthopaedic surgeon (left) and an orthopaedic senior 
house officer (right) viewing a hand radiograph with two fractures (circled red, centre). In these 
plots, the green circles are fixations (the larger the longer the fixation) and green lines are 
saccades, red circles indicate fixations when the button was pressed. This shows that the senior 
house officer missed the two fractures, and misdiagnosed the growth plate (third metacarpal) as a 
fracture. Furthermore, this subject did an incomplete survey of all the bones in the hand 
radiograph.

To illustrate the quality of the TDF data used for the Gaussian mixture model fitting, 

Figure A.3 provides three example plots of a consultant radiologist (A), an orthopaedic 

surgeon (B), and an A&E senior house officer (C) examining a hand radiograph. The data 

points (black dots) are gaze measurements, and the lines illustrate the two Gaussian 

components fitted over the data points. In Figures A.3A and A.3B, the data points fit well 

with the two Gaussian components, as compared to the poorly fitted Gaussian curves in 

Figure A.3C due to the disorganised eye fixations. The two Gaussian components are 

different in sizes in Figures AAA and A.3B, where the former is composed of a relatively 

small first component when compared to the second, and vice versa. This may be 

implicated in the relative importance of the two stages of search, as indicated by the 

amount of time spent in each stage.
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Figure A.3 Plot of TDF versus time of (A) a consultant radiologist, (B) a consultant orthopaedic 
surgeon and (C) a senior house officer in accident and emergency examining a hand radiograph. 
The data points (black dots) are gaze points whereas the lines illustrate the two Gaussian 
components fitted over the data points.
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Figure A.4A illustrates the number of True Positives (TP) or identified fractures for all 

subjects, it is evident that the senior clinicians had much higher number of TP (p < 

0.001). Lower number of False Negatives (FN) or missed fractures was also found in the 

senior groups (p < 0.001).

G ro u p s

R ad C o n  S p R  S H O  A & E

Total T im e to fin ish 
whole study (s)

(529) (550) (342) (467) (580) 
609 741 630 585 766

(1187) (1220) (1144) (703) (1114)

TP (total = 29)
(19.5) (20) (18.5) (12.25) (14) 

20 24 22 16.5 16
(21.5) (26) (22.5) (18.5) (19.5)

Dwell tim e per 
fracture  (TP) (ms)

(2364) (2347) (1593) (2505) (3445) 
4407 4698 3999 4811 6014

(7021) (6974) (7410) (7768) (10369)

Dwell tim e per 
frac tu re  (FN) (ms)

(0) (0) (0) (0) (0) 
584 277 228 390 455

(3282) (951) (3234) (1023) (2080)

Table A.l Summary o f the results of the study. Bold = median, brackets = interquartile range

A.3.2 Dwell time analysis

It was found that the total time taken to examine all the images by different subject 

groups was not significantly different, except for a radiograph of a fracture of the 

shoulder with immature bone where the senior groups took longer (p < 0.05).

2 J______ ¥_________,_________ .
Rad Con SpR SHO A&E

Grade Number

Figure A.4 True positives (A) and dwell time ratio (B) in TP radiographs. Rad and A&E are 
highlighted in green for easy comparison. (Boxplots show the median (line), interquartile range 
(shaded box), range of the data (whiskers), outliers and extreme cases not plotted)
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Figure A.4B shows the dwell time ratio (which is defined as dwell time on fracture site 

divided by total time spent on the radiograph) among the five groups. For the TP 

radiographs, there was a significant difference in dwell time ratios between the groups (p  

< 0.001), with the senior groups spending less time at the fracture sites. In FN 

radiographs, no significant difference was found between the groups.

A.3.3 Search consistency

Within subject scan path comparison by KL distance was used to assess search pattern 

consistency, there was a significant difference between the groups {p <  0.001). The Rad 

group had significantly lower KL distances than the A&E (p <  0.001) and the Con groups 

(p  < 0.001), indicating higher search pattern consistencies. The SHO group also had 

significantly lower KL distances than the A&E group {p < 0.001). The mean ranks of the 

KL distance for the different groups are illustrated in Figure A.5A. The variance of the 

KL distance was also compared within each subject, there was no significant difference 

between the groups; however, when radiologists were compared with non radiologists, 

there was a significant difference (p <  0.05).

A.3.4 Gaussian model fitting

Figures A.5B and C show the MSE of the Gaussian mixture model fitting of the five 

groups in examining the hand and shoulder radiographs respectively. The MSE of hand 
radiographs correlated with experience levels, in increasing order from Rad, Con, SpR, 

A&E and SHO (r = 0.162, p  = 0.07). This indicated that the scan paths of the Rad group 

best fitted with the two-stage model. The Rad group had lower MSE than the A&E group 

ip  = 0.09). However, in Figure A.5C where shoulder radiographs were used, an opposite 

trend was seen, where there was a negative correlation (r = -0.287, p  < 0.001) with 

experience. There were no significant correlations in knee radiographs.

202



(A)

Grade no Confidence

Figure A.5 (A) Mean rank of the KL distance between the five groups. (B) MSE of the Gaussian 
mixture model fitting in hand radiographs. (C) MSE of the Gaussian mixture model fitting in 
shoulder radiographs. (D) Covariance of the first Gaussian curve in hand radiographs plotted 
against the confidence level. Rad and A&E are highlighted in green for easy comparison. 
(Boxplots show the median (line), interquartile range (shaded box), range of the data (whiskers), 
outliers and extreme cases not plotted)

In Figure A.5D where only hand radiographs were examined, the covariance of the first 

Gaussian curve correlated with the confidence level (r = 0.266, p = 0.07). In other words, 

less time was spent on the second stage of visual search as the diagnosis was more 

confident. This can be referred back to Figure A.3, in the example shown in Figure A.3B 

the second Gaussian curve has a much lower covariance (narrower distribution) than the 

first, in contrast with Figure A.3A. Experience also influenced the diagnostic confidence 

of the subjects, where the confidence level was negatively correlated with the experience 

levels in the order as above (r = -0.303, p < 0.05).
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A.4 DISCUSSION

A.4.1 Statement of principal findings

Based on the global-focal model, this study aims to provide a quantitative framework for 

assessing subtle differences in visual search behaviour in locating focal lesions in 

musculoskeletal images. It confirmed quantitatively that the more experienced observers 

have higher accuracies in fracture identification than less experienced ones, along with an 

explanation of the plausible causes.

A.4.2 Dwell time

This study showed that it was the distribution of time to interpret each image which was 

significantly different, not the total time taken. The dwell time analysis showed that in 

identified fractures (TP), less time was spent on the fracture site by experts than novices, 

as shown in Figure A.4B. This implied that with experience less time was needed at the 

fracture site for identification and decision processing, but more time was spent for cross- 

referencing or identification of further abnormalities.

A.4.3 Two-stage search

The Gaussian mixture model fitting was used to dissect the search pattern into two stages, 

this was decided experimentally after observations of all the raw data. It appeared that 

expert search strategy (especially in hand radiographs) was more consistent with the two- 

stage search pattern (see Figures A.3). Another interesting observation through the 

properties of the Gaussian model revealed that the covariance of the first curves increase 

with confidence, whereas the second covariance exhibit the opposite behaviour, as 

illustrated in Figure A.5D. The covariance of the Gaussian mixture model is proportional 

to the width of the curve, and hence more time was spent in the second stage of search 

when the diagnosis was less obvious. This further confirmed that the second stage was 

used for cross referencing other potential targets, as described in the global-focal model.

A strikingly different approach was observed in more conspicuous targets, namely 

shoulder radiographs. Here the number of potential fracture sites is limited, and are 

generally more obvious when compared with hand radiographs (191). Experts in fracture 

search should be able to detect the targets in the first stage of search (using only 

peripheral vision), and the next two stages of detailed search would become redundant.
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The contrast with hand radiographs as displayed in Figures A.5B and C, in fact, further 

confirmed that the model best describes search models in subtle targets only.

A.4.4 Search consistency

Consistency in search strategy was quantified using KL distance in this study, this 

distance describes the amount of difference between gaze distributions. For each subject, 

the KL distance was calculated between all the images, so the shorter distance meant that 

similar strategies (or scan paths) were used throughout the study. The variance of KL 

distance also showed a similar trend, which reiterated the consistency in the expert 

groups.

A.4.5 The effect of training and specialisation

Previous reports have shown that A&E doctors have inferior diagnostic performances 

when compared with radiologists. The first aim of the study was to compare A&E senior 

house officers to radiology consultants, which should display the most difference in 

search behaviour. Indeed, it was found that radiologists were significantly more 

consistent with their search pattern, and seemed to adhere to the two-stage search 

strategy.

The comparison of clinicians across specialities provides an interesting contrast that may 

be explained by the difference in training and the primary aim of radiographic 

interpretation. Although radiology and orthopaedic consultants had similar diagnostic 

performances, radiologists were more consistent in their approach, and also adhered more 

closely to the two-stage search model. A&E and orthopaedic senior house officers also 

had similar accuracies in their interpretations. Interestingly, A&E group were less 

consistent in their search behaviour.

Furthermore, the effect of training was evaluated by examining the three orthopaedic 

groups at various levels of training. It seemed that training has neither changed the 

consistency nor the search strategies into the two-stage model proposed.
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It should be noted that this study only used a relatively small number of single view 

radiographs without any clinical information given to the subjects. This was: first, to 

simplify the study design, a two-view study would add the complexity of subjects 

glancing between the two radiographs; second, if clinical information was given to the 

subjects, this would influence their search behaviour and bias the results; third, increasing 

the length of the study would introduce factors such as fatigue and boredom. These 

factors would further complicate the analysis framework.

The method used to identify fractures in this study required the subjects to prolong their 

gaze at the fracture site, whilst pressing a button. This would obviously artificially 

increase the dwell time at the fracture, although this increase should be similar in all 

groups. This method, however, allowed a more accurate assessment of their diagnostic 

performances.

A.4.7 Contrasts to previous studies

Although extensive previous research has been conducted in visual search scan path 

analysis in radiological images, dwell time analysis and time-to-target still remain the 

most commonly used metrics for analysis (187-189). Other studies have concentrated on 

extracting image features that influence eye movement pattern, to uncover the underlying 

cognitive strategies of visual search (185,192,193).

Skeletal radiographs are less studied using eye tracking, as the image features are more 

heterogeneous in nature. A study on hand and wrist radiographs revealed that radiologists 

used four different visual search patterns (circular, radial, zigzag, complex), however, this 

was analysed subjectively and qualitatively (194). Search pattern in radiographs with 

multiple fractures was also studied by Berbaum e t a l, the aim was to exhibit the effect of 

premature termination due to satisfaction of search (195). In terms of comparison of 

performances between specialities, two studies examined skeletal radiographs and eye 

movements of radiologists and orthopaedic surgeons. However, the studies focused on 

comparing the presenting media of the radiographs only (196,197), rather than comparing 

across clinical specialisations.

A.4.6 Weaknesses of the study
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The comparison of the radiologists with A&E doctors provided possible explanation of 

the difference in accuracies in diagnosis. The contrasts between orthopaedic surgeons and 

radiologists may be explained by their usual clinical practice. Orthopaedic surgeons tend 

to examine the patients prior to reading the radiographs, hence search strategy is heavily 

influenced by prior knowledge and clinical judgement, this is known as the “top-down” 

approach. In contrast, radiologists usually receive the radiographs with an insufficiently 

brief summary of the clinical picture; they also search for all abnormalities in the 

radiograph (not just fractures), this is called the “bottom-up” approach (198). The 

difference between A&E and orthopaedic senior house officers in their search consistency 

is interesting. A&E junior doctors usually have a mixed interest in their future careers; 

however, the majority of orthopaedic senior house officers will have an interest in 

developing a surgical career, and usually have stronger background knowledge in 

anatomy and surgical pathology.

The postgraduate training of radiologists is also very different from orthopaedic surgeons: 

radiologists tend to be taught formally how to interpret radiographs and usually have their 

results audited periodically, this is not the case in orthopaedics. This may explain the 

relatively unchanged search strategies between the three experience groups in 

orthopaedics. Formal education in orthopaedic surgeons in radiographic interpretation 

may be beneficial to their search consistencies.

A.4.9 Future research

This study first included radiographs with multiple fractures, but the behavioural analysis 

proved to be too complex. Further studies of radiographic images with multiple 

pathologies are warranted, where the effect of satisfaction of search may be quantified 

mathematically (195).

Eye tracking may prove to be useful for training in radiographic interpretation. However, 

its routine use will require further improvements of the eye tracking technology in being 

truly pervasive and not affecting the usual behaviour of the observers. Further 

development in the analysis framework is also necessary to account for the idiosyncrasy 

of cognitive visual search strategies used, as this study primarily focused on the analysis 

of spatiotemporal scan path patterns.

A.4.8 Meaning and implications of this study
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