6,802 research outputs found

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    DBaaS Multitenancy, Auto-tuning and SLA Maintenance in Cloud Environments: a Brief Survey

    Get PDF
    Cloud computing is a paradigm that presents many advantages to both costumers and service providers, such as low upfront investment, pay-per-use and easiness of use, delivering/enabling scalable services using Internet technologies. Among many types of services we have today, Database as a Service (DBaaS) is the one where a database is provided in the cloud in all its aspects. Examples of aspects related to DBaaS utilization are data storage, resources management and SLA maintenance. In this context, an important feature, related to it, is resource management and performance, which can be done in many different ways for several reasons, such as saving money, time, and meeting the requirements agreed between client and provider, that are defined in the Service Level Agreement (SLA). A SLA usually tries to protect the costumer from not receiving the contracted service and to ensure that the provider reaches the profit intended. In this paper it is presented a classification based on three main parameters that aim to manage resources for enhancing the performance on DBaaS and guarantee that the SLA is respected for both user and provider sides benefit. The proposal is based upon a survey of existing research work efforts

    V-Edge: Virtual Edge Computing as an Enabler for Novel Microservices and Cooperative Computing

    Get PDF
    As we move from 5G to 6G, edge computing is one of the concepts that needs revisiting. Its core idea is still intriguing: instead of sending all data and tasks from an end user's device to the cloud, possibly covering thousands of kilometers and introducing delays that are just owed to limited propagation speed, edge servers deployed in close proximity to the user, e.g., at some 5G gNB, serve as proxy for the cloud. Yet this promising idea is hampered by the limited availability of such edge servers. In this paper, we discuss a way forward, namely the virtual edge computing (V-Edge) concept. V-Edge bridges the gap between cloud, edge, and fog by virtualizing all available resources including the end users' devices and making these resources widely available using well-defined interfaces. V-Edge also acts as an enabler for novel microservices as well as cooperative computing solutions. We introduce the general V-Edge architecture and we characterize some of the key research challenges to overcome, in order to enable wide-spread and even more powerful edge services

    Engineering software for next-generation networks in a sustainable way.

    Get PDF
    The virtualization and softwarization of network functions is the networking industry's latest achievement. Software-Defined Networks (SDN) and Network Function Virtualization (NFV) propose novel software architectures and development process adapted to for instance mobile networks (e.g., 6G). However, these architectures and processes are mainly defined by the telecommunications community, without much regard for the contributions of software engineering to generic software processes. This paper explores how the fields of software engineering (SE) and telecommunications can work together to improve service virtualization, cloud computing, and edge computing in the context of next-generation networks. It also highlights the potential of SE fields like software architecture, variability, and configuration to greatly enhance the development of virtual network functions (VNFs). On the other hand, the new contributions should be energy efficient, since this is a primary goal in next-gen networks. Finally, current software processes should consider the impact of communication networks on the correct functioning of software products, since network functioning can affect the QoE of users.Work supported by the projects \emph{IRIS} PID2021-122812OB-I00 (co-financed by FEDER funds), and \emph{DAEMON} H2020-101017109; and by Universidad de Málaga

    Availability-driven NFV orchestration

    Get PDF
    Virtual Network Functions as a Service (VNFaaS) is a promising business whose technical directions consist of providing network functions as a Service instead of delivering standalone network appliances, leveraging a virtualized environment named NFV Infrastructure (NFVI) to provide higher scalability and reduce maintenance costs. Operating the NFVI under stringent availability guarantees is fundamental to ensure the proper functioning of the VNFaaS against software attacks and failures, as well as common physical device failures. Indeed the availability of a VNFaaS relies on the failure rate of its single components, namely the physical servers, the hypervisor, the VNF software, and the communication network. In this paper, we propose a versatile orchestration model able to integrate an elastic VNF protection strategy with the goal to maximize the availability of an NFVI system serving multiple VNF demands. The elasticity derives from (i) the ability to use VNF protection only if needed, or (ii) to pass from dedicated protection scheme to shared VNF protection scheme when needed for a subset of the VNFs, (iii) to integrate traffic split and load-balancing as well as mastership role election in the orchestration decision, (iv) to adjust the placement of VNF masters and slaves based on the availability of the different system and network components involved. We propose a VNF orchestration algorithm based on Variable Neighboring Search, able to integrate both protection schemes in a scalable way and capable to scale, while outperforming standard online policies

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research
    corecore