12,700 research outputs found

    Multiple 2D self organising map network for surface reconstruction of 3D unstructured data

    Get PDF
    Surface reconstruction is a challenging task in reverse engineering because it must represent the surface which is similar to the original object based on the data obtained. The data obtained are mostly in unstructured type whereby there is not enough information and incorrect surface will be obtained. Therefore, the data should be reorganised by finding the correct topology with minimum surface error. Previous studies showed that Self Organising Map (SOM) model, the conventional surface approximation approach with Non Uniform Rational B-Splines (NURBS) surfaces, and optimisation methods such as Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimisation (PSO) methods are widely implemented in solving the surface reconstruction. However, the model, approach and optimisation methods are still suffer from the unstructured data and accuracy problems. Therefore, the aims of this research are to propose Cube SOM (CSOM) model with multiple 2D SOM network in organising the unstructured surface data, and to propose optimised surface approximation approach in generating the NURBS surfaces. GA, DE and PSO methods are implemented to minimise the surface error by adjusting the NURBS control points. In order to test and validate the proposed model and approach, four primitive objects data and one medical image data are used. As to evaluate the performance of the proposed model and approach, three performance measurements have been used: Average Quantisation Error (AQE) and Number Of Vertices (NOV) for the CSOM model while surface error for the proposed optimised surface approximation approach. The accuracy of AQE for CSOM model has been improved to 64% and 66% when compared to 2D and 3D SOM respectively. The NOV for CSOM model has been reduced from 8000 to 2168 as compared to 3D SOM. The accuracy of surface error for the optimised surface approximation approach has been improved to 7% compared to the conventional approach. The proposed CSOM model and optimised surface approximation approach have successfully reconstructed surface of all five data with better performance based on three performance measurements used in the evaluation

    Improving the thin-disk models of circumstellar disk evolution. The 2+1-dimensional model

    Full text link
    Circumstellar disks of gas and dust are naturally formed from contracting pre-stellar molecular cores during the star formation process. To study various dynamical and chemical processes that take place in circumstellar disks prior to their dissipation and transition to debris disks, the appropriate numerical models capable of studying the long-term disk chemodynamical evolution are required. We present a new 2+1-dimensional numerical hydrodynamics model of circumstellar disk evolution, in which the thin-disk model is complemented with the procedure for calculating the vertical distributions of gas volume density and temperature in the disk. The reconstruction of the disk vertical structure is performed at every time step via the solution of the time-dependent radiative transfer equations coupled to the equation of the vertical hydrostatic equilibrium. We perform a detailed comparison between circumstellar disks produced with our previous 2D model and with the improved 2+1D approach. The structure and evolution of resulting disks, including the differences in temperatures, densities, disk masses and protostellar accretion rates, are discussed in detail. The new 2+1D model yields systematically colder disks, while the in-falling parental clouds are warmer. Both effects act to increase the strength of disk gravitational instability and, as a result, the number of gravitationally bound fragments that form in the disk via gravitational fragmentation as compared to the purely 2D thin-disk simulations with a simplified thermal balance calculation.Comment: Accepted for publication in Astronomy & Astrophysic

    Uncertainties in grid-based estimates of stellar mass and radius. SCEPtER: Stellar CharactEristics Pisa Estimation gRid

    Get PDF
    Some aspects of the systematic and statistical errors affecting grid-based estimation of stellar masses and radii have still not been investigated well. We study the impact on mass and radius determination of the uncertainty in the input physics, in the mixing-length value, in the initial helium abundance, and in the microscopic diffusion efficiency adopted in stellar model computations. We consider stars with mass in the range [0.8 - 1.1] Msun and evolutionary stages from the zero-age main sequence to the central hydrogen exhaustion. Stellar parameters were recovered by a maximum-likelihood technique, comparing the observations constraints to a grid of stellar models. Synthetic grids with perturbed input were adopted to estimate the systematic errors arising from the current uncertainty in model computations. We found that the statistical error components, owing to the current typical uncertainty in the observations, are nearly constant in all cases at about 4.5% and 2.2% on mass and radius determination, respectively. The systematic bias on mass and radius determination due to a variation of ±\pm 1 in Delta Y/Delta Z is ±\pm 2.3% and ±\pm 1.1%; the one due to a change of ±\pm 0.24 in the value of the mixing-length is ±\pm 2.1% and ±\pm 1.0%; the one due to a variation of ±\pm 5% in the radiative opacity is \mp 1.0% and \mp 0.45%. An important bias source is to neglect microscopic diffusion, which accounts for errors of about 3.7% and 1.5% on mass and radius. The cumulative effects of the considered uncertainty sources can produce biased estimates of stellar characteristics. Comparison of the results of our technique with other grid techniques shows that the systematic biases induced by the differences in the estimation grids are generally greater than the statistical errors involved.Comment: Accepted for publication in A&A. Abstract shortene

    A combinatorial approach to angiosperm pollen morphology

    Get PDF
    Angiosperms (flowering plants) are strikingly diverse. This is clearly expressed in the morphology of their pollen grains, which are characterized by enormous variety in their shape and patterning. In this paper, I approach angiosperm pollen morphology from the perspective of enumerative combinatorics. This involves generating angiosperm pollen morphotypes by algorithmically combining character states and enumerating the results of these combinations. I use this approach to generate 3 643 200 pollen morphotypes, which I visualize using a parallel-coordinates plot. This represents a raw morphospace. To compare real-world and theoretical morphologies, I map the pollen of 1008 species of Neotropical angiosperms growing on Barro Colorado Island (BCI), Panama, onto this raw morphospace. This highlights that, in addition to their well-documented taxonomic diversity, Neotropical rainforests also represent an enormous reservoir of morphological diversity. Angiosperm pollen morphospace at BCI has been filled mostly by pollen morphotypes that are unique to single plant species. Repetition of pollen morphotypes among higher taxa at BCI reflects both constraint and convergence. This combinatorial approach to morphology addresses the complexity that results from large numbers of discrete character combinations and could be employed in any situation where organismal form can be captured by discrete morphological characters

    Mixing-length estimates from binary systems. A theoretical investigation on the estimation errors

    Full text link
    We performed a theoretical investigation on the mixing-length parameter recovery from an eclipsing double-lined binary system. We focused on a syntetic system composed by a primary of mass M = 0.95 Msun and a secondary of M = 0.85 Msun. Monte Carlo simulations were conducted at three metallicities, and three evolutionary stages of the primary. For each configuration artificial data were sampled assuming an increasing difference between the mixing-length of the two stars. The mixing length values were reconstructed using three alternative set-ups. A first method, which assumes full independence between the two stars, showed a great difficulty to constrain the mixing-length values: the recovered values were nearly unconstrained with a standard deviation of 0.40. The second technique imposes the constraint of common age and initial chemical composition for the two stars in the fit. We found that αml,1\alpha_{ml,1} values match the ones recovered under the previous configuration, but αml,2\alpha_{ml,2} values are peaked around unbiased estimates. This occurs because the primary star provides a much more tight age constraint in the joint fit than the secondary. Within this second scenario we also explored, for systems sharing a common αml\alpha_{ml}, the difference in the mixing-length values of the two stars only due to random fluctuations owing to the observational errors. The posterior distribution of these differences was peaked around zero, with a large standard deviation of 0.3 (15\% of the solar-scaled value). The third technique also imposes the constraint of a common mixing-length value for the two stars, and served as a test for identification of wrong fitting assumptions. In this case the common mixing-length is mainly dictated by the value of αml,2\alpha_{ml,2}. [...] For Δαml>0.4\Delta \alpha_{ml} > 0.4 less than half of the systems can be recovered and only 20% at Δαml=1.0\Delta \alpha_{ml} = 1.0.Comment: Abstract abridge

    3D SEM Surface Reconstruction: An Optimized, Adaptive, and Intelligent Approach

    Get PDF
    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, including biological, mechanical, and material sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and information about their three-dimensional (3D) surface structures. Having 3D surfaces from SEM images would provide true anatomic shapes of micro samples which would allow for quantitative measurements and informative visualization of the systems being investigated. In this research project, we novel design and develop an optimized, adaptive, and intelligent multi-view approach named 3DSEM++ for 3D surface reconstruction of SEM images, making a 3D SEM dataset publicly and freely available to the research community. The work is expected to stimulate more interest and draw attention from the computer vision and multimedia communities to the fast-growing SEM application area

    Nonlinear force-free modeling of the solar coronal magnetic field

    Full text link
    The coronal magnetic field is an important quantity because the magnetic field dominates the structure of the solar corona. Unfortunately direct measurements of coronal magnetic fields are usually not available. The photospheric magnetic field is measured routinely with vector magnetographs. These photospheric measurements are extrapolated into the solar corona. The extrapolated coronal magnetic field depends on assumptions regarding the coronal plasma, e.g. force-freeness. Force-free means that all non-magnetic forces like pressure gradients and gravity are neglected. This approach is well justified in the solar corona due to the low plasma beta. One has to take care, however, about ambiguities, noise and non-magnetic forces in the photosphere, where the magnetic field vector is measured. Here we review different numerical methods for a nonlinear force-free coronal magnetic field extrapolation: Grad-Rubin codes, upward integration method, MHD-relaxation, optimization and the boundary element approach. We briefly discuss the main features of the different methods and concentrate mainly on recently developed new codes.Comment: 33 pages, 3 figures, Review articl
    corecore