The coronal magnetic field is an important quantity because the magnetic
field dominates the structure of the solar corona. Unfortunately direct
measurements of coronal magnetic fields are usually not available. The
photospheric magnetic field is measured routinely with vector magnetographs.
These photospheric measurements are extrapolated into the solar corona. The
extrapolated coronal magnetic field depends on assumptions regarding the
coronal plasma, e.g. force-freeness. Force-free means that all non-magnetic
forces like pressure gradients and gravity are neglected. This approach is well
justified in the solar corona due to the low plasma beta. One has to take care,
however, about ambiguities, noise and non-magnetic forces in the photosphere,
where the magnetic field vector is measured. Here we review different numerical
methods for a nonlinear force-free coronal magnetic field extrapolation:
Grad-Rubin codes, upward integration method, MHD-relaxation, optimization and
the boundary element approach. We briefly discuss the main features of the
different methods and concentrate mainly on recently developed new codes.Comment: 33 pages, 3 figures, Review articl