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ABSTRACT 

 

 

 

 

Surface reconstruction is a challenging task in reverse engineering because it 

must represent the surface which is similar to the original object based on the data 

obtained.  The data obtained are mostly in unstructured type whereby there is not 

enough information and incorrect surface will be obtained.  Therefore, the data 

should be reorganised by finding the correct topology with minimum surface error.  

Previous studies showed that Self Organising Map (SOM) model, the conventional 

surface approximation approach with Non Uniform Rational B-Splines (NURBS) 

surfaces, and optimisation methods such as Genetic Algorithm (GA), Differential 

Evolution (DE) and Particle Swarm Optimisation (PSO) methods are widely 

implemented in solving the surface reconstruction.  However, the model, approach 

and optimisation methods are still suffer from the unstructured data and accuracy 

problems.  Therefore, the aims of this research are to propose Cube SOM (CSOM) 

model with multiple 2D SOM network in organising the unstructured surface data, 

and to propose optimised surface approximation approach in generating the NURBS 

surfaces.  GA, DE and PSO methods are implemented to minimise the surface error 

by adjusting the NURBS control points.  In order to test and validate the proposed 

model and approach, four primitive objects data and one medical image data are used.  

As to evaluate the performance of the proposed model and approach, three 

performance measurements have been used: Average Quantisation Error (AQE) and 

Number Of Vertices (NOV) for the CSOM model while surface error for the 

proposed optimised surface approximation approach.  The accuracy of AQE for 

CSOM model has been improved to 64% and 66% when compared to 2D and 3D 

SOM respectively.  The NOV for CSOM model has been reduced from 8000 to 2168 

as compared to 3D SOM.  The accuracy of surface error for the optimised surface 

approximation approach has been improved to 7% compared to the conventional 

approach. The proposed CSOM model and optimised surface approximation 

approach have successfully reconstructed surface of all five data with better 

performance based on three performance measurements used in the evaluation.  
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ABSTRAK 

 

 

 

 

Pembinaan semula permukaan adalah tugas yang mencabar dalam 

kejuruteraan kebelakang kerana ia mestilah mewakili permukaan yang sama dengan 

objek asal berdasarkan data yang diperolehi.  Data yang diperolehi kebanyakannya 

adalah dalam jenis tidak berstruktur di mana tiada maklumat yang cukup dan 

permukaan yang tidak tepat akan diperolehi.  Oleh itu, data perlu disusun semula 

dengan mencari topologi yang betul serta ralat permukaan yang minimum.  Kajian 

terdahulu menunjukkan bahawa model Peta Swa-Organisasi (SOM), pendekatan 

penghampiran permukaan konvensional dengan permukaan Splin-B Nisbah Tak 

Seragam (NURBS), dan kaedah pengoptimuman seperti kaedah Algoritma Genetik 

(GA), Evolusi Pembezaan (DE) dan Pengoptimuman Partikel Berkelompok (PSO) 

dilaksanakan secara meluas dalam menyelesaikan pembinaan semula permukaan.  

Tetapi, model, pendekatan dan kaedah pengoptimuman masih mengalami masalah-

masalah data tidak berstruktur dan ketepatan.  Oleh itu, matlamat penyelidikan ini 

adalah untuk mencadangkan model Kubus SOM (CSOM) dengan rangkaian SOM 

2D berganda untuk menyusun data permukaan yang tidak berstruktur, dan untuk 

mencadangkan pendekatan penghampiran permukaan optimum untuk menjana 

permukaan NURBS.  Kaedah GA, DE dan PSO dilaksanakan bagi mengurangkan 

ralat permukaan dengan melaraskan titik kawalan NURBS.  Bagi menguji dan 

mengesah model dan pendekatan yang dicadangkan, empat data objek primitif dan 

satu data imej perubatan digunakan.  Bagi menilai pencapaian model dan pendekatan 

yang dicadangkan, tiga pengukuran pencapaian digunakan: Purata Ralat 

Pengkuantuman (AQE) dan Bilangan Bucu (NOV) untuk model CSOM manakala 

ralat permukaan untuk pendekatan penghampiran permukaan optimum yang 

dicadangkan.  Ketepatan AQE bagi model CSOM telah meningkat kepada 64% dan 

66% berbanding dengan model SOM 2D dan 3D. NOV bagi model CSOM telah 

dikurangkan daripada 8000 kepada 2168 berbanding dengan model SOM 3D.  

Ketepatan ralat permukaan bagi pendekatan penghampiran permukaan optimum 

telah meningkat kepada 7% berbanding dengan pendekatan konvensional.  Model 

CSOM dan pendekatan penghampiran permukaan optimum yang dicadangkan telah 

berjaya membina semula permukaan untuk kelima-lima imej ujian dengan 

pencapaian yang lebih baik berdasarkan ketiga-tiga pengukuran pencapaian yang 

diguna dalam penilaian. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Surface reconstruction towards data points has become the popular topic in 

the field of computer graphics and computational geometry (Studholme, 2001; Ni 

and Ma, 2010) in the recent years.  In addition, surface reconstruction is a 

challenging task in the reverse engineering (Elmidany et al., 2011; Gálvez et al., 

2012) because it will reconstruct the surface of the model based on the data obtained 

(Guo et al., 2010; Zhou, 2011; DalleMole et al., 2010).  The studies of surface 

reconstruction has become the important aspects for different scientific areas and 

variety of applications, such as medical imaging, mechanical and virtual reality 

(Montes and Penedo, 2004; Forkan, 2009).  It is very useful especially for those 

objects which are damaged and do not have any model that can be used to represent 

the original surface (Forkan, 2009).  It can also be used to reproduce the spare part 

for the component that is no longer available and the design for that particular part 

can be modified or redesigned (Várady et al., 1997). 

 

 

 Basically, surface reconstruction can be performed after the data have been 

collected.  Data collection is very important in surface reconstruction because the 

methods and surface representation will be selected based on the data available.  As 

stated by Goldenthal and Bercovier (2004), the initial data collected are not the exact 

surface of an object.  It only roughly represents the shape of surface based on some 

measuring points.  In addition, the data collected can be in the structured or 
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unstructured type.  As stated by DalleMole et al. (2010), connectivity on the data is 

important in surface reconstruction because normally unstructured data are obtained.  

The shape of the surface can be affected by the data type.  Hence, the organising 

process should be performed if the data obtained are in unstructured type. 

 

 

Generally, surface representation can be categorised into three categories, 

which are explicit, implicit and parametric form.  As stated by Iglesias and Gálvez 

(2014), parametric form such as Non Uniform Rational B-Spline (NURBS) is usually 

used as the mathematical entities in representing the curves and surfaces.  This is also 

suggested by Farin (2002) and Gálvez et al. (2007) because the representation is 

flexible by simply modifying certain parameters (Iglesias and Gálvez, 2014) and 

better shape can be obtained.   

 

 

In addition, the traditional reverse engineering procedures contain a lot of 

disadvantages due to complicated procedures are required with a large amount of 

time for the manual operations (Zhou, 2011).  Therefore, the Artificial Intelligence 

(AI) methods which contain the heuristic characteristics have attracted the attention 

of researchers to implement in solving the surface reconstruction case studies 

(Forkan, 2009; Pandunata, 2011).  This is because the AI methods are able to provide 

several results for the same case studies and the most optimised results can be 

obtained.  The AI methods such as the Self Organising Map (SOM) model is used to 

organise the unstructured data in Do Rêgo and Araújo (2010) and Iglesias and 

Gálvez (2014) while Genetic Algorithm (GA), Differential Evolution (DE) and 

Particle Swarm Optimisation (PSO) methods are used to solve the fitting and 

optimisation problems in Safari et al. (2013), Gálvez et al. (2012), Dehmollaian 

(2011) and Gálvez et al. (2010).   

 

 

 This chapter demonstrates the introduction for this research.  The problem 

background based on the previous works is discussed in the first section and the 

problem statement in the second section is derived based on the issues stated in the 

problem background.  The topic of discussion is continued with the objectives and 

scopes for this research and the thesis organisation is elaborated in the last section. 
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1.2 Problem Background 

 

 

There are two main issues in the surface reconstruction will be discussed in 

this research.  The first issue is related to the unstructured data and the second issue 

is related to the accuracy of the results.  Both of the issues are connected and should 

be noticed when the methods are implemented.  Basically, unstructured data are 

frequently obtained after data collection has been performed (Kazhdan et al., 2006; 

Iglesias and Gálvez, 2014) and there is no any connectivity information for the 

unstructured data (DalleMole et al., 2010).  So, surface reconstruction will be 

difficult to perform when it is implemented with this kind of data (Gálvez et al., 2007) 

because it needs to find the correct connectivity for the data (Yu, 1999; Yan et al., 

2004; Boudjemaï et al., 2003; DalleMole et al., 2010).  As stated by Knopf and 

Sangole (2004), the connectivity of the surface is very important and it must be 

established in the beginning in order to reconstruct and represent the surface 

correctly.   

 

 

As stated by Zhou (2011), the traditional reverse engineering procedures are 

suffered from many disadvantages and required to handle a lot of complicated 

procedures.  Hence, the AI methods such SOM model is usually used to handle the 

topological and connectivity of unstructured data in surface reconstruction case 

studies (Forkan, 2009; Pandunata, 2011).  This is because SOM model is able to 

cluster the data accordingly based on the topological arrangement (Hoffmann, 1999; 

Iglesias and Gálvez, 2014; Jiang et al., 2010; DalleMole et al., 2010).  However, the 

2D SOM model is unable to cover the whole surface of the closed surface object 

(Boudjemaï et al., 2003) and gaps are appeared on the results produced.  Although 

the authors have proposed the spherical with triangle topology to represent the closed 

surface object, but the results can only be used for visualisation without providing 

any performance measurement on the approximation.  In addition, the SOM model 

has been enhanced with the growing abilities (Montes and Penedo, 2004; Andreakis 

et al., 2009; DalleMole et al., 2010; DalleMole et al., 2011; Holz and Behnke, 2013).  

However, extra processes are needed to handle the problem caused by the growing 

criteria.  This is because if unnecessary vertices are removed, it will destroy the 
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connectivity of the polygon and overlapping triangle faces and gaps will be appeared.  

Hence, the proposed method leads to even complicated calculation and procedures.   

 

 

In addition, dense dataset must be used by most of the existing methods in 

calculating the connectivity for the data in order to avoid gaps appeared that can 

cause the shape incomplete (Gálvez et al., 2007; Júnior et al., 2004; Júnior et al., 

2008).  Furthermore, some of the current methods also contain topological problems 

(Gálvez et al., 2008) which lead to produce incorrect surface and final results based 

on the data used.  Hence, multiple curves and surfaces are used to avoid the gaps 

appeared as shown in Kumar et al. (2001), Tai et al. (2003), Yin (2004) and Chen 

and Wang (2010) in solving the surface reconstruction case studies.  However, more 

procedures are required to handle the problems occurred in their proposed methods 

such as eliminating the unacceptable polygons, dividing the edges to avoid concavity, 

formation of triangulation and knot adjustment.  The edges for the adjacent curves 

and surfaces must be connected (Soni et al., 2009) in order to produce the correct 

surface.  This concept is good to be applied and should be adapted with fewer 

procedures.  Basically, the flow of organising unstructured data using SOM model 

which is used in Boudjemaï et al. (2003), Forkan (2009), and Pandunata (2011) with 

the conventional surface approximation approach based on NURBS that is used in 

Elmidany et al. (2011) and Pandunata and Shamsuddin (2013) can only be applied to 

reconstruct a single curve and surface.  If multiple surfaces need to be reconstructed, 

this approach needs to perform the reconstruction of the surfaces separately, which 

leads the methods to be manually performed.   

 

 

As stated by Gálvez et al. (2012), the parametric surface reconstruction is still 

a difficult problem because many data are unable to be properly reconstructed.  This 

is due to higher accuracy is considered as the best result in surface reconstruction.  

Based on Elmidany et al. (2011), the NURBS surface error for the generated surface 

can be affected by the parameterisation and knot vector generation.  As stated by 

Gálvez et al. (2008), AI methods show good results in handling the parameterisation 

problems.  Basically, the initial parameters and knot vectors will be determined and 

optimisation-based method such as GA, DE and PSO can be used to improve the 

accuracy of the surface error (Owen, 1998; Elmidany et al., 2011) through iteration 
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procedures.  This can be shown in the work of Forkan and Shamsuddin (2008), 

Forkan (2009) and Pandunata and Shamsuddin (2013).  The limitation of the authors 

works is comparison between the parameterisation methods are not discussed.  As 

stated by Wulamu et al. (2005), parameterisation on the data points will affect the 

performance of the surface approximation.  In addition, GA, DE and PSO methods 

are used in Safari et al. (2013) to determine the optimum number of a NURBS 

control points for airfoil profiles and the authors also proved that the methods are 

able to handle the case study.  Hence, the GA, DE and PSO methods can be used to 

optimise the surface error for NURBS by adjusting the control points coordinates, as 

shown in Pandunata (2011) and Safari et al. (2013).  However, the parameters used 

for all the population in AI methods as shown in their works are not the same.  So, 

the results are unable to correctly prove the accuracy of each method.  

 

 

Also, the recent research works in surface reconstruction are still focused in 

organising the unstructured data and minimising the surface error.  This can be 

shown in Iglesias and Gálvez (2014), Kavita and Rajpal (2014) and Deng and Lin 

(2014).  Their works are still focused in solving the approximation of curve and 

surface towards the data by minimising the error of curve and surface.  Hence, the 

issues as discussed in this section should be solved in the suitable way using the 

models and methods.   

 

 

 

 

1.3 Problem Statement 

 

 

As stated in the previous section, basically the problem in surface 

reconstruction is related to the unstructured surface data and the accuracy of the 

surface.  In order to produce the surface which is similar to the original object, hence 

the unstructured surface data should be reorganised in the appropriate way so that 

correct surface and connectivity of the data can be obtained.  In addition, the 

accuracy of the surface should be concerned in order to represent the surface with 

minimum surface error.  Therefore, the methods selected should be correctly 
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implemented in order to organise the unstructured surface data with minimum 

surface error.   

 

 

 

 

1.4 Research Objectives 

 

 

Based on the on the problem background and statement, the objectives for 

this research are as follows:  

i. To propose Cube Self Organising Map (CSOM) model in organising the 

unstructured surface data.  

ii. To propose surface approximation approach based on the CSOM model 

in generating and representing the NURBS surfaces.  

iii. To optimise the surface approximation approach by incorporating with 

Genetic Algorithm, Differential Evolution and Particle Swarm 

Optimisation methods. 

 

 

 

 

1.5 Research Scopes 

 

 

The scopes for this research are as follows:  

i. The dataset used for this research are four set of primitive objects (Cube, 

Oiltank, Sphere, Spindle). 

ii. For additional testing, one set of medical image data (Talus bone) is used. 

iii. This study only considers three parameterisation methods (Uniform, 

Centripetal, Chord Length) which will be used to determine the 

minimum surface error for each data. 

iv. This study only considers three optimisation methods (GA, DE, PSO) 

which will be used to optimise the surface error. 

v. Visualisation on the side view will be used for demonstration on the 

surface produced and validation purposes. 
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1.6 Thesis Organisation 

 

 

 This thesis is divided into seven chapters.  Chapter 1 begins with the 

introduction by demonstrating the overview of this thesis.  This chapter explains the 

problem background, problem statement, research objectives and scopes for this 

research.  Chapter 2 discusses the literature review which includes the background 

study, theories and previous works that are related to surface reconstruction.  The 

characteristics of the methods will be discussed in deep in this chapter.  Research 

methodology is demonstrated in Chapter 3.  In this chapter, a thorough discussion on 

the research framework in conducting the research work will be clearly presented.  

 

 

 Chapter 4 illustrates the framework for Cube SOM (CSOM) model in 

organising the unstructured surface data.  This chapter explains the structure of 

CSOM model and equations involved in organising the unstructured surface data.  

Discussion on the result based on the average quantisation error and validation on the 

images will also be presented at the end of this chapter.  Chapter 5 presents the 

proposed framework for surface approximation.  This chapter demonstrates the flow 

of obtaining the control points, basis functions and NURBS surfaces in representing 

the surfaces using the proposed surface approximation approach.  Discussion on the 

result based on the surface error and validation on the images will be demonstrated in 

this chapter.   

 

 

Chapter 6 explains the framework in optimising the NURBS surfaces.  The 

optimisation will be performed using Genetic Algorithm (GA), Differential 

Evolution (DE), and Particle Swarm Optimisation (PSO) methods.  The details of 

each optimisation method in minimising the surface error of the proposed surface 

approximation approach for NURBS surfaces are presented in this chapter.  

Discussion on the result based on the surface error and validation on the images will 

be presented at the end of this chapter.  Finally in Chapter 7, conclusion and future 

works are presented which briefly explains the overall results obtained and 

summarises the research works.  In addition, contributions and limitation of the 

research will also be demonstrated in this chapter. 
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