89 research outputs found

    Security Analysis of Multicast/Unicast Router Key Management Protocols

    Get PDF
    Key Management Protocols (KMPs) are intended to manage cryptographic keys in a cryptosystem. KMPs have been standardized for Internet Protocol Security (IPsec), and these KMPs have been formally validated for their security properties. In the Internet, routing protocols have different requirements on their KMPs, which are not met by the existing IPsec KMPs, such as IKE, IKEv2, and GDOI. Protocol modeling has been used to analyze the security of the IPsec KMPs. For routing protocols, there are new KMPs proposed by the Keying and Authentication for Routing Protocols (KARP) working group of the Internet Engineering Task Force: RKMP, MRKM, and MaRK. These KMPs are designed to have better applicability for general routing protocols. However, the security of these protocols has not been validated. In this thesis, we have summarized the necessary conditions for security of routing protocols. We have analyzed the security aspects of RKMP, MRKM, and MaRK, by formally validating those protocols using the AVISPA modeling tool. This has shown that these KMPs meet the necessary security requirements

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikation muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und Speicherkapazität ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer präzisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden

    A Security Framework for Routing Protocols

    Get PDF
    With the rise in internet traffic surveillance and monitoring activities, the routing infrastructure has become an obvious target of attack as compromised routers can be used to stage large scale attacks. Routing protocols are also subjected to various threats such as capture and replay of packets that disclose the network information, forged routing control messages that may compromise a connection by deception, disruption of an on-going connection causing DoS attacks and spreading of unauthentic routing information in the network. Presently, strong cryptographic suites and key management mechanisms (IPsec and IKE) are available to secure host-to-host data communication but none of them focus on securing routing protocols. Today's routing protocols use a shared secret to perform mutual authentication and authorization, and depend on manual keying methods. For message integrity, they either rely on some built-in or external security feature that uses the same shared secret. The KARP working group of the IETF identified that the work is required to tighten the security of the routing protocols and demonstrated that automated key management solutions are needed for increasing security. Towards this goal we propose the RPsec framework. RPsec provides a common baseline for development of KMPs for the routing protocols, supports both automated and manual key management, and overcomes the weakness of existing manual key methods

    Design and Validation of Automated Authentication, Key and Adjacency Management for Routing Protocols

    Get PDF
    To build secure network-based systems, it is important to ensure the authenticity and integrity of the inter-router control message exchanges. Authenticating neighbors and ensuring their legitimacy is essential. Otherwise, the routes installed could be erroneous or targeted at causing an attack on the system. Current methods, which are based on manual keying, are error prone, not scalable, and result in keys being changed infrequently (or not at all) due to lack of authorized personnel. These issues can be addressed only by having an automated key management system that can automatically generate, distribute and update keys. The issue can be cast as a group key management problem with a `keying group' defined as the set of all routers that share the same key. A keying group can be as large as an entire administrative domain, or as small as a pair of peer routers. The smaller the scope of the key the less damaging the loss of a single key is likely to be. In this thesis, we propose an automated key management system that will be able to handle different categories of keying groups and also ensure important properties such as adjacency management, protection against replay attacks, confidentiality of messages, smooth key rollover, and robustness across reboots. Although there is some ongoing work with regard to developing automated key management systems, none of the existing methods handles all these cases. We have formally validated the protocol designed, for essential security properties such as authentication, confidentiality, integrity and replay protection, using a formal validation tool called AVISPA

    Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Get PDF
    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Remote Control of Unmanned Aerial Vehicles Through the Internet and IEEE 802.11

    Get PDF
    This dissertation focuses on real-time control of Unmanned Aerial Vehicles (UAVs) through TCP/IP/IEEE 802.11. Using the MAVLink protocol - an open-source protocol for micro air vehicles - a solution that allows the exchange, in real-time, of control messages between a UAV and a remote Control Station was implemented. In order to allow the UAV control by a remote user, the vehicle streams a real-time video feed captured by a video-camera on board. The main challenge of this dissertation is related about the designing and implementation of a fast handover solution that allows an uninterruptible communication

    Formal Validation of Security Properties of AMT's Three-Way Handshake

    Get PDF
    Multicasting is a technique for transmitting the same information to multiple receivers over IP networks. It is often deployed on streaming media applications over the Internet and private networks. The biggest problem multicast introduces today is that it is an all or nothing solution. Every element on the path between the source and the receivers (links, routers, firewalls) requires multicast protocols to be enabled. Furthermore, multicast has a conceptual business model, and therefore is not an easy case to make. These factors, embedded deep in technology, but ultimately shaped by economics, led to a lack of multicast deployment. To address this problem, the AMT (Automatic IP Multicast without explicit Tunnels) specification has been developed by the Network Working Group at the IETF. This specification is designed to provide a mechanism for a migration path to a fully multicast-enabled backbone. It allows multicast to reach unicast-only receivers without the need for any explicit tunnels between the receiver and the source. We have formally validated the three-way handshake in the AMT specification using AVISPA against two main security goals: secrecy and authentication. We have demonstrated that the authentication goal is not met: an attacker can masquerade as an AMT relay, and the AMT gateway (at the end user) cannot distinguish a valid relay from an invalid one. Another attack was also found where an intruder can disconnect or shutdown a valid session for a valid end-user using a replay attack

    IP Mobility in Wireless Operator Networks

    Get PDF
    Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.Erilaiset langattomat verkkoyhteydet lisääntyvät Internet-kykyisten teknologioiden muodossa. Lukuisten eri teknologioiden päällekkäinen käyttö johtuu vähitellen ja tarpeen mukaan rakennetusta verkkoinfrastruktuurista. Useita radioteknologioita (kuten WLAN, GSM ja UMTS) sisältävien päätelaitteiden (kuten älypuhelimet ja kannettavat tietokoneet) viimeaikainen kaupallinen menestys edesauttaa uuden verkkoinfrastruktuurin rakentamista, sekä mahdollisesti johtaa verkkoteknologioiden kirjon lisääntymiseen. Olemassa olevaa verkkoinfrastruktuuria ei kaupallisista syistä kannata korvata uudella teknologialla yhdellä kertaa, vaan vaiheittainen siirtymävaihe kestää tyypillisesti useita vuosia. Internet-kykyiset päätelaitteet voivat liikkua joko saman verkkoteknologian sisällä tai eri verkkoteknologioiden välillä. Verkkoympäristöstä riippuen liikkuvat päätelaitteet voivat liittyä verkkoon useiden verkkoyhteyksien kautta. Näin ollen päätelaite voi lähettää ja vastaanottaa tietoliikennepaketteja yhtäaikaisesti lukuisia verkkoja pitkin. Tämä väitöskirja käsittelee Internet-teknologioiden liikkuvuutta ja näiden teknologioiden tuomista olemassa oleviin langattomien verkko-operaattorien verkkoinfrastruktuureihin. Käsiteltäviä verkkoinfrastruktuureita ei alun perin ole suunniteltu Internet-teknologian liikkuvuuden ja monien yhtäaikaisten yhteyksien ehdoilla. Tässä työssä ehdotetaan tulevaisuuden langattomien verkkojen arkkitehtuurimallia ja ratkaisuja verkkovierailujen toteuttamiseksi. Ehdotettu arkkitehtuuri voidaan toteuttaa ilman mittavia teknologisia mullistuksia. Mallin mukaisessa ehdotuksessa verkko-operaattorin roolit jaetaan selkeästi (i) verkko-operaattoriin, (ii) palveluoperaattoriin ja (iii) yhteys- sekä verkkovierailuoperaattoriin. Roolijako mahdollistaa sen, että kukin operaattorityyppi voi kehittyä itsenäisesti, ja että teennäiset verkkoteknologiasidonnaisuudet poistuvat palveluiden tuottamisessa. Työssä esitetään myös alustava vaatimuslista ehdotetulle mallille, esimerkiksi yhteysoperaattorien laatuvaatimukset. Väitöskirja esittelee myös liikkuvien Internet-teknologioiden viimeisimmän kehityksen. Työssä näytetään lisäksi standardointituloksia Internet-kykyisissä langattomissa arkkitehtuureissa
    corecore