
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Efficient Signature Verification and
Key Revocation using

Identity Based Cryptography

eingereicht von

Tobias Guggemos
am 14. Januar 2020

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Efficient Signature Verification and
Key Revocation using

Identity Based Cryptography

eingereicht von

Tobias Guggemos
am 14. Januar 2020

Erster Gutachter: Prof. Dr. Dieter Kranzlmüller
Zweiter Gutachter: Prof. Dr. Georg Sigl
Tag der mündlichen Prüfung: 24. April 2020

The revelation that the graph appears to climb so smoothly, even though
the primes themselves are so unpredictable, is one of the most miraculous
in mathematics and represents one of the high points in the story of the
primes. On the back page of his book of logarithms, Gauss recorded the
discovery of his formula for the number of primes up to N in terms of the
logarithm function. Yet despite the importance of the discovery, Gauss
told no one what he had found. The most the world heard of his revelation
were the cryptic words, ‘You have no idea how much poetry there is in a
table of logarithms.’

MARCUS DU SAUTOY
(The Music of the Primes, 2003)1

1The attentive reader may observe several prime numbers carefully and intentionally placed in this book.

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne uner-
laubte Beihilfe angefertigt ist.

Guggemos, Tobias
. .
Name, Vorname

München, 14. Januar 2020 Tobias Guggemos
. .
(Ort, Datum) (Unterschrift Doktorand/in)

Acknowledgments
“Unlike a Master’s Thesis, a Doctoral Thesis is a marathon, not a sprint”

V. DANCIU (December 2015)
Similar to running a marathon, I run through several phases during this PhD and I was only
able to cross the finish line with the help of various people who supported me along the way.
As the one giving the starting signal, supporting me and my research over the whole distance

and accompanying my finish with discussions, advice and Ice Cream, I truly thank Prof. Kran-
zlmüller. I feel very proud to be part of the chair at LMU and the MNM-Team with its joyful
and fruitful atmosphere and particularly like to thank:
Michael for supervising my Master’s Thesis, encouraging me towards this step and always

offering a helpful advice and a cold beer, even in your retirement. Nils, Vitalian and Karl for
bringing me up to speed after my sabbatical and introducing me to many aspects of research
and teaching which I still apply and appreciate a lot. Also for organizing some memorable team
events, especially the legendary Glögg drinking!
Jan for being a perfect office-mate, employing the embedded security research group together

with Nils and myself, which has since been the roof for over 30 student projects. Matthias,
Roger and Tobi F. who started their marathons with me, Cuong, Max, Pascal and Amir who
joined later but also Markus and Tobi W. who did the same journey at LRZ. All of you were
always happy to proofread, help out with any problems and open for the weirdest discussions
– of which only some escalated too much. I enjoyed every after-work party, every swim in the
Eisbach and our Doctoral Retreat a lot, and I’m very happy that you became such good friends
along the way.
Annette for all the help as our IT-admin but particularly for the brazing-lessons and Miki for

keeping the administrative disturbance away. Prof. Reiser and David for being always open for
a discussion and David in particular for pointing me to Identity Based Cryptography.
A big thanks goes to Sophia, for assisting me formulating the first rough ideas for this thesis

and spending hours and nights with me in the office discussing various ideas, projects and papers.
But even more for the joyful weekly rides to Kirchheim, the daily lunch-strolls, nightly tinkering
of crypto calendars, . . . just for being such a good friend.
I’d also like to thank the core team of the QuaSiModO project, which allowed me to con-

centrate my research on cryptography during the last half of the journey and will always have
a special status as my first successful research proposal: Alex and Stefan for establishing such
a joyful working atmosphere and Tobi H. for being the one implementing some of my ideas.
Daniel, for giving advice regarding the security proofs and having the patience proofreading
them. Prof. Sigl, for committing as my second evaluator and providing helpful guidance just
before the finish.
Also thanks to all the proofreaders and helpers outside university, especially: Corinna for

having the patience reading the whole thesis, Michael W. for providing most helpful feedback
on some important English phrases and Gert for helping with the design of the book-cover. I
need to mention Lindsey Stirling, whose music was inspiring and recreational during writing.
I also thanks my parents and family for their unconditional help and support since I decided

to start studying.
Last, but most important, I thank Kerstin for being my best friend, greatest supporter and

companion during the last 13 1/2 years. Thanks for reminding me to sometimes leave the office
and being a perfect partner in life and traveling around the world! Without your support, in
particular during the last „sprint” of writing this thesis, crossing the finish line would have been
much harder.

Tobias Guggemos (August, 2020)

ix

Abstract

Cryptography deals with the development and evaluation of procedures for securing digital
information. It is essential whenever multiple entities want to communicate safely. One task
of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires
trustworthy authentication and authorization. This is achieved by deploying cryptographic keys.
When dynamic membership behavior and identity theft come into play, revocation of keys has
to be addressed. Additionally, in use cases with limited networking, computational, or storage
resources, efficiency is a key requirement for any solution.
In this work we present a solution for signature verification and key revocation in constrained

environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive
overheads, we achieve revocation through a single multicast message without significant compu-
tational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the
approach with efficient creation and verification of signatures.
Our solution offers a framework for transforming a suitable signature scheme to a so-called

Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical con-
ditions for transformation and precise security notions. Thereby, the framework allows a novel
combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms
originally designed for confidentiality in group communications.
Practical applicability of our framework is demonstrated by transforming four well-established

IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group
Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Se-
curity.
We design and implement a testbed for evaluating these kind of cryptographic schemes on

different computing- and networking hardware, typical for constrained environments. Measure-
ments on this testbed provide evidence that the transformations are practicable and efficient.
The revocation complexity in turn is significantly reduced compared to existing solutions. Some
of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital
Signature Algorithm (ECDSA).
The presented transformations allow future application on schemes beyond IBS or ECC. This

includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is
similarly relevant. Our work provides the basis for such solutions currently under investigation.

xi

Kurzfassung

Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der
Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die
sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale
Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikati-
on muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet
werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kom-
munikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die
Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und
Speicherkapazität ist die Effizienz ein wichtiges Kriterium.
Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen

effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich
des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermög-
licht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer
Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand
an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity
Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen.
Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Si-

gnaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer prä-
zisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen
zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsba-
sierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen
zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt
wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBS-
Verfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryp-
tography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine
Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken
aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicher-
heitsziele erreicht werden.
Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in die-

ser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen
bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als
auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der
von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic
Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen.
Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits

von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-
Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen
Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden.

xiii

Contents

Abstract xi

Kurzfassung xiii

1 Introduction 1
1.1 Research Question . 2
1.2 Methodology . 3
1.3 Contribution . 4
1.4 Structure of the Thesis . 8

2 Case Studies 11
2.1 Selection of Use Cases . 11
2.2 Terminologies for Classification of Use Cases . 13

2.2.1 Terminology for Constraints . 13
2.2.2 Terminology for Security . 14
2.2.3 Terminology for Network Topology . 15

2.3 Classification of Use Cases . 16
2.3.1 Use Cases 1: Wireless Sensor Network (WSN) 16
2.3.2 Use Cases 2: Mobile Ad-Hoc Network (MANET) 17
2.3.3 Use Cases 3: Device-to-Device Communication (D2D) 18

2.4 Summary and Findings . 19

3 State of the Art and Related Work 21
3.1 Fundamentals of Cryptography . 21

3.1.1 Group Theory . 22
3.1.2 Computationally Hard Problems . 23
3.1.3 Provable Security . 24

3.2 Elliptic Curve Cryptography . 25
3.2.1 Group Definitions on Elliptic Curves . 26
3.2.2 Pairings on Elliptic Curves . 27

3.3 Efficient Cryptographic Mechanisms . 28
3.3.1 Efficient Confidentiality Solutions . 28
3.3.2 Efficient Integrity Solutions . 28
3.3.3 Efficient Authentication Solutions . 28
3.3.4 Key Agreement . 30

3.4 Efficient Security Protocols . 30
3.4.1 Protocol Optimization and Compression 31
3.4.2 Constrained Security Protocols . 31

3.5 Efficient Group Key Management . 32
3.5.1 Group Key Management Architecture . 32
3.5.2 Group Key Distribution . 34

3.6 Related Work on Signing Key Revocation . 34
3.6.1 Mathematical Revocation . 34

xv

Contents

3.6.2 Knowledge Based Revocation . 36
3.7 Summary and Findings . 38

4 Key Updatable Signatures 39
4.1 Methodology . 39
4.2 IBS Group Key Architecture . 40

4.2.1 Role and Communication Model . 41
4.2.2 IBS Key Revocation . 41

4.3 Updating a Group Shared Key with LKH and CAKE 41
4.3.1 Logical Key Hierarchy . 42
4.3.2 Centralized Authorized Key Extension . 43

4.4 Efficiently Updating Identity Based Signature (IBS) Keys 45
4.4.1 Two Key Signature Scheme (2KSS) . 47
4.4.2 Updatable Two Key Signature Scheme (U2KSS) 48
4.4.3 Key Updatable Signature Scheme (KUSS) 50

4.5 Group IBS Architecture . 52
4.6 Summary and Findings . 53

5 group Identity Based Signatures 55
5.1 Methodology for Transforming existing IBS schemes 55

5.1.1 Preliminaries . 56
5.1.2 Notions . 56

5.2 Transformation of Schemes based on Schnorr Signatures 56
5.2.1 Scheme 1: GG . 57
5.2.2 Scheme 2: vBNN . 61

5.3 Transformation of Schemes based on Pairings . 63
5.3.1 Scheme 3: Hess . 63
5.3.2 Scheme 4: BLMQ . 66

5.4 Security Analysis . 70
5.4.1 Preliminaries for the Analysis . 70
5.4.2 Proving 2KSS and U2KSS Token Security 72
5.4.3 Proving KUSS Token Security . 74
5.4.4 Forward Security . 76
5.4.5 Post-Compromise Security . 76

5.5 Practical Considerations . 77
5.5.1 Pseudo Randomness . 77
5.5.2 Signature Replay . 77
5.5.3 Performance Estimations . 78

5.6 Summary and Findings . 79

6 Testbed and Prototypes 81
6.1 Concept . 81
6.2 A Testbed for Researching Secure Group Communication 81

6.2.1 Operating Systems . 84
6.2.2 Hardware . 84
6.2.3 Final Setup and Access . 85

6.3 Prototypical Implementation . 86
6.3.1 Group Key Management with G-IKEv2 87
6.3.2 Key Distribution with LKH and CAKE 88
6.3.3 IBS for Sender Authenticity . 88
6.3.4 The gIBS Prototype . 89

xvi

Contents

6.4 Summary and Finding . 90

7 Evaluation 91
7.1 Methodology . 91
7.2 Complexity Analysis . 92

7.2.1 Definition of generic Revocation Mechanism 92
7.2.2 Complexity of Knowledge Based Approaches 93
7.2.3 Complexity of Mathematical Approaches 95
7.2.4 Complexity of gIBS . 96
7.2.5 Summary . 97

7.3 Network and Storage Overhead . 97
7.3.1 Parameter Size for different Elliptic Curves 98
7.3.2 Networking Overhead . 99

7.4 Performance Analysis of gIBS . 101
7.4.1 Comparing IBS with ECDSA . 101
7.4.2 Optimization of IBS’ Signing Performance 103
7.4.3 Comparing gIBS with IBS . 104

7.5 Performance of G-IKEv2, LKH, and CAKE . 105
7.6 Results . 106

8 Conclusion and Future Work 107

Erratum: Hess’ EUF-2KSS-CMA–security 111

Bibliography 113

Webography 129

Acronyms 131

List of Lemmata, Theorems, and Definitions 135

List of Figures 137

List of Tables 139

xvii

1 Introduction

Secure communication is a crucial prerequisite to achieve security and privacy. In this regard,
the International Organization for Standardization (ISO) offers a definition for secure communi-
cation as the combination of five properties [71]: The concept that an uninvolved party cannot
read or alter secure data is referred to as (I) Confidentiality and (II) Integrity, respectively. The
receivers ability to verify the message’s origin is called (III) Authenticity, which is necessary
to validate the origins (IV) Authorization for a specific resource or service and to prevent the
sender from denying having sent the information, which is referred as (V) Non-Repudiation.
Technically, these properties are implemented as a combination of networking protocols and

cryptographic algorithms.
If the communication partners share a common secret (referred as key), the cryptographic

mechanism is called symmetric. It is asymmetric, if there is a mathematical link between a
so-called private and public key, by which one is used for en- and decryption, respectively.
Such links are typically found in computational expensive mathematical problems such as prime
factorization, which is why symmetric cryptography is supposedly more efficient. While scalable
confidentiality and integrity can be achieved with symmetric and asymmetric techniques, this
is not true for the other properties. Whenever cryptography is applied in public networks, the
management of keys is a major challenge for networking protocols.
Considering the following example: Two parties would like to communicate confidentially

over a public network based on a symmetric encryption algorithm such as Rijndael’s algorithm
specified in the Advanced Encryption Standard (AES) [40]. As a first step, they need to exchange
a shared secret to encrypt with the same key. Instead of personally exchanging the key, they use
a cryptographic key exchange protocol, such as the Diffie-Hellman Key Exchange [34]. However,
this is not yet secure, as someone could disturb or intercept the connection, acting as a so-
called Man-in-the-Middle (MITM), extracting the shared secret and harming confidentiality of
future messages. The integrity of the message is necessary to prevent disturbance (e.g., by using
Secure Hash Algorithm (SHA) [32]), while authenticating the exchange (e.g., by RSA [147]) is
necessary to detect MITM-attacks. Still, this is not secure, as the public asymmetric keys used
for authentication needs to be trusted by both parties. Instead of exchanging their public keys
privately, they utilize a trust network such as a Public Key Infrastructure (PKI), which maps
public keys to (physical or virtual) identities [77]. By trusting a Certificate Authority (CA), a
receiver can ensure the authenticity of all user’s managed by the CA.
The example shows the difficulties of managing the different keys, for as little as implementing

confidential communication of two parties. Similar techniques can be used for multiple proper-
ties and the task of security protocols is exactly that. Once a secure channel is established with
such a key exchange, many of the properties can be achieved with efficient symmetric cryptog-
raphy (e.g., Keyed-Hash Message Authentication Code (HMAC) for authenticity and integrity).
However, the communication of more than two parties still requires asymmetric cryptography to
provide authorization based on sender authentication. This yields two challenges: First, asym-
metric cryptography is computationally expensive and therefore delays every message. Second,
as shown in the example above, the use of asymmetric keys requires a trust network that maps

1

1 Introduction

identities to public keys. A receiver needs to query this network for every received message,
delaying its processing.
While these challenges are solved in traditional large scale applications, such as E-Mail, Web-

Browsing or Banking, new network technologies pose additional challenges. Wireless Sensor
Network (WSN), Smart Cars, Smart Homes, Smart Cities, Mobile Ad-Hoc Networks (MANETs)
or Autonomous Driving – often generalized as the Internet of Things (IoT) – are use cases where
authorization can change and devices may leave or join the system frequently. Such dynamic
behavior requires the trust management of the public keys to be efficient and reliable for every
message. Additionally, some use cases require careful management of limited technical resources,
e.g., power and energy supply, but also memory, computing, or networking capabilities. Com-
puting and memory restrictions can be managed on the device itself. In contrast, networking
as a system wide resource needs to cope with device specific limitation of power and energy
while staying compatible to other devices in the network. Especially wireless communication is
expensive in terms of energy why compression of networking protocols such as IPv6 is a common
practice and applied to security protocols, such as IPsec [122] or TLS [145]. Similarly, network
overhead is reduced by replacing cryptography based on prime factorization or the Discrete
Logarithm Problem (DLP) with algorithms based on Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP). Elliptic Curve Cryptography (ECC) offers the same security level with around
eighty percent smaller keys, ciphertext and signatures. Other cryptographic techniques, such
as Identity Based Cryptography (IBC) or Hash Based Signatures, offer even lower networking
overhead, but built on different trust models and architectural assumptions.
Especially Identity Based Signature (IBS) emerges as an interesting solution for authentication

in such use cases, allowing efficient signature verification with explicit validation of a signer’s au-
thorization. However, especially the revocation of such signing keys is not tackled appropriately
in literature. With Certificate Revocation Lists (CRLs) the research field of Certificate Lifecycle
Managment (CLM) offers practical solutions for public key revocation in traditional use cases,
but they fail in the combination of constrained resources and dynamic environments. On the
other hand, revocation of symmetric keys is a common problem of group key management, with
multicast communication as a typical application. This is of special interest if a device is to be
expelled but holds the secret key, e.g., used for confidentiality. There are techniques for revoca-
tion of symmetric keys as efficient as distributing one single message within the communication
group. However, such efficiency is not yet found for the revocation of asymmetric keys.

1.1 Research Question

Revocation of cryptographic keys in large-scale systems (e.g., E-Mail, Web) is solved by well-
balanced trust relationships between different players, such as browsers, CAs, operating systems
or hardware manufacturers. Hereby established protocols and systems are widely deployed,
but their computational, storage or network overhead can be destructive for certain setups.
Regardless of its technical implementation, it requires some sort of trust relationship between
the participants. These techniques can only be used to a certain extent for constrained scenarios,
as they imply an unacceptable amount of management, network and storage overhead paired
with computational complexity. This is especially true when it comes to management of signing
keys and their revocation in particular.
We aim on systematically closing this gap by defining a system that allows efficient and secure
revocation of signing keys. This is achieved by examining the following research question:

How can efficient revocation of cryptographic signing keys be achieved in systems
with constrained resources and frequent changes of member’s authorization?

2

1.2 Methodology

The answer is provided as an efficient solution for revocation of IBS keys by examining the
following questions throughout the thesis:

RQ1: Which use cases fail using state-of-the-art mechanisms for secure communication or
their respective optimizations?

RQ2: What are the requirements to meet efficiency in such use cases?

RQ3: How is key distribution and revocation achieved for symmetric and asymmetric keys?

RQ4: How can key distribution and revocation be applied in constrained systems?

RQ5: Which signature schemes are usable in constrained systems, can they benefit from
IBC and how do they fit in such architectures?

RQ6: How can IBS keys be revoked and how can the revocation be achieved with state-
of-the-art key distribution systems?

With RQ1, we first elaborate how different use cases deal with the management of signing
keys. Showing the existence of use cases that prefer proprietary solutions is concerning, as
those are often less understood and potentially less secure than standardized mechanisms. That
alone demands the definition of requirements and RQ2. Finding out why state-of-the-art is
not used in the scenarios, leads to RQ3, which examines related work. Based on this, RQ4
studies techniques for optimizing and integrating key management architectures in the target
environment. RQ5 does the same with cryptographic solutions for authentication. As IBC
offers properties which fulfill some of the requirements established in RQ2, a focus is put on its
integration in the desired architecture. Within RQ6, these findings are used for development of
an efficient solution for signing key revocation based on standardized protocols.

1.2 Methodology
The methodology of this thesis is use case driven by studying scenarios out of three different com-
munication models: WSN, MANET and Device-to-Device Communication (D2D). The research
project SecureWSN [151] with the examination of Smart Homes is a prominent example for
WSN and copes with high constraints in terms of energy supply and computing/networking ca-
pabilities. MANETs are represented by military field communication, which requires very strict
security properties while adding dynamic changes of the network topology and strict security
to the list of requirements. Autonomous driving, where particularly the dynamic is significantly
high represents D2Ds.

The scenarios’ constraints are systematically analyzed by the terminology provided by the
Internet Engineering Task Force (IETF) standard body in form of RFC7228 [135] and its po-
tential successor RFC7228bis [21]. However, classifying the use cases’ needs regarding security
and communication models require the combination of several standard literature. The secu-
rity aspect is tackled in form of the five security properties and are presented in form of a
more detailed terminology. Typical communication and trust models will be explained and a
third terminology is established. The thereof extracted properties are used for a fine grained
classification of the aforementioned use cases.

Having such a classification, state of the art and related work is found not suitable for the
particular case of revocation of keys used for sender authentication in a group of constrained
communication participants. Some of the examined work covers particular aspects such as mini-
mization of computing or networking, while keeping the level of security high. Other revocation
mechanisms lack efficiency or only deal with symmetric keys.

3

1 Introduction

With the findings at hand, a cryptographic solution for efficient revocation of signing keys is de-
veloped for IBS. It features the inclusion of a symmetric element, which can be revoked efficiently
by Logical Key Hierarchy (LKH) [120], Centralized Authorized Key Extension (CAKE) [59] or
any other mechanism suitable for the use cases. While LKH is a standard mechanism for sym-
metric key revocation in form of a binary tree including symmetric keys, CAKE additionally
achieves efficient distribution of the keys and was developed within the scope of this thesis. IBS
as well as CAKE are integrated in a group key management architecture and a mathematical
transformation for their combination is developed. The transformation is exemplarily studied
on four IBS schemes, all based on ECC to allow an efficient solution for all use cases. An ex-
perimental implementation of those new schemes is provided on a test bed that is particularly
designed to study the issue of sender authentication in a group of constrained nodes. It allows
the validation of theoretical performance studies and practicable comparison with other mecha-
nisms. The test bed is open source and expandable to allow future research on other aspects of
security and cryptography in similar settings.

1.3 Contribution
This thesis examines and identifies use cases where traditional solutions for the revocation of
cryptographic material found in the field of CLM are not feasible. It overcomes arising issues
for revoking asymmetric keys by a novel combination of low-overhead cryptographic signature
schemes, network-inexpensive key management protocols and efficient re-keying mechanisms.
We provide a cryptographic solution for revocation by updating signing and verification keys
with a single message in the communication group, giving it the name Key Updatable Signa-
ture Scheme (KUSS). In contrast to similar constructions, neither the complexity for signature
verification nor the signature’s size is increased.
The novel contribution of this thesis is a cryptographic mechanism for signing key revocation

and its embedding in a group key management system. A systematic transformation for different
signature schemes on selected primitives together with transformation requirements for other
primitives is provided. Four IBS schemes are transformed, implemented and integrated into
a group key management protocol. With the integration being straight-forward for IBS, the
resulting schemes are called group Identity Based Signature (gIBS) schemes. The security of the
resulting schemes is formally examined with well-established methodologies from the research
area of Provable Security. The solution is optimized for but not limited to scenarios featuring
highly dynamic membership behavior and/or technical constrained networking and computing
capabilities. An experimental testbed is designed with the specific architectural assumptions of
the use cases in mind. It is then assembled from heterogeneous and resource constrained devices
and used for practical evaluation of the developed mechanisms. The design is generalized to
allow future examination of other protocols and systems with a similar network topology.

I.) Publications directly associated with the dissertation:

The following publications contributed evaluations regarding the applicability of cryptographic
primitives or security protocols used throughout this thesis.

• Tobias Guggemos and Dieter Kranzlmüller. “gIBS – group Identity-Based Signatures:
efficiently verifiable IBS key-revocation with a single multicast message”. In: The IACR
International Conference on Practice and Theory of Public-Key Cryptography (PKC 2020).
Ed. by International Association for Cryptographic Research. (under review). 2020

Summary: This paper presents parts of the transformation and the security analysis, which
are both extended in this dissertation. It also presents measurement results of two of

4

1.3 Contribution

the four transformations presented in Chapter 5.
The implementation was improved in this dissertation and measurements were ex-
tended with the additional schemes.

• Tobias Guggemos, Klement Streit, Marcus Knüpfer, Nils gentschen Felde, and Peter Hill-
mann. “No Cookies, just CAKE: CRT based Key Hierarchy for Efficient Key Management
in Dynamic Groups”. In: 13th International Conference for Internet Technology and Se-
cured Transactions (ICITST-2018). dec, Cambridge, UK, 2018. doi: 10.2053/ICITST.
WorldCIS.WCST.WCICSS.2018.0002

Summary: This publication presents the integration of CAKE – which is Chinese Re-
mainder Theorem (CRT) based cryptographic re-keying scheme – into a Group Key
Management Protocol (GKMP), namely G-IKEv2.

Own contribution: Part of this dissertation is the integration of the previously presented
mechanism of CAKE and the newly developed address scheme in G-IKEv2 as well as
the theoretical evaluation.

Other Contributors: M. Knüpfer as a member of the German federal forces contributed
the scenario and requirements which is re-furbished in this dissertation. P. Hillmann
contributed the description of the cryptographic concept and N. gentschen Felde
contributed an address scheme for the used key hierarchy. K. Streit contributed
parts of the implementation and the practical evaluation.

• Nils gentschen Felde, Sophia Grundner-Culemann, and Tobias Guggemos. “Authentica-
tion in dynamic groups using identity-based signatures”. In: 2018 14th International Con-
ference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Piscataway, NJ: IEEE, 2018, pp. 1–6. isbn: 978-1-5386-6876-4. doi: 10.1109/WiMOB.
2018.8589148

Summary: This publication presents the initial idea of using IBS schemes in group com-
munication for sender authentication and introduced the mathematically verifiable
revocation of the keys by re-calculating all keys in the system. It also presented a
taxonomy for choosing IBS schemes for constrained scenarios.

Own contribution: Part of this dissertation is the introduction of a Re-Key phase to the
selected schemes. Additionally, the implementation and evaluation of the chosen
schemes as well as the integration of IBS into a group key management architecture
and the distribution of the keys with a GKMP were contributed.

Other Contributors: N. gentschen Felde contributed the description of the scenario and
its requirements for reliable access management. S. Grundner-Culemann contributed
the taxonomy for IBS schemes, selected the schemes which are re-used for this thesis
and validated the re-key mechanism.

• Tobias Guggemos. “Dynamic Key Distribution for Secure Group Communications in Con-
strained Environments”. In: Doctoral Consortium: Doctoral Consortium on e-Business
and Telecommunications. Vol. 2018. SECRYPT. jul, Porto, Portugal, 2018

Summary: This paper presents the problem space of the dissertation and was presented
during the PhD symposium together with an invited poster.

• Nils gentschen Felde, Tobias Guggemos, Tobias Heider, and Dieter Kranzlmüller. “Se-
cure Group Key Distribution in Constrained Environments with IKEv2”. In: 2017 IEEE

5

https://doi.org/10.2053/ICITST.WorldCIS.WCST.WCICSS.2018.0002
https://doi.org/10.2053/ICITST.WorldCIS.WCST.WCICSS.2018.0002
https://doi.org/10.1109/WiMOB.2018.8589148
https://doi.org/10.1109/WiMOB.2018.8589148

1 Introduction

Conference on Dependable and Secure Computing. Taipei, Taiwan: IEEE, 2017. doi:
10.1109/DESEC.2017.8073823

Summary: This publication evaluates the use of G-IKEv2 as a GKMP for the use in
constrained networks and proposes protocol optimizations.

Own contribution: Part of this dissertation are the theoretical evaluation of G-IKEv2
against other solution for the use in constrained environments with the given re-
quirements and the enhancements of the protocol to provide full coverage of the
requirements.

Other Contributors: N. gentschen Felde contributed the description of the scenario and
its requirements. T. Heider contributed the implementation and the measurements
of the protocol on a constrained platform.

• Tobias Guggemos, Nils gentschen Felde, and Dieter Kranzlmüller. “Secure Group Com-
munication in Constrained Networks - A Gap Analysis”. In: The 1st 2017 GLOBAL IoT
SUMMIT (GIoTS’17). Geneva, Switzerland: IEEE, 2017, pp. 1–4. doi: 10.1109/GIOTS.
2017.8016270

Summary: This publication presents the early problem analysis of this dissertation, iden-
tifying the gaps of security mechanism in constrained group communication. It iden-
tified the lack of efficient mechanism for sender authentication. It also presented the
initial idea for the test bed, which was developed during this thesis and used for some
of the experiments.

Own contribution: Part of this dissertation is the adoption of the properties to the use
case of constrained group communication as well as the evaluation of state of the art
mechanisms against these requirements.

Other Contributors: N. gentschen Felde contributed the problem description and his broad
knowledge of the ISO/OSI 27001 standard that was used to develop a terminology
for security in constrained group settings.

• Daniel Migault, Tobias Guggemos, Sylvain Killian, Maryline Laurent, Guy Pujolle, and
Jean Philippe Wary. “Diet-ESP: IP layer security for IoT”. in: Journal of Computer
Security 25.2 (2017), pp. 173–203. doi: 10.3233/JCS-16857

Summary: This journal paper presents optimizations of the IPsec/ESP protocol for the
use in constrained environments by making use of compression mechanism. It shows
how pre-established configuration during the key exchange can be used to allow high
compression rates while keeping configuration and context exchange as low as possi-
ble. In addition, a proof of concept on constrained hardware is presented and energy
measurements are provided.

Own contribution: Part of this dissertation is the focus on the IPsec protocol suite and its
usability for constrained environments. This paper is the preliminary work for some
of the standardization efforts during this PhD project.

Other Contributors: D. Migault contributed his knowledge on the IPsec protocol stack.
S. Killian contributed an enhancement of a prior implementation of the protocol
and the measurements on constrained hardware. Prof. M. Laurant contributed her
knowledge on constrained networking technologies that was necessary for deriving the
requirements for the protocol enhancements. G. Pujolle and J.P. Wary provided the
laboratory in the Orange Labs in Paris as well as their knowledge on cryptography,
which allowed analyzing the security of the compressed protocol.

6

https://doi.org/10.1109/DESEC.2017.8073823
https://doi.org/10.1109/GIOTS.2017.8016270
https://doi.org/10.1109/GIOTS.2017.8016270
https://doi.org/10.3233/JCS-16857

1.3 Contribution

• Daniel Migault, Daniel Palomares, Tobias Guggemos, Aurelien Wally, Maryline Laurent,
and Jean Philippe Wary. Recommendations for IPsec Configuration on Homenet and
M2M Devices. Cancun, Mexico, 2015. doi: 10.1145/2815317.2815323

Summary: This paper presents performance measurements and an evaluation of IPsec for
machine-to-machine and homenet scenarios in comparison to the TLS protocol. It
also compares different protocol and encryption modes in regards to networking and
computational overhead.

Own contribution: Part of this dissertation is the focus on the IPsec protocol suite and
its usability for (in this case only slightly) constraint environments. It also paved
the way for this PhD project as it clearly showed the necessity for cryptographic and
protocol enhancements in such environments.

Other Contributors: D. Migault contributed his knowledge on the IPsec protocol stack
and the initial idea of using IPsec in such environments. D. Palomares provided his
experience with different implementations of the IPsec protocol stack that were used
for the measurements. Prof. M. Laurant contributed her knowledge on constrained
networking technologies. G. Pujolle and J.P. Wary provided the knowledge on the
laboratory in the Orange Labs in Paris where the measurements were performed and
the description of the considered use cases.

II.) Standardization Effort during this dissertation:

During this dissertation, different optimization for the IPsec protocol suite [122] have been
contributed to the IETF standard body of which the following are currently actively discussed
in the respective working groups:

• Daniel Migault, Tobias Guggemos, and Yoav Nir. Implicit Initialization Vector (IV) for
Counter-Based Ciphers in Encapsulating Security Payload (ESP). RFC 8750. Mar. 2020.
doi: 10.17487/RFC8750. url: https://rfc-editor.org/rfc/rfc8750.txt

Summary: This document describes how the network overhead of IPsec ESP [123] can
be reduced by using a so-called implicit initialization vector for certain symmetric
ciphers.

• Daniel Migault and Tobias Guggemos. Minimal ESP. Internet-Draft draft-ietf-lwig-minimal-
esp-00. Work in Progress. Internet Engineering Task Force, Apr. 2019. 13 pp. url:
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-minimal-esp-00

Summary: This document describes a minimal feature set of an IPsec ESP [123] implemen-
tation, while none of the requirements of the original standard are violated. Hence,
the implementation can be implemented on constrained devices while staying com-
patible with feature rich implementations.

• Daniel Migault, Tobias Guggemos, Carsten Bormann, and David Schinazi. ESP Header
Compression and Diet-ESP. Internet-Draft draft-mglt-ipsecme-diet-esp-07. Work in Progress.
Internet Engineering Task Force, Mar. 2019. 47 pp. url: https://datatracker.ietf.
org/doc/html/draft-mglt-ipsecme-diet-esp-07

Summary: This document describes how the network overhead of IPsec ESP [123] can be
reduced by up to 90% by using compression techniques negotiated during the key
exchange with the IKEv2 [136] protocol. In contrast to Minimal-ESP, the resulting
network packet is not standard conform anymore, why de-compression is necessary
before the actual ESP processing takes place.

7

https://doi.org/10.1145/2815317.2815323
https://doi.org/10.17487/RFC8750
https://rfc-editor.org/rfc/rfc8750.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-minimal-esp-00
https://datatracker.ietf.org/doc/html/draft-mglt-ipsecme-diet-esp-07
https://datatracker.ietf.org/doc/html/draft-mglt-ipsecme-diet-esp-07

1 Introduction

III.) Outside the scope of this dissertation:

The following publications did not directly contribute to the thesis at hand, but were created
as part of ongoing, neither security nor cryptography related research projects.

• Roger Kowalewski, Tobias Fuchs, Karl Furlinger, and Tobias Guggemos. “Utilizing Het-
erogeneous Memory Hierarchies in the PGAS Model”. In: 2018 26th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE,
2018, pp. 353–357. isbn: 978-1-5386-4975-6. doi: 10.1109/PDP2018.2018.00063

• Tobias Guggemos, Vitalian Danciu, and Annette Kostelezky. “Protokollgestützte Selb-
stbeschreibung in Zugangsnetzen”. In: 11. DFN-Forum Kommunikationstechnologien.
may. Günzburg, Germany, 2018

• Vitalian Danciu, Tobias Guggemos, and Dieter Kranzlmüller. “Schichtung virtueller Maschi-
nen zu Labor– und Lehrinfrastruktur”. In: 9. DFN-Forum Kommunikationstechnologien.
Rostock, Germany, 2016, pp. 11–20

1.4 Structure of the Thesis

The structure follows the methodology of Section 1.2 and is depicted in Figure 1.1. First, the
three terminologies for Constraints, Security, and Communication and Trust are deduced from
standards and literature. Next, the three use cases of SecureWSN, Military Field Communica-
tion, and Autonomous Driving are examined and classified accordingly.
Related work and state of the art solutions for different aspects are found in form of security

protocols and cryptography. Cryptographic work is systematically split into Confidentiality,
Integrity, and Authenticity. Mechanisms for key agreement are also presented, as they form the
basis for many standard networking technologies from various bodies such as IETF and IEEE.
It turns out, that especially ECC is of interest whenever constraints in form of computing or
network capabilities appear. Protocol optimizations found by compression are presented as well.
Proper management of public keys is required for achieving the properties of Authorization

and Non-Repudiation in a large scale. Applicable work exists in from of standardized certificate
formats but also in cryptography. Even though some of them deal with revocation, none satisfies
regarding efficient revocation of signing keys, which is inevitable for Authorization in dynamic
groups.
The solution is presented in Chapter 4, which first presents a common system architecture

for the cryptographic mechanism developed later in the thesis. It allows management of group
membership, keys, and membership authorization and defines a trust model, which is applicable
for the use cases. Second, the chapter defines cryptographic transformations of IBS schemes
as the main contribution of this thesis. By re-using the efficient revocation of symmetric keys,
the transformation enhances signature schemes by including a second symmetric signing key to
the scheme. Such an integration is the first transformation, called Two Key Signature Scheme
(2KSS). It is further optimized by allowing the symmetric element being efficiently updated to
change group membership. This second transformation is called Updatable Two Key Signature
Scheme (U2KSS). The last step allows further efficiency, by integrating the symmetric element
in the asymmetric key and, thus, reducing the size of the keys. It allows the asymmetric
key itself to be updated and the scheme being transformed to a Key Updatable Signature
Scheme (KUSS). The previously defined system architecture is improved to integrate such a
cryptographic mechanism while staying compatible with the use cases.
In Chapter 5, the transformation is exemplarily implemented on IBS schemes, as they natu-

rally allow the transformation with the advantage of featuring small size signatures. The security

8

https://doi.org/10.1109/PDP2018.2018.00063

1.4 Structure of the Thesis

of the resulting gIBS schemes is proved under the assumptions provided by the previously defined
transformations. Chapter 6 presents the test bed, which consists of different microcontrollers
mixed with different network technologies found in the use cases. It includes the implemen-
tations of a GKMP, the re-keying mechanisms LKH and CAKE together with all gIBS and
their underlying IBS schemes. Those implementations are used for evaluating gIBS’ efficiency
in Chapter 7 including a complexity analysis as well as practical performance measurements by
using the hardware in the testbed. A summary of the earlier presented protocol and re-keying
performances is provided as well.
The thesis provides the basis for a variety of future work, especially regarding future develop-

ments of KUSS, which turns out to be a novel approach in cryptography and network security.
Other, potentially quantum-resistant primitives (e.g., lattices and isogenies) are candidates for
further investigations of such transforms. The proposed framework for proving the security is
rather conservative and future work may improve the constructions.

9

1 Introduction

Structure of the Thesis

1. Introduction: Motivation and Contribution

2. Case Studies
Taxonomy 1:
Constraints

(RFC 7228, RFC 7228bis)

Use Cases

Taxonomy 2:
Security

Efficiency Requirements

3. State of the Art, Related Work

Confidentiality Integrity Authenticity

Key Agreement

Efficient Standard Protocols

IBS

Hash-based Signatures

Key Exchange Key Distribution

Knowledge

Distributed

(De-)
centralized

X.509

How can efficient revocation of cryptographic signing keys be achieved in systems with constrained resources
and frequent changes of member's authorization?

Current mechanism lack efficient revocation of (asymmetric) signing keys!

 IBS Group Key Architecture

Group Key Management Architecture

Group
Management

Key Management

Authorization
Management

Efficient IBS Key Revocation

2 Key Signature
Schemes

Updatable 2 Key
Signature Schemes

Key Updatable
Signature Schemes

Group IBS Architecture

4. Key Updatable Signatures

5. group Identity Based Signatures

vBNN BLMQ Hess GG

Practical Consideration

6. Experimental Platform, Prototype

Experimental
Plattform

Implementations

Complexity
Analysis

8. Conclusion and Future Work

OSCP

Transport Security

Trust
Management

LKH CAKE

7. Evaluation

Security Proofs

Taxonomy 3:
Network

WSN MANET D2D

Diffie-
Hellman

ECDH

Efficient Standard Protocols

Cryptographic Mechanisms

Mathematical
Revocation

AES

ChaCha

IBS
IBS

H-IBS

ABS

Key Insulation

Group
Signatures

ACE

Funduamentals of Cryptography

Goals Group Theory Hard Problems Elliptic Curve
Cryptography

Provable
Security

DSA

SHA

G-IKEv2

LKH

CAKE

IBS gIBS

Security Definitions

Performance
Measurements
(ECDSA, IBS,

gIBS, G-IKEv2,
LKH, CAKE)

Figure 1.1: Structure and methodology of the thesis.

10

2 Case Studies

Traditional forms of communication found in the Internet build upon a well-established balance
of trusted channels and networks. With the emerge of the so-called Internet of Things (IoT),
this assumption slowly changed within the last 10-15 years. The term IoT groups hundreds
of use cases and dozens of communication paradigms, which at some point communicate over
an untrustworthy network, like the Internet [63]. This heterogeneity led to an ever-growing
community of researchers, industry and standardization bodies forming classification of use
cases. When talking about communication security, major difficulties are found in the various
constraints but also in the dynamic membership behavior leading to different topological setups.
This chapter systematically analyzing three use cases from the broad field of IoT, giving a sense
for the term efficiency in such networks and establishes requirements for signing key revocation
in this regard.

Discussing a large number of use cases is not practicable and would exceed the scope of efficient
authentication and key revocation in this dissertation. Hence, a high-level classification for use
cases is presented first and used to select three use cases covering a wide range of requirements
in Section 2.1. This classification is than refined in Section 2.2 by deducing terminologies for
constraints, topological differences and security requirements out of standard literature. A
detailed description of each of the use cases presented in Section 2.3 and classified with respect
to the terminologies. Section 2.4 summarizes the findings and defines the term efficiency for the
remaining of this thesis and formulates three high-level requirements in that regard.

2.1 Selection of Use Cases

The selection is driven by a coarse-grained classification for constraints, topological differences
and security depicted in Figure 2.1. It shows the following three categories as a star graph with
the respective dimensions of Constraints, Security and Network Topology:

Constraints describe the capabilities of the most constrained devices of a given scenario as low,
medium, and high. We distinguish device local constraints like computation/storage or
power/energy and system-wide constraints like networking or system-wide energy.

Low At least one device local aspect (computation/storage or energy) is constrained.

Medium There are either two device local constraints or one system-wide constraint.

High There is at least one device local and one system-wide constraint.

Security describes the required security parameters for communication in the system to achieve
I.) Confidentiality, II.) Integrity, III.) Authenticity, IV.) Authorization andV.) Non-Re-
pudiationas given by [71].

The property with the highest weight is used for classification.

Low The scenario requires communication security against industrial level attackers [152],

11

2 Case Studies

Constraints

Security

Network
Topology

Low Medium High

Low

Medium

High

Static

Scheduled

Random

SecureWSN
Military Field Communication
Autonomous Driving

Figure 2.1: Simplified classification of the chosen use cases for further analysis.

achieved with standard security protocols, static key infrastructures and symmetric
cryptography during communication.

Medium The scenario requires communication security against industrial level attack-
ers [152], with standard security protocols, managed key infrastructures and asym-
metric cryptography during communication.

High The scenario requires communication security against state level attackers [152].

Network Topology describes the topology of the setup. It shows architectural assumptions and
pictures dynamic changes.
Static Once the system is set up, neither the participants nor the communication archi-

tecture changes.
Scheduled participants and communication architecture may change regularly or in cer-

tain pre-defined intervals.
Randomized participants and communication architecture may change anytime during

the life-time of the system.

We pick three use cases from 1.) Wireless Sensor Network (WSN), 2.) Mobile Ad-Hoc Network
(MANET) and 3.) Device-to-Device Communication (D2D) of which the simplified classification
is pictured in Figure 2.1 as follows:

1.) SecureWSN is a use case of WSNs and pictures a Smart Home [151]. It shows high device-
local constraints and highly optimized networking protocols are used to cope with the
constrained energy resources. Hence, it pictures high constraints. The topology can be
completely static, however, scheduled changes are possible as well. For security, optimized
standard protocols are used, with a static keying infrastructure and is therefore classified
as low.

12

2.2 Terminologies for Classification of Use Cases

2.) Military field communication is a use case for Vehicular and Mobile Ad Hoc Networks
(VANET, MANET). Naturally, it requires security against state level attackers, which is
the highest level of security in this dissertation. The topology is typically scheduled, as
communication groups are formed for certain purposes, however, the nature of Ad Hoc
networks may also picture randomized topologies.

3.) Autonomous Driving is a use case for D2D. It is an example of randomized topologies,
as cars frequently communicate with other devices they may not know. There may be
low constraints in regards of computation or energy for certain devices in the car, but not
on a system-wide level. The security is classified as medium, as it requires managed key
infrastructures and potentially asymmetric cryptography for communication with unknown
devices.

Hence, for each classification one use case with the highest requirements is found and used for
detailed analysis.

2.2 Terminologies for Classification of Use Cases

The use cases’ requirements are derived with the focus on cryptographic mechanisms. Choosing
the best cryptography for a use case depends on the available resources, the required security
properties and the network topology. Hence, three terminologies are developed, two of them
– Constrained Networks and Security Parameters – deduced from standardization. The third
one describes the communication and trust paradigms and combines standards and standard
literature.

2.2.1 Terminology for Constraints

Classification of constrained networks is part of ongoing research and standardization. The
efforts resulted in the description of RFC7228 [135] and are currently proposed for revision
in RFC7228bis [21]. With device and power classes, RFC7228 focuses on the terminology of
nodes within a network, while its successor adds networking as a third main source of constraint.
Additionally, it revises them to offer more accurate grading within the classes:

Device classes range from C0 to C19, although only the classes C0-C4 define considerable con-
straints. C10 and C13 are inspired by middleboxes and small single-chip computers respec-
tively. Although low-power, they are typically able to host the kernel of legacy operating
systems, such as Linux, which is not necessarily true for the lower classes. Classes >C15
are for smartphones, Desktop PCs and servers with no significant memory constraints and
therefore out of scope of this work. The draft stays silent about computing capabilities
and majorly re-uses the classification ARM®’s processor families Cortex-M.

Class C0 C1 C2 C3 C4 C10 C13 C15
RAM � 10KiB 10KiB 50KiB 100KiB < 1MiB < 8MiB < 1GiB < 4GiB
ROM � 100KiB 100KiB 250KiB 1MiB < 2MiB ∞ ∞ ∞

Network classes mainly focuses on the Maximum Transfer Unit (MTU), but also on the bit rate
of the physical layer, which are both typical for but not limited to wireless communication.
While the bit rate is interesting for time-critical scenarios, the MTU is the major limitation
as it comes with the necessity of fragmentation. This affects both, the energy to send the
frames over the physical network but also in terms of code size and RAM requirements.

13

2 Case Studies

Hence, packet compression turns out to be the weapon of choice [124]. In unconstrained
environments, fragmentation is usually tried to be avoided to preserve interoperability.

Class S0 S1 S2 S3
MTU 3− 12Byte 12− 127Byte 128− 1279Byte ≥ 1280Byte

Power/Energy classes differentiate between the maximum average power available during the
lifetime (in Watt) and the total electricity available until the device runs out of energy (in
Joule). Both require different strategies to exploit the provided power to the fullest and
are divided into three power and four energy categories respectively: Power is described as
“usually powered off” (Class P0), “always on low power” (Class P1) and “always on and
connected” (Class P9).

Class P0 P1 P9
Description usually powered off always on low power always on

Available energy is described as “limited for a single event” (Class E0), “limited for a
specific period” (Class E1), “limited for the whole lifetime” (Class E2) and “not limited
at all” (Class E9).

Class E0 E1 E2 E9
Limitation single event specific period whole lifetime not limited

These properties are relevant to describe a system’s inherent service quality. For example, if
the system has to provide a certain functionality within certain time-constraints, the time to
process information on the device as well as the time to distribute it within the network are
important factors. Hence, the classification of Device and Network are of relevance for this task.
In turn, the more powerful computing and networking hardware, the higher are power and energy
consumption. Energy/Power limitations may influence computing and network hardware and
the goal of a security solution – e.g as the combination of protocol and cryptographic algorithm
– is not to (or only negligibly) impact the service quality while not (or only negligibly) changing
the chosen hardware.

2.2.2 Terminology for Security
With the properties defined by the standard for information security (ISO/ IEC27001 [71])
and current standardization activities for securing group communication (RFC8576 [146]), the
definition of security introduced in [57] is enhanced as such:1

I.) Confidentiality Property that information is not made available or disclosed to unauthorized
individuals, entities or processes [71, p. 2.13].

II.) Integrity Property of accuracy and completeness [71].

III.) Authentication Property that an entity is what it claims to be [71].

III.a) Data Source Authentication The corroboration that the source of data received is
as claimed [126].

IV.) Authorization An approval that is granted to a system entity to access a system re-
source [126]. It can be split into:

IV.a) Forward Access Control Whenever a client leaves a system, it must not be able
to access a system’s resource (e.g., for a key agreement protocol, the property that

1Although important from a system’s perspective, we leave out Availability for the context of this thesis. While
the system architecture presented in Chapter 4 is able to provide this service, it cannot be tackled by cryp-
tography and is hence not in the focus of this work.

14

2.2 Terminologies for Classification of Use Cases

compromises long-term keying material does not compromise session keys that were
previously derived from the long-term material [126]).

IV.b) Backward Access Control Whenever a client joins a system, it must not be able to
access prior available system resources (such as keys).

V.) Non Repudiation Ability to prove the occurrence of a claimed event or action and its orig-
inating entities [71].

V.a) Proof of Origin provides the recipient of data with evidence that proves the origin
of the data, and thus protects the recipient against an attempt by the originator to
falsely deny sending the data [126].

V.b) Proof of Receipt provides the originator of data with evidence that proves the data
was received as addressed, and thus protects the originator against an attempt by
the recipient to falsely deny receiving the data [126].

In theory, all of these properties can be achieved by cryptographic means independently from
each other. Technically, some of the properties allow achieving another one without extra
costs - or even reducing the costs. For example, most useful signature algorithms to prove
authenticity, sign the cryptographic hash of a message, which in turn also provides integrity.
Others explicitly depend on each-other, e.g., to proof the origin of a message, the property of data
source authenticity has to be provided as well. Cryptography provides security against certain
attacker capabilities, of which a state-level attacker is typically assumed to be the strongest [152].
Quantifying the security of a cryptographic algorithm is a difficult topic, however, the term Bit-
Security features broad acceptance in the cryptographic community:

The intuition is that 2n is the cost of running a brute force attack to retrieve an
n-bit key, or the inverse success probability of a trivial attack that guesses the key at
random. In other words, n bits of security means “as secure as an idealized perfect
cryptographic primitive with an n-bit key” [91].

2.2.3 Terminology for Network Topology

The last terminology to be set up for classification of the scenarios is for the inherent commu-
nication and trust model.

Communication We distinguish the communication models, 1:1 , 1:n , n:1, n:m, which are
found in various standard literature [23, 166, 172].

Trust Topolgy We distinguish centralized, decentralized and distributed trust relationships. This
is of major interest when it comes to the management of keys.

Dynamic The level of dynamicity is deduced from the description of deployment options in [74].
It distinguishes fixed, scheduled and randomized deployment. Considering that any (un)deployment
changes the communication’s participants, this definition fits well to describe the dynamic
nature of a system.

Nodes The number of nodes in the system.

These properties are necessary to find the right security solution for the given scenario. A
solution working well with high-dynamic might not scale with >1000 nodes or not be able to
deal with n:m communication. Hence, the scenario needs to be described well to find the most
efficient solution under the aforementioned conditions.

15

2 Case Studies

Gateway

IPv6
Access Control Server

INTERNET

Certificate Authority

Publisher

Secure
Communication

Communication
Link

Data Flow
Sensor Node
(e.g. TelosB)

Sensor Node
(e.g. OPAL)

Subscriber

Figure 2.2: Architecture of SecureWSN [151].

2.3 Classification of Use Cases

The following will present the three use cases with a special focus on the classification properties
developed above. Use cases are meant to serve as examples to give the reader a sense for the later
discussed problem of key revocation. The aim is to show which constraints and communication
models apply on the specific use cases and how they affect the presented security properties.

2.3.1 Use Cases 1: Wireless Sensor Network (WSN)

The typical picture of WSNs consists of different sensor nodes that collect individual data and
transport it to one sink [74]. The number of devices depend on the use case, which in turn
impacts the quality and length of the link to the sink. In many setups, the data-collecting
nodes gather under so-called gateways providing the connection to the sink. This gateway
may have several tasks, such as a) simple forwarding/routing of packets, b) data aggregation,
c) performing protocol (de-)compression and d) securing the connection over the Internet.
The research project SecureWSN [151] pictures such a scenario as depicted in Figure 2.2.

In the center, three constrained nodes are connected to the publisher, which sets up a secure
connection to the gateway (see bottom right), which is what is typically understood under the
term WSN. The gateway provides IPv6 connectivity to other services, e.g.,

1. the subscriber, which accesses the data from the WSN,

2. an access controller, which grants access to the system and its data,

3. a Certificate Authority (CA) for trust management and

4. the Internet

The major difference to other use cases in this field is the choice in communication protocols.
Choosing IPFIX [134] comes with some advantages for this specific case. However, security
properties, trust model and class of constraints would be similar in other scenarios choosing
other protocols stacks and hardware. Examples include 6LoWPAN (exemplarily shown in [74,
156]) and are mainly covered by different networking technologies, such as Bluetooth Low Energy
(BLE) [158], LoRa [W1] or SigFox [W2].

16

2.3 Classification of Use Cases

I.) Classification of Constraints

SecureWSN is a sensor network with most of the constrained nodes running on battery (Class
P1 and E2), the Iris Mote is typically attached to a power source (Class E) and Opal Mote
features both (Class E2-E9 and P1-P9). All nodes are communicating with an IEEE802.15.4 [70]
(Class S2) interface. The used protocol TinyIPFIX [142] offers compression of the data, which are
necessary to cope with the limited MTU of only 128Bit. The following hardware is used in the
current setting of SecureWSN. The module’s name is depicted in the rows of the following table,
while the columns present the chip’s capabilities (RAM, ROM) and the hardware’s classifications:

Name RAM ROM Device Networking Energy Power
Iris Mote 8KB 128KB C0 S2 E9 P9
TelosB 10KB 48KB C1 S2 E2-E9 P1
OpenMote 32KB 512KB C2 S2 E2 P1
Opal Mote 52KB 256KB C2 S2 E2-E9 P9

II.) Classification of Security

Security is achieved with a layered concept. The constrained nodes use a pre-shared key to
communicate encrypted with the gateway(s), acting as the sink of the WSN. Nodes (and the
keys) are programmed with the so-called CoMaDa module that also serves as the gateway to
the internet which acts as a trust anchor.
The connection is always integer and confidential by using DTLS [130], however, the gateway

can read the traffic and no end-to-end security is provided. As a consequence of using DTLS,
a CA is required to create and prove certificates. The CA can either be part of the gateway
(concrete in CoMaDa) or an external service as presented in Figure 2.2. Authenticity is provided
through the DTLS handshake while the data source authenticity is guaranteed with the trust in
the CoMaDa module. The chosen cryptographic algorithms are AES-128 for encryption, SHA-1
for integrity and authenticity during the transport while Elliptic Curve Diffie-Hellmann (ECDH)
and Elliptic Curve Digital Signature Algorithm (ECDSA) are used for the key exchange.

III.) Classification of Network Topology

The natural communication model for WSN is n:1, however, SecureWSN also features com-
munication from the subscriber to the sensors, which is unicast (1:1). Multicast (1:n) to the
sensors is not yet implemented.
The concept of the gateway is two-folded (see Figure 2.2). An Opal Mote is the publisher

of the data including a Trusted Platform Module (TPM) and therefore is able to perform a
customized DTLS handshake with the gateway [82]. Second part of the gateway is a conventional
computer, attached with an IEEE802.15.4 networking interface, which prepares the data for the
subscribers. The Access Control Server is either part of of CoMaDa or an external CA, hence,
trust is provided centralized.
The number of nodes can range per specific use case, in the case of Smart Home the size of

the building would be the main driver. It can only be a few dozens to a few thousands, however,
they would typically form smaller groups under a gateway (sometimes called tree-of-trees [74]).

2.3.2 Use Cases 2: Mobile Ad-Hoc Network (MANET)
Military field communication is an example for MANET with the major application of sharing
sensing information among mobile devices [W3]. Sensors would gather information about people,
devices and the environment of the soldier wearing the sensor(s). Additionally, networks are set
up ad-hoc for mission planning, such that a single sensor does not have the burden of handling

17

2 Case Studies

the mission on their own. This may be extended by multiple devices entering an area of interest,
each of which following its own mission, but requiring collaborative sensor data to cope new or
unanticipated requirements.

I.) Classification of Constraints

Communication is typically wireless, ranging from short range, such as IEEE802.15.4 (Class
S1) or BLE (Class S1-S2) to long range networks such as LoRa [165, 178] (Class S0-S2). The
nodes are mobile and therefore limited in energy supply for the time in the field (Class E1-
E2) which is the main driver of power reduction (Class P1). This in turn limits the available
computing resources, but as the hardware is not low-cost as in civil use cases, RAM and ROM
are typically limited but not heavily constraint. Exemplary devices are Single Chip Computer
such as Raspberry Pi (Class C13) or Smartphones (Class C15) [165].

II.) Classification of Security

Naturally, security is a key challenge in military, as a breach may cause serious risks for the per-
son wearing the sensors. The shared information needs to stay confidential and integer. There
are other use cases such urban sensing for firefighting, police activities, etc. with similar require-
ments and technology choices. Data Source Authentication and Proof-of-Origin are especially
important and in turn require efficient Authorization.

III.) Classification of Network Topology

The nature of ad-hoc networks is a distributed network topology [28], same is true for the trust
topology. Keeping the hierarchical order in military in mind, the trust chain can also be hier-
archical (decentralized). As any device needs to communicate with any other device within the
ad-hoc network, the communication is distributed. Devices may enter or leave the communica-
tion group frequently, hence, the dynamic randomized. Communication and especially routing
is difficult in ad-hoc networks [74, 166]. Recently, with 300 stable connected nodes, a record has
been achieved for MANETs [W3].

2.3.3 Use Cases 3: Device-to-Device Communication (D2D)

The term D2D pictures a wide range of use cases, one of them being autonomous driving. Such
cars use sensors to monitor their surroundings but also detect dangers. Tesla®’s Model S - which
is the most simple version - comes with dozens of such sensors [W4] for capturing the surrounds,
not including those monitoring the car itself. This makes the cars themselves a sensor network.
However, this alone is insufficient for enabling autonomous driving, especially once it comes

into scale with millions of such cars. They need to be connected to communicate with services
providing data (e.g., traffic), for receiving control information or updates. The communication
enlarges when communicating with other cars on the street, which could be only informational
but also for safety reasons (e.g., emergency brakes) [3, 48, 64].

I.) Classification of Constraints

In contrast to military communication where the connection is set up ad-hoc (Class S1), cars
would additionally access an available network structure, such as LTE [30] (Class S2-S3). Al-
though some of the sensors in a car would be highly computational constrained, they would all
gather under a more powerful control unit within the car that serves a the gateway to the net-
work (Class C10-C15). Also power and energy play only negligible roles. Hence, constraints are

18

2.4 Summary and Findings

mostly in terms of networking and mainly driven by the communication time if certain real-time
requirements need to be met.

II.) Classification of Security

However, the security requirements are rather strict. Data Source Authentication and Proof-of-
Origin are especially important, which is also highlighted in [64]. In turn, this requires putting
attention on Authorization. That is specifically true, when considering the number of devices in
such scenarios, which can be easily � 1, 000 dynamically forming communication groups while
requiring security. Another interesting security property in this scenario is the one of Proof-of-
Receipt, which might be necessary when it comes to legal liability. Furthermore, as these use
cases are highly user-centric, the security property Proof-of-Origin comes with privacy issues.
However, privacy is left out of the scope of this dissertation.

III.) Classification of Network Topology

The combination of a fixed network such as LTE and ad-hoc communication is typical for D2D
and received excessive studies within the last years [3, 48, 64]. The communication profile is
n:m and the topology is (de-)centralized. Additionally, there are attempts on enabling multicast
over D2D [36, 154], allowing dynamic formation of communication groups for a certain interest.
One could imagine groups for cars on a certain highway or close to a specific access point or
city.

2.4 Summary and Findings
This chapter presents challenges in the area of constrained networks and discusses security
properties to be met in such environments. Table 2.1 presents an overview of the use cases’
properties elaborated throughout the previous section. The rows detail the discussed properties
Constraints, Security and Network Topology for the three fields of application WSN, MANET
and D2D, which are depicted in the columns. For each property, we present typically found
classifications. In case of multiple use cases, ranges are depicted (e.g., RAM in D2D ranges
from class C4 to C13). With SecureWSN, a specific example was given revealing the challenges
when deploying cryptography and security protocols in constrained networks. The additional
use cases of military communication and autonomous driving are given as examples, where other
restrictions apply but the security properties are still challenging.
Although the challenges presented are not new, the analysis indicates the complexity of solving

them with state-of-the-art mechanism. Hence, the section also presented a methodology on how
to answer RQ1:

RQ1: Which use cases fail using state-of-the-art mechanisms for secure communica-
tion or their respective optimizations?

The analysis indicates that the management of trust and the thereby inherent management of
keys is a challenge to face. Use case 1 and 3 allow centralized or decentralized trust management,
which can be used to distribute and revoke keys with the latter being required for access control.
However, even the case of military communication allows the initial setup of trust to be (de-
)centralized, as long as eventually distributed management is supported.
The next chapter examines this knowledge and presents state of the art mechanism for ex-

changing and distributing cryptographic keys. For validation of the examined mechanism, we
define the properties for efficiency and hence answering RQ2:

RQ2: What are the requirements to meet efficiency in such use cases?

19

2 Case Studies

Table 2.1: Overview over derived requirements in the different use cases.
WSN MANET D2D

Constraints
RAM C1-C2 C2-C4 C4-C13
ROM C0-C2 C1-C3 C4-C13

Netwok S2 S0-S2 S2-S3
Power P1 P0-P1 P1
Energy E2 E1-E3 E3

Security
Confidentiality 3 3 3

Integrity 3 3 3
Authentication 3 3 3

Data Source Authentication 3 3 3
Authorization 3 3 3

Proof of Origin 7 3 3
Proof of Receipt 7 7 3

Topological
Communication 1:1; n:1 n:m 1:n; n:m

Trust centralized decentralized,
distributed

decentralized

Dynamic scheduled randomized randomized
Number of Nodes 100-1000 50-300 [W3] � 1000

We will focus on mechanisms being designed for or applicable in the use cases presented in this
section, while potentially tackling the challenge of key revocation. Such mechanisms must not
reduce the security, while claiming efficiency. With the analysis above an efficient revocation
mechanism is considered as one that fulfills one or more of the following efficiency requirements
(ER):

ER1: The networking overhead during communication including the size of the signed
message shall not (or only negligibly) increase.

ER2: The networking overhead for revocation shall be minimal. In the best case this
means a maximum of one additional frame on the link layer.

ER3: The performed cryptographic operation shall not (or only negligibly) increase.

In the remainder of this work, these requirements will be used to pick relevant state-of-the-art
in the next Chapter. They serve as the main driver for the design decisions in Chapter 4 and
the chosen Identity Based Signature (IBS) schemes in Chapter 5 and 6. Further, the evaluation
in Chapter 7 will derive complexity notations based on these requirements.

20

3 State of the Art and Related Work

Chapter 2 shows a need for efficient security solutions regarding different aspects of secure
communication and defines the properties of an efficient solution. This work aims at improving
signing key revocation, supplementing the other efforts being made during the last decades.
Secure communication over a public network requires several mechanisms to work together.
This is the task of security protocols, combining transport security, key distribution and trust
management with different cryptographic mechanisms. Revocation – which is the focus of this
dissertation – is one of the last challenges to be tackled within the lifecycle of a system. That
is simply because if the established connection is not secure, revocation is pointless. In that
regard, this chapter presents efficient building blocks for this lifecycle found in state-of-the-art
network protocols and cryptography.
The necessary fundamentals on cryptography are presented in Section 3.1. This includes a brief

introduction to Provable Security, which is necessary to analyze the security of the introduced
transformations. With that at hand, Elliptic Curve Cryptography (ECC) as a common technique
for efficient security solutions in the presented use cases is introduced in Section 3.2. It is also
an important building block for the development of Identity Based Signature (IBS) and for the
revocation mechanism’s efficiency, developed later in this work.
Development of an efficient but meaningful revocation mechanism requires understanding the

efforts made for efficient transport security, key agreement/distribution, but also its underlying
cryptographic mechanisms. Only recently, RFC8576 [146] was published and gives an overview
of the standardization efforts within the last years, but also states challenges not yet tackled.
The aim of Section 3.3 and 3.4 is to explain these efforts. A special focus is put on group key
management in Section 3.5, which plays a central role for the efficiency of the later introduced
transformation.
Section 3.6 will close this chapter by discussing related work for revocation, being found

in standardization and research. They can be split into two main categories, as mechanisms
utilizing knowledge or mathematical approaches.

3.1 Fundamentals of Cryptography
A definition for Cryptography can be found in the Concise Oxford Dictionary [163]:

The art of writing or solving codes

Although historically accurate, it does not illustrate the challenges being tackled by cryptography
in a digitized world. A modern definition is given in [76]:

The scientific study of techniques for securing digital information, transaction and
distributed computations.

While Oxford Dictionary’s definition solely pictures the art of creating codes – which refers
to making texts unreadable by a third party – this definition uses the term scientific study
of techniques for information security. As presented in Chapter 2, various standards have

21

3 State of the Art and Related Work

defined the goals for information security. Hence, studying cryptography is about developing
techniques to achieve such goals for various applications, but also to understand their security.
We distinguish cryptographic algorithms for the properties given by [71]:

I.) encryption for achieving confidentiality

II.) hashing for achieving integrity

III.) digital signatures for achieving authenticity and non-repudiation

Authorization can be achieved by a combination of those three.
For integrity, hashing an information is sufficient, which is not true for encryption and sig-

nature algorithms, which require keys. There are several algorithms on how such keys are used
and generally we distinguish:

1. symmetric algorithms, where encryption and decryption (respectively signing and verifi-
cation) is achieved with a single key shared by all participants.

2. asymmetric algorithms, where two keys with a mathematical link are used. We distin-
guish:
a) private key which has to be kept secret by the user and is used for decryption and

signing
b) public key which can be shared publicly and used for encryption and verification

This holds a potential risk, as – in theory – the mathematical link between private and public
allows the computation of the former from the latter. To overcome this issue, the link is created
by mathematical problems, which are assumed difficult to solve even with the largest computers
on the planet. Such problems are called computationally hard and some of them are found in
group theory.
Next, this section outlines the fundamentals of group theory and explains the thereof resulting

hard problems for cryptography. With the example of the Diffie-Hellmann protocol the develop-
ment of a cryptographic algorithm is explained and the relation of different problems is shown.
Understanding the security of developed algorithms is the goal of Provable Security, which will
be introduced as well.

3.1.1 Group Theory
Basic knowledge of group theory is helpful to understand the transformations applied in Chap-
ter 5, which are all based on elliptic curve groups (see Section 3.2). So-called Finite Abelian
Groups are commonly used in cryptography.

Definition 3.1 (finite abelian group [99]). An abelian group is a set G together with a
binary operation on G such that the following axioms hold:

(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G (associative law);
(ii) a ∗ b = b ∗ a for all a; b ∈ G (commutative law);
(iii) there is an identity (or neutral) element 1 ∈ G such that a ∗ 1 = a for all a ∈ G;
(iv) for each a ∈ G, there exists an inverse element a−1 ∈ G such that a ∗ a−1 = 1.

The abelian group G is called a finite abelian group if it has only finitely many elements.
The number of elements of the finite abelian group G is called the order of G.

The special case of cyclic groups is of special interest for cryptography, as they allow so-called
trapdoor functions which are useful for asymmetric cryptography:

22

3.1 Fundamentals of Cryptography

Definition 3.2 (cyclic finite abelian group [99]). A finite abelian group G is called cyclic
if there exists an element g ∈ G such that every element of G is a power of g. The element
g is called a generator of the finite cyclic group G. We also say that G is the cyclic group
generated by g and we write G = 〈g〉.

One example of a cyclic finite group which is important for cryptography is the modular multi-
plicative group [60, 181]. It is defined as (Z∗p, ·), p ∈ N, with Z∗p = {1, 2, · · · p−1} and a generator
g ∈ Z∗p such that gx = 1 mod p, with x = p − 1. Given a generator g ∈ Z∗p and m ∈ Z∗p, the
smallest number x ∈ Z∗p such that gx = m mod p is a discrete logarithm:

Definition 3.3 (Discrete Logarithm [99]). Let Fq be a finite field and let g ∈ F∗q be a
primitive element of Fq. For each a ∈ F∗q, the unique integer h with 0 ≤ h ≤ q− 2 such that
gh = a is called the discrete logarithm (or the index) indg(a) of a to the base g.

3.1.2 Computationally Hard Problems
Relative to today’s available classic computers, some mathematical problems are called com-
putationally hard. We say that a problem is hard, if there is no known algorithm, solving
the associated problem in polynomial time. With the different computer model in the field of
Quantum Computing, this assumption changes for some problems.

The problem of prime factorization is commonly known due to its use in the RSA algorithm,
which was developed 1974 by Rivest, Shamir and Adelman [147]. It is based on the problem of
finding all prime factors of a significantly large integer and is most difficult for the product of
two similar sized prime numbers.
With the discrete logarithm in cyclic groups there is the so-called Discrete Logarithm Problem

(DLP), which is similarly important for modern communication:

Definition 3.4 (Discrete Logarithm Problem [99]). For a cyclic group G with a generator
g, given g, ga, with a, ga ∈ Z the problem of computing a is known as the Discrete Logarithm
Problem.

Many cryptographic algorithms build upon the hardness of the DLP, notable for this work are
the Digital Signature Algorithm (DSA) [8] and Schnorr-signatures [153].
Similarly, the Diffie-Hellmann protocol [34] is based on the DLP and allows two parties (typi-

cally called Alice and Bob) to agree on a shared secret k, which can then be used for symmetric
algorithms. It assumes that both use the same generator g of a cyclic finite group G. With the
example of the cyclic group Zp with p being prime, that works as follows:

Step 1: Alice chooses a random integer a r←− Zp, with 2 ≤ a ≤ p− 2. Bob chooses a random
integer b r←− Zp, with 2 ≤ b ≤ p− 2.

Step 2: Alice sends ga ∈ Zp to Bob, while Bob sends gb ∈ Zp to Alice.

Step 3: The common key k = gab ∈ Zp, which Alice computes as (gb)a ∈ Z∗p and Bob
computes as (ga)b ∈ Zp

That a third party (commonly denoted as Eave) is not able to compute k given g, ga, gb, is
known as the Computational Diffie-Hellman Problem (CDH).

23

3 State of the Art and Related Work

Definition 3.5 (Computational Diffie-Hellman Problem [99]). For a cyclic group G with a
generator g, given the tuple g, ga, gb, with a, b ∈ Z the problem of computing gab is known
as the Computational Diffie-Hellman Problem.

This allows the definition of another problem, called Decisional Diffie-Hellman Problem (DDH).
It can be exploited for the so-called bilinear maps in Section 3.2.2

Definition 3.6 (Decisional Diffie-Hellman Problem [99]). For a cyclic group G∗ with gen-
erator g, given the tuple g, ga, gb, gz, with a, b, z ∈ Z, the problem of deciding whether or not
gz = gab is known as the Decisional Diffie-Hellman Problem.

3.1.3 Provable Security
One important aspect of cryptography is the study of developed mechanisms regarding their
security. This is commonly known as cryptanalysis and Provable Security is a technique for
identifying theoretical issues during the construction of cryptographic algorithms.1
Constructing cryptographic schemes and proving their security has many flavors, but builds

on the following principles [76]:

Principle 1: Formulation of a rigorous and precise definition of security.

Principle 2: When the security relies on assumptions, they must be precisely stated and should
be as minimal as possible.

Principle 3: Constructions should be accompanied with rigorous proof of security with respect
to the definitions and assumptions (if any).

I.) Defining a security model

Important for Principle 1 is the clear definition of an attacker model in so-called experiments
defining the attacker’s abilities. The attacker is the so-called adversary, denoted as A. Security
goals of the algorithm need to be stated, which for signature schemes is existential, selective, or
universal unforgeability. A successful existential forgery is given, if the adversary can produce
one valid pair of signature/message without being the legitimate signer. This is meant to be the
strongest security goal for a signature scheme. For the proof, A is allowed to query so-called
Oracles (denoted as O) defining her power. Oracles can be described as functions, A can call
during the game to obtain information. Typical attacker capabilities are grouping such Oracles
to achieve a certain security level. For signature, that is:

key only: A receives the verification key (public key).

known-message: A receives a list of pre-selected message/signature pairs.

adaptive chosen-message: A adaptively obtains signatures for messages of her choice.

The latter allows A to obtain information about how the signature may look for other messages
and pictures a real-world attacker who silently listens conversations with the goal of forging
future (unknown) messages. That defines the strongest tools of an adversary, as she is allowed
on receiving adaptively changing information, except the signing key. The goal is to prove, that
a signature scheme is secure, even if the adversary is that strong and signature scheme being
existential unforgeable under adaptively chosen-message attacks.

1The aim is a brief outline of the fundamentals rather than a comprehensive introduction. We refer the interested
reader to one of the following, which have been a great source of inspiration [29, 75, 76, 181].

24

3.2 Elliptic Curve Cryptography

II.) Security Assumptions

It is almost impossible to unconditionally prove the security of a scheme [76], why defining as-
sumptions is important according to Principle 2. Thus, some assumptions have become common
practice in cryptography, most notable for this thesis is the assumption saying that the DLP
is computationally hard. It has been studied for years and is clearly defined, even against the
threat of quantum computers. Another one – which typically applies to signatures – is the one
assuming the randomness of hash functions, referred as the random oracle model. In a nutshell,
it assumes that the output of a hash function is perfectly random and therefore unpredictable
for the adversary. Typically, schemes would not define the actual hash function to be used,
hence, it is exchangeable in case of any weakness.

III.) Reduction Proofs

Satisfying Principle 3, all proofs in this work re-use assumptions from the original schemes
and are defined in that regard. Proving them is done with the technique of security reduction,
meaning that the original assumptions are not hurt after a schemes transformation. Particularly,
we prove by contradiction, which – at a high-level view – is done as follows [60]:

1. We assume a mathematical problem to be hard.

2. We prove: if a proposed scheme is insecure, that this hard problem then is easy by the
output of the proposed scheme.

3. The assumption of the hard problem would then be false, in turn the scheme is secure.

Technically, this is done by playing a game with two adversaries (e.g., A,B), A following the
experiment of a hard problem (e.g., DLP), B following the experiment of the proposed scheme. A
can call B, who wins her game, and A uses B’s output to win her own experiment in polynomial
time. With the example of the Diffie-Hellman protocol presented in Section 3.1, the conclusion
could be:

If B is able to win her experiment and solve CDH, A can solve the DLP in polynomial
time.

With the so-called Game Hopping Lemma [157] it is possible to reduce the security to another
scheme, which in turn reduces to a hard problem. As the transformations in Chapter 5 are
based schemes with rigorous proofs, this technique will be used (where possible).

3.2 Elliptic Curve Cryptography

Elliptic curves have been introduced for the use in cryptography in 1985 [80, 97]. Even in
applications like Browsing moving from the most famous algorithm RSA [147] to algorithms
based on ECC is found common practice and many modern protocols were extended for using
these algorithms. For constrained scenarios, it is considered more less inevitable to cope with
the restrictions. This is mostly because they allow smaller key sizes featuring smaller memory
footprint and better operation performances for the same security as RSA [143].
The transformations in Chapter 5, require familiarity with the calculation rules on elliptic

curves. Additionally, two of the transformed schemes are based on so-called Pairings (also
called bilinear maps) with special rules, which are outlined as well. It is further important
to understand the underlying computational problems, making them a valuable solution for
cryptographic purposes.

25

3 State of the Art and Related Work

3.2.1 Group Definitions on Elliptic Curves
An elliptic curve can be defined over different fields F such as R,C or Fq (q is prime) with the
equation [181]:

y2 = x3 + ax+ b (3.1)

Let O be the point “at infinity” and a, b ∈ F with 4a3 + 27b2 6= 0, then the elliptic curve E is
given by [181]:

E = {(x, y) ∈ F × F | y2 = x3 + ax+ b ∧ 4a3 + 27b2 6= 0} ∪ {O} (3.2)

Elliptic curves are interesting for cryptography, as they naturally carry a (commutative) group
structure as given by Definition 3.1 and 3.2. To define a cyclic group over the elliptic curve, we
require an associative group law with a corresponding inverse and a neutral (identity) element.
Figure 3.1 plots the elliptic curve E for y2 = x3−x+ 1 over R three times for illustration of the
following rules [181]:

neutral element (identity element) is the point “at infinity”, denoted as O in Figure 3.1.a.

Inverse Elliptic curves are symmetric about the x-axis. Therefore the inverse of point P = (px, py)
is well-defined as −P = (px,−py), which Figure 3.1.a illustrates as the point’s mirror image
reflecting at the x-axis. −O is defined as −O = O.

Group Operation For the group operation +, consider a line through P and Q shown in Fig-
ure 3.1.b and its intersection with E as the point S. We define + as the inverse of this
intersection, such that P +Q = −S =: R. The special cases are:

1. if Q = P : Take the tangent line at P and its intersection with E as in Figure 3.1.c.
2. if Q = O: Take the vertical line through P , that is P +O = −(−P) = P .
3. if Q = −P : Take the vertical line through P and −P , that is P + (−P) = −O = O.

Additionally, k P with k ∈ Z is adding P exactly k times, particularly 0P = O and
−k P = −(k P) for k > 0.

The assumption is that given k P 6= O, it is computationally hard to determine k which is
referred to as the Elliptic Curve Discrete Logarithm Problem (ECDLP) [181]:

Definition 3.7 (Elliptic Curve Discrete Logarithm Problem [181]). Given the generator P
of an elliptic curve group of size m and A = aP (a ∈ Zm), the task of computing a from A
and P is known as the Elliptic Curve Discrete Logarithm Problem. This problem is assumed
to be computationally hard.

For cryptography, the typically used representation of an elliptic curve is the one defined by the
short Weierstrass equation over finite fields Fq, with p being prime:

26

3.2 Elliptic Curve Cryptography

−2 −1 1 2

−2

2

E
O

P

−P

a)
Neutral Element O
Inverse element −P

x∈R

y

−2 −1 1 2

−2

2

E

P

Q
S

R = P +Q

b)
Addition R = P +Q

x∈R

y

−2 −1 1 2

−2

2

E

P
S

2P

c)
Doubling P + P
“Tangent rule”

x∈R

y

Figure 3.1: Illustration of group operations on elliptic curves with the example elliptic curve E
for y2 = x3 − x+ 1 over R (inspired by [W5]).

Definition 3.8 (Elliptic curve in Weierstrass form [181]). Let Fq be a finite field of prime
characteristic; q ∈ Z, q > 3 and a, b ∈ Z. Then the elliptic curve over Fq consists of all
points (x, y) ∈ Fq × Fq, that fulfill:

y2 = x3 + ax+ b mod q

4a3 + 27b2 6= 0

Let O be the point “at infinity”, then the elliptic curve is given by:

E(Fq) = {(x, y) ∈ Fq × Fq | y2 = x3 + ax+ b mod q ∧ 4a3 + 27b2 6= 0} ∪ {O}

3.2.2 Pairings on Elliptic Curves
Pairings are special functions on cyclic groups and are also called bilinear mappings. For the
context of this work, it is only of relevance that such functions exist and that their computational
rules are defined as follows:

Definition 3.9 (Pairings [9]). Let G1,G2,G3 be groups of the same prime order. A pairing
function e : G1 ×G2 → G3 has the following properties:

1. Bilinearity: ∀(P,Q) ∈ G1 ×G2, ∀a, b ∈ Z : e(aP, bQ) = e(P,Q)ab

2. Non-degeneracy: ∀(P,Q) ∈ G1 ×G2 : e(P,Q) = 1⇔ P = O ∨Q = O

3. Computability: ∀(P,Q) ∈ G1 ×G2, there is an efficient algorithm to compute e(P,Q).

Pairings allow the construction of groups where the CDH is hard, but the DDH is easy (see
Definition 3.5 and 3.6). Such groups are called Gap Diffie-Hellman Groups. Consider the
following example for elliptic curve groups:
Let a, b, z ∈ Z, P ∈ E(Fq), and e(P, P) ∈ Z∗p be a pairing. Assume P, aP, b P, z P , and

s = e(z P, P) (e.g., as a signature) are given, but a, b, z are unknown. In E(Fq), the CDH, that

27

3 State of the Art and Related Work

is computing abP , is hard, while deciding whether or not abP ?= z P (DDH), becomes easy with
pairings. We compute s′ = e(aP, b P), which is equal to s if and only if abP = z P :

s′ = e(aP, b P) = e(P, P)ab = e(P, P)z = e(z P, P) = s (3.3)

Efficient pairings exist (famous are the ones of Weil and Tate [29]) and are used for short
signature schemes and Identity Based Cryptography (IBC). However, they are widely accepted
to be computationally expensive. The literature calculates with 10−21 elliptic curve operations
for one pairing operation [9, 52].

3.3 Efficient Cryptographic Mechanisms
Confidentiality, integrity, authenticity can be achieved in cryptographic means. Efficient cryp-
tographic algorithms for each of them are outlined in the following, closing with efficient key
agreement mechanisms based on the Diffie-Hellman key exchange.

3.3.1 Efficient Confidentiality Solutions

Although encryption can be achieved by using asymmetric cryptography, symmetric algorithms
are much more efficient in both, computational complexity and key sizes. This fact is shown in
Table 3.1, where the key sizes for DLP/RSA (central column) and ECDLP (right) are compared
to those of symmetric keys (left column). The most common algorithm for encryption is found in
Advanced Encryption Standard (AES), which offers three of the four presented key-sizes of 128,
192 and 256 as a security parameter and the table presents the respective asymmetric key sizes.
As 1024 Bit RSA keys can still be used in some settings, Table 3.1 shows its comparison with an
80 Bit symmetric key. Additionally, AES comes with different operation modes of block (e.g.,
CBC, CCM) and streaming ciphers (e.g., CTR, GCM). As block ciphers may require padding,
the latter are more efficient regarding network overhead and the resulting ciphertext has the
same size as the plaintext. ChaCha [15, 144] is another family of stream cipher that became
popular during the last few years, mainly because it offers efficient computation in software [150].
ChaCha, as well as AES-CCM and AES-GCM are so-called Authenticated Encryption with
Associated Data (AEAD) algorithm, which offers authentication with an included Keyed-Hash
Message Authentication Code (HMAC).

The major efficiency advantage of AES over other symmetric ciphers comes with its broad
acceptance. As it is relatively easy to be implemented in hardware, many modern chips have a
native instruction set for AES. During the standardization of IEEE802.15.4 [70] it was included
in the specification for link layer security. This is why such radio chips often provide an hardware
implementation and even the most constrained sensors may have access to hardware accelerated
encryption.

3.3.2 Efficient Integrity Solutions

A message’s integrity is secured by cryptographic hash functions. The most prominent ones are
those standardized under the name Secure Hash Algorithm (SHA). While SHA-1 is considered
insecure and was only recently practically broken [162], its successors SHA-2 [32] and SHA-3 [39]
are widely accepted.

3.3.3 Efficient Authentication Solutions

Communication of two trusted participants can be authentic with the use of symmetric cryp-
tography and is therefore a commonly used technique in security protocols. However, this is not

28

3.3 Efficient Cryptographic Mechanisms

Table 3.1: Comparison of key sizes (in Bits) for symmetric algorithms with asymmetric based
on DLP, ECDLP [160].

Symmetric Key DLP/RSA ECDLP
80 1,024 160
128 3,072 256
192 8,192 384
256 15,360 512

possible over a public network such as the Internet, why authentication based on asymmetric
cryptography is required as well.

I.) Authenticity by symmetric cryptography

One technology being widely used is called HMAC [118]. As the name suggests, cryptographic
hash function are used and extended with a key to provide authenticity. Obviously, this also
provides integrity why in most cases – if a shared secret exists – HMAC will be used to provide
integrity as well.
The commonly used algorithms are SHA-1 and SHA-2, which seems odd as SHA-1 is meant to

be insecure. However, in the combination with a strong key, there is no insecurity in constructing
an HMAC with SHA-1. The security level is actually as strong as the block size of the used
hash algorithm, which in the case of SHA-1 is 160Bit.
Due to the potential hardware acceleration, the AES-CBC-MAC became of interest for the

use on constrained hardware. As the original version is insecure for messages of variable length
(see e.g., [76, Chapter 4.5]). The variant called AES-XCBC-MAC [18] offers better security. It
is used in the AEAD algorithm AES-CCM, but can be used also used for authentication only.
Another variant taking advantage of an AES native instruction set is the Galois MAC, which is
used in the mode AES-GCM [38].

II.) Authenticity by asymmetric cryptography

Digital signature based on a asymmetric signing algorithm allow authenticity. The by far most
well-known algorithm is RSA [8, 147], but it requires large keys of at least 2048Bit for a decent
level of security. Another well-known algorithm is DSA [8], which – in contrast to prime factor-
ization in RSA – is based on the DLP and therefore applicable for elliptic curves. Consequently,
constrained environments were among the first utilizing the Elliptic Curve Digital Signature
Algorithm (ECDSA) [8] in a large scale. It only requires keys of 254-382Bit for the same level
of security (see Table 3.1), depending on the used curve.
Another signature algorithm is the one introduced by Schnorr [153]. It is very similar to DSA,

can be used with ECC and offers an efficient way for generating an IBS algorithm.
Hash based signatures can provide Authenticity but do not require asymmetric cryptography

while the security solely depends on the used hash function.2 They are typically so-called
one-time or few-time signature schemes. One example is Tesla [102] and its spin-offs, offering
asymmetry by delayed authentication but only relying on the security of hash functions. It
is therefore quite efficient and was even optimized for the use in Wireless Sensor Networks
(WSNs) [104]. However, the delayed authentication results in a serious DoS vulnerabilities and
was enhanced thereby [103, 113, 114].

2With the security only relying on hash functions, hash based signature are also considered a serious candidate
for Post Quantum Cryptography, but this remains out of scope of this work.

29

3 State of the Art and Related Work

Public parameter:P ∈ G
Alice

choose dA
r←− Z∗p

QA = dAP

K = dAQB = dAdBP

Bob

choose dB
r←− Z∗p

QB = dBP

K = dBQA = dBdAP

QA

QB

Figure 3.2: Elliptic Curve Diffie-Hellmann (ECDH).

3.3.4 Key Agreement
Agreeing on a shared secret is a necessity for algorithms providing confidentiality and authenticity
based on symmetric keys. In principle, there are two distinguished ways to achieve this goal,
called Key Encaspulation Mechanism (KEM) and Key EXchange (KEX).
A KEM uses an asymmetric encryption algorithm and takes its communication partners public

key to encrypt and send a random key. By using specific formats on how to send the key, this
method is secure but has a major drawback: The key being used is chosen by only one participant
and the other has no impact on the security of the used key.
Even though KEMs were widely used (e.g., in TLS 1.2 [127]), the drawbacks resulted in a

move to so called KEX in protocols like TLS 1.3 [145] or IKEv2 [136]. A famous representative
is thereby found in the Diffie-Hellman protocol. The initial idea was based on the CDH problem
(see Definition 3.5), which can be adopted to ECC and allows the same reduction of public
parameters sizes as shown for ECDSA in Table 3.1. Hence, the Elliptic Curve Diffie-Hellmann
(ECDH) presented in Figure 3.2 is an interesting solution for efficient key agreement and works
as follows:

Step 0: Alice (left) and Bob (right) agree on a public generator P of the elliptic curve group
G \O and the cyclic group Z∗p with p being prime.

Step 1: Alice chooses a random integer dA
r←− Z∗p.

Bob chooses a random integer dB
r←− Z∗p.

Step 2: Alice sends QA = dA P ∈ G to Bob, while Bob sends QB = dB P ∈ G to Alice.

Step 3: The common key K = dAdB P ∈ G, which Alice computes as dA(QB) ∈ G and Bob
computes as dB(QA) ∈ G

3.4 Efficient Security Protocols
Efficiently securing communication is achieved by a combination of asymmetric and symmetric
cryptography. With asymmetric algorithms being less efficient, the goal is to use them only for
setting up a channel secured by symmetric algorithms [22]:

1. Perform a key exchange (e.g., Diffie-Hellmann) to agree on a shared symmetric key

2. Authenticate the key exchange (e.g., with DSA) to prevent Man-in-the-Middle (MITM)

3. Use the symmetric key for confidentiality (e.g., with AES) and authenticity (e.g., with
HMAC) during the communication.

30

3.4 Efficient Security Protocols

There are numerous protocols following this principle, most of them split the communication
into two phases: Authenticated Key Agreement (1 and 2) and Secure Transport (3). Some suites
like IP security protocol (IPsec) separate with two protocols, while others like Transport Layer
Security (TLS) separate within a single protocol format. There have been various efforts in
optimizing some of these protocols for the use in constrained systems, but also development
in new protocols. One common form of optimization is the use of compression, which mainly
deals with the network restrictions, such as the Maximum Transfer Unit (MTU). Another one
is minimization of the protocol or defining new profiles, while keeping it standard conform.
The following two sections briefly outline efforts for optimization of standard protocols found

in usual Internet traffic and protocols explicitly designed for the considered use cases.

3.4.1 Protocol Optimization and Compression

There have been several proposals to optimize existing protocols. Among others, [65] describe
the security challenges of Internet of Things (IoT) with special focus on IP based communication,
while providing a functional comparison of TLS/DTLS with IPsec/HIP. This leads to different
architectures and solutions for IP and transport layer security [49, 82, 111, 112, 173]. In turn,
this encouraged the major standard body for IP protocols – the Internet Engineering Task
Force (IETF) – to publish minimization guidelines and optimizations for the protocols TLS,
DTLS [140], HIP [98], IKEv2 [139] and ESP [92, 95].3 Internet Key Exchange (IKEv2) is
thereby the preferred key exchange protocol for the IPsec suite and provides an authenticated
Diffie-Hellman key exchange, while Encapsulated Security Payload (ESP) provides transport
security by using these keys. Similarly, the Host Identity Protocol (HIP) [138] provides the
same properties, while using explicit identifiers which allows better efficiency in some contexts.
Both are not IPsec specific and can be used e.g., to provide key exchange for other layers such
as IEEE802.15.4. With most application protocols in the considered scenarios being based
on UDP, Datagram TLS (DTLS) (which is the UDP based variant of TLS) became the most
prominent solution.
Pure optimization is of interest to stay compatible with the standard. However, protocols

are typically designed for common usage, which is why there is a natural limit for standard
conform optimization. Compression is a common approach to overcome these limitations and
has been used for different purposes [125, 129]. In that sense, there were different approaches to
adopt compression to security protocols, again, mostly for IPsec [94, 108] and TLS/DTLS [109,
110]. Although there are efforts in standardization, at the time of writing they are still mostly
academic.

3.4.2 Constrained Security Protocols

In contrast to the protocols presented before, development of security protocols especially de-
signed for constrained scenarios is a popular alternative. While [64, 78] offer an overview over the
academic approaches, the IETF hosts two working groups developing standardized mechanisms,
namely CBOR Object Signing and Encryption (COSE)4 and ACE5. COSE aim on offering a
security mechanisms for the application layer, in particular for the CBOR data format, which is
an extension of JSON [141]. They currently focus on data formats for signing and encryption,
while including various standard such as X.509 [128], but it does not deal with key exchange.

3Please note, that [92, 98] are not published standard documents and could be subject of change or removal at
any time [115]. However, they are adopted as so-called working group documents and are therefore expected
to survive.

4CBOR Object Signing and Encryption (cose): https://datatracker.ietf.org/wg/cose/
5Authentication and Authorization for Constrained Environments (ace): https://datatracker.ietf.org/wg/

ace/

31

https://datatracker.ietf.org/wg/cose/
https://datatracker.ietf.org/wg/ace/
https://datatracker.ietf.org/wg/ace/

3 State of the Art and Related Work

The focus of ACE, however, is broader and aims on developing an applicable solution for au-
thentication and authorization. In particular, this includes mechanisms for authenticated key
exchange, architectural assumptions for trust management and the adoption and development
of data formats such as X.509, OAuth [132].

3.5 Efficient Group Key Management
Two facts make group key distribution interesting for the use cases. First, there is the require-
ment for group communication, e.g., in form of IP multicast which might be preferred over
unicast [137, 159]. Second, managing trust for authentication and authorization requires some
form of key distribution, why the architectural assumptions are very similar.
Sharing a symmetric key among a group that can be used for efficient transport security

inherits some challenges not found for two-party protocols discussed in the previous section.
Consequently, there are specialized protocols as well as cryptographic mechanisms. They can be
split into centralized, decentralized and distributed approaches [107]. All of them have the same
goal, that for secure communication over public networks the group members agree on a group
secret, often called Group Transport Encryption Key (GTEK).
In dynamic groups where members join and leave the group frequently, this secret has to

provide the following security features [121]:

Forward Access Control Whenever a group member leaves the group or is expelled, the member
in question must afterwards not be able to access a valid group key.

Backward Access Control Whenever a new group member joins a group, the member in ques-
tion must not be able to access a formerly valid group key.

Key Independence Having access to one key must not yield the possibility to deduce other keys
or any valuable information about them.

A group key management architecture as presented in Section 3.5.1 aims on providing those
properties as a centralized or decentralized approach. The cryptographic mechanisms presented
in Section 3.5.2 allow optimizations and distributed approaches.

3.5.1 Group Key Management Architecture
A group key management architecture is typically centralized and the most obvious way of man-
aging group keys as it leaves the complexity and trust to a single system. Figure 3.3 shows the
two roles of a Group Controller Key Server (GCKS) (left) and a Group Member (GM) (right)
and three communication channels, namely private, secure group and public channel (depicted
bottom up). The figure also depicts the necessary modules (Controller for authorization, Cre-
dentials for authentication) and databases (Group Security Association (GSA) for cryptographic
material and Group Security Policies (GSP)) of the two roles according to RFC2093 [116] and
RFC2094 [117]. A GCKS manages multiple GMs and validates their credentials and authoriza-
tion upon joining or leaving the communication group.
The private channel is secured with the Key Encryption Key (KEK) (an individually shared

secret between a GM and the GCKS). Forward and backward access control can be achieved
through a so-called Group Key Encryption Key (GKEK) – which is depicted as part of the
GCKS’ and GM’s GSA in Figure 3.3 – is used to distribute cryptographic material among the
group members. The private channel is used to re-new and distribute the GKEK to exclude
specific GMs from the group. The secure group channel is protected with the GKEK, which in
turn allows distribution of the GTEK for secure communication among the GMs. Both keys
are called the GSA and the GSP defines how they are used. However, forward access control

32

3.5 Efficient Group Key Management

Secure Group Channel

Public Channel

Private Channel

GROUP CONTROLLER KEY SERVER (GCKS)

CONTROLLER

CREDENTIALS

Group Security Policies
(GSP)

MEMBER

Group Security
Association (GSA)

GROUP MEMBER (GM)

CREDENTIALS

Group Security Policies
(GSP)

Group Security
Association (GSA)

KEK

GKEKGTEK

Key Encryption Key
(KEK)

GKEKGTEK

Figure 3.3: Group key management architecture as in RFC2093 [116] and RFC2094 [117].

needs attention as expelled members have access to relevant cryptographic material prior to
their exclusion.
Hence, the concept of centralization inherits some natural difficulties, such as weak scalabil-

ity, especially when only one server manages a geographically distributed network. In general,
the larger a group gets, the more complex becomes its management and the resulting opera-
tions. However, it fits nicely in the use cases’ architecture and will be re-used as an underlying
architecture for the developed revocation mechanism in Chapter 4.

I.) Decentralized

In contrast, decentralized techniques share the management of the keys between several in-
stances [25]. Thereby, the generation and distribution of group keys is realized by cooperative
instances, which are typical hierarchically ordered. In addition, distributed key agreement pro-
cedures delegate the key generation process to not only an individual group member, but to a
group of members.
Decentralized key distribution still sticks to the concept of a central server, but splits the group

in administrative domains for both management operations and key exchanges. Additionally,
it distributes the workload over more devices and thus eases the key calculations on the client
side. On the other hand, the decentralized concept requires strong trust relationships, which
is a showstopper for many use cases where administrative domains can change frequently and
devices are potentially physically accessible by arbitrary persons.

II.) Protocols

Most of the commonly used protocols are designed on top of centralized systems. The estab-
lishment of the KEK between GM and GCKS follows a two-party key exchange protocol, such
as IKEv2 or DTLS/TLS. Management of the group channel is included atop the protocol.
There have been different proposals for an efficient combination of protocols fitting the de-

scribed use cases. Most of them base on DTLS [79, 106, 168] or IKEv2 [53, 59, 148]. In stan-
dardization, the Internet Security Association and Key Management Protocol (RFC2408 [119])
and Group Domain of Interpretation (RFC6407 [131]) were the first such instantiations. With
IKEv2 as an efficient revision with stronger security properties and better performance, G-
IKEv2 [174] is currently proposed for group communications. Credentials and Controller can
be outsourced to an external service (e. g. X.509 for credentials and LDAP for controller). New
standardization follows this principle and provide group key management atop new frameworks
like ACE [101, 167, 169, 170].

33

3 State of the Art and Related Work

3.5.2 Group Key Distribution
Decentralized structures often imply a hierarchical structure that has to be maintained. The
distributed schemes involve several group members that use their resources to generate the key
material [179]. Both can be achieved in cryptographic means.
Different techniques for distributed key agreement were surveyed in [107], e.g., ring based,

hierarchical or even unstructured. The Group-Diffie-Hellman Key Exchange [161] is a very
obvious extension of its corresponding two-party key exchange. There are also structures using
more than one key and the general group is divided into subgroups while an elected master
of each subgroup is responsible for communication and the subgroup’s key generation. This
minimizes the re-keying overhead but in contrast, requires additional cryptographic conversions
of messages between subgroups.
Decentralized techniques can be used for optimization of centralized systems as well. The

most promising one are secret broadcasting and hierarchical structures. Within the broadcast
technique, the (de-)central instance transmits a single message containing keys to all members [2,
27, 179]. Hierarchical structure can also be used centralized to optimize the key distribution and
especially revocation to cope with forward secrecy. A famous technique is Logical Key Hierarchy
(LKH) [86, 149], which is standardized for the use in the previously presented management
architectures [120]. Both approaches will be presented as an option to allow efficient revocation
of signing keys in Section 4.3.1.
Recent development in the area of mobile messaging encouraged standardization of a message

layer security protocol6, which combines distributed with hierarchical techniques. However, they
are not applicable for all considered use cases.

3.6 Related Work on Signing Key Revocation
Revocation of signing keys is established and there has been various work in both, standardiza-
tion and academia. However, especially for very constrained and/or dynamic scenarios, prac-
ticable solutions are rare. The work can be split into approaches utilizing 1.) mathematical
revocation and 2.) knowledge based revocation, a separation which will be re-used for evalua-
tion in Chapter 7. We focus on standard solutions which were adopted to work in constrained
environments (similar to the previously presented security protocols) but leave out work which
has never been considered for such use cases. Additionally, we examine some academic solutions
which could be adopted.

3.6.1 Mathematical Revocation
In the context of this thesis we consider mathematical revocation a mechanism, which allows a
signature being mathematically invalid if the signers key was revoked. Theoretically this does
not involve extra computation or networking overhead for signer and receiver. All complexity
lies in the revocation mechanism that, simplified, allows mathematically and provably “stealing”
the signer’s key. Sticking to the analogy, this is not only difficult to prove but also requires a
very specific trust relationship between the “thief” and the verifier.
We discuss four techniques allowing such revocation, namely

I.) Identity Based Signature (IBS)

II.) Hierarchical Identity Based Signature (H-IBS)

III.) Attribute Based Signatures (ABS)

IV.) Key Insulation
6https://datatracker.ietf.org/wg/mls/

34

https://datatracker.ietf.org/wg/mls/

3.6 Related Work on Signing Key Revocation

I.) Identity Based Signature (IBS)

IBS defines a different method for key generation, which changes the trust model compared to
e.g., X.509. In typical asymmetric cryptosystems such as RSA/ECDSA, the user’s key material
is chosen at random and some external infrastructure (like X.509) is used to prove ownership. In
1984, Adi Shamir [155] proposed an asymmetric key system in which the public key is specifically
chosen to be mathematically linked to some information about its owner. Typically, some
identifying data approved by a trusted authority are used for this. A Trusted Third Party (TTP)
is required to compute the so-called User Secret Key (usk) with a Master Secret Key (msk). As
usual, signatures are created with the usk while encryption is performed with the public key.
Similarly, given the Master Public Key (mpk), a signature, and the stated signer’s identity, any
recipient can verify the signature. This makes additional infrastructure for managing individual
public keys superfluous. Thus, IBS offers very low network overhead during communication
and a lightweight management infrastructure at the expense of a very strict trust relationship
between client and TTP.

They additionally can be build with different cryptographic primitives [22]. The example given
by Shamir is based on prime factorization, offering well-studied security at the cost of large key
sizes [155]. The vast majority of Identity-based schemes rely on ECC, either utilizing Schnorr-
signatures or Pairings [7, 9, 12, 24, 164, 177]. IBS schemes using lattice-based cryptography are
also known [37, 175].

Based on the changed trust model, IBS offers a naive approach for mathematical invalidation
of signatures. The explicit trust relation to the TTP and the mathematical dependency of the
keys allow the TTP to re-issue keys to all systems participants, but the revoked user. Although
commonly known it was only recently proven to work in constrained environments featuring
group communication [52]. While the idea is very efficient during the actual communication
and applicable for the considered scenarios, the revocation mechanism is highly inefficient. It
requires the TTP to calculate a new usk for each user and send it confidentially via unicast.

II.) Hierarchical Identity Based Signature (H-IBS)

H-IBS offers an hierarchy which – theoretically – can be exploited in a similar way as in the
hierarchical key distributions schemes, briefly discussed in Section 3.5. It was first proposed
in [51] and allows hierarchical structures based on different roles in the system. The system offers
flexible depths of the hierarchy that could be used for example in sensor networks where every
node is attached to a router that could act as a so-called lower-level-TTP. Logical hierarchies
would be possible, but are not studied yet and come at the cost of signatures and usks increasing
in size with every new level in the hierarchy. A solution with constant signature sizes is shown
in [4], at the cost of larger public keys and lacking flexibility. Moreover, the scheme does not allow
renewal of a sub-tree’s keying material, which is why the same revocation issues as in centralized
IBS schemes occur. Efficient verification is only possible if the communication partners share the
same parent entity, reducing the system’s flexibility. The more dynamic a system is, the more
this 1-to-n-rekeying-effect (meaning that the renewal of one key triggers n re-keying messages)
worsens.

III.) Attribute Based Signatures (ABS)

ABS can be seen as a sibling of IBS that adds attributes to the identifier. In the context of
Cloud Computing, Attribute Based Encryption (ABE) received broad acceptance during the
last years, as it offers fine grained access control on encrypted data while keeping the master
secret key confidential. It was also studied in the context of constrained systems [176].

35

3 State of the Art and Related Work

ABS could allow additional features in comparison to IBS – for example group authentication
(n:1), where the recipient is not part of the group. However, the literature for ABS is relatively
thin as there are not too many advantages over IBS and one has to deal with management of
the attributes in addition to managing identities. Additionally, ABS seems inappropriate for
the considered use cases as it often builds upon pairings which are computationally expensive.
Exemplarily, we highlight [33], requiring 30 pairings for verification.

IV.) Key Insulation

Key Insulation allows updating keys with respect to a certain period, which is part of the
signature [35, 100] . As the defined update of the so-called session keys is similar to extracting a
key for IBS it can be seen as mechanism to build IBS schemes [35]. Hence, it offers a somewhat
similar idea to what will be shown in the next chapter. However, in the case of key insulation,
the updates are dependent on the initially generated key, while they can be independent for the
later discussed transformations.

3.6.2 Knowledge Based Revocation
When talking about knowledge based revocation we refer to solutions where the verifier of a
signature uses external sources for validation, which are other than cryptographic.
There are three different approaches:

I.) Public Key Storage (which is whitelisting)

II.) Revocation Lists (which is blacklisting)

III.) Online verification

I.) Public Key Storage

A public key storage pictures the idea of only accepting signatures of private keys, of which
the public keys are known in advance. When the setup is rather static, this is a simplistic and
efficient solution, as no – or only simplistic – external trust relation is necessary. For validation
of a signature, the verifier simply uses the stored public key of the given identity. If the identity
is not known or the verification fails the signature is rejected.
Even though such a solution has obvious problems in large-scale or dynamic systems, there

are many examples for use cases in constrained networks utilizing this mechanism. One example
which was already presented is the one of SecureWSN, where the sensor’s (or sensor network’s)
public keys are pre-installed on the sink receiving the data. However, once the communication is
not unidirectional, the number of keys having to be stored on each device grows linear. Coping
with these drawbacks, the idea of using a group key manager as a public key storage for WSNs
was introduced in [168]. The ACE working group at the IETF is working on a standard for
secure group communication featuring this idea [101].

II.) Revocation Lists

Revocation lists are a naive approach for blacklisting keys, not allowed to create a signature.
Almost every Public Key Infrastructure (PKI) comes with a certificate format that offers ex-
tensions for revocation. The straight-forward way is to maintain a list of revoked public keys
or – to gain efficiency – their cryptographic hashes. Two problems arise: First, if every verifier
maintains her own list, she needs to be updated/distributed regularly. Second, the verifier needs
to trust the issuer of these lists. We examine three solutions, namely the X.509, an IBS system
with revocation lists and so-called group signatures.

36

3.6 Related Work on Signing Key Revocation

X.509 certificates are specified in RFC5280 [128] and base on a very simple work-flow. A
user creates his private/public key pair and sends the public key in a so-called certificate signing
request to a Certificate Authority (CA). The CA signs the public key with her private key
and returns the certificate to the user, which she can than append to her signatures to prove
ownership. This allows building a chain of trust, which is often hierarchically structured. It is
the bases for most security protocols, most notably for the context of the this dissertation are
TLS/DTLS and IPsec.
X.509 certificates have been shown to work for constrained use cases [44, 69] and offer revoca-

tion. Revocation is achieved in form of a so-called Certificate Revocation Lists (CRLs), which
are issued, maintained and signed by a CA. The list contains the serial number of the certificate,
issued by the CA. For validation, the verifier checks if the signer’s certificate is on the list of the
issuing CA (or if the CA is on the list of another CA).
Although the mechanism is standardized and used in many cases, it has two disadvantages

in the considered environments. First, the certificate of the signer needs to be attached to
every message, which can be as large as > 220Byte [61, 69], Even the compression presented
in [44] still requires around 150Byte of networking overhead, while excluding revocation from
the extension. The second is the already mentioned problem of updates.

Identity Based Signatures are only barely considered in the context of constrained settings
while coping revocation. An IBS-scheme suitable for authentication in broadcast networks
(specifically, aircraft surveillance) and featuring on- and offline signatures was proposed in [177].
However, the considered environment is rather static, which is why key revocation is outside the
focus of this approach. Static groups has been discussed as well for broadcast authentication
in WSNs [24]. However, it utilizes a revocation mechanism based on identity revocation lists
distributed to the communication’s participants. While there is no need for network expensive
certificates, dealing with revocation list faces the same problems as X.509.

Group Signatures feature the idea of individuals being able to sign in behalf of a group while,
their anonymity is provided. This shows a natural conflict between the security property of Non-
Repudiation and the right for Anonymity. After first presented in [26], there have been different
proposals for group signature [13, 20, 85, 180]. While only static groups were considered at the
beginning, solutions dealing with dynamic groups are available as well [13]. Therefore, the issue
of revocation arises and was tackled with different ideas.
Similar to revocation lists, a proof of authority can be attached to the signature [13, 20]. There

are proposals for eliminating the issue maintaining these lists while allowing the revocation by
public knowledge of the private key [85] . Hence, upon key-disclosure the original owner of
the key can upload it to a public database, which makes all signatures invalid. However, due
to the main focus on anonymity, such schemes are hardly efficient and often require linearly
growing public keys or signatures. Although optimizing these schemes for the scenarios in
question would be an interesting approach, the current complexity makes them hardly usable in
constrained environments.

III.) Online Verification

The specification of X.509 allows the definition of a CRLs validity. Whenever it expires, the
clients are meant to download a new list from the CA. A revoked key/certificate is therefore
valid until a new CRL get published by the CA and downloaded by the client. The Online
Certificate Status Protocol (OCSP) [133] deals with this issue, by offering a service that allows
to validate the status of a public key. Due to the lack of a push mechanism, a client would have
to contact the service upon arrival of every message to stay updated, which comes with expensive

37

3 State of the Art and Related Work

networking overhead. A similar mechanism could be imagined for the protocols developed for
group key distribution, however, the same issue applies.

3.7 Summary and Findings
The chapter describes cryptographic background being necessary to follow the definition and
application of the proposed transformation in the next chapters. Mathematical backgrounds for
ECC and bilinear maps (pairings) as well as the fundamentals of provable security are presented.
In addition, commonly used cryptographic and protocol mechanisms for achieving (I) Confi-
dentiality, (II) Integrity, (III) Authenticity, (IV) Authorization and (V) Non-Repudiation in
constrained use cases are discussed.
With this background at hand, the chapter gives an answer for the research questions:

RQ3: How is distribution and revocation achieved for symmetric and asymmetric
keys?
RQ4: How can key distribution and revocation be applied in constrained systems?

Especially the centralized group key management architecture is adopted and optimized to the
considered constraints. It can be achieved with well-understood combinations of cryptography
and protocols, such as DTLS or IPsec.

However, revocations of asymmetric keys is only barely represented in practice, and the so-
lution are either inefficient (e.g., X.509) or do not scale (e.g., public key storage). Even though
there are cryptographic mechanisms being studied for the last 20 years, they are only partially
applied to cope with the efficiency requirements established in Chapter 2. A promising solu-
tion regarding networking overhead and computational effort is found in IBS but the revocation
mechanisms are not optimized.
Therefore, the following chapter develops a cryptographic transformation that allows efficient

revocation of IBS keys by an arbitrary symmetric key revocation mechanism. The goal is a
system, which allows all aspects efficiency being optimized and thereby fulfilling the requirements
ER1, ER2 and ER3.

38

4 Key Updatable Signatures

Ideally, signature schemes enable the verifier to check the signer’s authorization. This makes
revocation a necessary feature in certificate management systems, as authorization may change
over time. However, all revocation mechanisms discussed in Chapter 3 come with computational
or network overhead during the actual communication, which contradicts the requirements es-
tablished in Chapter 2:

ER1 The networking overhead during communication including the size of the signed message
shall not (or only negligibly) increase.

ER2 The networking overhead for revocation shall be minimal.

ER3 The performed cryptographic operation shall not (or only negligibly) increase.

Identity Based Signature (IBS) already fulfills the two requirements ER1 and ER3. They
allow mathematical but inefficient revocation by re-distributing all user’s private keys, which
contradicts ER2. Hence, this chapter introduces a transformation framework to extend IBS
with an efficient revocation mechanism without losing generality to other signature schemes.

4.1 Methodology
The use of IBS in constrained environments as presented in Chapter 2 and the efficient revocation
of IBS keys is achieved in four steps:

1. Allowing the use of IBS in the scenarios in question by integrating IBS keys in an archi-
tecture of a Group Key Management Protocol (GKMP) as presented in Section 3.5. This
allows the re-use of its mechanisms for access control and identity management, which are
beneficial for any Public Key Infrastructure (PKI) and for IBS in particular.

2. Presentation and integration of two efficient re-keying mechanisms for symmetric keys into
the same architecture. We use the ones called Logical Key Hierarchy (LKH), which focuses
on revocation, and Centralized Authorized Key Extension (CAKE) that additionally deals
with issuing keys.

3. Combining both ideas and revoke GKMP managed IBS keys with LKH or CAKE by:
Transforming an IBS scheme in such a way, that the inclusion of an efficiently updatable
group shared key (gsk) is possible. The transformation is achieved in three consecutive
steps.
a) Signature verification based on the senders’ knowledge of a gsk
b) Updating the gsk with tokens, which are distributed by using e.g., LKH or CAKE.
c) Combining the IBS keys and the gsk in such a way, that a signature’s validation is

based only on the knowledge of the public key.

4. Integrating the gsk and its updates to the architecture to manage the necessary keys.

39

4 Key Updatable Signatures

GROUP MEMBER (GM)

CREDENTIALS

Group Security Policies
(GSP)

Group Security
Association (GSA)

Key Encryption Key
(KEK)

MPKpub
params

GKEKGTEK

User Secret Key (USK)

GROUP MEMBER (GM)

CREDENTIALS

Group Security Policies
(GSP)

Group Security
Association (GSA)

Key Encryption Key
(KEK)

MPKpub
params

GKEKGTEK

User Secret Key (USK)Secure Group Channel

Public Channel

Private Channel

GROUP CONTROLLER KEY SERVER (GCKS)

CONTROLLER

CREDENTIALS

Group Security Policies
(GSP)

Master Secret Key
(MSK)

MEMBER

Group Security
Association (GSA)

MPKpub
params

KEK

GKEKGTEK

USK

GROUP MEMBER (GM)

CREDENTIALS

Group Security Policies
(GSP)

Group Security
Association (GSA)

Key Encryption Key
(KEK)

MPKpub
params

GKEKGTEK

User Secret Key (USK)

Figure 4.1: IBS key management within a group key management architecture described in
RFC2093 [116] and RFC2094 [117]. Bold elements are IBS specific.

4.2 IBS Group Key Architecture

IBS schemes, as in Definition 4.1, require a Trusted Third Party (TTP) which chooses the public
parameters for the system, verifies a user’s identity and authorizes her by generating a signing
key for the given identity. In that sense, it is very similar to the architecture for GKMP as
defined by RFC2093 [116] and RFC2094 [117] (see Section 3.5.1).

Figure 4.1 shows the integration of secret keys as well as the public parameters of IBS in
such an architecture. It shows the Group Controller Key Server (GCKS) on the left, the Group
Member (GM) on the right and three communication channels in-between with different security
properties. The GCKS takes the role of the TTP and uses external services for identification
and access control. In RFC2094 [117] they are called Controller and Credentials. The so-called
Group Security Association (GSA) is extended by the public parameters of the IBS system
and distributed to the group members over the public channel. Protocols implementing this
standard (e.g., Group Internet Key Exchange (G-IKEv2)[174]) typically define this channel to
be authenticated with the credentials of the GCKS. Similarly, the private channel – which is
established by authenticated key exchange between the GM and GCKS and is used to distribute
encryption keys in multicast groups – is used for distributing the usk. The private channel is
secured with the Key Encryption Key (KEK).

Definition 4.1 (Identity Based Signature [47]). An IBS scheme I for message space M
consists of a set of polynomial-time algorithms G, E ,S,V:

Setup G: Given the security parameter λ, a Master Secret Key (msk) is chosen and the
corresponding Master Public Key (mpk) is calculated, that is (msk,mpk) r←− G(λ).
Additionally, other relevant public parameters, e. g. group generators, hash and pair-
ing functions and elliptic curve parameters are defined.

Extract E: Given a new member’s id and the msk the User Secret Key (usk) is generated,
that is usk r←− Emsk(id).

Sign S: A user signs a message with their usk, that is σ r←− Susk(m)

Verify V: Given the stated sender’s id, a signature σ and a message m a recipient veri-
fies / falsifies the signature, that is {0, 1} ← Vmpk,id(m,σ).

40

4.3 Updating a Group Shared Key with LKH and CAKE

4.2.1 Role and Communication Model

With Definition 4.1, the roles in an IBS system are depicted in Figure 4.2. Besides the essential
roles of Signer (left) and Verifier (right), the IBS specific role of the TTP is twofold, as it needs
to setup the system and extract keys as well as granting access to the system. Thus, its roles are
split into a Key Generation Center (KGC) (center) and Access Controller (second from right).
Additionally, any identity has to be trusted in an IBS system, hence an identity manager (second
of left) is used to generate identities upon request. Figure 4.2 shows these five roles and their
communication as follows:

KGC: chooses the systems security parameter, defines the public parameters, and generates the
required cryptographic material for the signer. Upon request for a usk it validates the
identity and the authorization with the Identity- and Access-Manager respectively. It also
publishes the mpk for the verifier.

Signer: requests an identity id from the Identity Manager and a signing key usk from the KGC.
It then signs messages m with the usk returning a signature σ which can then be sent to
some verifier.

Identity Manager: manages the available identities in the system and returns an identity to the
Signer upon request. Upon request from the KGC, it validates a given identity.

Access Controller: upon request from the KGC, it validates a given identity’s permit to access
the system.

Verifier: uses the public parameters of the system mpk and verifies a signature.

4.2.2 IBS Key Revocation

For mathematical revocation of the IBS keys – in particular the usk and mpk – the server
calculates a new msk and derives new usk′s and mpk [52]. The new usk′s are send to the
each remaining member using their private channels and the new mpk is published using the
authenticated public channel. Revoked members do not receive new keys and any signature
created with the old keys will be mathematically invalid when verified with the new mpk.

4.3 Updating a Group Shared Key with LKH and CAKE

Before presenting the inclusion of a gsk into IBS schemes, we first examine its distribution and
revocation. The integration of IBS to a GKMP motivates a mechanism which can be efficiently
used within a GKMP as well. Such are found in form of centralized re-keying schemes, which
use a Group Key Encryption Key (GKEK) for distributing a Group Transport Encryption Key
(GTEK). Both keys are depicted in the GSAs of GCKS and GM in Figure 4.1 and establish the
so-called Secure Group Channel. The question arises, how such keys can be efficiently updated,
especially when an excluded member is in possession of the keys.
With LKH, this section first presents a widely used mechanism based on a symmetric encryp-

tion with a key tree and shows its integration to the IBS architecture. Improving the idea of a
key hierarchy in combination with a cryptographic mechanism for compressing key material, is
presented with CAKE.

41

4 Key Updatable Signatures

requestId()
id

mpk

validate(id)

authorize(id)

usk
r←− Emsk(id)

requestUsk(id)

usk

(msk,mpk) r←− G(λ)

σ
r←− Susk(m)

Vmpk,id(m,σ)

send(m,id,σ)

Signer

Identity Manager KGC Access Controller

Verifier

Figure 4.2: Communication model for IBS.

4.3.1 Logical Key Hierarchy
The keying mechanism called LKH defines a hierarchy of trees managed by the key server. To
setup the system (or group), the server creates a tree of random, symmetric keys. They do not
mathematically depend on each other, the tree is used as a logical management structure. The
tree’s leaves are keys exclusively shared by client and server, while the root is a key shared by all
participants. Keys on the path from the root to the leave are distributed to the corresponding
clients.

Figure 4.3 shows how a GM can be excluded with a single message by LKH using a binary
tree. The left tree’s root (denoted as 1) is the GKEK, while the leaves (denoted as A-H) are the
GMs KEK. The GCKS knows all keys in the tree, the GMs know all keys on their corresponding
path to the root key. In the example of Figure 4.3, the left part shows the tree before member
D is excluded and in possession of {D, 5, 2, 1}. When D is excluded from the group, the GCKS
updates all keys on D’s path to the root; in right part of Figure 4.3 these new keys {5′, 2′, 1′} are
hatched. Then it encrypts them with the lowest child keys unknown to the excluded member
D. The following symmetric encryption take place:

• encrypt 5’ with C • encrypt 2’ with 5’

• encrypt 2’ with 4

• encrypt 1’ with 2’

• encrypt 1’ with 3

The five cipher texts can be sent in one single message to the remaining members A-C; E-H and
D will not be able to successfully decrypt the new shared secret 1’ or either of the new keys 2’
or 5’.

42

4.3 Updating a Group Shared Key with LKH and CAKE

1

2 3

4 5 6 7

A B C D E F G H

Excluding D 3

6 7

A B C E F G H

4

D

1'

2'

5'

Figure 4.3: Initial LKH tree before (left) and after (right) D (in red) is excluded. The replaced
keys in the tree (hatched) are encrypted with their child nodes.

One advantage of LKH is its exclusive dependency on symmetric cryptography for security.
Concrete encryption algorithms are exchangeable with the only disadvantage of potentially larger
keys in the tree. The order a of the tree is not strictly defined, but for storage and networking
optimization a binary tree (i.e. a = 2) is recommended [107, 120]. Thus, a group with N
participants requires a key storage for loga(N) keys for clients and (aloga(N) − 1)/(a − 1) keys
for the server.
The second advantage of LKH is its integration in popular GKMPs, e.g., G-IKEv2 [174]. First,

the client initiates a Diffie-Hellman exchange with the server, the so-called KEK, that is later
used as the trees’ leave. The GKEK is also already defined by the architecture (see Figure 4.1),
hence, only additional payloads for the tree management are required. During the authentica-
tion step of G-IKEv2, the client downloads its set of keys in a LKH_DOWNLOAD_ARRAY
with corresponding indexes of each key in the tree. Later, all keys can be updated with a
LKH_UPDATE_ARRAY in multicast or individually with a LKH_INBAND_REKEY mes-
sage.

4.3.2 Centralized Authorized Key Extension

Using LKH allows efficient exclusion of one GM, however, it does not deal with bulk action, e.g.,
when numerous clients join or leave the system simultaneously. In [59], a protocol was presented
which allows such action while keeping the efficiency of LKH. It extends the idea of hierarchy
of keys with a mechanism called Secure Lock (SL), which was first presented in [27].
The SL allows to efficiently encrypt individual user messages over a broadcast medium using

a single message. It uses the Chinese Remainder Theorem (CRT) which is defined as follows
(see Theorem 1.2.9 [99]):

Definition 4.2 (Chinese Remainder Theorem [99]). If m1, . . . ,mk ∈ N with k ≥ 2 are
pairwise coprime moduli and r1, . . . , rk ∈ Z are arbitrary, then there exists a unique a ∈ Zm
with m = m1 · · ·mk such that:

a ≡ rj mod mj ; for 1 ≤ j ≤ k (4.1)

For key distribution, this SL (Lock) utilizes two secrets by each GM’s of the system, a symmetric
KEK and a prime number pi, both known by the server. A new GKEK is encrypted with each
participant’s KEK, such that the GMs message is

mi ≡ GKEKnew ∗KEKi (4.2)

43

4 Key Updatable Signatures

Then, a congruence system is built:

P =
k∏
i=1

pi; Li = P

pi
; Yi = L−1

i mod pi

Lock_X =
k∑
i=1

(
mi · Li · Yi

)
mod P

(4.3)

where i is the index of the GM and k is the number of participants in the system. This Lock_X
is broadcasted in a single message, and a GM obtains the new GKEK:

mi = Lock_X mod pi

GKEK = mi/KEKi
(4.4)

Even though the new GKEK can be distributed efficiently with that technique, the message
becomes very large. It depends on the number of clients and the size of the primes pi chosen by
the server. In particular, if pi is chosen at random:

Proposition 4.1. Let k be the number of participants and b be the size of pi in bits, than the
maximum size of Lock_X is

|Lock_X| = k · b (4.5)

and the average size of Lock_X is

Lock_X = k · (b− 1) (4.6)

With large number of participants, this quickly becomes a large message that might be difficult
to handle. Thus, CAKE uses a key hierarchy, similar to LKH to decrease the message size. In
contrast to LKH, each node in CAKE represents a key pair (pi, ki), where i is the position in
the tree, pi the nodes prime and ki the node’s symmetric key. With x being the order of the
tree, this reduces the average size to

Lock_X = logx(k) · (b− 1) (4.7)

In [68], the hierarchy was presented as a ternary tree to improve the efficiency for systems
with < 100 participants and extended with an addressing scheme for flexible and efficient tree
operations in [59]. However, this can be easily adopted to a certain use case. During the group’s
lifecycle, the following events are secured as follows:

member revocation: Similar to LKH, single member is revoked by re-calculating the keys on
the expelled members path to the root. The SL is built by all key-pairs, the expelled
member does not possess. In contrast to LKH, each client has to perform only a modulo
operation to decrypt the SL.

mutlipe member revocation: Excluding multiple members simultaneously is equivalent to re-
voking a single member. The SL is built with other key pairs none of the excluded member
is not in possession of.

mutlipe member join when multiple members join the group simultaneously, one SL can be
calculated for all of them and send via a single multicast message. Neither LKH nor
G-IKEv2 specify an action for this event.

44

4.4 Efficiently Updating IBS Keys

Setup

Extract

Sign

Verify

(a) No Re-Key

Setup

Extract

Sign

Verify

Re-Key

(b) Inefficient Re-Key [52]

Setup

Extract

Sign

Verify

Next Update∗

∗symmetric re-key
(e.g., LKH or CAKE)

(c) Efficient Re-Key

Figure 4.4: State machines of the different re-keying approaches for IBS.

4.4 Efficiently Updating IBS Keys
This section presents a cryptographic transformation that allows the revocation of a user’s secret
key by updating all other users’ keys with a common symmetric update token. The similarity of
IBS to a group key management system encourages updating the update token by an efficient
key distribution mechanism. LKH or CAKE presented in the previous section are such examples.
That such a symmetric element can be used for key revocation utilizes the following charac-

teristics of symmetric and asymmetric authentication:

• Membership of a group can be proven to other members by proving knowledge of a group-
wide shared secret. Changing this secret means excluding any party that does not receive
an update. In [57], this property was presented as group authenticity.

• Any signature scheme that involves unknown parties requires a trust anchor such as the
KGC in IBS or the Certificate Authority (CA) in certificate based schemes. Its users can
therefore be considered a group under that TTP. User key revocation equals the exclusion
from this group.

• Changing the trust anchor’s key-pair implicitly revokes all underlying user keys. In IBS,
this makes all signatures mathematically invalid as the mpk is no longer available. In
certificate based schemes, such a revocation interrupts the trust-chain for all users under
the revoked CA and invalidates them. This mechanism is sometimes referred as “folklore
IBS” [12].

Concept for IBS Key Revocation

The idea for revoking IBS keys is presented in Figure 4.4, showing the possible re-key mechanisms
of IBS keys in form of state machines. Figure 4.4a presents the four algorithms of IBS as in
Definition 4.1 as states, showing that after IBS is set up and keys are extracted the system
stays in the states Sign and Verify. Re-Keying or revocation is not part of the definition and
other mechanisms such as revocation lists are used. This changes with the idea sketched in
Section 4.2.2 and [52], presented in Figure 4.4b. After key extraction, the system can move to
the state Re-Key, which in turn triggers a re-setup of the IBS system and Extract keys for all
clients. As mentioned earlier, this is inefficient but allows mathematical validation of revoked
keys. Figure 4.4c sketches how this inefficiency is overcome by the transformations discussed in
the following. Two new states, Next and Update are introduced, which allow efficiently changing
the master key material with an update token. The latter is generated in Next and distributed

45

4 Key Updatable Signatures

by using efficient mechanisms – such as the earlier discussed LKH and CAKE – and used to
efficiently Update the keys of all clients. This removes the need to re-setup the IBS system and
the computational complexity for the KGC is reduced from O(n) to O(logn).

Technically, the proposed mechanism adds a symmetric key to the asymmetric master key
material of the KGC. It serves as gsk and access key to the group and its update will change
the KGCs key and, thus, revokes the user’s keys. How and why it can be used to revoke a user
key through a single group message without harming security (and how this can be achieved for
IBS schemes) will be shown in three transformation steps:

1. Two Key Signature Scheme (2KSS): Integration of a shared secret in IBS in such a way
that individual and group authentication can be achieved with a single signature.

2. Updatable Two Key Signature Scheme (U2KSS): Updating the shared secret with an up-
date token.

3. Key Updatable Signature Scheme (KUSS): Updating hybrid representations of the keys.

Using such transformations allow fine-grained updating of existing signature schemes, which
has two advantages: First, existing signature schemes, which are well-analyzed regarding their
performance and security, can be re-used. Second, as the security model of the schemes is
clearly defined, we can use the Game Hopping Lemma (see Section 3.1.3) to analyze the security
of the resulting schemes. The goal is to transform the schemes in such a way, that the original
security properties stay in tact, for IBS that is the existential unforgeability under adaptively
chosen-message-and-identity attacks (EUF-CMA) [12, 41].

General applicability of the concept

Each of the following transformation lists the requirements to a signature scheme to perform the
transformation. For the sake of readability the following is specifically adapted to IBS schemes
as they are of major interest. How signatures schemes on specific primitives can be converted to
a IBS scheme is shown in [12]. Hence, this simplification is possible without loss of generality.
The major difference of IBS schemes to other signature schemes is that the process for key
generation K is split:

Key Generation K: the probabilistic algorithm outputs a key pair (sk, pk) for a security param-
eter λ, that is, (sk, pk) r←− K(λ). In IBS schemes, this algorithm is split into G, E returning
sk = usk and pk = (mpk, id) as in Definition 4.1.

Methodology for Transformation

In the remaining of this section, the three transformation steps (2KSS, U2KSS, and KUSS) are
each presented as follows:

I.) Description of the idea and the goal of the transformation.

II.) Definition of the resulting scheme by its algorithms (as for IBS in Definition 4.1).

III.) Stating mathematical transformability conditions, where necessary.

IV.) Definition of a security notion, including oracles and experiments, which are later used
for proving the security.

46

4.4 Efficiently Updating IBS Keys

4.4.1 Two Key Signature Scheme (2KSS)
I.) Description

2KSS is the transformation of an IBS scheme to include a symmetric key in the signing and
verification process, while preserving the size and security of the signature. The signing process
is changed in a way that the symmetric key can be seen as an extension to the asymmetric key.

II.) Definition

With 2KSS the IBS algorithms for signing (see Definition 4.1) is extended to include a gsk
(which is referred to as g), which can then be used to prove group access during verification.

Definition 4.3 (Two Key Signature Scheme). A 2KSS for message space M consists of a
set of polynomial-time algorithms G, E ,S,V defined by IBS scheme I, which are modified
from the underlying signature scheme as follows:

Setup G: In addition to the key pair (msk,mpk), the probabilistic algorithm outputs a
third key g for a security parameter λ, that is, (msk,mpk,g) r←− G(λ).

Extract E: outputs a user secret key usk for a given identity id, that is, usk r←− Emsk(id).

Sign S: takes g as an additional input and outputs a signature for message m, that is
σ

r←− Susk,g(m).

Verify V: On input of message m and (mpk, id), this algorithm takes g as an additional
input and returns an answer Vmpk,id,g(m,σ) whether or not σ is a valid signature of
m.

III.) Mathematical conditions for the transformation

This approach is suitable for all signature schemes that fulfill the condition:

Transformability Condition 4.1. It is possible to choose g in such a way that it can be
included in the mathematical process of signing with usk as it happens in Susk(m). This way,
the signing algorithm still produces only one signature.

IV.) Security Notion

For achieving EUF-CMA, adding a shared secret to a signature scheme must not harm security
relative to the underlying signature scheme. This property is later referred as Token Security,
which is inspired by [84]. The used oracles for the following experiments are a generalized and
adopted from the ones used in [9, 12, 24, 47, 67].

Signing OS(id,m): On input of a message m ∈M, return σ r←− Susk,g(m).

Extracting OE(id): On input of an identity id, return (usk,g) r←− Emsk(id).

Random oracle: All hash functions are modeled as random oracles.

EUF-CMA for IBS under the 2KSS transformation as in Definition 4.4 adapts Definition 1 in
the paper by Galindo and Garcia [47], which shows EUF-CMA for IBS.

47

4 Key Updatable Signatures

Definition 4.4 (EUF–2KSS–CMA). A 2KSS Identity Based Signature scheme
I = (G, E ,S,V) is said to be secure against existentially unforgeable under adaptively
chosen-message-and-identity attacks if for all probabilistic polynomial-time adversaries A,
the probability that P (EUF–2KSS–CMAI(A) = 1) in the experiment defined below is a
negligible function of λ. During this experiment, A has access to an extract and signing
oracle, denoted as OE and OS .

EUF–2KSS–CMAI(A) :
(msk,mpk,g)← G(λ)
(id∗,m∗, σ∗)← AOE(·),OS(·,·)(mpk,g)
return V(mpk,g, σ∗,m∗, id∗)

Trivial wins where the adversary A queries id∗ from OE(·) or σ∗ from OS(·, ·) are excluded.
Also, the same id is not allowed to be queried twice to OE(·).

A random 2KSS system for a security parameter λ is set up. The adversary A is allowed to call
the oracles for extracting secret keys and signing messages as often as she wishes. She wins the
game, if she is able to find a signature (id∗, σ∗) for a given message m∗ and has not received one
of them during a call of the oracles. The scheme is considered secure if her chances of winning
the game are better than a negligible function of the security parameter λ.

4.4.2 Updatable Two Key Signature Scheme (U2KSS)
I.) Description

In 2KSS, membership changes require to send a new gsk to all group members. This yields a po-
tential attack, as an attacker could intercept and use it to illegitimately authenticate themselves.
Due to this threat, minimizing the amount of cryptographic material sent over a network is com-
mon practice in communication security. As a remedy, the gsk is only distributed to members
upon joining the system and later updated by an update token ∆. This is the transformation
from 2KSS to U2KSS.
The left part of Figure 4.5 shows client E joining the system (pictured as a cloud with the four

members A,B,C,D). An update token ∆ is generated by a so-called Key Update Center (KUC).
It is send to the KGC which in turn updates and sends g to the new client E together with its
private usk (denoted as {usk,g}). Previous members (A,B,C,D in Figure 4.5) receive only the
update token ∆. The right part shows E being excluded from the group by distributing a new
∆ only among the remaining members and the KGC.

II.) Definition

We say, that g evolves with so-called epochs; signatures are created with respect to a specific
epoch e. By invoking an algorithm Next (N), the communication group moves from epoch e
to epoch e + 1. N generates the update token ∆e+1 for the new epoch. The update token is
maintained and distributed by an entity with a new role: the KUC. By invoking an algorithm
Update U , the shared secret is updated with the token. All roles using the gsk – namely KGC,
Signer and Verifier – may use this algorithm. A 2KSS with this modification is a U2KSS and
defined by:

48

4.4 Efficiently Updating IBS Keys

B

D

A

C

B

D
E

KGC

join

{usk,g} {Δ}

leave E

C

A E

{Δ}

KUC

{Δ}

KGC KUC

{Δ}

Figure 4.5: Distributing the group shared key g and updating it with the update token ∆.

Definition 4.5 (Updatable Two Key Signature Scheme). A U2KSS for message space M
consists of a set of polynomial-time algorithms (G, E ,N ,U ,S,V). It is the extension of an
IBS scheme I by the algorithms Next (N), which generates a new update token, and Update
(U), which updates the shared secret using the update token. More specifically:

Setup G: is a probabilistic algorithm that outputs a key tuple (msk,mpk,g0) for a security
parameter λ where g0 is the gsk in epoch e = 0. That is, (msk,mpk,g0) r←− G(λ).

Extract E: outputs a user secret key usk for a given identity id, that is, usk r←− Emsk(id).

Next N : is a probabilistic algorithm which outputs an update token ∆e+1 for a security
parameter λ, that is, ∆e+1

r←− N (λ).

Update U : takes ge of epoch e and ∆e+1 of the following epoch e+ 1 as input and outputs
an updated g, such that ge+1 ← U∆e+1(ge).

Sign S: takes (usk,ge) as input and outputs the signature σe with respect to epoch e for
message m. That is σe

r←− Susk,ge(m).

Verify V: On input of message m and (mpk, id,ge), return an answer Vmpk,id,ge(m,σe)
whether or not σe is a valid signature of m with respect to epoch e.

IV.) Security Notion

With the U2KSS transformation, Forward and Post-Compromise Security are achieved in addi-
tion to EUF-CMA in 2KSS, which does not provide this property.

Forward Security An adversary compromising some usk and ge in some epoch e∗ does not gain
any advantage in forging a signature for previous epochs e < e∗. That means that all
signatures from epochs before the compromise retain their integrity [14, 72].

Post-Compromise Security An adversary compromising usk and ge in some epoch e∗ does not
gain any advantage in forging signatures from epochs e > e∗ after that compromise. That
means that all signatures from epochs after the compromise retain integrity [79].

Adapting the experiment in Definition 4.4 and covering the new properties requires additional

49

4 Key Updatable Signatures

oracles to be accessible for an adversary. The oracles for Next and Update are more or less direct
calls of the functions in Definition 4.5:

ON : When triggered, this oracle returns a new update token ∆e+1
r←− N (λ).

OU (ge,∆e+1): When triggered, this oracles returns ge+1 ← U∆e+1(ge).

Definition 4.6 (EUF–U2KSS–CMA). A U2KSS identity-based signature scheme
I = (G, E ,N ,U ,S,V) is said to be secure against existentially unforgeable under adaptively
chosen-message-and-identity attacks if for all probabilistic polynomial-time adversaries A,
the probability that P (EUF–U2KSS–CMAI(A) = 1) in the experiment defined below is a
negligible function of λ. During this experiment, A has access to the oracles defined above,
namely OE , ON , OU and OS .

EUF–U2KSS–CMAI(A) :
(msk,mpk,g)← G(λ)
(id∗,m∗, σ∗, e∗)← AOE(·),ON ,OU (·,·),OS(·,·)(mpk,g)
return V(mpk,g, σ∗,m∗, id∗, e∗)

Trivial wins where the adversary A queries id∗ from OE(·) together with ∆e∗ from ON or
σ∗ from OS(·, ·) are excluded. Also, the same id is not allowed to be queried twice to OE(·).

A random U2KSS system for a security parameter λ is set up. The adversary A is allowed to
call the oracles for extracting secret keys and signing messages as often as she wishes. Further,
she may oracle update tokens and updates for corresponding keys. As in Definition 4.4, she
wins the game, if she is able to find a signature (id∗, σ∗) for a given message m∗. With the
introduction of forward and post-compromise security, she may now oracle the usk for id∗, as
long as she does not oracle the update token for e∗. The scheme is considered secure, if her
chances of winning the game are worse than a negligible function of the security parameter λ.

4.4.3 Key Updatable Signature Scheme (KUSS)

I.) Description

Although with U2KSS revocation is possible with a single message, explicit knowledge of the
gsk is still necessary during signing and verification. As it must be kept secret within the
group of participants, g cannot be included in the signature. With KUSS, this section presents
a transformation, improving the efficiency of signing and verification by hybridization of the
asymmetric and symmetric keys. In the best case, the transformation makes the inclusion of
g in signing and verification completely unnecessary. If that is impossible, the transformation
allows the removal of g from signing or verification.

The 2KSS transformation of some IBS schemes (such as the one by Galindo and Garcia
(GG) [47]), can happen by randomly choosing g r←− Z∗p (as it is true for the usk) and changing
the following computation in the signature algorithm (x is a random element of Z∗p, h is a
message hash):

GG [47]: σ = x+ h · usk

Possible 2KSS transform: σ = x+ h · usk · g

50

4.4 Efficiently Updating IBS Keys

The verification algorithm changes analogously. Here it shall only be pointed out that mpk ex-
clusively appears when multiplied with g. In such a case, usk ·g andmpk ·g can be pre-computed
and represented as hybrid keys h˘usk and h˘mpk which replace usk and mpk, respectively. The
Extract-algorithm can be altered to produce a hybrid user key, leaving the effort of computing
it to the usually more resourceful TTP. The h˘mpk can be handled identically.

II.) Definition

With the combination of the shared secret introduced by the 2KSS transform and the up-
date mechanism by U2KSS, the creation of a signature scheme whose signing and verification
keys are updatable by update tokens is possible. The result is a scheme which allows all keys
k ∈ {mpk, usk,g} to be updatable by an update token ∆. This requires the algorithms defined
in the previous three steps to be modified so that they reflect the application of ∆. The KGC
holds the master key pair (msk,mpk) and the shared secret g. The update tokens are managed
by KUC as introduced in Definition 4.5.
The keys k evolve with epochs and signatures are created with respect to a specific epoch e.

When moving from epoch e to e+ 1, the KUC invokes Next (N) to generate the update token
∆e+1 for the new epoch. The client and the KGC invoke Update (U) algorithm to update the
key material ke with ∆e+1 and output ke+1.

Definition 4.7 (KUSS). A Key Updatable Signature Scheme for message space M consists
of a set of polynomial-time algorithms (G, E ,N ,U ,S,V):

Setup G: On input of a security parameter λ, it outputs a master key pair
(msk,mpk0,g0) r←− G(λ).

Extract E: is an either probabilistic or deterministic algorithm run by the KGC. On input
of a secret key msk, a shared secret ge of epoch e and a user id, it outputs a user
secret key uske for epoch e. That is uske

r←− Emsk,ge(id).

Next N : is a probabilistic algorithm run by the KUC. On input of epoch e it outputs an
update token ∆e+1 for epoch e+ 1. That is ∆e+1

r←− N (λ).

Update U : is a deterministic algorithm run by the Client and KGC which updates
ke = (mpke, uske,ge). On input of ke for epoch e and an update token ∆e+1 for
epoch e+ 1 it outputs ke+1. That is ke+1 ← U∆e+1(ke).

Sign S: On input of a message m and a secret key uske for epoch e it outputs a signature
σe

r←− Suske(m).

Verify V: On input of a message m, a user’s id, a signature σe and a public key mpke for
epoch e, return an answer Vmpke,id(m,σe) whether or not σe is a valid signature of m
with respect to epoch e.

III.) Mathematical Conditions

The hybridization for signing is suitable for all signature schemes that fulfill the condition:

Transformability Condition 4.2. usk and g can be part of a binary operation during the
signing process, such that the pre-computed value of this operation can be used to sign different
messages in the same manner in which the usk was used in Susk(m).

The hybridization for verification is suitable for all signature schemes that fulfill:

51

4 Key Updatable Signatures

Transformability Condition 4.3. g can be part of a binary operation during the signing
process, such that the pre-computed value h˘mpk can be used to verify different messages in the
same manner in which the mpk was used in Vmpk(m,σ).

IV.) Security Notion

The definition of KUSS allows a slightly tighter security model, as the adversary can be allowed
to oracle every uske outside the challenge epoch, which is not possible with U2KSS:

OE(ke,∆e+1): When triggered, this oracles returns uske
r←− Emsk,ge(id).

OU (ke,∆e+1): When triggered, this oracles returns ke+1 ← U∆e+1(ke).

The experiment for proving EUF-CMA-security is almost identical to Definition 4.6, without
the shared secret:

Definition 4.8 (EUF–KUSS–CMA). A KUSS IBS-scheme I = (G, E ,N ,U ,S,V) is
said to be secure against existentially unforgeable under adaptively chosen-message-and-
identity attacks if for all probabilistic polynomial-time adversaries A, the probability
P (EUF–KUSS–CMAI(A) = 1) in the following experiment is a negligible function of λ.
During the experiment, A has access to the oracles OE ,ON ,OU and OS .

EUF–KUSS–CMAI(A) :
(msk,mpk,g)← G(λ)
(id∗,m∗, σ∗, e∗)← AOE(·),ON ,OU (·,·),OS(·,·)(mpk)
return V(mpk, σ∗,m∗, id∗, e∗)

Trivial wins where the adversary A queries id∗ from OE(·) together with ∆e∗ from ON or
σ∗ from OS(·, ·) are excluded. Also, the same id is not allowed to be queried twice to OE(·).

4.5 Group IBS Architecture

Figure 4.6 shows the adaptation of the IBS architecture to include the update mechanism es-
tablished in the previous section. The gsk (g) and the update token (∆) are added to the GSA,
as well as a key distribution mechanism such as LKH or CAKE (symbolized with binary tree at
the GCKS and a key path at the GM). The GCKS takes the role of the KGC and KUC, which
sends the usk and gsk to new members through the established private channel. This group
secure channel is used to distribute ∆ to the group’s participants before a join or after an exit
occurs.
The different phases of KUSS are mapped to the lifecycle of a communication group as follows:

Setup The GCKS sets up a communication group, calls (msk,mpk0,g0) r←− G(λ) and stores the
values in the GSA.

52

4.6 Summary and Findings

GROUP MEMBER (GM)

CREDENTIALS

Group Security
Policies (GSP)

Key Encryption
Key (KEK)

User Secret Key
(USK)

Group Security Association
(GSA)

MPKpub
params

GKEKGTEK

g Δ

GROUP MEMBER (GM)

CREDENTIALS

Group Security
Policies (GSP)

Key Encryption
Key (KEK)

User Secret Key
(USK)

Group Security Association
(GSA)

MPKpub
params

GKEKGTEK

g Δ

Secure Group Channel

Public Channel

Private Channel

GROUP CONTROLLER KEY SERVER (GCKS)

CONTROLLER

CREDENTIALS

Group Security Policies
(GSP)

Master Secret Key
(MSK)

MEMBER

Group Security Association
(GSA)

MPKpub
params

KEK

GKEKGTEK

USK

g Δ

GROUP MEMBER (GM)

CREDENTIALS

Group Security
Policies (GSP)

Key Encryption
Key (KEK)

User Secret Key
(USK)

Group Security Association
(GSA)

MPKpub
params

GKEKGTEK

g Δ

Figure 4.6: IBS key management within a group key management architecture described in
RFC2093 [116] and RFC2094 [117]. Bold elements are IBS specific, g is intro-
duced with 2KSS and ∆ re-keying in U2KSS and KUSS. The Secure Group Channel
managed with LKH or CAKE.

Join A client with id wishes to join the communication group. It establishes a private channel
with the GCKS with a GKMP (e.g., G-IKEv2).

1. The GCKS calls ∆e+1
r←− N (λ) to move to the next epoch and sends a re-key message

including ∆e+1 to all clients of epoch e through the secure group channel.

2. All clients of epoch e call ke+1 ← U∆e+1(ke) and store the new uske+1 in their Security
Association and (mpke+1,ge+1) in their GSA.

3. The GCKS calls ke+1 ← U∆e+1(ke) and stores the new (mpke+1,ge+1) in its GSA.

4. The GCKS calls uske+1
r←− Ege+1(id) and sends (uske+1,ge+1,mpke+1) to the joining

client.

Leave A client with id is excluded from the communication group.

1. The GCKS calls ∆e+1
r←− N (λ) to move to the next epoch and sends a re-key mes-

sage including ∆e+1 to all clients of epoch e + 1 through the secure group channel.
Excluding id from this channel can happen with a CKS, such as LKH.

2. All clients of epoch e + 1 call ke+1 ← U∆e+1(ke) and store the new uske+1 in their
Security Association and (mpke+1,ge+1) in their GSA.

3. The GCKS calls ke+1 ← U∆e+1(ke) and stores the new (mpke+1,ge+1) in its GSA.

Communication All clients of epoch e call σe
r←− Suske(m) and Vmpke,id(m,σe) to sign and verify

messages for epoch e.

4.6 Summary and Findings

The theoretical concepts developed in this chapter are the corner stone of a practicable revocation
mechanism as the overall goal of this work. With IBS being an efficient signature mechanism in
constrained systems, its keys are integrated in a centralized group key architecture. Hence, the
following research question is answered:

RQ5 Which signature schemes are usable in constrained systems, can they benefit
from Identity Based Cryptography (IBC) and how do they fit in such architectures?

53

4 Key Updatable Signatures

This architecture at hand, a systematic transformation that allows efficient updating of IBS key
is developed. Three transformations allow fine-grained stating of mathematical requirement and
security properties for each step and will be applied on existing IBS schemes in the next chapter.
Thus, we also partially answer research question RQ6:

RQ6: How can IBS keys be revoked and how can the revocation be achieved with
state-of-the-art key distribution systems?

The transformation is defined as three consecutive steps, the most efficient transformation being
a fully hybrid KUSS scheme, where the gsk can be completely eliminated outside the KGC. We
show the distribution of update tokens with LKH and CAKE as part of a centralized architecture
with a single message. However, the transformations are not restricted to that: As long as all
communication participants can agree on an update token, even distributed mechanisms are
possible. Hence, the mechanism is able to cope with the specific architectural settings of military
communication (see Case 2 in Chapter 2).

54

5 group Identity Based Signatures

Chapter 4 shows the integration of Identity Based Signature (IBS) in a group key architecture,
which fits the architectural assumptions of the use cases. The previous chapter additionally
introduces a novel transformation of signature schemes meeting certain mathematical condi-
tions during signature creation and verification. IBS schemes can be efficiently constructed
with Elliptic Curve Cryptography (ECC) while allowing straight-forward application of the
transformation. Hence, this chapter applies the transformation on existing signature schemes,
particularly four based on ECC. We chose them according to the terminology presented in [52].
During the remaining of this work, the following names will be used for distinguishing the

schemes:

GG: The one presented by Galindo and Garcia in [47]

vBNN: The one presented by Cao et. al. in [24], which they called vBNN.

Hess: The one presented by F. Hess in [67].

BLMQ: The one presented by Barreto, Limbert, McCullagh and Quisquater in [9].

Due to their foundation on ECC, they all at least fulfill Transformability Condition 4.1 as a
necessity to apply any of the transformations. Additionally, all of them fulfill Transformability
Condition 4.2, while only Hess meets Transformability Condition 4.3. All four are systemati-
cally transformed as described in Chapter 4 while preserving correctness and security. Aspects
regarding practicability and performance estimations are presented at the end of the chapter.

5.1 Methodology for Transforming existing IBS schemes
ECC-based IBS schemes can be constructed efficiently with so-called pairings (see Section 3.2.2)
or with concatenated Schnorr-signatures [153]. The former are the most efficient IBS construc-
tion in terms of networking overhead. The use of pairings allows the size of the signature being
as small as a single group element of the elliptic curve (in addition to the hash of the message).
However, the calculation of pairings is more expensive than the basic elliptic curve operation
(e.g., [47] concluded the costs for one pairing being about 21 operations in the finite field of
the elliptic curve), why slightly increasing the signature size with a Schnorr-signature allows
significant reduction of computation time.
The application of the transformations abides by the following blueprint, to cope with ER1 -

ER3 defined in Chapter 2:

I.) Show that signing and verification algorithm can be extended by a group-known symmetric
key (transforming to Two Key Signature Scheme (2KSS)):
a) not changing the fundamental operations during signing and verification (e.g., hash

functions, operations in cyclic groups). This ensures that the efficient implicit revo-
cation provided by IBS stays intact (ER2);

55

5 group Identity Based Signatures

b) introducing only a minimum amount of additional operations (ER3);
c) keeping the size of the signature (ER1);
d) ensuring the correctness of the verification;

II.) Extending the scheme to allow updates of the shared secret (transforming to Updatable
Two Key Signature Scheme (U2KSS)).

III.) Integrating shared secret in the signing and verification keys (transforming to Key Updat-
able Signature Scheme (KUSS)), while:
a) not changing the fundamental operations during signing and verification;
b) introducing only a minimum amount of additional operations (ER3);
c) keeping the size of the signature (ER1);
d) ensuring the correctness of the verification;

The decision for a certain IBS scheme is use case specific, hence, Section 5.2 first transforms the
two Schnorr-based schemes before Section 5.3 applies the transformations to the two Pairing
based schemes. Each scheme’s three transformation steps are summarized in Table 5.1- 5.4.
The rows present the six algorithms Setup, Extract, Next, Update (for Trusted Third Party
(TTP) and client), Sign and Verify of the schemes according to Definition 4.3 - 4.7 presented
as columns. For readability, the tables gray out calculations which do not change compared to
the previous transformation step. All four transformed schemes are analyzed regarding their
security implication and practical considerations in Section 5.4 and Section 5.5 respectively.

5.1.1 Preliminaries
One straightforward inclusion of the shared secret to the signing algorithm of all considered
schemes is adding it as an additional input to the hash function. This would, however, change
the nature of the hash function to a Keyed-Hash Message Authentication Code (HMAC), which
require different security considerations. Additionally, this would prevent the KUSS transfor-
mation.

5.1.2 Notions
The following notation is used to distinguish elements of elliptic curves and integers:

Elliptic Curve (∈ G) Integers(∈ Zp)
Element of ... Upper Case lower case
Hashing algorithm mapping on ... H = Hx(y) h = hx(y)
User Secret Key element of ... Usk usk
Master Public Key element of ... Mpk mpk

Random element of ... R
r←− G r

r←− Z∗p

5.2 Transformation of Schemes based on Schnorr Signatures
Signing with RSA is achieved by encrypting the hash of the message with the private key of
the signer. Verification is in turn decrypts the signature with the public key. These en- and
decryption steps are the computationally most expensive parts of the algorithm. In 1991, C. P.
Schnorr introduced a signature scheme, which - unlike e.g., RSA - allows pre-computation for
the signer [153]. The modular exponentiation (ME) is applied to a random value (which can be
done prior arrival of a message to be signed), while the actual signature is computed with the

56

5.2 Transformation of Schemes based on Schnorr Signatures

cheaper modular multiplication (MM) and a hash. The mechanism can be applied to ECC, by
simply exchanging the ME with a elliptic curve group exponentiation (GE).
The private key k is chosen at random, k r←− Z∗p, the public key is K = k P . The signature for

message m is σ = (s, h) calculated as follows:

x
r←− Z∗p

X = xP

h = h1(X,m)
s = x+ k · h
σ = (s, h)

(5.1)

Notably, X is pre-computable and the signature is accepted if and only if:

X̃ = s P − hK

s
?= h1(X̃,m)

(5.2)

The idea to construct an IBS scheme with Schnorr-signatures is to concatenate two of them. The
Key Generation Center (KGC) generates a Schnorr-signature with its private key (the Master
Secret Key (msk)) for the user’s identity. This signature together with its verification value is
the user’s private key (the User Secret Key (usk)). The verification value can be seen as the
public key of the user. Together with the Master Public Key (mpk) it can be used to validate
another Schnorr-signature for the message and allows authorization of the signer. More details
on the generation will be shown during the following transformation of two of such IBS schemes.

5.2.1 Scheme 1: GG
The scheme by Galindo and Garcia [47] (denoted as GG) was presented in 2009 and is almost
identical to the first Schnorr-like IBS proposed in [11]. Thus, the following can be used as
a blueprint to transform the latter as well. The resulting transformations are presented in
Table 5.1, the following will discuss the decisions for each transformation step.
In GG, usk = (u,R), with u ∈ Z∗p being a Schnorr-signature created by the KGC and R ∈ G.

The signature of a message m is then calculated as another Schnorr-signature with u as the
secret being kept by the signer and x ∈ Z∗p being the randomized input to the signature. In
particular, the signer randomly chooses x r←− Z∗p and calculates X = xP . It then generates a
hash h = h2(id,m,X) and calculates s = x+ h · u, with s ∈ Z∗p. The signature is σ = (s,R,X).
The verifier validates the signature by calculating the hashes of the two Schnorr-signatures,

such that c = h1(R, id) and d = h2(id,m,X). This allows the verification with the mpk
(Mpk ∈ G) of the system by and accepting the signature if and only if

s P = X + d(R+ cMpk) (5.3)

I.) 2KSS transformation

GG’s signature is σ = (s,R,X), but only s,X are part of the signing algorithm while R is part
of the user’s usk. Hence, there are two options for including the group shared key (gsk) in the
signing algorithm, without changing the hash function, being in s or X.

Option 1: Inclusion of g in X would change its generation to X = (x · g)P . However,
this updated X is included in the hash h which is not part of σ. Unless the output of the hash
function is predictable (and thus insecure), the verifier has no way to include g in the verification
function.

57

5 group Identity Based Signatures

Table 5.1: Transformations for GG.

2KSS-GG U2KSS-GG KUSS-GG

public
params h1,2 : {0, 1}∗ → Z∗p h1,2 : {0, 1}∗ → Z∗p h1,2 : {0, 1}∗ → Z∗p

Setup
msk

r←−Z∗p
g r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk0 =(msk · g0)P

Extract

r
r←−Z∗p

R =r P
u =r +msk · h1(R, id)

usk =(u,R)

r
r←−Z∗p

R =r P
u =r +msk · h1(R, id)

usk =(u,R)

r
r←−Z∗p

R =r P
ue =(r +msk · h1(R, id)) · ge

usk =(ue, R)

Next ∆e+1
r←− Z∗p ∆e+1

r←− Z∗p

Update
(TTP) ge+1 = ge ·∆e+1

ge+1 =ge ·∆e+1

Mpke+1 =∆e+1Mpke

Update
(Client) ge+1 = ge ·∆e+1

ge+1 =ge ·∆e+1

ue+1 =ue ·∆e+1

Mpke+1 =∆e+1Mpke

Sign

x
r←−Z∗p

X =xP
h =h2(id,m,X)
s =(x+ h · u) · g

σ =(s,R,X)

x
r←−Z∗p

X =xP
h =h2(id,m,X)
se =(x+ h · u) · ge

σe =(se, R,X)

x
r←−Z∗p

X =xP
h =h2(id,m,X)
se =x+ h · ue

σe =(se, R,X)

Verify
c =h1(R, id)
d =h2(id,m,X)

sP
?=g (X + d(R+ cMpk))

c =h1(R, id)
d =h2(id,m,X)

seP
?=ge (X + d(R+ cMpk))

c =h1(R, id)
d =h2(id,m,X)

seP
?=X + d(geR+ cMpke)

p prime number P generator of an ell. curve group mmessage {0, 1}∗ arbitrary length binary
string σ signature Z∗p Zp without identity (1) element hi() hash function in Z∗p

58

5.2 Transformation of Schemes based on Schnorr Signatures

Option 2: Inclusion of g in s is left as the only applicable. Embedding g in the Schnorr-
signature, changing its calculation to s = (x+h ·u) ·g, which changes the verification condition
as follows:

s

g P = X + d(R+ cMpk)⇔ s P = g(X + d(R+ cMpk)) (5.4)

Proof. The signature is correctly verified as s P = g(X + d(R+ cMpk)):

sP = (x+ h · u) · gP =
= (x · g)P + (h · u · g)P =
= gX + d · g(r +msk · h1(R, id))P =
= gX + d · g(r +msk · c)P =
= gX + d((r · g)P + (c ·msk · g)P) =
= g(X + d(R+ c ·Mpk))

(5.5)

II.) U2KSS transformation

The transformation to U2KSS is straightforward by introducing the required algorithms Next
and Update. Next generates an update token ∆e+1 ∈ Z∗p for epoch e + 1, which is used by the
peers to update ge+1 = ge ·∆e+1 The inclusion of the (updatable) shared secret ge to the signing
and verification algorithm does not change compared to the 2KSS transformation. A signature
is correct with respect to the epoch e in which it was created in. Please refer to Table 5.1 for
details.

III.) KUSS transformation

Updating the signing and verification keys in GG, requires changing the generation of usk and
the Mpk. The update token ∆ generated by the Next algorithm is the same as in U2KSS (see
Table 5.1, Next column); it remains to examine the other algorithms of client and KGC. As
the usk in GG is a Schnorr-signature of the signers identity, the inclusion of the shared secret
to the signing and verification keys (usk,Mpk) is similar to its integration to the signature in
2KSS-GG. However, this implicitly changes the signing algorithm, why verification also requires
attention. First, the updatable shared secret ge is used in the extract algorithm to produce a
usk with respect to epoch e. As the usk consists of two variables (u,R) it can be either included
in both or one of them.

Option 1: Inclusion of g in R would require to change Extract as follows:

r
r←−Z∗p;

Re =(r · ge)P
ue =r +msk · h1(Re, id)

usk =(ue, Re)

(5.6)

This yields the same disadvantage as including g in X for the signature creation in 2KSS-GG,
as Re is the input of the hash function used to generate the Schnorr-signature for the signers
identity. The inclusion of ge to R already affects u as the second part of the usk and to
successfully update the usk the client needs to apply ∆e+1 to (Re, ue). While it is certainly
possible to update Re (e.g., Re+1 = ∆e+1Re) and create the hash h1(Re+1, id), updating ue is
impossible without the knowledge of r and msk, which are meant to be kept secret from the
user.

59

5 group Identity Based Signatures

Option 2: Inclusion of g in u would change Extract as follows:

ue =(r +msk · h1(R, id)) · ge

usk =(ue, R)
(5.7)

This allows a straightforward update of u by the client, e.g., ue+1 = ue ·∆e+1 and the signature
creation is implicitly changed to:

se = x+ h · u · ge (5.8)

For verifying the knowledge of ge, the verifier validates se without the knowledge of x and ue, but
with the Mpk in combination with (R,X, id). As in the original scheme, the verifier calculates
se P , which now includes g and requires the verification condition to be examined. By re-writing
se P to

se P = (x+ h · u · ge)P =
= X + h · u · geP =

= X + h ·
(
r +msk · h1(R, id)

)
· geP =

= X + h ·
(
ge · r + ge ·msk · h1(R, id)

)
P =

= X + h ·
(
geR+ h1(R, id) · geMpk

)
(5.9)

as d = h2(id,M,X) = h and d = h1(R, id), the verifier can successfully verify the signers
knowledge of ge with respect to epoch e, if and only if the verifier knows ge. Thus, GG is not
suitable for a hybrid KUSS verification as defined with Transformability Condition 4.3, unless
the signature is extended to:

σe = (se, R,Re, X),with Re = geR (5.10)

Updating the mpk: As shown before, the pre-calculation of geR is impossible, as R is not
updatable, why ge is required during verification and needs to be calculated in the client’s
Update algorithm. However, this is not true for the Mpk. Upon setup, the KGC can include
g in the calculation of the Mpk, e.g., Mpk0 = msk · g0 P . Moving Mpke to the next epoch is
straightforward with Mpke+1 = ∆e+1Mpke, which can be done by all clients during the Update
algorithm. This allows more efficient verification, as geMpk does not need to be calculated for
every message and the KUSS-GG verification condition is thus:

seP = X + d(geR+ cMpke) (5.11)

The correctness of the signature is shown with:

Proof.
seP = (x+ h · ue)P =

= xP + (h · ue)P =
= X + d · ge(r +msk · h1(R, id))P =
= X + d · ge(r +msk · c)P =
= X + d((r · ge)P + (c ·msk · ge)P) =
= X + d(geR+ c ·Mpke)

(5.12)

60

5.2 Transformation of Schemes based on Schnorr Signatures

5.2.2 Scheme 2: vBNN

The IBS scheme called vBNN [24] also uses Schnorr-signatures and is a variant of BNN that was
introduced in [11]. Its main motivation is the reduction of the signature size to achieve better
performance in Wireless Sensor Networks (WSNs).
The first difference between vBNN and GG is the creation of the hash h during signing (and

therefore also during verification). In GG, this is h = h2(id,m,X), while vBNN calculates
h = h2(id,m,R,X). GG defines the signature σ as a triple of σ = (s,R,X), which requires one
element of Z∗p and two elements of G to be sent on the wire. As elements of G typically require
more bits, vBNN optimizes this by sending the triple σ = (s,R, h). The verification algorithms
changes to:

c =h1(R, id)
X̃ =s P − h(R+ cMpk)

h
?=h2(id,M,R, X̃)

(5.13)

The signature is valid, if the two hashes are equal, which is the case if X̃ is equal to the randomly
generated X = xP .
The transformation of vBNN is almost identical to the transformation of GG and the resulting

transformation are presented in Table 5.2. The following highlights the decisions which differ to
GG.

I.) 2KSS transformation

As in GG, the transformation to 2KSS-vBNN simply extends the signature’s calculation to
s = (x+ h · u) · g. The verification is changed analogously, such that the calculation X̃ verifies
the knowledge of g:

X̃ = s

gP − h(R+ cMpk) (5.14)

II.) U2KSS transformation

As in GG, the transformation to U2KSS is straightforward by introducing the requested algo-
rithm Next and Update. The inclusion of the (updatable) shared secret ge to the signing and
verification algorithm does not change compared to the 2KSS transformation, why the correct-
ness stays intact with respect to the epoch e, the signature was created.

III.) KUSS transformation

The KUSS-vBNN transformation follows the argumentation for KUSS-GG. The shared secret
is included in the usk = (u,R), more specifically in u that can be updated by the client by
calculating:

ue+1 = ue ·∆e+1 (5.15)

The Mpke can be updated using the same operation as in GG, but as R is not updatable, ge is
necessary for verification.
As in GG, ge is not required during signing but for verification, which changes compared to

Equation 5.13 as follows:
c =h1(R, id)
X̃ =s P − h(geR+ cMpke)

h
?=h2(id,M,R, X̃)

(5.16)

61

5 group Identity Based Signatures

Table 5.2: Transformations for vBNN.

2KSS-vBNN U2KSS-vBNN KUSS-vBNN

public
params h1,2 : {0, 1}∗ → Z∗p h1,2 : {0, 1}∗ → Z∗p h1,2 : {0, 1}∗ → Z∗p

Setup
msk

r←−Z∗p
g r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk0 =(msk · g0)P

Extract

r
r←−Z∗p

R =r P
u =r +msk · h1(R, id)

usk =(u,R)

r
r←−Z∗p

R =r P
u =r +msk · h1(R, id)

usk =(u,R)

r
r←−Z∗p

R =r P
ue =(r +msk · h1(R, id)) · ge

usk =(ue, R)

Next ∆e+1
r←− Z∗p ∆e+1

r←− Z∗p

Update
(TTP) ge+1 = ge ·∆e+1

ge+1 =ge ·∆e+1

Mpke+1 =∆e+1Mpke

Update
(Client) ge+1 = ge ·∆e+1

ge+1 =ge ·∆e+1

ue+1 =ue ·∆e+1

Mpke+1 =∆e+1Mpke

Sign

x
r←−Z∗p

X =xP
h =h2(id,m,R,X)
s =(x+ h · u) · g

σ =(s,R, h)

x
r←−Z∗p

X =xP
h =h2(id,m,R,X)
se =(x+ h · u) · ge

σe =(se, R, h)

x
r←−Z∗p

X =xP
h =h2(id,m,R,X)
se =x+ h · ue

σe =(se, R, h)

Verify

c =h1(R, id)

X̃ = s

gP − h(R+ cMpk)

h
?=h2(id,m,R, X̃)

c =h1(R, id)

X̃ = se
ge
P − h(R+ cMpk)

h
?=h2(id,m,R, X̃)

c =h1(R, id)
X̃ =seP − h(geR+ cMpke)

h
?=h2(id,m,R, X̃)

p prime number P generator of an ell. curve group mmessage
{0, 1}∗ arbitrary length binary string σ signature Z∗p Zp without identity (1) element
hi() hash function in Z∗p

62

5.3 Transformation of Schemes based on Pairings

Proof. The signature is correctly verified if X̃ = X

X̃ = seP − h(geR+ cMpke) =
= (x+ h · ue)P − h((r · ge)P + (c ·msk · ge)P) =
= xP + (h · ue)P − h(r · ge + (c ·msk · ge)P =
= xP + (h · ue)P − h(r + h1(R, id) ·msk) · ge P =
= X + (h · ue)P − (h · ue)P =
= X

(5.17)

Thus, vBNN is not suitable for a hybrid KUSS verification as defined with Transformability
Condition 4.3, unless the signature is extended to:

σe = (se, R,Re, X),with Re = geR (5.18)

5.3 Transformation of Schemes based on Pairings
Pairings were introduced to ECC in [73] and have since been used for various cryptographic
applications. One of such is the use for identity-based cryptography and in particular for IBS.
The following will examine two prominent examples of pairing based IBS schemes, namely by
Hess [67] and the one donated as BLMQ [9] . BLMQ is slightly more efficient, as it requires
no expensive pairing operation for signing and only one pairing operation for verification, while
Hess requires one for signing and two for verification. However, Hess is the only scheme that is
found to be capable of fully hybrid KUSS, where usk as well as mpk can be changed in such a
way that the knowledge of the shared secret is unnecessary during signing and verification.

5.3.1 Scheme 3: Hess

The IBS scheme developed by Florian Hess [67] was among the first using bilinear maps on
elliptic curves for identity-based cryptography. While the creation of msk and Mpk does not
differ from the IBS schemes based on Schnorr-signatures, the other steps are different. The
resulting transformations are presented in Table 5.3, the following discusses the concepts of
Hess’ algorithm and the decisions for each transformation step.
In Hess, the usk is a point on the elliptic curve, created by hashing the user’s id into G1.

Creating a signature requires two random elements, x r←− Z∗p and Q
r←− G, and a pairing with the

generator P . The result r = e(Q,P)x is included in the signature σ = (h, S), with h = h2(m, r)
and S ∈ G such that:

S = hUsk + xQ (with Usk = mskH1(id)) (5.19)

The verification condition is based on the fact, that another pairing e(S, P) implicitly includes
r = e(Q,P)x:

e(S, P) = e
(
h ·mskH1(id) + xQ,P

)
=

= e
(
h ·mskH1(id)

)
· e(xQ,P) =

= e(H1(id), P)h·msk · e(Q,P)x =
= e(H1(id), P)h·msk · r

(5.20)

1This involves some restriction in the choice of G, refer to [46] for details

63

5 group Identity Based Signatures

Table 5.3: Transformations for Hess.

2KSS-Hess U2KSS-Hess KUSS-Hess

public
params

H1 : {0, 1}∗ → G∗

h2 : {0, 1}∗ → Z∗p
e : G1 ×G2 7→ Z∗p

H1 : {0, 1}∗ → G∗

h2 : {0, 1}∗ → Z∗p
e : G1 ×G2 7→ Z∗p

H1 : {0, 1}∗ → G∗

h2 : {0, 1}∗ → Z∗p
e : G1 ×G2 7→ Z∗p

Setup
msk

r←−Z∗p
g r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk =mskP

msk
r←−Z∗p

g0
r←−Z∗p

Mpk0 =(msk · g0)P

Extract Usk =mskH1(id) Usk =mskH1(id) Uske =(msk · ge)H1(id)

Next ∆e+1
r←−Z∗p ∆e+1

r←−Z∗p

Update
(TTP) ge+1 =ge ·∆e+1

ge+1 =ge ·∆e+1

Mpke+1 =∆e+1Mpke

Update
(Client) ge+1 = ge ·∆e+1

Uske+1 = ∆e+1Uske

Mpke+1 = ∆e+1Mpke

Sign

x
r←−Z∗p, Q

r←− G∗

r =e(Q,P)x

h =h2(m, r)
S =(g · h)Usk + xQ

σ =(h, S)

x
r←−Z∗p, Q

r←− G∗

r =e(Q,P)x

h =h2(m, r)
Se =(ge · h)Usk + xQ

σe =(h, Se)

x
r←−Z∗p, Q

r←− G∗

r =e(Q,P)x

h =h2(m, r)
Se =hUske + xQ

σe =(h, Se)

Verify

∼
r =e(S, P)

·e(H1(id),−Mpk)
h
g

h
?=h2(m,∼r)

∼
r =e(S, P)

·e(H1(id),−Mpk)
h

ge

h
?=h2(m,∼r)

∼
r =e(S, P)
·e(H1(id),−Mpke)h

h
?=h2(m,∼r)

p prime number P generator of an ell. curve group
mmessage σ signature {0, 1}∗ arbitrary length binary string hi() hash function in
Z∗p Hi() hash function in G Z∗p Zp without identity (1) element G cyclic group
generated by P G∗ G without identity element e(P,Q) bilinear pairing

64

5.3 Transformation of Schemes based on Pairings

As r was kept secret by the signer, it can only be known by him and, thus, validates the signature.
For extracting r from e(S, P), the verifier needs to calculate another pairing, which eliminates
e(H1(id), P)h·msk. This can be achieved with the knowledge of Mpk = msk P , as

e(H1(id),Mpk) = e(H1(id), P)msk (5.21)

The hash h is part of the signature and

e(H1(id),−Mpk)h = e(H1(id), P)−h·msk (5.22)

With Equation 5.20 multiplying e(S, P) and e(H1(id),−Mpk)h allows extraction of r from S.
That forms the validation condition:

∼
r =e(S, P) · e(H1(id),−Mpk)h =

=e(H1(id), P)h·msk · e(Q,P)x · e(H1(id), P)−h·msk =
=e(Q,P)x

⇒ h
?=h2(M,

∼
r)

(5.23)

I.) 2KSS transformation

There are three options for including gsk in Hess’ signing and verification, namely in S itself or
in hUsk or xQ as parts of S.

Option 1: including g in S The straightforward option of signing with g is to change the
creation of S to

S = g(hUsk + xQ) = (g · h)Usk + (g · x)Q (5.24)

and change the creation of ∼r during verification to:

∼
r =e(S, P)g−1 · e(H1(id),−Mpk)h =

=e
(
(h ·msk · g)H1(id) + (x · g)Q,P

)g−1

· e(H1(id),−Mpk)h =

=e(H1(id), P)
h·msk·g

g · e(Q,P)
x·g
g · e(H1(id),−Mpk)h =

=e(Q,P)x ⇒ r

(5.25)

Allowing the successful extraction of e(Q,P)x as described above with the costs of two additional
multiplications in Z∗p for signing and one additional exponentiation in Z∗p for verification.

Option 2: including g in xQ The modification to

S = hUsk + (x · g)Q (5.26)

changes the creation of ∼r during verification to

∼
r = e(S, P)−g · e(H1(id),−Mpk)−g·h

⇒ h
?= h2(M,

∼
r)

(5.27)

which - with one additional multiplication in Z∗p - is slightly more efficient for signing but - with
one exponentiation and multiplication in Z∗p - less efficient for verification.

65

5 group Identity Based Signatures

Option 3: including g in hUsk The inclusion in hUsk changes signing to

S = (h · g)Usk + xQ (5.28)

and the creation of ∼r during verification to

∼
r = e(S, P) · e(H1(id),−Mpk)

h
g

⇒ h
?= h2(M,

∼
r)

(5.29)

hence, only requiring one additional multiplication in Z∗p for signing and verification. Addition-
ally, this allows straightforward transformation to KUSS.

II.) U2KSS transformation

The transformation to U2KSS is straightforward by introducing the required algorithm Next
and Update. The inclusion of the (updatable) shared secret ge to the signing and verification
algorithm does not change compared to the 2KSS transformation, why the correctness stays
intact with respect to the epoch e, in which the signature was created. Please refer to Table 5.3
for details.

III.) KUSS transformation

The options for 2KSS-Hess discussed above, lead to the integration of the shared secret ex-
clusively where Usk and Mpk appear during signing and verifying. Thus, the transformation
to KUSS is the simple integration in both keys and evolving them during the Update process.
In addition, KUSS-Hess does only require the KGC to keep the shared secret for extracting
Uske with respect to epoch e. It is therefore capable of a fully hybrid KUSS, as defined by
Transformability Condition 4.2 and 4.3. Please refer to Table 5.3 for details.
With the transformation options discussed in 2KSS-Hess, proving the correctness of a KUSS-

Hess signature is thus:

Proof. The signature is correctly verified if r̃ = e(Q,P)x:

r̃ = e(Se, P) · e(H1(id),−Mpke)h =
= e(hUske + xQ,P) · e(H1(id),−Mpke)h =
= e((h ·msk · ge)H1(id) + xQ,P) · e(H1(id),−(msk · ge)P)h =
= e(H1(id), P)h·msk·ge · e(Q,P)x · e(H1(id), P)−h·msk·ge =
= e(Q,P)x

(5.30)

5.3.2 Scheme 4: BLMQ

BLMQ as originally introduced in [9] also utilizes pairings but claims better efficiency than
e.g., Hess. Additionally, it overcomes the restriction for hashing in G by generating the Usk
differently:

Usk = 1
msk + h1(id)P (5.31)

BLMQ also allows one of the pairing operation – e(P,Q) – for signing and verification to be pre-
calculated as the generators Q ∈ G2, P ∈ G1 are fixed during Setup. The hash of the signature

66

5.3 Transformation of Schemes based on Pairings

σ = (h, S) is similar to Hess, being h = h2(M, r), where r = e(P,Q)x with x r←− Z∗p The second
part of the signature S ∈ G1, is

S = (x+ h)Usk (5.32)

Similar to the verification condition in Hess, the verifier in BLMQ needs to compute ∼r to compare
the hash of the signature with a self-generated one

h
?= h2(m, r̃) (5.33)

Thus, qx needs to be computed from the signature S, by performing the pairing
e(S, h1(id)Q+Mpk) which can be re-written:2:

e(S, h1(id)Q+Mpk) =

=e
(x+ h

msk + h1(id) P, h1(id)Q
)
· e
(x+ h

msk + h1(id) P,mskQ
)

=

=e(P,Q)x+h =
=qx+h

(5.34)

Multiplying the result of this pairing with q−h returns r̃ = qx = r, allowing successful verification.
The resulting transformations are presented in Table 5.4, the following will discuss the decisions
for each transformation step.

I.) 2KSS transformation

The gsk can be included in signing and verification, either multiplicative or additive.

Option 1 (multiplicative): The straightforward inclusion of the shared secret to the signature
is its multiplication with the original S, such that

S = g · (x+ h)Usk (5.35)

which allows efficient signing and verification by only one additional multiplication in Z∗p in each
step (see KUSS-BLMQ for more details). Additionally, this includes a potential security issue
for U2KSS-BLMQ, which will be discussed in Section 5.5.2.

Option 2 (additive): However, even greater efficiency is achieved by modifying the signature
creation to

S = (g + x+ h)Usk (5.36)

allowing modification of the verification, such that

r̃ = e(S, h1(id)Q+Mpk) · e(Q,P)−h−g (5.37)

II.) U2KSS transformation

The transformation to U2KSS is straightforward by introducing the required algorithm Next
and Update. The inclusion of the (updatable) shared secret ge to the signing and verification
algorithm does not change compared to the 2KSS transformation, why the correctness stays
intact with respect to the epoch e, the signature was created in. Please refer to Table 5.4 for
details.

2As the reformation is almost identical to Hess, the interested reader is referred to Equation 5.43

67

5 group Identity Based Signatures

Table 5.4: Transformations for BLMQ.

2KSS-BLMQ U2KSS-BLMQ KUSS-BLMQ

public
params

h1,2 :{0, 1}∗ → Z∗p
e :G1 ×G2 7→ Z∗p

Q←G2

P =ψ(Q) ∈ G1

q =e(P,Q)

h1,2 :{0, 1}∗ → Z∗p
e :G1 ×G2 7→ Z∗p

Q←G2

P =ψ(Q) ∈ G1

q =e(P,Q)

h1,2 :{0, 1}∗ → Z∗p
e :G1 ×G2 7→ Z∗p

Q←G2

P =ψ(Q) ∈ G1

q =e(P,Q)

Setup
msk

r←−Z∗p
g r←−Z∗p

Mpk =mskQ

msk
r←−Z∗p

g0
r←−Z∗p

Mpk =mskQ

msk
r←−Z∗p

g0
r←−Z∗p

Mpk0 =(msk · g0)Q

Extract Usk = 1
msk + h1(id)P Usk = 1

msk + h1(id)P Uske = 1
(msk + h1(id)) · ge

P

Next ∆e+1
r←−Z∗p ∆e+1

r←−Z∗p

Update
(TTP) ge+1 =ge ·∆e+1

ge+1 =ge ·∆e+1

Mpke+1 =∆e+1Mpke

Update
(Client) ge+1 = ge ·∆e+1

ge+1 = ge ·∆e+1

Uske+1 = (1/∆e+1)Uske
Mpke+1 = ∆e+1Mpke

Sign

x
r←−Z∗p

r =qx

h =h2(m, r)
S =(g + x+ h)Usk

σ =(h, S)

x
r←−Z∗p

r =qx

h =h2(m, r)
Se =(ge + x+ h)Usk

σe =(h, Se)

x
r←−Z∗p

r =qx

h =h2(m, r)
Se =(x+ h)Uske

σe =(h, Se)

Verify

∼
r =e(S, h1(id)Q+Mpk)
·q−h−g

h
?=h2(m,∼r)

∼
r =e(Se, h1(id)Q+Mpk)
·q−h−ge

h
?=h2(m,∼r)

∼
r =e(Se, h1(id) · geQ+Mpke)
·q−h

h
?=h2(m,∼r)

p prime number Q,P generator of an ell. curve group mmessage σ signature
{0, 1}∗ arbitrary length binary string Gx cyclic group generated by P,Q
Z∗p Zp without identity (1) element hi() hash function in Z∗p e(P,Q) bilinear pairing
ψ isomorphism ψ : G2 → G1 such that ψ(Q) = P

68

5.3 Transformation of Schemes based on Pairings

III.) KUSS transformation

As a result of the more efficient generation of the Usk in BLMQ, the integration of the shared
secret is more difficult than in Hess. Again, there are the two options for additive and multi-
plicative inclusion.

Option 1 (additive): As for 2KSS-BLMQ, adding the shared secret such as

Usk = 1
msk + h1(id) + gP (5.38)

would be straightforward and efficient, however, as the msk is unknown by the clients, updating
the Usk would become impossible.

Option 2 (multiplicative): Hence, multiplication is the only way of integrating the shared
secret to Usk and Mpk respectively. Extract changes to:

Usk = 1
(msk + h1(id))ge

P (5.39)

which implicitly changes the signature creation to

S = x+ h

(msk + h1(id))ge
P (5.40)

During validation of the signature, g is required as a multiplicative element to even out the
signature. As the interested reader may have noticed, this requires g to appear in combination
with msk+ h1(id) during the creation of r̃. The appearance with msk is pre-calculated as part
of the Mpk, while the appearance with h1(id) needs to be explicit

r̃ = e(S, (h1(id) · ge)Q+Mpke) · e(Q,P)−h;withMpke = (msk · ge)Q (5.41)

Updating the Usk needs to account for division, why is as:

Uske+1 = (1/∆e+1)Uske (5.42)

Updating the mpk: The update process for Mpke and ge is as in any other scheme, refer to
Table 5.4 for more details. With these modifications, the correctness of a KUSS-BLMQ signature
is proven in Equation 5.43.

Proof. The signature is correctly verified if r̃ = qx:

r̃ = e(Se, (h1(id) · ge)Q+Mpke) · q−h =
= e(Se, (h1(id) · ge)Q) · e(Se,Mpke) · q−h =

= e
(
(x+ h)Uske, (h1(id) · ge)Q

)
· e
(
(x+ h)Uske,Mpke

)
· q−h =

= e
(x+ h

(msk + h1(id)) · ge
P, (h1(id) · ge)Q

)
·

· e
(x+ h

(msk + h1(id)) · ge
P, (msk · ge)Q

)
· q−h =

= q
(x+h)·h1(id)·ge
(msk+h1(id))·ge · q

(x+h)·msk·ge
(msk+h1(id))·ge · q−h =

= q
(x+h)·h1(id)·ge+(x+h)·msk·ge

(msk+h1(id))·ge
−h =

= qx+h−h = qx

(5.43)

69

5 group Identity Based Signatures

5.4 Security Analysis

The aim of this section is to formally prove the security of the previously transformed schemes
with techniques from provable security [60]. An IBS scheme is meant to be most secure if
it meets existentially unforgeable under adaptively chosen-message-and-identity attacks (EUF-
CMA). The property EUF-CMA is defined for all transformations in Section 4.4.1-4.4.3.
The analysis is carried out as follows:

1. Proving Token Security for the 2KSS and U2KSS transforms, stating that the security of
the IBS scheme is still EUF-CMA if a gsk is added to signing and verification process.
We show, that a forged 2KSS signature can be converted to a signature of the underlying
IBS scheme. Using the Game Hopping Lemma (refer to Section 3.1.3), we hereby prove
by Contradiction that the underlying scheme would be insecure if 2KSS were insecure.

2. Proving Token Security for the KUSS transforms, stating that the security of the IBS
scheme is still EUF-CMA, if a gsk included in the signing and verification keys and there-
fore in the signature. The principle is similar to the previous step, however, the reduction
of Schnorr based schemes is not as straightforward as for 2KSS and U2KSS. In fact, the
additional Latin Square Property needs to be examined for them.

3. Showing the signature’s Forward Security by examining the Latin Square Property.

4. Showing the signature’s Post-Compromise Security, which can be reduced to the One-
More Discrete Logarithm Problem (1m-DLP) for all schemes by using the Latin Square
Property.

5.4.1 Preliminaries for the Analysis

Most of the following proofs can be done via reduction to the security of the original schemes,
which define EUF-CMA with some variant of the following experiment, which is equivalent to
Definition 1 in the paper by Galindo and Garcia [47]:

Definition 5.1 (EUF-IBS-CMA [47]). An identity-based signature scheme Σ = (G, E ,S,V)
is said to be secure against existential forgery under adaptive chosen message and iden-
tity attacks if for all probabilistic polynomial-time adversaries A, the probability of the
experiment P (EUF˘IBS˘CMAΣ(A) = 1) defined below is a negligible function of λ.
During this experiment, A has access to two of the oracles defined above, namely OE and OS .

EUF˘IBS˘CMAΣ(A) :
(msk,mpk)← G(λ)
(id∗,m∗, σ∗)← AOE(·),OS(·,·)(mpk)
return V(mpk, σ∗,m∗, id∗)

Trivial wins where the adversary A queries id∗ from OE(·) or σ∗ from OS(·, ·) are excluded.
Also, the same id is not allowed to be queried twice to OE(·).

Where direct reduction is not possible, we reduce a scheme’s security to one of the following:

I.) Latin square property, which shows the preservation of randomness for group operations
in Z∗p.

70

5.4 Security Analysis

Definition 5.2 (One-More Discrete Logarithm Problem [12, 81]). With Kcg being a cyclic
group generator, the experiment for the 1m-DLP is given as follows [12]:

EXP1m-dlp
Kcg ,A

(k) :

(〈G〉, q, g) r←− Kcg(1k)
i← 0;n← 0

(y1 · · · , ym) r←− A
(
1k, 〈G〉, q, g : Chall, DLog

)
If m = 1 and n < m and gyi for all i ∈ {1, · · ·m}
Then return 1 else return 0

Oracle Chall :
i← i+ 1;Yi

r←− G
Return Yi

Oracle DLog(Y) :
n← n+ 1; y ← d logG,g(Y)
Return y

The solver is supplied with a challenge oracle that produces a random group element Yi ∈ G
when queried and a discrete log oracle. After t queries to the challenge oracle (where t is
chosen by the solver) and at most t − 1 queries to the discrete log oracle, the solver must
find the discrete logs of all t elements Yi [81].

II.) One-More Discrete Logarithm Problem, which is a version of the Discrete Logarithm
Problem (DLP) which is often used to prove IBS.

Both are briefly explained in the following.

I.) Preserving Randomness in Z∗p
Most modification to the schemes in the previous sections break down to additional additions
or multiplications in Z∗p. Whenever this is required to stay random, the Latin square property
is used to prove security:

Lemma 5.1 (Latin square property). Let (G, ◦) be a group, a ∈ G, |G| = k.
Then ∀(b, c) ∈ ←G×G : P (c = a ◦ b) = 1

k .

Since the probability of obtaining c ∈ G by randomly drawing an element from G is also
1
k , this means that operating on two randomly drawn group elements returns a random group
element. Specifically, for the case of (G, ◦) = (Z∗p, ·):

Lemma 5.2 (Randomness preservation in (Z∗p, ·)). Randomly selecting c ∈ Z∗p yields a certain
element of G with the same probability as multiplying a given element a ∈ Z∗p by a random
b ∈ Z∗p.

Proof. Let p ∈ Z be prime. (Z∗p, ·) is a group with p − 1 elements. Let a, b ∈ Z∗p, where b is
randomly selected.
∀x ∈ Z∗p : P (x = x′|x′ r← Z∗p) = 1

p−1 = P (x = a · b).

II.) One-More Discrete Logarithm Problem

All transformed schemes rely on the DLP and the 1m-DLP as in Definition 5.2 is used for
reduction of the transformations if direct reductions are impossible.
As in Definition 3.4, the DLP is the challenge on computing a given Y = ga, with Y ∈ G and

g, a ∈ Z. According to [81], the definition of 1m-DLP and its prove allow efficient reduction to
the DLP.

71

5 group Identity Based Signatures

5.4.2 Proving 2KSS and U2KSS Token Security
Token security aims on showing that the introduction of the gsk does not harm the security
of the underlying signature scheme. As all U2KSS transformation are constructed identical to
2KSS, they allow the same proofs.

Idea of the proofs: Let X denote any of the schemes in {Hess, BLMQ, GG, vBNN}. Suppose
there exists an adversary A who can win the EUF-2KSS-CMA-game, i.e. forge a valid 2KSS-
X -signature σ on message m∗ and identity id∗, with non-negligible probability ε within time
t without being in possession of id’s corresponding private key. To prove Theorem 5.2-5.4 it
suffices to show that A’s existence would imply the existence of an adversary B who can win
the EUF-IBS-CMA-game for X with non-negligible probability within time t′ = f(t) (where f
is a polynomial function of t).

I.) Schnorr-Like Schemes: vBNN, GG

With the general idea of the proof, proving EUF-2KSS-CMA-security for GG and vBNN is all
about finding a valid configuration of the EUF-2KSS-CMA-game that outputs a signature, useful
for the EUF-IBS-CMA-game. As the signature creation in both schemes is s = (x+ h+ u) · g,
the idea of both proofs is the same by providing B with a signature s̃ = g−1 · s.

Theorem 5.1 (GG’s EUF-2KSS-CMA-security). If GG is existentially unforgeable under adap-
tively chosen-message-and-identity attacks then GG’s 2KSS transform is existentially unforgeable
under adaptively chosen-message-and-identity attacks.
Proof. Suppose there exists an adversary A who can win the EUF-2KSS-CMA-game for 2KSS-
GG with non-negligible probability ε within time t, let B be an adversary playing the EUF-IBS-
CMA-game, and let λ be fixed, (msk,Mpk)← G(λ). Then B can call A(Mpk,g) (with g r← Z∗p)
to obtain a tuple (id∗,m∗, σ), where σ = (s,R,X) such that

sP = g(X + d
(
R+ cMpk)

)
(5.44)

B obtains this with probability ε within time t. B outputs (id∗,m∗, σ̃) where σ̃ = (s̃, R,X)
and s̃ = (g−1 · s) to the EUF-IBS-CMA game. The corresponding verification algorithm
V(Mpk, σ̃,m∗, id∗) will output 1 as

s̃P = g−1sP = g−1
(
g
(
X + d(R+ cMpk)

))
= X + d(R+ cMpk) (5.45)

Therefore, σ̃ is a valid GG-signature that B forged within time t′ ≤ t+ tm with non-negligible
probability ε, where tm is the time to compute a multiplication in Z∗p. This contradicts Theorem
3 in [47], which states that the GG-scheme is EUF-CMA-secure.

Theorem 5.2 (vBNN’s EUF-2KSS-CMA-security). If vBNN is existentially unforgeable under
adaptively chosen-message-and-identity attacks then vBNN’s 2KSS transform is existentially
unforgeable under adaptively chosen-message-and-identity attacks.
Proof. Suppose there exists an adversary A who can win the EUF-2KSS-CMA-game for 2KSS-
vBNN with non-negligible probability ε within time t, Let B be an adversary playing the EUF-
IBS-CMA-game, and let λ be fixed, (msk,Mpk) ← G(λ). Then B can call A(Mpk,g) with
g r← Z∗p. A outputs a tuple (id∗,m∗, σ), where σ = (s,R, h) such that

h = h2
(
id∗,m∗, R,X)

)
(5.46)

72

5.4 Security Analysis

B calculates h̃ as:
c =h1(R, id∗)
X̃ =(g−1 · s)P − h(R+ cMpk)
h̃ =h2(id∗,m∗, R, X̃)

(5.47)

B outputs (id∗,m∗, σ̃) where σ̃ = (s̃, R, h̃) and s̃ = (g−1 · s) to the EUF-IBS-CMA game. The
verification algorithm V(Mpk, σ̃,m∗, id∗) will output 1 as

h̃ = h2(id∗,m∗, R, X̃) =
= h2(id∗,m∗, R, s̃P + d(R+ cMpk) =
= h2(id∗,m∗, R, (g−1 · s)P + d(R+ cMpk) =
= h2(id∗,m∗, R, (g−1 · (x+ h+ u) · g)P + d(R+ cMpk) =
= h2(id∗,m∗, R, (x+ h+ u)P + d(R+ cMpk) =
= h2(id∗,m∗, R,X)

(5.48)

Therefore, σ̃ is a valid vBNN-signature that B forged within time t′ ≤ t+ tm with non-negligible
probability ε, where tm is the time to compute a multiplication in Z∗p. This contradicts Theorem
1 in [24], which states that the vBNN-scheme is EUF-CMA-secure.

II.) Pairing based Schemes: Hess and BLMQ

In the two schemes based on pairing, the hash produced while A plays the EUF-2KSS-CMA-
game, can be manipulated such that B playing the EUF-IBS-CMA-game will win with non-
negligible probability.

Theorem 5.3 (Hess’ EUF-2KSS-CMA-security). If Hess is existentially unforgeable under
adaptively chosen-message-and-identity attacks then Hess’s 2KSS transform is existentially un-
forgeable under adaptively chosen-message-and-identity attacks.

Proof. Suppose there exists an adversary A who wins the EUF-2KSS-CMA-game with non-
negligible probability ε within time t. Let B be an adversary playing the EUF-IBS-CMA-game,
and let λ be fixed, (msk,Mpk)← G(λ). Then B can call A(Mpk,g) (g r← Z∗p) to obtain a tuple
(id∗,m∗, σ), where σ = (h, S) such that

h =h2
(
m∗, e(S, P) · e(H1(id∗),−gMpk)h

)
(5.49)

B obtains this with probability ε within time t. B outputs (id∗,m∗, σ̃) where σ̃ = (h̃, S) and
h̃ = h · g. The corresponding verification algorithm V(Mpk, σ̃,m∗, id∗) which is

∼
r =e(S, P) · e(H1(id∗),−Mpk)h

h
?=h2(m∗,∼r)

(5.50)

returns 1 as
r̃ =e(S, P) · e(H1(id∗),−Mpk)h̃ =

=e(S, P) · e(H1(id∗),−Mpk)h·g =
=e(H1(id∗), P)h·msk·g · e(Q,P)x · e(H1(id∗), P)−msk·h·g =
=e(Q,P)x

(5.51)

Therefore, σ̃ is a valid forged Hess-signature that B forged within time t′ ≤ t+ tm with non-
negligible probability ε, where tm is the time to compute a multiplication in Z∗p. This contradicts
Theorem 3 in [67], which states that the Hess-scheme is EUF-CMA-secure.

73

5 group Identity Based Signatures

Theorem 5.4 (BLMQ’s EUF-2KSS-CMA-security). If BLMQ is existentially unforgeable under
adaptively chosen-message-and-identity attacks then BLMQ’s 2KSS transform is existentially
unforgeable under adaptively chosen-message-and-identity attacks.

Proof. Suppose there exists an adversary A who can win the EUF-2KSS-CMA-game with non-
negligible probability ε within time t, Let B be an adversary playing the EUF-IBS-CMA-game,
and let λ be fixed, (msk,Mpk)← G(λ). Then B can call A(Mpk,g) (with g r← Z∗p) to obtain a
tuple (id,m, σ), where σ = (h, S) such that

h = h2(m∗, e(S, h1(id∗)P +Mpk) · q−h) (5.52)

B obtains this with probability ε within time t. B outputs σ̃ = (h̃, S) where h̃ = h + g to the
EUF-IBS-CMA game. Then the verification algorithm V(Mpk, σ∗,m∗, id∗) calculates

∼
r =e(S, h1(id∗)Q+Mpk) · q−h̃ (5.53)

and returns 1 for h̃ ?= h2(m, r), with r = qx as

h̃ = h2(m∗, e(S, h1(id∗)P +Mpk) · q−(h+g)) Eq. 5.43=
= h2(m∗, q(x+h+g)−(h+g)) =
= h2(m∗, qx)

(5.54)

Therefore, σ̃ is a valid forged BLMQ-signature that B forged within time t′ ≤ t+ tm with proba-
bility ε, where tm is the time to compute a point multiplication in G. This contradicts Theorem 1
in [9], claiming EUF-CMA-security for BLMQ.

5.4.3 Proving KUSS Token Security

Compared to 2KSS and U2KSS, the KUSS transformation changes the signing and verification
algorithms in all schemes, except Hess. Thus, the proof for KUSS-Hess is identical to 2KSS-Hess,
while the other three schemes require a different approach for proving the security:

I.) Schnorr-Like Schemes: The Latin square property (see Lemma 5.1) is used to outline
the prove for KUSS-vBNN and KUSS-GG.

II.) BLQM: KUSS-BLMQ’s token security is proven by reduction.

I.) Schnorr-Like Schemes: vBNN, GG

It was mentioned before that the use of a hash function in vBNN and GG inhibits the inclusion
of the gsk in R. Therefore, the gsk is still required for verification to calculate gR (see Table 5.1
and 5.2). Unfortunately, this fact inhibits direct reduction as used for the 2KSS and U2KSS
transformations. A complete proof is necessary, which basically copies the original ones, with
the modification of including g in a single equation. The interested reader is referred to the
original proofs in [12, 47], here we only sketch the additional argument:
To build a KUSS-variant for X ∈ {GG,vBNN} from the respective 2KSS-scheme, only the

signature creation and verification are modified. Discussing the verification is omitted, since any
computations the adversary could learn from could be done in the 2KSS-variant as well:
Instead of computing

x
r←− Z∗p

s = x · g + h · u · g
(5.55)

74

5.4 Security Analysis

in X-2KSS, the signer in X-KUSS computes

x
r←− Z∗p

s = x+ h · u · g
(5.56)

As x is a randomly drawn element of Z∗p, it can be concluded from the Latin square property
that x · g with x, g r←− Z∗p is equally random as x r←− Z∗p (see Lemma 5.2). The resulting s
of Equation 5.56 is as random as s in Equation 5.55. Both IBS scheme’s EUF-CMA security
depend on this randomness: the proofs of Theorem 3 in [47] and Theorem 6.3 in [12] model the
signing oracle OS as a random function. Hence, for the context of this work, it is fair to assume
that the following conjecture holds:

Conjecture 5.1 (vBNN’s and GG’s EUF-KUSS-CMA-security). If vBNN and GG are existen-
tially unforgeable under adaptively chosen-message-and-identity attacks, then vBNN’s and GG’s
KUSS transform are existentially unforgeable under adaptively chosen-message-and-identity at-
tacks.

II.) BLMQ

Theorem 5.5 (BLMQ’s EUF-KUSS-CMA-security). If BLMQ is existentially unforgeable un-
der adaptively chosen-message-and-identity attacks then BLMQ’s KUSS transform is existen-
tially unforgeable under adaptively chosen-message-and-identity attacks.

Proof. Suppose there exists an adversary A who wins the EUF-KUSS-CMA-game for KUSS-
BLMQ with non-negligible probability ε within time t. Let B be an adversary playing the
EUF-IBS-CMA-game, and let λ be fixed, (msk,Mpk)← G(λ). Then B can call A(M̃pk,g), with
g r← Z∗p and M̃pk = gMpk to obtain a tuple (id∗,m∗, σ), where σ = (h, S) such that

h = h2(m, e(S, h1(id∗)gP + M̃pk) · q−h) (5.57)

B outputs σ̃ = (h, S̃) where S̃ = gS to the EUF-IBS-CMA game. Then the verification algorithm
V(Mpk, σ∗,m∗, id∗) calculates

∼
r =e(S̃, h1(id∗)Q+Mpk) · q−h̃ (5.58)

and returns 1 for h̃ ?= h2(m∗, r), with r = qx

h = h2(m∗, e(S̃, h1(id∗)P +Mpk) · q−h) =
= h2(m∗, e(gS, h1(id∗)P +Mpk) · q−h) =
= h2(m∗, e(g(x+ h)Usk, h1(id∗)P +Mpk) · q−h) =

= h2(m∗, e(g(x+ h)
(msk + h1(id∗)) · gP, h1(id∗)P +Mpk) · q−h) =

= h2(m∗, e(x+ h

(msk + h1(id∗))·P, h1(id∗)P +Mpk) · q−h) Eq. 5.43=

= h2(m∗, q(x+h−h)) =
= h2(m∗, qx)

(5.59)

Therefore, σ̃ is a valid forged BLMQ-signature that B forged within time t′ ≤ t+ tm with proba-
bility ε, where tm is the time to compute a point multiplication in G. This contradicts Theorem
1 in [9], claiming EUF-CMA-security.

75

5 group Identity Based Signatures

5.4.4 Forward Security

2KSS does not feature updates and, hence, does not require to proving forward security, while
it can be achieved in U2KSS and KUSS if and only if:

1. Entry of a new member triggers a call of Next and Update, i.e. a move to epoch e+ 1.

2. Upon entry, the new client receives ge+1 but not ∆e+1.

The second condition provides forward security in the case of re-entry: If a device has no
knowledge of previously used gi, there would be no harm in disclosing ∆. However, if it was a
member two sessions before, knowledge of ∆e+1 would allow the computation of the previous
ge. Consider the following scenario: Let

g0
r←− Z∗p; ∆1,2

r←− Z∗p
g1 = g0 ·∆1,

g2 = g0 ·∆1 ·∆2

(5.60)

be the shared secrets in rounds 0, 1, and 2, respectively. A client who was a group member in
round 0, but not round 1, who re-joins the group in round 2, knows g0 and g2, but neither g1,
∆1 nor ∆2. If it learned ∆2, it could compute g2

g0·∆2
= ∆1 and learn g1 = g0 · ∆1. According

to Lemma 5.1, the probability of guessing such ∆i is ε = 1/p−1. Handling a client’s entry by
updating g and not disclosing the current ∆ to a new member (even a re-entering one) therefore
provides forward security for U2KSS and KUSS.

5.4.5 Post-Compromise Security

Post-Compromise security can be achieved in KUSS if and only if Next and Update are triggered
upon a client leaving the group in epoch e, i.e., who knows ge. This is efficiently done by
drawing ∆e+1 and distributing it confidentially among the remaining group members (who
can then calculate ge+1 = ge · ∆e+1). According to Lemma 5.1, the probability of guessing
ge+1 = ge ·∆e+1 (where ∆e+1

r←− Z∗p) given ge is 1/p−1.
It remains to show that it is not possible to guess ∆e+1 from the Mpk, with more than

negligible probability. The following is based on the assumption, that the 1m-DLP is hard, i.e.

Let Kcg be a cyclic group generator. We say that the One-More Discrete Logarithm
Problem associated with Kcg is hard if, for any polynomial-time adversary A the
advantage

Adv1m-dlp
Kcg ,A

(k) = Pr
[
Exp1m-dlp

Kcg ,A
(k) = 1

]
(5.61)

is a negligible function of k. [12, Section 6.1]

Theorem 5.6 (KUSS’ post-compromise security). If the One-More Discrete Logarithm Problem
is hard then computing ∆e+1 from Mpk is hard.

Proof. Let A have access to the Oracle ON , which moves the global state to epoch e + 1,
and to OU (Mpk), which returns a Mpke+1 = ∆e+1Mpke (where ∆e+1

r←− Z∗p). In all schemes,
Mpk = msk P , with msk r←− Z∗p and P ∈ G and, thus:

Mpke+1 = (msk · ge ·∆e+1)P =
= (mske ·∆e+1)P =
= mske+1 P

(5.62)

76

5.5 Practical Considerations

According to Lemma 5.2, given mske the probability P (k r←− Z∗p|mske+1 = mske · k) = 1/p−1.
The output of OU (Mpk) fits the definition of random target points in the Chall Oracle, where
Y

r←− G. Hence, the advantage for A to compute ∆e+1 from Mpk is bounded by the 1m-DLP:

Adv1m-dlog
Kcg ,A

(k) = Pr
[
Exp1m-dlog

Kcg ,A
(k) = 1

]
(5.63)

In turn, the 1m-DLP efficiently reduces to DLP [81].

A former member can therefore not correctly guess ∆e+1 and calculate a valid uske+1 for
the session with better than brute-force chances. This shows that all considered KUSS-schemes
provide Post-Compromise Security. The same applies for all presented U2KSS and extracting
ge from a signature.

5.5 Practical Considerations
Before the next chapter is going to present a experimental setup to practically evaluate the use-
fulness of group Identity Based Signature (gIBS), this section discusses some aspects regarding
practical security and performance.

5.5.1 Pseudo Randomness

In theory, all hash functions are modeled as random oracles and, thus, provide perfect ran-
domness. With the use of the Latin square property (see Lemma 5.1), the signature of most
schemes relies on this assumption. However, choosing random number in practice typically
utilizes so-called Pseudo Random Function (PRF).
Due to the evolution of g, any member of the group could silently listen and store all temporary

∆e+1 to gather information about the TTP’s PRF. Thus, the PRF used for drawing ∆ becomes
less secure over time. Therefore, it needs to be re-seeded on a regular basis to preserve its
security. With ∆ only being drawn by the TTP, its PRF can be re-seeded without any effect on
the participating group members. It should also be different from the one used to draw random
elements that remain secret such as the msk.
Every well-known PRF defines a maximum number of values to be extracted to keep the

security properties intact. When this value is reached, a re-keying of g is required and the seed
of ∆ has to be renewed.

5.5.2 Signature Replay

Replay-attacks are a well-known problem in network security. One feature of gIBS is that such
attacks can be prevented by regularly re-keying the shared secret without the necessity of another
anti-replay-mechanism on the protocol level. However, one of the transformed schemes does not
feature this:

Let a client be expelled in epoch e−1 and re-join in epoch e+1. In KUSS-BLMQ, a signature
from epoch e has the form σe = (h, Se), with Se = (x+ h)Uske, which is Se = (x+ h)geUsk, h
being the hash of the message and x r←− Z∗p. As the client does not know ge, the signature looks
perfectly random; however, she knows Se−1 = (x+h) ·ge−1 Usk and Se+1 = (x+h) ·ge+1 Usk. If
and only if she knows ge+1 and ge−1, she can calculate S∗e−1 = 1

ge−1
Se−1 and S∗e+1 = 1

ge+1
Se+1.

If S∗e−1 = S∗e+1, she knows that the signature was generated with the same original Usk (without
knowing Usk, notably).
Practically, this allows a replay-attack of messages signed with previously used g’s of other

users in the system. Let an attacker know the shared secret ge of a recorded signature σe in
some epoch e < e∗ and have access to the current ge∗ . She can calculate a valid signature

77

5 group Identity Based Signatures

σe∗ = 1
ge
σe · ge∗ . She can neither change the message nor the identity, but can evolve the

signature to a new epoch. However, such a replay attack can be easily mitigated with state-of-
the-art mechanisms, such as sequence numbers or time stamps as part of the message. Note that
such a replay-attack is possible in all original schemes and for their 2KSS- and U2KSS-variants.
Thus, the KUSS-modification prevents this attack for all schemes except BLMQ.

Hess, GG and vBNN

In Hess, GG, and vBNN, the usk := g · usk is integrated in the signature as part of a sum with
a random element x r←− Z∗p:

In KUSS-Hess: σ = (h, S), with S = hUsk + xQ and Q r←− G∗.

In KUSS-{GG, vBNN}: σ = (h, s,X), with s = x+ h · u and X = xP

This makes it impossible to purposefully alter σ while retaining a valid usage of usk without
knowing x. In KUSS-{GG, vBNN}, computing x = X

P (which is hard according to Defini-
tion 3.7) would be required. In KUSS-Hess, the pairing used in the verification phase to derive
(Q, x)← e(Q,P)x would need to be exploited, which requires solving the DLP.

5.5.3 Performance Estimations

This section presents a theoretical analysis of the costs introduced by the transformation in
comparison to the original schemes. The comparison highlights the following operations, ordered
by complexity:

GE Group Exponentiation in G, typically donated as aP .

GO Group Operation in G, e.g., Q+ P ∈ G or Q− P ∈ G

RG Randomly drawing an element of G, denoted as P r←− G

HG Hashing in G

RZ Random number generation in Z∗p, denoted as a r←− Z∗p

HZ Hashing in Z∗p

ME Modular Exponentiation in Z∗p, e.g., ab ∈ Z∗p

MM Modular Multiplication in Z∗p, e.g., a · b ∈ Z∗p

Some of the discussed schemes are based on pairing, which is an expensive operation in ECC.
The comparison assumes that performing a pairing is equivalent to 21 GE as stated in [9] and
used for evaluation of different IBS schemes in [52, 54].
The major advantage of U2KSS and KUSS schemes over their originating schemes is the

enhanced re-keying that allows efficient revocation. During integration of the shared secret to
the selected schemes, special attention was put on keeping the computational overhead as small
as possible. Table 5.5 compares the transformations developed throughout this chapter with the
originating schemes. The columns depict the originally defined IBS phases Setup, Extract, Sign
and Verify and additionally the new phases for Re-Keying on server and Group Member (GM).
The server is a combination of the KGC and Key Update Center (KUC), running the Next and
Update algorithms, as presented in Table 5.1 - 5.4. All four transformed schemes are presented
together with their respective transformation to 2KSS, U2KSS and KUSS. The first row of each

78

5.6 Summary and Findings

scheme depicts the costs for the original scheme, while the rows below shows the overhead (+)
introduced by the transformations for Setup, Extract, Sign and Verify.
Re-Key is the phase with major changes, hence all cells present the absolute costs. The original

schemes do not define a Re-key mechanism, why it assumes calling Setup to generate new master
keys and Extract for the remaining n GMs [52]. Hence, it is no surprise that this step benefits
most of the U2KSS and KUSS transforms, where the complexity is reduced from O(n) to O(1)
(highlighted in dark green in Table 5.5).
The downside is the introduction of new keys to be generated, stored and updated, as well

as the Re-Key step on the GM. However, the table shows that none of the modifications should
significantly harm the performance of the schemes. Most of them introduce an additional random
generation or multiplications in Z∗p that are cheap (highlighted in yellow in Table 5.5). As KUSS
defines updating the keys – which is an element of G in all schemes –, the re-key phase on the
clients is affected with additional GE (highlighted in red), but with slight benefits during the
signing process compared to U2KSS (highlighted in light green). During signature verification
all schemes except for Hess require some calculations with the shared secret, but no more than
a single MM. In the best case of Hess, the algorithms of signing and verifying in KUSS show
no difference to the originating scheme.

5.6 Summary and Findings
This chapter presented the application of the transformations defined in Chapter 4. Therefore,
this chapter delivers an answer for the following research question:

RQ6: How can IBS keys be revoked and how can the revocation be achieved in
state-of-the-art key distribution systems?

The revocation is shown to work with IBS schemes based on the Elliptic Curve Discrete Loga-
rithm Problem which is widely considered to be efficient for the use cases presented in Chapter 2.
It was shown in theory, that none of the transformations will significantly influence the com-
putation for neither signing nor verification. Hence, ER3 holds in theory, but will be further
evaluated in Section 7.4.3. With the detailed security analysis, it is also shown that the opti-
mizations do not harm the security of the schemes.

79

5 group Identity Based Signatures

Table
5.5:T

heoreticaloverhead/enhancem
ent

for
the

different
phases.

Setup
E
xtract

R
e-K

ey
(Server)

R
e-K

ey
(G

M
)

Sign
V
erify

vB
N
N

1
G
E

+
1
R
Z

1G
E

+
1R
Z

+
1H

Z
+

2
M
M

1
G
E

+
1
R
Z

+
n(1

G
E

+
1R
Z

+
1H

Z
+

2
M
M

)
�

1G
E

+
1
R
Z

+
1
H
Z

+
2
M
M

3G
E

+
2
G
O

+
1H

Z
+

1
M
M

2K
SS-vB

N
N

+
1R
Z

�
1R
Z

�
+

1M
M

+
1
M
M

U
2K

SS-vB
N
N

+
1R
Z

�
1
R
Z

+
1
M
M

1M
M

+
1M

M
+

1
M
M

K
U
SS-vB

N
N

+
1R
Z

+
1
M
M

+
1M

M
1G
E

+
1
R
Z

+
1
M
M

1G
E

+
2
M
M

�
+

1
M
M

G
G

1
G
E

+
1
R
Z

1G
E

+
1R
Z

+
1H

Z
+

2
M
M

1
G
E

+
1
R
Z

+
n(1

G
E

+
1R
Z

+
1H

Z
+

2
M
M

)
�

1G
E

+
1
R
Z

+
1
H
Z

+
2
M
M

3G
E

+
2
G
O

+
1H

Z
+

1
M
M

2K
SS-G

G
+

1R
Z

�
1R
Z

�
+

1M
M

+
1
M
M

U
2K

SS-G
G

+
1R
Z

�
1
R
Z

+
1
M
M

1M
M

+
1M

M
+

1
M
M

K
U
SS-G

G
+

1R
Z

+
1
M
M

+
1M

M
1G
E

+
1
R
Z

+
1
M
M

1G
E

+
2
M
M

�
+

1
M
M

H
ess

1
G
E

+
1
R
Z

1G
E

+
1
H
G

1
G
E

+
1
R
Z

+
n(1

G
E

+
1
H
G

)
�

23
G
E

+
1
G
O

+
1R
G

+
1H

Z
+

1M
M

43
G
E

+
1
H
G

+
1
H
Z

+
1M

E
+

1M
M

2K
SS-H

ess
+

1R
Z

�
1R
Z

�
+

1M
M

+
1
M
M

U
2K

SS-H
ess

+
1R
Z

�
1
R
Z

+
1
M
M

1M
M

+
1M

M
+

1
M
M

K
U
SS-H

ess
+

1R
Z

+
1
M
M

1
M
M

1G
E

+
1
R
Z

+
1
M
M

2G
E

�
�

B
LM

Q
22G

E
+

1R
G

+
1R
Z

1G
E

+
2M

M
1G
E

+
1
R
G

+
1
R
Z

+
n(1G

E
+

2
M
M

)
�

1G
E

+
1
R
Z

+
1H

Z
+

1M
E

+
3M

M
22
G
E

+
1
G
O

+
1
H
Z

+
1M

E
+

1M
M

2K
SS-B

LM
Q

+
1R
Z

�
1R
Z

�
+

1M
M

+
1
M
M

U
2K

SS-B
LM

Q
+

1R
Z

�
1
R
Z

+
1
M
M

1M
M

+
1M

M
+

1
M
M

K
U
SS-B

LM
Q

+
1R
Z

+
1
M
M

+
1M

M
1G
E

+
1
R
Z

+
1
M
M

2G
E

+
2
M
M

�
+

1
M
M

80

6 Testbed and Prototypes

This chapter describes the implementation of a testbed, picturing all case studies presented in
Chapter 2 despite their different characteristics. All use cases showed dynamic membership
behavior of nodes with different capabilities. Hence, the testbed’s architecture allows heteroge-
neous nodes with different constraints and capabilities to join or leave frequently. The testbed
enables the use of the Group IBS Architecture presented in Section 4.5 and hence implementing
and testing group Identity Based Signature (gIBS) for all use cases in question. This includes
implementation of a Group Key Management Protocol (GKMP) and the two revocation mech-
anisms presented in Section 4.3, which are not available for constrained devices. Thus, this
chapter provides a proof-of-concept of the architecture and the transformations of all four Iden-
tity Based Signature (IBS) schemes in practice.

6.1 Concept
While many testbeds found in academia and industry focus on the evaluation of hardware
components, the purpose of this work is interoperability and scalability of security solutions. The
basis of the testbed’s design is IP multicast, which is used to picture dynamic communication
groups.
Figure 6.1 shows the concept for interoperability between different networking technologies.

Devices with different network interface are connected and managed by a Group Manager as the
central component of the testbed. Networks are depicted at the bottom of the figure and are
cable based (e.g., Ethernet, second right) and wireless such as for home networking (e.g., WiFi,
left) as well as low and long range networks (e.g., IEEE802.15.4, second left and LoRA on the
right respectively). By using IP multicast, communication groups spanning different network
interfaces can be formed (presented by Group A,B,D in Figure 6.1) or using only one technology
(presented by Group C in Figure 6.1). The use of powerful resources such as cloud-services is
supported as well, presented in form of the Group Manager.
The Group Manager can be used as the server component of the Group IBS Architecture or

any chosen GKMP. Hence, the concept allows not only evaluation of gIBS but different security
solutions for similar environments.

6.2 A Testbed for Researching Secure Group Communication
The goal of the testbed is to allow evaluation of communication groups with a variety of micro-
controllers and networking technologies. A partially open source testbed provided by the Future
Internet Testing Facility (FIT) consortium [1, W6] is found as a good basis for implementing
the presented concept [105]. On contrast to the FIT IoT-Lab [W6] that uses customized hard-
ware, this setup consists of commodity hardware. With the focus on multicast, routing between
different networking technologies is a major interest.
Figure 6.2 represents this with a central switch connecting all of the following components:

Open Node is the (constrained) device being programmed by the user to run an experiment.

81

6 Testbed and Prototypes

 Group A

 Group D

Group B

Local Radio (e.g., Wifi) Low Range (e.g., IEEE 802.15.4) Cable (e.g., Ethernet) Wide Range (e.g. LoRa)

Group Manager

Figure 6.1: High-Level concept of the testbed.

Figure 6.2 depicts them connected to the Control Node via a serial port (UART) and with
their respective networking technology.

Control Node is a small single-chip computer which supplies the Open Node with a power
source and is used to program it with firmware uploaded by the user. If available, it
also forwards the serial port of the Open Node such that the user can interact during the
experiment. It is accessible through a REST API by the Site Server. Figure 6.2 shows
eight of them arranged around and connected the central switch via Ethernet.

Gateway is one single chip computer for each network technology that serves as a router for
the Open Nodes to the outside world via Ethernet. In case of wireless technologies with a
star topology (e.g., LoRa, WiFi in Station Mode), it also serves as a wireless access point.
Figure 6.2 displays two of them at the right by stating the network technology, e.g. LoRa
or ZigBee Gateway and the logo of the respective technology.

Management Node is connected to the Switch and manages the Control Nodes and Gateways
by providing software updates and also as the router for interconnection of the different
gateways.

Site Server provides access to the system via a web or command line interface, shown in the
left of Figure 6.2. It uses the REST API provided by the Control Node to start and stop
experiments on the Open Node and serves as the system’s router to the Munich Scientific
Network (MWN).

The following presents hard- and software used for the different components in the testbed. As
it is meant to be open source, the available software and operating systems limit the choice of
hardware for computing and networking.

1. Different open source operating systems for microcontrollers are discussed and one is picked
for the testbed.

2. The chosen hardware is presented, spanning over different classes of constraints and sup-
ported by the operating system. This includes the development boards used for the open
nodes, the different networking technologies and the hardware for the Control Nodes and
Gateways.

3. The final setup is presented including the composition of microcontrollers with network
technologies and their installation in a network rack.

82

6.2 A Testbed for Researching Secure Group Communication

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 1

et
h0

IP
: 1

92
.1

68
.4

4.
1 S

it
e

S
er

ve
r

M
W

N

IP
: 1

92
.1

68
.4

4.
25

2

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 7

et
h0

IP
: 1

92
.1

68
.4

4.
7

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 2

et
h0

IP
: 1

92
.1

68
.4

4.
2

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 6

et
h0

IP
: 1

92
.1

68
.4

4.
6

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 8

et
h0

IP
: 1

92
.1

68
.4

4.
8

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 5

et
h0

IP
: 1

92
.1

68
.4

4.
5

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 4

et
h0

IP
: 1

92
.1

68
.4

4.
4

U
A

R
T

C

on
ne

ct
io

n
(U

SB
)

C
on

tr
ol

le
r

N
od

e:
 3

et
h0

IP
: 1

92
.1

68
.4

4.
3

M
an

ag
em

en
t N

od
e

et
h0

IP
: 1

92
.1

68
.4

4.
20

3

L
O

R
A

 G
at

ew
ay

et
h0

IP
: 1

92
.1

68
.4

4.
20

1

et
h0

.1
0

IP
: 1

92
.1

68
.4

5.
20

1

Z
ig

be
e

G
at

ew
ay

et
h0

IP
: 1

92
.1

68
.4

4.
20

2

et
h0

.1
0

IP
: 1

92
.1

68
.4

5.
20

2 L
eg

en
dM
an

ag
em

en
t N

et
w

or
k

V
L

A
N

 1

N
od

e
N

et
w

or
k

V
L

A
N

 1
0

Fi
gu

re
6.
2:

Ph
ys
ic
al

se
tu
p
of

th
e
Te

st
la
b,

su
pp

or
tin

g
IE

EE
80

2.
15

.4
,E

th
er
ne

t
an

d
Lo

R
A

ne
tw

or
ks

[1
05

].

83

6 Testbed and Prototypes

Table 6.1: Comparison of different operating systems usable for the Testbed [6].
OS Min RAM Min ROM C Support C++ Support Multi-Threading Modularity Real-Time
Contiki <2KB <30KB • × • • •
TinyOS <1KB <4KB × × • × ×
RIOT OS ∼1.5KB ∼5KB X X X X X
Linux ∼1MB ∼1MB X X X • •

X Full Support • Partial Support ×No Support

6.2.1 Operating Systems

The major producers of microcontrollers in the considered classes of hardware are ARM®, Ar-
duino® and Texas Instruments® which all offer software that allows programming their own
products. Out of a multitude of academic and industrial projects [50, 62], three open source
projects reached a considerable large user basis and offering a broad support for different hard-
ware and networking technologies. From top to bottom, Table 6.1 shows a comparison of the
three IoT operating systems Contiki, TinyOS and RIOT OS with Linux. It compares the re-
quired memory for running the operating system, the supported programming languages and
functionalities, like multi-threading, modularity and real-time support. Besides allowing Multi-
Threading and offering Real-Time capabilities, RIOT OS features the best support for a broad
range of hardware of various architectures [5, 6, W7]. At the time of writing, RIOT OS is
available for >100 microcontrollers various networking modules featuring different technologies
(most notable being IEEE802.15.4, Bluetooth Low Energy (BLE), LoRA, WiFi and Ethernet).
Additionally, RIOT OS supports a wide range of external software modules, including several
cryptographic libraries which is of special interest for this work. Hence, while not being re-
stricted to one particular operating system, the hardware in the testbed is specifically selected
to be supported by RIOT OS.

6.2.2 Hardware

We distinguish the hardware used in the testbed regarding their use as I.) Open Nodes, II.) Net-
working Modules and III.) Gateway and Controller Nodes

I.) Open Nodes

As the major producer of microprocessors, most chosen microcontrollers feature ARM® processor
which are specialized for different use cases. Picturing a broad range of potential scenarios we
focus on the following

ARM Cortex M0 32-bit processor with low power and minimal code footprint.

ARM Cortex M0+ 32-bit processor with focus on energy efficiency.

ARM Cortex M3 32-bit processor for highly deterministic real-time applications.

ARM Cortex M4 32-bit processor for digital signal control markets, such as automotive or
motor control.

ARM Cortex M7 32-bit processor featuring high performance, e.g., for automotive or medical
applications.

84

6.2 A Testbed for Researching Secure Group Communication

Table 6.2: Chosen development boards in the testbed.
Development Board Architecture Clock

Speed
Flash
Memory

SRAM On-Board
Networking

Arduino M0+ ARM Cortex-M0+ 48MHz 256KB 32KB -
ST Nucleo-F091RC ARM Cortex-M0 48MHz 256KB 32KB -
ST Nucleo-F103RB ARM Cortex M3 72MHz 128KB 20KB -
ST Nucleo-F411 ARM Cortex-M4 84MHz 512KB 96KB -
ST Nucleo-767ZI ARM Cortex-M7 216MHz 2B 512KB Ethernet
TI CC3200 Launchpad ARM Cortex-M4 80MHz 512 kB 256KB Wifi
Raspbery Pi 3 Model B+ ARM Cortex-a53 1.2GHz Micro-SD 1GB WiFi, BLE,

Ethernet

II.) Networking Modules

The majorly used networking technology in the area of IoT is IEEE802.15.4, however the goal of
this testbed is to include a variety of other modules. With RIOT OS’ support of IEEE802.15.4,
Ethernet and LoRA, the following networking modules were chosen:

• Semtech SX1272 868/915MHZ Lora MBED SHIELD
• Texas Instruments SimpleLinkWi-Fi CC3200
• Microchip AT86RF233 Zigbee / 802.15.41

• WIZnet Ethernet-Module W5100
• STM32 Ethernet Module

III.) Gateways and Controller Nodes

For the Gateways and Controller Nodes, the Raspberry Pi version 3 was chosen as it fea-
tures a broad open source community. It supports the used networking modules for LoRa and
IEEE802.15.4 and comes with on board WiFi, Bluetooth and Ethernet modules, thus, featuring
all networking technologies in questions.

6.2.3 Final Setup and Access
Table 6.2 shows the chosen development boards for the testbed and presents their capabilities
regarding CPU, memory and on-board networking. While two of the boards already include
a networking module – namely TI CC3200 with WiFi2 and ST Nucleo-767ZI with Ethernet –,
the others are each assembled with one of the networking modules for LoRa, IEEE802.15.4 and
Ethernet, respectively.
Figure 6.3 pictures the physical setup of the testbed. Three open nodes are assembled together

as so-called towers, consisting of one type of development board with three different network
technologies. Figure 6.3a exemplarily shows three Nucleo F091 RC with an Ethernet, Zigbee
and LoRa module, respectively (from the bottom to the top in the picture). Notably, each of
these towers is represented twice in the testbed as presented in the topology in Figure 6.2. It
shows how five of these towers are assembled in a networking rack together with the switch as
shown in the top of Figure 6.3b. The picture also shows how the Raspberry Pi 3 at the left
and right are connected to the Open Nodes using USB. As each of the Raspberry Pi 3 has four
USB ports, it manages up to four Open Nodes. The Open Nodes are powered through the serial
connection with the Raspberry Pis, which in turn are connected to a switch featuring Power

1Please note, that Zigbee is a trademark following the IEEE802.15.4 specification of Layer 2 and are therefore
seen as equivalent in the context of this work.

2RIOT OS’ support for TI CC3200 is currently under development [89, W8].

85

6 Testbed and Prototypes

(a) Three Open Nodes are assembled as a tower. (b) All Nodes of the Testbed including the switch are
assembled in a rack.

Figure 6.3: The installation of the testbed.

over Ethernet. Hence, the whole testbed is almost autarkic, requiring only an external power
and network plug.
The Raspberry Pis also serve as the Gateways for LoRa and IEEE802.15.4, while – as soon

as available – their on board WiFi module will be used to also serve as the gateway for the
TI CC3200s. The Site Server is a virtual machine being available within the MWN, providing
a web-interface and command line interface for flashing and accessing the nodes. It is hence
available for a multitude of students and researchers.

6.3 Prototypical Implementation
The system architecture presented in Chapter 4 allows integrating the four gIBS schemes devel-
oped in Chapter 5. It is specifically designed to use existing protocols which are meant to be
implementable on devices with limited memory and computing capabilities found in the testbed.
The implementation of the system architecture requires four steps:

1. Implementation of a GKMP: As the testbed uses IP multicast, we chose Group In-
ternet Key Exchange (G-IKEv2) as the GKMP for IP security protocol (IPsec) as the
natural choice for securing IP traffic. G-IKEv2 is currently under standardization and,
thus, not part of common Internet Key Exchange (IKEv2) implementations. Hence, it is
implemented for RIOT OS as a client and integrated to Strongswan [W9] as a server.

2. Implementation of symmetric re-keying: In Chapter 4, Logical Key Hierarchy (LKH)
and Centralized Authorized Key Extension (CAKE) were presented as efficient re-keying
mechanisms for symmetric keys, which are additionally integrable to G-IKEv2. Both
mechanisms are integrated into client and server implementations.

3. Implementation of IBS: All four IBS schemes which are transformed to Key Updatable
Signature Scheme (KUSS) in Chapter 5 are implemented in RIOT OS.

4. Implementation of gIBS. The IBS implementations are extended as described in Chap-
ter 5 to support re-keying.

The columns of Table 6.3 show the required memory for RIOT OS plus G-IKEv2, LKH, CAKE
and the two Schnorr- and Pairing-IBS schemes respectively. Summing up the first six rows

86

6.3 Prototypical Implementation

Table 6.3: Static memory consumption of the G-IKEv2 client in RIOT OS [53], featuring LKH
and CAKE [59] with the example of 100 group members as well as IBS schemes based
on Schnorr and Pairings [52, 90].

Feature G-IKEv2 LKH CAKE Schnorr-IBS Pairing-IBS
RIOT kernel (incl. stack) 2,560Byte 2,560Byte 2,560Byte 2,560Byte 2,560Byte
RIOT IPv6 stack 1,024Byte 1,024Byte 1,024Byte 1,024Byte 1,024Byte
RIOT UDP stack 1,024Byte 1,024Byte 1,024Byte 1,024Byte 1,024Byte
RIOT net cache 928Byte 928Byte 928Byte 928Byte 928Byte
RIOT 6LoWPAN cache 1,024Byte 1,024Byte 1,024Byte 1,024Byte 1,024Byte
RIOT packet buffer 1,280Byte 1,280Byte 1,280Byte 1,280Byte 1,280Byte∑

RIOT 7,840Byte 7,840Byte 7,840Byte 7,840Byte 7,840Byte
mini-gmp lib - - 640Byte - -
relic-toolkit - - - 5,060Byte 10,772Byte
IKE SA ∼ 210Byte
SAD for 1 group membership ∼ 100Byte ∼ 212Byte ∼ 234Byte
SPD for 1 group membership 40Byte∑

8,190Byte 8,052Byte 8,714Byte 12,900Byte 18,612Byte

results in an overhead of ∼8KB for the operating system – which mostly consists of network-
ing buffers and the kernel – and stays the same for all implementations. The bottom rows are
for cryptographic libraries, independent of the used elliptic curve. While G-IKEv2 and LKH
do not require additional libraries, CAKE requires an inexpensive (640Byte) multiple preci-
sion library. For IBS a more feature-rich cryptographic library is required and represented as
relic [W10]. Pairings require additional features to be compiled with relic, a fact that results in
additional ∼5KB of memory compared to Schnorr-IBS schemes. The Security Association (SA)
are statically assigned memory buffers, to store the keys.

6.3.1 Group Key Management with G-IKEv2

IKEv2 is the protocol for exchanging keys for the use in IPsec and therefore a natural choice
when talking about securing IP multicast. As the testbed pictures group communication in
form of multicast, it was chosen to implement G-IKEv2 which is already defined for the use in
constrained environments [53, 111, 139]. Additionally, only very few other proposals and even
less implementations of GKMPs exist [112, 168]. Within the context of this thesis, a server and
client implementation of G-IKEv2 have been developed.

I.) G-IKEv2 client implementation

The client is designed as a minimal subset of the rather complex G-IKEv2 [174] protocol and
follows many of the decision made for IKEv2 within RFC7815 [139]. Any payloads not being
mandatory are ignored by the implementation. Additionally, the user chooses a minimal set
of supported cryptographic algorithms and installs them on the hardware, making the initial
exchanges of G-IKEv2 static. The Group Controller Key Server (GCKS) sends the cryptographic
material and metadata to the client in so-called proposals. If they are not acceptable for the
client, it can simply ignore the responses which in turn implicitly refuses the connection. This
allows minimal memory footprint of the application (see Table 6.3) and reduced networking
overhead. However, it should be noted that in contrast to IKEv2 where both peers agree on an
SA, the client downloads the Group Security Association (GSA) within the GSA_AUTH message
from the server and has therefore no influence on its content.
As a first step, only the initialization and registration phase of G-IKEv2 have been imple-

mented for RIOT OS [66]. The evaluation presented in [53] allows confidence that the protocol

87

6 Testbed and Prototypes

is suitable for the considered scenarios. It uses microcontrollers with ARM M0+ and ARM M4
microprocessors, showing computational overhead for message processing of only few microsec-
onds. Only the procession of the so-called IKE_SA_INIT message requires considerable overhead
as it includes the computation of the Diffie-Hellman exchange and charges with 190ms and
420ms on the two tested processors [53]. Notably, similar finding were presented independently
in [111].

II.) G-IKEv2 server implementation

The only available server implementation for the evaluation in [53] was part of the
Cisco® IOS [W11], which is not designed for the considered scenarios and, hence, producing
quite overwhelming networking overhead. Thus, a server implementation based on the open
source IKEv2 application Strongswan [W9] was developed as well [42]. With this implementa-
tion, the server can be any device which is capable of a Linux operating system. In the testbed,
these are the gateway nodes with an ARM Cortex-A8 processor.

6.3.2 Key Distribution with LKH and CAKE
The mechanism for distribution and revocation of LKH-keys within G-IKEv2 is proposed for
standardization in [174] and allows efficient packet parsing but lacks efficiency in terms of net-
working overhead. Its description requires elements of the key hierarchy to be sent multiple
times, which increases the networking overhead. Hence, an efficient implementation of LKH
in RIOT OS is presented together with CAKE in [43, 59]. Compared to G-IKEv2, both im-
plementation show increased storage requirements for the SA, as the key hierarchies need to
be represented. CAKE offers minimized networking overhead compared to LKH, but with the
costs of more keys in the security association. Additionally, CAKE requires a multi-precision
library to solve the Secure Lock. Such a library was found with mini-gmp and requires additional
640Byte of memory. Table 6.3 shows that none of the extension have a significant impact on
the required memory and the application can be run on any device with a minimum of 8KB of
main memory. This requirement is met by all devices used in the testbed.
A minimal server implementation with the CAKE extension was developed as well. It could

be shown that a device featuring an ARM M3 processor with 64KB of RAM is able to play the
role of the GCKS with a group of 14 clients [59].

6.3.3 IBS for Sender Authenticity
Most implementations and applications of IBS are found as integration to protocols [87, 88] or
proof-of-concepts in cryptographic libraries. Although useful for evaluating the use of IBS in
protocols, it stays difficult to compare schemes outside the boundaries of such protocols. Hence,
a test suite based on RIOT OS and the cryptographic library Relic [W10] was developed in [90].
It allows the evaluation of the use of IBS in a multicast environment with different elliptic curves
representations and primitives (e.g., Pairings or Schnorr signatures).
An abstraction layer for IBS is defined by five types and five methods which have to be

implemented to evaluate an IBS schemes. The following structures are meant to hold the
scheme’s specific parameters and are serialized to allow communicating them over a network:

ibs_fixed_params includes fixed parameters, which are generated during the Setup phase of
IBS and do not change over time (e.g., the elliptic curve generator P).

ibs_master_params include the parameters which are hold by the Trusted Third Party (TTP).
Typically, that is the Master Secret Key (msk) and Master Public Key (mpk).

ibs_public_master_params include the parameters which are publicly shared with the partic-
ipants but can change over time. Typically, that is the mpk.

88

6.3 Prototypical Implementation

ibs_user_secret includes the parameters of the User Secret Key (usk).
ibs_signature includes the parameters of the signature.

The types are used within the following five generic functions which represent the IBS algorithms
as in Definition 4.1:

ibs_reset_master_params Takes the fixed parameters and runs the Setup algorithm of the
TTP. Typically, this means drawing a new msk and calculating a new mpk.

ibs_extract_public_master_params Extracts the public parameters from the master param-
eters, which are meant to be distributed among the participants.

ibs_extract_user_secret Takes the fixed and master parameters together with the identity
as input, runs the Extract algorithm of the TTP and returns ibs_user_secret.

ibs_sign_message Takes the fixed parameters, a user secret and a message string as input,
runs the Sign algorithm and outputs a ibs_signature.

ibs_verify_message Takes the fixed and public master parameters as an input to the Verify
algorithm for a given ibs_signature and message.

The major purpose is the evaluation of the IBS performance, which is why a minimized pro-
tocol without additional security properties for the communication between client and TTP is
developed. As for the implementation of the G-IKEv2 server, the TTP is an ARM Cortex-A8
processor and distributes the keys upon request to clients. The clients can send messages via
IEEE802.15.4, signed with an IBS signature via multicast to the group. The IBS inherent
feature of key revocation by re-calculating the msk and all usks is also supported. The main
difference to the memory requirements in Table 6.3 is the cryptographic functionality provided
by relic, requiring 5KB for Schnorr based and 10KB for paring based schemes. The application
allows measuring the sizes of the cryptographic material as well as performance evaluation of
the algorithms for signing, verifying. The results are presented in [52]. All four schemes that
are transformed Chapter 5 and four different elliptic curves are supported. An implementation
of Elliptic Curve Digital Signature Algorithm (ECDSA), which is provided in the Relic Library,
complements the setup.

6.3.4 The gIBS Prototype
The new phases for the KUSS transforms Next and Update are added to the IBS implementation.
To compare gIBS schemes with classical IBS schemes, changes of the implementation are applied
to them as well. First, this requires the master parameters to be extended with the group shared
key (gsk) and – depending on the scheme – the extension of the master public parameters.
Additionally, a new type is required which represents the update token:

ibs_rekey_params includes the update token of a gIBS scheme. For classic IBS schemes, this
parameter holds all values of the ibs_user_secret and ibs_public_master_params

Next, the new algorithms for the re-key operations at client and TTP are as in Definition 4.7:

ibs_rekey_ttp runs the algorithms Next to draw a new update token and Update for the
ibs_master_params. The update token is returned within ibs_rekey_params.

ibs_rekey_client runs the Update algorithm for ibs_user_params and
ibs_public_master_params.

With this modification, the successful verification of gIBS signatures can be demonstrated.
Revoking keys with the update token is also shown to exclude a sender of a message from
the group as its signature are not longer verifiable by the receivers. Additional performance
measurements for the Setup and Extract phases as well as the new phases were added and used
for the evaluation in Chapter 7.

89

6 Testbed and Prototypes

6.4 Summary and Finding
With the implementation of a GKMP, two re-keying mechanisms, and IBS, four prototypes were
presented forming the building blocks of a system where efficient revocation of signing keys is
possible. The design and setup of a testbed out of different resource-constrained devices allows
the demonstration of the developed prototypes. An instantiation is shown in Figure 6.4, where
the GCKS at the top is one of the Raspberry PIs in the testbed, running Strongswan as a
G-IKEv2 server and Relic for the IBS and gIBS implementations. The Group Members (GMs)
at the bottom are microcontrollers out of the testbed presented before and the FIT IoT-Lab,
e.g., Arduino M0+ (left), ST Nucleo-F411 (center) or the FIT IoT-Lab M3 Open Node (right).
They are all installed with RIOT OS running the G-IKEv2 client and Relic for the IBS and
gIBS implementations. The GMs are connected wireless with each-other and the GCKS using
IPv6 multicast over IEEE802.15.4. With the use of an FIT IoT-Lab M3 Open Node for the
implementation, the testbed’s interoperability is demonstrated.
Thus, this section gives an answer for the research questions:

RQ4 How to apply key distribution and revocation in constrained systems?
RQ5 Which signature schemes are usable in constrained systems, can they benefit

from IBC and how do they fit in such architectures?

All presented techniques can be implemented on constrained devices with a minimum of memory,
networking and computing capabilities. However, a minimum amount of memory of around 10-
20KB is found necessary to perform asymmetric cryptography based on elliptic curves, either for
Diffie-Hellmann, ECDSA or IBS. Hence, this chapter successfully showed that the transformation
of the schemes in Chapter 5 work in practice on constrained nodes. It additionally verified the
applicability of the presented architecture in Section 4.5 on a physical setup.

IPv6 Multicast

RELIC

G-IKEv2
GCKS

G-IKEv2
GMs

ST-Nucleo-F411 FIT IOT-LAB M3Arduino M0+

Figure 6.4: Implementation of a gIBS system with G-IKEv2 on the testbed.

90

7 Evaluation

The introduced transformations for Identity Based Signature (IBS) schemes aim at minimizing
the overhead for key revocation, while keeping signing and verification during the actual com-
munication efficient. This chapter evaluates the efficiency and applicability of group Identity
Based Signature (gIBS) for the three use cases.
In a Key Updatable Signature Scheme (KUSS), the revocation of signing keys relies on sym-

metric re-keying mechanisms such as Logical Key Hierarchy (LKH), Centralized Authorized Key
Extension (CAKE) and many others [107]. In the literature, their efficiency has been exten-
sively studied, e.g., in [25, 28, 45]. Among others, the use of signature algorithms and certificate
structures in constrained environments has been studied in [24, 44, 112].
Hence, this chapter studies how gIBS improves signing key revocation and lays out its com-

putational costs. We therefor compare the complexity of the introduced revocation mechanism
with related work and measure the performance of gIBS in comparison to Elliptic Curve Digital
Signature Algorithm (ECDSA), as the de-facto-standard for the use cases.

7.1 Methodology
Chapter 6 presents an implementation of the Group IBS Architecture and thereby shows that
the transformed IBS schemes can be used on hardware with constrained memory. With this
proof of concept, this chapter evaluates three aspects of the gIBS schemes:

1. The transformations are evaluated against the efficiency requirements established in Chap-
ter 2. For that purpose, a complexity analysis is carried out and used for comparing the
revocation mechanism of four gIBS schemes with other mechanisms found in standards
and literature. They outperform all related work by at least one property, while none of
the properties requires complexity higher than O(logn).

2. The key- and signature sizes of all gIBS schemes are analyzed for different representations
of elliptic curves, namely Edwards Curves [16], BLS-12 [19] and BN [10].

3. The performance of the IBS and gIBS implementation is analyzed on the testbed. We
first measure the computation time for signing and verification of the four IBS schemes
and compare them to ECDSA. An optimization of the two Schnorr-based schemes (vBNN
and GG) allows significant improvement of signing performance over ECDSA. That at
hand, the performance of all phases of all gIBS schemes is compared to their originating
schemes, showing only negligible computational overhead over the originating schemes,
while significantly reducing the effort for re-keying.

4. The evaluations of the Group Key Management Protocol (GKMP) and the symmetric
re-keying as presented in Chapter 6 are summarized.

We thereby show, that the transformations are applicable for the use cases while solving the
issue of expensive revocation mechanism found in related work.

91

7 Evaluation

7.2 Complexity Analysis

The analysis of the use cases in Chapter 2 derives three requirements regarding efficiency. Given
those, we consider a signature scheme’s properties of a) signature size (ER1), b) signing and
c) verification complexity (ER3) as well as a revocation mechanism’s properties for d) com-
putational complexity (ER3), e) network and f) storage overhead (ER2). All of them can be
discussed in form of complexity classes for a group of n communication partners exchanging m
messages, with m≫ n:

O|σ| Signature Size: complexity of the signature’s size.

OS Signing: complexity for the signer to calculate the signature.

OV Verification: complexity for the receiver to verify a signature.

ONV
Verification Network Overhead: complexity of network overhead for verifying
m signatures.

ORT TP
Preparing Revocation: complexity to prepare revocation information at the
Trusted Third Party (TTP).

ORGM
Processing Revocation: complexity to process revocation information at the
Group Member (GM).

ONR
Revocation Network Overhead: complexity of number of messages count for
revocation.

O|R| Revocation Size: complexity of revocation message size.

Chapter 3 presents different revocation mechanisms as related work, each of which allows either
knowledge or mathematical based revocation. Both come with a naive, not optimized revocation
mechanism and we first describe the complexity of these generic approaches. Next, the opti-
mizations of mechanisms in related work and state of the art are examined and their complexity
is compared to either the mathematical or knowledge based generic approach. We start with
knowledge based and continue with mathematical approaches before the IBS algorithms which
were transformed to Two Key Signature Scheme (2KSS), Updatable Two Key Signature Scheme
(U2KSS) and KUSS are evaluated.
The complexity of each algorithm is summarized in a table such as the following, with each

column presenting one of the eight complexity classes:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|

The first row presents the respective generic approach and the following row(s) the difference
of the presented technique to it. We present complexities in absolute values, while equal and
additional complexity is presented with ± and +, respectively. The section will close with an
overview and comparison of all examined solutions.

7.2.1 Definition of generic Revocation Mechanism

Signature schemes allow the definition of naive or generic revocation mechanism for validation
of the signers legibility to send the message. With a knowledge based mechanism, the verifier
needs to perform additional checks on the public key of the signer, while with a mathematical
the verification fails instantly.

92

7.2 Complexity Analysis

I.) Knowledge

A very commonly used mechanism in many scenarios is the distribution of certificates/keys on
sender and receiver prior their communication. Receivers store the keys of potential senders, use
them to verify the signature and update the list to allow implicit revocation. This is useful in
small static settings but does not scale in rather large or dynamic environments. The information
size to allow revocation is thereforeO|R|(n). The complexity to verify the signature is alsoOV (n),
as it requires the verifier to search in its (potentially unsorted) database for the correct key. Upon
entry or exposure of a system’s participant, all others have to update their list of keys, resulting
in n messages and hence ONR

(n). There is no network overhead during verification, all other
properties have complexity O(1):

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n

II.) Mathematical

The idea of mathematical invalidation is an inherent property of IBS (see [52]), but can be
achieved with other mechanism as well. In difference to a knowledge based mechanism, the
verifier has no overhead during signature validation but during preparation of the revocation
information. In some scenarios this is preferred as the preparation can be typically done on a
more powerful TTP and quickens the verification. The preparation now requires confidential
information for each participant and, hence, ORT TP

(n), but the verification complexity and the
size of the revocation information drops to O(1). All other properties are equal to the knowledge
based revocation:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1

7.2.2 Complexity of Knowledge Based Approaches
This section studies knowledge based approaches, found in use cases, standards, and academia.
In contrast to the generic mechanism for knowledge based validation most of them use revocation
lists rather than handling whitelists. However, we begin with two constrained use cases, where
the use of whitelists is found to fit:

I.) SecureWSN and ACE both use generic whitelisting.

II.) X.509 is the widely adopted and specified in RFC5280 [128], which defines the distribution
and validation of Certificate Revocation Lists (CRLs).

III.) Online Certificate Status Protocol defines online validation of certificates as an alter-
native (or addition) to X.509’s CRLs.

IV.) vBNN-IBS defines the use of identity revocation lists.

V.) Group signatures mathematically include a revocation list in the signature.

I.) SecureWSN and ACE

In SecureWSN [151] and the proposed standards for group key distribution in ACE [101, 169]
both use a generic approach for validation. The public keys are either pre-installed or can be
downloaded from the Group Controller Key Server (GCKS). This “whitelisting” allows short
signatures (sometimes called “raw” signatures) as the identity of the signer is sufficient rather
than sending the public key over the network.

93

7 Evaluation

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n
SecureWSN ± ± ± - ± ± ± ±

ACE ± ± ± - ± ± ± ±

II.) X.509

X.509 is the description of a format for digital certificates defined by RFC5280 [128], which
allows a Certificate Authority (CA) to define and distribute revocation lists. The signature of
the message includes the certificate of the signer, including the issuing CA, hence the signature
size O|σ| and its creation complexity OS is increased compared to a raw signature by a constant
factor. The same overhead appears for the revocation information prepared ORT TP

, stored O|R|
and processed ORGM

:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n

X.509 +1 +1 ± ± +1 +1 ± +1

III.) Online Certificate Status Protocol

Online Certificate Status Protocol (OCSP) as defined in RFC6960 [133] allows to validate a
signer’s certificate even if the CRL defined by X.509 is not yet updated and can be used without
any CRL stored by the verifier. Hence, the revocation’s networking overhead ONR

and its
processing ORGM

are eliminated. Similiarly, the revocation information O|R| for a member is
now constant. However, the networking overhead for verification of a signature is increased as
it is necessary for every message ONV

(m) sent in the network. In that regard, the verification’s
complexity OV becomes a constant factor:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n

OCSP ± ± +1 m ± - - 1

IV.) vBNN-IBS

In [24] the idea of revocation lists was picked up for the use of IBS in Wireless Sensor Networks
(WSNs). The difference to X.509 is the fact, that the revocation lists consists of user’s identities
rather than a certificates serial number. As IBS allows validation of a signature by only knowing
the signer’s identity and the Master Public Key there is no computational overhead during
verification (OV) compared to the generic mechanism. Still, the revocation list needs to be
validated. The complexities are identical to the generic mechanism:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n
vBNN-IBS ± ± ± - ± ± ± ±

V.) Group Signatures

Group signatures allow anonymous signing on behalf of a group, some of them allow revocation.
The schemes in [13, 20] deal with list and the same complexities as vBNN-IBS, while the scheme
introduced in [85] allows improvements. The verification complexityOV is reduced to be constant
with the costs of signing being OS(logn). Also the revocation information to be prepared ORT TP

,
distributed ONR

and stored O|R| is reduced to logn:

94

7.2 Complexity Analysis

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n

[85] ± logn 1 - logn ± logn logn

Another approach of revocation enabled group signatures is presented in [180] and allows con-
stant time verification OV but requires the verifier to keep track over all revoked users for each
epoch. Hence, the revocation information O|R| is quadratic:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Knowledge 1 1 logn - 1 1 n n

[180] ± ± 1 - ± ± ± n2

7.2.3 Complexity of Mathematical Approaches

IBS as presented in [52] as well as its sibling Attribute Based Signatures (ABS) can be used
with the generic mathematical approaches and are therefore not presented again. Besides the
work at hand, there have been other approaches on using mathematical mechanisms to revoke
signing keys in a group.

I.) Hierarchical Identity Based Signature (H-IBS) is another sibling of IBS offering a
similar approach while their mathematical or organizational structure differs.

II.) Key insulation are similarly constructed as the KUSS transforms but optimize other
aspects.

I.) Hierarchical Identity Based Signature (H-IBS)

Even though not explicitly described, H-IBS as in [4, 51] allow the same mathematical revocation
as IBS, the difference is within the construction of the trusted third party. The signer’s keys are
not linked to a single TTP but are part of a key hierarchy, which can be logical or physical [54,
171]. The scheme proposed in [4] requires the maximum number levels to be fixed during setup
and is therefore inflexible for dynamic use cases. However, in [51] such flexibility is possible
but comes at a cost: In any case the verifier needs to know all public keys of the nodes on the
path from the signer to the node. Hence, the signature size O|σ| and verification time OV are
logarithmic, while revoking information O|R| reduces to a logarithmic function:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1

Inline-H-IBS [51, 171] logn ± logn - ± ± logn ±

Another modification of [51] is also presented [171], where the verifier knows all public keys in
the trees. This allows pre-computation of the verification information and the verification itself
stays constant, while the revocation time ORT TP

decreases logarithmic for the TTP . However,
it comes with linear size revocation information and procession time at the verifier (ORGM

(n),
O|R|(n)).

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1

Pre-Computed-H-IBS [51, 171] ± ± ± - logn n logn n

95

7 Evaluation

II.) Key Insulation

Key Insulation such as in [35, 100] allows validation of the signer’s legibility based on a period
(which is similar to the epoch introduced in Section 4.4.2). It allows revocation of a single
key based on this token, however, in difference to IBS each key pair has to be pre-computed
rather than using a single Master Public Key. Hence, the complexities are mostly equal to the
mathematical generic approach, only the complexity for revocation ORT TP

is reduced to constant
while the size of revocation information O|R| is linear:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1
[100] ± ± +1 ± 1 ± ± n

7.2.4 Complexity of gIBS

The transformations presented in Chapter 4 and their implementations on IBS schemes presented
in Chapter 5 are meant to lower the complexity of revocation, with a special interest on resource
constrained and dynamic scenarios. As it allows mathematical validation of the legibility, the
overhead/reduction is compared to the mathematical generic revocation. With one exception,
the transforms of all schemes behave identical in terms of complexity, why they are grouped.
The KUSS-Hess transformation offers even lower complexity, why it is presented separately.

I.) 2KSS Transforms

2KSS transforms allow the integration of a shared secret to the signature, which is than used
to validate the legibility of the signer. In all transformed schemes, the signature size O|σ|
is not changed compared to the originating scheme and the complexity for signing OS and
verification OV is increased by a constant factor. By design, there is no network overhead
during verification ONV

. Depending on the used key hierarchy, the preparation and size of the
revocation information (ORT TP

,O|R|) is logx n, where x is the order of the tree and requires
a single message (ONR

(1)) to be sent. It should be noted, that the revocation information
is presented in form of symmetric keys, which lowers the actual size compared to sending of
asymmetric keys as in Section 7.2.1.

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1
2KSS ± +1 +1 - logn ± 1 logn

II.) U2KSS Transforms

U2KSS transforms allow updating the shared secret to achieve forward secrecy. In contrast to
2KSS this introduces constant overhead for processing the revocation information ORGM

, as the
shared secret needs to be updated with the update token. All other properties are equal to 2KSS
and are the same for all considered schemes:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1

U2KSS ± +1 +1 - logn +1 1 logn

96

7.3 Network and Storage Overhead

III.) KUSS Transforms

The KUSS transforms for vBNN, GG and BLMQ allow updating of the signing key, which
removes the overhead during signing prior introduced by 2KSS and U2KSS. Although updating
the signing key might be computational more complex than updating the shared secret, its still
only a constant factor ORGM

(1). All other properties are equal to U2KSS and are the same for
all considered schemes:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1
KUSS ± ± +1 - logn +1 1 logn

IV.) KUSS-Hess Transformation

The KUSS transform of Hess’ IBS scheme allows updating the public key in such a way, that
the shared secret is not necessary for the verifier. Hence, the complexity for verification OV is
not changed compared to the generic approach, while all other properties stay equal to the other
KUSS transforms:

O|σ| OS OV ONV
ORT TP

ORGM
ONR

O|R|
Math 1 1 1 - n 1 n 1

KUSS-Hess ± ± ± - logn +1 1 logn

7.2.5 Summary

The findings of all revocation mechanisms discussed in the previous sections are summarized in
Table 7.1. Most notably, we see in the last four rows, that the three transforms developed in
Chapter 4 offer good trade-offs by only requiring logarithmic complexity for two out of the eight
properties (ORT TP

,ONR
), while all others are constant.

This overhead is produced during the management steps rather than during the typically more
frequent signing and verification. The influence of these phases is the drawback of all other
mechanisms, except the group signature scheme in [100] and Pre-Computed H-IBS which are
inefficient regarding revocation. While looking very efficient, the necessary online verification
of OCSP and inevitable additional network traffic, would be a show-stopper for some of the
considered scenarios. Another advantage of gIBS lies in the fact, that the storage and networking
overhead for revocation is all based on symmetric cryptography. This allows to reduce the actual
network overhead compared to other mechanisms where public keys or cryptographic hashes need
to be transported.
The developed gIBS schemes come with an additional advantage over the other revocation

mechanisms for signing keys discussed above. As presented in Section 5.5.3, none of the over-
heads produced by gIBS includes expensive operation. Section 7.4 shows this with practical
evaluation of the computational performance on constrained hardware.

7.3 Network and Storage Overhead

Based on the implementation presented in Section 6.3 the network and storage consumption of
the transformed schemes is presented. First, we show how the KUSS transforms behave when
using different implementations of elliptic curves in comparison to ECDSA. Second, the actual
networking overhead when implementing gIBS in Group Internet Key Exchange (G-IKEv2) is
elaborated. The actual sizes are measured on the platform developed in Section 6.2 and the
IoT-Lab provided by the FIT consortium [1].

97

7 Evaluation

Table 7.1: Overview of different solutions regarding complexity.
O|σ| OS OV ONV

ORT TP
ORGM

ONR
O|R|

ACE [101, 169] 1 1 logn - 1 1 n n
SecureWSN [151] 1 1 logn - 1 1 n n

X.509 [128] 1 1 n - 1 1 n n
OCSP [133] 1 1 1 m 1 - - 1

vBNN-IBS [24] 1 1 n - 1 1 n n
Group Signature [85] 1 logn 1 - logn 1 logn logn

Group Signature [180] 1 1 1 - 1 1 n n2

IBS [52] 1 1 1 - n 1 n 1
Inline-H-IBS logn 1 logn - 1 1 logn n

Pre-Computed-H-IBS 1 1 1 - logn n logn n
Key-Insulation [100] 1 1 1 - 1 1 n n

2KSS 1 1 1 - logn 1 1 logn
U2KSS 1 1 1 - logn 1 1 logn
KUSS 1 1 1 - logn 1 1 logn

KUSS-Hess 1 1 1 - logn 1 1 logn
O|σ| Signature Size OS Signing OV Verification O|R| Revocation Size
ONV Verification Network Overhead ORTTP Preparing Revocation at the TTP
ORGM Processing Revocation at the GM. ONR Revocation Network Overhead

7.3.1 Parameter Size for different Elliptic Curves

With the implementation presented in Chapter 6 the size of the data types stored on the clients
and send over the wire can be observed. During a systems life-cycle, participants can join or
leave the system or send messages. Table 7.2 presents the sizes of the relevant parameters for
these phases in Byte by using different elliptic curves. The first two columns present the user’s
private and the group’s public data which are sent during joining. Next, Re-Key depicts the data
that is send to the remaining users whenever a client leaves the system. The last column shows
the message’s overhead for the signature. The rows show all schemes presented in Chapter 5,
together with their respective KUSS transforms. For comparison with other mechanisms, Raw-
ECDSA – which is ECDSA without using a certificate structure such as X.509 – is presented in
the last row of Table 7.2.
The Schnorr-based IBS schemes have larger private keys than ECDSA, however, the advantage

of ECDSA over the pairing based schemes is negligible in most cases except that the parameters
for the group increase. Public keys in ECDSA are significantly smaller, especially compared to
the pairing based schemes. This is simply explained, as the IBS public keys are already proven
“trustworthy” by the TTP, which is not true for Raw-ECDSA public keys where a certificate
structure such as X.509 is required.
For comparison, different representations of elliptic curves are measured as well. They are

abbreviated as Ed (Edwards Curves [16] with 255 bit prime number field), BLS (BLS-12 [19]
with 381 bit prime number field) and BN-254 (BN [10] using a 254 bit prime number field) and
BN-382 (BN [10] using a 382 bit prime number field). All of them offer at least 128-bit security,
except BN-254 which is only 100-bit security but might be interesting for medium security use
cases requiring lower networking overhead. The used cryptographic library (relic [W10]) does
not offer pairings on Edwards curves, which is why BLMQ and Hess are not supported with
that curve. All integer elements (e.g., User Secret Key (usk), group shared key (gsk)) are from
the prime number field for the specific elliptic curve.
All measurements show the expected behavior. The key and signature sizes correspond with

98

7.3 Network and Storage Overhead

Table 7.2: Sizes of the different parameters in Byte.

User (usk) Group (mpk + gsk) Rekey Signature
Ed BLS BN-254 BN-382 Ed BLS BN-254 BN-382 Ed BLS BN-254 BN-382 Ed BLS BN-254 BN-382

GG 67 99 67 99 34 50 34 50 101 149 101 149 101 149 101 149
KUSS 67 99 67 99 100 99 67 99 33 49 33 49 101 148 101 149
vBNN 67 99 67 99 34 50 34 50 101 149 101 149 101 132 100 132
KUSS 67 99 67 99 100 99 67 99 33 49 33 49 101 132 100 132
BLMQ 50 34 50 98 66 98 148 100 148 83 67 83
KUSS 50 34 50 147 99 147 49 33 49 83 67 83
Hess 50 34 50 98 66 98 147 100 147 83 67 83
KUSS 50 34 50 98 66 98 49 33 49 83 67 83
ECDSA 32 32 32 48 33 49 33 49 99 99 98 130

the curve parameters showing only a small overhead of 2 − 4Byte, which is easily explained
with the overhead of the data structures. It is shown that the two pairing based schemes have
significantly lower signature sizes. Additionally, they partially prove the claim of the authors of
vBNN [24], saying that the signature’s size is lower. With the used hash algorithm SHA-256,
this is only true for BN-382 and BLS where the presentation of an elliptic curve point is larger
than the hashes output of 32Byte.

7.3.2 Networking Overhead
The transformations are expected to value most whenever re-keying is required, which happens
when a client joins or leaves the group. Compared to the originating IBS schemes, the KUSS
transforms come with a network overhead during setup of the system, where the gsk is dis-
tributed in addition to usk and Master Public Key (mpk). However, they show a significantly
reduced overhead during re-keying, where only the update token, which is a single element of
Z∗p, is securely distributed to all clients. For the original schemes, we assume that re-keying
requires re-distribution of usk and mpk.

For distributing the key securely, we evaluate embedding the presented IBS schemes together
with their respective KUSS transformations within the G-IKEv2 protocol. It offers an authenti-
cated key exchange for setting up the private channel between GM anc GCKS, the secure group
channel is implemented with LKH and CAKE respectively. That the protocol fits on the con-
sidered class of devices was shown in [42, 43, 53, 59, 66]. Please note, that every other protocol
supporting similar efficient symmetric re-keying mechanisms can be used. The following outlines
network overhead for distributing the keys in G-IKEv2, during:

I.) Joining The networking overhead for the client joining the system. It only affects the
GCKS and the joining GM.

II.) Re-Keying (Join) The networking overhead for clients which were part of the system,
before a new member joined. This is for achieving the property of Backward Security.

III.) Re-Keying (Leave) The networking overhead for clients, which are part of the system
after a member left the group. This is for achieving the property of Post-Compromise
Security.

I.) Joining

A client who wishes to participate in a system, connects to the TTP (in the terminology of
G-IKEv2, this is denoted as GCKS). Thereby, the client - which is the Initiator in G-IKEv2

99

7 Evaluation

terminology - performs a Diffie-Helmman key exchange with the GCKS; this is IKE_SA_INIT
exchange in the G-IKEv2 terminology. The IKE_SA_INIT includes the public DH-values, cryp-
tographic Nonces and the supported ciphers (e.g., for hash, encryption and signing algorithms).
If minimized as in [53], the message as well as the response can be as small as 98 byte. For
authentication, the GSA_AUTH exchange is required. The initiator sends the message, which most
notably includes the IDg as the identifier of the group it wishes to join. According to the proto-
col, the IDg can be anything, including IP multicast addresses, Fully-Qualified Domain Name
(FQDN), etc. Showcasing the use of vBNN or GG in combination with AES-128 as the algo-
rithm for key encryption with the Group Key Encryption Key (GKEK), the response includes
the following cryptographic keys for LKH (left) and CAKE (right) when using the different
elliptic curves:

LKH CAKE
Ed BLS BN-254 BN-382 Ed BLS BN-254 BN-382

GKEK 16Byte 16Byte
usk 67 99 67 99 67 99 67 99
mpk 100 99 67 99 100 99 67 99∑

183 214 150 214 183 214 150 214
+ Key Path 16 · log2 nByte 32 · log3 nByte

The lowest overhead is found with 150Byte in BN-254, which is sufficient if no re-keying is
necessary. For re-keying, the table shows the size of the Key Path when using LKH or CAKE,
which depends on the number of members in the system. Hence, the GSA_AUTH response may
not fit into one frame if the Maximum Transfer Unit (MTU) is too low, as it would be the case
for IEEE802.15.4 [70] or LoRa [W1]. However, as this is a single message sent to the client on
its first join, it should be acceptable for most use cases.

II.) Re-Keying (Join)

Whenever a client joins the system, the system moves to a new epoch in order to retain Forward
Security. Therefor, the GCKS sends an authenticated GSA_REKEY message to all previous GMs;
the protocol overhead can be as small as 60Byte [43, 174]. In addition, the GCKS encrypts
the update token as the Rekey Param for epoch e+ 1 with the a new GKEK, which is in turn
encrypted with the GKEK used in epoch e: Showcasing the use of vBNN or GG in combination
with AES-128 as the algorithm for key encryption, this is as follows:

Ed BLS BN-254 BN-382
GKEK 16Byte

Rekey Param 33 49 33 49∑
49 65 49 65

As the GSA_AUTH it does not fit in Lora or SigFox frames and needs to be fragmented. However,
it fits into IEEE802.15.4 frames with an MTU of 128Byte.

III.) Re-Keying (Leave)

Whenever a client leaves the system, the system moves to a new epoch in order to retain Post-
Compromise Security. Therefor, the GCKS sends an authenticated GSA_REKEY message to all
remaining GMs. With 98Byte, the protocol overhead during leaving is larger than for joining [43,
59, 174]. It includes the update token (see Table 7.2, column “Rekey”) encrypted with a new
GKEK for epoch e+ 1. The GKEK is encrypted with the key hierarchy (denoted as Key Path
Update) as presented in Section 4.3 with the following networking overhead:

100

7.4 Performance Analysis of gIBS

LKH CAKE
Ed BLS BN-254 BN-382 Ed BLS BN-254 BN-382

GKEK 16Byte 16Byte
Rekey Param 33 49 33 49 33 49 33 49∑

49 65 49 65 49 65 49 65
Key Path Update 2 · 16 · (log2 n− 1)Byte 16 · (log3 n− 1)Byte

The numbers show, that the re-key does not fit in a single frame of IEEE802.15.4 [70] or
LoRa [W1]. However, the actual overhead of the KUSS transforms is the Rekey parameter
depicted in Table 7.2. Its overhead is even less if the use case already uses a mechanism for
efficiently distributing symmetric keys.

7.4 Performance Analysis of gIBS
The computational performance of the different gIBS schemes is evaluated in three steps:

1. We measure the computation time for signing and verifying messages and compare them
with ECDSA.

2. We present an optimization in the signing algorithms for the schemes vBNN and GG and
compare them with ECDSA as well.

3. We measure all gIBS schemes, compare them with their originating schemes and evaluate
their computational overhead and improvements.

This allows the conclusion, that the computational overhead of gIBS is negligible compared to
the originating schemes as well as compared to the widely used ECDSA.

Test Setup
The evaluation uses the hard- and software presented in Chapter 6. The following computational
performances are given for an 72 Mhz ARM Cortex M3 microcontroller, running RIOT OS [W7].
We measure the different phases of the IBS, ECDSA and gIBS algorithms by using the imple-
mentations based on the Relic-library [W10] (see Section 6.3). All values are presented as an
arithmetic mean of 20 individual runs each run measuring the average time for 100 computations
of a certain phase. We measure with RIOT OS’ xtimer, the overall maximum standard deviation
is as low as 2.07 %.

7.4.1 Comparing IBS with ECDSA
With the main purpose of IBS being the reduction of networking overhead compared to certificate
based solution, we further evaluate the computational efficiency of the selected schemes. First,
we are going to elaborate the computational overhead/reduction of IBS over Raw-ECDSA sig-
natures. As pairings on Edwards curves are not implemented in the used cryptographic library,
the measurements for the similar efficient but slightly less secure curve BN-254 are presented
in the following. The results presented are those from measurements performed on an ARM
Cortex M3 and aim on comparing the time to sign and verify a message for different payload
sizes. The plots in Figure 7.1 present the signing and verification time for the four examined
schemes (vBNN, GG, BLMQ and Hess) as bar charts. The x-axis shows the evaluation for
different scenarios by choosing typical MTUs, namely those of SigFox [W2] (12Byte), Lora [W1]
(50Byte), Zigbee [70] (128Byte), Bluetooth Low Energy [158] (672Byte), Ethernet (1,500Byte)
and Wifi (2,312Byte) in addition to some larger cases of 4 and 8KB. For comparison, ECDSA
is added as a line chart in all plots.

101

7 Evaluation

Figure 7.1: Time to sign/verify messages with the IBS schemes compared to ECDSA on 72 Mhz
ARM Cortex M3 for typical message sizes.

(a) Signing

12 byte 50 byte 128 byte 672 byte 1500 byte 2312 byte 4096 byte 8192 byte
vBNN 77 ms 77 ms 77 ms 78 ms 80 ms 81 ms 84 ms 91 ms
GG 77 ms 77 ms 77 ms 78 ms 80 ms 81 ms 84 ms 91 ms
BLMQ 689 ms 691 ms 689 ms 691 ms 693 ms 693 ms 696 ms 704 ms
Hess 1640 ms 1638 ms 1637 ms 1638 ms 1640 ms 1640 ms 1642 ms 1653 ms
ECDSA 85 ms 85 ms 85 ms 86 ms 87 ms 88 ms 92 ms 98 ms

0 ms

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

si
gn

in
g

ti
m

e
[m

s]

(b) Signing with pre-computation in vBNN and GG

12 byte 50 byte 128 byte 672 byte 1500 byte 2312 byte 4096 byte 8192 byte
vBNN 77 ms 77 ms 77 ms 78 ms 80 ms 81 ms 84 ms 91 ms
vBNN Prec. 2 ms 2 ms 2 ms 3 ms 4 ms 5 ms 8 ms 15 ms
GG 77 ms 77 ms 77 ms 78 ms 80 ms 81 ms 84 ms 91 ms
GG Prec. 1 ms 1 ms 2 ms 3 ms 4 ms 5 ms 8 ms 15 ms
ECDSA 85 ms 85 ms 85 ms 86 ms 87 ms 88 ms 92 ms 98 ms

0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

si
gn

in
g

ti
m

e
[m

s]

(c) Verification

12 byte 50 byte 128 byte 672 byte 1500 byte 2312 byte 4096 byte 8192 byte
vBNN 315 ms 315 ms 315 ms 316 ms 318 ms 319 ms 323 ms 329 ms
GG 324 ms 323 ms 324 ms 324 ms 326 ms 327 ms 331 ms 337 ms
BLMQ 1735 ms 1735 ms 1736 ms 1737 ms 1743 ms 1736 ms 1741 ms 1752 ms
Hess 2212 ms 2211 ms 2210 ms 2210 ms 2212 ms 2213 ms 2218 ms 2223 ms
ECDSA 199 ms 200 ms 201 ms 202 ms 202 ms 203 ms 205 ms 213 ms

0 ms

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

1800 ms

2000 ms

2200 ms

ve
ri

fi
ca

ti
on

 ti
m

e
[m

s]

102

7.4 Performance Analysis of gIBS

Comparing ECDSAs signing algorithm with the two Schnorr-based IBS schemes, there is
almost no difference in terms of operations, namely group exponentiation (GE), modular ex-
ponentiation (ME), modular multiplication (MM) and Hashing in Z∗p. The measurements pre-
sented in Figure 7.2a support this assumption, showing that vBNN as well as GG are able to
outperform ECDSA by around 10%. Please note, that the implementation for vBNN could
be significantly improved compared to the measurements presented in [52]. Even though the
selected elliptic curve is meant to be pairing-friendly [10], this operation impacts the signing
algorithm significantly. BLMQ allows pre-computation of one of the pairings and does not re-
quire the generation of a new elliptic curve, but the overhead of around 500 % compared to the
Schnorr-based schemes and ECDSA is huge. However, the signing time of around 700ms may
be acceptable for use cases, where networking overhead is the major restricted resource. With
a factor of 2.5 compared to BLMQ, the overhead produced by Hess’ IBS construction is even
larger. Hence, the only algorithm found capable for a full KUSS transformation is only useful
in environments, with the necessity of minimum amount of keys being stored on the system’s
participants.

7.4.2 Optimization of IBS’ Signing Performance

Both Schnorr-based IBS schemes offer improving the signing time by pre-computation. As
exemplary shown by the following equation for signing in vBNN, the GE (X = xP) – which is
the most expensive operation of a Schnorr-signature – is independent of the message m that is
going to be signed:

X =xP with: x r←− Z∗p
h =h2(id,m,R,X)
s =(x+ h · u) · g

σ =(s,R, h)

(7.1)

Hence, it can be pre-calculated and used to speed-up sending a signed message. The original
publication of vBNN [24] states this property, which reduces the signing to one hashing and a
MM, but does not prove it with measurements. Hence, Figure 7.2b proves it by comparing the
implementations featuring this property with the original schemes an ECDSA. It outperforms
the other implementations by reducing the signing time to only a couple of ms. The increasing
times for different message sizes show that the speed solely depends on the used hashing function
(in this case SHA-256). This improvement seems valuable for use cases, where messages need
to be send as fast as possible and could be interesting for a number of security critical scenarios
(e.g., in health or safety).

Verifying a signature in ECDSA requires two GEs, where the two Schnorr-based IBS schemes
require three. The measurements presented in Figure 7.2c prove this intuition, showing that the
verification is about 50% slower than in ECDSA. Considering that this includes the validation
of the signers validity, the verification time of ca. 300ms still seems acceptable. The Raw-
ECDSA processing presented here does not include this step, which is why at least one additional
verification needs to be performed unless the public keys are pre-shared. The measurements
allow similar conclusion for the two pairing based schemes as found for signing. In contrast to
signing, BLMQ requires a pairing to be performed which significantly impacts the performance
by a factor of 2.5 compared to signing. BLMQ’s verification time is about 8.5 times slower than
ECDSA and about 5.5 times slower than vBNN and GG. Hess’ verification performance is even
worse than signing and about 11 times slower than ECDSA.

103

7 Evaluation

Setup Extract Re-Key TTP Sign Verify
vBNN Overhead (%) 0.65 % 0.28 % -45.39 % 0.00 % 2.48 %
GG Overhead (%) 0.75 % 0.37 % -45.34 % 0.02 % 0.33 %
BLMQ Overhead (%) 0.07 % 0.44 % -27.04 % 0.93 % -1.35 %
Hess Overhead (%) 0.18 % 2.48 % -32.64 % -0.17 % 0.29 %

-50 %

-40 %

-30 %

-20 %

-10 %

0 %

10 %

O
ve

rh
ea

d
of

 K
U

SS
 s

ch
em

es
 in

 (
%

)

BN-254

vBNN Overhead (%)
GG Overhead (%)
BLMQ Overhead (%)
Hess Overhead (%)

Figure 7.3: Overhead/Reduction of KUSS transforms compared to the originating schemes.

7.4.3 Comparing gIBS with IBS

Especially the performance of the two Schnorr-based schemes leave IBS as an interesting option
for use cases with the need for low networking overhead and time-bounded applications. Hence,
it remains to show that the transformations to KUSS do not impact the computation. The
comparison of the four transformed schemes with their originating ones for BN-254 is presented
in Figure 7.3. It presents the five phases, Setup, Extract, Re-Key TTP (which is Next and
Update for the TTP), Sign and Verify on the x-axis. The bars compare each of the four gIBS
schemes with their respective original scheme. Positive values are interpreted as an overhead,
while negative values show enhancement caused by gIBS over the classic approach. With the
original schemes not defining a re-key mechanism for the clients, its Update is not included in
the plots.

It experimentally proves the intuition presented in Section 5.5.3, saying that there is only
negligible impact on the performance. KUSS transformation of all schemes show no negative
consequences for the most frequent phases signing and verification, which are potentially time-
critical. The measurements also show, that the re-key algorithm performed by the TTP is
significantly reduced. The comparison assumes re-keying in the original schemes to perform
setup and extract for one single user, while with KUSS the re-key operation is constant for all
users.

None of the originating IBS schemes was designed for the purpose of efficient re-keying. Hence,
Table 7.3 shows the measurements for all other phases except Sign and Verify. The rows present
time in ms for Setup, Extract and Rekey for the TTP and the client for the four different
elliptic curves. The columns show the the original IBS schemes and their respective KUSS
transformations. As before, all measurements are based on the constrained M3 node, even
though the TTP would be more powerful in most use cases. However, even the steps performed
on the TTP (Setup, Extract, Rekey TTP) show acceptable numbers for a node as constrained
as the M3. As this step is not present in originating schemes, re-keying on the client is of
special interest as a typical task for such nodes. However, this step is not time-critical in most
cases, why even the worst performance of 1.5sec in case of Hess and BLMQ with BN-382 seems
acceptable. The Schnorr-based schemes (vBNN and GG) achieve this step in 139 to 380 ms,
depending on the used elliptic curve.

104

7.5 Performance of G-IKEv2, LKH, and CAKE

Table 7.3: Computation time for Setup, Extract and Re-Key phases in the different KUSS com-
pared to the originating schemes (all times in ms).

Phase vBNN KUSS GG KUSS BLMQ KUSS Hess KUSS

BN-254

Setup 126 127 126 127 364 364 363 369
Extract 126 127 126 127 132 132 172 127
Rekey TTP 253 138 253 138 496 362 536 138
Rekey Client 0 139 0 139 0 501 0 139

BN-382

Setup 357 362 361 362 1126 1102 1126 1104
Extract 358 362 362 362 373 376 503 493
Rekey TTP 715 384 722 384 1494 1102 1621 1104
Rekey Client 0 380 0 380 0 1506 0 1489

BLS12

Setup 262 263 262 265 746 733 747 745
Extract 264 264 265 266 273 272 579 581
Rekey TTP 526 264 528 266 1015 734 1326 746
Rekey Client 0 263 0 265 0 977 0 953

Ed

Setup 211 213 208 212
Extract 213 213 210 213
Rekey TTP 424 212 418 212
Rekey Client 0 211 0 211

7.5 Performance of G-IKEv2, LKH, and CAKE
For gaining maximum benefit of gIBS, we require the GKMP and the re-keying mechanisms
to be efficient on constrained hardware. With the GCKS being typically more powerful, the
performance of the implementations running at the GMs is of major interest. As described in
Section 6.3, we chose G-IKEv2 [174] as a protocol and LKH [120] and CAKE [59] as re-keying
mechanisms. All implementations were evaluated in previous work and the findings on an ARM
M3 microcontroller are summarized as follows:

G-IKEv2: The performance of the protocol was evaluated in [53, 66]. We measure the perfor-
mance of the initial key exchange between GM and GCKS:
• IKE_SA_INIT: The initial Diffie-Hellman key exchange of G-IKEv2 is an Elliptic Curve

Diffie-Hellmann (ECDH) and requires ∼ 187ms on the GM.
• GSA_AUTH: For authentication, the implementation uses pre-shared keys and requires as

low as ∼ 6ms for this second exchange.
LKH: The performance of LKH was evaluated in [43, 59]. We show measurements of tree depths

between 4 and 10 enabling between 16 and 1024 GMs: At first, the performance of LKH is
evaluated in [59] without protocol integration. It shows that decrypting the key hierarchy
at the GM requires between 0.5ms for 16 GMs and 1.1ms for 1024 GMs. Second, G-IKEv2
is improved and LKH is integrated in [43]:
• GSA_AUTH: Upon entry, the GM receives and decrypts its personal key path. Processing

the packet requires between 4.3ms (16 GMs) and 5.5ms (1024 GMs).
• GSA_REKEY: The relation of the remaining GM to the leaving GM in the key tree affects

packet procession (refer to Section 4.3.1). If they are siblings – which is the worst case –
it requires between 3.4ms (16 GMs) and 14.9ms (1024 GMs). If they only share the
root only one decryption is necessary and requires 2.1ms.

CAKE: The performance of CAKE was evaluated in [59]. Due to its ternary tree, the number
of GMs is not directly comparable with LKH. We use a tree depth of 2 with 9 GMs and
7 with 2187 GMs for comparison. For that cases, CAKE shows a decryption time – which
in all cases is only a modulo and XOR operation – between 0.2ms and 0.7ms.

105

7 Evaluation

7.6 Results
This chapter evaluates the benefits and drawbacks when using the developed transformation and
measures their performance on resource constrained devices. The complexity notion developed
in Section 7.2 gives a more specific answer on research question

RQ2 What are the requirements to meet efficiency in such use cases?

The analysis shows that communication and computation complexity can be significantly re-
duced within the system. The accumulated complexity for revocation of signing keys is 2 logn,
which is better than any system found in literature. Additionally, in contrast to all solutions
proposed for constrained environments (namely ACE, SecureWSN, X.509, vBNN-IBS), the revo-
cation does not impact the most frequent operations of Signing and Verification. Key-Insulation
or Group Signatures offer similar complexity as KUSS, but deal with multiple expensive oper-
ations, such as Pairings. The use of IBS as the basis of the transformation, complements the
system with minimal networking overhead.
With the implementation of different IBS schemes and their evaluation on a constrained node

allows to answer research question

RQ5: Which signature schemes are usable in constrained systems, can they benefit
from IBC and how do they fit in such architectures?

As shown before in Chapter 2 and 3, ECDSA is the de-facto-standard for authentication in the
use cases. The measurements in Section 7.4.1 once again demonstrate why this is valid choice
when no certificates are necessary. However, the two Schnorr-based IBS schemes outperform
ECDSA in terms of signing times. Additionally, any use case requiring trusted signatures, e.g.,
by X.509 certificates, can benefit from the implicit sender validation offered by IBS with only
small overhead compared to Raw-ECDSA.
By supplementing the evaluation with the implementation of the gIBS schemes and including

it in the G-IKEv2 protocol, we can also practically answer the sixth research question:

RQ6: How can IBS keys be revoked and how can the revocation be achieved in
state-of-the-art key distribution systems?

It was shown, that the transformations work in practice on constrained nodes with a MCU
featuring a 70MHz processor. The evaluation showed no significant performance impact during
signing and verification. Further, the operations being necessary on a constrained client when-
ever another user is revoked are efficient and show acceptable computation times even in the
worst configurations.
The integration of gIBS in a GKMP shows another benefit. First, it is shown that protocols

and re-key mechanisms are efficiently implementable on constrained hardware. Second, mech-
anisms such as LKH are already specified for many of such protocols and usable for the use
cases in question. Even though they produce overhead that might not fit in a single frame,
the integration comes with the benefit of interoperability due to use of standardized solutions.
As the developed transforms are not bound to a specific solution, any implemented group key
distribution mechanism in the use case can be reused to distribute the update tokens. This
makes the overhead of gIBS solely dependent on the used elliptic curve, which is as low as 33 or
49Byte for the curves discussed in this chapter.

106

8 Conclusion and Future Work

Secure communication must ensure a number of different characteristics, among them Confi-
dentiality, Integrity and Authenticity [71]. Each of these key characteristics can be achieved by
utilizing computationally hard problems, like the Discrete Logarithm Problem, Prime Factor-
ization and others. The field of research which studies the applicability of such mathematical
problems for the use in communication security is called Cryptography. A multitude of crypto-
graphic schemes for achieving security during communication have been developed.
Our work specifically deals with data source authentication, which validates if “the source of

data received is as claimed” [126]. We study this characteristic in dynamic, IP-based communica-
tion networks with participants burdened by various constraints, such as computational, storage
or network limitations. Three representative and security critical use cases within the areas
of Wireless Sensor Networks, Mobile Ad-Hoc Networks and Device-to-Device Communications
are chosen and their specific requirements are presented. All of these scenarios require crypto-
graphic authentication mechanisms for setting up secure communication or for verifying message
authenticity. The constraints of our target environments paired with the dynamic behavior of
the communication participants challenge authorization mechanisms. In fact, for meaningful au-
thorization appropriate management of cryptographic material becomes inevitable and includes
both, deployment and revocation of signing keys.
Existing solutions lack the necessary efficiency, as they are typically designed for rather static

environments with potentially powerful communication partners. We address this situation and
extend existing approaches by systematically answering the following research question:

How to achieve efficient revocation of cryptographic signing keys in systems with
constrained resources and frequent changes of participant’s authorization?

As a first step, we deduce a definition of the term efficiency within the context of our work from
the three use cases mentioned above. All cases favor symmetric over asymmetric cryptography
and Elliptic Curve Cryptography (ECC) over Discrete Logarithm Problem (DLP) or prime
factorization. We state that efficiency is achieved whenever computational and networking
overhead for the revocation and communication are negligible. Examining and evaluating state-
of-the-art mechanisms out of standardization and academia, highlights that revocation of signing
keys is only barely studied for our target environments. Some mechanism such as cryptographic
group key distribution and Identity Based Cryptography (IBC) are at least found to be partially
efficient.
A main novelty of our work is the combination of these two well-established cryptographic

techniques and their integration in a key management protocol. Similar to other systems pro-
viding authentication (e.g., a Public Key Infrastructure (PKI)), our solution requires a Trusted
Third Party (TTP) to manage group memberships. In distinction to distributing revocation
lists in other approaches, our approach revokes signing keys mathematically with a single and
efficient push message. Consequently, the verification of the signature’s correctness explicitly
validates the signer’s authorization. The newly introduced schemes provide Forward- and Post-
Compromise-Security without significant performance impact for the communication. In fact,

107

8 Conclusion and Future Work

some configurations allow to outperform the state-of-the-art mechanism Elliptic Curve Digital
Signature Algorithm (ECDSA).
Suchlike efficiency is possible by modifying Identity Based Signature (IBS) schemes to allow

mathematically updating their signing and verification keys. The update is a symmetric crypto-
graphic element that can be efficiently exchanged or updated with group key distribution mech-
anisms. Such mechanisms are available in various flavors and fit nicely in the (de-)centralized
trust architectures found in all above mentioned use cases.
Our solution builds on a framework of well-defined mathematical transformation consisting of

three consecutive steps: First, an interchangeable symmetric token is introduced in the original
signing and verification algorithm. In a second step, the token is allowed to be updated and
finally integrated in the key pair(s) of the underlying signature scheme. The result now features
key updates, introducing the name Key Updatable Signature Scheme (KUSS). Fine-grained
transformability conditions and security models are given for each step, making the modification
applicable for schemes beyond IBC.
With this theoretical foundations, the goal of efficient signing key revocation is achieved by

transforming and implementing four IBS schemes of different flavors of ECC. Using IBS mini-
mizes networking overhead and ECC allows computational efficiency while conveniently meeting
the transformability conditions. Systematic evaluation shows that the security of the trans-
formed schemes are not harmed. In fact, all resulting group Identity Based Signature (gIBS)
schemes are proven existentially unforgeable under adaptively chosen-message-and-identity at-
tacks (EUF-CMA), being the highest possible security claim. A complexity analysis shows no
significant overhead over the originating schemes while outperforming all related work. The
computational efficiency of the four gIBS schemes is practically evaluated on a testbed picturing
the target environments. It shows that the transformed schemes can be successfully integrated
to constrained hardware with a minimum memory and networking overhead. With Logical Key
Hierarchy (LKH) and Centralized Authorized Key Extension (CAKE), efficient symmetric keys
distribution is provided as the second building block. With that, the networking overhead for
revocation is further optimized and the desired single message revocation for IBS is practically
shown .

Future Work
Our approach demonstrates substantial benefits of IBS over certificate-based solutions in con-
strained environments. On a first glance, the IBS inherent strict trust relationship to a TTP
seems to limit possible scenarios. However, literature for the latter is manifold and our use
case analysis showed that there is no difficulty in imaging such scenarios. Our cryptographic
transformations significantly simplify the management of keys and could serve as a door-opener
for exploiting IBS in other comparable use cases.
The transformations in turn allow to interrupt this trust relationship. Imagine a scenario,

where a trust anchor distributes IBS User Secret Keys (usks) to the communication’s partici-
pants. With the KUSS transformation, the participant could coordinate updates of their private
keys with a distributed key exchange mechanism, such as the Group Diffie-Hellmann key ex-
change [73]. This allows exclusion of the TTP from the system while still featuring the network
efficiency of IBS.
Based on the benefits of IBS, its integration into protocols of the IP family seems to be a

valuable and logical next step. In particular, transport security protocols such as Encapsulated
Security Payload (ESP), Datagram TLS (DTLS) or the ones discussed in the IETF’s COSE
working group seem perfect candidates. However, even key exchange protocols like Internet Key
Exchange (IKEv2) and Host Identity Protocol (HIP) might benefit from the reduced signature
size.

108

Additionally, it might be desirable to use cryptographic primitives other than ECC. The origi-
nal scheme introduced by Adi Shamir utilizes prime factorization and features the mathematical
operations. Another interesting target are IBS schemes based on Lattices [37, 175] which are
currently believed to resist the threat of quantum computers [17]. However, as verification in
corresponding schemes is not fault tolerant, its unclear if all developed transformation are pos-
sible in their current form. Isogenie-based primitives are another area of cryptography, where
IBC is still in a very early stage of research.
Most of the currently proposed schemes in Post-Quantum Cryptography are not yet efficient

regarding networking and computational overhead. As this field of research is relatively new,
efficient revocation is not yet in the spotlight. Therefore, our proposed combination of IBS,
KUSS and their integration into standard protocols could form a first step in tackling these
challenges.

109

Erratum: Hess’ EUF-2KSS-CMA–security

Theorem 5.3 in Section 5.4.2 on page 73 supposes the EUF-CMA security of Hess’ 2KSS trans-
formation under the condition that the original scheme is EUF-CMA secure. The proof for this
theorem is incorrect, as the last step of the verification algorithm is missing in the proof.
In Hess, for a message m∗, the signer calculates:

h =h2(m∗, r); with: r = e(Q,P)x and: x r←− Z∗p;Q
r←− G (1)

the verification for a signature σ = (h, S) returns 1 if

h
?=h2(m∗,∼r); with:∼r = e(S, P) · e(H1(id∗),−Mpk)h (2)

The proof of Theorem 5.3 states the condition for successful verification as r ?= ∼
r , which is true if

and only if the sender sends h̃ = h ·g instead of h. However, the verifier also calculates h2(m∗,∼r)
for comparison with h which is unequal to h̃ = h · g, the verification fails and the adversary B
is hence unable to calculate a valid Hess signature from a 2KSS-Hess signature.
Thus, the Theorem 5.3 has to be restated and re-proven:

Theorem 5.3–A (Hess’ EUF-2KSS-CMA security). In the random oracle model, suppose that
an adaptive adversary A exists which makes at most n1 ≥ 1 queries of the identity hash and
extraction oracle, at most n2 ≥ 1 queries of the message hash and signature oracle, and at
most n3 ≥ 1 queries of the next and update oracle, which succeeds within time TA of making an
existential forgery of the Hess+g scheme with probability

εA ≥
a · n1 · n3 · n2

2
p

(3)

for some constant a ∈ Z≥1. Then there exist another probabilistic algorithm C and a constant
c ∈ Z≥1 such that for any given P,R ∈ G∗1 and Mpk ∈ G∗ with Mpk = s(P) as described in [67],
C computes s(R) in the expected time

TC ≤
c · n1 · n2 · TA

εA
(4)

For certain instances of s, the computation of s(R) means that C solves the Bilinear Diffie-
Hellman-problem with respect to

(P,Mpk,R) (5)

Proof. We assume familiarity with the proof in [67, Theorem 2] and the corresponding Ex-
ample 1, which is the concrete instantiation to which we applied the KUSS-transform. In
our derivation the function s(x) := tx and q(x) := e(x,Mpk) change to se(x) := tgex and
qe(x) := e(x,geMpk), respectively. The proof is identical in essence, and we only illustrate the
main cornerstones and additional arguments.

As in the original proof, there are the Identity-Hash-, Extraction-, Message-Hash-, and
Signature-Oracles. The Extraction- and Signature-Oracle change conceptually with se(x) and
qe(x), as their output now depends on the epoch the query is made in. However, the output
changes by a random value and is hence random. The oracles can therefore be used in the same
way as before. We add the Next- and the Update-Oracle, as follows:

111

Erratum: Hess’ EUF-2KSS-CMA–security

Next: For the e-th Next-query, we return ∆e where ∆e ∈ Z∗p and ∆ = (∆e)e=1,2,.. constitutes a
random tape. We model the transition from one epoch to the next by Next-queries: For example
“events in the same epoch” means “events between which the adversary did not query Next”.
When Next is queried, we also update the function se−1 such that se(P) = ∆e ·Qe−1 =: Qe
holds. The function qe is changed accordingly such that p(Qe) = qe(P) holds. Because G is
cyclic, Qe ∈ G∗ is still a generator. The Next-oracle publishes qe and Qe while se is kept secret.
After the e-th Next-query, we say that we “are in epoch e”. Before the first Next-query, we are
in epoch 0.
Update: The Update-Oracle takes as input a key Uskidi

that was extracted or updated
in a previous epoch (i.e. at least one Next-query has happened since the last Extract- or
Update-queries with respect to this key). Let K = {∆k1 ,∆k2 , ..} be the set of all tokens
produced by the Next-oracle since the Extract- or Update-oracle returned Uskidi

. Then the
Update-oracle outputs g · Uskidi

, where g =
∏

∆k∈K ∆k is a random element of Z∗p since all
∆e are random. This simulation fails if g = 1, which happens with probability n3/p during
n3 Next-Oracles. As in [67], no identity may be queried twice, not even in different epochs,
because the Hash- and the Extraction-Oracle do not depend on epochs.

Assume the i-th identity hash or extraction query for idi happens in epoch e. Then we return
se(H(idi)) = λiQe if requested. As λ and ∆ are random and independent, se(H(idi)) is a
random element in G. When signing a message for id in epoch e, we compute ye := qe(H(id))
instead of y := q(H(id)), which is necessary to verify the resulting signature (ue, r).
Running A and answering its oracle queries still depends deterministically on λ, δ, γ, the new

tape ∆, and the random tape ω with which the adversary A is provided. Compared to [67,
Theorem 2], the probability for a simulation failure increases by n3/p and is 2n2

2+n3/p. Still,
running A results in a signature in time TA with probability at least εA −

2n2
2+n3
p ≥ εA

2 (true
for a = 14), using at most n1 identity and extraction queries, n2 message hash and signature
queries and n3 next and updates queries. The application of the Forking Lemma to A and the
resulting machines B and C can be adopted almost verbatim from [67, Theorem 2] up to the
final step of dividing the signing equation. There are only two additional notes:

1. The tape ∆ remains the same for all runs of A, B and C can be handled exactly like γ
with respect to the dependencies of ω, ω′ and ω′′.

2. The signatures yielded by replays under the same ω-tape given to a machine are valid for
the same epoch e, namely the epoch that was reached with the last of the≤ n3 next-queries.
Hence, qe is used in the verification equations for both (u1, r) and (u2, r).

We divide the two signing equations p(ui) = yvi
e r

wi for yi = qe(µiR) and obtain

p
(
u1 − (w1/w2)u2

)
= qe(R)µ1v1−(w1/w2)µ2v2 (6)

Since qe is a monomorphism it holds that ∀ge ∈ Z∗p, x ∈ G : qe(x) = q0(x)ge :

p
(
u1 − (w1/w2)u2

)
= q0(R)ge(µ1v1−(w1/w2)µ2v2) (7)

where ge
(
µ1v1 − (w1/w2)µ2v2

)
6= 0 since ge 6= 0 and µ1v1 − (w1/w2)µ2v2 6= 0. Hence we get

p
(
ge
(
µ1v1 − (w1/w2)µ2v2

)−1(
u1 − (w1/w2)u2

))
= q0(R) (8)

and we solve p(x) = q(R) = q0(R) and thus compute x = s(R) in expected time TC ≤ cn1n2TA/εA

with c = 124416. In our scheme, se(P) = mskge P = Mpke and msk is kept secret. Computing
se(R) = mskgeR given P and se(P) is computationally hard and doing so in polynomial time
amounts to solving the Bilinear Diffie-Hellman problem in G as defined in [67]. The rest of the
proof holds verbatim.

112

Bibliography

[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton, Thomas
Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner, Julien Van-
daele, and Thomas Watteyne. “FIT IoT-LAB: A large scale open experimental IoT
testbed”. In: IEEE World Forum on Internet of Things. Piscataway, NJ: IEEE, 2015,
pp. 459–464. isbn: 978-1-5090-0366-2. doi: 10.1109/WF-IoT.2015.7389098.

[2] Cory J. Antosh and Barry E. Mullins. “The Scalability of Secure Lock”. In: IEEE Inter-
national Performance, Computing and Communications Conference, 2008. Piscataway,
NJ: IEEE, 2008, pp. 507–512. isbn: 978-1-4244-3368-1. doi: 10.1109/PCCC.2008.
4745086.

[3] Arash Asadi, Qing Wang, and Vincenzo Mancuso. “A Survey on Device-to-Device Com-
munication in Cellular Networks”. In: IEEE Communications Surveys & Tutorials 16.4
(2014), pp. 1801–1819. issn: 1553-877X. doi: 10.1109/COMST.2014.2319555.

[4] Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, and Duncan S. Wong. “Practical Hierarchical
Identity Based Encryption and Signature schemes Without Random Oracles”. In: IACR
Cryptology ePrint Archive 2006 (2006), p. 368. url: https://eprint.iacr.org/2006/
368.pdf.

[5] Emmanuel Baccelli, Cenk Gundogan, Oliver Hahm, Peter Kietzmann, Martine S.
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wahlisch.
“RIOT: An Open Source Operating System for Low-End Embedded Devices in the IoT”.
In: IEEE Internet of Things Journal 5.6 (2018), pp. 4428–4440. doi: 10.1109/JIOT.
2018.2815038.

[6] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and Thomas
Schmidt. “RIOT OS: Towards an OS for the Internet of Things”. In: 2013 IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS). Piscataway,
NJ: IEEE, 2013, pp. 79–80. isbn: 978-1-4799-0056-5. doi: 10.1109/INFCOMW.2013.
6970748.

[7] Joonsang Baek, Young-Ji Byon, Eman Hableel, and Mahmoud Al-Qutayri. “An Au-
thentication Framework for Automatic Dependent Surveillance-Broadcast Based on
Online/Offline Identity-Based Signature”. In: 2013 Eighth International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). 2013, pp. 358–363. doi:
10.1109/3PGCIC.2013.61. (Visited on 08/01/2016).

[8] Elaine B. Barker. Digital Signature Standard (DSS). 2013. doi: 10.6028/NIST.FIPS.
186-4.

[9] Paulo S. L. M. Barreto, Benoît Libert, Noel McCullagh, and Jean-Jacques Quisquater.
“Efficient and Provably-Secure Identity-Based Signatures and Signcryption from Bi-
linear Maps”. In: Advances in Cryptology- Asiacrypt 2005. Ed. by David Hutchison,
Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Bimal
Roy. Vol. 3788. Lecture Notes in Computer Science Ser. New York: Springer, Jan. 2006,
pp. 515–532. isbn: 978-3-540-30684-9. doi: 10.1007/11593447_28.

113

https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/PCCC.2008.4745086
https://doi.org/10.1109/PCCC.2008.4745086
https://doi.org/10.1109/COMST.2014.2319555
https://eprint.iacr.org/2006/368.pdf
https://eprint.iacr.org/2006/368.pdf
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/INFCOMW.2013.6970748
https://doi.org/10.1109/INFCOMW.2013.6970748
https://doi.org/10.1109/3PGCIC.2013.61
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.1007/11593447_28

Bibliography

[10] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of Prime
Order”. In: Selected areas in cryptography. Ed. by Bart Preneel and Stafford Tavares.
Vol. 3897. Lecture notes in computer science. Berlin: Springer, 2006, pp. 319–331. isbn:
978-3-540-33108-7. doi: 10.1007/11693383_22.

[11] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. “Security Proofs for
Identity-Based Identification and Signature Schemes”. In: Advances in Cryptology - EU-
ROCRYPT 2004. Ed. by Christian Cachin and Jan L. Camenisch. Vol. 3027. Lecture
notes in computer science. Berlin and Heidelberg: Springer, 2004, pp. 268–286. isbn:
978-3-540-21935-4. doi: 10.1007/978-3-540-24676-3_17.

[12] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. “Security Proofs for
Identity-Based Identification and Signature Schemes”. In: Journal of Cryptology 22.1
(2009), pp. 1–61. issn: 0933-2790. doi: 10.1007/s00145-008-9028-8.

[13] Mihir Bellare, Haixia Shi, and Chong Zhang. “Foundations of Group Signatures: The
Case of Dynamic Groups”. In: Springer, Berlin, Heidelberg, 2005, pp. 136–153. doi:
10.1007/978-3-540-30574-3_11.

[14] Mihir Bellare and Bennet Yee. “Forward-Security in Private-Key Cryptography”. In:
Topics in Cryptology – CT-RSA 2003. Ed. by Marc Joye. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 1–18. isbn: 978-3-540-36563-1.

[15] Daniel J. Bernstein. “ChaCha, a variant of Salsa20”. In: (2008). url: http://cr.yp.
to/chacha/chacha-20080120.pdf.

[16] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
“Twisted Edwards Curves”. In: Progress in cryptology - AFRICACRYPT 2008. Ed. by
Serge Vaudenay. Vol. 5023. Lecture notes in computer science. Berlin: Springer, 2008,
pp. 389–405. isbn: 978-3-540-68159-5. doi: 10.1007/978-3-540-68164-9_26.

[17] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-Quantum Cryptog-
raphy. 1. Aufl. s.l.: Springer-Verlag, 2009. isbn: 978-3-540-88702-7.

[18] John Black and Phillip Rogaway. “CBC MACs for Arbitrary-Length Messages: The
Three-Key Constructions”. In: Advances in Cryptology - CRYPTO 2000. Ed. by Mihir
Bellare. Vol. 1880. Lecture notes in computer science. Berlin and Heidelberg: Springer,
2000, pp. 197–215. isbn: 978-3-540-67907-3. doi: 10.1007/3-540-44598-6_12.

[19] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pairing”.
In: Advances in Cryptology - ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. Lecture
notes in computer science. Berlin and Heidelberg: Springer, 2001, pp. 514–532. isbn:
978-3-540-42987-6. doi: 10.1007/3-540-45682-1_30.

[20] Dan Boneh and Hovav Shacham. “Group signatures with verifier-local revocation”. In:
Proceedings of the 11th ACM conference on Computer and communications security.
Ed. by Vijay Atluri, Birgit Pfitzmann, and Patrick McDaniel. New York, NY: ACM,
2004, p. 168. isbn: 1581139616. doi: 10.1145/1030083.1030106.

[21] Carsten Bormann, Mehmet Ersue, Ari Keränen, and Carles Gomez. Terminology
for Constrained-Node Networks. Internet-Draft draft-bormann-lwig-7228bis-04. Work
in Progress. Internet Engineering Task Force, Mar. 2019. 23 pp. url: https : / /
datatracker.ietf.org/doc/html/draft-bormann-lwig-7228bis-04.

[22] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for authentication and key
establishment. Second edition. Information security and cryptography. Berlin, Germany:
Springer, 2020. isbn: 978-3-662-58146-9.

114

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/s00145-008-9028-8
https://doi.org/10.1007/978-3-540-30574-3_11
http://cr.yp.to/chacha/chacha-20080120.pdf
http://cr.yp.to/chacha/chacha-20080120.pdf
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/3-540-44598-6_12
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1145/1030083.1030106
https://datatracker.ietf.org/doc/html/draft-bormann-lwig-7228bis-04
https://datatracker.ietf.org/doc/html/draft-bormann-lwig-7228bis-04

Bibliography

[23] Oliver Bringmann. Eingebettete Systeme. 3rd ed. München: De Gruyter Oldenbourg,
2018. isbn: 9783110518528.

[24] Xuefei Cao, Weidong Kou, Lanjun Dang, and Bin Zhao. “IMBAS: Identity-based multi-
user broadcast authentication in wireless sensor networks”. In: Computer Communica-
tions 31.4 (2008), pp. 659–667. issn: 01403664. doi: 10.1016/j.comcom.2007.10.017.

[25] Yacine Challal and Hamida Seba. “Group Key Management Protocols: A Novel Tax-
onomy”. In: International Journal of Computer, Electrical, Automation, Control and
Information Engineering 2.10 (2008), pp. 3620–3633. issn: 2010-376X.

[26] David Chaum and Eugène van Heyst. “Group signatures”. In: EUROCRYPT’91 Pro-
ceedings of the 10th annual international conference on Theory and application of cryp-
tographic techniques.

[27] Guang-Huei Chiou and Wen-Tsuen Chen. “Secure broadcasting using the secure lock”.
In: IEEE Transactions on Software Engineering 15.8 (1989), pp. 929–934. issn: 0098-
5589. doi: 10.1109/32.31350.

[28] Jan Chudzikiewicz, Tomasz Malinowski, Janusz Furtak, and Zbigniew Zieliński. “The
Procedure of Key Distribution in Military IoT Networks”. In: Computer Networks. Ed.
by Piotr Gaj, Micha Sawicki, and Andrzej Kwiecieân. Vol. 1039. Communications in
Computer and Information Science. Cham: Springer International Publishing and Im-
print: Springer, 2019, pp. 34–47. isbn: 978-3-030-21951-2. doi: 10.1007/978-3-030-
21952-9_3.

[29] Henri Cohen, Gerhard Frey, and Roberto Avanzi. Handbook of elliptic and hyperelliptic
curve cryptography. Discrete mathematics and its applications. Boca Raton: Chapman
& Hall/CRC, 2006. isbn: 9780367801625.

[30] Erik Dahlman, Johan Sköld, and Stefan Parkvall. 4G LTE/LTE-advanced for mobile
broadband. 2nd ed. Burlington and Amsterdam: Elsevier Science and Academic Press,
2013. isbn: 9780124199859.

[31] Vitalian Danciu, Tobias Guggemos, and Dieter Kranzlmüller. “Schichtung virtueller
Maschinen zu Labor– und Lehrinfrastruktur”. In: 9. DFN-Forum Kommunikationstech-
nologien. Rostock, Germany, 2016, pp. 11–20.

[32] Quynh H. Dang. Secure hash standard. 2012. doi: 10.6028/NIST.FIPS.180-4.
[33] Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. “Efficient Attribute-

Based Signatures for Unbounded Arithmetic Branching Programs”. In: Public-key cryp-
tography - PKC 2019. Ed. by Dongdai Lin. Vol. 11442. Lecture notes in computer sci-
ence. Cham: Springer, 2019, pp. 127–158. isbn: 978-3-030-17252-7. doi: 10.1007/978-
3-030-17253-4_5.

[34] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transactions
on Information Theory 22.6 (1976), pp. 644–654. issn: 0018-9448. doi: 10.1109/TIT.
1976.1055638.

[35] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. “Strong Key-Insulated
Signature Schemes”. In: Public Key Cryptography - PKC 2003. Ed. by Yvo G. Desmedt.
Vol. 2567. Lecture notes in computer science. Berlin and Heidelberg: Springer, 2002,
pp. 130–144. isbn: 978-3-540-00324-3. doi: 10.1007/3-540-36288-6_10.

[36] Jinling Du, Wensheng Zhu, Jing Xu, Zhenhong Li, and Haifeng Wang. “A Compressed
HARQ Feedback for Device-to-Device Multicast Communications”. In: 2012 IEEE Ve-
hicular Technology Conference (VTC Fall 2012). Piscataway, NJ: IEEE, 2012, pp. 1–5.
isbn: 978-1-4673-1881-5. doi: 10.1109/VTCFall.2012.6399309.

115

https://doi.org/10.1016/j.comcom.2007.10.017
https://doi.org/10.1109/32.31350
https://doi.org/10.1007/978-3-030-21952-9_3
https://doi.org/10.1007/978-3-030-21952-9_3
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/978-3-030-17253-4_5
https://doi.org/10.1007/978-3-030-17253-4_5
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/3-540-36288-6_10
https://doi.org/10.1109/VTCFall.2012.6399309

Bibliography

[37] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. “Efficient Identity-Based Encryp-
tion over NTRU Lattices”. In: International Conference on the Theory and Application
of Cryptology and Information Security. Springer Berlin Heidelberg, 2014, pp. 22–41.
doi: 10.1007/978-3-662-45608-8_2.

[38] M. J. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. 2007. doi: 10.6028/NIST.SP.800-38D.

[39] Morris J. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. 2015. doi: 10.6028/NIST.FIPS.202.

[40] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, James Foti, Lawrence E.
Bassham, E. Roback, and James F. Dray Jr. FIPS PUB 197, Advanced Encryption
Standard (AES). U.S.Department of Commerce/National Institute of Standards and
Technology. 2001. doi: 10.6028/NIST.FIPS.197.

[41] Claudia Eckert. IT-Sicherheit: Konzepte - Verfahren - Protokolle. 10. Auflage.
De Gruyter Studium. Berlin and Boston: De Gruyter Oldenbourg, 2018. isbn:
9783110584684.

[42] Wolfgang Engelbrecht. “Group Key Management with Strongswan”. Bachelor Thesis.
Munich: Ludwig-Maximilians-Universität, 2018. url: mnm- team.org/pub/Fopras/
enge18/.

[43] Marinus Enzinger. “Efficiently Re-Keying Multicast Groups with LKH in G-IKEv2”.
Bachelor Thesis. Munich: Ludwig-Maximilians-Universität, 2019. url: http://mnm-
team.org/pub/Fopras/enzi19.

[44] Filip Forsby, Martin Furuhed, Panos Papadimitratos, and Shahid Raza. “Lightweight
X.509 Digital Certificates for the Internet of Things”. In: Interoperability, Safety and
Security in IoT. Ed. by Giancarlo Fortino, Carlos E. Palau, Antonio Guerrieri, Nora
Cuppens, Frédéric Cuppens, Hakima Chaouchi, and Alban Gabillon. Vol. 242. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering. Cham: Springer International Publishing, 2018, pp. 123–133. isbn:
978-3-319-93796-0. doi: 10.1007/978-3-319-93797-7_14.

[45] Janusz Furtak, Zbigniew Zielinski, and Jan Chudzikiewicz. “Security techniques for the
WSN link layer within military IoT”. In: 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT). Piscataway, NJ: IEEE, 2016, pp. 233–238. isbn: 978-1-5090-4130-5.
doi: 10.1109/WF-IoT.2016.7845508.

[46] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings for cryptogra-
phers”. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121. issn: 0166-218X.
doi: 10.1016/j.dam.2007.12.010.

[47] David Galindo and Flavio D. Garcia. “A Schnorr-Like Lightweight Identity-Based Signa-
ture Scheme”. In: Progress in cryptology - AFRICACRYPT 2009. Ed. by Bart Preneel.
Vol. 5580. Lecture notes in computer science. Berlin and Heidelberg: Springer, 2009,
pp. 135–148. isbn: 978-3-642-02383-5. doi: 10.1007/978-3-642-02384-2_9.

[48] Pimmy Gandotra, Rakesh Kumar Jha, and Sanjeev Jain. “A survey on device-to-device
(D2D) communication: Architecture and security issues”. In: Journal of Network and
Computer Applications 78 (2017), pp. 9–29. issn: 1084-8045. doi: 10.1016/j.jnca.
2016.11.002.

116

https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.197
mnm-team.org/pub/Fopras/enge18/
mnm-team.org/pub/Fopras/enge18/
http://mnm-team.org/pub/Fopras/enzi19
http://mnm-team.org/pub/Fopras/enzi19
https://doi.org/10.1007/978-3-319-93797-7_14
https://doi.org/10.1109/WF-IoT.2016.7845508
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/978-3-642-02384-2_9
https://doi.org/10.1016/j.jnca.2016.11.002
https://doi.org/10.1016/j.jnca.2016.11.002

Bibliography

[49] Oscar Garcia-Morchon, Sye Loong Keoh, Sandeep Kumar, Pedro Moreno-Sanchez, Fran-
cisco Vidal-Meca, and Jan Henrik Ziegeldorf. “Securing the IP-based internet of things
with HIP and DTLS”. In: Proceedings of the sixth ACM conference on Security and pri-
vacy in wireless and mobile networks - WiSec ’13. Ed. by Levente Buttyán, Ahmad-Reza
Sadeghi, and Marco Gruteser. New York, New York, USA: ACM Press, 2013, p. 119.
isbn: 9781450319980. doi: 10.1145/2462096.2462117.

[50] Padmini Gaur and Mohit P. Tahiliani. “Operating Systems for IoT Devices: A Crit-
ical Survey”. In: 2015 IEEE Region 10 Symposium. Ed. by John Vig, Anil K. Roy,
Chonggang Wang, and Manik Lal Das. Piscataway, NJ: IEEE, 2015, pp. 33–36. isbn:
978-1-4799-1782-2. doi: 10.1109/TENSYMP.2015.17.

[51] Craig Gentry and Alice Silverberg. “Hierarchical ID-Based Cryptography”. In: Advances
in Cryptology - ASIACRYPT 2002. Ed. by Yuliang Zheng. Vol. 2501. Lecture notes in
computer science. Berlin and Heidelberg: Springer, 2002, pp. 548–566. isbn: 978-3-540-
00171-3. doi: 10.1007/3-540-36178-2_34.

[52] Nils gentschen Felde, Sophia Grundner-Culemann, and Tobias Guggemos. “Authen-
tication in dynamic groups using identity-based signatures”. In: 2018 14th Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob). Piscataway, NJ: IEEE, 2018, pp. 1–6. isbn: 978-1-5386-6876-4. doi:
10.1109/WiMOB.2018.8589148.

[53] Nils gentschen Felde, Tobias Guggemos, Tobias Heider, and Dieter Kranzlmüller. “Se-
cure Group Key Distribution in Constrained Environments with IKEv2”. In: 2017 IEEE
Conference on Dependable and Secure Computing. Taipei, Taiwan: IEEE, 2017. doi:
10.1109/DESEC.2017.8073823.

[54] Sophia Grundner-Culemann. “Identity-based source authentication in constrained net-
works”. Masterthesis. Munich: Ludwig-Maximilians-Universität, 2017. url: http://
mnm-team.org/pub/Diplomarbeiten/grun17/.

[55] Tobias Guggemos. “Dynamic Key Distribution for Secure Group Communications
in Constrained Environments”. In: Doctoral Consortium: Doctoral Consortium on e-
Business and Telecommunications. Vol. 2018. SECRYPT. jul, Porto, Portugal, 2018.

[56] Tobias Guggemos, Vitalian Danciu, and Annette Kostelezky. “Protokollgestützte Selb-
stbeschreibung in Zugangsnetzen”. In: 11. DFN-Forum Kommunikationstechnologien.
may. Günzburg, Germany, 2018.

[57] Tobias Guggemos, Nils gentschen Felde, and Dieter Kranzlmüller. “Secure Group Com-
munication in Constrained Networks - A Gap Analysis”. In: The 1st 2017 GLOBAL
IoT SUMMIT (GIoTS’17). Geneva, Switzerland: IEEE, 2017, pp. 1–4. doi: 10.1109/
GIOTS.2017.8016270.

[58] Tobias Guggemos and Dieter Kranzlmüller. “gIBS – group Identity-Based Signatures:
efficiently verifiable IBS key-revocation with a single multicast message”. In: The IACR
International Conference on Practice and Theory of Public-Key Cryptography (PKC
2020). Ed. by International Association for Cryptographic Research. (under review).
2020.

[59] Tobias Guggemos, Klement Streit, Marcus Knüpfer, Nils gentschen Felde, and Peter
Hillmann. “No Cookies, just CAKE: CRT based Key Hierarchy for Efficient Key Man-
agement in Dynamic Groups”. In: 13th International Conference for Internet Technology
and Secured Transactions (ICITST-2018). dec, Cambridge, UK, 2018. doi: 10.2053/
ICITST.WorldCIS.WCST.WCICSS.2018.0002.

117

https://doi.org/10.1145/2462096.2462117
https://doi.org/10.1109/TENSYMP.2015.17
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1109/WiMOB.2018.8589148
https://doi.org/10.1109/DESEC.2017.8073823
http://mnm-team.org/pub/Diplomarbeiten/grun17/
http://mnm-team.org/pub/Diplomarbeiten/grun17/
https://doi.org/10.1109/GIOTS.2017.8016270
https://doi.org/10.1109/GIOTS.2017.8016270
https://doi.org/10.2053/ICITST.WorldCIS.WCST.WCICSS.2018.0002
https://doi.org/10.2053/ICITST.WorldCIS.WCST.WCICSS.2018.0002

Bibliography

[60] Fuchun Guo, Willy Susilo, and Yi Mu. Introduction to Security Reduction. SpringerLink
Bücher. Cham: Springer, 2018. isbn: 9783319930497. doi: 10.1007/978-3-319-93049-
7.

[61] Vipul Gupta, Michael Wurm, Yu Zhu, Matthew Millard, Stephen Fung, Nils Gura,
Hans Eberle, and Sheueling Chang Shantz. Sizzle: a standards-based end-to-end security
architecture for the embedded internet. 2005.

[62] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. “Operating Sys-
tems for Low-End Devices in the Internet of Things: A Survey”. In: IEEE Internet of
Things Journal 3.5 (2016), pp. 720–734. doi: 10.1109/JIOT.2015.2505901.

[63] David Hanes. IoT fundamentals: Networking technologies, protocols, and use cases for
the Internet of Things. Indianapolis, Indiana: Cisco Press, 2017. isbn: 978-1-58714-456-
1.

[64] Michael Haus, Muhammad Waqas, Aaron Yi Ding, Yong Li, Sasu Tarkoma, and Jorg
Ott. “Security and Privacy in Device-to-Device (D2D) Communication: A Review”.
In: IEEE Communications Surveys & Tutorials (2017), p. 1. issn: 1553-877X. doi:
10.1109/COMST.2017.2649687.

[65] Tobias Heer, Oscar Garcia-Morchon, René Hummen, Sye Loong Keoh, Sandeep S. Ku-
mar, and Klaus Wehrle. “Security Challenges in the IP-based Internet of Things”. In:
Wireless Personal Communications 61.3 (2011), pp. 527–542. issn: 0929-6212. doi:
10.1007/s11277-011-0385-5.

[66] Tobias Heider. “Minimal G-IKEv2 implementation for RIOT OS”. Bachelor Thesis.
Munich: Ludwig-Maximilians-Universität, 2017. url: http://mnm- team.org/pub/
Fopras/heid17.

[67] Florian Hess. “Efficient Identity Based Signature Schemes Based on Pairings”. In: Se-
lected Areas in Cryptography. Ed. by Kaisa Nyberg and Howard Heys. Vol. 2595. Lecture
notes in computer science. Berlin and Heidelberg: Springer, 2003, pp. 310–324. isbn:
978-3-540-00622-0. doi: 10.1007/3-540-36492-7_20.

[68] Peter Hillmann, Marcus Knüpfer, and Gabi Dreo Rodosek. “CAKE: Hybrides Gruppen-
Schlüssel-Management Verfahren”. In: 1617-5468 (2017). issn: 1617-5468. url: http:
//dl.gi.de/bitstream/20.500.12116/476/1/paper03.pdf.

[69] René Hummen, Jan H. Ziegeldorf, Hossein Shafagh, Shahid Raza, and Klaus Wehrle.
Towards viable certificate-based authentication for the internet of things. 2013. doi: 10.
1145/2463183.2463193.

[70] IEEE standard for local and metropolitan area networks: Part 15.4: Low-rate wireless
personal area networks (LR-WPANs). New York: Institute of Electrical and Electronics
Engineers, 2011. isbn: 978-0-7381-6683-4.

[71] ISO. ISO/IEC 27000 - Information technology - Security techniques - Information se-
curity management systems - Overview and vocabulary. 2016-02-15. url: http : / /
standards.iso.org/ittf/PubliclyAvailableStandards/c066435_ISO_IEC_27000_
2016(E).zip (visited on 01/03/2017).

[72] Gene Itkis. “Forward security, adaptive cryptography: Time evolution”. In: (2004).
[73] Antoine Joux. “A One Round Protocol for Tripartite Diffie–Hellman”. In: Algorithmic

Number Theory. Ed. by Wieb Bosma. Vol. 1838. Lecture notes in computer science.
Berlin and Heidelberg: Springer, 2000, pp. 385–393. isbn: 978-3-540-67695-9. doi: 10.
1007/10722028_23.

118

https://doi.org/10.1007/978-3-319-93049-7
https://doi.org/10.1007/978-3-319-93049-7
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/COMST.2017.2649687
https://doi.org/10.1007/s11277-011-0385-5
http://mnm-team.org/pub/Fopras/heid17
http://mnm-team.org/pub/Fopras/heid17
https://doi.org/10.1007/3-540-36492-7_20
http://dl.gi.de/bitstream/20.500.12116/476/1/paper03.pdf
http://dl.gi.de/bitstream/20.500.12116/476/1/paper03.pdf
https://doi.org/10.1145/2463183.2463193
https://doi.org/10.1145/2463183.2463193
http://standards.iso.org/ittf/PubliclyAvailableStandards/c066435_ISO_IEC_27000_2016(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c066435_ISO_IEC_27000_2016(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c066435_ISO_IEC_27000_2016(E).zip
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23

Bibliography

[74] Holger Karl and Andreas Willig. Protocols and architectures for wireless sensor net-
works. Reprint. with corr. Chichester: Wiley, 2007. isbn: 9780470519233.

[75] Christian Karpfinger and Hubert Kiechle. Kryptologie: Algebraische Methoden und Al-
gorithmen. 1. Aufl. Wiesbaden: Vieweg + Teubner, 2010. isbn: 978-3-8348-0884-4. doi:
10.1007/978-3-8348-9356-7.

[76] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edi-
tion. Chapman and Hall/CRC, 2014. isbn: 9781466570276. doi: 10.1201/b17668.

[77] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network security: Private com-
munication in a public world. 2. ed. Prentice Hall series in computer networking and dis-
tributed systems. Upper Saddle River, NJ: Prentice Hall PTR, 2002. isbn: 0130460192.

[78] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, blockchain solutions,
and open challenges”. In: Future Generation Computer Systems 82 (2018), pp. 395–411.
issn: 0167739X. doi: 10.1016/j.future.2017.11.022.

[79] Yongdae Kim, Adrian Perrig, and Gene Tsudik. “Simple and fault-tolerant key agree-
ment for dynamic collaborative groups”. In: Proceedings of the 7th ACM conference on
Computer and communications security. Ed. by Dimitris Gritzalis, Sushil Jajodia, and
Pierangela Samarati. New York, NY: ACM, 2000, pp. 235–244. isbn: 1581132034. doi:
10.1145/352600.352638.

[80] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of Computation 48.177
(1987), p. 203. issn: 0025-5718. doi: 10.1090/S0025-5718-1987-0866109-5.

[81] Neal Koblitz and Alfred Menezes. “Another look at non-standard discrete log and Diffie-
Hellman problems”. In: Journal of Mathematical Cryptology 2.4 (2008), p. 268. issn:
1862-2976. doi: 10.1515/JMC.2008.014.

[82] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and Georg Carle.
“DTLS based security and two-way authentication for the Internet of Things”. In: Ad
Hoc Networks (2013). doi: 10.1016/j.adhoc.2013.05.003.

[83] Roger Kowalewski, Tobias Fuchs, Karl Furlinger, and Tobias Guggemos. “Utilizing Het-
erogeneous Memory Hierarchies in the PGAS Model”. In: 2018 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE,
2018, pp. 353–357. isbn: 978-1-5386-4975-6. doi: 10.1109/PDP2018.2018.00063.

[84] Anja Lehmann and Björn Tackmann. “Updatable Encryption with Post-Compromise
Security”. In: Advances in Cryptology - EUROCRYPT 2018. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Vol. 10822. Lecture notes in computer science. Cham: Springer
International Publishing, 2018, pp. 685–716. isbn: 978-3-319-78371-0. doi: 10.1007/
978-3-319-78372-7_22.

[85] Benoît Libert, Thomas Peters, and Moti Yung. “Scalable Group Signatures with Revo-
cation”. In: Springer, Berlin, Heidelberg, 2012, pp. 609–627. doi: 10.1007/978-3-642-
29011-4_36.

[86] Zenghui Liu, Yingxu Lai, Xubo Ren, and Shupo Bu. “An Efficient LKH Tree Balanc-
ing Algorithm for Group Key Management”. In: International Conference on Control
Engineering and Communication Technology (ICCECT), 2012. Piscataway, NJ: IEEE,
2012, pp. 1003–1005. isbn: 978-1-4673-4499-9. doi: 10.1109/ICCECT.2012.213.

[87] Tobias Markmann. “Securing Communications in the Internet of Things using ID-based
Cryptography and Modern Elliptic Curves”. Masterthesis. Hamburg: Hamburg Univser-
ity of Applied Sciences, 2015. (Visited on 09/07/2019).

119

https://doi.org/10.1007/978-3-8348-9356-7
https://doi.org/10.1201/b17668
https://doi.org/10.1016/j.future.2017.11.022
https://doi.org/10.1145/352600.352638
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1016/j.adhoc.2013.05.003
https://doi.org/10.1109/PDP2018.2018.00063
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1109/ICCECT.2012.213

Bibliography

[88] Tobias Markmann, Thomas C. Schmidt, and Matthias Wählisch. “Federated End-to-
End Authentication for the Constrained Internet of Things Using IBC and ECC”. In:
ACM SIGCOMM Computer Communication Review 45.4 (2015), pp. 603–604. issn:
0146-4833. doi: 10.1145/2829988.2790021.

[89] Wladislav Meixner. “Portierung und Entwicklung eines CC3200 Treibers für RIOT-
OS”. Bachelor Thesis. Munich: Ludwig-Maximilians-Universität, 2019. url: http://
www.mnm-team.org/pub/Fopras/meix19/.

[90] Andrian Melnikov. “A Testbed for Evaluating ID-based Authentication in Constrained
Networks”. Bachelor Thesis. Munich: Ludwig-Maximilians-Universität, 2018. url:
http://mnm-team.org/pub/Fopras/meln18.

[91] Daniele Micciancio and Michael Walter. “On the Bit Security of Cryptographic Prim-
itives”. In: Advances in Cryptology - EUROCRYPT 2018. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Vol. 10820. Lecture notes in computer science. Cham: Springer
International Publishing, 2018, pp. 3–28. isbn: 978-3-319-78380-2. doi: 10.1007/978-
3-319-78381-9_1.

[92] Daniel Migault and Tobias Guggemos. Minimal ESP. Internet-Draft draft-ietf-lwig-
minimal-esp-00. Work in Progress. Internet Engineering Task Force, Apr. 2019. 13 pp.
url: https://datatracker.ietf.org/doc/html/draft-ietf-lwig-minimal-esp-
00.

[93] Daniel Migault, Tobias Guggemos, Carsten Bormann, and David Schinazi. ESP Header
Compression and Diet-ESP. Internet-Draft draft-mglt-ipsecme-diet-esp-07. Work in
Progress. Internet Engineering Task Force, Mar. 2019. 47 pp. url: https : / /
datatracker.ietf.org/doc/html/draft-mglt-ipsecme-diet-esp-07.

[94] Daniel Migault, Tobias Guggemos, Sylvain Killian, Maryline Laurent, Guy Pujolle, and
Jean Philippe Wary. “Diet-ESP: IP layer security for IoT”. In: Journal of Computer
Security 25.2 (2017), pp. 173–203. doi: 10.3233/JCS-16857.

[95] Daniel Migault, Tobias Guggemos, and Yoav Nir. Implicit Initialization Vector (IV)
for Counter-Based Ciphers in Encapsulating Security Payload (ESP). RFC 8750. Mar.
2020. doi: 10.17487/RFC8750. url: https://rfc-editor.org/rfc/rfc8750.txt.

[96] Daniel Migault, Daniel Palomares, Tobias Guggemos, Aurelien Wally, Maryline Laurent,
and Jean Philippe Wary. Recommendations for IPsec Configuration on Homenet and
M2M Devices. Cancun, Mexico, 2015. doi: 10.1145/2815317.2815323.

[97] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in cryptology
- CRYPTO ’85 ; proceedings. Ed. by Hugh C. Williams. Vol. 218. Lecture notes in
computer science. Berlin: Springer, 1986, pp. 417–426. isbn: 978-3-540-16463-0. doi:
10.1007/3-540-39799-X_31.

[98] Robert Moskowitz, Rene Hummen, and Miika Komu. HIP Diet EXchange (DEX).
Internet-Draft draft-ietf-hip-dex-08. Work in Progress. Internet Engineering Task Force,
June 2019. 50 pp. url: https://datatracker.ietf.org/doc/html/draft-ietf-
hip-dex-08.

[99] Harald Niederreiter and Arne Winterhof. Applied Number Theory. Cham: Springer Inter-
national Publishing, 2015. isbn: 978-3-319-22320-9. doi: 10.1007/978-3-319-22321-6.

[100] Go Ohtake, Goichiro Hanaoka, and Kazuto Ogawa. “An Efficient Strong Key-Insulated
Signature Scheme and Its Application”. In: Public key infrastructure. Ed. by Stig F.
Mjølsnes, Sjouke Mauw, and Sokratis K. Katsikas. Vol. 5057. Lecture notes in computer
science. Berlin: Springer, 2008, pp. 150–165. isbn: 978-3-540-69484-7. doi: 10.1007/
978-3-540-69485-4_11.

120

https://doi.org/10.1145/2829988.2790021
http://www.mnm-team.org/pub/Fopras/meix19/
http://www.mnm-team.org/pub/Fopras/meix19/
http://mnm-team.org/pub/Fopras/meln18
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-3-319-78381-9_1
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-minimal-esp-00
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-minimal-esp-00
https://datatracker.ietf.org/doc/html/draft-mglt-ipsecme-diet-esp-07
https://datatracker.ietf.org/doc/html/draft-mglt-ipsecme-diet-esp-07
https://doi.org/10.3233/JCS-16857
https://doi.org/10.17487/RFC8750
https://rfc-editor.org/rfc/rfc8750.txt
https://doi.org/10.1145/2815317.2815323
https://doi.org/10.1007/3-540-39799-X_31
https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-08
https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-08
https://doi.org/10.1007/978-3-319-22321-6
https://doi.org/10.1007/978-3-540-69485-4_11
https://doi.org/10.1007/978-3-540-69485-4_11

Bibliography

[101] Francesca Palombini and Marco Tiloca. Key Provisioning for Group Communication
using ACE. Internet-Draft draft-ietf-ace-key-groupcomm-02. Work in Progress. Internet
Engineering Task Force, July 2019. 36 pp. url: https://datatracker.ietf.org/doc/
html/draft-ietf-ace-key-groupcomm-02.

[102] A. Perrig, R. Canetti, J. D. Tygar, and Dawn Song. “Efficient authentication and signing
of multicast streams over lossy channels”. In: Proceedings. Los Alamitos, California:
IEEE Computer Society, 2000, pp. 56–73. isbn: 0-7695-0665-8. doi: 10.1109/SECPRI.
2000.848446.

[103] Adrian Perrig. “The BiBa one-time signature and broadcast authentication protocol”.
In: Proceedings of the 8th ACM conference on Computer and Communications Security.
Ed. by Mike Reiter. New York, NY: ACM, 2001, p. 28. isbn: 1581133855. doi: 10.1145/
501983.501988.

[104] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler. “SPINS:
security protocols for sensor networks”. In: Wireless Networks 8.5 (2002), pp. 521–534.
issn: 1022-0038. doi: 10.1023/A:1016598314198.

[105] Curt Polack. “An IoT Test Bed with Heterogeneous Embedded Platforms and Network
Technologies”. Bachelor Thesis. Munich: Ludwig-Maximilians-Universität, 2019. url:
http://mnm-team.org/pub/Fopras/pola19.

[106] Pawani Porambage, An Braeken, Corinna Schmitt, Andrei Gurtov, Mika Ylianttila, and
Burkhard Stiller. “Group Key Establishment for Enabling Secure Multicast Communi-
cation in Wireless Sensor Networks Deployed for IoT Applications”. In: IEEE Access 3
(2015), pp. 1503–1511. doi: 10.1109/ACCESS.2015.2474705.

[107] Sandro Rafaeli and David Hutchison. “A survey of key management for secure group
communication”. In: ACM Computing Surveys 35.3 (2003), pp. 309–329. issn: 03600300.
doi: 10.1145/937503.937506.

[108] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig. “Securing com-
munication in 6LoWPAN with compressed IPsec”. In: Distributed Computing in Sensor
Systems and Workshops (DCOSS), 2011 International Conference on. 2011, pp. 1–8.
isbn: 978-1-4577-0512-0. doi: 10.1109/DCOSS.2011.5982177.

[109] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. “Lithe: Lightweight Secure
CoAP for the Internet of Things”. In: Sensors Journal, IEEE 13.10 (2013), pp. 3711–
3720. issn: 1530-437X. doi: 10.1109/JSEN.2013.2277656.

[110] S. Raza, D. Trabalza, and T. Voigt. “6LoWPAN Compressed DTLS for CoAP”. In:
Distributed Computing in Sensor Systems (DCOSS), 2012 IEEE 8th International Con-
ference on. 2012, pp. 287–289. isbn: 978-1-4673-1693-4. doi: 10.1109/DCOSS.2012.55.

[111] Shahid Raza and Runar Mar Magnusson. “TinyIKE: Lightweight IKEv2 for Internet of
Things”. In: IEEE Internet of Things Journal 6.1 (2019), pp. 856–866. doi: 10.1109/
JIOT.2018.2862942.

[112] Shahid Raza, Ludwig Seitz, Denis Sitenkov, and Goran Selander. “S3K: Scalable Secu-
rity With Symmetric Keys—DTLS Key Establishment for the Internet of Things”. In:
IEEE Transactions on Automation Science and Engineering 13.3 (2016), pp. 1270–1280.
issn: 1545-5955. doi: 10.1109/TASE.2015.2511301.

[113] Mike Reiter, ed. Proceedings of the 8th ACM conference on Computer and Communi-
cations Security. New York, NY: ACM, 2001. isbn: 1581133855. doi: 10.1145/501983.

121

https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-02
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1145/501983.501988
https://doi.org/10.1145/501983.501988
https://doi.org/10.1023/A:1016598314198
http://mnm-team.org/pub/Fopras/pola19
https://doi.org/10.1109/ACCESS.2015.2474705
https://doi.org/10.1145/937503.937506
https://doi.org/10.1109/DCOSS.2011.5982177
https://doi.org/10.1109/JSEN.2013.2277656
https://doi.org/10.1109/DCOSS.2012.55
https://doi.org/10.1109/JIOT.2018.2862942
https://doi.org/10.1109/JIOT.2018.2862942
https://doi.org/10.1109/TASE.2015.2511301
https://doi.org/10.1145/501983

Bibliography

[114] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-Time Signatures with
Fast Signing and Verifying”. In: Information Security and Privacy. Ed. by Lynn Batten
and Jennifer Seberry. Vol. 2384. Lecture notes in computer science. Berlin and Hei-
delberg: Springer, 2002, pp. 144–153. isbn: 978-3-540-43861-8. doi: 10.1007/3-540-
45450-0_11.

[115] S. Bradner. The Internet Standards Process – Revision 3. RFC 2026 (Best Current
Practice). RFC. Updated by RFCs 3667, 3668, 3932, 3978, 3979, 5378, 5657, 5742,
6410, 7100, 7127, 7475, 8179. Fremont, CA, USA: RFC Editor, Oct. 1996. doi: 10.
17487/RFC2026. url: https://www.rfc-editor.org/rfc/rfc2026.txt.

[116] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Specification.
RFC 2093 (Experimental). RFC. Fremont, CA, USA: RFC Editor, July 1997. doi:
10.17487/RFC2093. url: https://www.rfc-editor.org/rfc/rfc2093.txt.

[117] H. Harney and C. Muckenhirn. Group Key Management Protocol (GKMP) Architecture.
RFC 2094 (Experimental). RFC. Fremont, CA, USA: RFC Editor, July 1997. doi:
10.17487/RFC2094. url: https://www.rfc-editor.org/rfc/rfc2094.txt.

[118] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (Informational). RFC. Updated by RFC 6151. Fremont, CA,
USA: RFC Editor, Feb. 1997. doi: 10 . 17487 / RFC2104. url: https : / / www . rfc -
editor.org/rfc/rfc2104.txt.

[119] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security Association
and Key Management Protocol (ISAKMP). RFC 2408 (Proposed Standard). RFC. Ob-
soleted by RFC 4306. Fremont, CA, USA: RFC Editor, Nov. 1998. doi: 10.17487/
RFC2408. url: https://www.rfc-editor.org/rfc/rfc2408.txt.

[120] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and Archi-
tectures. RFC 2627 (Informational). RFC. Fremont, CA, USA: RFC Editor, June 1999.
doi: 10.17487/RFC2627. url: https://www.rfc-editor.org/rfc/rfc2627.txt.

[121] M. Baugher, R. Canetti, L. Dondeti, and F. Lindholm. Multicast Security (MSEC)
Group Key Management Architecture. RFC 4046 (Informational). RFC. Fremont, CA,
USA: RFC Editor, Apr. 2005. doi: 10.17487/RFC4046. url: https://www.rfc-
editor.org/rfc/rfc4046.txt.

[122] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard). RFC. Updated by RFCs 6040, 7619. Fremont, CA, USA: RFC Editor, Dec.
2005. doi: 10.17487/RFC4301. url: https://www.rfc-editor.org/rfc/rfc4301.
txt.

[123] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed Standard).
RFC. Fremont, CA, USA: RFC Editor, Dec. 2005. doi: 10.17487/RFC4303. url: https:
//www.rfc-editor.org/rfc/rfc4303.txt.

[124] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
Goals. RFC 4919 (Informational). RFC. Fremont, CA, USA: RFC Editor, Aug. 2007.
doi: 10.17487/RFC4919. url: https://www.rfc-editor.org/rfc/rfc4919.txt.

[125] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard). RFC. Updated by RFCs
6282, 6775, 8025, 8066. Fremont, CA, USA: RFC Editor, Sept. 2007. doi: 10.17487/
RFC4944. url: https://www.rfc-editor.org/rfc/rfc4944.txt.

122

https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.17487/RFC2026
https://doi.org/10.17487/RFC2026
https://www.rfc-editor.org/rfc/rfc2026.txt
https://doi.org/10.17487/RFC2093
https://www.rfc-editor.org/rfc/rfc2093.txt
https://doi.org/10.17487/RFC2094
https://www.rfc-editor.org/rfc/rfc2094.txt
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/rfc/rfc2104.txt
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.17487/RFC2408
https://doi.org/10.17487/RFC2408
https://www.rfc-editor.org/rfc/rfc2408.txt
https://doi.org/10.17487/RFC2627
https://www.rfc-editor.org/rfc/rfc2627.txt
https://doi.org/10.17487/RFC4046
https://www.rfc-editor.org/rfc/rfc4046.txt
https://www.rfc-editor.org/rfc/rfc4046.txt
https://doi.org/10.17487/RFC4301
https://www.rfc-editor.org/rfc/rfc4301.txt
https://www.rfc-editor.org/rfc/rfc4301.txt
https://doi.org/10.17487/RFC4303
https://www.rfc-editor.org/rfc/rfc4303.txt
https://www.rfc-editor.org/rfc/rfc4303.txt
https://doi.org/10.17487/RFC4919
https://www.rfc-editor.org/rfc/rfc4919.txt
https://doi.org/10.17487/RFC4944
https://doi.org/10.17487/RFC4944
https://www.rfc-editor.org/rfc/rfc4944.txt

Bibliography

[126] R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Informational). RFC. Fre-
mont, CA, USA: RFC Editor, Aug. 2007. doi: 10.17487/RFC4949. url: https://www.
rfc-editor.org/rfc/rfc4949.txt.

[127] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard). RFC. Obsoleted by RFC 8446, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919, 8447. Fremont, CA, USA: RFC
Editor, Aug. 2008. doi: 10.17487/RFC5246. url: https://www.rfc-editor.org/rfc/
rfc5246.txt.

[128] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard). RFC. Updated by RFCs 6818, 8398, 8399. Fremont, CA,
USA: RFC Editor, May 2008. doi: 10. 17487/ RFC5280. url: https: // www.rfc -
editor.org/rfc/rfc5280.txt.

[129] K. Sandlund, G. Pelletier, and L-E. Jonsson. The RObust Header Compression (ROHC)
Framework. RFC 5795 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor,
Mar. 2010. doi: 10 . 17487 / RFC5795. url: https : / / www . rfc - editor . org / rfc /
rfc5795.txt.

[130] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2. RFC
6347 (Proposed Standard). RFC. Updated by RFCs 7507, 7905. Fremont, CA, USA:
RFC Editor, Jan. 2012. doi: 10.17487/RFC6347. url: https://www.rfc-editor.org/
rfc/rfc6347.txt.

[131] B. Weis, S. Rowles, and T. Hardjono. The Group Domain of Interpretation. RFC 6407
(Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Oct. 2011. doi: 10.17487/
RFC6407. url: https://www.rfc-editor.org/rfc/rfc6407.txt.

[132] D. Hardt (Ed.) The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard). RFC. Updated by RFC 8252. Fremont, CA, USA: RFC Editor, Oct. 2012. doi:
10.17487/RFC6749. url: https://www.rfc-editor.org/rfc/rfc6749.txt.

[133] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, June 2013. doi:
10.17487/RFC6960. url: https://www.rfc-editor.org/rfc/rfc6960.txt.

[134] B. Claise (Ed.), B. Trammell (Ed.), and P. Aitken. Specification of the IP Flow Informa-
tion Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011 (Internet
Standard). RFC. Fremont, CA, USA: RFC Editor, Sept. 2013. doi: 10.17487/RFC7011.
url: https://www.rfc-editor.org/rfc/rfc7011.txt.

[135] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node Networks.
RFC 7228 (Informational). RFC. Fremont, CA, USA: RFC Editor, May 2014. doi:
10.17487/RFC7228. url: https://www.rfc-editor.org/rfc/rfc7228.txt.

[136] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296 (Internet Standard). RFC. Updated by RFCs
7427, 7670, 8247. Fremont, CA, USA: RFC Editor, Oct. 2014. doi: 10.17487/RFC7296.
url: https://www.rfc-editor.org/rfc/rfc7296.txt.

[137] A. Rahman (Ed.) and E. Dijk (Ed.) Group Communication for the Constrained Ap-
plication Protocol (CoAP). RFC 7390 (Experimental). RFC. Fremont, CA, USA: RFC
Editor, Oct. 2014. doi: 10.17487/RFC7390. url: https://www.rfc-editor.org/rfc/
rfc7390.txt.

123

https://doi.org/10.17487/RFC4949
https://www.rfc-editor.org/rfc/rfc4949.txt
https://www.rfc-editor.org/rfc/rfc4949.txt
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/rfc/rfc5280.txt
https://www.rfc-editor.org/rfc/rfc5280.txt
https://doi.org/10.17487/RFC5795
https://www.rfc-editor.org/rfc/rfc5795.txt
https://www.rfc-editor.org/rfc/rfc5795.txt
https://doi.org/10.17487/RFC6347
https://www.rfc-editor.org/rfc/rfc6347.txt
https://www.rfc-editor.org/rfc/rfc6347.txt
https://doi.org/10.17487/RFC6407
https://doi.org/10.17487/RFC6407
https://www.rfc-editor.org/rfc/rfc6407.txt
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.17487/RFC6960
https://www.rfc-editor.org/rfc/rfc6960.txt
https://doi.org/10.17487/RFC7011
https://www.rfc-editor.org/rfc/rfc7011.txt
https://doi.org/10.17487/RFC7228
https://www.rfc-editor.org/rfc/rfc7228.txt
https://doi.org/10.17487/RFC7296
https://www.rfc-editor.org/rfc/rfc7296.txt
https://doi.org/10.17487/RFC7390
https://www.rfc-editor.org/rfc/rfc7390.txt
https://www.rfc-editor.org/rfc/rfc7390.txt

Bibliography

[138] R. Moskowitz (Ed.), T. Heer, P. Jokela, and T. Henderson. Host Identity Protocol Ver-
sion 2 (HIPv2). RFC 7401 (Proposed Standard). RFC. Updated by RFC 8002. Fremont,
CA, USA: RFC Editor, Apr. 2015. doi: 10.17487/RFC7401. url: https://www.rfc-
editor.org/rfc/rfc7401.txt.

[139] T. Kivinen. Minimal Internet Key Exchange Version 2 (IKEv2) Initiator Implementa-
tion. RFC 7815 (Informational). RFC. Fremont, CA, USA: RFC Editor, Mar. 2016. doi:
10.17487/RFC7815. url: https://www.rfc-editor.org/rfc/rfc7815.txt.

[140] H. Tschofenig (Ed.) and T. Fossati. Transport Layer Security (TLS) / Datagram Trans-
port Layer Security (DTLS) Profiles for the Internet of Things. RFC 7925 (Proposed
Standard). RFC. Fremont, CA, USA: RFC Editor, July 2016. doi: 10.17487/RFC7925.
url: https://www.rfc-editor.org/rfc/rfc7925.txt.

[141] T. Bray (Ed.) The JavaScript Object Notation (JSON) Data Interchange Format. RFC
8259 (Internet Standard). RFC. Fremont, CA, USA: RFC Editor, Dec. 2017. doi: 10.
17487/RFC8259. url: https://www.rfc-editor.org/rfc/rfc8259.txt.

[142] C. Schmitt, B. Stiller, and B. Trammell. TinyIPFIX for Smart Meters in Constrained
Networks. RFC 8272 (Informational). RFC. Fremont, CA, USA: RFC Editor, Nov. 2017.
doi: 10.17487/RFC8272. url: https://www.rfc-editor.org/rfc/rfc8272.txt.

[143] M. Sethi, J. Arkko, A. Keranen, and H. Back. Practical Considerations and Implementa-
tion Experiences in Securing Smart Object Networks. RFC 8387 (Informational). RFC.
Fremont, CA, USA: RFC Editor, May 2018. doi: 10.17487/RFC8387. url: https:
//www.rfc-editor.org/rfc/rfc8387.txt.

[144] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439 (Infor-
mational). RFC. Fremont, CA, USA: RFC Editor, June 2018. doi: 10.17487/RFC8439.
url: https://www.rfc-editor.org/rfc/rfc8439.txt.

[145] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Pro-
posed Standard). RFC. Fremont, CA, USA: RFC Editor, Aug. 2018. doi: 10.17487/
RFC8446. url: https://www.rfc-editor.org/rfc/rfc8446.txt.

[146] O. Garcia-Morchon, S. Kumar, and M. Sethi. Internet of Things (IoT) Security: State
of the Art and Challenges. RFC 8576 (Informational). RFC. Fremont, CA, USA: RFC
Editor, Apr. 2019. doi: 10.17487/RFC8576. url: https://www.rfc-editor.org/rfc/
rfc8576.txt.

[147] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signatures
and public-key cryptosystems”. In: Communications of the ACM 26.1 (1983), pp. 96–99.
issn: 00010782. doi: 10.1145/357980.358017.

[148] Kiki Rizki, Argyro Lamproudi, Marco Tiloca, and Shahid Raza. “Group-IKEv2 for
multicast IPsec in the internet of things”. In: International Journal of Security and
Networks 14.1 (2019), p. 10. issn: 1747-8405. doi: 10.1504/IJSN.2019.098908.

[149] Naoshi Sakamoto. “An efficient structure for LKH key tree on secure multicast com-
munications”. In: 15th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2014.
Ed. by Ju Yeon Jo. Piscataway, NJ: IEEE, 2014, pp. 1–7. isbn: 978-1-4799-5604-3. doi:
10.1109/SNPD.2014.6888676.

[150] Fabrizio de Santis, Andreas Schauer, and Georg Sigl. “ChaCha20-Poly1305 authenti-
cated encryption for high-speed embedded IoT applications”. In: DATE ’17 Proceedings
of the Conference on Design, Automation & Test in Europe. European Design and Au-
tomation Association, 2017, pp. 692–697.

124

https://doi.org/10.17487/RFC7401
https://www.rfc-editor.org/rfc/rfc7401.txt
https://www.rfc-editor.org/rfc/rfc7401.txt
https://doi.org/10.17487/RFC7815
https://www.rfc-editor.org/rfc/rfc7815.txt
https://doi.org/10.17487/RFC7925
https://www.rfc-editor.org/rfc/rfc7925.txt
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.17487/RFC8272
https://www.rfc-editor.org/rfc/rfc8272.txt
https://doi.org/10.17487/RFC8387
https://www.rfc-editor.org/rfc/rfc8387.txt
https://www.rfc-editor.org/rfc/rfc8387.txt
https://doi.org/10.17487/RFC8439
https://www.rfc-editor.org/rfc/rfc8439.txt
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8576
https://www.rfc-editor.org/rfc/rfc8576.txt
https://www.rfc-editor.org/rfc/rfc8576.txt
https://doi.org/10.1145/357980.358017
https://doi.org/10.1504/IJSN.2019.098908
https://doi.org/10.1109/SNPD.2014.6888676

Bibliography

[151] Corinna Schmitt. Secure data transmission in wireless sensor networks. Vol. 2013,07,2.
Network architectures and services. München: Techn. Univ. München, Lehrstuhl Net-
zarchitekturen und Netzdienste, 2013. isbn: 9783937201368.

[152] Bruce Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C.
New York: John Wiley & Sons Incorporated, 2015. isbn: 978-1-119-09672-6.

[153] C. P. Schnorr. “Efficient signature generation by smart cards”. In: Journal of Cryptology
4.3 (1991). issn: 0933-2790. doi: 10.1007/BF00196725.

[154] Jaakko Seppala, Timo Koskela, Tao Chen, and Sami Hakola. “Network controlled
Device-to-Device (D2D) and cluster multicast concept for LTE and LTE-A networks”.
In: IEEE Wireless Communications and Networking Conference (WCNC), 2011. Pis-
cataway, NJ: IEEE, 2011, pp. 986–991. isbn: 978-1-61284-255-4. doi: 10.1109/WCNC.
2011.5779270.

[155] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. In: Workshop on
the Theory and Application of Cryptographic Techniques. Springer Berlin Heidelberg,
1984, pp. 47–53. doi: 10.1007/3-540-39568-7_5.

[156] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Internet. Wiley
Publishing, 2010. isbn: 0470747994.

[157] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Ed.
by Cryptology ePrint Archive, Report 2004/332. 2004. url: https://eprint.iacr.
org/2004/332.

[158] Bluetooth SIG. Specification of the Bluetooth System, v5.1. 2019. url: https : / /
www.bluetooth.com/specifications/bluetooth- core- specification/ (visited
on 09/14/2019).

[159] Ricardo Silva, Jorge Sa Silva, Milan Simek, and Fernando Boavida. “Why should multi-
cast be used in WSNs”. In: IEEE International Symposium on Wireless Communication
Systems 2008. Ed. by Guangzhi Qu. Piscataway, NJ: IEEE, 2008, pp. 598–602. isbn:
978-1-4244-2488-7. doi: 10.1109/ISWCS.2008.4726126.

[160] Nigel P. Smart. Delivierable 5.4 Algorithms, Key Size and Protocols Report (2018): EU
H2020-ICT Project Report. Ed. by ECRYPT-CSA. 2018. url: https://www.ecrypt.
eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf (visited on 08/21/2019).

[161] Michael Steiner, Gene Tsudik, and Michael Waidner. “Key Agreement in Dynamic Peer
Groups”. In: IEEE Transactions on Parallel and Distributed Systems 11.8 (2000). doi:
10.1109/71.877936.

[162] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. “The
First Collision for Full SHA-1”. In: Advances in Cryptology - CRYPTO 2017. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10401. Lecture notes in computer science.
Cham: Springer, 2017, pp. 570–596. isbn: 978-3-319-63687-0. doi: 10.1007/978-3-
319-63688-7_19.

[163] Angus Stevenson. The Oxford dictionary of English. 3. ed. Oxford: Oxford Univ. Press,
2010. isbn: 978-0199571123.

[164] Xun Sun, Jianhua Li, Gongliang Chen, and Shutang Yang. “Identity-Based Directed
Signature Scheme from Bilinear Pairings”. In: IACR Cryptology ePrint Archive 2008
(2008), p. 305.

125

https://doi.org/10.1007/BF00196725
https://doi.org/10.1109/WCNC.2011.5779270
https://doi.org/10.1109/WCNC.2011.5779270
https://doi.org/10.1007/3-540-39568-7_5
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://doi.org/10.1109/ISWCS.2008.4726126
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://doi.org/10.1109/71.877936
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

Bibliography

[165] Niranjan Suri, Mauro Tortonesi, James Michaelis, Peter Budulas, Giacomo Benincasa,
Stephen Russell, Cesare Stefanelli, and Robert Winkler. “Analyzing the applicability of
Internet of Things to the battlefield environment”. In: 2016 International Conference on
Military Communications and Information Systems (ICMCIS). Piscataway, NJ: IEEE,
2016, pp. 1–8. isbn: 978-1-5090-1777-5. doi: 10.1109/ICMCIS.2016.7496574.

[166] Andrew S. Tanenbaum and David Wetherall. Computer networks. 5. ed., internat. ed.
Safari Tech Books Online. Boston, Mass.: Pearson, 2011. isbn: 978-0-13-212695-3.

[167] Marco Tiloca, Rikard Hoeglund, Ludwig Seitz, and Francesca Palombini. Group OS-
CORE Profile of the Authentication and Authorization for Constrained Environments
Framework. Internet-Draft draft-tiloca-ace-group-oscore-profile-00. Work in Progress.
Internet Engineering Task Force, July 2019. 29 pp. url: https://datatracker.ietf.
org/doc/html/draft-tiloca-ace-group-oscore-profile-00.

[168] Marco Tiloca, Kirill Nikitin, and Shahid Raza. “Axiom: DTLS-Based Secure IoT Group
Communication”. In: ACM Transactions on Embedded Computing Systems 16.3 (2017),
pp. 1–29. issn: 15399087. doi: 10.1145/3047413.

[169] Marco Tiloca, Jiye Park, and Francesca Palombini. Key Management for OS-
CORE Groups in ACE. Internet-Draft draft-ietf-ace-key-groupcomm-oscore-02. Work
in Progress. Internet Engineering Task Force, July 2019. 30 pp. url: https : / /
datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-02.

[170] Marco Tiloca, Göran Selander, Francesca Palombini, and Jiye Park. Group OS-
CORE - Secure Group Communication for CoAP. Internet-Draft draft-ietf-core-oscore-
groupcomm-05. Work in Progress. Internet Engineering Task Force, July 2019. 49 pp.
url: https : / / datatracker . ietf . org / doc / html / draft - ietf - core - oscore -
groupcomm-05.

[171] Tobias Treutner. “Evaluation effizienter Schlüsselbäume für hierarchische identitäts-
basierte Signaturen im IoT”. Bachelor Thesis. Munich: Ludwig-Maximilians-Universität,
2018. url: http://mnm-team.org/pub/Fopras/treu18.

[172] Maarten van Steen and Andrew S. Tanenbaum. Distributed systems. Third edition (Ver-
sion 3.01 (2017)). London: Pearson Education, February 2017. isbn: 978-15-430573-8-6.

[173] F. Vidal Meca, J. H. Ziegeldorf, P. M. Sanchez, O. G. Morchon, S. S. Kumar, and
S. L. Keoh. “HIP Security Architecture for the IP-Based Internet of Things”. In: 2013
27th International Conference on Advanced Information Networking and Applications
Workshops. IEEE, 2013, pp. 1331–1336. isbn: 978-1-4673-6239-9. doi: 10.1109/WAINA.
2013.158.

[174] Brian Weis and Valery Smyslov. Group Key Management using IKEv2. Internet-Draft
draft-yeung-g-ikev2-16. Work in Progress. Internet Engineering Task Force, July 2019.
52 pp. url: https://datatracker.ietf.org/doc/html/draft-yeung-g-ikev2-16.

[175] Jia Xie, Yu-pu Hu, Jun-tao Gao, and Wen Gao. “Efficient identity-based signature over
NTRU lattice”. In: Frontiers of Information Technology & Electronic Engineering 17.2
(2016), pp. 135–142. issn: 2095-9184. doi: 10.1631/FITEE.1500197.

[176] Xuanxia Yao, Zhi Chen, and Ye Tian. “A lightweight attribute-based encryption scheme
for the Internet of Things”. In: Future Generation Computer Systems 49 (2015), pp. 104–
112. issn: 0167739X. doi: 10.1016/j.future.2014.10.010.

[177] Rehana Yasmin, Eike Ritter, and Guilin Wang. “An Authentication Framework for
Wireless Sensor Networks using Identity-Based Signatures”. In: IEEE 10th International
Conference on Computer and Information Technology (CIT), 2010. Piscataway, NJ:
IEEE, 2010, pp. 882–889. isbn: 978-1-4244-7547-6. doi: 10.1109/CIT.2010.165.

126

https://doi.org/10.1109/ICMCIS.2016.7496574
https://datatracker.ietf.org/doc/html/draft-tiloca-ace-group-oscore-profile-00
https://datatracker.ietf.org/doc/html/draft-tiloca-ace-group-oscore-profile-00
https://doi.org/10.1145/3047413
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-02
https://datatracker.ietf.org/doc/html/draft-ietf-ace-key-groupcomm-oscore-02
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-05
http://mnm-team.org/pub/Fopras/treu18
https://doi.org/10.1109/WAINA.2013.158
https://doi.org/10.1109/WAINA.2013.158
https://datatracker.ietf.org/doc/html/draft-yeung-g-ikev2-16
https://doi.org/10.1631/FITEE.1500197
https://doi.org/10.1016/j.future.2014.10.010
https://doi.org/10.1109/CIT.2010.165

Bibliography

[178] Denise E. Zheng and William A. Carter. Leveraging the internet of things for a more
efficient and effective military. CSIS reports. Washington, DC and Lanham, MD: Center
for Strategic & International Studies and Rowman & Littlefield, 2015. isbn: 978-1-4422-
5890-7.

[179] Minghui Zheng, Guohua Cui, Muxiang Yang, and Jun Li. “Scalable Group Key Man-
agement Protocol Based on Key Material Transmitting Tree”. In: Information security,
practice and experience. Ed. by Ed Dawson and Duncan S. Wong. Vol. 4464. Lecture
notes in computer science. Berlin: Springer, 2007, pp. 301–313. isbn: 978-3-540-72159-8.
doi: 10.1007/978-3-540-72163-5_23.

[180] Sujing Zhou and Dongdai Lin. “Shorter Verifier-Local Revocation Group Signatures
from Bilinear Maps”. In: Cryptology and network security. Ed. by David Pointcheval,
Yi Mu, and Kefei Chen. Vol. 4301. Lecture notes in computer science. Berlin: Springer,
2006, pp. 126–143. isbn: 978-3-540-49462-1. doi: 10.1007/11935070_8.

[181] Joachim von Zur Gathen. CryptoSchool. 1st ed. 2015. Berlin, Heidelberg and s.l.:
Springer Berlin Heidelberg, 2015. isbn: 978-3-662-48423-4. doi: 10.1007/978-3-662-
48425-8.

127

https://doi.org/10.1007/978-3-540-72163-5_23
https://doi.org/10.1007/11935070_8
https://doi.org/10.1007/978-3-662-48425-8
https://doi.org/10.1007/978-3-662-48425-8

Webography

[W1] The LoRa Alliance™. 2019. url: https : / / lora - alliance . org/ (visited on
11/14/2019).

[W2] sigfox foundation. Sigfox - The Global Communications Service Provider for the Internet
of Things (IoT). 2019. url: https://www.sigfox.com (visited on 11/21/2019).

[W3] Persistent Systems LLC. Mobile ad hoc networking solution delivers reliable comms,
situational awareness, under rough conditions. Apr. 24, 2018. url: https : / /
www . prnewswire . com / news - releases / persistent - systems - successfully -
demonstrates - flat - 320 - radio - mpu5 - network - 300634923 . html (visited on
11/14/2019).

[W4] Tesla ®. Model S. 2019. url: https://www.tesla.com/models (visited on 11/14/2019).
[W5] Jérémy Jean. TikZ for Cryptographers. 2016. url: https://www.iacr.org/authors/

tikz/ (visited on 11/14/2019).
[W6] Future Internet Testing Facility. FIT/IoT-LAB: a very large scale open testbed. 2019.

url: https://www.iot-lab.info/ (visited on 11/14/2019).
[W7] Riot OS. RIOT OS – The friendly Operating System for the Internet of Things. 2019.

url: http://riot-os.org/ (visited on 11/21/2019).
[W8] RIOT OS. RIOT-OS/RIOT: TI CC3200 SimpleLink RIOT support by gosticks: Pull

Request #11866 ·. 2019. url: https://github.com/RIOT- OS/RIOT/pull/11866
(visited on 11/17/2019).

[W9] strongSwan. strongSwan - IPsec VPN for Linux, Android, FreeBSD, Mac OS X, Win-
dows. 2019. url: https://www.strongswan.org/ (visited on 11/21/2019).

[W10] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography.
url: https://github.com/relic-toolkit/relic (visited on 11/14/2019).

[W11] Inc. Cisco Systems. Cisco Group Encrypted Transport VPN Configuration Guide:
GETVPN G-IKEv2. 2018. url: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/sec_conn_getvpn/configuration/xe-16/sec-get-vpn-xe-16-book.html
(visited on 09/07/2019).

129

https://lora-alliance.org/
https://www.sigfox.com
https://www.prnewswire.com/news-releases/persistent-systems-successfully-demonstrates-flat-320-radio-mpu5-network-300634923.html
https://www.prnewswire.com/news-releases/persistent-systems-successfully-demonstrates-flat-320-radio-mpu5-network-300634923.html
https://www.prnewswire.com/news-releases/persistent-systems-successfully-demonstrates-flat-320-radio-mpu5-network-300634923.html
https://www.tesla.com/models
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://www.iot-lab.info/
http://riot-os.org/
https://github.com/RIOT-OS/RIOT/pull/11866
https://www.strongswan.org/
https://github.com/relic-toolkit/relic
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_getvpn/configuration/xe-16/sec-get-vpn-xe-16-book.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_getvpn/configuration/xe-16/sec-get-vpn-xe-16-book.html

Acronyms

gsk group shared key 39, 41, 46–50, 52, 54, 57, 65, 67, 70, 72, 74, 89, 98, 99, 137

mpk Master Public Key 35, 40, 41, 56, 57, 63, 88, 89, 94, 96, 99, 100

msk Master Secret Key 35, 40, 57, 88, 89

usk User Secret Key 35, 40, 41, 48, 52, 56, 57, 63, 89, 98–100, 108

1m-DLP One-More Discrete Logarithm Problem 70, 71, 76, 77, 135

2KSS Two Key Signature Scheme xvi, 8, 46–51, 53, 55, 57–59, 61, 62, 64–70, 72–76, 78, 80, 92,
96–98, 111, 132, 135, 137

ABE Attribute Based Encryption 35

ABS Attribute Based Signatures 34–36, 95

AEAD Authenticated Encryption with Associated Data 28, 29

AES Advanced Encryption Standard 1, 28–30

BLE Bluetooth Low Energy 16, 18, 84, 85

CA Certificate Authority 1, 2, 16, 17, 37, 45, 94

CAKE Centralized Authorized Key Extension xvi, xvii, 4, 5, 9, 39, 41, 43–46, 52–54, 86–88, 91,
99–101, 105, 108, 137, 139

CDH Computational Diffie-Hellman Problem 23–25, 27, 30, 135

CLM Certificate Lifecycle Managment 2, 4

COSE CBOR Object Signing and Encryption 31

CRL Certificate Revocation List 2, 37, 93, 94

CRT Chinese Remainder Theorem 5, 43, 135

D2D Device-to-Device Communication xv, 3, 12, 13, 18–20, 107

DDH Decisional Diffie-Hellman Problem 24, 27, 28, 135

DLP Discrete Logarithm Problem 2, 23, 25, 28, 29, 71, 77, 78, 107, 135, 139

DSA Digital Signature Algorithm 23, 29, 30

DTLS Datagram TLS 31, 38, 108

131

Acronyms

ECC Elliptic Curve Cryptography xi, xiii, xv, 2, 4, 8, 21, 25, 27, 29, 30, 35, 38, 55, 57, 63, 78,
107–109

ECDH Elliptic Curve Diffie-Hellmann 17, 30, 105, 137

ECDLP Elliptic Curve Discrete Logarithm Problem 2, 26, 28, 29, 79, 135, 139

ECDSA Elliptic Curve Digital Signature Algorithm xi, xiii, xvii, 17, 29, 30, 35, 89–91, 97–99,
101–103, 106, 108, 137

ESP Encapsulated Security Payload 31, 108

EUF-2KSS-CMA Existential unforgeability under adaptively chosen-message-identity-and-
token attacks for Two Key Signature Scheme (2KSS) 72–74, 135

EUF-CMA existentially unforgeable under adaptively chosen-message-and-identity attacks 46–
50, 52, 70, 72–75, 108, 111

EUF-KUSS-CMA Existential unforgeability under adaptively chosen-message-identity-and-
token attacks for Key Updatable Signature Scheme (KUSS) 75, 135

FIT Future Internet Testing Facility 81

FQDN Fully-Qualified Domain Name 100

G-IKEv2 Group Internet Key Exchange xvii, 40, 43, 44, 53, 86–90, 97, 99, 100, 105, 106, 137,
139

GCKS Group Controller Key Server 32, 33, 40–42, 52, 53, 87, 88, 90, 93, 99, 100, 105

GE group exponentiation 57, 103

gIBS group Identity Based Signature xi, xiii, xvi, xvii, 4, 9, 77, 81, 86, 89–91, 96, 97, 101,
103–106, 108, 137

GKEK Group Key Encryption Key 32, 41–44, 100, 101

GKMP Group Key Management Protocol 5, 6, 9, 39–41, 43, 53, 81, 86, 87, 90, 91, 105, 106

GM Group Member 32, 33, 40–44, 52, 78, 79, 90, 92, 98–100, 105

GSA Group Security Association 32, 40, 41, 52, 53, 87

GSP Group Security Policies 32

GTEK Group Transport Encryption Key 32, 41

H-IBS Hierarchical Identity Based Signature 34, 35, 95, 97, 98

HIP Host Identity Protocol 31, 108

HMAC Keyed-Hash Message Authentication Code 1, 28–30, 56

132

Acronyms

IBC Identity Based Cryptography xi, xiii, 2, 3, 28, 53, 90, 106–109

IBS Identity Based Signature xi, xiii, xvi, xvii, 2–5, 8, 20, 21, 29, 34–42, 45–57, 61, 63, 70, 71,
75, 78, 79, 81, 86–99, 101–104, 106, 108, 109, 135, 137, 139

IETF Internet Engineering Task Force 3, 8, 31, 36, 108

IKEv2 Internet Key Exchange 30, 31, 33, 86–88, 108

IoT Internet of Things xi, xiii, 2, 11, 31, 84

IPsec IP security protocol 31, 38, 86, 87

ISO International Organization for Standardization 1

KEK Key Encryption Key 32, 33, 40, 42, 43

KEM Key Encaspulation Mechanism 30

KEX Key EXchange 30

KGC Key Generation Center 41, 45, 46, 48, 51, 52, 54, 57, 59, 60, 66, 78

KUC Key Update Center 48, 51, 52, 78

KUSS Key Updatable Signature Scheme xi, xiii, xvi, 4, 8, 9, 46, 50–54, 56, 58–64, 66–70, 74–80,
86, 89, 91, 92, 95–99, 101, 103–106, 108, 109, 111, 132, 135, 137, 139

LKH Logical Key Hierarchy xvi, xvii, 4, 9, 34, 39, 41–46, 52–54, 86–88, 91, 99–101, 105, 106,
108, 137, 139

MANET Mobile Ad-Hoc Network xv, 2, 3, 12, 13, 17–20, 107

ME modular exponentiation 56, 57, 103

MITM Man-in-the-Middle 1, 30

MM modular multiplication 57, 103

MTU Maximum Transfer Unit 13, 14, 31, 100, 101

MWN Munich Scientific Network 82, 86

OCSP Online Certificate Status Protocol 37, 93, 94, 97, 98

PKI Public Key Infrastructure 1, 36, 39, 107

PRF Pseudo Random Function 77

SA Security Association 87, 88

SHA Secure Hash Algorithm 1, 28, 29

SL Secure Lock 43, 44

133

Acronyms

TLS Transport Layer Security 30, 31

TPM Trusted Platform Module 17

TTP Trusted Third Party 35, 40, 41, 45, 51, 56, 77, 88, 89, 92, 93, 95, 98, 99, 104, 107, 108

U2KSS Updatable Two Key Signature Scheme xvi, 8, 46, 48–53, 56, 58, 59, 61, 62, 64, 66–68,
70, 72, 74, 76–80, 92, 96–98, 135, 137

VANET Vehicular Ad-Hoc Network 13

WSN Wireless Sensor Network xv, 2, 3, 12, 16, 17, 19, 20, 29, 36, 37, 61, 93, 94, 106, 107, 137

134

List of Lemmata, Theorems, and Definitions

Lemmata
5.1 Lemma (Latin square property) . 71
5.2 Lemma (Randomness preservation in (Z∗p, ·)) . 71

Theorems
5.1 Theorem (GG’s EUF-2KSS-CMA-security) . 72
5.2 Theorem (vBNN’s EUF-2KSS-CMA-security) 72
5.3 Theorem (Hess’ EUF-2KSS-CMA-security) . 73
5.4 Theorem (BLMQ’s EUF-2KSS-CMA-security) 74
5.5 Theorem (BLMQ’s EUF-KUSS-CMA-security) 75
5.6 Theorem (KUSS’ post-compromise security) . 76

5.3–A Theorem (Hess’ EUF-2KSS-CMA security) . 111

Definitions
3.1 Definition (finite abelian group [99]) . 22
3.2 Definition (cyclic finite abelian group [99]) . 23
3.3 Definition (Discrete Logarithm [99]) . 23
3.4 Definition (Discrete Logarithm Problem [99]) 23
3.5 Definition (Computational Diffie-Hellman Problem [99]) 24
3.6 Definition (Decisional Diffie-Hellman Problem [99]) 24
3.7 Definition (Elliptic Curve Discrete Logarithm Problem [181]) 26
3.8 Definition (Elliptic curve in Weierstrass form [181]) 27
3.9 Definition (Pairings [9]) . 27

4.1 Definition (Identity Based Signature [47]) . 40
4.2 Definition (Chinese Remainder Theorem [99]) 43
4.3 Definition (Two Key Signature Scheme) . 47
4.4 Definition (EUF–2KSS–CMA) . 48
4.5 Definition (Updatable Two Key Signature Scheme) 49
4.6 Definition (EUF–U2KSS–CMA) . 50
4.7 Definition (Key Updatable Signature Scheme (KUSS)) 51
4.8 Definition (EUF–KUSS–CMA) . 52

5.1 Definition (EUF-IBS-CMA [47]) . 70
5.2 Definition (One-More Discrete Logarithm Problem [12, 81]) 71

135

List of Figures

1.1 Structure and methodology of the thesis. 10

2.1 Simplified classification of the chosen use cases for further analysis. 12
2.2 Architecture of SecureWSN [151]. 16

3.1 Illustration of group operations on elliptic curves with the example elliptic curve
E for y2 = x3 − x+ 1 over R (inspired by [W5]). 27

3.2 Elliptic Curve Diffie-Hellmann (ECDH). 30
3.3 Group key management architecture as in RFC2093 [116] and RFC2094 [117]. . 33

4.1 IBS key management within a group key management architecture described in
RFC2093 [116] and RFC2094 [117]. Bold elements are IBS specific. 40

4.2 Communication model for IBS. 42
4.3 Initial LKH tree before (left) and after (right) D (in red) is excluded. The replaced

keys in the tree (hatched) are encrypted with their child nodes. 43
4.4 State machines of the different re-keying approaches for IBS. 45
4.5 Distributing the group shared key g and updating it with the update token ∆. . 49
4.6 IBS key management within a group key management architecture described in

RFC2093 [116] and RFC2094 [117]. Bold elements are IBS specific, g is in-
troduced with 2KSS and ∆ re-keying in U2KSS and KUSS. The Secure Group
Channel managed with LKH or CAKE. 53

6.1 High-Level concept of the testbed. 82
6.2 Physical setup of the Testlab, supporting IEEE802.15.4, Ethernet and LoRA

networks [105]. 83
6.3 The installation of the testbed. 86
6.4 Implementation of a gIBS system with G-IKEv2 on the testbed. 90

7.1 Time to sign/verify messages with the IBS schemes compared to ECDSA on
72 Mhz ARM Cortex M3 for typical message sizes. 102

7.3 Overhead/Reduction of KUSS transforms compared to the originating schemes. . 104

137

List of Tables

2.1 Overview over derived requirements in the different use cases. 20

3.1 Comparison of key sizes (in Bits) for symmetric algorithms with asymmetric based
on DLP, ECDLP [160]. 29

5.1 Transformations for GG. 58
5.2 Transformations for vBNN. 62
5.3 Transformations for Hess. 64
5.4 Transformations for BLMQ. 68
5.5 Theoretical overhead/enhancement for the different phases. 80

6.1 Comparison of different operating systems usable for the Testbed [6]. 84
6.2 Chosen development boards in the testbed. 85
6.3 Static memory consumption of the G-IKEv2 client in RIOT OS [53], featuring

LKH and CAKE [59] with the example of 100 group members as well as IBS
schemes based on Schnorr and Pairings [52, 90]. 87

7.1 Overview of different solutions regarding complexity. 98
7.2 Sizes of the different parameters in Byte. 99
7.3 Computation time for Setup, Extract and Re-Key phases in the different KUSS

compared to the originating schemes (all times in ms). 105

139

	Title
	Abstract
	Kurzfassung
	Introduction
	Research Question
	Methodology
	Contribution
	Structure of the Thesis

	Case Studies
	Selection of Use Cases
	Terminologies for Classification of Use Cases
	Terminology for Constraints
	Terminology for Security
	Terminology for Network Topology

	Classification of Use Cases
	Use Cases 1: wsn
	Use Cases 2: manet
	Use Cases 3: d2d

	Summary and Findings

	State of the Art and Related Work
	Fundamentals of Cryptography
	Group Theory
	Computationally Hard Problems
	Provable Security

	ECC
	Group Definitions on Elliptic Curves
	Pairings on Elliptic Curves

	Efficient Cryptographic Mechanisms
	Efficient Confidentiality Solutions
	Efficient Integrity Solutions
	Efficient Authentication Solutions
	Key Agreement

	Efficient Security Protocols
	Protocol Optimization and Compression
	Constrained Security Protocols

	Efficient Group Key Management
	Group Key Management Architecture
	Group Key Distribution

	Related Work on Signing Key Revocation
	Mathematical Revocation
	Knowledge Based Revocation

	Summary and Findings

	Key Updatable Signatures
	Methodology
	IBS Group Key Architecture
	Role and Communication Model
	IBS Key Revocation

	Updating a Group Shared Key with LKH and CAKE
	LKH
	CAKE

	Efficiently Updating IBS Keys
	2KSS
	U2KSS
	KUSS

	Group IBS Architecture
	Summary and Findings

	group Identity Based Signatures
	Methodology for Transforming existing IBS schemes
	Preliminaries
	Notions

	Transformation of Schemes based on Schnorr Signatures
	Scheme 1: GG
	Scheme 2: vBNN

	Transformation of Schemes based on Pairings
	Scheme 3: Hess
	Scheme 4: BLMQ

	Security Analysis
	Preliminaries for the Analysis
	Proving 2KSS and U2KSS Token Security
	Proving KUSS Token Security
	Forward Security
	Post-Compromise Security

	Practical Considerations
	Pseudo Randomness
	Signature Replay
	Performance Estimations

	Summary and Findings

	Testbed and Prototypes
	Concept
	A Testbed for Researching Secure Group Communication
	Operating Systems
	Hardware
	Final Setup and Access

	Prototypical Implementation
	Group Key Management with G-IKEv2
	Key Distribution with LKH and CAKE
	IBS for Sender Authenticity
	The gIBS Prototype

	Summary and Finding

	Evaluation
	Methodology
	Complexity Analysis
	Definition of generic Revocation Mechanism
	Complexity of Knowledge Based Approaches
	Complexity of Mathematical Approaches
	Complexity of gIBS
	Summary

	Network and Storage Overhead
	Parameter Size for different Elliptic Curves
	Networking Overhead

	Performance Analysis of gIBS
	Comparing IBS with ecdsa
	Optimization of IBS' Signing Performance
	Comparing gIBS with IBS

	Performance of gike, LKH, and CAKE
	Results

	Conclusion and Future Work
	Erratum: Hess' EUF-2KSS-CMA–security
	Bibliography
	Webography
	Acronyms
	List of Lemmata, Theorems, and Definitions
	List of Figures
	List of Tables

