6,336 research outputs found

    Group Lasso estimation of high-dimensional covariance matrices

    Get PDF
    In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic process corrupted by an additive noise. We propose to estimate the covariance matrix in a high-dimensional setting under the assumption that the process has a sparse representation in a large dictionary of basis functions. Using a matrix regression model, we propose a new methodology for high-dimensional covariance matrix estimation based on empirical contrast regularization by a group Lasso penalty. Using such a penalty, the method selects a sparse set of basis functions in the dictionary used to approximate the process, leading to an approximation of the covariance matrix into a low dimensional space. Consistency of the estimator is studied in Frobenius and operator norms and an application to sparse PCA is proposed

    Regularized Estimation of High-dimensional Covariance Matrices.

    Full text link
    Many signal processing methods are fundamentally related to the estimation of covariance matrices. In cases where there are a large number of covariates the dimension of covariance matrices is much larger than the number of available data samples. This is especially true in applications where data acquisition is constrained by limited resources such as time, energy, storage and bandwidth. This dissertation attempts to develop necessary components for covariance estimation in the high-dimensional setting. The dissertation makes contributions in two main areas of covariance estimation: (1) high dimensional shrinkage regularized covariance estimation and (2) recursive online complexity regularized estimation with applications of anomaly detection, graph tracking, and compressive sensing. New shrinkage covariance estimation methods are proposed that significantly outperform previous approaches in terms of mean squared error. Two multivariate data scenarios are considered: (1) independently Gaussian distributed data; and (2) heavy tailed elliptically contoured data. For the former scenario we improve on the Ledoit-Wolf (LW) shrinkage estimator using the principle of Rao-Blackwell conditioning and iterative approximation of the clairvoyant estimator. In the latter scenario, we apply a variance normalizing transformation and propose an iterative robust LW shrinkage estimator that is distribution-free within the elliptical family. The proposed robustified estimator is implemented via fixed point iterations with provable convergence and unique limit. A recursive online covariance estimator is proposed for tracking changes in an underlying time-varying graphical model. Covariance estimation is decomposed into multiple decoupled adaptive regression problems. A recursive recursive group lasso is derived using a homotopy approach that generalizes online lasso methods to group sparse system identification. By reducing the memory of the objective function this leads to a group lasso regularized LMS that provably dominates standard LMS. Finally, we introduce a state-of-the-art sampling system, the Modulated Wideband Converter (MWC) which is based on recently developed analog compressive sensing theory. By inferring the block-sparse structures of the high-dimensional covariance matrix from a set of random projections, the MWC is capable of achieving sub-Nyquist sampling for multiband signals with arbitrary carrier frequency over a wide bandwidth.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86396/1/yilun_1.pd

    Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses

    Get PDF
    We investigate the relationship between the structure of a discrete graphical model and the support of the inverse of a generalized covariance matrix. We show that for certain graph structures, the support of the inverse covariance matrix of indicator variables on the vertices of a graph reflects the conditional independence structure of the graph. Our work extends results that have previously been established only in the context of multivariate Gaussian graphical models, thereby addressing an open question about the significance of the inverse covariance matrix of a non-Gaussian distribution. The proof exploits a combination of ideas from the geometry of exponential families, junction tree theory and convex analysis. These population-level results have various consequences for graph selection methods, both known and novel, including a novel method for structure estimation for missing or corrupted observations. We provide nonasymptotic guarantees for such methods and illustrate the sharpness of these predictions via simulations.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1162 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Block-diagonal covariance selection for high-dimensional Gaussian graphical models

    Get PDF
    Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.Comment: Accepted in JAS

    Learning to Discover Sparse Graphical Models

    Get PDF
    We consider structure discovery of undirected graphical models from observational data. Inferring likely structures from few examples is a complex task often requiring the formulation of priors and sophisticated inference procedures. Popular methods rely on estimating a penalized maximum likelihood of the precision matrix. However, in these approaches structure recovery is an indirect consequence of the data-fit term, the penalty can be difficult to adapt for domain-specific knowledge, and the inference is computationally demanding. By contrast, it may be easier to generate training samples of data that arise from graphs with the desired structure properties. We propose here to leverage this latter source of information as training data to learn a function, parametrized by a neural network that maps empirical covariance matrices to estimated graph structures. Learning this function brings two benefits: it implicitly models the desired structure or sparsity properties to form suitable priors, and it can be tailored to the specific problem of edge structure discovery, rather than maximizing data likelihood. Applying this framework, we find our learnable graph-discovery method trained on synthetic data generalizes well: identifying relevant edges in both synthetic and real data, completely unknown at training time. We find that on genetics, brain imaging, and simulation data we obtain performance generally superior to analytical methods

    Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

    Get PDF
    Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g. using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator. Recent work invokes the sparsity assumptions to effectively remove the bias from a sparse estimator such as the lasso. These distributions can be used to give confidence intervals on edges in GGMs, and by extension their differences. However, in the case of comparing GGMs, these estimators do not make use of any assumed joint structure among the GGMs. Inspired by priors from brain functional connectivity we derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. This leads us to introduce the debiased multi-task fused lasso, whose distribution can be characterized in an efficient manner. We then show how the debiased lasso and multi-task fused lasso can be used to obtain confidence intervals on edge differences in GGMs. We validate the techniques proposed on a set of synthetic examples as well as neuro-imaging dataset created for the study of autism
    corecore