
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 8334  

To link to this article: DOI: jmlr.csail.mit.edu/papers/v12/ 

URL: http://jmlr.csail.mit.edu/papers/v12/ 

 

 

To cite this version: Bigot, Jérémie and Biscay, Rolando J. and Loubes, 

Jean-Michel and Muniz-Alvarez, Lilian Group lasso estimation of high-

dimensional covariance matrices. (2011) Journal of Machine Learning 

Research, vol. 12. pp. 3187-3225. ISSN 1532-4435 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12043992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://jmlr.csail.mit.edu/papers/v12/
mailto:staff-oatao@inp-toulouse.fr


Group Lasso estimation of high-dimensional covariance matrices

Jérémie Bigot1,2, Rolando J. Biscay4, Jean-Michel Loubes1 and Lilian Muñiz-Alvarez1,3
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Abstract

In this paper, we consider the Group Lasso estimator of the covariance matrix of a
stochastic process corrupted by an additive noise. We propose to estimate the covariance
matrix in a high-dimensional setting under the assumption that the process has a sparse
representation in a large dictionary of basis functions. Using a matrix regression model,
we propose a new methodology for high-dimensional covariance matrix estimation based
on empirical contrast regularization by a group Lasso penalty. Using such a penalty, the
method selects a sparse set of basis functions in the dictionary used to approximate the
process, leading to an approximation of the covariance matrix into a low dimensional space.
Consistency of the estimator is studied in Frobenius and operator norms and an application
to sparse PCA is proposed.
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1 Introduction

Let T be some subset of Rp, p ∈ N, and let X = (X (t))t∈T be a stochastic process with
values in R. Assume that X has zero mean E (X (t)) = 0 for all t ∈ T, and finite covariance
σ (s, t) = E (X (s)X (t)) for all s, t ∈ T. Let t1, . . . , tn be fixed points in T (deterministic design),
X1, ...,XN independent copies of the process X, and suppose that we observe the noisy processes

X̃i (tj) = Xi (tj) + Ei (tj) for i = 1, ..., N, j = 1, ..., n, (1.1)
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where E1, ..., EN are independent copies of a second order Gaussian process E with zero mean
and independent of X, which represent an additive source of noise in the measurements. Based
on the noisy observations (1.1), an important problem in statistics is to construct an estimator
of the covariance matrix Σ = E

(
XX⊤) of the process X at the design points, where X =

(X (t1) , ...,X (tn))
⊤. This problem is a fundamental issue in many applications, ranging from

geostatistics, financial series or epidemiology for instance (see [Stein, 1999], [Journel, 1977] or
[Cressie, 1993, Wikle and Cressie, 1999] for general references and applications). Estimating
such a covariance matrix has also important applications in dimension reduction by principal
component analysis (PCA) or classification by linear or quadratic discriminant analysis (LDA
and QDA).

In [Bigot et al., 2010], using N independent copies of the process X, we have proposed to
construct an estimator of the covariance matrix Σ by expanding the process X into a dictionary
of basis functions. The method in [Bigot et al., 2010] is based on model selection techniques
by empirical contrast minimization in a suitable matrix regression model. This new approach
to covariance estimation is well adapted to the case of low-dimensional covariance estimation
when the number of replicates N of the process is larger than the number of observations points
n. However, many application areas are currently dealing with the problem of estimating a
covariance matrix when the number of observations at hand is small when compared to the
number of parameters to estimate. Examples include biomedical imaging, proteomic/genomic
data, signal processing in neurosciences and many others. This issue corresponds to the problem
of covariance estimation for high-dimensional data. This problem is challenging since, in a high-
dimensional setting (when n >> N or n ∼ N), it is well known that the sample covariance
matrices

S =
1

N

N∑

i=1

XiX
⊤
i ∈ R

n×n, where Xi = (Xi (t1) , ...,Xi (tn))
⊤ , i = 1, . . . , N

and

S̃ =
1

N

N∑

i=1

X̃iX̃
⊤
i ∈ R

n×n, where X̃i =
(
X̃i (t1) , ..., X̃i (tn)

)⊤
, i = 1, . . . , N

behave poorly, and are not consistent estimators of Σ. For example, suppose that the Xi’s are
independent and identically distributed (i.i.d.) random vectors in Rn drawn from a multivariate
Gaussian distribution. Then, when n

N → c > 0 as n,N → +∞, neither the eigenvalues nor the
eigenvectors of the sample covariance matrix S are consistent estimators of the eigenvalues and
eigenvectors of Σ (see [Johnstone, 2001]). This topic has thus recently received a lot of atten-
tion in the statistical literature. To achieve consistency, recently developed methods for high-
dimensional covariance estimation impose sparsity restrictions on the matrixΣ. Such restrictions
imply that the true (but unknown) dimension of the model is much lower than the number n(n+1)

2
of parameters of an unconstrained covariance matrix. Under various sparsity assumptions, dif-
ferent regularizing methods of the empirical covariance matrix have been proposed. Estimators
based on thresholding or banding the entries of the empirical covariance matrix have been studied
in [Bickel and Levina, 2008a] and [Bickel and Levina, 2008b]. Thresholding the components of
the empirical covariance matrix has also been proposed by [El Karoui, 2008] and the consistency
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of such estimates is studied using tools from random matrix theory. [Fan et al., 2008] impose
sparsity on the covariance via a factor model which is appropriate in financial applications.
[Levina et al., 2008] and [Rothman et al., 2008] propose regularization techniques with a Lasso
penalty to estimate the covariance matrix or its inverse. More general penalties have been stud-
ied in [Lam and Fan, 2009]. Another approach is to impose sparsity on the eigenvectors of the
covariance matrix which leads to sparse PCA. [Zou et al., 2006] use a Lasso penalty to achieve
sparse representation in PCA, [d’Aspremont et al., 2008] study properties of sparse principal
components by convex programming, while [Johnstone and Lu, 2009] propose a PCA regular-
ization by expanding the empirical eigenvectors in a sparse basis and then apply a thresholding
step.

In this paper, we propose to estimate Σ in a high-dimensional setting by using the assumption
that the process X has a sparse representation in a large dictionary of basis functions. Using
a matrix regression model as in [Bigot et al., 2010], we propose a new methodology for high-
dimensional covariance matrix estimation based on empirical contrast regularization by a group
Lasso penalty. Using such a penalty, the method selects a sparse set of basis functions in the
dictionary used to approximate the process X. This leads to an approximation of the covariance
matrix Σ into a low dimensional space, and thus to a new method of dimension reduction for
high-dimensional data. Group Lasso estimators have been studied in the standard linear model
and in multiple kernel learning to impose a group-sparsity structure on the parameters to recover
(see [Nardi and Rinaldo, 2008], [Bach, 2008] and references therein). However, to the best of
our knowledge, it has not been used for the estimation of covariance matrices using a functional
approximation of the process X.

The rest of the paper is organized as follows. In Section 2, we describe a matrix regression
model for covariance estimation, and we define our estimator by group Lasso regularization. The
consistency of such a procedure is investigated in Section 3 using oracle inequalities and a non-
asymptotic point of view by holding fixed the number of replicates N and observation points n.
Consistency of the estimator is studied in Frobenius and operator norms. Various results existing
in matrix theory show that convergence in operator norm implies convergence of the eigenvec-
tors and eigenvalues (e.g. through the use of the sin(θ) theorems in [Davis and Kahan, 1970]).
Consistency in operator norm is thus well suited for PCA applications. Numerical experiments
are given in Section 4, and an application to sparse PCA is proposed. A technical Appendix
contains all the proofs.

2 Model and definition of the estimator

To impose sparsity restrictions on the covariance matrix Σ, our approach is based on an
approximation of the process in a finite dictionary of (not necessarily orthogonal) basis functions
gm : T → R for m = 1, ...,M . Suppose that

X (t) ≈
M∑

m=1

amgm (t) , (2.1)
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where am, m = 1, ...,M are real valued random variables, and that for each trajectory Xi

Xi (tj) ≈
M∑

m=1

ai,mgm (tj) . (2.2)

The notation ≈ means that the process X can be well approximated into the dictionary. A
precise meaning of this will be discussed later on. Then (2.2) can be written in matrix notation
as:

Xi ≈ Gai, i = 1, ..., N (2.3)

where G is the n×M matrix with entries

Gjm = gm (tj) for 1 ≤ j ≤ n and 1 ≤ m ≤M,

and ai is the M × 1 random vector of components ai,m, with 1 ≤ m ≤M .
Recall that we want to estimate the covariance matrix Σ = E

(
XX⊤) from the noisy obser-

vations (1.1). Since X ≈ Ga with a = (am)1≤m≤M with am as in (2.1), it follows that

Σ ≈ E

(
Ga (Ga)⊤

)
= E

(
Gaa⊤G⊤

)
= GΨ∗G⊤ with Ψ∗ = E

(
aa⊤

)
.

Given the noisy observations X̃i as in (1.1) with i = 1, ..., N , consider the following matrix
regression model

X̃iX̃
⊤
i = Σ+Ui +Wi i = 1, . . . , N, (2.4)

where Ui = XiX
⊤
i −Σ are i.i.d centered matrix errors, and

Wi = EiE⊤
i ∈ R

n×n where Ei = (Ei (t1) , ..., Ei (tn))⊤ , i = 1, . . . , N.

The sizeM of the dictionary can be very large, but it is expected that the process X has a sparse
expansion in this basis, meaning that, in approximation (2.1), many of the random coefficients
am are close to zero. We are interested in obtaining an estimate of the covariance Σ in the
form Σ̂ = GΨ̂G⊤ such that Ψ̂ is a symmetric M ×M matrix with many zero rows (and so, by
symmetry, many corresponding zero columns). Note that setting the k-th row of Ψ̂ to 0 ∈ RM

means to remove the function gk from the set of basis functions (gm)1≤m≤M in the function
expansion associated to G.

Let us now explain how to select a sparse set of rows/columns in the matrix Ψ̂. For this, we
use a group Lasso approach to threshold some rows/columns of Ψ̂ which corresponds to removing
some basis functions in the approximation of the process X. For two p× p matrices A,B define
the inner product 〈A,B〉F := tr

(
A⊤B

)
and the associated Frobenius norm ‖A‖2F := tr

(
A⊤A

)
.

Let SM denote the set of M ×M symmetric matrices with real entries. We define the group
Lasso estimator of the covariance matrix Σ by

Σ̂λ = GΨ̂λG
⊤ ∈ R

n×n, (2.5)

where Ψ̂λ is the solution of the following optimization problem:

Ψ̂λ = argmin
Ψ∈SM





1

N

N∑

i=1

∥∥∥X̃iX̃
⊤
i −GΨG⊤

∥∥∥
2

F
+ 2λ

M∑

k=1

γk

√√√√
M∑

m=1

Ψ2
mk



 , (2.6)
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where Ψ = (Ψmk)1≤m,k≤M ∈ RM×M , λ is a positive number and γk are some weights whose
values will be discuss later on. In (2.6), the penalty term imposes to give preference to solutions
with components Ψk = 0, where (Ψk)1≤k≤M denotes the columns of Ψ. Recall that S̃ =

1
N

N∑
i=1

X̃iX̃
⊤
i denotes the sample covariance matrix from the noisy observations (1.1). It can be

checked that minimizing the criterion (2.6) is equivalent to

Ψ̂λ = argmin
Ψ∈SM




∥∥∥S̃−GΨG⊤

∥∥∥
2

F
+ 2λ

M∑

k=1

γk

√√√√
M∑

m=1

Ψ2
mk



 . (2.7)

Thus Ψ̂λ ∈ RM×M can be interpreted as a group Lasso estimator of Σ in the following matrix
regression model

S̃ = Σ+U+W ≈ GΨ∗G⊤ +U+W, (2.8)

where U ∈ Rn×n is a centered error matrix given by U = 1
N

∑N
i=1 Ui and W = 1

N

N∑
i=1

Wi. In

the above regression model (2.8), there are two errors terms of a different nature. The term W
corresponds to the additive Gaussian errors E1, ..., EN in model (1.1), while the term U = S−Σ
represents the difference between the (unobserved) sample covariance matrix S and the matrix
Σ that we want to estimate.

This approach can be interpreted as a thresholding procedure of the entries of an empir-
ical matrix. To see this, consider the simple case where M = n and the basis functions and
observations points are chosen such that the matrix G is orthogonal. Let Y = G⊤S̃G be
a transformation of the empirical covariance matrix S̃. In the orthogonal case, the following
proposition shows that the group Lasso estimator Ψ̂λ defined by (2.7) consists in thresholding
the columns/rows of Y whose ℓ2-norm is too small, and in multiplying the other columns/rows
by weights between 0 and 1. Hence, the group Lasso estimate (2.7) can be interpreted as
covariance estimation by soft-thresholding the columns/rows of Y.

Proposition 1 Suppose that M = n and that G⊤G = In where In denotes the identity matrix
of size n × n. Let Y = G⊤S̃G. Then, the group Lasso estimator Ψ̂λ defined by (2.7) is the
n× n symmetric matrix whose entries are given by

(
Ψ̂λ

)
mk

=





0 if
√∑M

j=1Y
2
jk ≤ λγk,

Ymk

(
1− λγk√∑M

j=1 Y
2
mk

)
if

√∑M
j=1Y

2
jk > λγk,

(2.9)

for 1 ≤ k,m ≤M .

3 Consistency of the group Lasso estimator

3.1 Notations and main assumptions

Let us begin by some definitions. For a symmetric p×p matrix A with real entries, ρmin(A)
denotes the smallest eigenvalue of A, and ρmax(A) denotes the largest eigenvalue of A. For

5



β ∈ Rq, ‖β‖ℓ2 denotes the usual Euclidean norm of β. For p × q matrix A with real entries,

‖A‖2 = supβ∈Rq , β 6=0
‖Aβ‖ℓ2
‖β‖ℓ2

denotes the operator norm of A. Recall that if A is a non negative

definite matrix with p = q then ‖A‖2 = ρmax(A).
Let Ψ ∈ SM and β a vector in RM . For a subset J ⊂ {1, . . . ,M} of indices of cardinality

|J |, then βJ is the vector in RM that has the same coordinates as β on J and zeros coordinates
on the complement Jc of J . The n× |J | matrix obtained by removing the columns of G whose
indices are not in J is denoted by GJ . The sparsity of Ψ is defined as its number of non-zero
columns (and thus by symmetry non-zero rows) namely

Definition 1 For Ψ ∈ SM , the sparsity of Ψ is

M (Ψ) = # {k : Ψk 6= 0} .

Then, let us introduce the following quantities that control the minimal eigenvalues of sub-
matrices of small size extracted from the matrix G⊤G, and the correlations between the columns
of G:

Definition 2 Let 0 < s ≤M . Then,

ρmin(s) := inf
J ⊂ {1, . . . ,M}

|J | ≤ s

(
β⊤J G

⊤GβJ
‖βJ‖2ℓ2

)
= inf

J ⊂ {1, . . . ,M}
|J | ≤ s

ρmin

(
G⊤
JGJ

)
.

Definition 3 The mutual coherence θ(G) of the columns Gk, k = 1, . . . ,M of G is defined as

θ(G) := max
{∣∣∣G⊤

k′Gk

∣∣∣ , k 6= k′, 1 ≤ k, k′ ≤M
}
,

and let
G2

max := max
{
‖Gk‖2ℓ2 , 1 ≤ k ≤M

}
.

To derive oracle inequalities showing the consistency of the group Lasso estimator Ψ̂λ the
correlations between the columns of G (measured by θ(G)) should not be too large when com-
pared to the minimal eigenvalues of small matrices extracted from G⊤G, which is formulated
in the following assumption:

Assumption 1 Let c0 > 0 be some constant and 0 < s ≤M . Then

θ(G) <
ρmin(s)

2

c0ρmax(G⊤G)s
.

Assumption 1 is inspired by recent results in [Bickel et al., 2009] on the consistency of Lasso
estimators in the standard nonparametric regression model using a large dictionary of basis
functions. In [Bickel et al., 2009], a general condition called restricted eigenvalue assumption is
introduced to control the minimal eigenvalues of the Gram matrix associated to the dictionary
over sets of sparse vectors. In the setting of nonparametric regression, a condition similar to
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Assumption 1 is given in [Bickel et al., 2009] as an example for which the restricted eigenvalue
assumption holds.

Let us give some examples for which Assumption 1 is satisfied. If M ≤ n and the design
points are chosen such that the columns of the matrix G are orthonormal vectors in Rn, then
for any 0 < s ≤M one has that ρmin(s) = 1 and θ(G) = 0 and thus Assumption 1 holds for any
value of c0 and s.

Now, suppose that the columns of G are normalized to one, i.e ‖Gk‖ℓ2 = 1, k = 1, . . . ,M
implying that Gmax = 1. Let β ∈ RM . Then, for any J ⊂ {1, . . . ,M} with |J | ≤ s ≤ min(n,M)

β⊤J G
⊤GβJ ≥ ‖βJ‖2ℓ2 − θ(G)s‖βJ‖2ℓ2 ,

which implies that
ρmin(s) ≥ 1− θ(G)s.

Therefore, if (1− θ(G)(s− 1))2 > c0θ(G)ρmax(G
⊤G)s, then Assumption 1 is satisfied.

Let us now specify the law of the stochastic process X. For this, recall that for a real-valued
random variable Z, the ψα Orlicz norm of Z is

‖Z‖ψα := inf

{
C > 0 ; E exp

( |Z|α
Cα

)
≤ 2

}
.

Such Orlicz norms are useful to characterize the tail behavior of random variables. Indeed, if
‖Z‖ψα < +∞ then this is equivalent to assuming that there exists two constants K1,K2 > 0
such that for all x > 0

P (|Z| ≥ x) ≤ K1 exp

(
− xα

Kα
2

)
,

(see e.g. [Mendelson and Pajor, 2006] for more details on Orlicz norms of random variables) .
Therefore, if ‖Z‖ψ2

< +∞ then Z is said to have a sub-Gaussian behavior and if ‖Z‖ψ1
< +∞

then Z is said to have a sub-Exponential behavior. In the next sections, oracle inequalities for
the group Lasso estimator will be derived under the following assumption on X:

Assumption 2 The random vector X = (X (t1) , ...,X (tn))
⊤ ∈ Rn is such that

(A1) There exists ρ (Σ) > 0 such that, for all vector β ∈ Rn with ‖β‖ℓ2 = 1, then(
E|X⊤β|4

)1/4
< ρ (Σ).

(A2) Set Z = ‖X‖ℓ2 . There exists α ≥ 1 such that ‖Z‖ψα < +∞.

Note that (A1) implies that ‖Σ‖2 ≤ ρ (Σ)2. Indeed, one has that

‖Σ‖2 = ρmax(Σ) = sup
β∈Rn, ‖β‖ℓ2=1

β⊤Σβ = sup
β∈Rn, ‖β‖ℓ2=1

Eβ⊤XX⊤β

= sup
β∈Rn, ‖β‖ℓ2=1

E|β⊤X|2 ≤ sup
β∈Rn, ‖β‖ℓ2=1

√
E|β⊤X|4 ≤ ρ2 (Σ) .
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When X is a Gaussian process, it follows that for any β ∈ Rn with ‖β‖ℓ2 = 1 then(
E|X⊤β|4

)1/4
= 31/4

(
β⊤Σβ

)1/2
since X⊤β ∼ N(0, β⊤Σβ). Therefore, under the assumption

that X is a Gaussian process, Assumption (A1) holds with ρ (Σ) = 31/4‖Σ‖1/22 .
Assumption (A2) requires that ‖Z‖ψα < +∞, where Z = ‖X‖ℓ2 . The following proposition

provides some examples where such an assumption holds.

Proposition 2 Let Z = ‖X‖ℓ2 =
(∑n

i=1 |X(ti)|2
)1/2

. Then

- If X is a Gaussian process
‖Z‖ψ2

<
√

8/3
√
tr(Σ).

- If the random process X is such that ‖Z‖ψ2
< +∞, and there exists a constant C1 such that

‖Σ−1/2
ii |X(ti)|‖ψ2

≤ C1 for all i = 1, . . . , n, then

‖Z‖ψ2
< C1

√
tr(Σ).

- If X is a bounded process, meaning that there exists a constant R > 0 such that for all t ∈ T,
|X(t)| ≤ R, then for any α ≥ 1,

‖Z‖ψα ≤
√
nR(log 2)−1/α.

Assumption 2 will be used to control the deviation in operator norm between the sample
covariance matrix S and the true covariance matrix Σ in the sense of the following proposition
whose proof follows from Theorem 2.1 in [Mendelson and Pajor, 2006].

Proposition 3 Let X1, ...,XN be independent copies of the stochastic process X, let Z = ‖X‖ℓ2
and Xi = (Xi (t1) , ...,Xi (tn))

⊤ for i = 1, . . . , N . Recall that S = 1
N

N∑
i=1

XiX
⊤
i and Σ =

E
(
XX⊤). Suppose that X satisfies Assumption 2. Let d = min(n,N). Then, there exists

a universal constant δ∗ > 0 such that for all x > 0

P

(∥∥∥S−Σ
∥∥∥
2
> τd,N,nx

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
, (3.1)

where τN,n = max(A2
N,n, BN,n), with

AN,n = ‖Z‖ψα

√
log d(logN)1/α√

N
and BN,n =

ρ2 (Σ)√
N

+ ‖Σ‖1/22 AN,n.

Let us briefly comment Proposition 3 in some specific cases. If X is Gaussian, then Propo-
sition 2 implies that AN,n ≤ AN,n,1, where

AN,n,1 =
√

8/3
√
tr(Σ)

√
log d(logN)1/α√

N
≤

√
8/3 ‖Σ‖1/22

√
n

N

√
log d(logN)1/α, (3.2)
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and in this case inequality (3.1) becomes

P

(∥∥∥S−Σ
∥∥∥
2
> max

(
A2
N,n,1, BN,n,1

)
x
)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
(3.3)

for all x > 0, where BN,n,1 =
ρ2(Σ)√
N

+ ‖Σ‖1/22 AN,n,1.

If X is a bounded process by some constant R > 0 , then using Proposition 2 and by letting
α→ +∞, Proposition 3 implies that for all x > 0,

P

(∥∥∥S−Σ
∥∥∥
2
> max

(
A2
N,n,2, BN,n,2

)
x
)
6 exp

(
−δ−1

∗ x
)
, (3.4)

where

AN,n,2 = R

√
n

N

√
log d and BN,n,2 =

ρ2 (Σ)√
N

+ ‖Σ‖1/22 AN,n,2. (3.5)

Contrary to the low-dimensional case (n << N), in a high-dimensional setting when n >> N
or when n and N are of the same magnitude ( nN → c > 0 as n,N → +∞), inequalities (3.3) and

(3.4) cannot be used to conclude that the norm
∥∥∥S −Σ

∥∥∥
2
concentrates around zero. Actually,

it is well known that the sample covariance S is a bad estimator of Σ in a high-dimensional
setting, and that without any further restriction on the structure of the covariance matrix Σ,
then S cannot be a consistent estimator. However, we would like to point out that Proposition 3
relates the quality of S to the “true dimensionality” of the vector X = (X (t1) , ...,X (tn))

⊤ ∈ Rn

that is measured by the quantity ‖Z‖ψα with Z = ‖X‖ℓ2 . Indeed, if X is a low-dimensional
Gaussian process such that tr(Σ) = 1 then Proposition 3 and inequality (3.2) imply that

P

(∥∥∥S−Σ
∥∥∥
2
> max

(
A2
N , BN

)
x
)
6 exp

(
−(δ−1

∗ x)
1

2

)
(3.6)

for all x > 0, where AN =
√

8/3
√
logN(logN)1/α√

N
and BN = ρ2(Σ)√

N
+ ‖Σ‖1/22 AN . Hence, inequality

(3.6) shows that, under an assumption of low-dimensionality of the process X, the deviation in
operator norm between S and Σ depends on the ratio 1

N and not on n
N , and thus the quality of

S as an estimator of Σ is much better in such settings.
More generally, another assumption of low-dimensionality for the process X is to suppose

that it has a sparse representation in a dictionary of basis functions, which may also improve
the quality of S as an estimator of Σ. To see this, consider the simplest case X = X0, where
the process X0 has a sparse representation in the basis (gm)1≤m≤M given by

X0(t) =
∑

m∈J∗

amgm(t), t ∈ T, (3.7)

where J∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality |J∗| = s∗ and am, m ∈ J∗ are random
coefficients (possibly correlated). Under such an assumption, the following proposition holds.

Proposition 4 Suppose that X = X0 with X0 defined by (3.7) with s∗ ≤ min(n,M). Assume
that X satisfies Assumption 2 and that the matrix G⊤

J∗GJ∗ is invertible, where GJ∗ denotes the

9



n×|J∗| matrix obtained by removing the columns of G whose indices are not in J∗. Then, there
exists a universal constant δ∗ > 0 such that for all x > 0,

P

(∥∥∥S−Σ
∥∥∥
2
> τ̃N,s∗x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
, (3.8)

where τ̃N,s∗ = max(Ã2
N,s∗

, B̃N,s∗), with

ÃN,s∗ = ρ1/2max

(
G⊤
J∗GJ∗

)
‖Z̃‖ψα

√
log d∗(logN)1/α√

N
,

and

B̃N,s∗ =

(
ρmax

(
G⊤
J∗GJ∗

)

ρmin

(
G⊤
J∗GJ∗

)
)
ρ2 (Σ)√

N
+

(
ρmax

(
G⊤
J∗GJ∗

)

ρmin

(
G⊤
J∗GJ∗

)
)1/2

‖Σ‖1/22 Ãd∗,N,s∗,

with d∗ = min(N, s∗) and Z̃ = ‖aJ∗‖ℓ2 , where aJ∗ = (G⊤
J∗GJ∗)−1G⊤

J∗X ∈ Rs∗.

Using Proposition 2 and Proposition 4 it follows that

- If X = X0 is a Gaussian process then

ÃN,s∗ ≤
√
8/3

(
ρmax

(
G⊤
J∗GJ∗

)

ρmin

(
G⊤
J∗GJ∗

)
)1/2

‖Σ‖1/22

√
s∗
N

√
log d∗(logN)1/α (3.9)

- If X = X0 is such that the random variables am are bounded by for some constant R > 0,
then

ÃN,s∗ ≤ R‖g‖∞
√
s∗
N

√
log d∗ (3.10)

with ‖g‖∞ = max1≤m≤M ‖gm‖∞ where ‖gm‖∞ = supt∈T |gm(t)|.

Therefore, let us compare the bounds (3.9) and (3.10) with the inequalities (3.2) and (3.5).
It follows that, in the case X = X0, if the sparsity s∗ of X in the dictionary is small compared
to the number of time points n then the deviation between S and Σ is much smaller than in the
general case without any assumption on the structure of Σ. Obviously, the gain also depends on

the control of the ratio
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)
. Note that in the case of an orthonormal design (M = n

and G⊤G = In) then ρmax

(
G⊤
J∗GJ∗

)
= ρmin

(
G⊤
J∗GJ∗

)
= 1 for any J∗, and thus the gain in

operator norm between S and Σ clearly depends on the size of s∗
N compared to n

N . Supposing
that X = X0 also implies that the operator norm of the error term U in the matrix regression
model (2.8) is controlled by the ratio s∗

N instead of the ratio n
N when no assumptions are made

on the structure of Σ. This means that if X has a sparse representation in the dictionary then
the error term U becomes smaller.

10



3.2 An oracle inequality for the Frobenius norm

Consistency is first studied for the normalized Frobenius norm 1
n ‖A‖2F for an n× n matrix

A. The following theorem provides an oracle inequality for the group Lasso estimator Σ̂λ =
GΨ̂λG

⊤.

Theorem 1 Assume that X satisfies Assumption 2. Let ǫ > 0 and 1 ≤ s ≤ min(n,M). Suppose
that Assumption 1 holds with c0 = 3 + 4/ǫ, and that the covariance matrix Σnoise = E (W1) of
the noise is positive-definite. Consider the group Lasso estimator Σ̂λ defined by (2.5) with the
choices

γk = 2‖Gk‖ℓ2
√
ρmax(GG⊤),

and

λ = ‖Σnoise‖2
(
1 +

√
n

N
+

√
2δ logM

N

)2

for some constant δ > 1.

Then, with probability at least 1−M1−δ one has that

1

n

∥∥∥Σ̂λ −Σ
∥∥∥
2

F
≤ (1 + ǫ) inf

Ψ ∈ SM
M (Ψ) ≤ s

(
4

n

∥∥∥GΨG⊤ −Σ
∥∥∥
2

F
+

8

n
‖S−Σ‖2F (3.11)

+C(ǫ)
G2

maxρmax(G
⊤G)

κ2s,c0
‖Σnoise‖22

(
1 +

√
n

N
+

√
2δ logM

N

)4
M(Ψ)

n


 ,

where κ2s,c0 = ρmin(s)
2 − c0θ(G)ρmax(G

⊤G)s, and C(ǫ) = 8 ǫ
1+ǫ(1 + 2/ǫ)2.

The first term 1
n

∥∥GΨG⊤ −Σ
∥∥2
F

in inequality (3.11) is the bias of the estimator Σ̂λ. It

reflects the quality of the approximation of Σ by the set of matrices of the form GΨG⊤, with
Ψ ∈ SM and M (Ψ) ≤ s. As an example, suppose that X = X0, where the process X0 has a
sparse representation in the basis (gm)1≤m≤M given by

X0(t) =
∑

m∈J∗

amgm(t), t ∈ T,

where J∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality |J∗| = s∗ ≤ s and am,m ∈ J∗ are
random coefficients. Then, in this case, since s∗ ≤ s the bias term in (3.11) is equal to zero.

The second term 1
n ‖S−Σ‖2F in (3.11) is a variance term as the empirical covariance matrix

S is an unbiased estimator of Σ. Using the inequality 1
n ‖A‖

2
F ≤ ‖A‖22 that holds for any n× n

matrix A, it follows that 1
n ‖S−Σ‖2F ≤ ‖S−Σ‖22. Therefore, under the assumption that X has

a sparse representation in the dictionary (e.g. when X = X0 as above) then the variance term
1
n ‖S−Σ‖2F is controlled by the ratio s∗

N ≤ s
N (see Proposition 4) instead of the ratio n

N without
any assumption on the structure of Σ.

The third term in (3.11) is also a variance term due to the noise in the measurements (1.1).
If there exists a constant c > 0 independent of n and N such that n

N ≤ c then the decay of this

11



third variance term is essentially controlled by the ratio M(Ψ)
n ≤ s

n . Therefore, if M (Ψ) ≤ s

with sparsity s much smaller than n then the variance of the group Lasso estimator Σ̂λ is smaller
than the variance of S̃. This shows some of the improvements achieved by regularization (2.7)
of the empirical covariance matrix S̃ with a group Lasso penalty.

An important assumption of Theorem 1 is that the covariance matrix of the noise Σnoise =
E (W1) is positive definite. This restriction is clearly necessary as illustrated by the following
example: suppose that the contaminating process E (t) = ζg1(t) with ζ ∼ N(0, σ21), implying
that Σnoise = σ21g1g

⊤
1 with g1 = (g1(t1), . . . , g1(tn))

⊤ has n − 1 eigenvalues equal to zero.
Now, suppose that X(t) = a2g2(t) with a2 ∼ N(0, σ22). If σ1 > σ2 then the group LASSO
regularization alone cannot get rid of the additive error term without eliminating first the right
component g2. Hence, in such settings, group LASSO regularization does not yield to a consistent
estimation of Σ = σ22g2g

⊤
2 with g2 = (g2(t1), . . . , g2(tn))

⊤.

3.3 An oracle inequality for the operator norm

The “normalized” Frobenius norm 1
n

∥∥∥Σ̂λ −Σ
∥∥∥
2

F
, i.e the average of the eigenvalues of

(
Σ̂λ −Σ

)2
, can be viewed as a reasonable proxy for the operator norm

∥∥∥Σ̂λ −Σ
∥∥∥
2

2
(maxi-

mum eigenvalue of
(
Σ̂λ −Σ

)2
). It is thus expected that the results of Theorem 1 imply that

the group Lasso estimator Σ̂λ is a good estimator of Σ in operator norm. Let us recall that
controlling the operator norm enables to study the convergence of the eigenvectors and eigen-
values of Σ̂λ by controlling of the angles between the eigenspaces of a population and a sample
covariance matrix through the use of the sin(θ) theorems in [Davis and Kahan, 1970].

Now, let us consider the case where X consists in noisy observations of the process X0 (3.7)
meaning that

X̃(tj) = X0(tj) + E (tj) , j = 1, . . . , n, (3.12)

where E is a second order Gaussian process E with zero mean and independent of X0. In this
case, one has that

Σ = GΨ∗G⊤, where Ψ∗ = E

(
aa⊤

)
,

where a is the random vector of RM with am = am for m ∈ J∗ and am = 0 for m /∈ J∗.
Therefore, using Theorem 1 by replacing s by s∗ = |J∗|, since Ψ∗ ∈ {Ψ ∈ SM :M (Ψ) ≤ s∗},
one can derive the following corrollary:

Corollary 1 Suppose that the observations X̃i(tj) with i = 1, ..., N and j = 1, . . . , n are i.i.d
random variables from model (3.12) and that the conditions of Theorem 1 are satisfied with
1 ≤ s = s∗ ≤ min(n,M). Then, with probability at least 1−M1−δ one has that

1

n

∥∥∥Σ̂λ −Σ
∥∥∥
2

F
≤ C0 (n,M,N, s∗,S,Ψ

∗,G,Σnoise) , (3.13)

where

C0 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) = (1+ǫ)

(
8

n

∥∥∥S−GΨ∗G⊤
∥∥∥
2

F
+C(ǫ)

G2
maxρmax(G

⊤G)

κ2s∗,c0
λ2
s∗
n

)
.
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To simplify notations, write Ψ̂ = Ψ̂λ, with Ψ̂λ given by (2.7). Define Ĵλ ⊂ {1, . . . ,M} as

Ĵλ ≡ Ĵ :=

{
k :

δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2
> C1 (n,M,N, s∗,S,Ψ

∗,G,Σnoise)

}
, with δk =

‖Gk‖ℓ2
Gmax

, (3.14)

and C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) = C1 with

C1 = max

(
γ−1
maxn

−1/2 1 + ǫ

λ

∥∥∥S−GΨ∗G⊤
∥∥∥
2

F
;
4 (1 + ǫ)

√
s∗

ǫκs∗,c0

√
C0 (n,M,N, s∗,S,Ψ∗,G,Σnoise)

)
.

(3.15)
with γmax = 2Gmax

√
ρmax(G⊤G). The set of indices Ĵ is an estimation of the set of active

basis functions J∗. Note that such thresholding procedure (3.14) does not lead immediately to
a practical way to choose the set Ĵ . Indeed the constant C1 in (3.14) depends on the a priori
unknown sparsity s∗ and on the amplitude of the noise in the matrix regression model (2.8)

measured by the quantities 8
n

∥∥S−GΨ∗G⊤∥∥2
F

and ‖Σnoise‖22. Nevertheless, in Section 4 on
numerical experiments we give a simple procedure to automatically threshold the ℓ2-norm of the
columns of the matrix Ψ̂λ that are two small.

Note that to estimate J∗ we did not simply take Ĵ = Ĵ0 :=

{
k :

∥∥∥Ψ̂k

∥∥∥
ℓ2

6= 0

}
, but rather

apply a thresholding step to discard the columns of Ψ̂ whose ℓ2-norm are too small. By doing
so, we want to stress the fact that to obtain a consistent procedure with respect to the operator
norm it is not sufficient to simply take Ĵ = Ĵ0. A similar thresholding step is proposed in
[Lounici, 2008] and [Lounici et al., 2009] in the standard linear model to select a sparse set
of active variables when using regularization by a Lasso or group-Lasso penalty. In the paper
([Lounici, 2008]), the second thresholding step used to estimate the true sparsity pattern depends
on a unknown constant that is related to the amplitude of the unknown coefficients to estimate.

Then, the following theorem holds.

Theorem 2 Under the assumptions of Corollary 1, for any solution of problem (2.7), we have
that with probability at least 1−M1−δ,

max
1≤k≤M

δk√
n

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) . (3.16)

If in addition

min
k∈J∗

δk√
n
‖Ψ∗

k‖ℓ2 > 2C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) (3.17)

then with the same probability the set of indices Ĵ , defined by (3.14), estimates correctly the true
set of active basis functions J∗, that is Ĵ = J∗ with probability at least 1−M1−δ.

The results of Theorem 2 indicate that if the ℓ2-norm of the columns of Ψ∗
k for k ∈ J∗

are sufficiently large with respect to the level of noise in the matrix regression model (2.8)
and the sparsity s∗, then Ĵ is a consistent estimation of the active set of variables. Indeed, if
M (Ψ∗) = s∗, then by symmetry the columns of Ψ∗ such Ψ∗

k 6= 0 have exactly s∗ non-zero

entries. Hence, the condition (3.17) means that the ℓ2-norm of Ψ∗
k 6= 0 (normalized by δk√

n
) has
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to be larger than 4(1+ǫ)
ǫκs∗,c0

√
s∗
√
C0. A simple condition to satisfy such an assumption is that the

amplitude of the s∗ non-vanishing entries of Ψ∗
k 6= 0 are larger than

√
n
δk

4(1+ǫ)
ǫκs∗,c0

√
C0 which can be

interpreted as a kind of measure of the noise in model (2.8). This suggests to take as a final
estimator of Σ the following matrix:

Σ̂Ĵ = GĴΨ̂ĴGĴ (3.18)

where GĴ denotes the n× |Ĵ | matrix obtained by removing the columns of G whose indices are

not in Ĵ , and

Ψ̂Ĵ = argmin
Ψ∈S|Ĵ|

{∥∥∥S̃−GĴΨG⊤
Ĵ

∥∥∥
2

F

}
,

where S|Ĵ| denotes the set of |Ĵ |×|Ĵ | symmetric matrices. Note that if G⊤
Ĵ
GĴ is invertible, then

Ψ̂Ĵ =
(
G⊤
Ĵ
GĴ

)−1
G⊤
Ĵ
S̃GĴ

(
G⊤
Ĵ
GĴ

)−1
.

Let us recall that if the observations are i.i.d random variables from model (3.12) then

Σ = GΨ∗G⊤,

where Ψ∗ = E
(
aa⊤

)
, and a is the random vector of RM with am = am for m ∈ J∗ and am = 0

for m /∈ J∗. Then, define the random vector aJ∗ ∈ RJ
∗
whose coordinates are the random

coefficients am for m ∈ J∗. Let ΨJ∗ = E
(
aJ∗a⊤J∗

)
and denote by GJ∗ the n × |J∗| matrix

obtained by removing the columns ofG whose indices are not in J∗. Note thatΣ = GJ∗ΨJ∗G⊤
J∗ .

Assuming that G⊤
J∗GJ∗ is invertible, define the matrix

ΣJ∗ = Σ+GJ∗(G⊤
J∗GJ∗)−1G⊤

J∗ΣnoiseGJ∗

(
G⊤
J∗GJ∗

)−1
G⊤
J∗ . (3.19)

Then, the following theorem gives a control of deviation between Σ̂Ĵ and ΣJ∗ in operator norm.

Theorem 3 Suppose that the observations are i.i.d random variables from model (3.12) and
that the conditions of Theorem 1 are satisfied with 1 ≤ s = s∗ ≤ min(n,M). Suppose that
G⊤
J∗GJ∗ is an invertible matrix, and that

min
k∈J∗

δk√
n
‖Ψ∗

k‖ℓ2 > 2C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) ,

where C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) is the constant defined in (3.15). Let Y =
(
G⊤
J∗GJ∗

)−1
G⊤
J∗X̃ and Z̃ = ‖Y‖ℓ2 . Let ρ (Σnoise) =

(
supβ∈Rn,‖β‖ℓ2=1 E|E⊤β|4

)1/4
where

E = (E (t1) , ..., E (tn))
⊤. Then, with probability at least 1−M1−δ −M

−
(

δ⋆
δ∗

) α
2+α

, with δ > 1 and
δ⋆ > δ∗ one has that

∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤
J∗GJ∗

)
τ̃N,s∗δ⋆ (log(M))

2+α
α , (3.20)
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where τ̃N,s∗ = max(Ã2
N,s∗

, B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
log d∗(logN)1/α√

N
, B̃N,s∗ =

ρ̃2(Σ,Σnoise)ρ
−1

min(G
⊤
J∗GJ∗)√

N
+
(
‖ΨJ∗‖2 + ρ−1

min

(
G⊤
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗, where d

∗ = min(N, s∗)

and ρ̃(Σ,Σnoise) = 81/4
(
ρ4 (Σ) + ρ4 (Σnoise)

)1/4
.

First note that the above theorem gives a deviation in operator norm from Σ̂Ĵ to the matrix
ΣJ∗ (3.19) which is not equal to the true covariance Σ of X at the design points. Indeed,
even if we know the true sparsity set J∗, the additive noise in the measurements in model (1.1)
complicates the estimation of Σ in operator norm. However, although ΣJ∗ 6= Σ, they can have
the same eigenvectors if the structure of the additive noise matrix term in (3.19) is not too
complex. As an example, consider the case of an additive white noise, for which Σnoise = σ2In
where σ is the level of noise and In the n× n identity matrix. Under such an assumption, if we
further suppose for simplicity that (G⊤

J∗GJ∗)−1 = Is∗, thenΣJ∗ = Σ+σ2GJ∗(G⊤
J∗GJ∗)−1G⊤

J∗ =
Σ + σ2In and clearly ΣJ∗ and Σ have the same eigenvectors. Therefore, the eigenvectors of
Σ̂Ĵ can be used as estimators of the eigenvectors of Σ which is suitable for the sparse PCA
application described in the next section on numerical experiments.

Let us illustrate the implications of Theorem 3 on a simple example. If X is Gaussian, the

random vector Y =
(
G⊤
J∗GJ∗

)−1
G⊤
J∗ (X+ E) is also Gaussian and Proposition 2 can be used

to prove that

‖Z̃‖ψ2
≤

√
8/3

√
tr

((
G⊤
J∗GJ∗

)−1
G⊤
J∗ (Σ+Σnoise)GJ∗

(
G⊤
J∗GJ∗

)−1
)

≤
√

8/3‖Σ +Σnoise‖1/22 ρ
−1/2
min

(
G⊤
J∗GJ∗

)√
s∗.

Then Theorem 3 implies that with high probability
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤
J∗GJ∗

)
τ̃N,s∗,1δ (log(M))

2+α
α ,

where τ̃N,s∗,1 = max(Ã2
N,s∗,1

, B̃N,s∗,1), with

ÃN,s∗,1 =
√

8/3‖Σ+Σnoise‖1/22 ρ
−1/2
min

(
G⊤
J∗GJ∗

)√
log d∗(logN)1/α

√
s∗
N

and

B̃N,s∗,1 =
ρ̃2(Σ,Σnoise)ρ

−1
min

(
G⊤
J∗GJ∗

)
√
N

+
(
‖ΨJ∗‖2 + ρ−1

min

(
G⊤
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗,1.

Therefore, in the Gaussian case (but also under other assumptions for X such as those in

Proposition 2) the above equations show that the operator norm
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2

2
depends on the

ratio s∗
N . Recall that ‖S−Σ‖22 depends on the ratio n

N . Thus, using Σ̂Ĵ clearly yields significant
improvements if s∗ is small compared to n.

To summarize our results let us finally consider the case of an orthogonal design. Combining
Theorems 1, 2 and 3 one arrives at the following corrolary:
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Corollary 2 Suppose that the observations are i.i.d random variables from model (3.12). Sup-
pose that M = n and that G⊤G = In (orthogonal design) and that X0 satisfies Assumption 2.
Let ǫ > 0 and 1 ≤ s∗ ≤ min(n,M). Consider the group Lasso estimator Σ̂λ defined by (2.5)
with the choices

γk = 2, k = 1, . . . , n and λ = ‖Σnoise‖2
(
1 +

√
n

N
+

√
2δ logM

N

)2

for some constant δ > 1.

Suppose that
min
k∈J∗

‖Ψ∗
k‖ℓ2 > 2n1/2C̃1 (σ, n, s∗, N, δ) , (3.21)

where C̃1 (σ, n, s,N, δ) =
4(1+ǫ)

√
s∗

ǫ

√
C̃0 (σ, n, s∗, N, δ) and

C̃0 (σ, n, s∗, N, δ) = (1+ǫ)


 8

n

∥∥∥S−GΨ∗G⊤
∥∥∥
2

F
+ C(ǫ)‖Σnoise‖22

(
1 +

√
n

N
+

√
2δ logM

N

)4
s∗
n


 .

Take Ĵ :=

{
k :

∥∥∥Ψ̂k

∥∥∥
ℓ2
> n1/2C̃1 (σ, n, s,N, δ)

}
. Let Y = G⊤

J∗X̃ and Z̃ = ‖Y‖ℓ2 . Then, with

probability at least 1−M1−δ −M
−
(

δ⋆
δ∗

) α
2+α

, with δ > 1 and δ⋆ > δ∗ one has that
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ τ̃N,s∗δ⋆ (log(M))

2+α
α , (3.22)

where τ̃N,s∗ = max(Ã2
N,s∗

, B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
log d∗(logN)1/α√

N
and B̃N,s∗ = ρ̃2(Σ,Σnoise)√

N
+

(‖ΨJ∗‖2 + ‖Σnoise‖2)
1/2 ÃN,s∗ .

3.4 Comparison with the standard Lasso

In this work, we chose a Group Lasso estimation procedure rather than a standard Lasso. As
a matter of fact, for covariance estimation in our setting, the group structure enables to impose
a constraint on the number of non zero columns of the matrix Ψ and not on the single entries of
the matrix Ψ. This corresponds to the natural assumption of obtaining a sparse representation
of the process X(t) in the basis given by the functions gm’s and replacing its dimension by its
sparsity. Alternatively, the standard Lasso in our setting would be the estimator defined by

Ψ̂L = argmin
Ψ∈SM

{∥∥∥S̃−GΨG⊤
∥∥∥
2

F
+ 2λ

M∑

k=1

M∑

m=1

γmk|Ψmk|
}
,

where λ ≥ 0 is a regularization parameters and the γmk’s are positive weights. This procedure
leads to the following Lasso estimator of the covariance matrix Σ

Σ̂L = GΨ̂LG
⊤ ∈ R

n×n. (3.23)

In the orthogonal case (i.e. M = n and G⊤G = In), this gives rise to the estimator Ψ̂L obtained
by soft thresholding individually each entry Ymk of the matrix Y = G⊤S̃G with the thresholds
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λγmk. Proposition 5 (see below) allows a simple comparison of the statistical performances of
the group Lasso estimator Σ̂L with those of the standard Lasso estimator Σ̂λ in terms of upper
bounds for the Frobenius norm. To simplify the discussion, we only consider the orthogonal
case and the simple model

X̃(tj) = X0(tj) + E (tj) , j = 1, . . . , n, (3.24)

where the process X0 is defined in (3.7). The statement of the result for the group Lasso is
an immediate consequence of Theorem 1, while the proof to obtain the upper bound for the
standard Lasso is an immediate adaptation of the arguments in the proof of Theorem 1.

Proposition 5 Assume that X satisfies model (3.24) and that the covariance matrix Σnoise =
E (W1) of the noise is positive-definite. Consider the group Lasso estimator Σ̂λ and the standard
Lasso estimator Σ̂L with the choices

γk = 2, γmk = 2, λ = ‖Σnoise‖2
(
2 +

√
2δ logM

N

)2

for some constant δ > 1.

Then, there exist two positive constants C1, C2 not depending on n,N, s∗ such that with proba-
bility at least 1−M1−δ one has that

1

n

∥∥∥Σ̂λ −Σ
∥∥∥
2

F
≤ C1

n
‖S−Σ‖2F + C2‖Σnoise‖22

(
2 +

√
2δ log n

N

)4
s∗
n
,

and

1

n

∥∥∥Σ̂L −Σ
∥∥∥
2

F
≤ C1

n
‖S−Σ‖2F + C2‖Σnoise‖22

(
2 +

√
2δ log n

N

)4
s2∗
n
.

Proposition 5 illustrates the advantages of the Group Lasso over the standard Lasso. Indeed,
the second term in the upper bound for the group Lasso is much smaller (of the order s∗

n ) than

the second term in the upper bound for the standard Lasso (of the order s2∗
n ). This comes from

the fact that the sparsity prior of the Group Lasso is on the number of vanishing columns of the
matrix Ψ, while the sparsity prior of the standard Lasso only controls the number of non-zero
entries of Ψ. However, to really demonstrate the benefits of our method when compared to the
performances of the standard Lasso, it is required to also derive lower bounds. This issue is a
difficult task which has been considered in few papers and that is beyond the scope of this paper.
For recent work in this direction, we refer to [Huang and Zhang, 2010] for regression models or
[Lounici et al., 2011] and [Lounici et al., 2009] for linear regression and multi-task learning.

However, the analysis in [Huang and Zhang, 2010, Lounici et al., 2011] of Group Lasso reg-
ularization is carried out the setting of multiple regression models where the parameters
to estimate are vectors and with error terms that are centered. Therefore, the results in
[Huang and Zhang, 2010, Lounici et al., 2011] cannot be applied to the matrix regression model
(2.4) since, in our setting, the parameter to estimate is the matrix Σ and the error termsUi+Wi

in (2.4) are not centered.
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4 Numerical experiments and an application to sparse PCA

In this section we present some simulated examples to illustrate the practical behaviour of the
covariance matrix estimator by group Lasso regularization proposed in this paper. In particular,
we show its performances with an application to sparse Principal Components Analysis (PCA).
In the numerical experiments, we use the explicit estimator described in Proposition 1 in the
case M = n and an orthogonal design matrix G, and also the estimator proposed in the more
general situation when n < M . The programs for our simulations were implemented using the
MATLAB programming environment.

4.1 Description of the estimating procedure and the data

We consider a noisy stochastic processes X̃ on T = [0, 1] with values in R observed at fixed
location points t1, ..., tn in [0, 1], generated according to

X̃(tj) = X0(tj) + σǫj , j = 1, . . . , n, (4.1)

where σ > 0 is the level of noise, ǫ1, . . . , ǫn are i.i.d. standard Gaussian variables, and X0 is
a random process independent of the ǫj ’s. For the process X0 we consider two simple models.
The first one is given by

X0(t) = af(t), (4.2)

where a is a Gaussian random coefficient such that Ea = 0, Ea2 = γ2, and f : [0, 1] → R is an
unknown function. The second model for X0 is

X0(t) = a1f1(t) + a2f2(t), (4.3)

where a1 and a2 are independent Gaussian variables such that Ea1 = Ea2 = 0, Ea21 = γ21 ,
Ea22 = γ22 (with γ1 > γ2), and f1, f2 : [0, 1] → R are unknown functions. The simulated data

consists in a sample of N independent observations of the process X̃ at the points t1, ..., tn,
which are generated according to (4.1). Therefore, throughout the numerical experiments, one
has that

Σnoise = σ2In.

In model (4.2), the covariance matrix Σ of the process X0 at the locations points is given
by Σ = γ2FF⊤, where by definition

F = (f (t1) , ..., f (t1))
⊤ ∈ R

n.

Note that the largest eigenvalue of Σ is γ2‖F‖2ℓ2 with corresponding eigenvector F. We suppose
that the signal f has some sparse representation in a large dictionary of basis functions of sizeM ,
given by {gm, m = 1, . . . ,M}, meaning that f (t) =

∑M
m=1 βmgm (t) , with J∗ = {m,βm 6= 0}

of small cardinality s∗. Then, the process X0 can be written as X0(t) =
∑M

m=1 aβmgm (t) ,
and thus Σ = γ2GΨJ∗G⊤, where ΨJ∗ is an M ×M matrix with entries equal to βmβm′ for
1 ≤ m,m′ ≤M .
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Similarly, in model (4.3), the covariance matrix Σ of the process X0 at the locations points
is given by Σ = γ21F1F

⊤
1 + γ22F2F

⊤
2 , where by definition

F1 = (f1 (t1) , ..., f (t1))
⊤ ∈ R

n and F2 = (f2 (t1) , ..., f (t1))
⊤ ∈ R

n.

In the following simulations, the functions f1 and f2 are chosen such that F1 and F2 are or-
thogonal vectors in Rn with ‖F1‖ℓ2 = 1 and ‖F2‖ℓ2 = 1. Under such an assumption and since
γ1 > γ2, the largest eigenvalue of Σ is γ21 with corresponding eigenvector F1, and the second
largest eigenvalue of Σ is γ22 with corresponding eigenvector F2. We suppose that the signals f1
and f2 have some sparse representations in a large dictionary of basis functions of size M , given
by f1 (t) =

∑M
m=1 β

1
mgm (t) , and f2 (t) =

∑M
m=1 β

2
mgm (t). Then, the process X0 can be written

as X0(t) =
∑M

m=1(a1β
1
m + a2β

2
m)gm (t) and thus Σ = G(γ21Ψ

1 + γ22Ψ
2)G⊤, where Ψ1,Ψ2 are

M ×M matrix with entries equal to β1m(β
1
m)

′ and β2m(β
2
m)

′ for 1 ≤ m,m′ ≤M respectively.
In models (4.2) and (4.3), we aim at estimating either F or F1,F2 by the eigenvectors

corresponding to the largest eigenvalues of the matrix Σ̂Ĵ defined in (3.18), in a high-dimensional
setting with n > N and by using different type of dictionaries. The idea behind this is that
Σ̂Ĵ is a consistent estimator of ΣJ∗ (see its definition in 3.19) in operator norm. Although the
matrices ΣJ∗ and Σ may have different eigenvectors (depending on the design points and chosen
dictionary), the examples below show the eigenvectors of Σ̂Ĵ can be used as estimators of the
eigenvectors of Σ.

The estimator Σ̂Ĵ of the covariance matrix Σ is computed as follows. Once the dictionary

has been chosen, we compute the covariance group Lasso (CGL) estimator Σ̂
λ̂
= GΨ̂

λ̂
G⊤,

where Ψ̂
λ̂
is defined in (2.7). We use a completely data-driven choice for the regularizarion

parameter λ, given by λ̂ = ‖Σ̂noise‖2
(
1 +

√
n
N +

√
2δ logM

N

)2

, where ‖Σ̂noise‖2 = σ̂2 is the

median absolute deviation (MAD) estimator of σ2 used in standard wavelet denoising (see e.g.
[Antoniadis et al., 2001]) and δ = 1.1. Hence, the method to compute Σ̂

λ̂
is fully data-driven.

Furthermore, we will show in the examples below that replacing λ by λ̂ into the penalized
criterion yields a very good practical performance of the covariance estimation procedure.

As a final step, one needs to compute the estimator Σ̂Ĵ of Σ, as in (3.18). For this, we

need to have an idea of the true sparsity s∗, since Ĵ defined in (3.14) depends on s∗ and also
on unknown upper bounds on the level of noise in the matrix regression model (2.8) . A similar
problem arises in the selection of a sparse set of active variables when using regularization by
a Lasso penalty in the standard linear model. As an example, recall that in [Lounici, 2008],
a second thresholding step is aso used to estimate the true sparsity pattern. However, the
suggested thresholding procedure in [Lounici, 2008] also depends on a priori unknown quantities
(such as the amplitude of the coefficients to estimate). To overcome this drawback in our case,
we can define the final covariance group Lasso (FCGL) estimator as the matrix

Σ̂Ĵ = GĴΨ̂ĴG
⊤
Ĵ
, (4.4)

with Ĵ = Ĵǫ =

{
k :

∥∥∥Ψ̂k

∥∥∥
ℓ2
> ε

}
, where ε is a positive constant. To select an appropriate value

of ǫ, one can plot the cardinality of Ĵǫ as a function of ǫ, and then use an L-curve criterion to
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only keep in Ĵ the indices of the columns of Ψ̂
λ̂
with a significant value in ℓ2-norm. This choice

for Ĵ is sufficient for numerical purposes.
In the simulations, to measure the accuracy of the estimation procedure, we also use

the empirical average of the Frobenius and operator norm of the estimators Σ̂λ̂ and Σ̂Ĵ

with respect to the true covariance matrix Σ defined by EAFN = 1
P

P∑
p=1

∥∥∥Σ̂p

λ̂
−Σ

∥∥∥
F

and

EAON = 1
P

P∑
p=1

∥∥∥Σ̂p

Ĵ
−Σ

∥∥∥
2
respectively, over a number P of iterations, where Σ̂p

λ̂
and Σ̂p

Ĵ
are

the CGL and FCGL estimators of Σ, respectively, obtained at the p-th iteration. We also com-
pute the empirical average of the operator norm of the estimator Σ̂Ĵ with respect to the matrix

ΣJ∗, defined by EAON∗ = 1
P

P∑
p=1

∥∥∥Σ̂p

Ĵ
−ΣJ∗

∥∥∥
2
.

4.2 Model (4.2) - case of an orthonormal design (with n = M)

First, the size of the dictionary M as well as the basis functions {gm,m = 1, ...,M} have
to be specified. In model (4.2), we will use for the test function f the signals HeaviSine and
Blocks (see e.g. [Antoniadis et al., 2001] for a definition), and the Symmlet 8 and Haar wavelet
basis for the HeaviSine and Blocks signals respectively, which are implemented in the Matlab’s
open-source library WaveLab (see e.g. [Antoniadis et al., 2001] for further references on wavelet
methods in nonparametric statistics). Then, we took n = M and the location points t1, ..., tn
are given by the equidistant grid of points tj =

j
M , j = 1, . . . ,M such that the design matrix G

(using either the Symmlet 8 or the Haar basis) is orthogonal.
Figures 1, 2, and 3 present the results obtained for a particular simulated sample of size

N = 25 according to (4.1), with n = M = 256, σ = 0.015, γ = 0.5 and with f being either the
function HeaviSine or the function Blocks. It can be observed in Figures 1(a) and 1(b) that, as
expected in this high dimensional setting (N < n), the empirical eigenvector of S̃ associated to
its largest empirical eigenvalue does not lead to a consistent estimator of F.

The CGL estimator Σ̂
λ̂
is computed directly from Proposition 1. In Figures 2(a) and 2(b),

we display the eigenvector associated to the largest eigenvalue of Σ̂
λ̂
as an estimator of F. Note

that this estimator behaves poorly. The estimation considerably improves by taking the FCGL
estimator Σ̂Ĵ defined in (4.4). Figures 3(a) and 3(b) illustrate the very good performance of the

eigenvector associated to the largest eigenvalue of the matrix Σ̂Ĵ as an estimator of F.

It is clear that the estimators Σ̂
λ̂
and Σ̂Ĵ are random matrices that depend on the observed

sample. Tables 1(a) and 1(b) show the values of EAFN , EAON and EAON∗ corresponding
to P = 100 simulated samples of different sizes N and different values of the level of noise σ.
It can be observed that for both signals the empirical averages EAFN , EAON and EAON∗

behaves similarly, being the values of EAON smaller than its corresponding values of EAFN
as expected. Observing each table separately we can remark that, for N fixed, when the level
of noise σ increases then the values of EAFN , EAON and EAON∗ also increase. By simple
inspection of the values of EAFN , EAON and EAON∗ in the same position at Tables 1(a) and
1(b) we can check that, for σ fixed, when the number of replicates N increases then the values
of EAFN , EAON and EAON∗ decrease in all cases. We can also observe how the difference
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between EAON and EAON∗ is bigger as the level of noise increases.

Table 1(a). Values of EAFN , EAON and EAON∗ corresponding to signals
HeaviSine and Blocks for M = n = 256, N = 25.

Signal σ 0.005 0.01 0.05 0.1 0.5 1

HeaviSine EAFN 0.0634 0.0634 0.2199 0.2500 0.2500 0.2500

HeaviSine EAON 0.0619 0.0569 0.1932 0.2500 0.2500 0.2500

HeaviSine EAON∗ 0.0619 0.0569 0.1943 0.2600 0.5000 1.2500

Blocks EAFN 0.0553 0.0681 0.2247 0.2500 0.2500 0.2500

Blocks EAON 0.0531 0.0541 0.2083 0.2500 0.2500 0.2500

Blocks EAON∗ 0.0531 0.0541 0.2107 0.2600 0.5000 1.2500

Table 1(b). Values of EAFN , EAON and EAON∗ corresponding to signals
HeaviSine and Blocks for M = n = 256, N = 40.

Signal σ 0.005 0.01 0.05 0.1 0.5 1

HeaviSine EAFN 0.0501 0.0524 0.1849 0.2499 0.2500 0.2500

HeaviSine EAON 0.0496 0.0480 0.1354 0.2496 0.2500 0.2500

HeaviSine EAON∗ 0.0496 0.0480 0.1366 0.2596 0.5000 1.2500

Blocks EAFN 0.0485 0.0494 0.2014 0.2500 0.2500 0.2500

Blocks EAON 0.0483 0.0429 0.1871 0.2500 0.2500 0.2500

Blocks EAON∗ 0.0483 0.0429 0.1893 0.2600 0.5000 1.2500

4.3 Model (4.3) - the case M = 2n by mixing two orthonormal basis

Consider now the setting of model (4.3) with γ1 = 0.5, γ2 = 0.2, σ = 0.045, N = 25 and an
equidistant grid of design points t1, ..., tn given by tj =

j
n , j = 1, . . . , n with n = 128. For the

signals f1 and f2 we took the test functions displayed in Figure 4(a) and 4(b). Obviously, the
signal f1 has a sparse representation in a Haar basis while the signal f2 has a sparse representation
in a Fourier basis. Thus, this suggests to construct a dictionary by mixing two orthonormal
basis. More precisely, we construct a n × n orthogonal matrix G1 using the Haar basis and a
n × n orthogonal matrix G2 using a Fourier basis (cosine and sine at various frequencies) at
the design points. Then, we form the n ×M design matrix G = [G1 G2] with M = 2n. The
CGL estimator Σ̂

λ̂
is computed by the minimization procedure (2.7) using the Matlab package

minConf of [Schmidt et al., 2008].
In Figures 5(a) and 5(b), we display the eigenvector associated to the largest eigenvalue of

Σ̂
λ̂
as an estimator of F1, and the eigenvector associated to the second largest eigenvalue of Σ̂

λ̂
as an estimator of F2. Note that these estimators behaves poorly. The estimation considerably
improves by taking the FCGL estimator Σ̂Ĵ defined in (4.4). Figures 6(a) and 6(b) illustrate
the very good performance of the eigenvectors associated to the largest eigenvalue and second
largest eigenvalue of the matrix Σ̂Ĵ as estimators of F1 and F2.

Finally, to illustrate the benefits of mixing two orthonormal basis, we also display in Figures
7 and 8 the estimation of F1 and F2 when computing the matrix Σ̂Ĵ by using either only the
Haar basis (i.e. G = G1 and M = n) or only the Fourier basis (i.e. G = G1 and M = n). The
results are clearly much worse and not satisfactory.
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4.4 Model (4.2) - case of non equispaced design points such that n < M

Let us now return to the setting of model (4.2). The test functions f are either the signal
HeaviSine and or the signal Blocks. We also use the Symmlet 8 and Haar wavelet basis for the
HeaviSine and Blocks functions respectively. However, we now choose to take a setting where
the number of design points n is smaller than the size M of the dictionary. Taking n < M ,
the location points are given by a subset {t1, ..., tn} ⊂ { k

M : k = 1, ...,M} of size n, such that
the design matrix G is an n ×M matrix (using either the Symmlet 8 and Haar basis). For
a fixed value of n, the subset {t1, ..., tn} is chosen by taking the first n points obtained from
a random permutation of the elements of the set { 1

M , 2
M , ..., 1}. Figures 9 and 10 present the

results obtained for a particular simulated sample of size N = 25 according to (4.1), with n = 90,
M = 128, σ = 0.02, γ = 0.5 and with f being either the function HeaviSine or the function
Blocks. It can be observed in Figures 9(a) and 9(b) that, as expected in this high dimensional
setting (N < n), the empirical eigenvector of S̃ associated to its largest empirical eigenvalue
are noisy versions of F. As explained previously, the CGL estimator Σ̂

λ̂
is computed by the

minimization procedure (2.7) using the Matlab package minConf of [Schmidt et al., 2008]. In
Figures 10(a) and 10(b) is shown the eigenvector associated to the largest eigenvalue of Σ̂

λ̂
as

an estimator of F. Note that this estimator is quite noisy. Again, the eigenvector associated to
the largest eigenvalue of the matrix Σ̂

Ĵ
defined in (4.4) is much a better estimator of F. This is

illustrated in Figures 11(a) and 11(b). To compare the accuracy of the estimators for different
simulated samples, we compute the values of EAFN , EAON and EAON∗ with fixed values of
σ = 0.05, M = 128, N = 40, P = 50 for different values of the number of design points n. For
all the values of n considered, the design points t1, ..., tn are selected as the first n points obtained
from the same random permutation of the elements of the set { 1

M ,
2
M , ..., 1}. The chosen subset

{t1, ..., tn} is used for all the P iterations needed in the computation of the empirical averages
(fixed design over the iterations). Figure 12 shows the values of EAFN , EAON and EAON∗

obtained for each value of n for both signals HeaviSine and Blocks. It can be observed that the
values of the empirical averages EAON and EAON∗ are much smaller than its corresponding
values of EAFN as expected. We can remark that, when n increases, the values of EAFN ,
EAON and EAON∗ first increase and then decrease, and the change of monotony occurs when
n > N . Note that the case n =M = 128 is included in these results.
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Orthonormal case - Model (4.2)
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Figure 1(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of S̃
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Figure 2(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of Σ̂
λ̂
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Figure 3(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of Σ̂Ĵ
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Figure 1(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of S̃
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Figure 2(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of Σ̂
λ̂
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Figure 3(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of Σ̂Ĵ
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Case M = 2n (Haar + Fourier basis)
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Figure 4(a). Signal F1
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Figure 5(a). Signal F1 and Eigenvector
associated to the largest eigenvalue of

Σ̂
λ̂
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Figure 6(b). Signal F1 and
Eigenvector associated to the largest
eigenvalue of Σ̂Ĵ with G = [G1 G2]
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Figure 4(b). Signal F2
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Figure 5(b). Signal F2 and
Eigenvector associated to the second

largest eigenvalue of Σ̂
λ̂
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Figure 6(b). Signal F2 and Eigenvector
associated to the second largest

eigenvalue of Σ̂
Ĵ
with G = [G1 G2]
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Orthonormal case M = n (Haar)
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Figure 7(a). Signal F1 and Eigenvector
associated to the largest eigenvalue of

Σ̂Ĵ with G = G1
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Figure 7(b). Signal F2 and
Eigenvector associated to the second
largest eigenvalue of Σ̂

Ĵ
with G = G1

Orthonormal case M = n (Fourier)
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Figure 8(a). Signal F1 and Eigenvector
associated to the largest eigenvalue of

Σ̂Ĵ with G = G2
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Figure 8(b). Signal F2 and
Eigenvector associated to the second
largest eigenvalue of Σ̂Ĵ with G = G2

25



Non equi-spaced points with n < M
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Figure 9(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of S̃
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Figure 10(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of Σ̂
λ̂
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Figure 11(a). Signal HeaviSine and
Eigenvector associated to the largest

eigenvalue of Σ̂
Ĵ
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Figure 9(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of S̃
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Figure 10(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of Σ̂
λ̂
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Figure 11(b). Signal Blocks and
Eigenvector associated to the largest

eigenvalue of Σ̂Ĵ
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Figure 12(b). Values of EAFN , EAON
and EAON∗ for Signal Blocks as a

function of n

A

A.1 Notations

First let us introduce some notations and properties that will be used throughout this Ap-
pendix. The vectorization of a p × q matrix A = (aij)1≤i≤p,1≤j≤q is the pq × 1 column vector
denoted by vec (A), obtain by stacking the columns of the matrix A on top of one another. That
is vec(A) = [a11, ..., ap1, a12, ..., ap2, ..., a1q , ..., apq]

⊤. If A = (aij)1≤i≤k,1≤j≤n is a k × n matrix
and B = (bij)1≤i≤p,1≤j≤q is a p × q matrix, then the Kronecker product of the two matrices,
denoted by A⊗B, is the kp× nq block matrix

A⊗B =




a11B . . . a1nB
. . .
. . .
. . .

ak1B . . . aknB



.

In what follows, we repeatedly use the fact that the Frobenius norm is invariant by the vec
operation meaning that

‖A‖2F = ‖vec (A) ‖2ℓ2 , (A.1)

and the properties that

vec (ABC) =
(
C⊤⊗A

)
vec (B) , (A.2)

and
(A⊗B)(C ⊗D) = AC⊗BD, (A.3)

provided the above matrix products are compatible.
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A.2 Proof of Proposition 1

Lemma 1 Let Ψ̂ = Ψ̂λ denotes the solution of (2.7). Then, for k = 1, . . . ,M

[
(G⊗G)⊤

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k
= λγk

Ψ̂k

‖Ψ̂k‖ℓ2
if Ψk 6= 0

∥∥∥∥
[
(G⊗G)⊤

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k∥∥∥∥
ℓ2

≤ λγk if Ψ̂k = 0

where Ψ̂k denotes the k-th column of the matrix Ψ̂ and the notation [β]k denotes the vector
(βk,m)m=1,...,M in RM for a vector β = (βk,m)k,m=1,...,M ∈ RM

2

.

Proof of Lemma 1 For Ψ ∈ RM×M define

L(Ψ) =
∥∥∥S̃−GΨG⊤

∥∥∥
2

F
=

∥∥∥vec(S̃)− (G⊗G)vec(Ψ)
∥∥∥
2

ℓ2
,

and remark that Ψ̂ is the solution of the convex optimization problem

Ψ̂ = argmin
Ψ∈SM



L(Ψ) + 2λ

M∑

k=1

γk

√√√√
M∑

m=1

Ψ2
mk



 .

It follows from standard arguments in convex analysis (see e.g. [Boyd and Vandenberghe, 2004]),
that Ψ̂ is a solution of the above minimization problem if and only if

−∇L(Ψ̂) ∈ 2λ∂




M∑

k=1

γk

√√√√
M∑

m=1

Ψ̂2
mk




where ∇L(Ψ̂) denotes the gradient of L at Ψ̂ and ∂ denotes the subdifferential given by

∂




M∑

k=1

γk

√√√√
M∑

m=1

Ψ2
mk


 =

{
Θ ∈ R

M×M : Θk = γk
Ψk

‖Ψk‖ℓ2
if Ψk 6= 0, ‖Θk‖ℓ2 ≤ γk if Ψk = 0

}

where Θk denotes the k-th column of Θ ∈ RM×M which completes the proof. �

Now, let Ψ ∈ SM with M = n and suppose that G⊤G = In. Let Y = (Ymk)1≤m,k≤M =

G⊤S̃G and remark that vec(Y) = (G⊗G)⊤ vec(S̃). Then, by using Lemma 1 and the fact
that G⊤G = In implies that (G ⊗ G)⊤ (G⊗G) = In2 , it follows that Ψ̂ = Ψ̂λ satisfies for
k = 1, . . . ,M the following equations

Ψ̂k


1 +

λγk√∑M
m=1 Ψ̂

2
mk


 = Yk for all Ψ̂k 6= 0,

28



and √√√√
M∑

m=1

Y2
mk ≤ λγk for all Ψ̂k = 0.

where Ψ̂k = (Ψ̂mk)1≤m≤M ∈ RM andYk = (Ymk)1≤m≤M ∈ RM , which implies that the solution
is given by

Ψ̂mk =





0 if
√∑M

m=1 Y
2
mk ≤ λγk

Ymk

(
1− λγk√∑M

j=1
Y2

jk

)
if

√∑M
m=1 Y

2
mk > λγk

which completes the proof of Proposition 1. �

A.3 Proof of Proposition 2

First suppose that X is Gaussian. Then, remark that for Z = ‖X‖ℓ2 , one has that ‖Z‖ψ2
<

+∞ which implies that ‖Z‖ψ2
= ‖Z2‖1/2ψ1

. Since Z2 =
∑n

i=1 |X(ti)|2 it follows that

‖Z2‖ψ1
≤

n∑

i=1

‖Z2
i ‖ψ1

=

n∑

i=1

‖Zi‖2ψ2
=

n∑

i=1

Σii‖Σ−1/2
ii Zi‖2ψ2

,

where Zi = X(ti), i = 1, . . . , n and Σii denotes the ith diagonal element of Σ. Then, the result
follows by noticing that ‖Y ‖ψ2

≤
√

8/3 if Y ∼ N(0, 1). The proof for the case where X is

such that ‖Z‖ψ2
< +∞ and there exists a constant C1 such that ‖Σ−1/2

ii Zi‖ψ2
≤ C1 for all

i = 1, . . . , n follows from the same arguments.
Now, consider the case where X is a bounded process. Since there exists a constant R > 0

such that for all t ∈ T, |X(t)| ≤ R, it follows that for Z = ‖X‖ℓ2 then Z ≤ √
nR which

implies that for any α ≥ 1, ‖Z‖ψα ≤ √
nR(log 2)−1/α, (by definition of the norm ‖Z‖ψα) which

completes the proof of Proposition 2. �

A.4 Proof of Proposition 4

Under the assumption that X = X0, it follows that Σ = GΨ∗G⊤ with Ψ∗ = E
(
aa⊤

)
,

where a is the random vector of RM with am = am for m ∈ J∗ and am = 0 for m /∈ J∗.
Then, define the random vector aJ∗ ∈ RJ

∗
whose coordinates are the random coefficients am

for m ∈ J∗. Let ΨJ∗ = E
(
aJ∗a⊤J∗

)
. Note that Σ = GJ∗ΨJ∗G⊤

J∗ and S = GJ∗Ψ̂J∗G⊤
J∗ , with

Ψ̂J∗ = 1
N

∑N
i=1 a

i
J∗(aiJ∗)⊤, where aiJ∗ ∈ RJ

∗
denotes the random vector whose coordinates are

the random coefficients aim for m ∈ J∗ such that Xi(t) =
∑

m∈J∗ aimgm(t), t ∈ T.

Therefore, Ψ̂J∗ is a sample covariance matrix of size s∗×s∗ and we can control its deviation in
operator norm from Ψ̂J∗ by using Proposition 3. For this we simply have to verify conditions sim-
ilar to (A1) and (A2) in Assumption 2 for the random vector aJ∗ = (G⊤

J∗GJ∗)−1G⊤
J∗X ∈ Rs∗.

First, let β ∈ Rs∗ with ‖β‖ℓ2 = 1. Then, remark that a⊤J∗β = X⊤β̃ with β̃ = GJ∗

(
G⊤
J∗GJ∗

)−1
β.

Since ‖β̃‖ℓ2 ≤
(
ρmin

(
G⊤
J∗GJ∗

))−1/2
and using that X satisfies Assumption 2 it follows that

(
E|a⊤J∗β|4

)1/4
≤ ρ (Σ) ρ

−1/2
min

(
G⊤
J∗GJ∗

)
. (A.4)

29



Now let Z̃ = ‖aJ∗‖ℓ2 ≤ ρ
−1/2
min

(
G⊤
J∗GJ∗

)
‖X‖ℓ2 . Given our assumptions on X it follows that

there exists α ≥ 1 such that

‖Z̃‖ψα ≤ ρ
−1/2
min

(
G⊤
J∗GJ∗

)
‖Z‖ψα < +∞, (A.5)

where Z = ‖X‖ℓ2 . Hence, using the relations (A.4) and (A.5), and Proposition 3 (with aJ∗

instead of X), it follows that there exists a universal constant δ∗ > 0 such that for all x > 0,

P

(∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> τ̃d∗,N,s∗,1x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
,

where τ̃d∗,N,s∗,1 = max(Ã2
d∗,N,s∗,1

, B̃d∗,N,s∗,1), with Ãd∗,N,s∗,1 = ‖Z̃‖ψα

√
log d∗(logN)1/α√

N
,

B̃d∗,N,s∗,1 =
ρ2(Σ)ρ−1

min(G
⊤
J∗GJ∗)√

N
+ ‖ΨJ∗‖1/22 Ãd∗,N,s∗,1 and d∗ = min(N, s∗). Then, using the

inequality ‖S−Σ‖2 ≤ ρmax

(
G⊤
J∗GJ∗

)
‖Ψ̂J∗ −ΨJ∗‖2, it follows that

P

(
‖S−Σ‖2 ≥ ρmax

(
G⊤
J∗GJ∗

)
τ̃d∗,N,s∗,1x

)

≤ P

(
ρmax

(
G⊤
J∗GJ∗

)∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> ρmax

(
G⊤
J∗GJ∗

)
τ̃d∗,N,s∗,1x

)

= P

(∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
> τ̃d∗,N,s∗,1x

)

6 exp
(
−(δ−1

∗ x)
α

2+α

)
.

Hence, the result follows with

τ̃N,s∗ = ρmax

(
G⊤
J∗GJ∗

)
τ̃d∗,N,s∗,1

= max(ρmax

(
G⊤
J∗GJ∗

)
Ã2
d∗,N,s∗,1, ρmax

(
G⊤
J∗GJ∗

)
B̃d∗,N,s∗,1)

= max(Ã2
d∗,N,s∗, B̃d∗,N,s∗),

where Ãd∗,N,s∗ = ρ
1/2
max

(
G⊤
J∗GJ∗

)
‖Z̃‖ψα

√
log d∗(logN)1/α√

N
and, using the inequality

‖ΨJ∗‖2 =
∥∥∥∥
(
G⊤
J∗GJ∗

)−1
G⊤
J∗ΣGJ∗

(
G⊤
J∗GJ∗

)−1
∥∥∥∥
2

≤ ρ−1
min

(
G⊤
J∗GJ∗

)
‖Σ‖2 ,

B̃d∗,N,s∗ =

(
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)

)
ρ2(Σ)√
N

+

(
ρmax(G⊤

J∗GJ∗)
ρmin(G⊤

J∗GJ∗)

)1/2

‖Σ‖1/22 Ãd∗,N,s∗.

A.5 Proof of Theorem 1

Let us first prove the following lemmas.

Lemma 2 Let E1, ..., EN be independent copies of a second order Gaussian process E with zero

mean. Let W = 1
N

N∑
i=1

Wi with

Wi = EiE⊤
i ∈ R

n×n and Ei = (Ei (t1) , ..., Ei (tn))⊤ , i = 1, . . . , N.
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Suppose that Σnoise = E (W1) is positive-definite. For 1 ≤ k ≤ M , let ηk be the k-th column of
the matrix G⊤WG. Then, for any x > 0,

P


‖ηk‖ℓ2 ≥ ‖Gk‖ℓ2

√
ρmax(GG⊤)‖Σnoise‖2

(
1 +

√
n

N
+

√
2x

N

)2

 ≤ exp(−x).

Proof of Lemma 2: by definition one has that ‖ηk‖2ℓ2 = G⊤
kWGG⊤WGk where Gk denotes

the k-th column of G. Hence

‖ηk‖2ℓ2 ≤ ‖Gk‖2ℓ2ρmax(GG⊤)‖W‖22. (A.6)

Using the assumption thatΣnoise is positive-definite define the random vectors Zi = Σ
−1/2
noiseEi, i =

1, . . . , n. Note that the Zi’s are i.i.d. Gaussian vectors in Rn with zero mean and covariance
matrix the identity. Then, define the N × n matrix

Γ =
1√
N




Z⊤
1
...
Z⊤
N


 .

Since Γ is a matrix with i.i.d. entries following a Gaussian distribution with zero mean
and variance 1/N , it follows from the arguments in the proof of Theorem II.13 in
[Davidson and Szarek, 2001] that for any x > 0

P


‖Γ⊤Γ‖2 ≥

(
1 +

√
n

N
+

√
2x

N

)2

 ≤ exp(−x). (A.7)

Now, since W = Σ
1/2
noiseΓ

⊤ΓΣ1/2
noise it follows that ‖W‖2 ≤ ‖Σnoise‖2‖Γ⊤Γ‖2. Hence, inequality

(A.7) implies that for any x > 0

P


‖W‖2 ≥ ‖Σnoise‖2

(
1 +

√
n

N
+

√
2x

N

)2

 ≤ exp(−x),

and the result finally follows from inequality (A.6). �

Lemma 3 Let 1 ≤ s ≤ min(n,M) and suppose that Assumption 1 holds for some c0 > 0. Let
J ⊂ {1, . . . ,M} be a subset of indices of cardinality |J | ≤ s. Let ∆ ∈ SM and suppose that

∑

k∈Jc

‖∆k‖ℓ2 ≤ c0
∑

k∈J
‖∆k‖ℓ2 ,

where ∆k denotes the k-th column of ∆. Let

κs,c0 =
(
ρmin(s)

2 − c0θ(G)ρmax(G
⊤G)s

)1/2
.
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Then, ∥∥∥G∆G⊤
∥∥∥
2

F
≥ κ2s,c0 ‖∆J‖2F ,

where ∆J denotes the M ×M matrix obtained by setting to zero the rows and columns of ∆
whose indices are not in J .

Proof of Lemma 3: first let us introduce some notations. For ∆ ∈ SM and J ⊂ {1, . . . ,M},
then ∆Jc denotes the M ×M matrix obtained by setting to zero the rows and columns of ∆
whose indices are not in the complementary Jc of J . Now, remark that

∥∥∥G∆G⊤
∥∥∥
2

F
=

∥∥∥G∆JG
⊤
∥∥∥
2

F
+

∥∥∥G∆JcG⊤
∥∥∥
2

F
+ 2tr

(
G∆JG

⊤G∆JcG⊤
)

≥
∥∥∥G∆JG

⊤
∥∥∥
2

F
+ 2tr

(
G∆JG

⊤G∆JcG⊤
)
. (A.8)

Let A = G∆JG
⊤ and B = G∆JcG⊤. Using that tr

(
A⊤B

)
= vec(A)⊤vec(B) and the

properties (A.1) and (A.3) it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)
= vec(∆J )

⊤
(
G⊤G⊗G⊤G

)
vec(∆Jc). (A.9)

Let C = G⊤G⊗G⊤G and note that C is a M2 ×M2 matrix whose elements can be written in
the form of M ×M block matrices given by

Cij = (G⊤G)ijG
⊤G, for 1 ≤ i, j ≤M.

Now, write theM2×1 vectors vec(∆J ) and vec(∆Jc) in the form of block vectors as vec(∆J ) =
[(∆J )

⊤
i ]

⊤
1≤i≤M and vec(∆Jc) = [(∆Jc)⊤j ]

⊤
1≤j≤M , where (∆J )i ∈ RM (∆Jc)j ∈ RM for 1 ≤ i, j ≤

M . Using (A.9) it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)

=
∑

1≤i,j≤M
(∆J)

⊤
i Cij(∆Jc)j

=
∑

i∈J

∑

j∈Jc

(G⊤G)ij(∆J )
⊤
i G

⊤G(∆Jc)j .

Now, using that
∣∣(G⊤G)ij

∣∣ ≤ θ(G) for i 6= j and that
∣∣∣(∆J)

⊤
i G

⊤G(∆Jc)j

∣∣∣ ≤ ‖G(∆J )i‖ℓ2‖G(∆Jc)j‖ℓ2 ≤ ρmax(G
⊤G)‖(∆J )i‖ℓ2‖(∆Jc)j‖ℓ2 ,

it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)
≥ −θ(G)ρmax(G

⊤G)

(
∑

i∈J
‖(∆J )i‖ℓ2

)
∑

j∈Jc

‖(∆Jc)j‖ℓ2


 .

Now, using the assumption that
∑

k∈Jc ‖∆k‖ℓ2 ≤ c0
∑

k∈J ‖∆k‖ℓ2 it follows that

tr
(
G∆JG

⊤G∆JcG⊤
)

≥ −c0θ(G)ρmax(G
⊤G)

(
∑

i∈J
‖(∆J )i‖ℓ2

)2

≥ −c0θ(G)ρmax(G
⊤G)s ‖∆J‖2F , (A.10)
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where, for the inequality, we have used the properties that for the positive re-
als ci = ‖(∆J )i‖ℓ2 , i ∈ J then

(∑
i∈J ci

)2 ≤ |J |∑i∈J c
2
i ≤ s

∑
i∈J c

2
i and that∑

i∈J ‖(∆J )i‖2ℓ2 = ‖∆J‖2F .

Using the properties (A.1) and (A.2) remark that

∥∥∥G∆JG
⊤
∥∥∥
2

F
= ‖GJ ⊗GJ vec(∆̃J )‖2ℓ2
≥ ρmin (GJ ⊗GJ) ‖vec(∆̃J )‖2ℓ2
≥ ρmin(s)

2 ‖∆J‖2F , (A.11)

where vec(∆̃J ) = [(∆J)
⊤
i ]

⊤
i∈J . Therefore, combining inequalities (A.8), (A.10) and (A.11) it

follows that ∥∥∥G∆G⊤
∥∥∥
2

F
≥

(
ρmin(s)

2 − c0θ(G)ρmax(G
⊤G)s

)
‖∆J‖2F ,

which completes the proof of Lemma 3. �

Let us now proceed to the proof of Theorem 1. Part of the proof is inspired by results in
[Bickel et al., 2009]. Let s ≤ min(n,M) and Ψ ∈ SM with M(Ψ) ≤ s. Let J = {k ;Ψk 6= 0}.
To simplify the notations, write Ψ̂ = Ψ̂λ. By definition of Σ̂λ = GΨ̂G⊤ one has that

∥∥∥S̃−GΨ̂G⊤
∥∥∥
2

F
+ 2λ

M∑

k=1

γk‖Ψ̂k‖ℓ2 ≤
∥∥∥S̃−GΨG⊤

∥∥∥
2

F
+ 2λ

M∑

k=1

γk‖Ψk‖ℓ2 . (A.12)

Using the scalar product associated to the Frobenius norm 〈A,B〉F = tr
(
A⊤B

)
then

∥∥∥S̃−GΨ̂G⊤
∥∥∥
2

F
=

∥∥∥S+W −GΨ̂G⊤
∥∥∥
2

F

= ‖W‖2F +
∥∥∥S−GΨ̂G⊤

∥∥∥
2

F
+ 2

〈
W,S−GΨ̂G⊤

〉
F
. (A.13)

Putting (A.13) in (A.12) we get

∥∥∥S−GΨ̂G⊤
∥∥∥
2

F
+ 2λ

M∑

k=1

γk‖Ψ̂k‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
+ 2

〈
W,G

(
Ψ̂−Ψ

)
G⊤

〉
F

+2λ

M∑

k=1

γk‖Ψk‖ℓ2 .

For k = 1, . . . ,M define the M ×M matrix Ak with all columns equal to zero except the
k-th which is equal to Ψ̂k −Ψk. Then, remark that

〈
W,G

(
Ψ̂−Ψ

)
G⊤

〉
F

=

M∑

k=1

〈
W,GAkG

⊤
〉
F
=

M∑

k=1

〈
G⊤WG,Ak

〉
F
=

M∑

k=1

η⊤k (Ψ̂k −Ψk)

≤
M∑

k=1

‖ηk‖ℓ2‖Ψ̂k −Ψk‖ℓ2 ,
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where ηk is the k-th column of the matrix G⊤WG. Define the event

A =

M⋂

k=1

{2‖ηk‖ℓ2 ≤ λγk} . (A.14)

Then, the choices

γk = 2‖Gk‖ℓ2
√
ρmax(GG⊤), λ = ‖Σnoise‖2

(
1 +

√
n

N
+

√
2δ logM

N

)2

,

and Lemma 2 imply that the probability of the complementary event Ac satisfies

P (Ac) ≤
M∑

k=1

P (2‖ηk‖ℓ2 > λγk) ≤M1−δ .

Then, on the event A one has that

∥∥∥S−GΨ̂G⊤
∥∥∥
2

F
≤

∥∥∥S−GΨG⊤
∥∥∥
2

F
+ λ

M∑

k=1

γk‖Ψ̂k −Ψk‖ℓ2

+2λ
M∑

k=1

γk

(
‖Ψk‖ℓ2 − ‖Ψ̂k‖ℓ2

)
.

Adding the term λ
∑M

k=1 γk‖Ψ̂k − Ψk‖ℓ2 to both sides of the above inequality yields on the
event A
∥∥∥S−GΨ̂G⊤

∥∥∥
2

F
+ λ

M∑

k=1

γk‖Ψ̂k −Ψk‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F

+2λ

M∑

k=1

γk

(
‖Ψ̂k −Ψk‖ℓ2 + ‖Ψk‖ℓ2 − ‖Ψ̂k‖ℓ2

)
.

Now, remark that for all k /∈ J , then ‖Ψ̂k −Ψk‖ℓ2 + ‖Ψk‖ℓ2 − ‖Ψ̂k‖ℓ2 = 0, which implies that
on the event A

∥∥∥S−GΨ̂G⊤
∥∥∥
2

F
+ λ

M∑

k=1

γk‖Ψ̂k −Ψk‖ℓ2 ≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
(A.15)

+4λ
∑

k∈J
γk‖Ψ̂k −Ψk‖ℓ2

≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
(A.16)

+4λ
√

M(Ψ)

√∑

k∈J
γ2k‖Ψ̂k −Ψk‖2ℓ2 .
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where for the last inequality we have used the property that for the positive reals ck = γk‖Ψ̂k −
Ψk‖ℓ2 , k ∈ J then

(∑
k∈J ck

)2 ≤ M(Ψ)
∑

k∈J c
2
k.

Let ǫ > 0 and define the event

A1 =

{
4λ

∑

k∈J
γk‖Ψ̂k −Ψk‖ℓ2 > ǫ

∥∥∥S−GΨG⊤
∥∥∥
2

F

}
. (A.17)

Note that on the event A ∩ Ac
1 then the result of the theorem trivially follows from inequality

(A.15). Now consider the event A∩A1 (all the following inequalities hold on this event). Using
(A.15) one has that

λ
M∑

k=1

γk‖Ψ̂k −Ψk‖ℓ2 ≤ 4(1 + 1/ǫ)λ
∑

k∈J
γk‖Ψ̂k −Ψk‖ℓ2 . (A.18)

Therefore, on A∩A1

∑

k/∈J
γk‖Ψ̂k −Ψk‖ℓ2 ≤ (3 + 4/ǫ)

∑

k∈J
γk‖Ψ̂k −Ψk‖ℓ2 .

Let ∆ be the M × M symmetric matrix with columns equal to ∆k = γk

(
Ψ̂k −Ψk

)
, k =

1, . . . ,M , and c0 = 3 + 4/ǫ. Then, the above inequality means that
∑

k∈Jc ‖∆k‖ℓ2 ≤
c0

∑
k∈J ‖∆k‖ℓ2 and thus Assumption 1 and Lemma 3 imply that

κ2s,c0

∑

k∈J
γ2k‖Ψ̂k −Ψk‖2ℓ2 ≤

∥∥∥G∆G⊤
∥∥∥
2

F
≤ 4G2

maxρmax(G
⊤G)

∥∥∥G(Ψ̂−Ψ)G⊤
∥∥∥
2

F
. (A.19)

Let γ2max = 4G2
maxρmax(G

⊤G). Combining the above inequality with (A.16) yields

∥∥∥S−GΨ̂G⊤
∥∥∥
2

F
≤

∥∥∥S−GΨG⊤
∥∥∥
2

F
+ 4λκ−1

s,c0γmax

√
M(Ψ)

∥∥∥G(Ψ̂−Ψ)G⊤
∥∥∥
F

≤
∥∥∥S−GΨG⊤

∥∥∥
2

F
+ 4λκ−1

s,c0γmax

√
M(Ψ)

(∥∥∥GΨ̂G⊤ − S
∥∥∥
F

+
∥∥∥GΨG⊤ − S

∥∥∥
F

)

Now, arguing as in [Bickel et al., 2009], a decoupling argument using the inequality 2xy ≤
bx2 + b−1y2 with b > 1, x = 2λκ−1

s,c0γmax

√
M(Ψ) and y being either

∥∥∥GΨ̂G⊤ − S
∥∥∥
F

or
∥∥GΨG⊤ − S

∥∥
F
yields the inequality

∥∥∥S−GΨ̂G⊤
∥∥∥
2

F
≤

(
b+ 1

b− 1

)∥∥∥S−GΨG⊤
∥∥∥
2

F
+

8b2γ2max

(b− 1)κ2s,c0
λ2M(Ψ). (A.20)

Then, taking b = 1 + 2/ǫ and using the inequalities
∥∥∥Σ−GΨ̂G⊤

∥∥∥
2

F
≤ 2 ‖S−Σ‖2F +

2
∥∥∥S−GΨ̂G⊤

∥∥∥
2

F
and

∥∥S−GΨG⊤∥∥2
F
≤ 2 ‖S−Σ‖2F + 2

∥∥Σ−GΨG⊤∥∥2
F

completes the proof

of Theorem 1. �
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A.6 Proof of Theorem 2

Part of the proof is inspired by the approach followed in [Lounici, 2008] and
[Lounici et al., 2009]. Note first that

max
1≤k≤M

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤
M∑

k=1

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2
.

Since Ψ∗ ∈ {Ψ ∈ SM :M (Ψ) ≤ s∗}, we can use some results from the proof of Theorem (1).
On the event A ∩ A1, with A defined by (A.14) and A1 defined by (A.17), inequality (A.18)
implies that

M∑

k=1

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ 4

(
1 +

1

ǫ

) ∑

k∈J∗

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ 4

(
1 +

1

ǫ

)√
s∗

√∑

k∈J∗

γ2k

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
2

ℓ2
.

Let ∆∗ be the M × M symmetric matrix with columns equal to ∆∗
k = γk

(
Ψ̂k −Ψ∗

k

)
, k =

1, . . . ,M , let γmax = 2Gmax

√
ρmax(G⊤G) and c0 = 3 + 4/ǫ. Then, the above inequality and

(A.19) imply that on the event A ∩A1

M∑

k=1

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ 4
(
1 + 1

ǫ

)√
s∗

κs∗,c0

∥∥∥G∆∗G⊤
∥∥∥
F
≤ 4

(
1 + 1

ǫ

)√
s∗

κs∗,c0
γmax

∥∥∥G
(
Ψ̂−Ψ∗

)
G⊤

∥∥∥
F

=
4 (1 + ǫ)

√
s∗

ǫκs∗,c0
γmax

∥∥∥Σ̂λ −Σ
∥∥∥
F

≤ 4 (1 + ǫ)
√
s∗

ǫκs∗,c0
γmax

√
n
√
C0 (n,M,N, s∗,S,Ψ∗,G,Σnoise),

Then, using (A.15) one has that on the event A ∩Ac
1

M∑

k=1

γk

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ 1 + ǫ

λ

∥∥∥S−GΨ∗G⊤
∥∥∥
2

F
.

Therefore, by definition of C1, the previous inequalities imply that on the event A (of probability
1−M1−δ )

M∑

k=1

‖Gk‖ℓ2√
nGmax

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) . (A.21)

Hence max
1≤k≤M

δk√
n

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

≤ C1 (σ, n,M,N, s∗,G,Σnoise) with probability at least 1−M1−δ,

which proves the first assertion of Theorem 2.
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Then, to prove that Ĵ = J∗ we use that δk√
n

∣∣∣∣
∥∥∥Ψ̂k

∥∥∥
ℓ2
− ‖Ψ∗

k‖ℓ2

∣∣∣∣ ≤
δk√
n

∥∥∥Ψ̂k −Ψ∗
k

∥∥∥
ℓ2

for all

k = 1, . . . ,M . Then, by (A.21)
∣∣∣∣
δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2
− δk√

n
‖Ψ∗

k‖ℓ2
∣∣∣∣ ≤ C1 (n,M,N, s∗,S,Ψ

∗,G,Σnoise) ,

which is equivalent to

−C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) ≤

δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2
− δk√

n
‖Ψ∗

k‖ℓ2 ≤ C1 (n,M,N, s∗,S,Ψ
∗,G,Σnoise) .

(A.22)

If k ∈ Ĵ then δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

> C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise). Inequality δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

−
δk√
n
‖Ψ∗

k‖ℓ2 ≤ C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) from (A.22) imply that δk√
n
‖Ψ∗

k‖ℓ2 ≥
δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) > 0, where the last inequality is obtained

using that k ∈ Ĵ . Hence ‖Ψ∗
k‖ℓ2 > 0 and therefore k ∈ J∗. If k ∈ J∗ then

‖Ψ∗
k‖ℓ2 6= 0. Inequality −C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) ≤ δk√

n

∥∥∥Ψ̂k

∥∥∥
ℓ2

− δk√
n
‖Ψ∗

k‖ℓ2
from (A.22) imply that δk√

n

∥∥∥Ψ̂k

∥∥∥
ℓ2

+ C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) ≥ δk√
n
‖Ψ∗

k‖ℓ2 >

2C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise), where the last inequality is obtained using Assump-

tion (3.17) on δk√
n
‖Ψ∗

k‖ℓ2 . Hence δk√
n

∥∥∥Ψ̂k

∥∥∥
ℓ2

> 2C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) −
C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) = C1 (n,M,N, s∗,S,Ψ∗,G,Σnoise) and therefore k ∈ Ĵ . This
completes the proof of Theorem 2. �

A.7 Proof of Theorem 3

Under the assumptions of Theorem 3, we have shown in the proof of Theorem 2 that Ĵ = J∗

on the event A defined by (A.14). Therefore, under the assumptions of Theorem 3 it can be
checked that on the event A (of probability 1−M1−δ)

Σ̂Ĵ = Σ̂J∗ = GJ∗Ψ̂J∗G⊤
J∗ ,

with

Ψ̂J∗ =
(
G⊤
J∗GJ∗

)−1
G⊤
J∗S̃GJ∗

(
G⊤
J∗GJ∗

)−1
.

Now, from the definition (3.19) of ΣJ∗ it follows that on the event A
∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤
J∗GJ∗

)∥∥∥Ψ̂J∗ − ΛJ∗

∥∥∥
2

(A.23)

where ΛJ∗ = ΨJ∗ +(G⊤
J∗GJ∗)−1G⊤

J∗ΣnoiseGJ∗

(
G⊤
J∗GJ∗

)−1
. Let Yi =

(
G⊤
J∗GJ∗

)−1
G⊤
J∗X̃i for

i = 1, . . . , N and remark that

Ψ̂J∗ =
1

N

N∑

i=1

YiY
⊤
i with EΨ̂J∗ = ΛJ∗ .
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Therefore, Ψ̂J∗ is a sample covariance matrix of size s∗ × s∗ and we can control its deviation in
operator norm from ΛJ∗ by using Proposition 3. For this we simply have to verify conditions sim-

ilar to (A1) and (A2) in Assumption 2 for the random vector Y =
(
G⊤
J∗GJ∗

)−1
G⊤
J∗X̃ ∈ Rs∗.

First, let β ∈ Rs∗ with ‖β‖ℓ2 = 1. Then, remark thatY⊤β = X̃⊤β̃ with β̃ = GJ∗

(
G⊤
J∗GJ∗

)−1
β.

Since ‖β̃‖ℓ2 ≤
(
ρmin

(
G⊤
J∗GJ∗

))−1/2
it follows that

(
E|Y⊤β|4

)1/4
≤ ρ̃(Σ,Σnoise)ρ

−1/2
min

(
G⊤
J∗GJ∗

)
, (A.24)

where ρ̃(Σ,Σnoise) = 81/4
(
ρ4 (Σ) + ρ4 (Σnoise)

)1/4
. Now let Z̃ = ‖Y‖ℓ2 ≤

ρ
−1/2
min

(
G⊤
J∗GJ∗

)
‖X̃‖ℓ2 . Given our assumptions on the process X̃ = X + E it follows that

there exists α ≥ 1 such that

‖Z̃‖ψα ≤ ρ
−1/2
min

(
G⊤
J∗GJ∗

)
(‖Z‖ψα + ‖W‖ψα) < +∞, (A.25)

where Z = ‖X‖ℓ2 and W = ‖E‖ℓ2 , with X = (X (t1) , ...,X (tn))
⊤ and E = (E (t1) , ..., E (tn))

⊤.
Finally, remark that

‖ΛJ∗‖2 ≤ ‖ΨJ∗‖2 + ρ−1
min

(
G⊤
J∗GJ∗

)
‖Σnoise‖2 . (A.26)

Hence, using the relations (A.24) and (A.25), the bound (A.26) and Proposition 3 (with Y
instead of X), it follows that there exists a universal constant δ∗ > 0 such that for all x > 0,

P

(∥∥∥Ψ̂J∗ − ΛJ∗

∥∥∥
2
> τ̃N,s∗x

)
6 exp

(
−(δ−1

∗ x)
α

2+α

)
, (A.27)

where τ̃N,s∗ = max(Ã2
N,s∗

, B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
log d∗(logN)1/α√

N
and B̃N,s∗ =

ρ̃2(Σ,Σnoise)ρ
−1

min(G
⊤
J∗GJ∗)√

N
+

(
‖ΨJ∗‖2 + ρ−1

min

(
G⊤
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗ , with d

∗ = min(N, s∗).
Then, define the event

B =
∥∥∥Ψ̂J∗ − ΛJ∗

∥∥∥
2
6 τ̃N,s∗δ⋆ (log(M))

2+α
α ,

and note that, for x = δ⋆ (log(M))
2+α
α with δ⋆ > δ∗, inequality (A.27) implies that P (B) ≥

1−M−
(

δ⋆
δ∗

) α
2+α

. Therefore, on the event A∩B (of probability at least 1−M1−δ −M−
(

δ⋆
δ∗

) α
2+α

),
using inequality (A.23) and the fact that Ĵ = J∗ one obtains

∥∥∥Σ̂Ĵ −ΣJ∗

∥∥∥
2
≤ ρmax

(
G⊤
J∗GJ∗

)
τ̃N,s∗δ⋆ (log(M))

2+α
α ,

which completes the proof of Theorem 3. �
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parametric estimation of covariance functions by model selection. Electronic Journal of Statis-
tics, 4:822–855.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex optimization.
Cambridge University Press, Cambridge.

[Cressie, 1993] Cressie, N. A. C. (1993). Statistics for spatial data. Wiley Series in Probability
and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc.,
New York.

[d’Aspremont et al., 2008] d’Aspremont, A., Bach, F., and El Ghaoui, L. (2008). Optimal solu-
tions for sparse principal component analysis. J. Mach. Learn. Res., 9:1269–1294.

[Davidson and Szarek, 2001] Davidson, K. R. and Szarek, S. J. (2001). Local operator theory,
random matrices and Banach spaces. In Handbook of the geometry of Banach spaces, Vol. I,
pages 317–366. North-Holland, Amsterdam.

[Davis and Kahan, 1970] Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by
a perturbation. III. SIAM J. Numer. Anal., 7:1–46.

[El Karoui, 2008] El Karoui, N. (2008). Operator norm consistent estimation of large-
dimensional sparse covariance matrices. Ann. Statist., 36(6):2717–2756.

[Fan et al., 2008] Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix
estimation using a factor model. Journal of Econometrics, 147:186–197.

[Huang and Zhang, 2010] Huang, J. and Zhang, T. (2010). The benefit of group sparsity. Ann.
Statist., 38(4):1978–2004.

39



[Johnstone, 2001] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in
principal components analysis. Ann. Statist., 29(2):295–327.

[Johnstone and Lu, 2009] Johnstone, I. M. and Lu, A. Y. (2009). On consistency and sparsity
for principal components analysis in high dimensions. Journal of the American Statistical
Association, 104(486):682–693.

[Journel, 1977] Journel, A. G. (1977). Kriging in terms of projections. J. Internat. Assoc.
Mathematical Geol., 9(6):563–586.

[Lam and Fan, 2009] Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large
covariance matrix estimation. Ann. Statist., 37(6B):4254–4278.

[Levina et al., 2008] Levina, E., Rothman, A., and Zhu, J. (2008). Sparse estimation of large
covariance matrices via a nested Lasso penalty. Ann. Appl. Stat., 2(1):245–263.

[Lounici, 2008] Lounici, K. (2008). Sup-norm convergence rate and sign concentration property
of Lasso and Dantzig estimators. Electron. J. Stat., 2:90–102.

[Lounici et al., 2009] Lounici, K., Pontil, M., Tsybakov, A. B., and van de Geer, S. (2009).
Taking advantage of sparsity in multi-task learning. COLT.

[Lounici et al., 2011] Lounici, K., Pontil, M., Tsybakov, A. B., and van de Geer, S. (2011). Or-
acle Inequalities and Optimal Inference under Group Sparsity. Ann. Statist., to be published.

[Mendelson and Pajor, 2006] Mendelson, S. and Pajor, A. (2006). On singular values of matrices
with independent rows. Bernoulli, 12(5):761–773.

[Nardi and Rinaldo, 2008] Nardi, Y. and Rinaldo, A. (2008). On the asymptotic properties of
the group lasso estimator for linear models. Electron. J. Stat., 2:605–633.

[Rothman et al., 2008] Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). Sparse
permutation invariant covariance estimation. Electron. J. Stat., 2:494–515.

[Schmidt et al., 2008] Schmidt, M., Murphy, K., Fung, G., and Rosales, R. (2008). Structure
learning in random fields for heart motion abnormality detection (addendum). CVPR08.

[Stein, 1999] Stein, M. L. (1999). Interpolation of spatial data. Some theory for kriging. Springer
Series in Statistics. New York, NY: Springer. xvii, 247 p.

[Wikle and Cressie, 1999] Wikle, C. K. and Cressie, N. (1999). A dimension-reduced approach
to space-time Kalman filtering. Biometrika, 86(4):815–829.

[Zou et al., 2006] Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component
analysis. J. Comput. Graph. Statist., 15(2):265–286.

40


