128,677 research outputs found

    On Timing Model Extraction and Hierarchical Statistical Timing Analysis

    Full text link
    In this paper, we investigate the challenges to apply Statistical Static Timing Analysis (SSTA) in hierarchical design flow, where modules supplied by IP vendors are used to hide design details for IP protection and to reduce the complexity of design and verification. For the three basic circuit types, combinational, flip-flop-based and latch-controlled, we propose methods to extract timing models which contain interfacing as well as compressed internal constraints. Using these compact timing models the runtime of full-chip timing analysis can be reduced, while circuit details from IP vendors are not exposed. We also propose a method to reconstruct the correlation between modules during full-chip timing analysis. This correlation can not be incorporated into timing models because it depends on the layout of the corresponding modules in the chip. In addition, we investigate how to apply the extracted timing models with the reconstructed correlation to evaluate the performance of the complete design. Experiments demonstrate that using the extracted timing models and reconstructed correlation full-chip timing analysis can be several times faster than applying the flattened circuit directly, while the accuracy of statistical timing analysis is still well maintained

    Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada

    Get PDF
    Observed changes in the timing of snowmelt dominated streamflow in the western United States are often linked to anthropogenic or other external causes. We assess whether observed streamflow timing changes can be statistically attributed to external forcing, or whether they still lie within the bounds of natural (internal) variability for four large Sierra Nevada (CA) basins, at inflow points to major reservoirs. Streamflow timing is measured by “center timing” (CT), the day when half the annual flow has passed a given point. We use a physically based hydrology model driven by meteorological input from a global climate model to quantify the natural variability in CT trends. Estimated 50-year trends in CT due to natural climate variability often exceed estimated actual CT trends from 1950 to 1999. Thus, although observed trends in CT to date may be statistically significant, they cannot yet be statistically attributed to external influences on climate. We estimate that projected CT changes at the four major reservoir inflows will, with 90% confidence, exceed those from natural variability within 1–4 decades or 4–8 decades, depending on rates of future greenhouse gas emissions. To identify areas most likely to exhibit CT changes in response to rising temperatures, we calculate changes in CT under temperature increases from 1 to 5°. We find that areas with average winter temperatures between −2°C and −4°C are most likely to respond with significant CT shifts. Correspondingly, elevations from 2000 to 2800 m are most sensitive to temperature increases, with CT changes exceeding 45 days (earlier) relative to 1961–1990

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean

    Get PDF
    Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean

    Permutation and Grouping Methods for Sharpening Gaussian Process Approximations

    Full text link
    Vecchia's approximate likelihood for Gaussian process parameters depends on how the observations are ordered, which can be viewed as a deficiency because the exact likelihood is permutation-invariant. This article takes the alternative standpoint that the ordering of the observations can be tuned to sharpen the approximations. Advantageously chosen orderings can drastically improve the approximations, and in fact, completely random orderings often produce far more accurate approximations than default coordinate-based orderings do. In addition to the permutation results, automatic methods for grouping calculations of components of the approximation are introduced, having the result of simultaneously improving the quality of the approximation and reducing its computational burden. In common settings, reordering combined with grouping reduces Kullback-Leibler divergence from the target model by a factor of 80 and computation time by a factor of 2 compared to ungrouped approximations with default ordering. The claims are supported by theory and numerical results with comparisons to other approximations, including tapered covariances and stochastic partial differential equation approximations. Computational details are provided, including efficiently finding the orderings and ordered nearest neighbors, and profiling out linear mean parameters and using the approximations for prediction and conditional simulation. An application to space-time satellite data is presented
    corecore