821 research outputs found

    Hybrid Wi-Fi Localization using RFID and UWB sensors

    Get PDF
    The pursuit of a more accurate localization technique has been a challenge throughout this past decade. After the release of Google Indoor Maps, Wi-Fi localization has an increase in demand. The purpose of this MQP was to create a hybrid localization algorithm that uses Wi-Fi as a foundation, and utilizes Radio Frequency Identification and Ultra Wide-Band sensors. We test each sensor in order to evaluate their individual performance in terms of localization accuracy. Ultimately, we combine each sensor in MATLAB using Kalman Filter and a geometric algorithm

    INDOOR-WIRELESS LOCATION TECHNIQUES AND ALGORITHMS UTILIZING UHF RFID AND BLE TECHNOLOGIES

    Get PDF
    The work presented herein explores the ability of Ultra High Frequency Radio Frequency (UHF RF) devices, specifically (Radio Frequency Identification) RFID passive tags and Bluetooth Low Energy (BLE) to be used as tools to locate items of interest inside a building. Localization Systems based on these technologies are commercially available, but have failed to be widely adopted due to significant drawbacks in the accuracy and reliability of state of the art systems. It is the goal of this work to address that issue by identifying and potentially improving upon localization algorithms. The work presented here breaks the process of localization into distance estimations and trilateration algorithms to use those estimations to determine a 2D location. Distance estimations are the largest error source in trilateration. Several methods are proposed to improve speed and accuracy of measurements using additional information from frequency variations and phase angle information. Adding information from the characteristic signature of multipath signals allowed for a significant reduction in distance estimation error for both BLE and RFID which was quantified using neural network optimization techniques. The resulting error reduction algorithm was generalizable to completely new environments with very different multipath behavior and was a significant contribution of this work. Another significant contribution of this work is the experimental comparison of trilateration algorithms, which tested new and existing methods of trilateration for accuracy in a controlled environment using the same data sets. Several new or improved methods of triangulation are presented as well as traditional methods from the literature in the analysis. The Antenna Pattern Method represents a new way of compensating for the antenna radiation pattern and its potential impact on signal strength, which is also an important contribution of this effort. The performance of each algorithm for multiple types of inputs are compared and the resulting error matrix allows a potential system designer to select the best option given the particular system constraints

    Localisation and navigation in GPS-denied environments using RFID tags

    Get PDF
    Includes bibliographical references.This dissertation addresses the autonomous localisation and navigation problem in the context of an underground mining environment. This kind of environment has little or no features as well as no access to GPS or stationary towers, which are usually used for navigation. In addition dust and debris may hinder optical methods for ranging. This study looks at the feasibility of using randomly distributed RFID tags to autonomously navigate in this environment. Clustering of observed tags are used for localisation, subsequently value iteration is used to navigate to a defined goal. Results are presented, concluding that it is feasible to localise and navigate using only RFID tags, in simulation. Localisation feasibility is also confirmed by experimental measurements

    Indoor Localization Solutions for a Marine Industry Augmented Reality Tool

    Get PDF
    In this report are described means for indoor localization in special, challenging circum-stances in marine industry. The work has been carried out in MARIN project, where a tool based on mobile augmented reality technologies for marine industry is developed. The tool can be used for various inspection and documentation tasks and it is aimed for improving the efficiency in design and construction work by offering the possibility to visualize the newest 3D-CAD model in real environment. Indoor localization is needed to support the system in initialization of the accurate camera pose calculation and auto-matically finding the right location in the 3D-CAD model. The suitability of each indoor localization method to the specific environment and circumstances is evaluated.Siirretty Doriast

    Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology

    Get PDF
    Smart home platforms show promising outcomes to provide a better quality of life for residents in their homes. One of the main challenges that exists with these platforms in multi-residential houses is activity labeling. As most of the activity sensors do not provide any information regarding the identity of the person who triggers them, it is difficult to label the sensor events in multi-residential smart homes. To deal with this challenge, individual localization in different areas can be a promising solution. The localization information can be used to automatically label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology for this application due to how easy it is to implement and its low energy footprint. In this approach, individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed scanners listen to the broadcasting packet to localize the tag and the individual. However, the localization accuracy of this method depends greatly on different settings of broadcasting signal strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper studies the impacts of different advertising time intervals and power levels, and proposes an efficient and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an automatic activity labeling method, through integrating BLE localization information and ambient sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a real multi-resident smart home scenario

    A Real-Time Laboratory Testbed For Evaluating Localization Performance Of WIFI RFID Technologies

    Get PDF
    A realistic comparative performance evaluation of indoor Geolocation systems is a complex and challenging problem facing the research community. This is due to the fact that performance of these systems depends on the statistical variations of the fading multipath characteristics of the wireless channel, the density and distribution of the access points in the area, and the number of the training points used by the positioning algorithm. This problem, in particular, becomes more challenging when we address RFID devices, because the RFID tags and the positioning algorithm are implemented in two separate devices. In this thesis, we have designed and implemented a testbed for comparative performance evaluation of RFID localization systems in a controlled and repeatable laboratory environment. The testbed consists of a real-time RF channel simulator, several WiFi 802.11 access points, commercial RFID tags, and a laptop loaded with the positioning algorithm and its associated user interface. In the real-time channel simulator the fading multipath characteristics of the wireless channel between the access points and the RFID tags is modeled by a modified site-specific IEEE 802.11 channel model which combines this model with the correlation model of shadow fading existing in the literature. The testbed is first used to compare the performance of the modified IEEE 802.11 channel model and the Ray Tracing channel model previously reported in the literature. Then, the testbed with the new channel model is used for comparative performance evaluation of two different WiFi RFID devices

    Wireless Positioning and Tracking for Internet of Things in GPS-denied Environments

    Get PDF
    Wireless positioning and tracking have long been a critical technology for various applications such as indoor/outdoor navigation, surveillance, tracking of assets and employees, and guided tours, among others. Proliferation of Internet of Things (IoT) devices, the evolution of smart cities, and vulnerabilities of traditional localization technologies to cyber-attacks such as jamming and spoofing of GPS necessitate development of novel radio frequency (RF) localization and tracking technologies that are accurate, energy-efficient, robust, scalable, non-invasive and secure. The main challenges that are considered in this research work are obtaining fundamental limits of localization accuracy using received signal strength (RSS) information with directional antennas, and use of burst and intermittent measurements for localization. In this dissertation, we consider various RSS-based techniques that rely on existing wireless infrastructures to obtain location information of corresponding IoT devices. In the first approach, we present a detailed study on localization accuracy of UHF RF IDentification (RFID) systems considering realistic radiation pattern of directional antennas. Radiation patterns of antennas and antenna arrays may significantly affect RSS in wireless networks. The sensitivity of tag antennas and receiver antennas play a crucial role. In this research, we obtain the fundamental limits of localization accuracy considering radiation patterns and sensitivity of the antennas by deriving Cramer-Rao Lower Bounds (CRLBs) using estimation theory techniques. In the second approach, we consider a millimeter Wave (mmWave) system with linear antenna array using beamforming radiation patterns to localize user equipment in an indoor environment. In the third approach, we introduce a tracking and occupancy monitoring system that uses ambient, bursty, and intermittent WiFi probe requests radiated from mobile devices. Burst and intermittent signals are prominent characteristics of IoT devices; using these features, we propose a tracking technique that uses interacting multiple models (IMM) with Kalman filtering. Finally, we tackle the problem of indoor UAV navigation to a wireless source using its Rayleigh fading RSS measurements. We propose a UAV navigation technique based on Q-learning that is a model-free reinforcement learning technique to tackle the variation in the RSS caused by Rayleigh fading

    Building Information Modelling : Indoor Localization

    Get PDF
    This thesis presents an integrated system where BIM software is used together with IoT devices to visualize data generated in real-time. Two different IoT devices are modelled as case study that collect environmental and localization data. These devices were installed inside a Test room of an area approx. 22 m2 in UiT Narvik premises . The collected data were, filtered & transferred to database server which were then retrieved and visualized by BIM software in real time. The report presents tools and technologies that are implemented to develop such system and provides details on basic blocks required for such integrations. The combined platform visualize information about the things as it happens in real-time. This makes such systems capable for digitalization of physical process and have various application domains. In the report it is applied as monitoring platform for temperature and illumination data and can be used for facility management applications. Similarly, indoor localization is monitored making it applicable for localization and safety management purpose. The performance of the system is also discussed based on test, observations, and calculation

    iBeacon Applications and Hybrid Wi-Fi Localization

    Get PDF
    Apple introduced iBeacon to the world in 2013. iBeacon allows you to do indoor geolocation and has essential features to application development. Since 2007, Wi-Fi localization has become the most popular indoor geolocation technology after used with iPhone. The purpose of this project was to develop an iBeacon application and use iBeacon’s signals to improve the accuracy of Wi-Fi’s localization. For the application, we developed an algorithm that allows us to count the number of people that are in a room and broadcast this information based on proximity. While the iBeacons are set up in place for this application, we also integrated it with Wi-Fi to improve the accuracy of Wi-Fi geolocation. We achieved this by developing a new algorithm called path-loss based nearest neighbor
    • …
    corecore