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Abstract 
 

The purpose of our major qualifying project is to develop a hybrid localization algorithm for precise 

indoor geolocation. There are two main parts to our project. The first involves conducting a performance 

evaluation on the technologies used: Wi-Fi, RFID, and UWB, to weigh their accuracy against their 

economic viability. This portion of the project allows us to gain an intimate understanding of each 

technology, their strength and their weaknesses. The second part of the project is to develop an algorithm 

that would take in data from Wi-Fi, RFID, and UWB, and produce a localization method that is significantly 

more accurate. For this part, we design and implement a hybrid localization algorithm to incorporate these 

various technologies to take advantage of their individual tracking abilities. This is achieved by utilizing 

Wi-Fi as the foundation, while RFID would act as a corrective measure. We combine RFID with Wi-Fi by 

using their individual RSS. The UWB portion of the algorithm will be activated if the user is in open space, 

and the UWB readings are within a certain distance. To increase the accuracy of our system even further, 

we use an Inertial Navigation System (INS) to count our steps in combination with Wi-Fi and RFID, using 

Kalman filter.  The algorithm development and implementation, along with the analysis of the different 

technologies, is written in MATLAB. We are able to achieve a more accurate localization method than 

what is available if Wi-Fi alone is used.  
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Chapter 1: Introduction 
With an increase of interest in the field of indoor localization, companies are acquiring new assets, 

conducting research and developing systems that will be the foundation for the next generation of this 

technology. As demand increases for indoor localization 1, Google released its Indoor Maps, and many 

other companies have an interest in indoor Wi-Fi localization such as Skyhook Wireless, and Apple. These 

companies are currently tapping into this technology by trying to map Wi-Fi access points inside buildings. 

Although Wi-Fi localization is the most popular technique, there are numerous other techniques that can be 

used. The two others we will focus on are Radio Frequency Identification (RFID) and Ultra Wide-Band 

(UWB). Some companies have developed their system by these technologies for tracking packages and 

robots, inside a warehouse environment. For example, Kiva systems, which was recently purchased by 

Amazon, uses RFID to utilize their system. RedPoint positioning uses UWB to track mobile nodes within 

an open environment. 

Precise localization utilizing those techniques is paramount for indoor mobile devices, such as 

smartphones, mobile robots etc. However, Wi-Fi alone does not provide the accuracy good enough to 

identify the location of the user due to multipath fading characteristic. Furthermore, it is also subjected to 

significant short term variations. A new system can be developed that balances both cost and accuracy 

based on the characteristics of Wi-Fi, RFID and UWB.  

1.1 Project Description 
 

In this project, we first collected three kinds of reference databases which were all manually taken. 

For Wi-Fi localization we stored MAC addresses and their relative RSS values. For RFID localization, each 

tag represented a location, with a corresponding RSS reading. For UWB, we set up all of the system nodes 

and anchors to test its precision, all locations were given in an x, y, z format. Upon testing, we combined 

Wi-Fi with RFID due to their similar characteristics, while UWB would be used in open areas.  
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Upon completion, all of the testing and scenarios took place in the third floor of Atwater Kent and 

we only used one reference database representing location.  To identify location, priority was given to 

UWB, followed by RFID and Wi-Fi. We equipped the CWINS lab with an UWB system, and whenever an 

individual entered the CWINS laboratory, the system displayed the UWB indicated position. When an 

individual is outside of the CWINS laboratory, the RFID-WiFi system goes into effect. If an RFID tag is 

read, then the RFID tag location is assumed, otherwise we assumed the calculated WiFi location. In order 

to smooth out the trace of our position, we used a Kalman filter. 

1.2 Project Outline 
   

There are five chapters that will be covered in this report. Chapter one details the reasons why we 

chose this project, a general description of the MQP, and our goals. In Chapter two, we studied the three 

fundamental technologies which are Wi-Fi, UWB & RFID and give an overview on the history of modern 

localization methods outdoors and indoors. In Chapter three we will discuss the performance analysis of 

the three different technologies, specifically the development of the scenarios for the RFID, performance 

analysis of the Wi-Fi localization, and the performance analysis of UWB. Chapter four details the results 

of the Hybrid Wi-Fi localization system. It includes the final testing and scenario along with the graphical 

representation of our data, which supports our hybrid indoor localization system. In the end of the report, 

Chapter five, we address the conclusion, future work and suggestions for the next MQP team. We also 

have an Appendices chapter, which includes the code that was developed and used in this project. Lastly, 

there is a reference chapter stating all the various references and sources used to complete this report.  
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Chapter 2: Background in Localization Technologies 
This chapter covers the information needed to better understand modern localization in outdoor and 

indoor environments. The chapter will provide a brief overview on the history of localization.  It also 

provides a detailed introduction to the three fundamental technologies Wi-Fi, RFID, and UWB. It will 

cover the advantages and limitation of each technology and how we ultimately came to a decision on how 

to move forward with the project. 

2.1 Modern Localization 
 

The means of identifying ones location, whether inside a building, or outdoors, has proved 

extremely helpful, mainly for purposes of navigation, in reaching point B from point A.  Although we most 

commonly relate navigation to modern instruments, many tools have already been used and invented for 

purposes of travel. Tools such as the Sun or the stars in the night sky, and instruments like the chronometer, 

astrolabe and compass all took part in designing the modern, more technically advanced methods of 

navigation. 

 2.1.1 Outdoor Localization 
 

Localization in environments outside of our homes and buildings, dates as far back as 1983, this 

was a time when GPS technology began to emerge to the public, the United States Department of Defense 

understood the importance of this technology, the positive impact it would have on the public sector and 

the advantages it would bring to the development of the world.  

GPS proved to work extremely well for outdoor environments, and it is now the means by which 

most outdoor navigation devices work. It is a set of 24 satellites which are owned and operated by the U.S 

Department of Defense, but is available for world-wide use. These satellites orbit our planet allowing 

ground receivers to identify their respective position/location. Each one of these Satellites contains an 
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atomic clock, a radio and a computer. Its internal clock and computer (which keeps an account of its orbit), 

allow the satellite to identify its own position, which is then broadcasted by the radio. 

The signal sent out by these Satellites is then accepted by a receiver, which traces and measures the 

received information through a process known as triangulation, in which these signals (containing positions, 

and distances from one another in space) are compared to one another, in order to pinpoint a location. Since 

most of the devices that require GPS are handheld and mobile, it is the receivers’ duty to calculate direction 

and speed of travel. More modern applications of the GPS receivers are now being used for research 

purposes, these vary from monitoring moving glaciers to tracking volcanic activity. 1 

 

2.1.2 Indoor Localization 
 

The GPS Satellite signal is often too weak to penetrate buildings, making GPS use for indoor 

applications practically useless, many indoor localization models have been proposed of which Wi-Fi 

localization has gained the most popularity. Wi-Fi localization, being the most popular type of indoor 

position, takes advantage of large amount of wireless access points found in buildings and urban areas. 

Providers of this service include Google, AlterGeo and Navizon. 

This method is based on the measurement of RSS (Received Signal Strength), combined with 

fingerprinting, which identifies the device being used based on its MAC address or SSID. 

Wi-FI positioning can be combined with cell phone tower triangulation and Global Positioning Systems, in 

order to provide a more accurate location indoors. However some of its limitations are that the device one 

is trying to localize, must be within the range of the Wi-Fi signal.2 

1 (What Is Global Positioning System (GPS)) 
2  (Indoor/Outdoor Localization.) 
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2.2 RFID Localization 
 

As the advances in technology continue at a magnificent trajectory, so does the need for our devices 

to be constantly connected. Recent deployment of radio frequency identification (RFID) technology for 

efficient asset tracking and management has made RFID tags and associated devices widely available with 

low cost and low energy usage. For example, there are active RFID tags that typically last for five to seven 

years with a compact battery as a reliable wireless signal transmitter; obviously passive RFID tags have 

practically no lifetime limit. Clearly RFID tags, at a coarser level, provide a cost-effective and energy-

efficient way of solving the environment sensing problem. One straightforward solution is to attach one or 

more RFID tags to each object of interest in the environment. As RFID tags have a limited range of 

readability, by reading all the tags in the proximity, using a reader or similar device, a computer can 

approximate its environment based on the sensed objects. Additionally, a unique advantage of RFID 

technology over vision and other sensor based methods is that RFID tags do not require line of sight in 

order to be “seen” and thus avoid problems associated with occlusion.3 

For the majority of us, card access to buildings, using a key to start a vehicle or scanning a bus or 

subway ticket have become part of our everyday routine. Many times we use automatic data capture 

technology that works on radio frequency electromagnetic technology. This field is most commonly known 

as (RFID) Radio frequency identification. This same type of technology is used to transit and track 

merchandise and objects from all the way from its manufacturing, down to its point of sale. RFID has many 

applications and cannot be ultimately defined for one sole purpose. Through this project, radio frequency 

identification will be studied in order to develop a localization system. Once a localization system has been 

developed, it will be merged with both Wi-Fi and UWB technology to develop a more accurate indoor 

3 (How RFID Works)  
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localization system. A basic RFID system is composed of RFID tags, RFID reader antenna and RFID reader 

control application software for user interface. 

2.2.1 RFID Tags 
 

RFID tags are composed of an integrated circuit or chip which is attached to an antenna that has 

been printed/stamped or vapor-deposited into what is often a paper substrate or PolyEthylene Therephlate 

(PET). When the antenna and chip are combined, these two are then placed between labels with adhesive 

on one side as seen on Figure 2. , or constructed into a more durable structure as seen in Figure 1.  RFID 

tags can be powered through two different methods. An Active RFID tag is powered by the RF signal send 

by the RFID reader. 

 A Passive RFID tag has its own power source. In Table 1.1 we see a detailed comparison between 

the two different types of tags.  

                                                          

          Fig 2.1 Solid Encasing Passive RFID tag                  Fig 2.2 Flexible label Passive RFID tag 

 

RFID TAGS 

  Passive Active 

Read Range Up to 40 feet (fixed readers) Up to 300 feet or more 

Up to 20 feet (handheld readers) 
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Table 2.1 (RFID Tags) Passive vs Active 

2.2.2 RFID Reader 
 

The RFID reader is composed of a scanning antenna that is responsible for putting out radio-

frequency signals. These RF signals provide a method of communication between the RFID reader and the 

RFID tags.  Once communication between the RFID reader and RFID tags is established, the reader can 

display all the information being transmitted and received through a software user interface. 

RFID readers most commonly use two different types of antennas, polarized linear and circular 

linear. Polarized linear antennas broadcast on a single plane (either vertical or horizontal). These antennas 

tend to have a higher read range when pointed in the direction of the tag, its signal distribution is represented 

by Figure 3. Polarized circular antennas emit electromagnetic fields in a corkscrew –like fashion. These 

broadcast electromagnetic waves in two planes making a complete revolution in a single wavelength. These 

types of antennas lose about 3 dB per read now that they split the power across two separate planes. Figure 

4 below shows the circular polarization.  

2.2.3 RFID Localization Systems 
 

 Inventory Localization:  KIVA Systems is a company located in North reading MA. Recently 

bought by Amazon, this company helps supply operations and reduce costs while increasing strategic 

Power No power source Battery powered 

Tag Life Up to 10 years depending upon 
the environment the tag is in 

3-8 years depending upon the tag 
broadcast rate 

Ideal Use For inventorying assets using 
handheld RFID readers (daily, 

weekly, monthly quarterly, 
annually). Can also be used with 
fixed RFID readers to track the 
movement of assets as long as 
security is not a requirement. 

For use with fixed RFID readers to 
perform real-time asset monitoring at 

choke-points or within zones. Can provide 
a better layer of security than passive 

RFID. 

Readers Typically higher cost Typically lower cost 
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flexibility. Current solutions store items in fixed locations which results in wasted time and energy spent 

keeping the facility organized. 

 With Kiva, inventory is free from physical location constraints, locations and positions are virtual 

and move and adapt to the products. The result is that any item can be delivered to any operator at any time. 

As part of the Mobile robotic fulfillment system, KIVA uses RFID tags in combination with robots, in order 

to track, send and receive packages in a warehouse environment. 

Access Application: Most of the access cards implement the usage of an RFID tag, this tag contains 

information in regards to the identification of the individual. When the RFID tag is read by the RFID reader, 

it allows access to the building. 

 

                                         

Fig. 2.3a Linear Polarized Antenna 4                   Fig. 2.3b Circular Polarized Antenna 4 

 

Upon completing the technical background research for RFID technology, several points were 

concluded. Passive RFID tags would be best to use now that the group will be working in a small 

environment, and a smaller reading range of RFID tags would also increase accuracy in terms of 

localization. When it came down to choosing a reader, the team decided to go with a Linear Polarized 

antenna. This decision was made now that most of the passive tags that will be read will have a known 

4 (Circular Polarization vs Linear Polarization., Which is right?) 
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location. Since the location of these tags is known, we will be able to point the antenna to their respective 

location, therefore increasing accuracy, and preventing other false tag reads. 

2.3 Wi-Fi Localization  
 

Indoor localization has been becoming an interesting and popular topic in past decades. The are 

many ways to realize the Wi-Fi positioning by measuring different parameters of Wi-Fi, such as time of 

arrival (TOA), angle of arrival (AOA) and received signal strength (RSS) etc. The most popular and 

fundamental method for Wi-Fi localization is using the measurement of received signal strength (RSS). 

The most widely applied algorithms for indoor localization also involve using RSS. There are two 

fundamental methods for indoor localization. These methods are k-nearest neighbor and kernel algorithm.  

2.3.1 Wi-Fi Localization Algorithms  
 

K-nearest neighbor method is for classification. According to the introduction of k-nearest 

neighbor by Altman, the output of k-nearest neighbor is a class membership. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most common among its k nearest 

neighbors, which k is usually small positive integer. If k = 1, then the object is simply assigned to the class 

of that single nearest neighbor5.  

For indoor localization application, k-nearest neighbor locates the object inside of a building by 

measuring RSS of the object, and comparing it with the RSS of the access points (AP). It estimates the 

position of the object by selecting a K number of access points with the closest RSS to the object, and 

calculates the coordinates of the object by the weighted average coordinates of the K selected access points. 

The nearest neighbor method is a straightforward and efficient method, but sometimes not accurate enough 

for precise situations. Kernel methods are a class of algorithms for pattern analysis, which is to find and 

5 (How Does a Wi-Fi Positioning System Work?) 
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study of general types of correlation or classification in datasets2. It is based on the idea of using a 

probability mass function and the Gaussian curve to estimate the position of the object. The entire flow 

chart of our localization system is as shown below. The first step in building our Wi-Fi localization system 

is to start with constructing the database, which is illustrated below. 6 

 

Figure 2.4: Diagram for constructing the database and computing the sum of squared errors for 
each sample and location using the received signal strength readings 

 

We recorded the received signal strength measurements of 8 locations on the third floor of Atwater 

Kent Laboratory. At each location we collected training samples for one minute from 65 different access 

points. Using the received signal strength measurements from the object, we first calculated the sum of 

6 An introduction to kernel and nearest-neighbor nonparametric regression 
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square errors. Next, we conducted the calculations depicted on the next figure.  

 

Figure 2.5: Creating and normalizing the Kernel for probability estimate [] 

Using the SSE data and the variance value, we created the average Gaussian Kernel at each of the 

8 locations. In addition, we had to tweak this value many times in order to achieve the most accurate 

localization estimations. Next, with the average Gaussian Kernel, we normalized it and calculated the 

probability as shown in the next figure.  

 

Figure 2.6: Calculating the probability of the robot in each location using the Kernel 
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2.3.2 Kalman Filter 
  

Kalman filter is an efficient recursive filter. That means the filter can estimate the state of a dynamic 

system from a series of semi contained noise measurements. It is a non-linear dynamic system with time 

concern, it is often used in target tracking system. Later scholars were carried out a number of 

improvements, one of these improvements is the extended Kalman filter which can be applied to time 

nonlinear dynamic systems. 

The basic idea of an Extended Kalman Filter is to linearize the nonlinear system, then apply the 

Kalman filter, so the EKF can be considered a suboptimal filtering tool. Subsequently, a variety of second-

order extended Kalman filter method may be applied, these further improvements promote the performance 

of the Kalman filter to estimate of nonlinear systems.  

2.4 UWB Localization 

UWB is a radio technology and others which may be used at a very low energy level for short-

range, high-bandwidth communications using a large portion of the radio spectrum.1 UWB has traditional 

applications in non-cooperative radar imaging. Most recent applications target sensor data collection, 

precision locating and tracking applications. Recently, UWB has been utilized for localization applications. 

(UWB) radios have relative bandwidths larger than 20%or absolute bandwidths of more than 500 MHz. 

Such wide bandwidths offer a wealth of advantages for both communications and radar applications. In 

both cases, a large bandwidth improves reliability, as the signal contains different frequency components, 

which increases the probability that at least some of them can go through or around obstacles. Furthermore, 

a large absolute bandwidth offers high resolution radars with improved ranging accuracy. For 

communications, both large relative and large absolute bandwidth alleviate small-scale fading.2 UWB is 

perceived as one of the enabling technologies for robust and accurate localization, especially in harsh 

channel environments like e.g. indoor areas. 
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An UWB localization system includes several fixed readers (UWB receiver), a set of moving tags 

(transmitter) and the processing center. The processing center, which connects the readers with wires, 

consists a baseband FPGA board and one computer (for graphic display and data processing). During the 

ranging detection, the tag is sending pulse stream to all the readers. After pulse detection, the readers send 

the data to the FPGA to measure the time difference of arrival (TDOA). Although UWB has its benefits for 

solving this task, several conditions have to be fulfilled to take advantage of them: the signal structure must 

enable the receiver to detect the arrival time as exactly as possible, the signal must have the possibility to 

travel a direct Line of Sight (LOS) path, and the receiver must detect the correct LOS path in multipath and 

interference environments.7 

For UWB systems, OLOS( Obstructed Line Of Sight) Propagation does exist. When the direct LOS 

between two nodes is obstructed, only reflections of the UWB pulse from “strays” reach the receiving node. 

Therefore, the delay of the first arriving pulse does not represent the true TOA. Since the pulse travels an 

extra distance, a positive bias called the OLOS error is present in the measured time delay. 8     

 

Fig. 2.7 Showing the Ultra Wide-Band System. The black box is the Base station( Black box), the fixed 
nodes(Orange nodes), the bridge node(black node), and the mobile node(blue node). 

7 (UWB localization - active and passive approach) 
8 Localization via Ultra-Wideband radios a look at positioning aspects for future sensor networks) 
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2.4.1 UWB Localization Techniques 
 

 Most Ultra Wideband technology use time-of flight based algorithms to estimate the location of an 

object. Two of the most popular are time-of-arrival (TOA), and time-difference-of-arrival (TDOA). In both 

the time of arrival (TOA) and time difference of arrival (TDOA) arrangements, omnidirectional antennas 

are not used and location is found by trilateration using distance data only. 

2.4.2. Time of Arrival (TOA) 
 

Distance can be estimated using received signal strength (RSS) data, or time-of-flight 

measurements. Theoretically, at least two fixed terminals are needed in order to pinpoint a location in two 

dimensions. In a multilateral system, like the system that will be described later on, fixed terminal receivers 

are used to estimate distance to a transmitting target.  

 

Figure 2.8. TOA location measurement configuration  

The geometry of determining two-dimensional location from distance measurements is shown in 

Figure 2.13. The coordinates of two fixed terminals, F1 and F2 are known in a given frame of reference 

specified by the x-y axis and the origin at F1. If we can find the ρ1 and ρ2, we can determine the coordinates 

   

 ρ 2 

 F 2 (x2 ,y2) 
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of T from a point of intersection of two circles. Since the circles intersect in two locations, we will assume 

the ambiguity is solved by knowing that T is in the upper half of the x-y plane. If there is no other knowledge 

to eliminate the ambiguity, a third fixed terminal is required. Equations to calculate the distances ρ1 and ρ2 

are below: 

p1 = (t1 - t0 ) · c 

    p2 = (t2 - t0 ) · c 

Eq 2.1 Distance Calculation 

 

Using the method denoted by TOA, we find the distances ρ1 and ρ2. In the case of TOA, the one-

way distance between T to F1 or F2 is determined as follows. Assume that all three stations have high 

precision clocks that are set to exactly the same time and that F1, F2 are receivers. A pulse sent from T at 

time t0 is received at F1 at time t1 and at F2 at time t2. T notifies F1 and F2 of the time of transmission, 

t0, by time-stamping its message. Now F1 and F2 can calculate the distances ρ1 and ρ2 from the transmit 

and receive times and the known propagation speed, the speed of light, c 

The equations for the two circles with radiuses of ρ1 and ρ2 are:  

ρ12 =  𝑥𝑥2 +  𝑦𝑦2 

ρ22 =  (𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 −  𝑦𝑦2)2  

Eq 2.2 Circle Equations for P1 and P2 

2.4.2 Time Difference of Arrival (TDOA) 
 

 While TOA gives a straightforward way to find location from distance measurements, it does have 

disadvantages for many applications. Accurate, synchronized clocks must be maintained in all stations 

participating in the measurements. Information must be passed from the initiator to the receiver specifying 

when the transmission was started. Another geometric location method, TDOA, does not possess these 
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disadvantages. All TDOA needs is a transmission that has a recognizable unambiguous starting point. The 

data used in the location calculations is the time difference in the reception of that starting point at the 

several base stations, and not the actual time of flight of the signal from the target to the fixed stations. In 

an arrangement having a mobile target whose coordinates are to be determined and two fixed base stations, 

as we had in the example of TOA, we can find the time difference of arrival of a signal sent from the mobile 

and received at the base stations. This one time difference value is not enough to calculate the two 

coordinate values of the mobile’s position. So, in order to have sufficient data to find two unknowns—the 

mobile’s coordinates—TDOA requires one more base station than TOA. The clocks of the fixed stations 

must be synchronized, but not that of the target. TDOA is used unilaterally—the target finds its own position 

from fixed station transmissions or multilaterally, where time difference data is collected from target 

transmissions by fixed base station receivers. 

The figure above shows the geometric layout for TDOA in two dimensions. Target T transmits a 

pulse at t0 that is received at F1 at t1 and at F2 at t2. The clocks of F1 and F2 are synchronized, but T’s 

clock is not, so t0 is not known. However, the time difference of arrival, which can be calculated. The times 

on the right side of the equation are proportional to the distances d1 and d2 shown in Figure 2.14 since the 

distance is the time of flight times the speed of light, c. Therefore the difference of the distances between 

the two fixed stations and the target is: 

Δd =d2 −d1 = c(t2 −t1) 

Eq 2.3 Distance difference between two fixed stations 

The time difference of arrival that is obtained from times of arrival measured at two synchronized 

fixed stations indicates that the target is located somewhere on a hyperbola. The particular branch of the 

hyperbola that the target is on is the one that is closest to the fixed station that received the signal first. 

Figure 2.14 is drawn with F1 and F2 on the x-axis and each at equal distance, D/2, from the origin. The 

expression for the hyperbola is: 
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𝑏𝑏2
= 1  

Eq 2.4 Hyperbola Equation 

Where a, and b are in terms of the known quantities Δd and D. Which amount to: 

a2 = (Δd /2)2 

𝑏𝑏2 = �
𝐷𝐷
2
�
2
−  𝑎𝑎2 

Eq 2.5 Hyperbola Equation Variables 

Since the time difference of arrival found from TOA measurements by two terminals places the 

target on a locus of positions, it is necessary to use the time of arrival at a third fixed station, t3, to pinpoint 

the target location. With the addition of this one station, we can now find three time differences of arrival: 

between F1 and F2, F2 and F3, and F1 and F3. The intersection of a minimum of two hyperbolas, 

constructed from two times of arrival determinations and drawn on the same coordinate system, gives the 

location of T, as shown in the above Figure. The second hyperbola, shown as a solid curve, is based on the 

time difference of arrival between F2 and F3. 

2.4.3 Red Point Positioning 

The UWB system implemented for our MQP was provided by Red Point Positioning Corporation; 

a start-up based in Cambridge, Massachusetts. Red Point Positioning’s Real-Time Location System (RTLS) 

uses UWB technology to provide indoor position information in 2D, 2.5D and 3D. 

For the purpose of this MQP, we will pay more attention to the 2D positioning. For most 

applications, an RTLS is comprised of a single base station and multiple radio nodes. The radio nodes create 

a wireless network from which the system gathers localization data. The base station acts as a configuration 

and management hub for the network and stores the location and sensor data for each radio node in the 

22 

 



system. There are three type of radio nodes: Bridge Nodes: A bridge node stays fixed in place and uses an 

Ethernet connection to serve as a gateway between the wireless network and the base station. Anchor 

Nodes: Anchor nodes are mounted on the walls and ceilings in a predetermined configuration to serve as 

fixed reference points and make up the rest of the network infrastructure. Mobile Nodes: Mobile nodes are 

attached to objects or people as tags and move around the network. The system tracks their location in order 

to provide precision tracking within the network 9 

As mentioned earlier, the anchor nodes and bridge nodes make up the network infrastructure. They 

dynamically establish a mesh network comprised of all active radio nodes in the system. Mobile and anchor 

nodes exchange messages wirelessly to determine the distance between them. This process is known as 

ranging. Once a mobile node has ranged with enough anchors, it computes its 2D, 2.5D, or 3D location. 

The mobile nodes then either send that location data back to the base station or out to an external device 

such as a phone or tablet. 

  

9 (Redpoint Positioning Localization, “Developers Guide”) 
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Chapter 3: Performance Analysis of the Different 
Technologies 

This chapter performs a comparative performance evaluation of the three different technologies. We went 

through each one of the technologies, set up a scenario, and performed testing accordingly. For the RFID 

reader, we developed an antenna model, and implemented RFID tag writing, for Wi-Fi we tested two 

different localization algorithms, and for the UWB we developed models for its localization behavior. 

 

 3.1 RFID Modelling and Scenario Setup 
 

The USB Plus+RFID Reader sold by the company ThingMagic is a low cost platform for 

developing interactive read/write applications. It contains a reader with a linear polarized antenna and a set 

of sample passive RFID tags which made it perfect for the team’s desired application. This device is driven 

by ThingMagic’s Mercury 5e-Compact UHF RFID reader module, the USB Plus+ is controlled and 

powered by a host PC or laptop through a USB interface and is compatible with ThingMagic’s application 

development tools, permitting rapid creation of RFID solutions. With a software adjustable read distance 

up to 3 ft (0.91 m), the USB Plus+ supports a variety of applications, including RFID tag commissioning, 

manufacturing WIP, document tracking, library book check in/out, retail point of sale, event and hospitality 

services, hospital patient workflows, and more. The high-performance internal antenna of the USB Plus+ 

is also ideal for commissioning high memory tags and reading small form factor RFID tags more 

effectively. Figure 3.1 below shows the RFID reader with the respective sample tags. 10 

10  (USB Plus+ RFID Reader) 
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Fig. 3.1 RFID Reader and an assortment of RFID tags which were used 

3.1.1 Software Interface 
 

Through the (URA) Universal Reader Assistance software user interface, we are able to analyse all 

of the tag reads. Since this software is open source, we will be able to make adjustments to the data that is 

read. The ThingMagic’s reader assistant will also allow for tag editing which will make it easier for the 

group to add location data to each of these tags, data that will then be plotted.  Figure 6 below shows the 

reader software assistant.   

 
Fig. 3.2 Universal Reader assistant Displaying Tags. 
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3.1.2  RFID tag writing.  

All tags that came with the purchased kit are identified by an EPC number. The first step was to re-

assign a value to these EPC identification numbers. The group then used the URA to edit the tags, the last 

four digits of each EPC was changed to “XX , YY” location, and the remaining digits to zero. A tag that is 

placed at the location (meters) X= 12 &  Y=6, would have an equivalent EPC value of, 

“00000000000000000001206” . Initially the team used 6 RFID tags and placed these between the WiFi 

access points for calibration purposes. 

The following 6 tags were assigned X, Y coordinates, with respect to the WPI 3rd floor blue 

prints: 

TAG # and TAG ID 

Tag 1 to 6   “ 0004”  “0013” “0417” “0817” “1517” “1817” 

 

     Fig. 3.3 – Third Floor of Atwater Kent Laboratory with the RFID tag locations 
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Fig. 3.4 – RFID and URA tag EPC location assignation. 

 

The figure above shows the new EPC tag value of a total number of 6 tags. Each tag is 

representative of a location in the X and Y axis, the first two digits represent an X coordinate, and the last 

two digits represent a Y coordinate. 

 

3.1.3 Real Time Implementation 
To evaluate a real time implementation, it is first important to understand the development tools 

that are currently available. The Universal Reader assistant is written using the high level MercuryAPI in 

C# .NET.  All the source code for the URA is available as part of the MercuryAPI SDK, which is a platform 

that allows for software development for all ThingMagic products. The MercuryAPI supports Java, .NET 

and C programming environments. 

The first option is utilizing the URA through its development tool “MercuryAPI”, would allow us to 

implement all code in real time, now that any type of filter has an equivalent C interpretation of its 

MATLAB form. Once the filter has been implemented into C or ( C# , .NET) , a grid can be created, where 

plotting of data is displayed. 

 

 
27 

 



 Simple Code for creating a 20/20 grid (C Language) 

 

 

 

 

 

 

 

 

const int cellsize = 20; // 20 pixels wide/high cells.  

void grid(int gridsize) 

{ 

int i; 

for(i = 0; i < size; i++) 

{ 

DrawLine(0, i * cellsize, size * cellsize, i * cellsize);  

DrawLine(i * cellsize, 0, i * cellsize, size * cellsize} 

The code above can be set to a scale representative of the dimensions in Atwater Kent 3rd floor. As 

soon as the above process is completed, we can proceed to the addition of an algorithm, that when 

developed, will readjust and recalibrate depending on the locations of the RFID tags, where the current 

(X,Y) Value will be set equivalent to tag location. 

Option two is that the URA provides demo functionality to stream data, as a server, to a network 

port where the client applications can listen and receive tag read data. 

When enabled, tag read data will be sent to the specified network port in a tab-delimited format containing 

any specified information “ [EPC ID] [Time Stamp] [RSS] etc. ] an example of this is the following: 

0001  2/14/2015 1:55:03 PM -22 

0002  2/14/2014 1:55:03 PM -31 

0003  2/14/2014 1:55:04 PM -22 
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0004  2/14/2014 1:55:05 PM -29 

 

Any client that can connect to the specified network port can connect and receive the data  

It is very important to note 3 things. The current functionality is limited to a single client, currently it does 

not support a MATLAB extension, although, connection must be made in order to stream the data. 

3.1.4 Testing Data Extensions & PuTTy for Real Time Implementation. 
 

 By clicking “Enable Data Extensions” in the URA, the software is ready to transmit to a specified port 

 

Fig.  3.5-Data extension 

A test client can be used “telnet” for testing purposes. This can be done by entering the command 

$ telnet [IP address of URA host] 9055 

On windows, a telnet client application such as “putty” or “teraterm” can be used.  

Just by assigning : 

host: [URA host IP address] 

port: 9055 

With a client connected, read output is now pending. Once we start reading tags, these should be displayed 

at the other end of the connection displaying the signal below. 
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Fig.  3.6- Enable Data extension 

The Method specified above can be used to transmit data to a host computer in charge of WiFi 

localization. Where both of these methods can be implemented simultaneously. For Offline mode, all the 

data available for each independent tag can be exported in EXCEL format and combined with WIFI through 

MATLAB. 

A test was performed using PuTTytel configuration in order to look at the TCP connection, this 

software connects to the HOST computers “ IP address” and “port number” which we assigned a value of 

9055 and displays all the data being streamed. 

  

Fig 3.7  The figure above shows a correct connection made between URA and PuTTytel 
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3.1.5 Implementing the USB Plus+RFID Reader  
 

The initial procedures involved setting up the RFID reader and software interface. After installing 

the driver for the USB reader and the Universal Reader Assistant software, we could begin taking 

measurements. The group initially studied the URA, we were able to set up the software to display EPC 

(Tag ID), time of arrival, RSS (Received Signal Strength), frequency and phase. This is all very valuable 

information that will come in handy as the project progresses.  

The most important feature of the URA is the ability to edit RFID tags, by using this feature we 

can not only change the identification number of the tag, but also add data to them. The next step was to 

develop a model for the antenna, this step is extremely important now that it will determine the orientation 

of the reader when reading RFID tags. The model for the antenna was developed by taking measurements 

at different distances and angles between the reader and the tags. Two equations for the Antenna model 

were used. The first equation used an “b” unknown antenna loss Eq.1, and the second equation used an 

estimated antenna loss for our reader of -31.7dB Eq.2. 

3.1.6 RFID Antenna Modeling 
 

Two equations for the Antenna model were used. The first equation used an “b” unknown antenna 

loss Eq.1,  and the second equation used an estimated antenna loss for our reader of -31.7dB Eq.2. 

b – 10 * Alpha*Log 10  (Distance)           Eq 3.1a Path loss model unknown b 

          -31.7 – 10 * Alpha*Log 10  (Distance)        Eq 3.1b Path loss model calculated b 

 

For the Antenna modeling, we initially placed the RFID tag right in front of our reader. From 

there we took measurements, then did two rotations, first to 45 degrees, then 90 degrees. The goal of this 

was to understand the behavior of the reader and its antenna in the presence of an RFID tag 

LOS (based on longest measurable distance) 
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LOS ( RFID tag placed directly in front of reader) 

 

Fig. 3.8 Table for measurements and Graphs for Curve Fitting at LOS 

 

+45o Angle from LOS 

 

Fig. 3.9 Table for measurements and Graphs for Curve Fitting at LOS +45o 
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+90o Angle from LOS 

 

Fig.  3.10 Table for measurements and Graphs for Curve Fitting at LOS +90o 

 

Based on the measurements taken above, the LOS for the antenna was found to be the set of 

measurements that reached the longest distance away from the antenna for which we still had a tag read. 

The calculated (b) value from the measurements above and Eq.1 had an average value of -28 dBm which 

was close to the calculated DB loss of -31.7 in Eq 3.1b. Now that we have found that we are working with 

a directional antenna, we know in which way to position the reader in order to achieve a maximum reading 

range and accuracy. 

3.1.7 MATLAB RFID Implementation 
 

The following MATLAB code allowed for a connection to be established between the Universal 

reader assistant, and MATLAB.                 
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MATLAB TCP/IP CONNECTION     OUTPUT 

% Create TCP/IP object 't'. Specify server machine and 
port number.  

t = tcpip('130.215.168.236', 9055);  

  

% Set size of receiving buffer, if needed.  

set(t, 'InputBufferSize', 30000);  

% Open connection to the server.  

fopen(t);  

% Transmit data to the server (or a request for data from 
the server).  

fprintf(t, 'GET /');  

% Pause for the communication delay, if needed.  

pause(1)  

% Receive lines of data from server  

while (get(t, 'BytesAvailable') > 0)  

t.BytesAvailable  

DataReceived = fscanf(t)  

end  

% Disconnect and clean up the server connection.  

fclose(t);  

delete(t);  

clear t  

 

  By implementing the code above, as a result, we received the following output in MATLAB, 

which shows that a data connection has been established and RFID tag data is ready to be processed. 
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3.3 Implementation and Performance Evaluation of Wi-Fi 
localization 
 

This part is about algorithms implementation and data collecting. In the beginning, we select 

reference points for our Wifi localization. As the graph shown below, we pick eight reference points, four 

vertex points and four middle points, as suggested by. The Figure 18 shows the location of each reference 

point in red circle. The dashed rectangular is our desired trajectory in the third floor of Atwater Kent 

Laboratory where all experiment was conducted. The Figure 19 is the plot of 86 coordination points of 

desired trajectory with the unit meter.  

 

Fig. 3.11 Third Floor of Atwater Kent Laboratory with locations of reference points.       

                                    
  Fig. 3.12  86 coordination points of desired trajectory 
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Next step is to collect the Wifi data of each reference point, which are MAC and RSS at each 

reference point. The device we use for collecting data is a mobile phone with specific software, which 

developed by Guanxiong Liu, CWINS graduate student researcher.  The program interface is as shown in 

Figure 3.      

         

Fig 3.13a User Interface of Wi-Fi 
Compass. Program used to collect Wi-Fi 

data 

 

Fig 3.13b Sample of data collected by Wi-Fi 
Compass. The left column is the MAC Address 
of the access point and the right column is the 

RSS(dB) of the access point 

 

In order to collect the Wifi data, we step on each reference point for one minute, and started the 

program with pressing “Wifi scan”. Then we pressed the “scan stop” to end the data collecting. The program 

will automatically generate a text file of the Wifi data, which it collected in one minute. The data contains 

MAC of Wifi hotpots and RSS from each MAC, which are the mobile phone received in one minute. A 
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sample of collected data is as shown below, the first column is MAC, and the second column is RSS of 

corresponding MAC.  

3.3.1 Algorithm Testing 
 

In this part, we started to test our algorithms. Initially, we randomly stand on four points as our test 

points, as the result shows below, the point we stand on in the graph is the red circle, and we collect the 

Wifi data of these points. After the data collecting, we plug in our reference points data and each test points 

data. The algorithm will estimate the coordination of each test point. The estimate coordination of each test 

point is “x” in the graph. The green dots are coordination points. 

For K-NN algorithm, when K=3, the overall performance of the KNN has error of 2 to 5 meters.  

                  

Fig 3.14 – Estimated results of K-NN algorithm 
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Table 3.1 Table of the calculated errors for K-NN 

Stand Point (x,y) Estimate Point (x,y) Error (Meter) 

5.397,0 8.133,0 2.74 

21.6,5.49 19.59,8.68 3.765 

18.42,16.51 19.22,14.57 2.165 

0,13.45 0,9.30 4.15 

  

For Kernel algorithm, we recollected the data, because of Kernel algotithm, we need to turn around 

when we collecting the Wifi data.  In our kernel algorithm with sigma = 20, the overall performance of the 

Kernel has error of 0.53 to 8 meters. 

                                
Fig  3.15 – Estimated results of Kernel algorithm 
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Table 3.2. Table of the calculated errors for Kernel 

Stand Point (x,y) Estimate Point (x,y) Error (Meter) 

8.64,0 16.92,0 8.28 

21.61,9.66 21.6,9.37 0.29 

14.15,16.51 15.2,16.3 1.02 

0,10.43 1.0233,9.159 1.73 

 

Based on the previous test, K-NN algorithm has the error about 2-3 meters, and Kernel algorithm 

possesses an error of approximately 1 meter. However, Kernel has an outlier with an error of 8 meters. In 

order to make an accurate evaluation of each algorithm, we take 16 more test points, and create a CDF 

(Curriculum Distribution Function) graph to evaluate error of these two algorithms. The first part, as shown 

below in Fig 24 and Fig 25, is the result of K-NN algorithm and CDF graph of the error of K-NN algorithm, 

where K=3 

 
                                           Fig. 3.16 – Estimated results of K-NN algorithm 

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

39 

 



From the CDF graph as shown below in Fig 20, with 50% probability, the error of K-NN 

algorithm is about 2.6 meters 

 
Fig. 3.17 – CDF graph of error of K-NN algorithmThe second part, as shown below in Fig 21 and Fig 22, 

is the result of Kernel algorithm and CDF graph of the error of K-NN algorithm, where sigma is equal to     

 

Fig. 3.18 – Estimated results of Kernel algorithm 
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From the CDF graph as shown below in Fig 22, with 50% probability, the error of Kernel algorithm is 

about 2.1 meters.          

 
Fig. 3.19 – CDF graph of error of Kernel algorithm 

 

From the statistical analysis, we can conclude that Kernel algorithm has better performance than 

K-NN algorithm, although, the difference is almost negligible. In practice, the Kernel only has an error of 

approximately 1 meter on most test points, but some outlier errors with more than 6 meters on the bottom 

side increase the average error on the overall performance of the Kernel algorithm.  

3.4 UWB Performance Evaluation and Scenario Setup 
 

This part concerns the set up and testing of the UWB system discussed in the background. In order 

to set up the system, we have to register the nodes through the Red Point Administrator tool. This allows 

us to calibrate the nodes in accordance with our needs. For the purpose of this report, we set up the system 

within the CWINS Laboratory 
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.

 

Fig 3.20.  The list of nodes on the server. 

 

We begin with a reference point. For us, that reference point is the Bridge node, as seen in the 

above figure where the bridge node has 0 value for the x, and y axis. We measured the distance of each 

fixed node relative to the bridge node and placed the fixed nodes in a rectangular fashion around the bridge 

node. We measured the distance of the nodes using the Bosch Distance Measurer (depicted in Figure ), a 

laser device that is accurate within 1mm. Accurate placement of the fixed nodes is necessary in order to 

better gauge the error of the system. 11 

 

Fig 3.21. Bosch Distance Measurer 

11 UWB localization - active and passive approach 
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For the nodes in the figures below, a helpful key is provided to be able to identify them: 

• Blue Squares – Fixed Node 
• Black Square– Bridge Node 

The measurements we have taken are from the mobile node. 

 

3.4.1 LOS Measurements 
 

 

                   

Fig 3.22 Locations of the fixed nodes and bridge node for Line of sight measurement in CWINS Lab 

 

          The mobile nodes would send a “heartbeat” to the bridge node every 10 seconds. Hence, the readings 

above are an average location after one minute situated in one place. The points shown above are LOS. The 

error fell between 41mm to 437mm. These numbers are well below a meter thus, highlighting the high 

accuracy of Ultra Wideband.  
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Table 3.3 A table containing the errors for Line of Sight localization In CWINS Lab 

 

Real x Real y Uwb x Uwb y Error
-3962 -2133 -3392 -1344 973.3555
-4876 914 -4752 930 125.028

-3890.96 -4419.6 -3552 -3680 813.5736
-2133.6 3352 -2256 3232 171.4111

-6004.56 -4632 -4208 -2976 2443.351
-5029.2 -1767 -4416 -1152 868.4695
1127.76 2712 2000 2720 872.2767

914.4 -4343.4 1344 -4576 488.5273
3505.2 -1117.7 4416 -1264 922.4751

2926.08 -4038.6 3584 -3968 661.6971
3048 1676.4 1888 1072 1308.014

-304.8 3200.4 -688 3500 486.4179
1700.784 2565.41 1296 2144 584.3257

1574.9 4673.5 1760 5728 1070.622
381 4597.4 -448 4624 72.08717  

 

 

Fig 3.24 Graphical representation of the UWB measurement in CWINS Lab for Line of sight 
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Fig  3.25  CDF for Ultra Wideband in Line of sight 

 

           The mobile nodes would send a “heartbeat” to the bridge node every 10 seconds. Hence, the readings 

above are an average location after one minute situated in one place. The points shown above are LOS. The 

error fell between 41mm to 437mm. These numbers are well below a meter thus, highlighting the high 

accuracy of Ultra Wideband.  

3.4.2 OLOS Measurements 
 

                              
Fig 3.26 Locations of the fixed nodes and bridge node for Obstructed Line of sight measurement in 

CWINS Lab 
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To test the OLOS capability of the technology, we set up the nodes around the hallway of the third 

floor of Atwater Kent. Theoretically, the error of Ultra Wideband in OLOS should be exponentially high, 

due to the technology utilizing TOA (Timing of Arrival). Error should hover around 3 to 5 meters. 

Table 3.4 A table containing the errors for Obstructed Line of Sight localization In CWINS Lab 

 

 

Fig 3.28 Graphical representation of the UWB measurement in CWINS Lab for Obstructed  Line of sight 
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To test the OLOS capability of the technology, we set up the nodes around the hallway of the third 

floor of Atwater Kent. Theoretically, the error of Ultra Wideband in OLOS should be exponentially high, 

due to the technology utilizing TOA (Timing of Arrival). Error should hover around 3 to 5 meters. 

     
Fig 3.29 CDF for UWB measurement Obstructed Line of Sight in CWINS Labs 

 

3.4.3 UWB MATLAB Implementation 
 

 The UWB system will work conjunction with Wi-Fi and RFID. The technology will be used 

predominantly within the “open space” of the CWINS laboratory.  The algorithm used for Ultra Wideband 

would be a geometric algorithm. The algorithm will be based on distance: If the mobile node is within a 

certain range, the algorithm will detect it and begin to plot the data. Once the mobile node is out of range, 

the algorithm switches to Wi-Fi and RFID.12 

12 NLOS detection algorithms for Ultra-Wideband localization 
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Chapter 4: Hybrid Wi-Fi Localization 
This chapter details our results, and the combination of the three technologies into one hybrid system. It 

includes the merging of Wi-FI and RFID, Kalman filter smoothing and the final testing and scenario 

along with the graphical representation of our data, which supports our hybrid indoor localization system. 

4.1  RFID & Wi-Fi Combination Results 

 Since RFID tags have a maximum RSS loss of -30 dB, and WiFi can have RSS loss values less 

than -30 dB, we can set a hierarchy system in which the current location prioritizes and RFID reading, 

followed by WiFi. The algorithm for this is attached to the Appendix, and it takes into an account measured 

RSS, and RFID location. After setting up the RFID tag locations, a new set measurements can be taken by 

running the MATLAB algorithm. The new set of data can be set in a side by side comparison, for a better 

understanding of the results. 

 Then, we did a test to compare the Wi-Fi results and the results with RFID calibration. We 

randomly stood on 12 positions as your testing points, where deployed the RFID tags. From the testing 

graph as shown below, the RFID did the correction when I stood in its range.  

                      

Fig 4.1a WiFi                                             Fig 4.1b Wi-Fi with RFID Correction 
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The graphs above can be translated into the CDF Graphs below to visualize the improvements. 

From the graph, at the 50% chance, the error of Wi-Fi estimation by Kernel method is 1.8 meter. For 

RFID calibration result is 1.1 meter.  

     

           Fig 4.2a CDF graphs of result of WiFi                        Fig 4.2b CDF of WiFi with RFID   

4.2 Kalman Filter Results 
 

To combine the Kalman filter with the project, we integrated it with the received signal strength of 

the Wi-Fi, a gyroscope, and the average distance covered by one of our steps. This Kalman filter will take 

care of providing a (non-linear) graphical representation, of our changes in steps and movement. Our goal 

with this filter is to implement it to utilize it in separate stages: Initialization and measurement update stage. 

                                           
Fig 4.3 -Time update, initially estimates Xk-1 and Pk-1                                               Fig 4.4- Movement Update   

49 

 



 

Initialization Process 

In the initial phase, the state and covariance is calculated. The information for the state, is calculated 

while the time is being updated, then, it is combined with the length of the step and the gyroscope, for a 

more accurate representation of direction and displacement.  

𝐵𝐵 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(𝑖𝑖)            0

0             𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)� 

U = [sin�𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑎𝑎(𝑖𝑖)� ; cos (𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑎𝑎(𝑖𝑖))] 

Eq 4.1 The 1st State 

As seen in the equations above, the 1st state carries the X and Y coordinates, and their respective 

angles, represented by the Sine and Cosine. It is very important to note, that as new sets of data arrive, 

these measurements get constantly updated as we use the wireless estimations of location and the 

magnetometer to setup up our states.  At first we collected data across 23 steps in AK’s third floor 

hallway, this was followed by another set of data collection across 33 steps in a hallway perpendicular 

to the previous, the data collected carried information from the Wi-Fi Kernel method outputs, with the 

x and y locations.  

 Then, by using the average and standard deviation of those measurements, the calculated 

position covariance is shown below.  

𝐸𝐸_𝑥𝑥 = [𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑥𝑥^2 0
0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑦𝑦^2],  𝐸𝐸_𝑧𝑧 = [𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑥𝑥_𝑘𝑘𝑠𝑠𝑘𝑘^2 0

0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑦𝑦_𝑘𝑘𝑠𝑠𝑘𝑘^2] 

  Eq 4.2 Average standard deviation placed into position convergence 
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The equation above models a path which determines where to display the Wi-Fi measurements. 

As the covariance results get greater and greater, each Wi-Fi measurement accuracy will increase until 

the covariance results are reduced down to a certain point.  

 In this process we update the state by just utilizing the length of our steps and the information 

given by the gyroscope. The two following equations are used to provide a probabilistic approach to 

determine a prediction of the future location. 

 

Eq 4.3 Prediction of location 

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = �1 0
0 1� ∗ 𝑠𝑠 + [sin�𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑎𝑎(𝑖𝑖)� ; cos (𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑎𝑎(𝑖𝑖))]*B 

Eq 4.4  Combination of x ,y and Theta  

Because our goal is to combine these measurements in terms of X, Y, theta, step length and 

sigma of step length and sigma of theta, we can proceed with the Eq.5 to have an estimate of our future 

position. Also, the state function is only used in the prediction phase to predict where the object is 

located better.  

In the Kalman Filter, the state transition matrix is the derivative of the state, which is shown in 

great detail above. Note, this matrix is only used during the covariance update phase. Now that all the 

elements in the prediction state are explained, let us move on to the measurement update phase. 

Measurement Update Stage 

In the Measurement Update part of the Kalman Filter, we used the following equations  
𝑠𝑠 =  𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐾𝐾𝑎𝑎𝐾𝐾𝑠𝑠𝑎𝑎𝐾𝐾 𝐺𝐺𝑎𝑎𝑖𝑖𝐾𝐾 ∗ (𝑘𝑘𝑠𝑠𝑘𝑘𝐾𝐾𝑠𝑠𝐾𝐾(𝑥𝑥, 𝑦𝑦)− �1 0

0 1� ∗ 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 
Eq 4.5 Kalman Filter Implementation 
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The first part of the measurement update phase is to determine what is actually being measured. 

In our case, we chose to measure the Wi-Fi x and y coordinates and we will only be using these values 

to update the KF position only when the covariance values become too large. 

E = ��1 0
0 1� − 𝐾𝐾𝑎𝑎𝐾𝐾𝑠𝑠𝑎𝑎𝐾𝐾 𝐺𝐺𝑎𝑎𝑖𝑖𝐾𝐾 ∗ �1 0

0 1�� ∗ 𝐸𝐸_𝑏𝑏𝑎𝑎𝑘𝑘 

Eq 4.6 Wi-Fi reading applied directly to current state 

 During the measurement update phase, the raw Wi-Fi readings will be directly applied to the 

current state only if the covariance becomes too high. If the covariance is not high, then the Wi-Fi 

measurements will not have much of an impact on the position coordinates. With the development of 

the KF equations, measurements and state complete, we have to determine the covariance values. 

E_bar = �1 0
0 1� ∗ 𝐸𝐸 + [𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑥𝑥^2 0

0 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎_𝑦𝑦^2] 

Eq 4.7 Covariance value determination 

With every time update, the covariance term, E, will be updated with the noise from the matrix, 

E-bar. Once the noise from the x and y position reaches a certain point, then the Wi-Fi measurement 

update will have a larger impact. The results of our KF algorithm will be further discussed later on.  

4.3 Final Scenario 

Our final scenario is as shown below in the figure that I took a walk from a corner of hallway on 

third floor in AK down to the end, and did the same thing in the other hallway. 
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Fig 4.5 The demonstration of our final scenario in the project 

 

To obtain better result of the system, we combine inertial navigation system and Wi-Fi result using 

Kalman filter get better Wi-Fi estimation. The methodology is discussed in a previous chapter. Then, we 

add RFID calibration to get the refined result as our final estimation. 

 

4.3.1 The result and analysis of final scenario 
 

As the diagram shown below, the green dots in graph is the real path in our final scenario, the red 

line is the result of Kernel method estimation. The left graph is result of Kalman filter, the result is as shown 

as black ‘x’ in the graph. The right graph show the result of Kalman filter with RFID calibration, as shown 

as blue line in the graph. 
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..Fig 4.5a Kalman result of walk path                    Fig 4.5b Kalman Result with RFID correction 

 

The results of final scenario of using Kalman Filter. Left graph is the Kalman Filter result; Right graph is 

the result of Kalman Filter with RFID calibration. To visualize the improvement we built a CDF graph, as 

shown below, to compare each method. 

 
Fig 4.6: The CDF graph of the each method results 
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As the figure shows above, the blue line shows that the error is half meter with 50% chance, for the 

Kalman filter with RFID calibration. Black line shows that the error is above 1 meter 50%chance, for the 

result of only using Kalman filter combining with Wi-Fi localization.  Red line shows that the error is 

slightly more than Kalman result, which is 1.3 meter for Wi-Fi localization by Kernel method.  
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Chapter 5: Conclusion & Future Work 
 

5.1 Conclusion 

In conclusion, we designed, implemented, and tested a hybrid localization algorithm that uses Wi-

Fi, RFID, and UWB. We developed the algorithm to take advantage of an existing Wi Fi infrastructure, and 

incorporates RFID and UWB in order to make the system much more accurate. We were not able to find a 

method to fully implement Ultra Wide-Band due to its limitations in obstructed line of sight, but we were 

able to connect the Ultra Wide-Band system with the overall system. Also, we use inertial navigation system 

to record step count and directional angles to use the Kalman filter to refine the Wi-Fi results. Ultimately, 

we get better estimation by using the different technologies.  It will also be simpler with the aid of a robotic 

platform (e.g. TurtleBot)  in data collection. This would reduce error in collection, thus making the data 

more accurate. 

 

5.2 Future Work 
 

Overall, we accomplished most of the work we set out to do, in terms of developing a Hybrid 

Localization System. For the future work, real time implementation would be a huge plus, as of now, only 

UWB works in real time, RFID & Wi-Fi both require offline data processing. It would also be great to 

combine all three of these technologies into one hardware solution, perhaps a device that is both a Wi-Fi & 

RFID reader, and a UWB mobile node. These two main ideas could develop a product that is much more 

user friendly both in hardware and software.  
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Appendix 
 

KNN 
 

load('RSSMap-T4.mat'); 

refpoints=RSSMap(:,1:8); 

testpoints = RSSMap(:,12); 

n1=1;  %#testpoints 

n2=8;   

K=3; 

RP_x = [0 12.437 21.6091  21.6091  21.6091 12.1920 0 0]; 

RP_y = [0 0 0 8.6614 16 16.51 16.51 9.0371]; 

trainingpoint(:,1)=RP_x'; 

trainingpoint(:,2)=RP_y'; 

 

for i=1:n1 

    M=[]; 

    a=testpoints(:,i); 

 

    for j=1:n2 

        b=refpoints(:,j); 

       % b(idx)=[]; 

        m=a-b; 
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        M(j)=sqrt(sum(m.^2));        

    end 

    M1=sort(M); 

    ID=[]; 

    pro=[]; 

    for j=1:K 

        n1=find(M==M1(j)); 

        pro(j)=atan(1/M1(j)); 

        n=n1(1); 

        ID=[ID n]; 

    end 

    Estimate(i,1)=pro*trainingpoint(ID,1)/sum(pro); 

    Estimate(i,2)=pro*trainingpoint(ID,2)/sum(pro); 

%     E=testingpointGT(i,:)-Estimate(i,:); 

%     ErrKNN(i,1)=sqrt(sum(E.^2));     %error 

    

     

end 
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 Kernel 
 

 

sigma = 20; 

kernel_result = []; 

 

RP_num = [1:8]; 

RP_x = [0 12.437 21.6091  21.6091  21.6091 12.1920 0 0]; 

RP_y = [0 0 0 8.6614 16 16.51 16.51 9.0371]; 

NewDatabase_MAC = MAC; 

NewDatabase_RSS = RSS; 

step_RSS = rss; 

step_MAC = ap; 

Test = []; 

 

for k = (1:length(NewDatabase_MAC)) 

    num = find(strcmp(step_MAC, NewDatabase_MAC(k))); 

    if not(isempty(num)) 

        Test = [Test step_RSS(num)]; 

    else 

        Test = [Test -100]; 

    end 

end 

% generate the Test vector for Kernel function 
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K = []; 

for j = RP_num 

    Train = NewDatabase_RSS(:, j)'; 

    K = [K Kernel(Train, Test, sigma)]; 

end 

 

K = K./sum(K); 

kernel_x = K*RP_x'; 

kernel_y = K*RP_y'; 

kernel_result = [kernel_x kernel_y]; 

 

LOS Measurement Plotting 
 

clear all; close all; clc; 

real_x = [-3962 -4876 -3890.96 -2133.6 -6004.56 -5029.2 1127.76 914.4... 

           3505.2 2926.08 3048 -304.8 1700.784 1574.9 381]; 

uwb_x = [-3392 -4752 -3552 -2256 -4208 -4416 2000 1344 4416 3584 1888 -688 ... 

           1296 1760 -448]; 

labels = cellstr('real'); 

labels1 = cellstr('uwb'); 

labels2 = cellstr('fixed node'); 

real_y = [-2133 914 -4419.6 3352 -4632 -1767 2712 ...  

           -4343.4 -1117.7 -4038.6 1676.4 3200.4 2565.41 4673.5 4597.4]; 
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uwb_y = [-1344 930 -3680 3232 -2976 -1152 2720 -4576 -1264 -3968 1072 3500 ... 

            2144 5728 4624]; 

fixed_x = [0 4572 -6096 0]; 

fixed_y = [6096 1000 1000 -4876]; 

figure 

hold on 

axis( [-8000 6000 -6500 6500] ); 

scatter(real_x, real_y, '.r'); 

text(real_x, real_y, labels, 'HorizontalAlignment','right', ... 

          'VerticalAlignment','bottom'); 

scatter(uwb_x, uwb_y, 'mo'); 

text(uwb_x + 0.1, uwb_y +0.1, labels1, 'HorizontalAlignment','left', ... 

          'VerticalAlignment','top'); 

plot(fixed_x, fixed_y, 's'); 

text(fixed_x + 0.1, fixed_y +0.1, labels2, 'HorizontalAlignment','right', ... 

          'VerticalAlignment','top'); 

hold off 

 

 

CDF Error in LOS 
 

real_x = [-3962 -4876 -3890.96 -2133.6 -6004.56 -5029.2 1127.76 914.4... 

           3505.2 2926.08 3048 -304.8 1700.784 1574.9 381];        

uwb_x = [-3392 -4752 -3552 -2256 -4208 -4416 2000 1344 4416 3584 1888 -688 ... 

           1296 1760 -448]; 
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real_y = [-2133 914 -4419.6 3352 -4632 -1767 2712 ...  

           -4343.4 -1117.7 -4038.6 1676.4 3200.4 2565.41 4673.5 4597.4];        

uwb_y = [-1344 930 -3680 3232 -2976 -1152 2720 -4576 -1264 -3968 1072 3500 ... 

            2144 5728 4624]; 

         

true_x = (abs(real_x) - abs(uwb_x)).^2; 

true_y = (abs(real_y) - abs(uwb_y)).^2; 

  

a = sqrt((true_x) + (true_y)); 

  

[b x]=hist(a,100); 

num=numel(a); 

c=cumsum(b/num); 

plot(x,c); 

OLOS Measurement Plotting 

 

clear all; close all; clc; 

real_x = [-4876 -3962.4 -4927.7 -5003.6 -5486.4 -3098.9 1473.19 1524 701 ... 

             2971.8 1615.44 1920.24 3276.6 4241.6 4902.1 6019.8 ]; 

uwb_x = [-4864 -3792 -4464 -4368 -3548 -2736 352 1184 336 2336 1952 2896 ... 

            3728 4784 6608 5520]; 

labels = cellstr('real'); 

labels1 = cellstr('uwb'); 

labels2 = cellstr('fixed node'); 

real_y = [-3048 -1244.6 -4776.2 2006.5 4053.84 2794 2463.7 4597.34 ...  
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            2311.4 1498.4 -1270.1 -3124.2 -1320.7 -1727.2 -4013.18 ...  

            -4749.79]; 

uwb_y = [-2800 -1184 -4192 1936 3392 2848 2272 4640 3056 1232 -1216 ... 

        -2800 -1328 -1312 -3072 -3984]; 

  

fixed_x = [0 6603 -6096 0]; 

fixed_y = [6096 533 1000 -4876]; 

figure 

hold on 

axis( [-8000 7000 -6500 6500] ); 

scatter(real_x, real_y, '.r'); 

text(real_x, real_y, labels, 'HorizontalAlignment','right', ... 

          'VerticalAlignment','bottom'); 

scatter(uwb_x, uwb_y, 'mo'); 

text(uwb_x + 0.1, uwb_y +0.1, labels1, 'HorizontalAlignment','left', ... 

          'VerticalAlignment','top'); 

plot(fixed_x, fixed_y, 's'); 

text(fixed_x + 0.1, fixed_y +0.1, labels2, 'HorizontalAlignment','right', ... 

          'VerticalAlignment','top'); 

hold off 

 

 

CDF Error in LOS 
 

real_x = [-4876 -3962.4 -4927.7 -5003.6 -5486.4 -3098.9 1473.19 1524 701 ... 
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             2971.8 1615.44 1920.24 3276.6 4241.6 4902.1 6019.8 ]; 

uwb_x = [-4864 -3792 -4464 -4368 -3548 -2736 352 1184 336 2336 1952 2896 ... 

            3728 4784 6608 5520]; 

         

real_y = [-3048 -1244.6 -4776.2 2006.5 4053.84 2794 2463.7 4597.34 ...  

            2311.4 1498.4 -1270.1 -3124.2 -1320.7 -1727.2 -4013.18 ...  

            -4749.79]; 

uwb_y = [-2800 -1184 -4192 1936 3392 2848 2272 4640 3056 1232 -1216 ... 

        -2800 -1328 -1312 -3072 -3984]; 

true_x = (abs(real_x) - abs(uwb_x)).^2; 

true_y = (abs(real_y) - abs(uwb_y)).^2; 

  

a = sqrt((true_x) + (true_y)); 

  

[b x]=hist(a,100); 

num=numel(a); 

c=cumsum(b/num); 

plot(x,c) 

 

Geometric Algorithm for UWB 
 

function pos = mob_pos_read(LOG_FILE_PATH, LOG_FILE_NAME, PLOT_EN) 

  

if nargin < 3 

    PLOT_EN = false; 
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end 

 

fid = fopen([LOG_FILE_PATH LOG_FILE_NAME '.txt']); 

  

num_pos_est = 0; 

tline = fgets(fid); 

pos = []; 

  

while ischar(tline)     

    if ~isempty(strfind(tline(1:5),'@POS:')) 

        idx_comma = strfind(tline, ','); 

        idx_semic = strfind(tline, ';'); 

        if ~isempty(idx_semic) 

            num_pos_est = num_pos_est + 1; 

            pos(num_pos_est,1) = str2num(tline(6:idx_comma(1)-1)); 

 pos(num_pos_est,2) = str2num(tline(idx_comma(1)+1:idx_comma(2)-1)); 

 pos(num_pos_est,3) = str2num(tline(idx_comma(2)+1:idx_comma(3)-1)); 

 pos(num_pos_est,4) = str2num(tline(idx_comma(3)+1:idx_semic(1)-1)); 

      end 

    end 

    tline = fgets(fid);         

end 

fclose(fid); 

 

if(pos(num_pos_est,3) || pos(num_pos_est,2) > 20000) 
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if(PLOT_EN) 

    figure(101); 

    hold off; 

    for k=1:num_pos_est 

        plot(pos(k,1),pos(k,2),'*'); 

        hold on; 

    end 

    daspect([1,1,1]); 

    grid on; 

pos_mean = mean(pos); 

plot(pos_mean(1), pos_mean(2), 'ro'); 

  

for k=1:num_pos_est 

    pos_err(k,:) = pos(k,1:2) - pos_mean(1:2); 

    r_err(k) = sqrt(pos_err(k,:)*pos_err(k,:)'); 

end; 

  

figure(102); 

hold off; 

hist(r_err, 200); grid on 

end 
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Kalman filter Code 
    % The parameters in KalmanFilter 

    p = [0;16.51]; % initial position 

    P = [p]; 

    sigma_sin = var(sin(deg2rad(180+sigma_theta(1).*randn(1000, 1)))); 

    sigma_cos = var(cos(deg2rad(180+sigma_theta(1).*randn(1000, 1)))); 

    sigma_x_ins = sigma_sin*sigma_step(1); % std of sin(theta)*step error 

    sigma_y_ins = sigma_cos*sigma_step(1); % std of cos(theta)*step error 

    sigma_x_ker = 2.9132; % std of kernel error for x (var2) 

    sigma_y_ker = 2.7307; % std of kernel error for y 

     

%     sigma_x_ker = 0.029132; % std of kernel error for x (var2) 

%     sigma_y_ker = 0.0027307; % std of kernel error for y 

  

    % The matrix for KalmanFilter 

     

    A = [1 0; 0 1]; 

     

    C = [1 0; 0 1]; 

     

    E_x = [sigma_x_ins^2 0;  

           0 sigma_y_ins^2] 

    E_z = [sigma_x_ker^2 0;  

           0 sigma_y_ker^2]; 

    E = E_x; 
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    % Kalman Filter Process 

    for i = 1:length(theta) 

        %  B matrix is changing 

        %  B = [step(i) 0; 0 step(i)]; 

        %  B = [0 0; 0 step(i)]; 

        B = [step(i) 0; 0 0]; 

         

        U = [sin(deg2rad(theta(i))); cos(deg2rad(theta(i)))]; 

         

        p_bar = A * p + B * U; 

         

        E_bar = A * E * A' + E_x; 

         

        K = E_bar * C' * (C * E_bar * C' + eye(2) * E_z)^(-1); 

         

        p = p_bar + K * (kernel(i,:)' - C * p_bar); 

         

        E = (eye(2) - K * C) * E_bar; 

         

        P = [P p]; % store the filtering result 

         

    end 
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