8,897 research outputs found

    Support Vector Machine in Prediction of Building Energy Demand Using Pseudo Dynamic Approach

    Get PDF
    Building's energy consumption prediction is a major concern in the recent years and many efforts have been achieved in order to improve the energy management of buildings. In particular, the prediction of energy consumption in building is essential for the energy operator to build an optimal operating strategy, which could be integrated to building's energy management system (BEMS). This paper proposes a prediction model for building energy consumption using support vector machine (SVM). Data-driven model, for instance, SVM is very sensitive to the selection of training data. Thus the relevant days data selection method based on Dynamic Time Warping is used to train SVM model. In addition, to encompass thermal inertia of building, pseudo dynamic model is applied since it takes into account information of transition of energy consumption effects and occupancy profile. Relevant days data selection and whole training data model is applied to the case studies of Ecole des Mines de Nantes, France Office building. The results showed that support vector machine based on relevant data selection method is able to predict the energy consumption of building with a high accuracy in compare to whole data training. In addition, relevant data selection method is computationally cheaper (around 8 minute training time) in contrast to whole data training (around 31 hour for weekend and 116 hour for working days) and reveals realistic control implementation for online system as well.Comment: Proceedings of ECOS 2015-The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems , Jun 2015, Pau, Franc

    Machine learning for estimation of building energy consumption and performance:a review

    Get PDF
    Ever growing population and progressive municipal business demands for constructing new buildings are known as the foremost contributor to greenhouse gasses. Therefore, improvement of energy eciency of the building sector has become an essential target to reduce the amount of gas emission as well as fossil fuel consumption. One most eective approach to reducing CO2 emission and energy consumption with regards to new buildings is to consider energy eciency at a very early design stage. On the other hand, ecient energy management and smart refurbishments can enhance energy performance of the existing stock. All these solutions entail accurate energy prediction for optimal decision making. In recent years, articial intelligence (AI) in general and machine learning (ML) techniques in specic terms have been proposed for forecasting of building energy consumption and performance. This paperprovides a substantial review on the four main ML approaches including articial neural network, support vector machine, Gaussian-based regressions and clustering, which have commonly been applied in forecasting and improving building energy performance

    Long term solar radiation forecast using computational intelligence methods

    Get PDF
    The point prediction quality is closely related to the model that explains the dynamic of the observed process. Sometimes the model can be obtained by simple algebraic equations but, in the majority of the physical systems, the relevant reality is too hard to model with simple ordinary differential or difference equations. This is the case of systems with nonlinear or nonstationary behaviour which require more complex models. The discrete time-series problem, obtained by sampling the solar radiation, can be framed in this type of situation. By observing the collected data it is possible to distinguish multiple regimes. Additionally, due to atmospheric disturbances such as clouds, the temporal structure between samples is complex and is best described by nonlinear models. This paper reports the solar radiation prediction by using hybrid model that combines support vector regression paradigm and Markov chains. The hybrid model performance is compared with the one obtained by using other methods like autoregressive (AR) filters, Markov AR models, and artificial neural networks. The results obtained suggests an increasing prediction performance of the hybrid model regarding both the prediction error and dynamic behaviour

    Forecast and control of heating loads in receding horizon

    Get PDF

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Optimal greenhouse cultivation control: survey and perspectives

    Get PDF
    Abstract: A survey is presented of the literature on greenhouse climate control, positioning the various solutions and paradigms in the framework of optimal control. A separation of timescales allows the separation of the economic optimal control problem of greenhouse cultivation into an off-line problem at the tactical level, and an on-line problem at the operational level. This paradigm is used to classify the literature into three categories: focus on operational control, focus on the tactical level, and truly integrated control. Integrated optimal control warrants the best economical result, and provides a systematic way to design control systems for the innovative greenhouses of the future. Research issues and perspectives are listed as well

    Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses

    Get PDF
    peer-reviewedThe global consumption of dairy produce is forecasted to increase by 19% per person by 2050. However, milk production is an intense energy consuming process. Coupled with concerns related to global greenhouse gas emissions from agriculture, increasing the production of milk must be met with the sustainable use of energy resources, to ensure the future monetary and environmental sustainability of the dairy industry. This body of work focused on summarizing and reviewing dairy energy research from the monitoring, prediction modelling and analyses point of view. Total primary energy consumption values in literature ranged from 2.7 MJ kg−1 Energy Corrected Milk on organic dairy farming systems to 4.2 MJ kg−1 Energy Corrected Milk on conventional dairy farming systems. Variances in total primary energy requirements were further assessed according to whether confinement or pasture-based systems were employed. Overall, a 35% energy reduction was seen across literature due to employing a pasture-based dairy system. Compared to standard regression methods, increased prediction accuracy has been demonstrated in energy literature due to employing various machine-learning algorithms. Dairy energy prediction models have been frequently utilized throughout literature to conduct dairy energy analyses, for estimating the impact of changes to infrastructural equipment and managerial practice
    corecore