38,552 research outputs found

    Green Scheduling of Control Systems for Peak Demand Reduction

    Get PDF
    Building systems such as heating, air quality control and refrigeration operate independently of each other and frequently result in temporally correlated energy demand surges. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity is both expensive and operationally inefficient. We present an approach to fine-grained coordination of energy demand by scheduling the control systems within a constrained peak while ensuring custom climate environments are facilitated. The peak constraint is minimized for energy efficiency, while we provide feasibility conditions for the constraint to be realizable by a scheduling policy for the control systems. The physical systems are then coordinated by the scheduling controller so as both the peak constraint and the climate/safety constraint are satisfied. We also introduce a simple scheduling approach called lazy scheduling. The proposed control and scheduling strategy is implemented in simulation examples from small to large scales, which show that it can achieve significant peak demand reduction while being efficient and scalable

    Green Scheduling of Control Systems

    Get PDF
    Electricity usage under peak load conditions can cause issues such as reduced power quality and power outages. For this reason, commercial electricity customers are often subject to demand-based pricing, which charges very high prices for peak electricity demand. Consequently, reducing peaks in electricity demand is desirable for both economic and reliability reasons. In this thesis, we investigate the peak demand reduction problem from the perspective of safe scheduling of control systems under resource constraint. To this end, we propose Green Scheduling as an approach to schedule multiple interacting control systems within a constrained peak demand envelope while ensuring that safety and operational conditions are facilitated. The peak demand envelope is formulated as a constraint on the number of binary control inputs that can be activated simultaneously. Using two different approaches, we establish a range of sufficient and necessary schedulability conditions for various classes of affine dynamical systems. The schedulability analysis methods are shown to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop several scheduling algorithms for the Green Scheduling problem. First, we develop a periodic scheduling synthesis method, which is simple and scalable in computation but does not take into account the influence of disturbances. We then improve the method to be robust to small disturbances while preserving the simplicity and scalability of periodic scheduling. However the improved algorithm usually result in fast switching of the control inputs. Therefore, event-triggered and self-triggered techniques are used to alleviate this issue. Next, using a feedback control approach based on attracting sets and robust control Lyapunov functions, we develop event-triggered and self-triggered scheduling algorithms that can handle large disturbances affecting the system. These algorithms can also exploit prediction of the disturbances to improve their performance. Finally, a scheduling method for discrete-time systems is developed based on backward reachability analysis. The effectiveness of the proposed approach is demonstrated by an application to scheduling of radiant heating and cooling systems in buildings. Green Scheduling is able to significantly reduce the peak electricity demand and the total electricity consumption of the radiant systems, while maintaining thermal comfort for occupants

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    • …
    corecore