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Green Scheduling of Control Systems

Abstract
Electricity usage under peak load conditions can cause issues such as reduced power quality and power
outages. For this reason, commercial electricity customers are often subject to demand-based pricing, which
charges very high prices for peak electricity demand. Consequently, reducing peaks in electricity demand is
desirable for both economic and reliability reasons. In this thesis, we investigate the peak demand reduction
problem from the perspective of safe scheduling of control systems under resource constraint. To this end, we
propose Green Scheduling as an approach to schedule multiple interacting control systems within a
constrained peak demand envelope while ensuring that safety and operational conditions are facilitated. The
peak demand envelope is formulated as a constraint on the number of binary control inputs that can be
activated simultaneously. Using two different approaches, we establish a range of sufficient and necessary
schedulability conditions for various classes of affine dynamical systems. The schedulability analysis methods
are shown to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop several
scheduling algorithms for the Green Scheduling problem. First, we develop a periodic scheduling synthesis
method, which is simple and scalable in computation but does not take into account the influence of
disturbances. We then improve the method to be robust to small disturbances while preserving the simplicity
and scalability of periodic scheduling. However the improved algorithm usually result in fast switching of the
control inputs. Therefore, event-triggered and self-triggered techniques are used to alleviate this issue. Next,
using a feedback control approach based on attracting sets and robust control Lyapunov functions, we develop
event-triggered and self-triggered scheduling algorithms that can handle large disturbances affecting the
system. These algorithms can also exploit prediction of the disturbances to improve their performance.
Finally, a scheduling method for discrete-time systems is developed based on backward reachability analysis.
The effectiveness of the proposed approach is demonstrated by an application to scheduling of radiant heating
and cooling systems in buildings. Green Scheduling is able to significantly reduce the peak electricity demand
and the total electricity consumption of the radiant systems, while maintaining thermal comfort for
occupants.
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ABSTRACT

GREEN SCHEDULING OF CONTROL SYSTEMS

Truong X. Nghiem

George J. Pappas

Rahul Mangharam

Electricity usage under peak load conditions can cause issues such as reduced power quality

and power outages. For this reason, commercial electricity customers are often subject to

demand-based pricing, which charges very high prices for peak electricity demand. Conse-

quently, reducing peaks in electricity demand is desirable for both economic and reliability

reasons. In this thesis, we investigate the peak demand reduction problem from the per-

spective of safe scheduling of control systems under resource constraint. To this end, we

propose Green Scheduling as an approach to schedule multiple interacting control systems

within a constrained peak demand envelope while ensuring that safety and operational

conditions are facilitated. The peak demand envelope is formulated as a constraint on the

number of binary control inputs that can be activated simultaneously. Using two different

approaches, we establish a range of sufficient and necessary schedulability conditions for

various classes of affine dynamical systems. The schedulability analysis methods are shown

to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop

several scheduling algorithms for the Green Scheduling problem. First, we develop a periodic

scheduling synthesis method, which is simple and scalable in computation but does not take

into account the influence of disturbances. We then improve the method to be robust to small

disturbances while preserving the simplicity and scalability of periodic scheduling. However

the improved algorithm usually result in fast switching of the control inputs. Therefore,

event-triggered and self-triggered techniques are used to alleviate this issue. Next, using a

feedback control approach based on attracting sets and robust control Lyapunov functions,
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we develop event-triggered and self-triggered scheduling algorithms that can handle large

disturbances affecting the system. These algorithms can also exploit prediction of the distur-

bances to improve their performance. Finally, a scheduling method for discrete-time systems

is developed based on backward reachability analysis. The effectiveness of the proposed

approach is demonstrated by an application to scheduling of radiant heating and cooling

systems in buildings. Green Scheduling is able to significantly reduce the peak electricity

demand and the total electricity consumption of the radiant systems, while maintaining

thermal comfort for occupants.
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Chapter 1

Introduction

1.1. Motivation

Balancing the energy generation and utilization in an electric grid is essential for its efficient

operation. A fundamental law of electric grids is the balance between the power generated

(the supply) and the power consumed (the demand) modulo power loss in transmission.

Ideally, if the demand were constant, it would have been easy for the utilities to satisfy this

law by generating the exact amount of electricity needed. However, in reality, electricity

demand always fluctuates throughout the day, with multiple high peaks during the on-peak

periods and low valleys during the off-peak periods. Take the campus of the University of

Pennsylvania for example. Figure 1.1 on the following page displays the hourly electricity

demand of the campus during the week from Sunday, July 10th to Saturday, July 16th in

2011. Evidently, its electricity demand fluctuated significantly between the weekdays and

the weekends, and during a day between the on-peak hours and the off-peak hours. In

any day, the demand attained its peak values during the late morning and afternoon hours

(on-peak) and its bottom values at night (off-peak). In that week, the maximum demand

was 97.15MW while the minimum demand was only 66.49MW.

Failing to adjust the electricity generation to the demand can result in power outages or

reduced power quality, which cost businesses in the United States an estimated average

of about $100 billion every year (U.S. Department of Energy, 2008). On the other hand,

accommodating peak demands is very expensive for the utilities because inefficient, high-cost

peaker plants (also known as backup plants) must be brought online, not to mention the cost

to build those sporadically used plants. For example, Braithwait and Eakin (2002) estimated

that by reducing the peak demand by only 5%, the electricity price during the California
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Figure 1.1: Hourly total electricity demand of the University of Pennsylvania for the week from 2011-07-10
(Sunday) to 2011-07-16 (Saturday). The demand fluctuated between the minimum of 66.49 MW and the
maximum of 97.15 MW. In any day, the demand attained its peak values during the late morning and
afternoon hours (on-peak) and its bottom values during the night (off-peak).

electricity crisis in 2000–2001 could have been reduced by 50%. Therefore, the ability to

control electricity demand so as to reduce the peak demand is always desirable for both

economic and reliability reasons.

Various technical and mostly economical methods have been used to control the peak demand,

with the most widely adopted being demand-based pricing (Albadi and El-Saadany, 2007;

Motegi et al., 2007). In a demand-based pricing policy, a large commercial electricity customer

is charged not only for the amount of electricity it has consumed but also for its maximum

demand over the billing cycle. Specifically, the electricity cost for a billing period (often a

month) in a basic demand-based tariff consists of three parts:

• Basic charge is the fixed meter charge;

• Energy charge, or usage charge, is the charge for the amount of energy E used by the

customer; and

• Demand charge is the charge for the maximum electricity demand Dmax of the customer

during the on-peak hours of the billing period.
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The total electricity bill is then calculated as Cbasic + pusageE + pdemandDmax where Cbasic

is the fixed basic charge, pusage and pdemand are the unit prices of the usage charge and

the demand charge respectively. This pricing policy incentivizes customers to lower their

energy usage under peak load conditions by raising the unit price of the demand charge very

high, up to 240 times in some cases (TRFund Study, 2007) and even more. The demand

charge portion can account for about 40% of the total electricity bill, depending on how large

the peak demand is (McQuiston et al., 2005). Therefore, peaks in electricity demand are

inefficient and expensive for both suppliers and customers.

To reduce the peak demand, it is essential to identify their causes. Peak electricity demands

are often caused by unnecessary appliances (e.g., running a washing machine during on-peak

hours) and by devices consuming more energy than necessary (e.g., setting too low the

temperature setpoint of an air conditioner), which can be reduced by the demand shifting

and demand limiting strategies (Motegi et al., 2007). Demand limiting sheds electricity loads

when a demand limit is reached, for example by changing setpoints or turning off devices.

Demand shifting changes the time that electricity is used, for example by running appliances

during off-peak hours or by means of energy storage.

In large-scale systems, such as campuses or a large group of residential customers, peak

demands are also caused by the uncoordinated operation of electric equipment. As a simple

example, a spike in the demand can be caused by a large number of air conditioners turning

on at about the same time. In this case, coordinating the operation of the devices is necessary

to reduce their peak demand. However, the coordinated operation must also maintain certain

operational specifications such as thermal comfort for occupants inside buildings or physical

constraints of the devices. In other words, this is a safe control problem where multiple

systems are coordinated to reduce their aggregated power demand (a global

objective) while each of them satisfies certain safety or operational constraints

(local objectives). Moreover, their behaviors can be coupled (i.e., the behavior of one

system can influence that of another system) and can be subject to disturbances (e.g., the

3



weather, the number of occupants). In this dissertation, we propose Green Scheduling as an

approach to solve this problem: instead of trying to minimize the aggregated peak

demand, we set a maximum value on it and schedule the systems within this

constrained peak demand envelope while ensuring that safety and operational

conditions are facilitated.

1.1.1. Direct Load Control and Thermostatically Controlled Loads

The idea of coordinating multiple systems to reduce their peak demand is not new, especially

in the context of demand response with direct load control and thermostatically controlled

loads. Direct load control (DLC) refers to the practice that a utility or system operator can

remotely shut down or cycle a customer’s electrical equipment on short notice to curtail the

peak demand (Chen et al., 1995; Albadi and El-Saadany, 2007). Thermostatically controlled

loads (TCL) are equipment such as refrigerators, air conditioners, and electric heaters. Much

like batteries which can store chemical energy, they are capable of storing thermal energy

and are therefore particularly suitable for DLC because they can be switched off and on

without any significant immediate effect on their behavior or thermal comfort.

The scheduling problem for DLC has been studied extensively in the literature and various

methods have been proposed. In most cases, the on-off scheduling problem was formulated

in the Dynamic Programming (DP) framework (Cohen and Wang, 1988; Hsu and Su, 1991;

Lee et al., 2007; Ramanathan and Vittal, 2008). Multi-pass DP was used in (Wei and Chen,

1995) while fuzzy DP was used in (Bhattacharyya and Crow, 1996; Yang and Huang, 1999)

to solve the dynamic program of the DLC scheduling problem. Several other methods have

also been proposed, such as an iterative deepening genetic algorithm in (Yao et al., 2005) and

a scheduling algorithm based on queuing system model in (Lee et al., 2011). Aggregation

and control of a large population of TCL have been investigated recently in (Kundu et al.,

2011; Koch et al., 2011; Molina-Garcia et al., 2011; Mathieu and Callaway, 2012).

Many of these studies have focused on reducing cost and the peak loads. However, DLC of
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thermal equipment such as air-conditioners can adversely impact customer thermal comfort

and cause significant discomfort. The DLC scheduling problem with thermal comfort

constraints has been investigated in recent research (Chu et al., 2005; Chu and Jong, 2008)

where thermal comfort level was directly formulated in the scheduling problem, for which

techniques such as DP and fuzzy control were then used to solve. Most of the aforementioned

studies assumed simple load models with no interactions between the loads. Furthermore,

disturbances such as ambient air temperature and heat gains were often ignored.

The Green Scheduling problem studied in this dissertation is motivated by the peak demand

reduction problem as well as the scheduling problem for DLC and TCL. Unlike the above

approaches, we focus on dynamical systems that are interdependent and subject to distur-

bances. We will develop a wide range of scheduling analysis and synthesis methods, each of

which is suitable for different types of systems at different scales (from a few to hundreds of

subsystems).

1.2. Running Examples

To better illustrate and define the Green Scheduling problem, we introduce two running

examples that will be used throughout the dissertation.

1.2.1. Thermostatically Controlled Loads (Room-Heater)

We have mentioned in Section 1.1.1 the motivating example of thermostatically controlled

loads (TCL) and direct load control (DLC). To illustrate the theory developed in this

dissertation, we will use a running example of a system of TCL, namely a room-heater

example. Consider n > 1 rooms. These rooms are not necessarily in a same building, for

instance they can be rooms in residential houses in a neighborhood. Each room is heated by

a heater that can be switched on, when it provides a constant heat input rate to the room,

and switched off, when it consumes no energy and provides no heat input. It is assumed

that these heaters can be remotely controlled by a centralized scheduler, as in DLC.
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We will call the heater in room i (i = 1, . . . , n) heater i. Let Ti ∈ R denote the air

temperature (◦C) of room i and Pi > 0 be the constant heat input rate (kW) of heater i

when it is switched on. The control input to heater i is its on/off state, denoted by a binary

control variable ui ∈ {0, 1} where ui = 0 corresponds to the off state and ui = 1 the on

state of the heater. Thermal comfort specifications require that Ti should be between a

lower temperature threshold li and an upper temperature threshold hi > li, i.e., Ti should

be bounded in the range [li, hi]. For room i, let Ta,i be its ambient air temperature (◦C)

and Qg,i its internal heat gain (kW) from its occupants and equipment such as lights and

computers. It is reasonable to assume that the ambient air temperatures are the same for all

rooms, i.e., Ta,i = Ta ∀i, when they are in the same area. Then the law of conservation of

energy gives us the following heat balance differential equation for room i, for t ≥ 0,

CiṪi(t) = Ki (Ta(t)− Ti(t)) +
∑
j 6=i

Kij (Tj(t)− Ti(t)) +Qg,i(t) + Piui(t), (1.1)

in which Ṫi(t) denotes the time derivative of Ti(t), Ci > 0 is the thermal capacity of the room

(kJ/K), Ki > 0 is the thermal conductance between the ambient air and the room (kW/K),

and Kij ≥ 0 is the thermal conductance between room i and room j 6= i (kW/K). The

parameters Kij model the heat transfers between adjacent rooms due to their temperature

difference.

Define the state vector x = [x1, . . . , xn]T ∈ Rn and the binary control vector u =

[u1, . . . , un]T ∈ {0, 1}n. We consider Ta and Qg,i, i = 1, . . . , n, as disturbances to the

system and define the ambient disturbance variable da := Ta and the internal heat gain

disturbance vector dg := [Qg,1, . . . , Qg,n]T ∈ Rn. The differential equations (1.1) for all the

rooms can be collected in a state-space dynamical model of the system:

ẋ(t) = Ax(t) +Bu(t) +Wgdg(t) +Wada(t) = Ax(t) +Bu(t) +Wd(t) (1.2)
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where

Ai,i = −
Ki +

∑
j 6=iKij

Ci
, Ai,j =

Kij

Ci
for i, j ∈ {1, . . . , n}, j 6= i (1.3)

B = diag

(
P1

C1
, . . . ,

Pn
Cn

)
, Wg = diag

(
1

C1
, . . . ,

1

Cn

)
(1.4)

Wa =

[
K1

C1
, . . . ,

Kn

Cn

]T
, d =

dg
da

 , W = [Wg,Wa] . (1.5)

The notationAi,j denotes the i–j element of matrixA and diag(a1, . . . an) denotes the diagonal

matrix with diagonal entries a1, . . . , an. Note that the state matrix A is always Hurwitz,

i.e., all eigenvalues of A have strictly negative real parts, because it is a strictly diagonally

dominant matrix with negative diagonal entries (Horn and Johnson, 1990). Therefore the

room-heater system is always stable.

We will consider a small-scale room-heater system with 6 rooms and 6 heaters (n = 6) whose

parameter values are summarized in Table 1.1 on the next page. For large-scale example

systems, where n is up to 1000, we generated the parameter values randomly as follows.

For each room i, its thermal capacity Ci is from 2000 kJ/K to 3000 kJ/K and its thermal

conductance Ki is in the range [0.2, 0.3] (kW/K). The thermal capacity of a room is an

indicator of its size, so a greater value of Ci corresponds to a larger room. The heaters’ input

rates Pi (kW) were chosen based on the size of the room: Pi = 6 kW if Ci ≤ 2300 kJ/K,

Pi = 8 kW if Ci > 2700 kJ/K, and Pi = 7 kW otherwise. Since n is large, we randomly

assigned rooms which can thermally interact with each other and the value of Kij were

chosen from 0 kW/K to 0.3 kW/K, with the value 0 implying that the rooms do not interact.

Green Scheduling Problem For thermal comfort of the occupants, the room tempera-

tures are required to be kept between li = 20 ◦C and hi = 24 ◦C, for all i = 1, . . . , n. The

ambient air temperature Ta and the heat gains Qg,i are assumed to be unknown but bounded,

that is Ta ∈ [T a, T a] and Qg,i ∈ [Q
g,i
, Qg,i] for i = 1, . . . , n, where T a, T a, Qg,i, and Qg,i

are given. In practice, each heater is typically controlled by a thermostat with a simple

7



Table 1.1: Parameter values of the small-scale room-heater running example in Section 1.2.1.

(a) Thermal capacitance of rooms and power ratings of heaters.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6

Ci (kJ/K) 2927 2679 2074 2070 2011 2227
Pi (kW) 8 7 6 6 6 6

(b) Thermal conductance between rooms and ambient air (Ki = Kii) and between
adjacent rooms (Kij).

K =



i/j 1 2 3 4 5 6

1 0.2634 0.1590 0 0 0 0.2970
2 0.1590 0.2384 0.1380 0 0 0
3 0 0.1380 0.1950 0.2490 0 0
4 0 0 0.2490 0.1904 0.1440 0
5 0 0 0 0.1440 0.1810 0.2190
6 0.2970 0 0 0 0.2190 0.1804



two-position control rule: the room temperature Ti is monitored, the heater is switched

on whenever Ti is below li and switched off whenever Ti is above hi. This uncoordinated

operation of the heaters usually results in temporally correlated spikes in their aggregated

electricity demand, as we discussed in Section 1.1. The goal of green scheduling for the

room-heater system is to design a scheduling strategy u(·) so that the room temperatures Ti

are driven to and maintained between li and hi, for all i = 1, . . . , n and for any admissible

disturbance signal d(·). In addition, to reduce the peak electricity demand of the heaters,

it is required that
∑n

i=1 ui(t) ≤ k at all time t ≥ 0, where k ∈ {0, . . . , n} is a given peak

constraint.

1.2.2. Two-Body Mass-Spring-Damper System

The simple mass-spring-damper system can be found in virtually every introductory course

and textbook on dynamical systems and controls (Franklin et al., 1998; Dorf and Bishop,

2008). In this dissertation, a slightly more complex version of this system will be used

as a running example to illustrate the various theoretical results. Consider a two-body

mass-spring-damper system depicted in Figure 1.2 on the following page. It consists of two
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Figure 1.2: The two-body mass-spring-damper running example: two bodies of mass are connected to
two walls and to each other by three linear springs and two dampers as illustrated in the figure; a force Fi
can be applied to each mass mi, depending on the binary control input ui; an unknown but constrained
disturbance force di is also applied to each mass mi.

Table 1.2: Parameters of the two-body mass-spring-damper running example.

Parameter Symbol Dimension

Mass mi kg
Spring constant ki kg/s2

Damping coefficient bi kg/s
Control force Fi kgm/s2

Maximal disturbance force dmax kgm/s2

Distance between walls L m

bodies of mass m1 and m2 which are connected to two walls and to each other by three

linear springs and two dampers. A constant force Fi > 0 can be applied to each mass mi,

i = 1, 2, depending on the binary control input ui ∈ {0, 1}: when ui = 0 there is no force,

when ui = 1 the force Fi is applied. There is also an unknown but constrained disturbance

force di to be applied to each mass mi. It is assumed that di is bounded by |di| ≤ dmax

where dmax > 0 is a given maximal disturbance force. The distance between the walls is L

and the positions y1 and y2 of the masses are measured from the left wall as illustrated in

the figure. The parameters of the system and their dimensions are summarized in Table 1.2.

From the theory of classical mechanics, specifically the behaviors of linear springs and
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dampers and the Newton’s second law, the dynamics of each mass mi can be derived as

m1ÿ1 = −k1y1 + k0(y2 − y1)− b1ẏ1 + F1u1 + d1

and

m2ÿ2 = k2(L− y2)− k0(y2 − y1)− b2ẏ2 − F2u2 + d2.

Let v1 and v2 denote the velocities of the two masses, that is v1 := ẏ1 and v2 := ẏ2. The

dynamics of the masses can be rewritten as

v̇1 = −k0 + k1

m1
y1 −

b1
m1

v1
k0

m1
y2 +

F1

m1
u1 +

1

m1
d1

and

v̇2 = −k0 + k2

m2
y2 +

k0

m2
y1 −

b2
m2

v2 +
k2

m2
L− F2

m2
u2 +

1

m2
d2.

By defining the state vector x = [y1, v1, y2, v2]T , the control input vector u = [u1, u2]T and

the disturbance vector d = [d1, d2]T , we can arrange the differential equations of the system

in a state-space form as ẋ(t) = Ax(t) +B0 +Bu(t) +Wd(t) in which

A =

 0 1 0 0

− k0+k1
m1

− b1
m1

k0
m1

0

0 0 0 1
k0
m2

0 − k0+k2
m2

− b2
m2

 , B0 =

[
0
0
0
k2L
m2

]
, B =

 0 0
F1
m1

0

0 0

0 − F2
m2

 ,W =

 0 0
1
m1

0

0 0
0 1

m2

 . (1.6)

Note that the system is stable, hence matrix A is Hurwitz. With no control (u = 0) and

no disturbances (d = 0), the system rests at the equilibrium x? = −A−1B0 = [y?1, 0, y
?
2, 0]T

where

y?1 =
k0k2

k0k2 + (k0 + k2)k1
L, y?2 =

(k0 + k1)k2

k0k2 + (k0 + k2)k1
L. (1.7)

Table 1.3 on the next page summarizes the variables of the system. Note that, as in most

academic mass-spring-damper examples, for simplicity we do not consider the width of the

masses nor collision between them. The masses are allowed to penetrate each other or the

10



Table 1.3: Variables of the two-body mass-spring-damper running example.

Variable Symbol Dimension

Position of mass yi m
Binary control input ui −
Disturbance force di kgm/s2

Velocity of mass vi m/s

walls. However this did not happen in all instances of the example in this dissertation, thus

the simplifying assumption can be justified.

The parameter values that will be used are

m1 = 1,m2 = 1.2, k0 = k1 = k2 = 0.6, b1 = b2 = 0.8, F1 = F2 = 1, L = 2, dmax = 0.1. (1.8)

Green Scheduling Problem Let Safe ⊂ [0, L]× [0, L] be a set of desired positions of the

two masses. The goal of the green scheduling problem for this system is to design a control

signal u(·) or a control strategy so that the positions y = [y1, y2]T are driven to and maintained

indefinitely inside Safe, from any initial state x(0) and with any admissible disturbance signal

d(·). In addition, the control input is subject to the constraint ‖u(t)‖1 = u1(t) + u2(t) ≤ 1

for all t ≥ 0, i.e., at any time, at most one of the control forces (F1 or F2) can be applied to

the masses.

Compared to the room-heater system, the mass-spring-damper system has different charac-

teristics for illustration of the theoretical results developed in the dissertation:

• It has second order dynamics, which include damping (oscillation). For example, under

no control (u = [0, 0]T ) and no disturbances, the position trajectories of the masses

starting from x(0) = [0, 0, L, 0]T have oscillations as depicted in Figure 1.3 on the

following page. This feature of the system is interesting because second-order dynamics

are representative of higher-order dynamics that exhibit oscillations and overshoot.

• The safe set Safe is defined for the positions y1 and y2, not for the state x. If we
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Figure 1.3: Illustration of damping (oscillations) in the mass-spring-damper system: starting from the
initial state x(0) = [0, 0, L, 0]T , with no control and no disturbances, the trajectories y1(·) and y2(·)
oscillate while converging to the equilibria y?1 and y?2 .

define the system’s output as y = Cx where y = [y1, y2]T and C = [ 1 0 0 0
0 0 1 0 ] then Safe

specifies the desired values of the output.

1.3. The Green Scheduling Problem

We now generalize and formally define the Green Scheduling problem as discussed in the

motivation (Section 1.1) and in the running examples (Section 1.2).

1.3.1. System’s Model and Assumptions

In this dissertation, we consider affine dynamical systems with constrained disturbances

described by the differential equation

ẋ(t) = Ax(t) + (B0 +Bu(t)) +Wd(t), ∀t ≥ 0 (1.9)

x(0) ∈ X0.

Here

• x ∈ X ⊆ Rn is the state vector where X is the state space, i.e., the set of all valid

values of state x. In most cases X is the entire space Rn. However, in practice, the

state variables (especially those having physical meaning) are always bounded, hence
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X is in fact bounded. The boundedness of X will be used in several results later.

• X0 ⊆ X is the set of initial states.

• d ∈ D ⊆ Rq is the disturbance input vector (i.e., unknown inputs) and is constrained

in a convex and compact (i.e., closed and bounded) subset D: d(t) ∈ D ∀t ≥ 0.

• We suppose that the control inputs are binary, that is each control input ui can only

receive either value 0 or value 1. Therefore the control input vector u ∈ {0, 1}m is a

binary vector. Furthermore, u is constrained in a non-empty subset U ⊆ {0, 1}m of

valid control inputs, meaning that u(t) ∈ U for all t ≥ 0. Note that since m is finite,

both {0, 1}m and U are finite sets.

• Matrix A ∈ Rn×n is called the state matrix and is assumed to be Hurwitz, i.e., all its

eigenvalues have strictly negative real parts.

• Matrices B ∈ Rn×m and W ∈ Rn×q are respectively the control input matrix and the

disturbance input matrix. Vector B0 ∈ Rn is called the affine vector.

Let F(X,Y ) denote the set of all measurable functions from set X to set Y . A signal

corresponding to variable y in a set Y , denoted y(·), is a member of the set F(R+, Y ) of all

measurable functions from the time set R+ := {t ∈ R : t ≥ 0} to Y . A disturbance signal

d(·) for the system is admissible if it satisfies d(t) ∈ D for all t ≥ 0, that is d(·) ∈ F(R+,D).

Similarly, an admissible control signal u(·) for the system is a member of F(R+,U). Given

an admissible disturbance signal d(·) and an admissible control signal u(·), a state trajectory

x(·) of the system is a continuous signal that satisfies the differential equation (1.9) at all

time t ≥ 0. For any initial state x(0), the state trajectory x(·) exists and is unique (Rugh,

1996).

The model in Equation (1.9) can be extended to a system with switching state matrix

ẋ(t) = (A0 +
∑m

i=1Aiui(t))x(t) + (B0 +Bu(t)) +Wd(t), ∀t ≥ 0 (1.10)
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x(0) ∈ X0

where Ai ∈ Rn×n for i = 0, 1, . . . ,m. Compared to Equation (1.9), the state matrix is no

longer constant but depends affinely on the control input u. Obviously the system (1.9) is a

special case of the system (1.10) with Ai = 0 for all i. The system may also have output

y ∈ Rp defined as y(t) = Cx(t) where C ∈ Rp×n is called the output matrix. For clarity of

presentation, in this dissertation we will mainly consider the system (1.9) with constant state

matrix and no outputs, and briefly discuss extensions of the results to the system (1.10) with

switching state matrix and systems with outputs y.

1.3.2. Green Scheduling Problem

A control signal u(·) can be thought of as a schedule that turns on-off and coordinates the

individual systems. Hence, in this dissertation the terms control signal and schedule will

be used interchangeably for u(·). Let Safe ⊂ X be a compact set of desired states of the

system. For systems with outputs y, Safe ⊂ Rp is defined for the outputs and represents

desired system’s outputs. The goal of the Green Scheduling problem is to devise a scheduling

strategy for the system so that from any initial state x(0), the state trajectory x(·) is always

driven to the set Safe in finite time and is maintained inside Safe indefinitely, regardless of

the disturbances (constrained in D). Such a state trajectory is said to be safe and is formally

defined in Definition 1.1.

Definition 1.1 A state trajectory x(·) is safe if there exists a finite time 0 ≤ τ < +∞ such

that x(t) ∈ Safe for all t ≥ τ . 2

Because the scheduler/controller does not know the disturbances d except their constraint

set D, it must be robust to the disturbances, meaning that it must be able to render the

system’s trajectory safe regardless of the disturbances. Schedules and scheduling strategies

for the system can generally be classified into two types:

• A feedforward schedule u(·) is predetermined at the initial time (possibly based on
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the initial state) and is applied unalterably. Thus, no information of the current

system’s states will be utilized to correct the system’s behavior for the influence of

the disturbances. Representative of feedforward schedules are periodic schedules, for

which the control inputs are always repeated after exactly a certain amount of time,

i.e., u(t) = u(t+ δ) for all t ≥ 0 where δ is the time period.

• Contrarily, a state feedback scheduling strategy uses the knowledge of the current (and

possibly past) system’s states, which are fed back to the scheduler, to adjust the

behavior of the system for the disturbances. A feedback scheduling strategy is typically

represented as a feedback law, which is a function κ : X → U that maps state x ∈ X

to an admissible control input κ(x) ∈ U . The resulted state trajectory x(·) satisfies the

closed-loop differential equation ẋ(t) = Ax(t) +B0 +Bκ(x(t)) +Wd(t), ∀t ≥ 0, with

initial state x(0) ∈ X0.

Obviously, by definition, feedback scheduling strategies are more robust to disturbances than

feedforward schedules are. However, when disturbances are absent or very small, feedforward

schedules can still achieve the goal of Green Scheduling while being simpler to synthesize

and implement. Hereafter, the term schedule (or control signal) will mean a feedforward

schedule and the term scheduling strategy (or control strategy, or control law) will mean a

feedback scheduling strategy. We now define the notions of safe schedules and safe scheduling

strategies.

Definition 1.2 (Safe Schedules) Given an initial state x(0) ∈ X0, a schedule u(·) is safe

if for any admissible disturbance signal d(·), the resulted state trajectory x(·) is safe. 2

Definition 1.3 (Safe Scheduling Strategies) A scheduling strategy κ : X → U is safe if

for any initial state x(0) ∈ X0 and any admissible disturbance signal d(·), the resulted state

trajectory x(·) is safe. 2

In general, the actuation of the control inputs u is restricted to a known finite set U of binary

vectors. In many cases, being inspired by the peak demand reduction problem in Section 1.1,

we describe U by a constraint on the number of inputs ui, i = 1, . . . ,m, that can be activated
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simultaneously. Let k be a given integer such that 0 ≤ k ≤ m. Then at any time t ≥ 0,

‖u(t)‖1 =
∑m

i=1 ui(t) ≤ k. In other words, U is defined as U := {u ∈ {0, 1}m : ‖u‖1 ≤ k}.

Henceforth, this type of constraint on u will be called the n-choose-k case.

1.3.3. Two Important Questions of the Green Scheduling Problem

Given a system’s model as in Section 1.3.1 and a safe set Safe of desired states, there are

two important questions regarding the Green Scheduling problem:

1. Schedulability analysis: Does there exist a safe schedule or a safe scheduling strategy

for the system?

2. Scheduling synthesis: If there does, then how to synthesize a safe schedule or a safe

scheduling strategy for the system?

This dissertation will answer these questions.

1.4. Approaches to Green Scheduling from Different Disciplines

The Green Scheduling problem can be viewed as a scheduling problem or a control problem.

Thus, different disciplines will provide different approaches to the analysis and synthesis

questions. In this section, we briefly discuss the Green Scheduling problem from the view of

various disciplines and how we will use their approaches in the dissertation.

1.4.1. Real-time Scheduling

The Green Scheduling problem can be viewed as a resource allocation problem, in which

multiple systems share a limited resource (e.g., electricity energy) while each of them needs

to satisfy certain local safety conditions. From this aspect, the Green Scheduling problem is

similar to multiprocessor real-time scheduling with full migration (Davis and Burn, 2009).

Scheduling of real-time computing tasks under resource constraints is a well-developed

research area with a wide range of well-studied scheduling algorithms (Liu, 2000; Buttazzo,

2011). Although these real-time scheduling algorithms, e.g., the rate monotonic and the
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earliest deadline first (EDF) algorithms, may be applied to such resource sharing problems

as the Green Scheduling problem, they impose stringent constraints on the task model.

Generally, conventional real-time scheduling is restricted to tasks whose worst case execution

times are fixed and known in advance. However, for control systems, this assumption does not

effectively capture the system’s behavior whose evolution is dependent on the plant dynamics,

the safety specifications, and the environmental conditions. Therefore, conventional real-time

scheduling algorithms are not directly applicable to the Green Scheduling problem.

Nevertheless, there have been several recent attempts to apply real-time scheduling algorithms,

for example the EDF algorithm, to scheduling of electric loads for peak demand reduction

(Vedova et al., 2010; Facchinetti et al., 2010; Facchinetti and Vedova, 2011; Subramanian

et al., 2012). However, they were limited to simple dynamics of decoupled systems with no

interactions, and did not directly handle disturbances. We will show in Chapters 2 and 3

that, under certain restrictive assumptions, the periodic scheduling approach of real-time

scheduling is applicable to the Green Scheduling problem and results in simple and scalable

schedulability analysis and scheduling synthesis methods.

1.4.2. Control Theory

Obviously, the Green Scheduling problem as it is formulated in Section 1.3 is a control

problem. Nonetheless, it is distinct from conventional control problems in two aspects:

• In conventional control problems, the control inputs are continuous (u can take any value

in Rm); while in Green Scheduling, the control inputs are binary and are constrained

in a finite set U .

• Conventional control theory is usually interested in the stability of the controlled

system, while Green Scheduling focuses on safety conditions of the controlled systems.

Since there are only a finite number of control input vectors in U , the Green Scheduling

problem can be formulated as a switched or hybrid system (Alur et al., 1995; Henzinger, 1996;
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Liberzon, 2003; Sun and Ge, 2005; Lin and Antsaklis, 2009). Then analysis and synthesis

methods for switched systems can be directly applied. There has been a vast literature on

safety verification and safe switching controller synthesis for switched and hybrid systems

(see e.g., Alur et al., 1995, 1997; Lygeros et al., 1999; Alur et al., 2000; Asarin et al., 2000;

De Santis et al., 2004; Jha et al., 2011; Alur, 2011). However, the number of discrete modes in

the Green Scheduling problem is often very large. For example, the small-scale room-heater

system in Section 1.2.1 has 6 control inputs, thus a peak constraint k = 4 will result in 57

distinct modes. A medium-scale system with 20 control inputs and peak constraint k = 14

already has more than one million discrete modes, let alone a large-scale system with 100 or

even 1000 control inputs. Most of the analysis and synthesis methods developed for switched

systems are not scalable in terms of the number of discrete modes and the dimension of the

state space. Therefore their applicability to the Green Scheduling problem is limited to only

small-scale systems.

Despite the aforementioned differences, techniques from control theory and switched system

theory will be used extensively in the later development of schedulability analysis and

scheduling synthesis for the Green Scheduling problem. In particular, the averaging technique

(Tokarzewski, 1987; Sun and Ge, 2005) will be used to derive schedulability conditions and

to construct periodic schedules. Playing a very important role in the analysis and synthesis

methods for systems subject to disturbances are the theory of Lyapunov functions (Artstein,

1983; Freeman and Kokotovic, 1996; Liberzon et al., 2002) and attracting sets (Khalil, 1992;

Grüne, 2002). Finally, reachability analysis and computation (Mitchell, 2007) will be utilized

to develop safe scheduling policies for discrete-time systems.

1.5. Contributions

The main contributions of the dissertation, also an overview of what to come in the later

chapters, are summarized below:

• We establish a spectrum of schedulability analysis methods for various types of systems.
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Depending on whether the systems are decoupled or coupled and whether there are

disturbances, an appropriate method can be selected. These methods are established

and presented in Chapter 2, in the increasing order of complexity of the Green Scheduling

problem. They also differ in their scalability, with simple methods being applicable to

large-scale systems with 1000 control inputs or even more, and more complex methods

being applicable to systems with a few hundreds control inputs at best.

• We develop simple and scalable periodic scheduling synthesis methods for systems with

simple dynamics and no disturbances in Chapter 3.

• When disturbances are available, state feedback is necessary to make scheduling robust.

We develop various feedback scheduling strategies for the Green Scheduling problem

in Chapter 4. In Section 4.2, basic periodic scheduling strategies are extended to be

robust to small disturbances. For more complex Green Scheduling problems with larger

disturbances, event-triggered and self-triggered feedback scheduling strategies based on

attracting sets are developed in Section 4.3. Finally, backward reachability analysis

is used to synthesize safe scheduling strategies for discrete-time Green Scheduling

problems in Section 4.4.

• We apply the results developed in Chapters 2 to 4 to scheduling of radiant heating and

cooling systems for peak electricity demand reduction in Chapter 5. The case studies

presented in this chapter demonstrate the effectiveness as well as the limitations of

several Green Scheduling strategies.
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Chapter 2

Green Schedulability

This chapter develops necessary and sufficient conditions for a Green Scheduling system to

be schedulable safely under constraints on the control inputs. These conditions not only

enable verification of schedulability and calculation of the peak constraint but also establish

the theoretical foundations for the scheduling synthesis methods presented in later chapters.

Thus, this chapter provides the key theoretical results for the entire dissertation. Most of

the content of this chapter is expanded from our previous work (Nghiem et al., 2011b,a; Li

et al., 2011; Nghiem et al., 2012a,b).

2.1. Introduction

We consider the Green Scheduling problem for the general affine dynamical system with

constant state matrix

ẋ(t) = Ax(t) + (B0 +Bu(t)) +Wd(t) (2.1)

or with switching state matrix

ẋ(t) =

(
A0 +

m∑
i=1

Aiui(t)

)
x(t) + (B0 +Bu(t)) +Wd(t). (2.2)

As stated in Section 1.3.1 on page 12, we assume that the state matrix A in Equation (2.1) is

Hurwitz. For the sake of clarity, the results in this chapter are developed for systems without

outputs, where the safe set Safe ⊆ X is defined for the state variables x. For systems with

outputs y(t) = Cx(t) and with Safe ⊆ Rp being defined for output variable y, similar results

can be derived straightforwardly and will be discussed in separate subsections.
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2.1.1. Green Schedulability

Recall that a state trajectory x(·) is safe if there exists a finite time τ ≥ 0 such that

x(t) ∈ Safe for all t ≥ τ . A schedule or a scheduling strategy is safe if it always results in

safe state trajectories regardless of the disturbances (cf. Definitions 1.2 and 1.3 on page 15).

The system is said to be schedulable if for any initial state and any admissible disturbance

signal, there exists a schedule or a scheduling strategy that drives the system’s state to the

safe set.

Definition 2.1 (Schedulability) System (2.1) (or (2.2)) is schedulable if there exists a

safe scheduling strategy κ : X → U for it, or if there exists a safe schedule u(·) ∈ F(R+,U)

for each initial state x(0) ∈ X0. If the system is not schedulable, it is non-schedulable. 2

In the specific case when the valid control input set U is n-choose-k, we use the term

k-schedulable to emphasize the peak constraint k on the control inputs.

In this chapter, necessary and sufficient conditions for which the system is (k-)schedulable

are derived.

Necessary Schedulability Conditions A necessary schedulability condition for the

system is a condition that must be satisfied if the system is schedulable. In other words,

if this condition is not satisfied, the system is non-schedulable. A necessary schedulability

condition often allows us to derive a lower bound for the peak constraint k.

Sufficient Schedulability Conditions If a sufficient schedulability condition for the

system holds, the system is schedulable.

In this dissertation, we focus more on sufficient conditions than on necessary conditions for

three reasons:

1. We are more interested in schedulable systems than non-schedulable ones.

2. Sufficient conditions not only allow determining whether a system is schedulable but
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also help us derive scheduling policies for it. Indeed, most of the scheduling algorithms

presented in the following chapters are based on the sufficient schedulability conditions

established in this chapter.

3. Different sufficient schedulability conditions result in different approaches for scheduling,

each of which is suitable for a particular type of systems or applications.

Organization of Chapter 2

This chapter is organized so that the schedulability results are developed in the increasing

order of complexity of the system’s dynamics. The next section discusses two general

approaches used in this chapter for deriving necessary and sufficient schedulability conditions.

In Sections 2.3 and 2.4, schedulability conditions based on the periodic scheduling approach are

developed for systems with decoupled affine dynamics and for systems without disturbances.

Using another approach, schedulability analysis results for general affine systems with

disturbances are presented in Section 2.5. In this section, we also discuss how the previous

conditions for simpler dynamics are special cases of these general conditions. Finally, we

summarize the results and conclude the chapter in Section 2.6.

2.2. General Approaches

2.2.1. Sufficient Schedulability Conditions

Generally, to show that a system is schedulable requires constructing a schedule or a scheduling

algorithm that can be proved to drive the system’s state to the safe set, regardless of the

initial state and the disturbances. In Section 1.3.2 on page 14 we classified scheduling policies

as (a) feedforward schedules, for which periodic schedules are representative, and (b) feedback

scheduling. These two types of scheduling strategies correspond to two approaches to Green

Scheduling synthesis, hence to derivation of sufficient schedulability conditions.

In the first approach, namely periodic scheduling, we construct a periodic schedule with a
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positive time period and show that under this schedule, the state trajectory will enter the

safe set after some finite time and will remain safe indefinitely. Because a periodic schedule

does not take into account the influence of the disturbances, this approach is only applicable

to systems without or with small disturbances. For systems where the disturbances can

greatly impact the systems’ behavior, it is essential to use feedback scheduling. In the second

approach, a scheduling algorithm will determine the feedback control input u(t) based on

the current state x(t) so that the trajectory x(·) is always driven to an attracting subset of

the safe set, regardless of the initial state and the disturbances. This suffices to show the

schedulability of the system.

While the feedback scheduling approach is more general and is also applicable to systems

without or with small disturbances, it is less scalable computationally than the periodic-

scheduling approach. Moreover, implementation of periodic scheduling is simpler than

that of feedback scheduling because it usually does not require online computation of the

control input nor real-time monitoring of the system’s state. Therefore, in this chapter,

both approaches will be used to develop sufficient schedulability conditions for the Green

Scheduling problem. Specifically, in Sections 2.3 and 2.4 for systems without disturbances,

we use the periodic-scheduling approach; while in Section 2.5 for general affine systems with

disturbances, we use the feedback-scheduling approach.

2.2.2. Necessary Schedulability Conditions

All the necessary schedulability conditions established in this chapter rely on the notion of

non-schedulability certificates, or barrier certificates (see Prajna, 2005; Prajna and Jadbabaie,

2004; Prajna et al., 2004; Prajna, 2006; Prajna et al., 2007). Let g : X → R be a function

of state whose zero superlevel set contains the entire safe set Safe (see Figure 2.1 on the

following page). If, in addition, its time derivative along the flow of the dynamical system

is always negative whenever the system’s state is in the safe set, regardless of the control

input, then we can conclude that the system is non-schedulable. This is because for any u(·),

the value of g evaluated along the state trajectory, i.e., g(x(t)), always decreases as long as
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g(x) = 0

Safe

g(x) < 0 g(x) > 0

x(t)

g(x) = g(x(t))

Figure 2.1: Intuition of the non-schedulability certificate g to prove the system is non-schedulable: the
solid curve is the zero level set of g; to its right is the zero superlevel set which contains the entire safe
set Safe. For any x(t) ∈ Safe, the level set of g at x(t) (dashed curve) always moves towards the zero
level set, i.e., the value of g always decreases, along any flow of the system (arrows). Hence, no schedule
u(·) can keep the state safe indefinitely.

x(t) ∈ Safe. Eventually x(t) must become unsafe. Pictorially, in Figure 2.1, when the state

x(t) belongs to Safe, the level set of g at x(t) (dashed curve) always moves towards its zero

level set (thick solid curve) along any flow of the system (drawn as arrows from x(t)). The

function g provides a certificate to prove that the system’s state will always move away from

the safe set, and therefore will never be safe indefinitely.

The following Theorem states the conditions that are satisfied by a non-schedulability

certificate g.

Theorem 2.1 Suppose there exist a differentiable function g : X → R and a positive number

ε > 0 that satisfy

∀x ∈ Safe, g(x) ≥ 0 (2.3a)

∀(x, u) ∈ Safe× U , ∃d ∈ D : ∇g(x) · f(x, u, d) ≤ −ε (2.3b)

in which f(x, u, d) is the right-hand side of the dynamics’ differential equation (2.1) or (2.2).

Then the system is non-schedulable. 2

The proof of this Theorem can be found in Appendix A.1.1 on page 167.
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2.3. Decoupled Affine Monotone Dynamics

We start with a special case of Equation (2.2) where the dynamics of the state variables xi,

i = 1, . . . , n, are decoupled from each other and are monotone. Furthermore, there are no

disturbances (d ≡ 0). The safe set is a hyper-rectangle in Rn: Safe = [l1, h1]× · · · × [ln, hn],

where li < hi define the desired lower and upper bounds for each state variable xi. Precisely,

the following assumptions are made about the dynamics of the system.

Assumption 2.1 (Decoupled affine monotone dynamics) The dynamics of each state

variable xi, i = 1, . . . , n, is given by the affine differential equation

ẋi(t) =


−aon,ixi(t) + bon,i if ui(t) = 1

−aoff,ixi(t) + boff,i if ui(t) = 0

(2.4)

where aon,i > 0, aoff,i > 0, bon,i and boff,i are parameters. Note that each xi is controlled by

an individual input ui, thus m = n. Furthermore, within the bound [li, hi], xi always grows

when ui = 1 and decays when ui = 0, that is

−aoff,ixi + boff,i < 0 < −aon,ixi + bon,i ∀xi ∈ [li, hi] (2.5)

From inequalities (2.5) and that aon,i > 0 and aoff,i > 0, it is straightforward to verify that

boff,i

aoff,i
< li < hi <

bon,i

aon,i
∀i = 1, . . . , n. (2.6)

The monotone dynamics of xi is illustrated in Figure 2.2 on the following page.

The decoupled monotone affine dynamics is obviously a special case of the dynamics in

Equation (2.2) where

A0 = −diag(aoff,1, . . . , aoff,n); B0 = [boff,1, . . . , boff,n]T

Ai = (aoff,i − aon,i)Ei,i ∀i = 1, . . . , n; B = diag(bon,1 − boff,1, . . . , bon,n − boff,n)
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t

xi

b−i
a−i

b+i
a+i

li

hi

ui = 1 ui = 0 ui = 1 ui = 0 ui = 1

Figure 2.2: Illustration of the decoupled affine monotone dynamics in Assumption 2.1: when ui = 1, xi
increases monotonically; when ui = 0, xi decreases monotonically. In this figure, xi is regulated by ui so
that it is always kept within the desired bounds [li, hi].

in which diag(a1, a2, . . .) denotes the diagonal matrix with diagonal entries a1, a2, . . . ; and

Ei,j is the n-by-n matrix with 1 in the (i, j)th position and 0 everywhere else. An example

of this type of systems is the room-heater system in Section 1.2.1 when there are no thermal

interactions between the rooms, the ambient air temperature Ta is constant, and there are

no internal heat gains.

We consider the n-choose-k case where k ∈ {0, 1, . . . , n} is the peak constraint imposed on u,

i.e., U = {u ∈ {0, 1}n : ‖u‖1 ≤ k} or ‖u(t)‖1 ≤ k ∀t ≥ 0.

Remark 2.1 The results in this section are not limited to the assumption in Equation (2.5)

(i.e., xi always grows when ui = 1 and decays when ui = 0). Indeed, if some state variables

have dynamics satisfying Equation (2.5) while the others have dynamics satisfying the

opposite (i.e., xi always decays when ui = 1 and grows when ui = 0), the results can still be

applied by a simple change of variables. 2

2.3.1. Necessary and Sufficient Schedulability Condition

As mentioned in Section 2.2.1, an approach to show the schedulability of a system is to

construct a safe periodic schedule for it. The sufficient schedulability condition developed in

this section is based on periodic scheduling.
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αi

βi

t

xi

xi(0)

ηiδ δ 2δ 3δ 4δ 5δ

xi(t)

Figure 2.3: Illustration of trajectory xi(·) under δ-periodic schedule ui(·) in Equation (2.7): ui = 1 for a
fraction ηi of the period then ui = 0 till the end. The trajectory converges to an interval [αi, βi], painted
gray in the figure, which is determined by both ηi and δ.

A δ-periodic control signal u(·), where δ > 0, satisfies u(t+δ) = u(t) for all t ≥ 0. The positive

number δ is the time period of the periodic control signal. Define ηi := 1
δ

∫ δ
0 ui(s) ds ∈ [0, 1]

for each i, which is essentially the fraction of time in a period when the control input ui

is 1. Because u(·) is δ-periodic, 1
δ

∫ t+δ
t ui(s) ds = ηi for all t ≥ 0. The value ηi is called

the utilization of periodic control input i, following the convention in real-time scheduling

(Liu, 2000). The utilization vector η ∈ [0, 1]m of all control inputs is defined by stacking the

individual utilizations, i.e., η := [η1, . . . , ηm]T .

Consider the periodic control input ui(·). Since ui can only be either 0 or 1, a basic periodic

form of ui(·) is to alternate between 0 and 1 exactly once in each period δ. Specifically, ui(·)

is given by the following equation

ui(t) =


1 if jδ ≤ t < (j + ηi) δ, j ∈ N

0 otherwise
(2.7)

The trajectory xi(·) under periodic schedule (2.7) is illustrated in Figure 2.3 on the current

page. Intuitively, as t → ∞, xi(t) will converge to an interval [αi, βi] determined by both

ηi and δ. In Figure 2.3, this interval is visualized as the gray-filled region. By selecting

appropriate values for ηi and δ, the interval can be placed inside the desired range [li, hi],

thus realizing the state variable xi safe. Indeed, this intuition is validated by the following

27



Lemma.

Lemma 2.1 Given any ηi such that η
i
< ηi < ηi where

η
i

=
aoff,ili − boff,i

(aoff,ili − boff,i)− (aon,ili − bon,i)
and ηi =

aoff,ihi − boff,i

(aoff,ihi − boff,i)− (aon,ihi − bon,i)
(2.8)

There exists δ?i > 0 such that under the periodic schedule (2.7) with any 0 < δ < δ?i , xi(·) is

safe, i.e., xi(t) ∈ [li, hi] ∀t ≥ τi for some finite τi ≥ 0. 2

The proof of this Lemma can be found in Appendix A.1.2 on page 167.

According to Lemma 2.1, for each periodic control input ui(·), there is a range (η
i
, ηi) for

the utilization ηi so that xi will be safe. The total utilization for all i therefore must also be

bounded:
n∑
i=1

η
i
<

n∑
i=1

ηi <
n∑
i=1

ηi

It is well-known in real-time scheduling (Liu, 2000; Buttazzo, 2011) that if the total utilization

does not exceed k, i.e.,
∑n

i=1 ηi ≤ k, then there exist periodic schedules u(·) satisfying the

peak constraint
∑n

i=1 ui(t) ≤ k for all t ≥ 0. Thus, we must have
∑n

i=1 ηi < k. A sufficient

schedulability condition can now be stated in the following Theorem, whose proof can be

found in Appendix A.1.3 on page 169.

Theorem 2.2 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If∑n
i=1 ηi < k then the system (2.4) is k-schedulable. 2

By Theorem 2.2,
∑n

i=1 ηi < k is sufficient for the k-schedulability of system (2.4). It turns

out that this condition is also necessary, as justified in the following Theorem.

Theorem 2.3 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If∑n
i=1 ηi ≥ k then the system (2.4) is not k-schedulable. 2

Its proof is given in Appendix A.1.4 on page 171.

The following straightforward Corollary restates Theorems 2.2 and 2.3 as a necessary and
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sufficient k-schedulability condition.

Corollary 2.1 The system (2.4) is k-schedulable if and only if
∑n

i=1 ηi < k. 2

Example 2.1 Consider the room-heater example in Section 1.2.1. However, we assume

that there is no thermal interaction between the rooms, i.e., the thermal conductance Kij ,

i 6= j, between adjacent rooms are all zeros. Furthermore, there are no heat gains in the

rooms (Qg,i = 0, ∀i) and the ambient air temperature is constant and known. In other

words, the system does not have any disturbance. With these assumptions, the thermal

dynamics of the rooms are decoupled and are given by CiṪi(t) = −KiTi(t) +KiTa + Piui(t)

for each i = 1, . . . , n (cf. Equation (1.1) on page 6). Here, Ta is the fixed ambient air

temperature: Ta(t) = Ta for all t ≥ 0. These differential equations can be written in the

form of Equation (2.4) as

ẋi(t) =


−aon,ixi(t) + bon,i if ui(t) = 1

−aoff,ixi(t) + boff,i if ui(t) = 0

where xi := Ti, aon,i = aoff,i = Ki
Ci
> 0, bon,i = KiTa+Pi

Ci
, and bon,i = KiTa

Ci
.

We now apply the schedulability condition in Theorem 2.2 to the small-scale case with

parameter values given in Table 1.1 on page 8. The desired temperature thresholds are the

same for all rooms and are li = 20 ◦C, hi = 24 ◦C. The ambient air temperature is fixed

at Ta = 5 ◦C. The valid range (η
i
, ηi) for the utilization ηi of each heater i are calculated

according to Equation (2.8) and are given in the following table

Heater 1 Heater 2 Heater 3 Heater 4 Heater 5 Heater 6

η
i

0.4939 0.5109 0.4875 0.4760 0.4525 0.4510

ηi 0.6256 0.6471 0.6175 0.6029 0.5732 0.5713

Because
∑n

i=1 ηi = 2.8717, the system is k-schedulable with any peak constraint k ≥ 3. By

Theorem 2.3, the condition k ≥ 3 is also necessary.

Since the calculation of η
i
and ηi involves only simple algebraic operations, it can be performed
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efficiently. To demonstrate how scalable checking the schedulability condition is, we scale up

the room-heater system by randomly generating the parameters for 1000 rooms and 1000

heaters (cf. Section 1.2.1). The computation of η
i
and ηi for all heaters took an average of

0.1ms on MATLAB™ to complete, and the minimal feasible peak constraint is 485. 2

2.3.2. Intuition of the Necessary and Sufficient Schedulability Condition

Consider the value η
i
as defined in Equation (2.8). It is straightforward to show that

0 < η
i
< 1 and η

i
is strictly increasing as li increases. We have that

η
i
|−aon,ili + bon,i| = (1− η

i
) |−aoff,ili + boff,i|

in which |−aon,ili + bon,i| and |−aoff,ili + boff,i| are respectively the growing and decaying

rates of xi at li. As xi increases, the growing rate decreases while the decaying rate increases.

It follows that, intuitively, η
i
is the minimum fraction of time that ui must be 1 in order to

keep xi above li. For example, if η
i

= 0.6 then on average ui must be 1 for at least 60% of

the time for xi to stay safe. In the language of real-time scheduling (Liu, 2000), η
i
is the

minimum utilization of control input ui.

With this utilization-based interpretation of η
i
, Theorem 2.2 and Theorem 2.3 become more

intuitive. If
∑n

i=1 ηi > k, the total minimum utilization of the control inputs exceeds the

resource capacity (or resource constraint), thus they are non-schedulable. On the other hand,

if
∑n

i=1 ηi < k then they are schedulable.

2.3.3. Dynamics Bounded by Affine Monotone Dynamics

The decoupled affine monotone dynamics in Equation (2.4) may not accurately characterize

the actual systems because in practice, systems are usually subject to disturbances and

interactions between their sub-systems. In this section, the schedulability condition for

decoupled affine monotone dynamics is extended to a larger class of dynamics which can

take into account small disturbances and small inter-system interactions. Specifically, we will
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consider system dynamics that are bounded between affine monotone dynamics (hereafter

called affinely bounded monotone dynamics), as defined below.

The system’s dynamics is described by

ẋi(t) = fi(x, ui, d), i = 1, . . . , n

in which xi, x, u and d have the usual interpretations. For each i, the function fi :

X × {0, 1} × D → R specifies the dynamics of xi subject to the influence of other state

variables (vector x) and of the disturbances (vector d). We assume that for each i, the

functions fi(x, ui, d)|ui=0 and fi(x, ui, d)|ui=1 are Lipschitz-continuous, so that the trajectories

xi(·) exist and are unique. Furthermore, we assume that for all x ∈ X and all d ∈ D, the

dynamics of each xi is bounded between decoupled affine monotone dynamics.

Assumption 2.2 (Affinely bounded monotone dynamics) For each i = 1, . . . , n,

there exist aoff,i > 0, aoff,i > 0, aon,i > 0, aon,i > 0, boff,i, boff,i, bon,i, bon,i such that

for all (x, d) ∈ X ×D

−aoff,ixi + boff,i ≤ fi(x, ui, d)|ui=0 ≤ −aoff,ixi + boff,i

and

−aon,ixi + bon,i ≤ fi(x, ui, d)|ui=1 ≤ −aon,ixi + bon,i.

In addition, the quadruples (aoff,i, boff,i, aon,i, bon,i) and (aoff,i, boff,i, aon,i, bon,i) satisfy the

monotonicity assumption in Equation (2.5). 2

Essentially, Assumption 2.2 means that each trajectory xi(·) is always bounded between two

affine monotone trajectories under the same control signal ui(·) and starting from the same

initial state xi(0), as illustrated in Figure 2.4 on the next page. Furthermore, these bound

trajectories are decoupled from the disturbances as well as from the other state variables.
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xi(0)

xi(t)

xi(t)

xi(t)

Figure 2.4: Illustration of an affinely bounded monotone trajectory: the actual trajectory xi(·) (solid line)
is bounded between two affine monotone trajectories (dashed lines): the lower-bound trajectory xi(·) and
the upper-bound trajectory xi(·). The bound trajectories start from the same initial state xi(0) and are
under the same control signal ui(·).

We first define the dynamical system which generates a trajectory xi(·) that bounds xi(·)

from below (Figure 2.4).

Definition 2.2 (Lower-bound system) For each i, define the lower-bound system Σi with

state variable xi ∈ R, control input ui ∈ {0, 1}, and dynamics given by the differential equation

ẋi(t) =


−aoff,ixi(t) + boff,i if ui(t) = 0,

−aon,ixi(t) + bon,i if ui(t) = 1.
2

The dynamical system whose trajectory xi(·) bounds xi(·) from above can also be defined

similarly.

Definition 2.3 (Upper-bound system) For each i, define the upper-bound system Σi

with state variable xi ∈ R, control input ui ∈ {0, 1}, and dynamics given by the differential

equation

ẋi(t) =


−aoff,ixi(t) + boff,i if ui(t) = 0,

−aon,ixi(t) + bon,i if ui(t) = 1.
2

Intuitively, these bound systems represent the extreme cases of the dynamics of xi and

therefore xi(·) must be bounded by their trajectories, as confirmed by the following Lemma.

Lemma 2.2 Given any control input u(·) ∈ F(R+,U) and disturbance signals d(·) ∈
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F(R+,D). For each i = 1, . . . , n, the trajectory xi(·) is bounded by xi(t) ≤ xi(t) ≤ xi(t) for

all t ≥ 0. Here xi(·) and xi(·) are respectively the trajectories of the lower-bound system

Σi (Definition 2.2) and the upper-bound system Σi (Definition 2.3) with the same initial

condition xi(0) = xi(0) = xi(0) and the same control input ui(·) ≡ ui(·) ≡ ui(·). 2

Proof This result directly follows from the classical Müller’s existence theorem, i.e., the

comparison theorem for differential inequalities (Müller, 1926; Walter, 1997; Kieffer et al.,

2006). �

Evidently, if these bound systems are k-schedulable then the original system is robustly

k-schedulable, meaning that it is k-schedulable despite the disturbances and the interactions

between the state variables. The following sufficient schedulability condition is analogous to

the condition in Theorem 2.2 on page 28, hence its proof is omitted.

Theorem 2.4 Suppose that for each i, η
i
< ηi where

η
i

=
aoff,ili − boff,i(

aoff,ili − boff,i

)
−
(
aon,ili − bon,i

) and ηi =
aoff,ihi − boff,i(

aoff,ihi − boff,i

)
−
(
aon,ihi − bon,i

) .
Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If ∑n

i=1 ηi < k then

the affinely bounded monotone system is k-schedulable. 2

Similar to Theorem 2.3 on page 28, a necessary schedulability condition can be derived

in Theorem 2.5. However, note that the necessary condition does not complement the

sufficient condition in Theorem 2.4 due to their robustness to disturbances and inter-system

interactions.

Theorem 2.5 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If

n∑
i=1

aoff,ili − boff,i(
aoff,ili − boff,i

)
−
(
aon,ili − bon,i

) ≥ k
then the affinely bounded monotone system is not k-schedulable. 2

We remark that the class of affinely bounded monotone dynamics is larger and more practical

than the class of decoupled affine monotone dynamics in Equation (2.4) because it can take

33



account of small inter-dependencies between the state variables as well as small disturbances.

This capability is illustrated in the following example.

Example 2.2 We continue the room-heater example in Example 2.1 and make it more

realistic by restoring the thermal interactions between adjacent rooms and allowing small

variations in the ambient air temperature. Specifically, the thermal conductance Kij , i 6= j,

can be non-zero and are given in Table 1.1 on page 8; Ta can vary between Ta,min = 5 ◦C and

Ta,max = 8 ◦C while the heat gains are still not present (Qg,i = 0 ∀i = 1, . . . , n). Furthermore,

because the room temperatures are going to be kept between 20 ◦C and 24 ◦C, we can assume

that 20 ≤ Ti ≤ 24 for all i = 1, . . . , n and obtain the following bounds on the differential

equation for each Ti (cf. Equation (1.1) on page 6).

−
Ki +

∑
j 6=iKij

Ci
Ti(t) +

Ki

Ci
Ta,min +

∑
j 6=iKij

Ci
lj +

Pi
Ci
ui(t) ≤

Ṫi(t) = −
Ki +

∑
j 6=iKij

Ci
Ti(t) +

Ki

Ci
Ta(t) +

∑
j 6=iKij

Ci
Tj(t) +

Pi
Ci
ui(t)

≤ −
Ki +

∑
j 6=iKij

Ci
Ti(t) +

Ki

Ci
Ta,max +

∑
j 6=iKij

Ci
hj +

Pi
Ci
ui(t).

Therefore, the system satisfies the affinely bounded monotone dynamics assumptions in

Assumption 2.2 with

aoff,i = aon,i = aoff,i = aon,i =
1

Ci

(
Ki +

∑
j 6=i

Kij

)

boff,i =
1

Ci

(
KiTa,min +

∑
j 6=i

Kijlj

)
, bon,i =

1

Ci

(
KiTa,min +

∑
j 6=i

KijljPi

)

boff,i =
1

Ci

(
KiTa,max +

∑
j 6=i

Kijhj

)
, bon,i =

1

Ci

(
KiTa,max +

∑
j 6=i

KijhjPi

)
.

Using the parameters for the small-scale room-heater example Table 1.1 on page 8, we can

compute the utilization bounds η
i
and ηi for each heater i according to Theorem 2.4, as

reported below:
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Heater 1 Heater 2 Heater 3 Heater 4 Heater 5 Heater 6

η
i

0.4939 0.5109 0.4875 0.4760 0.4525 0.4510

ηi 0.5268 0.5449 0.5200 0.5077 0.4827 0.4811

Since
∑n

i=1 ηi = 2.8718, from Theorem 2.4, we can conclude that the system is k-schedulable

for all k ≥ 3. 2

2.4. Affine Dynamics Without Disturbances

Section 2.3 considered systems in which the dynamics of the state variables are decoupled,

either by nature or by bound dynamics. However, in practical systems, the interactions

between their sub-systems might be significant enough so that the analysis method by bound

dynamics in Section 2.3.3 cannot be applied. In this section, we extend the previous results

to these systems.

2.4.1. System’s Dynamics

Consider the general affine dynamical system in Equation (2.1). However, we assume that

there are no disturbances (d ≡ 0). Consequently, the dynamics is described by the differential

equation

ẋ(t) = Ax(t) + (B0 +Bu(t)) (2.9)

in which the state matrix A is Hurwitz. Unlike the decoupled dynamics in Assumption 2.1,

the number of control inputs is m, i.e., u(t) ∈ {0, 1}m, which can be different from the

number of state variables n. The safe set Safe is no longer restricted to a hyper-rectangle

but can be any compact (i.e., closed and bounded) convex set. It is reasonable to assume

Safe to be compact and convex since it is usually the case in practice. Again, we consider

the n-choose-k case where k is the peak constraint imposed on the control inputs u.

In the next subsection, a necessary and sufficient schedulability condition is developed for

system (2.9). A similar condition for systems with switching state matrix (cf. Equation (2.2))
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is derived and discussed in Section 2.4.6.

2.4.2. Necessary and Sufficient Schedulability Conditions

Using the same approach as in Section 2.3.1, we investigate periodic control signals for

system (2.9) to derive a sufficient schedulability condition for it.

Recall that a δ-periodic control signal u(·), where δ > 0, satisfies u(t+ δ) = u(t) ∀t ≥ 0. The

utilization ηi of periodic control input i is the fraction of time in a period where ui = 1, and

is defined as ηi := 1
δ

∫ δ
0 ui(t) dt ∈ [0, 1]. The utilization vector η ∈ [0, 1]m of all control inputs

is η := [η1, . . . , ηm]T .

A standard tool to analyze a linear system under periodic control signals is the averaging

technique (see Tokarzewski, 1987; Sun and Ge, 2005). Given a δ-periodic control signal u(·)

with utilization vector η, the average system of (2.9) with respect to η is defined as the

time-invariant affine dynamical system

ẋ(t) = Ax(t) + (B0 +Bη) (2.10)

with state variable x and starting from the same initial state: x(0) = x(0). Note that the

average system is autonomous, meaning that it does not have any control input. For each

initial state x(0) and a fixed utilization vector, the trajectory x(·) of the average system is

unique. Since A is Hurwitz, the average system is uniformly exponentially stable and its

trajectories always converge to the unique equilibrium x? = −A−1 (B0 +Bη) (Rugh, 1996).

Note that A is invertible because it is Hurwitz. If x? is in the interior of Safe, denoted

int(Safe), then obviously x(·) will be safe. If, in addition, the trajectory x(·) of system (2.9)

always stays close enough to x(·) regardless of the initial state then x(·) is also safe and

therefore u(·) is a safe schedule. More precisely, if there exists ε > 0 such that for any initial

state x(0) = x(0) ∈ X0,

1. ‖x(t)− x(t)‖ < ε for all t ≥ 0; and
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2. B(x?, ε) ⊆ Safe

then x(·) is safe. Here, the symbol ‖·‖ denotes both the Euclidean vector norm and the

corresponding induced matrix norm. The notation B(c, r) denotes the ball with center c and

radius r, i.e., B(c, r) := {x : ‖x− c‖ ≤ r}. Indeed, we will study the state error (x(t)−x(t))

and will show that for any ε > 0, there exists δ > 0 and a δ-periodic control signal u(·) such

that x(t) is always ε-close to x(t) for all t ≥ 0.

State Error

Let ξ(t) = x(t) − x(t) ∀t ≥ 0 be the state error between system (2.9) and its average

system (2.10). Intuitively, as the period δ gets smaller, the trajectory x(·) gets closer to

the trajectory x(·), that is limδ→0 ‖x(t)− x(t)‖ = limδ→0 ‖ξ(t)‖ = 0 for all t ≥ 0. In what

follows, we justify this intuition by directly calculating the state error ξ(t) and deriving an

upper-bound on its norm.

From the differential equations of the dynamical systems we obtain the dynamics of the error:

ξ̇(t) = Aξ(t) +B (u(t)− η) , ξ(0) = 0. (2.11)

Note that the error ξ(t) does not depend on the initial state x(0). Its solution can be written

explicitly as (Rugh, 1996)

ξ(t) =

∫ t

0
eA(t−s)B (u(s)− η) ds, t ≥ 0. (2.12)

Let σ = b tδ c, where bcc denotes the largest integer not exceeding c. Then we have

ξ(t) =

σ−1∑
i=0

∫ (i+1)δ

iδ
eA(t−s)B (u(s)− η) ds+

∫ t

σδ
eA(t−s)B (u(s)− η) ds (2.13)

in which the sum disappears if σ = 0 (i.e., t < δ). We transform the integral inside the sum
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as

∫ (i+1)δ

iδ
eA(t−s)B (u(s)− η) ds = eA(t−(i+1)δ

∫ (i+1)δ

iδ
eA((i+1)δ−s)B (u(s)− η) ds

and use the fact that u(·) is δ-periodic to obtain

= eA(t−(i+1)δ)

∫ δ

0
eA(δ−s)B (u(s)− η) ds

= eA(t−(i+1)δ)ξδ

in which ξδ = ξ(δ) =
∫ δ

0 eA(δ−s)B (u(s)− η) ds is the state error after one period δ. Similarly,

the tail integral in Equation (2.13) can be written as

∫ t

σδ
eA(t−s)B (u(s)− η) ds =

∫ t−σδ

0
eA((t−σδ)−s)B (u(s)− η) ds = ξ(t− σδ)

where ξ(t− σδ) is the state error at time instant (t− σδ). Therefore,

ξ(t) =

(
σ−1∑
i=0

eA(t−(i+1)δ)

)
ξδ + ξ(t− σδ). (2.14)

The following Lemma gives us a uniform upper-bound on ‖ξ(t)‖, independent of time t. Its

proof can be found in Appendix A.1.5 on page 172.

Lemma 2.3 There exist finite and positive constants α, β and γ, which are independent of

the time period δ and the control signal u(·), such that

‖ξ(t)‖ ≤ 1

2
‖A‖ γβ2 δ2

1− e−αδ
+ γβδ, ∀t ≥ 0. 2

It is worth noting that in Lemma 2.3 the constants α and β depend only on the dynamics

(2.9), in particular the matrices A and B, and the constant γ depends only on η. In addition,

the obtained upper-bound on ‖ξ(t)‖ holds for all time t.

Let ‖ξ(·)‖∞ = supt≥0 ‖ξ(t)‖ be the L∞-norm of the signal ξ(·), that is the supremum of the
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point-wise distance between x(·) and x(·). Obviously ‖ξ(·)‖∞ is bounded above by the same

upper-bound in Lemma 2.3. By simple calculations and the l’Hôpital’s rule, we can show

that this upper-bound goes to 0 as δ → 0. The following Lemma confirms the intuition that

x(·) gets closer to x(·) as δ gets smaller.

Lemma 2.4 The state error between system (2.9) under δ-periodic control signals and its

average system (2.10) vanishes as δ goes to 0. That is limδ→0 ‖ξ‖∞ = 0 for all δ-periodic

control signals u(·). 2

Lemma 2.4 implies that for any ε > 0, there exists δε > 0 such that for all 0 < δ ≤ δε, any

δ-periodic control signal u(·) with utilization η will drive the trajectory x(·) to be ε-close to

the trajectory x(·) of the average system, regardless of the initial state x(0).

Remark 2.2 It can be proved that Lemmas 2.3 and 2.4 still hold for control signals u(·)

that are not δ-periodic but only satisfy the utilization constraint 1
δ

∫ (i+1)δ
iδ u(s) ds = η, ∀i ∈ N.

This enables conventional real-time scheduling algorithms (Liu, 2000) to be used to schedule

the system. However, to derive schedulability conditions, we only need to consider periodic

control signals. 2

Sufficient Schedulability Condition

Now that we have shown the state trajectory of the original system and its average system

can be made arbitrarily close, we only need to construct a δ-periodic control signal u(·) such

that ‖u(t)‖1 ≤ k ∀t ≥ 0 to complete the schedulability condition. Similarly to Theorem 2.2

on page 28, this construction is always possible if
∑m

i=1 ηi ≤ k. Therefore, we arrive at a

sufficient schedulability condition stated in the following Theorem, whose proof is given in

Appendix A.1.6 on page 174.

Theorem 2.6 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If

there exists η ∈ [0, 1]m such that

1. ‖η‖1 =
∑m

i=1 ηi ≤ k, and

2. −A−1 (B0 +Bη) ∈ int(Safe),
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then the system (2.9) is k-schedulable. 2

Necessary Schedulability Condition

The next Theorem provides a necessary condition for the system to be k-schedulable. Its

proof can be found in Appendix A.1.7 on page 174.

Theorem 2.7 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If the

system (2.9) is k-schedulable then there exists η ∈ [0, 1]m such that

1. ‖η‖1 =
∑m

i=1 ηi ≤ k, and

2. −A−1 (B0 +Bη) ∈ Safe. 2

Observe that although the necessary schedulability condition in Theorem 2.7 seems to

complement the sufficient schedulability condition in Theorem 2.6, there is a small gap

between them: one uses the interior of Safe while the other uses the entire Safe. However,

the difference (Safe− int(Safe)) is often negligible in practice.

2.4.3. Feasible Peak Constraint

Given system (2.9), it is usually of interest to find a feasible peak constraint k because k is

unknown at the beginning. From Theorems 2.6 and 2.7, the smallest feasible peak constraint

kmin can be computed by solving the optimization

minimize
η

m∑
i=1

ηi = 1T η (2.15)

subject to η ∈ [0, 1]m

−A−1 (B0 +Bη) ∈ int(Safe) (2.15a)

and letting kmin = d1T η?e, in which η? is an optimal solution of (2.15) and dce denotes the

smallest integer not less than c. In practice, Safe is usually a hyper-rectangle or a polytope,

for which the constraint (2.15a) becomes linear and the linear programming problem (2.15)

can be solved efficiently (Boyd and Vandenberghe, 2006):
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• If Safe is a hyper-rectangle Safe := {x : l ≤ x ≤ h} where l, h ∈ Rn and l < h then

(2.15a) ⇔ l +A−1B0 < −A−1Bη < h+A−1B0;

• If Safe is a polytope Safe := {x : Hx ≤ K} where H ∈ Rq×n, K ∈ Rq then

(2.15a) ⇔ −HA−1Bη < K +HA−1B0.

Any peak constraint k satisfying k ≥ kmin will be feasible.

2.4.4. Systems with Outputs

Suppose that system (2.9) now has output y = Cx ∈ Rp where C ∈ Rp×n and the safe set

Safe ⊂ Rp is defined for the output instead of the state. It is straightforward to verify

that the results in Theorems 2.6 and 2.7 still hold if −A−1 (B0 +Bη) is replaced with

−CA−1 (B0 +Bη).

2.4.5. Illustrative Examples

We illustrate the schedulability conditions obtained above through the room-heater and the

mass-spring-damper running examples.

Example 2.3 Consider the full room-heater model as in Equation (1.2) on page 6, with

thermal interactions between rooms. However, we assume that there are no disturbances,

that is the ambient air temperature is fixed at a known constant Ta and the heat gains

are not present. This assumption allows us to write the dynamics of the system in the

form in Equation (2.9) with B0 = WaTa. In this example, we use the constant ambient air

temperature Ta = 5 ◦C.

For the small-scale case with parameter values given in Table 1.1 on page 8,

the linear program in Equation (2.15) gives an optimal solution η? =

[0.4939, 0.5109, 0.4875, 0.4760, 0.4525, 0.4510]T . Therefore the minimal feasible peak
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constraint is kmin = 3. The computation took 6.7ms on average. For a large-scale

system which has 1000 rooms and 1000 heaters with randomly generated parameters

(cf. Section 1.2.1), MATLAB™ took an average of 6.4 s to calculate kmin. Hence the

computation is scalable. 2

Example 2.4 In this example, we will verify the schedulability of the mass-spring-damper

system without disturbances (see Section 1.2.2 on page 8 for the descriptions of this running

example). We will also demonstrate how the safe set Safe affects the schedulability. Because

there are no disturbances (d(t) = 0 for all t ≥ 0), the state-space model of the system is

ẋ(t) = Ax(t) +B0 +Bu(t), y(t) = Cx(t)

where A, B0 and B are given in Equation (1.6), y = [y1, y2]T is the vector of positions, and

C = [ 1 0 0 0
0 0 1 0 ]. Using the parameter values in Equation (1.8) on page 11 and the safe set

Safe = [0.75, 0.85]× [1.15, 1.25], we solve the linear program (2.15) and obtain an optimal

solution η? = [0.15, 0.15]T . Therefore the system is schedulable with the specified safe set

and the peak constraint k = 1.

Let us define the set H := {y ∈ R2 : y = −CA−1(B0 + Bη), η ∈ [0, 1]m, ‖η‖1 ≤ 1}. It is

not difficult to verify that H is a polytope whose vertices are

{
−CA−1(B0 +Bu) : u ∈ {[ 0

0 ] , [ 0
1 ] , [ 1

0 ]}
}

=
{[

1/9
2/9

]
,
[

16/9
17/9

]
,
[

2/3
4/3

]}
.

From Theorem 2.6, if H and int(Safe) intersect then the system is schedulable. On the

other hand, from Theorem 2.7, if H and Safe are disjoint then the system is not schedulable.

In Figure 2.5 on the next page, the polytope H is the gray-filled triangle while Safe is the

square inside it. Obviously the system is schedulable. However, if Safe were the dashed

square outside of H, the system would be non-schedulable. 2
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Figure 2.5: The set H and the safe set Safe in Example 2.4: H is the gray-filled triangle and the original
Safe is the square inside it. When H and Safe are disjoint (e.g., if Safe is the dashed square) then the
system is not schedulable.

2.4.6. Systems with Switching State Matrix

We have considered so far the affine dynamics (2.9) with constant state matrix A. For affine

dynamics with switching state matrix

ẋ(t) =

(
A0 +

m∑
i=1

Aiui(t)

)
x(t) + (B0 +Bu(t)) , (2.16)

similar results can be obtained, as will be presented in this section.

Sufficient Schedulability Condition

To derive a sufficient schedulability condition, we also investigate periodic control signals for

the system using its average system with respect to utilization vector η, which is defined by

the differential equation

ẋ(t) = Aηx(t) +Bη (2.17)
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in which

Aη = A0 +
m∑
i=1

Aiηi and Bη = B0 +Bη.

Again, the average system is autonomous and starts from the same initial state: x(0) = x(0).

Suppose that Aη is Hurwitz. Similarly to Lemma 2.4, the trajectory x(·) of system (2.16) can

be made arbitrarily close to the trajectory x(·) of the average system by switching sufficiently

fast. This result is stated in Lemma 2.5 and its proof is provided in Appendix A.1.8 on

page 175. A similar result was proved in (Roberson and Stilwell, 2009).

Lemma 2.5 Suppose that Aη is Hurwitz. For any ε > 0, there exists δε > 0 such that for

all δ-periodic control signals u(·) with 0 < δ ≤ δε,

‖x(t)− x(t)‖∞ ≤ ε ∀t ≥ 0. 2

A sufficient schedulability condition, analogous to Theorem 2.6, can now be stated in

Theorem 2.8. Its proof is omitted due to its similarity to the proof of Theorem 2.6.

Theorem 2.8 Given a peak constraint k on the control signal u(·), k ∈ {0, 1, . . . , n}. If

there exists η ∈ [0, 1]m such that

1. ‖η‖1 =
∑m

i=1 ηi ≤ k, and

2. Aη is Hurwitz, and

3. −A−1
η (B0 +Bη) ∈ int(Safe),

then the system (2.16) is k-schedulable. 2

Necessary Schedulability Condition

A necessary schedulability condition similar to Theorem 2.7, which complements the sufficient

condition stated above, has not been verified and is unlikely. Indeed, Theorem 2.7 relies on

the fact that the set {−A−1 (B0 +Bη) : η ∈ [0, 1]m, ‖η‖1 ≤ k} is convex and compact, and
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if it is disjoint from Safe then there exists a strictly separating hyperplane between them

(cf. Appendix A.1.7 on page 174). However, for system (2.16), the analogous set

P := {−A−1
η (B0 +Bη) : η ∈ [0, 1]m, ‖η‖1 ≤ k}

is not well-defined because Aη is not always invertible for all η. Even if P is well-defined, it

is generally non-convex.

Nevertheless, to prove non-schedulability of system (2.16), we can seek for a certificate

function g : X → R (cf. Section 2.2.2 and Theorem 2.1) using optimization techniques. For

example, a linear certificate function of the form g(x) = aTx + b can be searched for by

solving

minimize
a,b

‖a‖1

subject to the constraints (ε is any small positive number)

aTx+ b ≥ 0 ∀x ∈ Safe

aT

((
A0 +

m∑
i=1

Aiui

)
x+B0 +Bu

)
≤ −ε ∀(x, u) ∈ X × U

which essentially formulate the conditions in Theorem 2.1 for g. Robust linear optimization

problems of this form can be solved numerically by available software tools such as YALMIP

(Löfberg, 2012). If an optimal solution exists then the system is non-schedulable. Another

form of the certificate function are multivariate polynomials, for which sum-of-square (SOS)

decomposition techniques (Parrilo, 2000) can be used to formulate the conditions of g as an

SOS optimization problem. SOS programs are solvable by software tools such as SOSTOOLS

(Prajna et al., 2005) and YALMIP (Löfberg, 2009).
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Feasible Peak Constraint

Using Theorem 2.8, a feasible peak constraint k can be computed by solving the optimization

minimize
η

m∑
i=1

ηi = 1T η

subject to η ∈ [0, 1]m (2.18a)

Aη = A0 +
m∑
i=1

Aiηi is Hurwitz (2.18b)

−A−1
η (B0 +Bη) ∈ int(Safe) (2.18c)

Unlike the similar optimization (2.15) on page 40 for the constant state matrix case, this

optimization poses a significant challenge due to the stability constraint (2.18b) and the

matrix inverse in the constraint (2.18c). These constraints make the problem nonlinear and

non-convex and therefore difficult to solve. The stability constraint (2.18b) can be relaxed

using either a linear approximation technique or a semidefinite approximation technique

proposed by Zavlanos et al. (2011). Since systems with switching state matrix are not the

focus of this work, we will skip the details and refer the reader to (Zavlanos et al., 2011) and

the references therein.

2.5. General Affine Dynamics

In the previous sections, with the periodic scheduling approach, we have developed necessary

and sufficient schedulability conditions for decoupled affine monotone dynamics (Section 2.3)

and (coupled) affine dynamics without disturbances (Section 2.4). As mentioned in Sec-

tion 2.2.1, being a feedforward scheduling strategy, the periodic scheduling approach neglects

the influence of the disturbances and therefore is only applicable when the disturbances

are absent or are small. To overcome this limitation, a feedback scheduling approach is

employed in this section to derive more general schedulability results for affine systems in

Equations (2.1) and (2.2) with disturbances. We will also show that the previous results are
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special cases of these general results.

2.5.1. System’s Dynamics

We consider first the general affine dynamical system in Equation (2.1) with constant state

matrix (repeated here for convenience of reference):

ẋ(t) = Ax(t) + (B0 +Bu(t)) +Wd(t) (2.19)

As usual, x ∈ X ⊆ Rn denotes the state vector, u ∈ U ⊆ {0, 1}m are the binary control inputs

and d ∈ D ⊂ Rq are the disturbances. Extended results for systems with switching state

matrix and systems with outputs will be discussed in Sections 2.5.5 and 2.5.6 respectively.

The state matrix A is assumed to be Hurwitz. Both the disturbance set D and the safe

set Safe ⊂ X are convex and compact. We will not restrict the control inputs u to the

n-choose-k case, so the control input set U can be any subset of the finite set {0, 1}m.

2.5.2. Attracting Sets of Control Systems

The main analysis tool used for deriving schedulability conditions as well as scheduling

algorithms for the general affine system is the concept of attracting sets of control systems.

Consider a general nonlinear control system expressed as

ẋ(t) = f(t, x(t), u(t), d(t)), t ≥ 0 (2.20)

in which x ∈ Rn, u ∈ U and d ∈ D have the usual interpretations. The sets U and D are

compact. The function f(·, ·, ·, ·) satisfies the Lipschitz continuous assumption so that for

an initial state x(0), a control signal u(·) and a disturbance signal d(·), a trajectory x(·) of

system (2.20) exists and is unique.

If regardless of the initial state and the disturbances, the state can always be controlled to

converge to a subset A of the state space then A is called an attracting set (also called an
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attractive set). In the context of this section, we only consider feedback control of the form

u(t) = κ(x(t)) ∀t ≥ 0 that is robust to the disturbances. The concept of attracting sets of

control systems is formally defined below.

Definition 2.4 A set A ⊂ Rn is an attracting set of control system (2.20) and a set B ⊆ Rn

is a basin (or domain) of attraction of A if there exists an admissible feedback control law

κ : Rn → U such that for any initial state x(0) ∈ B and any admissible disturbance signal

d(·), the resulted state trajectory x(t) converges to A as t→ +∞, that is

lim
t→+∞

dist(x(t),A) = 0

where dist(x,A) := infy∈A ‖x− y‖ is the distance between point x and set A. 2

Since in Green Scheduling we are interested in trajectories that enter the safe set in finite

time, the definition of attracting sets is modified to take into account this requirement.

Definition 2.5 (Finite-time Attracting Sets) A set A ⊂ Rn is a finite-time attracting

set of control system (2.20) and a set B ⊆ Rn is a basin (or domain) of attraction of A if

there exists an admissible feedback control law κ : Rn → U such that for any initial state

x(0) ∈ B and any admissible disturbance signal d(·), the resulted state trajectory x(·) enters

A in finite time and remains in A indefinitely, that is x(t) ∈ A, ∀t ≥ τ for some finite

τ ≥ 0. 2

It is readily seen that Definition 2.5 is related to the notion of safety for the Green Scheduling

problem (Definition 1.1) and the notion of schedulability (Definition 2.1). For brevity, we

will use the term “attracting set” to mean “finite-time attracting set.”

Attracting sets and their basins of attraction can be determined by means of the classical

Lyapunov functions (see, e.g., Khalil, 1992; Grüne, 2002). The following Theorem provides a

way to compute an attracting set, with respect to Definition 2.5, of control system (2.20).

Theorem 2.9 Consider control system (2.20). Let V : Rn → R+ be a continuously differen-

tiable function of state x, and let α > 0 and γ > 0. Suppose that for all x ∈ Rn such that
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{V (x) > α2}

A = {V (x) ≤ α2}

Figure 2.6: Intuition of Theorem 2.9 to determine an attracting set by a function V of state: on the
phase space of the control system, the gray-filled set is A, the α2 sublevel set of V . Outside A, there
exists a control u ∈ U such that along the flow of the dynamical system, for all disturbances d ∈ D,
V (x(t)) is strictly decreasing (indicated by the arrows), hence x(t) moves towards A. After some finite
time, V (x(t)) is guaranteed to reach α2, thus x(t) is inside A.

V (x) ≥ α2,

inf
u∈U

sup
d∈D
∇V (x) · f(x, u, d) ≤ −γ. (2.21)

Then A := {x ∈ Rn : V (x) ≤ α2} is an attracting set of the control system with basin of

attraction B := Rn. 2

The proof of this result is given in Appendix A.1.9 on page 182.

The intuition of Theorem 2.9 is illustrated in the phase space of the control system in

Figure 2.6. The set A, i.e., the α2 sublevel set of V , is filled in gray. The Lyapunov-like

differential inequality (2.21) implies that for all x 6∈ A, there exists a control u ∈ U that

causes V (x(t)) to strictly decrease at a rate not less than γ along the flow of the dynamics,

regardless of the disturbances d ∈ D. Thus x(t) can always be moved towards the level set

{x ∈ Rn : V (x) = α2}. After some finite time, V (x(t)) is guaranteed to reach α2, hence x(t)

is in A.

In the control theory literature, the function V in Theorem 2.9 is commonly known as

a robust control Lyapunov functions (see Artstein, 1983; Freeman and Kokotovic, 1996;

Liberzon et al., 2002).
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Remark 2.3 The sublevel set A also has another property, which follows directly from

Lemma A.5 on page 183: for any x(0) ∈ A, there exists a feedback control law that keeps x(t)

inside A, that is x(t) ∈ A ∀t ≥ 0, for all admissible disturbance signals d(·). This property is

commonly known as forward invariance. 2

2.5.3. Sufficient Schedulability Condition

Having discussed attracting sets of control systems in the previous section, we now return

to the Green Scheduling problem of system (2.19) and apply this analysis tool to derive

sufficient schedulability conditions. Essentially, if a subset of Safe is attracting then the

system is schedulable because, according to Definition 2.5, there exists an admissible feedback

control law that drives the system’s state to this set, hence to Safe, in finite time. From

Theorem 2.9, to characterize this attracting subset, we need to find a function V : Rn → R+

of state and a number α that satisfy the conditions of the Theorem.

It is well-known in linear system theory that a Lyapunov function for a linear time-invariant

system is quadratic of the form V (x) = xTMx, where M ∈ Rn×n is a positive semidefinite

matrix (Rugh, 1996). Because function V in Theorem 2.9 must satisfy the Lyapunov-like

differential inequality (2.21), it is natural to seek a quadratic function V for system (2.19).

A sublevel set of a quadratic function is an ellipsoid in the Rn vector space, thus we are

searching for an attracting ellipsoidal subset of Safe (if one exists). Because Safe does not

necessarily contain the origin, this ellipsoidal subset might not center at 0. Let xc ∈ int(Safe)

be the center of this ellipsoid. Then the quadratic function V is of the form

V (x) := (x− xc)TM(x− xc)

in which M ∈ Rn×n is positive semidefinite, denoted M � 0. The attracting ellipsoid we are

looking for is thus given by A :=
{
x ∈ Rn : V (x) = (x− xc)TM(x− xc) ≤ α2

}
. Differential
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inequality (2.21) reads, for all x ∈ Rn such that V (x) ≥ α2,

inf
u∈U

sup
d∈D

2 (x− xc)T M (Ax+B0 +Bu+Wd)

=2 (x− xc)T MA (x− xc) + 2 inf
u∈U

sup
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd)

≤− γ. (2.22)

As with Lyapunov functions, M is not any positive semidefinite matrix but must also satisfy

the Lyapunov inequality with respect to the dynamics (2.19) (Rugh, 1996): ATM +MA � 0.

Moreover, it is desirable to obtain the maximum decay rate of V so that we can bound

V (x(t)) as in Equation (2.21). To this end, we consider the generalized eigenvalue problem

(GEVP)

maximize
λ,M

λ

subject to M � 0

ATM +MA � −2λM

in which λ, being the decay rate of V (x(t)), is maximized. Suppose that the above GEVP

has an optimal solution with λ > 0. We then have

2 (x− xc)T MA (x− xc) ≤ −2λ (x− xc)T M (x− xc) ∀x ∈ Rn.

It follows that if for all x ∈ Rn such that V (x) ≥ α2,

−2λ (x− xc)T M (x− xc) + 2 inf
u∈U

sup
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd) ≤ −γ (2.23)

then the inequality (2.22) is verified. In particular, if the static game in Equation (2.23)

(i.e., the inf-sup term on the left-hand side) is non-positive for all x then the inequality

is satisfied. We observe that in Equation (2.23), the optimization variables u and d are
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decoupled, therefore

inf
u∈U

sup
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd)

= (x− xc)T M (Axc +B0) + inf
u∈U

(x− xc)T MBu+ sup
d∈D

(x− xc)T MWd

= sup
d∈D

inf
u∈U

(x− xc)T M (Axc +B0 +Bu+Wd) .

Because U is finite, the inner infimum is equivalent to the minimization

min
u∈U

(x− xc)T M (Axc +B0 +Bu+Wd) .

Let co(U) denote the convex hull of U in the continuous space Rm. Then this minimization has

the same optimal value as minu∈co(U) (x− xc)T M (Axc +B0 +Bu+Wd). Indeed, assume

otherwise then there exists u? ∈ co(U) such that

(x− xc)T M (Axc +B0 +Bu? +Wd) < min
u∈U

(x− xc)T M (Axc +B0 +Bu+Wd) .

From the definition of co(U) (Boyd and Vandenberghe, 2006, sec. 2.1.4), u? = θ1u
(1) + · · ·+

θku
(k) where u(i) ∈ U and θi ≥ 0 for i = 1, . . . , k, and θ1 + · · ·+ θk = 1. It follows that

(x− xc)T M (Axc +B0 +Bu? +Wd) =

k∑
i=1

θi (x− xc)T M
(
Axc +B0 +Bu(i) +Wd

)
≥

k∑
i=1

θi min
u∈U

(x− xc)T M (Axc +B0 +Bu+Wd)

= min
u∈U

(x− xc)T M (Axc +B0 +Bu+Wd) ,

a contradiction. Therefore Equation (2.23) is equivalent to

−2λ (x− xc)T M (x− xc) + 2 sup
d∈D

min
u∈co(U)

(x− xc)T M (Axc +B0 +Bu+Wd) ≤ −γ.

(2.24)

We observe that supd∈Dminu∈co(U) (x− xc)T M (Axc +B0 +Bu+Wd) ≤ 0 ∀x ∈ Rn im-
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plies the inequality (2.22) being satisfied. This leads to the following result on attracting

sets of control system (2.19). Its proof is given in Appendix A.1.10 on page 186.

Lemma 2.6 Suppose there exist M ∈ Rn×n and λ > 0 such that

M � 0, (2.25a)

ATM +MA � −2λM . (2.25b)

Furthermore, there exists xc ∈ Rn satisfying for all d ∈ D, there exists u ∈ co(U) such that

Axc+B0 +Bu+Wd = 0. Then for any α > 0, A := {x ∈ Rn : (x− xc)T M (x− xc) ≤ α2}

is an attracting set of control system (2.19) with basin of attraction B := Rn. 2

The validity of Lemma 2.6 depends on the existence of M and λ. Recall that the state

matrix A is assumed to be Hurwitz. Similar to the existence of Lyapunov functions for

asymptotically stable linear systems (Rugh, 1996), there always exist M and λ satisfying the

hypothesis of Lemma 2.6. This result is confirmed in Proposition 2.1, whose proof can be

found in Appendix A.1.11 on page 186.

Proposition 2.1 If the state matrix A is Hurwitz then there exist M ∈ Rn×n and λ > 0

that satisfy the conditions in Lemma 2.6. 2

As mentioned at the beginning of this section, if Safe contains an attracting subset then

the system is schedulable. This is illustrated on the phase space of control system (2.19) in

Figure 2.7 on the next page. The gray-filled ellipsoid in this figure is the attracting subset

A := {x ∈ Rn : (x− xc)T M (x− xc) ≤ α2} of Safe. Outside this subset, there exists a

control input u ∈ U such that x(t) is always attracted towards A (indicated by the arrows) for

all disturbances d ∈ D, thus it is safe. Therefore the system is schedulable. Using Lemma 2.6,

the following sufficient schedulability condition is straightforward, hence its proof is omitted.

Proposition 2.2 If there exists xc ∈ int(Safe) such that

∀d ∈ D, ∃u ∈ co(U) : Axc +B0 +Bu+Wd = 0
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(x− xc)TM(x− xc) ≤ α2

xc

Safe

Figure 2.7: Illustration of an attracting subset of Safe for sufficient schedulability condition: the gray-filled
subset {x ∈ Rn : (x− xc)T M (x− xc) ≤ α2} of Safe is attracting. Outside this subset, there exists a
control u ∈ U that drives x(t) towards the subset (indicated by the arrows) for all disturbances d ∈ D,
hence making it safe.

then the system (2.19) is schedulable. 2

Proposition 2.2 requires us to explicitly find a point xc ∈ int(Safe) that satisfies its condition.

However, for determining whether a system is schedulable, it is sufficient to verify the

existence of such a point. The sufficient schedulability condition stated in Theorem 2.10

below can be checked by performing standard geometric operations on the sets Safe, D and

U . First, let us introduce several geometric operations on sets.

• The negation1 of a set X ⊆ Rn

−X := {−x ∈ Rn : x ∈ X}.

• The sum of a set X ⊆ Rn and a vector v ∈ Rn

X + v := {x+ v ∈ Rn : x ∈ X}.

1Do not confuse this with set difference X \ Y := {x ∈ X : x 6∈ Y } and set complement XC := Rn \X.
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• The product of a matrix A ∈ Rm×n and a set X ⊆ Rn is a set in Rm

AX := {Ax ∈ Rm : x ∈ X}.

• The Pontryagin difference of two sets X,Y ⊆ Rn

X 	 Y := {z ∈ Rn : z + y ∈ X ∀y ∈ Y } = {z ∈ Rn : Y + z ⊆ X}.

• The Minkowski sum of two sets X,Y ⊂ Rn

X ⊕ Y := {x+ y ∈ Rn : x ∈ X, y ∈ Y }.

Using these set operations, the condition in Proposition 2.2 is equivalent to

∃xc ∈ int(Safe) : Axc +B0 +WD ⊆ −B co(U). (2.26)

We can now state the main sufficient schedulability condition for system (2.19).

Theorem 2.10 If int(Safe)∩Q 6= ∅, where Q := −A−1B co(U)	A−1(B0 +WD), then the

system (2.19) is schedulable. 2

Proof See Appendix A.1.12 on page 186. �

Checking the schedulability condition in Theorem 2.10 does not require solving the GEVP

(Equations (2.25a) and (2.25b)) to compute the matrix M and the value λ. In practice, the

sets co(U), Safe and D are usually hyper-rectangles or polytopes. Therefore, checking the

schedulability condition in Theorem 2.10 involves only standard operations on polytopic sets,

which can be computed numerically with readily available scientific software, for instance the

Multi-Parametric Toolbox for MATLAB™ (Kvasnica et al., 2004) and the Parma Polyhedra

Library (BUGSENG, 2012). For the n-choose-k case, i.e., U = {u ∈ {0, 1}m : ‖u‖1 ≤ k}

where k is the peak constraint imposed on u, it is straightforward to verify that co(U) =
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{u ∈ [0, 1]m : ‖u‖1 ≤ k} – a polytope.

Remark 2.4 A minor catch in Theorem 2.10 is that the interior operator (int(Safe)) might

not be supported in some scientific computation software. In that case, we can replace

(int(Safe) ∩Q) with (Safe ∩Q). It is possible to show that int(Safe ∩Q) ⊆ int(Safe)∩Q.2

2.5.4. Necessary Schedulability Condition

The sufficient schedulability conditions developed in the previous section essentially means

that at any state x outside the subset A of Safe, there exists a control u that drives the

state to A regardless of the disturbance d. For necessary schedulability conditions, we switch

the roles of u and d and do the opposite (cf. Theorem 2.1 on page 24): at any state x in the

safe set and for any control u ∈ U , there exists a disturbance d that drives the state outside

the safe set. Based on this idea, a necessary schedulability condition can be stated in the

following Theorem. Its proof can be found in Appendix A.1.13 on page 187.

Theorem 2.11 Consider the control system (2.19). If there exists d? ∈ D such that

(B0 +B co(U) +Wd?) ∩ (−ASafe) = ∅ then the system is non-schedulable. In particu-

lar, if −WD 6⊆ (ASafe⊕B co(U)) +B0 then the system is non-schedulable. 2

Example 2.5 We continue the room-heater running example. The new schedulability results

allow us to consider the full system’s model as described in Section 1.2.1 on page 5, with

disturbances. Suppose that the ambient air temperature Ta can vary between Ta,min = 2 ◦C

and Ta,max = 12 ◦C while the heat gain Qg,i in each room i = 1, . . . , n is bounded in [0, 0.5]kW.

Therefore D = [0, 0.5]× · · · × [0, 0.5]× [2, 12]. The desired room air temperatures are from

20 ◦C to 24 ◦C for each room.

Let us consider the small-scale system with 6 rooms and 6 heaters whose parameters are

given in Section 1.2.1. The constraint on u is the n-choose-k case with peak constraint k = 4,

i.e., at any time, at most 4 heaters can be activated simultaneously. Using Theorem 2.10,

we can compute the set Q = −A−1B co(U) 	 A−1(B0 + WD) as a polytope of the form
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Q = {x ∈ Rn : Hx ≤ K} where

H =



0.9056 −0.2002 0.0000 0.0000 0.0000 −0.3739
−0.2764 0.9306 −0.2399 0.0000 0.0000 0.0000
0.0000 −0.2130 0.8983 −0.3843 0.0000 0.0000
0.0000 0.0000 −0.3828 0.8969 −0.2214 0.0000
0.0000 0.0000 0.0000 −0.2385 0.9009 −0.3627
−0.3768 0.0000 0.0000 0.0000 −0.2779 0.8836
−0.9056 0.2002 0.0000 0.0000 0.0000 0.3739
0.2764 −0.9306 0.2399 0.0000 0.0000 0.0000
0.0000 0.2130 −0.8983 0.3843 0.0000 0.0000
0.0000 0.0000 0.3828 −0.8969 0.2214 0.0000
0.0000 0.0000 0.0000 0.2385 −0.9009 0.3627
0.3768 0.0000 0.0000 0.0000 0.2779 −0.8836
0.2207 0.4188 0.4459 0.3954 0.3758 0.5288


, K =



10.7340
12.9962
9.8627
9.8097
10.5358
8.0708
−4.6084
−5.8418
−4.3834
−4.2813
−4.4250
−3.3812
54.6061


.

We can verify that int(Safe)∩Q 6= ∅, hence the system is k-schedulable with k = 4. However,

if we set k = 3 then we can verify that the condition of Theorem 2.11 is satisfied; therefore the

system is non-schedulable. Each computation took about 21ms to complete on MATLAB™.

We then scale the system to 100 rooms and 100 heaters, with randomly generated parameters

(see Section 1.2.1). The peak constraint is set to k = 60. Again, we can verify that the

system is k-schedulable by Theorem 2.10. The computation took 29 s on MATLAB™. 2

2.5.5. Systems with Outputs

In this subsection, we extend the schedulability results to the same affine system (2.19) but

with output y ∈ Rp defined as y = Cx where C ∈ Rp×n is the output matrix. The safe set is

defined for the output instead of the state, i.e., Safe ⊂ Rp. The definitions of safety and

schedulability are also modified accordingly.

For sufficient schedulability conditions, the same approach using attracting sets can be

applied: we are looking for an attracting set A := {x ∈ Rn : V (x) ≤ α2} such that

CA ⊆ Safe. The following sufficient schedulability result is analogous to Theorem 2.10 and

its proof is thus omitted for brevity.

Theorem 2.12 If C
(
−A−1B co(U)	A−1(B0 +WD)

)
∩ int(Safe) 6= ∅ then the system is

schedulable. 2

Similarly, a necessary schedulability condition analogous to Theorem 2.11 can be stated.

Theorem 2.13 If there exists d? ∈ D such that the set − (B0 +B co(U) +Wd?) and the
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set Q := {Ax ∈ Rp : x ∈ Rn, Cx ∈ Safe} are disjoint then the system is non-schedulable.

In particular, if −WD 6⊆ (Q⊕B co(U)) +B0 then the system is non-schedulable. 2

Proof See Appendix A.1.14 on page 188. �

2.5.6. Systems with Switching State Matrix

This subsection extends the schedulability results to affine systems with switching state

matrix

ẋ(t) =

(
A0 +

m∑
i=1

Aiui(t)

)
x(t) +B0 +Bu(t) +Wd(t). (2.27)

Define a map A : [0, 1]m → Rn×n as2 A(u) := A0 +
∑m

i=1Aiui(t). We note that: (a) the

domain of A(·) is the continuous set [0, 1]m, not the finite set {0, 1}m of binary vectors;

(b) A(u) is affine in u. The following Theorem, similar to Proposition 2.2 and Theorem 2.10,

provides a sufficient schedulability condition for this system.

Theorem 2.14 Consider system (2.27). Suppose there exist M ∈ Rn×n and λ > 0 such that

M � 0, (2.28a)

A(u)TM +MA(u) � −2λM, ∀u ∈ U . (2.28b)

The following statements are equivalent:

1. There exists xc ∈ int(Safe) such that for all d ∈ D, there exists u ∈ co(U) such that

A(u)xc +B0 +Bu+Wd = 0

2. There exists xc ∈ int(Safe) such that −WD ⊆ co({A(u)xc +B0 +Bu : u ∈ U}).

If any of the above statements holds then the system is schedulable. 2

The proof of Theorem 2.14 is omitted due to its similarity with those of Proposition 2.2

and Theorem 2.10. Note that in this case, we do not have a compact geometric schedulability

condition as in Theorem 2.10 because xc is multiplied by the switching state matrix A(u).

2Although using the same letter A, the map A(·) is not to be confused with the state matrix A because
there is no such matrix for this system.
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Furthermore, even though the values of M and λ are not used in the conditions 1 and 2,

it is important to verify that they exist because, unlike system (2.19) with Hurwitz state

matrix A, their existence is not guaranteed. M and λ can be computed by solving the GEVP

consisting of Equations (2.28a) and (2.28b).

Necessary schedulability conditions can be attained by optimization techniques as presented

in Section 2.4.6. However, Theorem 2.15 provides a simple necessary condition similar to

Theorem 2.11, without having to solve any optimization problem.

Theorem 2.15 Consider system (2.27). If −WD 6⊆ co({A(u)Safe +Bu+B0 : u ∈ U)

then the system is non-schedulable. 2

For a proof, see Appendix A.1.15 on page 188.

2.5.7. Comparison with Previous Results

It is possible to show that the schedulability results in the previous Sections 2.3 and 2.4,

obtained for simpler system’s models and without disturbances, are special cases of the

schedulability results obtained in this section for the general system’s model with disturbances.

Take Theorem 2.6 on page 39 for example and compare it with Theorem 2.10 on page 55. When

the disturbances are absent, the set Q in Theorem 2.10 is reduced to Q = −A−1B co(U)	

A−1B0 = −A−1(B0 + B co(U)). Also note that in the n-choose-k case, co(U) is the set

co(U) = {η ∈ [0, 1]m : ‖η‖1 ≤ k}. Therefore, the condition int(Safe) ∩Q 6= ∅ is equivalent

to ∃η ∈ co(U): −A−1(B0 +Bη) ∈ int(Safe), which is exactly the condition in Theorem 2.6.

As we mentioned in Section 2.2, the schedulability results obtained in this section are general

and can be applied to the systems in the previous sections. However, we still developed

and presented these special-case results because they are based on the periodic scheduling

approach and they establish the theoretical foundations for the periodic scheduling synthesis

to be presented in Chapter 3.
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2.6. Conclusions

In this chapter, we have studied the schedulability analysis problem for Green Scheduling.

In particular, we have developed sufficient and necessary schedulability conditions for a

wide range of types of systems, from decoupled affine monotone dynamics in Section 2.3 to

general affine systems in Section 2.5. Two different approaches were used for schedulability

analysis: the periodic scheduling approach for systems without disturbances and the feedback

scheduling approach for those with constrained disturbances.

Several schedulability results obtained in this chapter share similarities with the classical

schedulability analysis in real-time scheduling (Liu, 2000; Buttazzo, 2011). In particular,

we also used the notion of utilization to capture the timing constraint on the actuation of

each control input so that the system is safe. Schedulability analysis can then be performed

using these values as in conventional real-time scheduling. Thus, our contribution in periodic

scheduling is the development of mapping from system’s dynamics and safety specifications

to utilization values. Recently, there have been several attempts to apply real-time scheduling

algorithms to scheduling of electric loads for peak demand reduction (Facchinetti et al.,

2010; Facchinetti and Vedova, 2011; Subramanian et al., 2012). However, they focused on

the scheduling synthesis aspect and did not derive comprehensive schedulability analysis

methods as we did in this chapter. In addition, they were mostly limited to simple dynamics

of decoupled systems with no interactions and no disturbances. This limitation of these

results highlights another major contribution of this chapter: the schedulability conditions for

general affine systems with constrained disturbances. We employed the feedback scheduling

approach to derive compact geometric conditions for verifying schedulability of such systems.

The results developed in this chapter not only allow deciding whether a system is schedulable

but also establish the theoretical framework for the scheduling synthesis in the chapters that

follow. In particular, periodic scheduling strategies will be studied in Chapter 3 and feedback

scheduling strategies will be presented in Chapter 4.
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Chapter 3

Periodic Green Scheduling

Periodic scheduling (or time-division scheduling) refers to a simple scheduling strategy where

the schedule is repeated every δ > 0 time units. The duration δ is called the time period

of the periodic schedule. As discussed in Section 1.3.2, periodic scheduling belongs to the

class of feedforward scheduling strategies in which the schedules are pre-determined and are

executed on the system as time progresses without taking into account the state of the system

nor the influence of the disturbances. Because of the lack of feedback, these scheduling

strategies are not suitable for systems with significant exogenous disturbances. However, for

systems where disturbances are not present or are insignificant, feedforward scheduling might

attain acceptable performance while being simple in implementation. For example, in the

room-heater example (Section 1.2.1 on page 5), if the building envelope1 is tight so that the

ambient air temperature only has very small effect on the inside air temperature and does

not vary significantly, then periodic scheduling can be used.

This chapter studies periodic scheduling policies for the Green Scheduling problem, based on

the mathematical analysis in Sections 2.3 and 2.4. We will only consider systems with no

disturbances. If disturbances are present but insignificant, they can usually be either ignored

or replaced by nominal constant disturbance values. For each type of system’s dynamics, we

will first investigate its trajectories under periodic scheduling, then we will present a method

to synthesize safe periodic schedules for the system given that it is schedulable. Section 3.1

mathematically formulates the periodic schedules that will be considered in this chapter.

Then periodic scheduling synthesis for decoupled affine monotone dynamics and for general

affine dynamics will be presented in Sections 3.2 and 3.3 respectively. The sequencing problem

for periodic scheduling synthesis will be discussed in Section 3.4. Section 3.5 concludes the

1The building envelope is the physical separator between the interior and the exterior environments of a
building.
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chapter with a discussion on related work.

The results presented in this chapter are expanded from our published work (Nghiem et al.,

2011a, 2012a,b).

3.1. Periodic Scheduling Formulation

To study the behavior of a dynamical system under periodic scheduling, we first formulate

a mathematical representation of the periodic schedules to be considered in this chapter.

Let ui : R+ → {0, 1} be a periodic scalar schedule with time period δ > 0. In practical

systems, the actuators usually have physical constraints that prohibit them from switching

too fast. Furthermore, high-frequency switching often causes performance degradation of,

or even damages to, the actuators. Therefore it is usually desirable, sometimes imperative,

to minimize or at least reduce the switching frequency of the signals. For that reason, we

restrict ui(·) to switching only once during each time period. We can also allow for a finite

delay (or offset), which is shorter than a time period, at the beginning without changing the

overall periodic behavior of the system. Hence we consider periodic schedules of the form

ui(t) =


1 if (ri + j) δ ≤ t < (ri + j + ηi) δ, j ∈ N

0 otherwise
(3.1)

in which t ≥ 0, 0 ≤ ηi ≤ 1 and 0 ≤ ri < 1. In this formulation, ri specifies the optional initial

delay of the signal. It is evident that ui(·) is periodic after this delay, i.e., ui(t) = ui(t+ δ)

for all t ≥ riδ. As introduced in Section 2.3.1, the value ηi ∈ [0, 1] is the fraction of time

in a period when ui is 1. It is termed the utilization of periodic schedule ui, following the

convention in real-time scheduling (Liu, 2000). We can verify that 1
δ

∫ t+δ
t ui(s) ds = ηi for

all t ≥ riδ. Therefore, each periodic schedule ui(·) is parameterized by three parameters:

(δ, ηi, ri). The timing diagram in Figure 3.1a on the next page illustrates such a periodic

schedule where the notions of time period δ, utilization ηi and delay ri are clearly indicated.

The aggregated schedule u(·) consists of multiple scalar schedules u1(·), . . . , um(·), each
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ui
DELAY ηiδ ηiδ

riδ (1 + ri)δ (2 + ri)δ

(a) A periodic scalar schedule ui(·) with time period δ and delay riδ. During
each time period, ui switches only once.

u1

u2

u3

r1δ

r2δ

r3δ

rδ (1 + r)δ (2 + r)δ

(b) Multiple periodic scalar schedules with a common time period δ and different
delays. The aggregated schedule u(·) is periodic after the maximum delay rδ,
where r = max(r1, r2, r3).

Figure 3.1: Illustration of the periodic scheduling formulation.

having the form in Equation (3.1). We assume that they all have the same time period

δ > 0. This assumption will simplify the system analysis and scheduling synthesis to be

presented later in this chapter, yet being reasonable because this is usually the case in

practice. It follows that the schedule u(·) = [u1(·), . . . , um(·)]T is also periodic with the same

time period δ and a delay equal to the maximum delay of the component signals, that is rδ

where r = max(r1, . . . , rm). In Figure 3.1b on this page, an example of the aggregation of

three periodic scalar schedules is depicted. The aggregated signal is therefore specified by

the set of parameters

δ, (η1, r1), . . . , (ηm, rm)

where δ is the common time period and (ηi, ri) denote the utilization and delay of the indi-

vidual component signals. In the periodic scheduling synthesis in the subsequent subsections,

we will present methods to determine these parameters.
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3.2. Periodic Scheduling for Decoupled Affine Monotone Dy-

namics

In this section, we consider the decoupled affine monotone dynamics as defined in Section 2.3.

Recall that the dynamics of the state variables xi, i = 1, . . . , n, are decoupled from each

other and are monotone of the form in Equation (2.4), reproduced in the following equation:

ẋi(t) =


−aon,ixi(t) + bon,i if ui(t) = 1

−aoff,ixi(t) + boff,i if ui(t) = 0

(3.2)

where aon,i > 0, aoff,i > 0, bon,i and boff,i are parameters. Note that each xi is controlled only

by input ui. We also assumed in Assumption 2.1 that:

• There are no disturbances (d ≡ 0);

• The safe set is a hyper-rectangle in Rn: Safe = [l1, h1]× · · · × [ln, hn], where li < hi

are the desired lower and upper bounds for each state variable xi;

• The dynamics of xi is monotone within its bound [li, hi], i.e., xi always grows when

ui = 1 and decays when ui = 0, or mathematically

−aoff,ixi + boff,i < 0 < −aon,ixi + bon,i ∀xi ∈ [li, hi]. (3.3)

Because of the decoupling of the state variables in terms of dynamics and controls, we can

analyze their individual behavior under periodic scheduling independently of each other, and

only integrate them in the scheduling synthesis.

3.2.1. Trajectories under Periodic Scheduling

In this subsection, we investigate the behavior of a state variable xi, for i = 1, . . . , n, under

a periodic schedule ui(·). In particular, we will study its limit behavior as t → ∞. As
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illustrated in Figure 2.3 on page 27 and formally proved in Appendix A.1.2 on page 167, as

time t progresses, xi(t) converges to a bounded interval [αi, βi]. Using calculus and linear

system theory, the limits αi and βi can be calculated explicitly by2

αi =
Ni

1−Mi
and βi =

Pi
1−Mi

(3.4)

where

Mi = e−δ(aoff,i(1−ηi)+aon,iηi) (3.5a)

Ni = e−aoff,i(1−ηi)δ
(
bon,i

aon,i
− boff,i

aoff,i

)
− bon,i

aon,i
Mi +

boff,i

aoff,i
(3.5b)

Pi = e−aon,iηiδ

(
boff,i

aoff,i
− bon,i

aon,i

)
− boff,i

aoff,i
Mi +

bon,i

aon,i
. (3.5c)

Observe that the limits αi and βi depend on the values of δ and ηi, but not ri. This is

because the initial delay riδ is shorter than a time period and does not affect the overall

behavior of xi.

3.2.2. Periodic Green Scheduling Synthesis

Having described the limit behavior of each individual state variable xi under periodic

schedule ui(·), we can now derive a method for synthesizing a safe periodic schedule u(·) for

the entire system. We mentioned in Section 3.1 that the periodic schedule u(·) is determined

by the set of parameters (δ, (η1, r1), . . . , (ηm, rm)). Therefore, we only need to find the values

of these parameters so that for each i = 1, . . . , n, xi(t) enters and stays indefinitely in the

desired range [li, hi] after some finite time τi ≥ 0. As presented in the previous subsection,

under periodic schedule ui(·), the state variable xi converges to the bounded interval [αi, βi]

given by Equations (3.4) to (3.5c). It follows that if for all i = 1, . . . , n, the interval [αi, βi]

is inside the desired range [li, hi], i.e., [αi, βi] ⊆ [li, hi], then the system will be safe. Thus

the next Corollary is straightforward.

Corollary 3.1 If the parameters of the periodic schedule u(·) are such that for all i = 1, . . . , n,
2For details, see Appendix A.1.2 on page 167.
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αi ≥ li and βi ≤ hi, then the system is safe under this schedule. 2

We recall that αi and βi do not depend on ri. Therefore, we can construct periodic schedules

ui(·) in two steps: (1) compute δ and ηi for each i so as to make the limits [αi, βi] bounded in

[li, hi]; (2) given parameters δ and ηi for all i, find ri so that at any time t ≥ 0,
∑n

i=1 ui(t) ≤ k.

Step 1: Compute δ and ηi for each i

In this step we compute the common time period δ and the utilization ηi for each i so that

αi ≥ li and βi ≤ hi. In practice, the time period δ is determined by the characteristics of the

physical equipment and the hardware platform. Thus, we assume that δ > 0 is provided and

we need to compute ηi for i = 1, . . . , n. Because αi and βi now depend on ηi, we will write

αi(ηi) and βi(ηi) to emphasize that they are functions of ηi.

By taking the derivative of αi with respect to ηi, it is straightforward to verify that

dαi
dηi

=
δMi

(1−Mi)2

(
bon,i

aon,i

−
boff,i

aoff,i

)[
aon,i

(
1− e−aoff,i(1−ηi)δ

)
+ aoff,i

(
eaon,iηiδ − 1

)]
.

Therefore dαi
dηi

> 0 for all 0 ≤ ηi ≤ 1 and δ > 0, i.e., the function αi(ηi) is strictly increasing

with respect to ηi. It follows that αi(ηi) ≥ li is equivalent to ηi ≥ ηδ,i where ηδ,i is the root

of the equation αi(ηi) = li. Although we do not have a closed-form expression for η
δ,i
, the

equation can be numerically solved efficiently using Newton’s method since αi(ηi) is strictly

monotonic and its derivative can be calculated exactly. Similarly, the constraint βi(ηi) ≤ hi
is equivalent to ηi ≤ ηδ,i where βi(ηδ,i) = hi, which can also be solved numerically.

It is worth noting the relation between the bounds η
δ,i
, ηδ,i and the bounds η

i
, ηi obtained

in Lemma 2.1 on page 28 for schedulability conditions. It is shown in Appendix A.1.2 on

page 167 that

lim
δ→0+

αi(ηi) =
bon,iηi + boff,i(1− ηi)
aon,iηi + aoff,i(1− ηi)

.

By simple calculations, we can verify that η
i
is the root of the equation limδ→0+ αi(ηi) = li.
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Thus η
i
is the value of η

δ,i
as δ goes to 0. Similarly ηi is the value of ηδ,i as δ → 0. Therefore,

the sufficient schedulability condition in Theorem 2.2 on page 28 corresponds to the extreme

case when δ is infinitesimal, that is when ui switches infinitely fast.

If η
δ,i
≤ ηδ,i then we can choose any value ηi in the range [η

δ,i
, ηδ,i]. Otherwise, if η

δ,i
> ηδ,i,

the chosen time period δ is infeasible and δ needs to be reduced. Indeed, there exists a

maximal feasible time period δ?i , for which ηδ,i = ηδ,i, that can be computed numerically.

Figure 3.2 on page 70 in Example 3.1 illustrates such a feasible region (δ, [η
δ,i
, ηδ,i]) for the

room-heater example. Obviously, the chosen common time period δ must satisfy δ ≤ δ?i for

all i = 1, . . . , n.

Because the dynamics of the state variables are decoupled, the simple calculation of η
δ,i
, ηδ,i

and ηi for each xi can be carried out independently of the other state variables. Hence, the

computation of this step is efficient even for large-scale systems, as will be demonstrated

later in Example 3.1.

Step 2: Compute initial delay ri

In step 1, we have chosen a feasible common period δ and the utilizations ηi for all component

schedules ui(·). In this step, given a feasible peak constraint k (cf. schedulability conditions

and feasible peak constraints in Section 2.3.1 on page 26), we compute the initial delays ri,

i = 1, . . . , n, so that the aggregated periodic schedule u(·) satisfies
∑n

i=1 ui(t) ≤ k, ∀t ≥ 0.

In general, this problem is similar to multiprocessor real-time scheduling of periodic tasks

with full migration (Davis and Burn, 2009), in which δ is the tasks’ period, ηi are the

tasks’ utilizations, and k is the number of identical processors. Conventional multiprocessor

scheduling algorithms can then be used to derive a schedule for the system. We present

instead in Appendix A.1.3 on page 169 a simple algorithm for obtaining the values ri so that

the peak constraint is always respected. The algorithm is reproduced below for the readers’

reference. It is assumed that
∑n

i=1 ηi ≤ k.
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1. Distribute n non-overlapping right-open subintervals, each of length ηi respectively, into

the interval [0, k] on the real line (see Figure A.1a on page 170). Because
∑n

i=1 ηi ≤ k,

such a distribution is always possible.

2. For each i, let subinterval i be [si, si + ηi) ⊆ [0, k]. Then choose ri = si − bsic.

Therein, we also prove that with these initial delays, the aggregated periodic schedule u(·)

satisfies the peak constraint (see Figure A.1b for an illustration with n = 3 and k = 2). This

algorithm is simple and hence scalable for a large n. However, we have not discussed in the

first step how the subintervals [si, si + ηi) are sequenced in the interval [0, k], i.e., the order

of actuation of ui. This ordering problem will be discussed in Section 3.4.

Putting everything together, the periodic green scheduling synthesis for decoupled affine

monotone dynamics is summarized in Algorithm 3.1 on the next page. On Line 12, the function

SequenceTasks3 performs the ordering of the non-overlapping subintervals [si, si + ηi) into

the interval [0, k], and returns the offsets r1, . . . , rn. The simplest ordering algorithm is given

in Algorithm 3.2 on the following page, which simply sequences the subintervals in the given

order from 1 to n.

Example 3.1 In Example 2.1 on page 29 we have verified that the small-scale room-heater

system with 6 rooms and 6 heaters, when there are no thermal interactions nor disturbances, is

schedulable with any peak constraint k ≥ 3. We now apply the periodic scheduling synthesis

in Algorithm 3.1 to this system. We chose the peak constraint k = 4 and the time period δ =

1800 s = 30min, which resulted in an utilization vector η = [0.61, 0.63, 0.60, 0.58, 0.55, 0.55]T

and initial delays (r1 = 0, r2 = 0.61, r3 = 0.23, r4 = 0.83, r5 = 0.42, r6 = 0.97). Since∑6
i=1 ηi = 3.52 < 4, the peak constraint k = 4 is feasible. For this system, the feasible region

(δ, [η
δ,1
, ηδ,1]) is plotted in Figure 3.2, which shows that the maximal feasible period δ? for

heater 1 is about 6000 s = 100min. Also, we observe that as δ → 0, the range of utilization

[η
δ,1
, ηδ,1] converge to the values η

1
= 0.4939 and η1 = 0.6256 obtained in the schedulability

3Each subinterval corresponds to a task in the terminology of real-time scheduling, hence the name of
this function.
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Algorithm 3.1 Periodic Scheduling Synthesis for Decoupled Affine Monotone Dynamics
Input: parameters of decoupled affine monotone dynamics; bounds li, hi for each i = 1, . . . , n;

peak constraint k; δ.
Output: parameters (ηi, ri) for each i = 1, . . . , n.

1: for i← 1, . . . , n do
2: η

δ,i
← root of αi(ηi) = li . cf. Equation (3.4)

3: ηδ,i ← root of βi(ηi) = hi . cf. Equation (3.4)
4: if η

δ,i
> ηδ,i then

5: return “δ is infeasible”
6: end if
7: end for
8: if

∑n
i=1 ηδ,i > k then

9: return “Not schedulable”
10: end if
11: Select ηi ∈ [η

δ,i
, ηδ,i] for each i = 1, . . . , n so that

∑n
i=1 ηi ≤ k

12: (r1, . . . , rn)← SequenceTasks(k, η1, . . . , ηn)

Algorithm 3.2 Simple Subinterval Sequencing for Periodic Scheduling Synthesis
1: function SimpleSequenceTasks(k, η1, . . . , ηn)
2: Require:

∑n
i=1 ηi ≤ k

3: s← 0
4: for i← 1, . . . , n do
5: ri ← s− bsc
6: s← s+ ηi
7: end for
8: return (r1, . . . , rn)
9: end function

analysis in Example 2.1. The scheduling synthesis algorithm took only 15ms to complete.

The synthesized periodic schedule was simulated for 10 hours, starting from the initial

temperature 18 ◦C for all rooms. For comparison, we also simulated the uncoordinated two-

position control rule (see Section 1.2.1 on page 5). Their results are reported in Figure 3.3 on

the next page. For periodic green scheduling, the room temperatures converged more slowly

to the desired temperature range than for uncoordinated scheduling. However, it reduced the

peak demand from 39 kW to 27 kW – a 30.77% saving. Both scheduling strategies resulted in

similar total energy consumption: 224.41 kWh for uncoordinated scheduling and 226.24 kWh

for periodic scheduling. It is also evident from Figure 3.3a that the switching frequency
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Figure 3.2: The feasible region (δ, [η
δ,1
, ηδ,1]) for heater 1 in Example 3.1. The maximal feasible period

δ? for heater 1 is about 6000 s = 100 min.
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Figure 3.3: Simulation results of periodic scheduling for decoupled affine systems in Example 3.1. Compared
to uncoordinated scheduling, periodic green scheduling reduced the peak demand from 39 kW to 27 kW.
However, the room temperatures converged more slowly to the desired temperature range and the switching
frequency was higher.

induced by periodic scheduling is higher than that induced by uncoordinated scheduling.

To demonstrate the scalability of the synthesis method, we scaled the room-heater system to

1000 rooms and 1000 heaters. Algorithm 3.1 took 12.45 s to synthesize periodic schedules for

the heaters, and the simulation results were in line with those for the small-scale system. 2

3.2.3. Safety Guarantee

Let xi(0) be any initial value of the state variable xi, for i = 1, . . . , n. It is possible to

determine a finite time τi ≥ 0 such that, under the periodic schedule ui(·) with parameters

(δ, ηi, ri), xi(t) remains inside the interval [li, hi] for all t ≥ τi. Without loss of generality, we
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assume that ri = 0. Indeed, if ri > 0, we simply adjust the initial state to the state after the

initial delay, which is e−aoff,iriδ
(
xi(0)− boff,i

aoff,i

)
+

boff,i

aoff,i
, then add riδ to the calculated τi.

It follows from Equation (A.2) on page 168 and straightforward calculations that the worst-

case time instant τ i after which xi(t) is guaranteed to be above li is:

τ i =


0 if xi(0) ≥ li

δ

⌈
log

xi(0)−αi(ηi)
li−αi(ηi)

δ(aoff,i(1−ηi)+aon,iηi)

⌉
otherwise.

Similarly, xi(t) is guaranteed to be below hi after the time instant τ i computed as:

τ i =


ηiδ if xi(ηiδ) ≤ hi

δ

(
ηi +

⌈
log

xi(ηiδ)−βi(ηi)
hi−βi(ηi)

δ(aoff,i(1−ηi)+aon,iηi)

⌉)
otherwise

where

xi(ηiδ) = e−aon,iηiδ

(
xi(0)− bon,i

aon,i

)
+
bon,i

aon,i
.

Therefore τi = max{τ i, τ i}, which is finite.

Let τ = maxi=1,...,n τi. Then the system (i.e., all xi(t)) is guaranteed to be safe after this

finite time instant τ .

3.2.4. Periodic Scheduling for Affinely Bounded Monotone Dynamics

In Section 2.3.3 on page 30, we introduced the class of affinely bounded monotone dynamics,

which is more general than the class of decoupled affine monotone dynamics and which can

handle small disturbances and small interactions between the state variables. The most

important characteristic of the dynamics in this class is summarized in Assumption 2.2.

Essentially, for each i, the dynamics of xi is always bounded between two decoupled affine

monotone dynamics, hence its trajectory is always bounded between the trajectories of the

lower-bound system Σi (Definition 2.2) and the upper-bound system Σi (Definition 2.3).
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Due to this property, the analysis and periodic scheduling synthesis presented above for

decoupled affine monotone dynamics can be applied immediately to this class of dynamics

by replacing the parameters aon,i, bon,i, aoff,i, boff,i with appropriate parameters of the lower-

and upper-bound systems.

3.3. Periodic Scheduling for General Affine Dynamics

As discussed in Section 2.4 on page 35, the class of decoupled dynamics, either by nature

or by bound dynamics, is limited in practice because practical systems are often subject to

significant interactions between their sub-systems. Building upon the analysis in Section 2.4,

this section extends the periodic green scheduling synthesis method to more general affine

systems of the form, for all t ≥ 0,

ẋ(t) = Ax(t) + (B0 +Bu(t)) , y(t) = Cx(t) (3.6)

where y ∈ Rp is the output. The assumptions on the system are summarized in the following

(for details, see Section 2.4.1 on page 35):

• The state matrix A is Hurwitz;

• The safe set Safe is defined for the output y and can be any compact convex set in Rp;

• We consider the n-choose-k case where k ∈ {0, 1, . . . ,m} is the peak constraint imposed

on the binary controls u.

3.3.1. Limit Behavior under Periodic Scheduling

We first study the limit behavior of system (3.6) under periodic scheduling and show that it

converges to a limit cycle as t→∞. Consider some periodic schedule u(·) with time period

δ > 0 (i.e., u(·) satisfies u(t) = u(t+ δ) for all t ≥ 0). Let η ∈ [0, 1]m be the utilization vector

corresponding to u(·), that is ηi := 1
δ

∫ δ
0 ui(t) dt ∈ [0, 1]. Recall that the average system of
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(3.6) with respect to η is defined as the autonomous, time-invariant affine dynamical system

ẋ(t) = Ax(t) + (B0 +Bη) (3.7)

with state variable x and starting from the same initial state: x(0) = x(0).

The state error ξ(t) := x(t)− x(t) between system (3.6) and its average system (3.7) is given

in Equation (2.14) on page 38 and can be rewritten as

ξ(t) = eA(t−σδ)
(
σ−1∑
i=0

eiAδ

)
ξδ + ξ(t− σδ). (3.8)

Since A is Hurwitz, eAδ is Schur and therefore limσ→∞
∑σ−1

i=0 eiAδ =
(
I− eAδ

)−1
= P . The

matrix inverse exists because the eigenvalues of
(
I− eAδ

)
are (1 − λj), where λj are the

eigenvalues of eAδ, and hence are non-zero. It follows that as t→∞, thus σ = bt/δc → ∞,

ξ(t) converges to the trajectory ξ̂(t) given by

ξ̂(t) = eA(t−σδ)Pξδ + ξ(t− σδ). (3.9)

This trajectory is a cycle with period δ because for any t ≥ 0,

ξ̂(t+ δ) = eA(t+δ−σδ)Pξδ + ξ(t+ δ − σδ)

and expanding ξ(t+ δ − σδ) by Equation (3.8) yields

= eA(t−σδ)eAδPξδ + eA(t−σδ)ξδ + ξ(t− σδ)

= eA(t−σδ)
(

eAδP + I
)
ξδ + ξ(t− σδ)

then using the equality eAδP + I = P gives

= eA(t−σδ)Pξδ + ξ(t− σδ) = ξ̂(t).
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Furthermore, because the state x(t) of the average system converges exponentially to the

equilibrium x? = −A−1 (B0 +Bη), x(t) = x(t) + ξ(t) converges to the limit cycle defined by

x̂(t) = x? + ξ̂(t) as t→∞. Similarly, the output y(t) converges to the limit cycle given by

ŷ(t) = y? + Cξ̂(t) where y? = Cx?.

To compute the limit cycles x̂(t) and ŷ(t) for a given δ-periodic schedule u(·), we observe

that ξ̂(t) in Equation (3.9) is the solution of the ordinary differential equation (ODE)

˙̂
ξ(t) = Aξ̂(t) +B (u(t)− η) , ξ̂(0) = Pξδ. (3.10)

Therefore, it can be computed numerically using any available ODE solver, in two steps:

1. Compute ξδ = ξ(δ) by solving the ODE in Equation (2.11) on page 37 for one period;

2. Initialize ξ̂(0) = Pξδ and solve the ODE (3.10) for one period to obtain ξ̂(t) for t ∈ [0, δ].

Then the limit cycles can be computed easily.

3.3.2. Periodic Green Scheduling Synthesis

In synthesizing periodic schedules for the system, it is necessary to ensure that the entire

limit cycle ŷ(t) is inside the safe set Safe, so that the system’s output is driven to and

maintained inside Safe. It is usually desirable to minimize the switching frequency of the

input u, thus we wish to construct a periodic schedule u(·) with the largest possible time

period δ. Once a feasible peak constraint k ≥ kmin has been chosen (cf. Section 2.4.3 on

page 40), the periodic scheduling synthesis can be achieved by solving the optimization:

maximize
η,δ,u(·)

δ

subject to η ∈ [0, 1]m,

m∑
i=1

ηi ≤ k, δ > 0

u(·) is δ-periodic with utilization η (3.11a)
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m∑
i=1

ui(t) ≤ k, ∀0 ≤ t ≤ δ (3.11b)

ŷ(t) ∈ Safe, ∀0 ≤ t ≤ δ (3.11c)

However, this optimization is difficult because u(·) is infinite dimensional and the limit cycle

ŷ(t) (constraint (3.11c)) cannot be solved analytically but only numerically. Therefore, we

restrict u(·) to the specific form defined in Equation (3.1) and use the same construction

method as in Section 3.2.2, so that constraints (3.11a) and (3.11b) can be removed. We then

use a search algorithm to maximize δ subject to the remaining constraints. Following are the

steps to synthesize a periodic schedule with a given feasible peak constraint k ≥ kmin.

Step 1: Compute utilization

Recall that ŷ(t) = y? + Cξ̂(t) where y? is the output at the equilibrium x? of the average

system. Intuitively, it is desirable to have y? not only inside Safe but also as far as possible

from the boundary of Safe. Let yc be the Chebyshev center4 of Safe. From the schedulability

condition in Theorem 2.6, η can be computed by solving the following optimization problem

minimize
η

‖y? − yc‖ =
∥∥−CA−1(B0 +Bη)− yc

∥∥ (3.12)

subject to η ∈ [0, 1]m

m∑
i=1

ηi ≤ k

− CA−1 (B0 +Bη) ∈ int(Safe)

in which ‖·‖ is a vector norm, e.g., Euclidean norm ‖·‖2 or `1-norm ‖·‖1. If Safe is a

hyper-rectangle or a polytope, the last constraint becomes linear (cf. Section 2.4.3), hence

the optimization (3.12) is convex and can be solved efficiently (Boyd and Vandenberghe,

2006).

4The Chebyshev center of a bounded set C with nonempty interior is a point inside C that is farthest
from the exterior of C and is also the center of the largest inscribed ball of C. For convex sets C, computing
the Chebyshev center is a convex optimization problem (Boyd and Vandenberghe, 2006, sec. 8.5.1).
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Step 2: Construct a periodic schedule

Once η has been computed, a periodic schedule u(·) of the form in Equation (3.1) can be

constructed using the same method in Step 2 in Section 3.2.2 (e.g., Algorithm 3.2). The

outcome of this step are the initial delays ri for i = 1, . . . ,m. Notice that when the time

period δ varies, the constructed schedule u(·) keeps the same pattern (i.e., ri and ηi for all i)

and is only scaled by δ in time.

Step 3: Compute time period δ

This step completes the periodic scheduling synthesis by maximizing the time period δ

subject to the constraint (3.11c). Because ŷ(t) can only be computed numerically, there

is no analytical solution to this optimization. Instead, we approximate δ using a standard

bisection search algorithm presented in Algorithm 3.3 on the next page. In each iteration, the

function SafeLimitCycle (Line 19) is called to compute the limit cycle ŷ(t) for one time

period and check whether it is inside Safe. The search function MaxPeriodBisection

returns an optimal time period δ? with specified tolerance ε > 0.

Putting everything together, the scheduling synthesis method is summarized in Algorithm 3.4

on the following page.

Example 3.2 Consider the mass-spring-damper system in Section 1.2.2 on page 8. Suppose

that there are no disturbance forces, i.e., di = 0 for i = 1, 2. Because the system’s model is in

the form of Equation (3.6), we can apply the periodic scheduling synthesis in Algorithm 3.4 to

this system. The desirable positions of the masses are 0.75 ≤ y1 ≤ 0.85 and 1.15 ≤ y2 ≤ 1.25,

hence the safe set is Safe = [0.75, 0.85]× [1.15, 1.25]. Note that Safe is defined for the output

variables y (the positions) but not for the state variables x (which include the velocities of

the masses). Furthermore, Safe does not contain the equilibrium y? = [2
3 ,

4
3 ]T of the system.

By solving the optimization in Equation (3.12), we obtained the utilization vector η =

[0.24, 0.24]T , which confirms that the system is schedulable because ‖η‖1 = 0.48 < 1. The

initial delays were chosen to be r1 = 0 and r2 = 0.24. We then maximized the time period by

76



Algorithm 3.3 Maximize Time Period δ by Bisection Search
Input: parameters (r1, η1), . . . , (rm, ηm); initial guess δ0 > 0; tolerance ε > 0; maximal

number of iterations N .
Output: maximal time period δ?

1: function MaxPeriodBisection
2: δ ← 0 . lower end point
3: δ ← δ0 . upper end point
4: while SafeLimitCycle(δ) do
5: δ ← 2δ
6: end while
7: i← 1 . current iteration
8: while i < N and δ − δ ≥ ε do
9: δ ← (δ + δ)/2

10: if SafeLimitCycle(δ) then
11: δ ← δ
12: else
13: δ ← δ
14: end if
15: i← i+ 1
16: end while
17: return δ? ← δ
18: end function

19: function SafeLimitCycle(δ)
20: Compute limit cycle ŷ(t) for t ∈ [0, δ]
21: if ŷ(t) ∈ Safe ∀t ∈ [0, δ] then
22: return true
23: else
24: return false
25: end if
26: end function

Algorithm 3.4 Periodic Scheduling Synthesis for General Affine Dynamics
Input: parameters (A,B0, B,C) of the dynamics; safe set Safe; feasible peak constraint k.
Output: time period δ; parameters (ηi, ri) for each i = 1, . . . , n.

1: Compute Chebyshev center yc of Safe
2: Solve optimization problem Equation (3.12) to compute η
3: (r1, . . . , rn)← SequenceTasks(k, η1, . . . , ηn)
4: δ ← MaxPeriodBisection
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Figure 3.4: Simulation results of the mass-spring-damper system with periodic scheduling in Example 3.2.

using Algorithm 3.3 and obtained δ? = 1.8525 s. The computation took 154.3ms to complete.

A time period δ = 1.5 s was chosen and the system was simulated for 20 s from the initial

state x(0) = [2
3 , 0,

4
3 , 0]T . Its results are reported in Figure 3.4 on this page. The positions of

the masses, plotted in Figure 3.4a, were driven to the desired ranges (gray-filled regions in

the figure) after about 4 s. As can be seen in Figure 3.4b which draws the periodic schedules

u1(·) and u2(·), at any time, at most 1 of the control forces are activated. 2

Example 3.3 We continue the room-heater running example in Example 3.1 on page 68 but

consider the thermal interactions between adjacent rooms. Again, the ambient air temperature

Ta is constant at 5 ◦C and there are no internal heat gains for the rooms, i.e., Qg,i = 0 for all

i = 1, . . . , n. Applying the periodic scheduling synthesis in Algorithm 3.4 with peak constraint

k = 4 yielded the utilization vector η = [0.5597, 0.5790, 0.5525, 0.5395, 0.5128, 0.5111]T and

the maximal time period δ? = 95.15min. The computation took 188.6ms to finish. We

chose a time period δ = 60min and simulated the synthesized periodic schedule for 10

hours, starting from the initial temperature 18 ◦C for all rooms. For comparison, we also

simulated the uncoordinated two-position control rule (see Section 1.2.1 on page 5). Their

results are reported in Figure 3.5 on the next page. For periodic green scheduling, the room

temperatures converged more slowly to the desired temperature range than for uncoordinated

scheduling. It is also obvious that the switching frequency induced by periodic scheduling is
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Figure 3.5: Simulation results of periodic scheduling for the room-heater system with inter-room thermal
interactions in Example 3.3. Compared to uncoordinated scheduling, periodic green scheduling reduced
the peak demand from 39 kW to 27 kW. However, the room temperatures converged more slowly to the
desired temperature range and the switching frequency was higher.

higher than that induced by uncoordinated scheduling. However, green scheduling reduced

the peak demand, as it is evident in Figure 3.5b, from 39 kW to 27 kW – a 30.77% saving, and

reduced the total energy consumption from 223.62 kWh to 208.71 kWh – a 6.67% saving.

To demonstrate the scalability of the synthesis method, we scaled the room-heater system to

1000 rooms and 1000 heaters. The computation took 20.93 s on MATLAB™ to synthesize

periodic schedules for the heaters. 2

3.4. On Subinterval Sequencing for Periodic Scheduling

In the periodic scheduling synthesis methods presented in Sections 3.2 and 3.3, we deferred

the discussion of the subinterval sequencing problem until this section. Given a utilization

vector η ∈ [0, 1]n and a peak constraint k ≥ ∑n
i=1 ηi, the subinterval sequencing problem

concerns with distributing n subintervals, each of length ηi for i = 1, . . . , n, to the interval

[0, k] so that the resulted periodic schedule as defined in Equation (3.1) achieves “good”

performance. The specific definition of “good” performance is subject to the individual

system and application. For instance, good performance can mean that the actual trajectory

y(·) stays as close as possible to the trajectory y(·) of the average system. In systems where

the control inputs ui incur non-uniform demands (or costs) ci > 0 for i = 1, . . . , n, good
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performance can mean the peak aggregated demand maxt≥0
∑n

i=1 ciui(t) is minimized. Since

Green Scheduling is motivated by the peak demand reduction problem, we will focus on

subinterval sequencing for reducing the peak aggregated demand, stated below.

Problem 3.1 Given utilization vector η ∈ [0, 1]n, peak constraint k ≥ ∑n
i=1 ηi, and cost

vector c = [c1, . . . , cn]T where ci > 0 for i = 1, . . . , n. Find initial delays r1, . . . , rn (i.e.,

distribute n subintervals, each of length ηi for i = 1, . . . , n, to the interval [0, k]) so that the

peak aggregated demand of the resulted periodic schedule is minimized. 2

Apparently, if the demands of the control inputs are uniform, meaning that ci are the same

for all i, then the simple sequencing Algorithm 3.2 on page 69 will produce the least peak

demand and will thus suffice. Therefore we only consider the non-uniform case.

Even though ci are non-uniform, the n-choose-k constraint still holds for the system. Indeed,

let σk denote the sum of the k smallest entries of c and Σk denote the sum of the k largest

entries of c. Then from the schedulability results in Chapter 2, any safe periodic schedule,

including those that incur the least peak demand, must have at least kmin control inputs

simultaneously activated at some point, where kmin is the minimal peak constraint for

the system. Therefore a global lower bound of the peak demand can be obtained as σkmin
.

Furthermore, the peak demands of all safe periodic schedules which attain the peak constraint

k are always bounded between σk and Σk. It follows that if the difference between σk and

Σk is inconsiderable, the simple sequencing method in Algorithm 3.2 can be used without

much suboptimality.

In the general case, the sequencing problem for peak demand minimization is an instance

of the two-dimensional strip packing problem (2SP) (Lodi et al., 2002). Each subinterval

i, for i = 1, . . . , n, can be represented by a rectangle of width ηi and height ci. The 2SP

concerns with packing these n rectangles into a bin of width 1 and infinite height (called

strip) so as to minimize the height to which the strip is used. It is well-known that 2SP

is strongly NP-hard (Lodi et al., 2002), therefore the sequencing problem is also strongly

NP-hard. A variety of approximation algorithms and metaheuristic algorithms for 2SP have
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been proposed (for a good survey, see Lodi et al., 2002). These algorithms can be readily

applied to the subinterval sequencing problem for periodic scheduling synthesis. In this

dissertation, for simplicity, we only use the proposed simple sequencing algorithm and leave

the application of more advanced algorithms for future research.

3.5. Conclusions and Related Work

In this chapter, we have developed periodic scheduling synthesis methods for two types of

Green Scheduling systems: decoupled affine monotone dynamics (Section 3.2) and general

affine dynamics without disturbances (Section 3.3). Both methods rely on the notions of

average systems and limit cycles produced by periodic schedules. By finding the appropriate

utilizations η and time period δ that put the limit cycle inside the safe set Safe, a safe

periodic schedule can be constructed. The most prominent advantage of periodic scheduling,

as demonstrated through several examples of the room-heater and the mass-spring-damper

systems, is its simplicity and hence its scalability. Except for the NP-hard subinterval

sequencing problem (Section 3.4), all calculations are simple and can be performed efficiently

even for a large-scale system of 1000 rooms and 1000 heaters.

The problem of scheduling dynamical systems under peak constraint has received increasing

attention recently. Lin (2005, Chapter 5) considered a similar problem but in the context

of networked control systems and for stability, not safety. Furthermore, the systems were

assumed to be decoupled, i.e., there were no inter-system interactions. Based on the same

idea of utilizations (therein called attention rates), periodic scheduling strategies (therein

called time-division scheduling) were developed to schedule the control systems so that they

were stable and at most 1 of them could be activated simultaneously. Le Ny et al. (2011)

proposed a periodic scheduling strategy for state feedback Linear Quadratic Regulation

(LQR) problem with a constraint on the number of actuation signals that can be updated

simultaneously. Their objective was to achieve the best performance, in terms of the LQR

cost function, while satisfying the actuation constraint. Similarly, the idea of utilizations

(therein called time averages) was used to construct the periodic schedules for the LQG
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problem. In (Facchinetti and Vedova, 2011; Facchinetti et al., 2010; Vedova et al., 2010),

the authors addressed a similar problem: schedule decoupled affine dynamical systems to

reduce peak power such that each state variable is bounded in a given range and at most 1

actuator can be activated at any time. However, conventional real-time scheduling algorithms

such as earliest deadline first (EDF) (Liu, 2000) were used in these works instead of pure

periodic schedules. Synthesizing switching logic to minimize long run cost for a general hybrid

system was studied in (Jha et al., 2010, 2011), in which the limit cycle of the system was

utilized similarly to our synthesis method (Section 3.3). The periodic scheduling synthesis

problem was formulated as a simulation-based (or black-box) nonlinear optimization and

was solved by a generic solver such as fminsearch in MATLAB™. Although this approach is

generic, it has two drawbacks: (a) simulation-based nonlinear optimization is not scalable;

and (b) the hybrid system formulation is not scalable for a large number of discrete modes.

As a consequence, the approach is only applicable to small-scale systems with a few state

variables and a few discrete modes. Alur et al. (2012) overcame this scalability issue by

considering simple constant-rate systems and studied the complexity and decidability of

the scheduling problems. They also proposed polynomial-time scheduling algorithms for

this class of systems. Finally, in (Subramanian et al., 2012), deferrable electric loads such

as electric vehicles were abstracted similarly to computing tasks, thus real-time scheduling

algorithms, e.g., EDF, could be applied.

Although periodic scheduling is simple and scalable, the lack of feedback makes it unsuitable

for systems with significant disturbances, as we mentioned in the opening of this chapter. In

the next chapter, state feedback green scheduling strategies will be developed to deal with

the influence of constrained disturbances.
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Chapter 4

Feedback Green Scheduling

The periodic scheduling synthesis presented in Chapter 3 is simple and scalable for large-

scale systems, as shown in the examples therein. However, the lack of feedback from the

system restricts its applicability to Green Scheduling systems without, or with insignificant,

disturbances. The concept of feedback has been dominant in control theory and is studied in

virtually all control courses and textbooks. By using feedback information, the controller can

adjust its action to take into account unforeseen disturbances, therefore desired performance of

the closed-loop system can still be achieved regardless of the disturbances. Other advantages

of feedback control include the ability to stabilize unstable processes and the ability to handle

model uncertainties (Franklin et al., 1998; Dorf and Bishop, 2008).

In this chapter we will study state feedback scheduling strategies for the Green Scheduling

problem. Section 4.2 shows that the feedback scheduling strategy developed in Chapter 3

can be made robust to small disturbances. However, this robustness feature usually causes

fast switching of the control inputs. Therefore we will use state feedback together with

event-triggered and self-triggered techniques to reduce the switching rate of actuation while

preserving the system’s robustness to disturbances. In Section 4.3, another state feedback

scheduling approach based on attracting sets (cf. Section 2.5.2 on page 47) is developed.

Again, event-triggered and self-triggered techniques are utilized to decrease the frequency of

actuation switching. Finally, state feedback discrete-time Green Scheduling is investigated in

Section 4.4 by using backward reachability analysis.

4.1. Preliminaries

This section establishes important results about the bound on state variables of affine

dynamical systems under unknown but constrained disturbances. These results will be used
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throughout this chapter for deriving robust periodic schedules (Section 4.2) and self-triggered

feedback scheduling strategies (Sections 4.2 and 4.3).

Consider an affine dynamical system

ẋ(t) = Ax(t) +B0 +Wd(t) (4.1)

where, as usual, x ∈ X is the state vector and d ∈ Rq is the disturbance vector; matrices

A and W and vector B0 have appropriate dimensions. We assume that the disturbances d

is unknown but constrained in a known compact and convex set D ⊂ Rq. An admissible

disturbance signal d(·) must satisfy d(t) ∈ D for all t ≥ 0. The solution (or trajectory) of the

dynamics’ differential equation with initial condition x(0) = x0 and admissible disturbance

signal d(·) is denoted by x(t;x0, d(·)) : R+ → Rn. We employ the semicolon to distinguish

between the time variable t and the parameters x0 and d(·). When the initial state x0 and

the disturbance signal d(·) are clear from the context, we will omit them and denote the

trajectory succinctly as x(t). In the following result, a bound on x(t) is characterized.

Theorem 4.1 Let matrix M ∈ Rn×n and number λ 6= 0 be such that

M � 0, (4.2a)

ATM +MA+ 2λM � 0. (4.2b)

Define

α =
1

λ
sup

xTMx=1

sup
d∈D

xTM (B0 +Wd) =
1

λ
sup
d∈D
‖B0 +Wd‖M (4.3)

where ‖x‖M :=
√
xTMx denotes the M -norm of vector x. Then for all initial states x(0)

and all admissible disturbance signals,

‖x(t)‖M ≤ (‖x(0)‖M − α)e−λt + α, ∀t ≥ 0. (4.4)

Proof See Appendix A.2.1 on page 189. �
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We remark that the first two conditions (4.2a) and (4.2b) of Theorem 4.1 constitute a GEVP1

and are similar to those in Lemma 2.6 on page 53. However, here λ is not required to be

positive. Hence Theorem 4.1 holds for all affine systems, not just those with Hurwitz state

matrices A.

While Theorem 4.1 bounds the trajectory with respect to the origin (i.e., ‖x(t)‖M ), we can

bound it with respect to the initial state x(0) (i.e., ‖x(t)− x(0)‖M ) by the following result.

Corollary 4.1 Let M and λ be as in Theorem 4.1, and let the initial state x(0) be given.

Define α = 1
λ supd∈D

∥∥Ax(0) +B0 +Wd
∥∥
M
. Then for all admissible disturbance signals,

‖x(t)− x(0)‖M ≤ α(1− e−λt), ∀t ≥ 0. (4.5)

Proof Let z(t) = x(t)− x(0) and derive ż(t), then apply Theorem 4.1. �

For stable systems, i.e., A is Hurwitz, it is guaranteed that M and λ > 0 satisfying

Theorem 4.1 exist (Proposition 2.1). Then it is obvious that for all initial state x(0), the

bound b(t) := (‖x(0)‖M − α)e−λt + α converges to α > 0 as t → ∞. In particular, if

‖x(0)‖M < α then b(t) is increasing and converges asymptotically to α; if ‖x(0)‖M > α then

b(t) is decreasing and also converges asymptotically to α. The following Corollary is a direct

consequence of Theorem 4.1.

Corollary 4.2 Suppose that the system also has control inputs u ∈ Rm

ẋ(t) = Ax(t) +B0 +Bu(t) +Wd(t), (4.6)

and A is Hurwitz. Consider a similar system under the same control input signal u(·), but

without disturbances and with a possibly different affine vector B̃0

˙̃x(t) = Ax̃(t) + B̃0 +Bu(t). (4.7)

Let M and λ > 0 be as in Theorem 4.1, and let α = 1
λ supd∈D

∥∥(B0 − B̃0) +Wd
∥∥
M
. Then if

1See Section 2.5.3 on page 50.
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‖x(0)− x̃(0)‖M ≤ α, ‖x(t)− x̃(t)‖M ≤ α for all t ≥ 0, regardless of the disturbances. 2

Proof Let z(t) = x(t)− x̃(t) and derive ż(t), then apply Theorem 4.1. Note that ‖z(0)‖M ≤

α and α > 0. �

The above result bounds the trajectories of two similar affine systems, one with disturbances

(Equation (4.6)) and one without (Equation (4.7)). If they start α-close to each other then

they will remain α-close at all time, regardless of the disturbances.

For systems with outputs y(t) = Cx(t), all the above results still hold if the condition (4.2a)

is replaced by M � CTC and the obtained bounds are on ‖y(t)‖, ‖y(t)− y(0)‖, and

‖y(t)− ỹ(t)‖ respectively. We conclude this section with a remark on related results in the

literature.

Remark 4.1 (On reachable sets and other bounds) The reachable set Rt(x0) of sys-

tem (4.1) at time t ≥ 0 from x0 is defined as the set of all states x(t;x0, d(·)) reachable at

time t by the system, with initial condition x(0) = x0 and with all admissible input signals:

Rt(x0) = {z ∈ Rn : ∃d(·) ∈ F([0, t],D), x(t;x0, d(·)) = z}.

Corollary 4.1 gives us a simple over-approximation of Rt(x0) as

Rt(x0) ⊆ {z ∈ Rn : ‖z − x0‖M ≤ α(1− e−λt)}

where α = 1
λ supd∈D

∥∥Ax0 + B0 + Wd
∥∥
M
. In many publications of the vast literature on

computing reachable sets for dynamical systems (see, for example, Chutinan and Krogh,

2003; Asarin et al., 2003; Girard, 2005; Guernic and Girard, 2010), the bounds on state

trajectories were derived from the Fundamental Inequality Theorem from the theory of

dynamical systems (Hurewicz, 2002; Hubbard and West, 1995). For the affine system (4.1),

this bound is

‖x(t)− x0‖M ≤
µ

‖A‖M

(
e‖A‖M t − 1

)
, ∀t ≥ 0 (4.8)
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where µ = supd∈D ‖Ax0 +B0 +Wd‖M = αλ and ‖A‖M is the induced M -norm of matrix

A. Although this bound and the bound in Equation (4.5) look similar, their difference in

the exponentials is notable. In particular for stable systems (i.e., A is Hurwitz), while the

bound (4.8) always increases unboundedly, the bound (4.5) converges asymptotically to a

finite constant α > 0 as t→∞, hence it is strictly tighter than the first. See Appendix A.2.2

on page 190 for a formal proof of this result. In that Appendix, we also show that when A is

not Hurwitz, the bound (4.5) is as tight as the bound (4.8).

We also remark that the bound obtained in Theorem 4.1 shares similarities with those

presented in (Julius and Pappas, 2009, Propositions 1 & 2) for nonlinear dynamical systems.

In particular, for affine systems, the authors also showed conditions similar to Equations (4.2a)

and (4.2b). However, the dynamical systems considered in that work were not subject to

disturbances. 2

4.2. Feedback Scheduling Based on Periodic Scheduling

This section extends the periodic scheduling synthesis presented in Chapter 3 to affine systems

with constrained disturbances:

ẋ(t) = Ax(t) + (B0 +Bu(t)) +Wd(t) (4.9)

in which variables x, u, d and parameters A, B0, B and W have the usual interpretations.

Again, we assume that the matrix A is Hurwitz, the safe set Safe is compact and convex,

and the disturbances d are constrained in a known compact and convex set D ⊂ Rq. We

consider the n-choose-k case where k is the peak constraint imposed on the binary controls

u.

In this section we aim to develop feedback scheduling strategies based on periodic scheduling

that can take account of the disturbances. To this end, in Section 4.2.1, we first improve the

periodic scheduling synthesis so that the obtained schedules are robust to the disturbances.
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However, robust periodic schedules often result in frequent switching, which is undesirable in

practice. Event-triggered and self-triggered feedback scheduling strategies are presented in

Sections 4.2.2 and 4.2.3 to improve upon robust periodic scheduling so that the switching

frequency can be reduced.

4.2.1. Robust Periodic Scheduling

Consider a system similar to system (4.9) but without disturbances:

˙̃x(t) = Ax̃(t) + B̃0 +Bu(t), x̃(0) = x(0) (4.10)

in which the vector B̃0 can be different from B0. This system is called a nominal system

of the system (4.9). Note that the control signal u(·) is the same for both system. It then

follows from Corollary 4.2 that, since x(0)− x̃(0) = 0, we can bound the distance between

x(t) and x̃(t) at all time t ≥ 0 by ‖x(t)− x̃(t)‖M ≤ α. The matrix M and the constant

λ > 0 can be found by solving the GEVP in Equations (4.2a) and (4.2b), while the radius α

is calculated by solving the quadratic program (QP)

α =
1

λ
max
d∈D

∥∥(B0 − B̃0) +Wd
∥∥
M
. (4.11)

We say that a trajectory x(·) is robustly safe with robustness radius α ≥ 0 if after some finite

time, x(t) not only is inside Safe but also keeps a distance of at least α from the exterior of

Safe, in the metric induced by the M -norm. Mathematically, x(·) satisfies

∃τ ≥ 0 : ∀t ≥ τ,BM (x(t), α) ⊆ Safe

where BM (x, α) := {z : ‖z − x‖M ≤ α} denotes the ball with center x and radius α. It is

obvious that if the control signal u(·) is such that the trajectory x̃(·) is robustly safe with

radius α then the trajectory x(·) is safe because it is always α-close to x̃(·). This is illustrated

in Figure 4.1 on the following page, in which the dash-dotted line represents the trajectory
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x̃(t)

x(t)

Safe

CM (Safe, α)

x(0)

BM (x̃(t), α)

α

Figure 4.1: Illustration of robust periodic scheduling and the bound between trajectories of the nominal
system and the actual system. The gray-filled rectangle is CM (Safe, α) – the α-contraction of Safe (the
outer rectangle). A tube of radius α (dashed lines) around the nominal trajectory x̃(·) (dash-dotted line)
encloses all possible trajectories of the actual system (solid line). If x̃(t) ∈ CM (Safe, α) at any t then
x(t) ∈ Safe. Hence if x̃(·) is safe with respect to CM (Safe, α) then x(·) is safe with respect to Safe.

x̃(·) of the nominal system and the solid line represents the trajectory x(·) of the actual

system. A tube of radius α (dashed lines) around the nominal trajectory encloses all possible

trajectories of the actual system, i.e., at any time t, x(t) always stays within distance α from

x̃(t). Therefore, if x̃(t) is at least α away from the exterior of Safe, x(t) must be inside Safe.

To characterize schedules u(·) that render x̃(·) robustly safe, we need the notion of set

contraction by a given radius.

Definition 4.1 (α-Contraction of a Set) Given a radius α ≥ 0 and a subset S of a set

X which is equipped with a metric d, the α-contraction of S is defined as Cd(S, α) := {x ∈

X : Bd(x, α) ⊆ S}. 2

The α-contraction of a set S can be computed as the Pontryagin difference2 of S and the ball

Bd(0, α): Cd(S, α) = S 	Bd(0, α). Employing this definition, a trajectory x̃(·) is robustly

safe with respect to Safe and with radius α if and only if it is safe with respect to the set

CM (Safe, α). In Figure 4.1, CM (Safe, α) is depicted by the smaller gray-filled rectangle

inside Safe. Suppose that CM (Safe, α) is not empty and system (4.10) is schedulable with

respect to the safe set CM (Safe, α) and under the peak constraint k. Then a safe schedule

u(·) for system (4.10) is also safe for system (4.9) regardless of the disturbances, i.e., the

2See Page 55 for the definition of the Pontryagin difference of two sets.
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schedule is robustly safe for system (4.9). In particular, the synthesis method presented in

Section 3.3 can be used to derive a robustly safe periodic schedule u(·).

Choosing the Affine Vector

In the above development, we have not mentioned why the vector B̃0 of system (4.10) can

be different from B0 and its role in the synthesis. From Equation (4.11), the robustness

radius α depends on B̃0. Intuitively, the smaller α is the better. Thus, it is desirable to

choose B̃0 so as to minimize α. We observe that for any B̃0, αλ is the maximal distance

from all points in the set WD to the point (B̃0 − B0). Therefore, to minimize α, we can

select B̃0 = wc +B0 where wc is the center of the smallest ball BM (wc, r) that contains the

set WD. Usually D is symmetric about a point dc, in which case wc = Wdc. For example, if

d := {d ∈ Rq : ‖d‖ ≤ β} for some β > 0 then dc = 0 and hence B̃0 = B0.

In addition to minimizing α, we must choose B̃0 so that the system (4.10) is schedulable

with respect to CM (Safe, α) and the given peak constraint k. That is the schedulability

condition in Theorem 2.6 on page 39 must be satisfied. If B̃0 = wc +B0 does not satisfy this

condition, we can find a different B̃0 by solving the following optimization:

minimize
B̃0,α,η

α

subject to η ∈ [0, 1]m,

m∑
i=1

ηi ≤ k

−A−1
(
B̃0 +Bη

)
∈ CM (Safe, α)

α =
1

λ
max
d∈D

∥∥(B0 − B̃0) +Wd
∥∥
M

The objective is to minimize α while ensuring that the system (4.10) is schedulable. Solving

this optimization is difficult because of the set contraction in the second-to-last constraint.

Furthermore, it is a bilevel optimization problem due to the last constraint. In the following,

an iterative algorithm is proposed to search for B̃0.
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The basic idea of the algorithm is to divide the optimization problem into two sub-problems:

one is to choose B̃0 and calculate α, the other is to solve for the schedulability condition.

Specifically, the following steps are performed:

1. Initially select B̃0 = wc +B0 and calculate α.

2. Compute CM (Safe, α). If it is empty then report “No solution” and abort. If

−A−1
(
B̃0 +Bη

)
∈ CM (Safe, α) then return B̃0 and terminate.

3. Find a new B̃′0 that is closest to B̃0 while satisfying the schedulability condition with

respect to CM (Safe, α); that is to solve the optimization

minimize
B̃′0,η

∥∥∥B̃′0 − B̃0

∥∥∥
M

subject to η ∈ [0, 1]m,
m∑
i=1

ηi ≤ k

−A−1
(
B̃′0 +Bη

)
∈ CM (Safe, α)

4. Calculate the robustness radius α′ corresponding to B̃′0. If α′ ≤ α then return B̃′0 and

terminate3.

5. If a given maximal number of iterations has been reached then terminate; otherwise,

set B̃0 to B̃′0 and α to α′, then repeat from step 2.

The Robust Periodic Scheduling Synthesis Algorithm

Putting everything together, the robust periodic scheduling synthesis algorithm consists of

two steps:

1. Compute B̃0, α and CM (Safe, α). If CM (Safe, α) = ∅ then terminate.

2. Call Algorithm 3.4 to construct a periodic schedule u(·) for system (4.10) with the

3Note that if α′ ≤ α then CM (Safe, α) ⊆ CM (Safe, α′), hence −A−1
(
B̃′0 +Bη

)
∈ CM (Safe, α′).
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contracted safe set CM (Safe, α).

The obtained schedule u(·) will be robustly safe for the original system (4.9).

4.2.2. Event-triggered Feedback Scheduling

As we will see later in the illustrative example in Section 4.2.4, robust periodic scheduling

usually induces frequent switching of the control inputs ui. This is because in order for

the system to be robustly safe, the trajectory of the nominal system (4.10) must be kept

within a small subset of the safe set Safe which is α-away from the exterior of Safe. The

distance α is therefore called the robustness radius. We showed in the previous subsection

that α is not any value but depends on the dynamics of the system and the constraint of

the disturbances (Equation (4.11)). Essentially, α represents the worst-case bound of the

error between the trajectories of the original system (4.9) and the nominal system (4.10).

This worst-case scenario means that normally the distance between the two trajectories at

any time t is less than α, as illustrated in Figure 4.1 on page 89. This observation will be

exploited to reduce the switching frequency of robust periodic scheduling.

Consider any time t′ ≥ 0 at which the robust periodic schedule switches from control vector

u(−) ∈ U to control vector u(+) ∈ U . At time t′ we have ‖x(t′)− x̃(t′)‖M ≤ α. As discussed

above, normally the distance between the trajectories is less than α. Also, we have shown

in Section 4.2.1 that as long as x(t) is within the distance of α from x̃(t), the control input

derived for the nominal system will be safe for the original system. It follows that, instead

of switching to control vector u(+) immediately at time t′ when ‖x(t′)− x̃(t′)‖M < α, we

can delay the switching until the first time that ‖x(t)− x̃(t′)‖M = α, for t ≥ t′. In other

words, we “freeze” the time and evolution of the nominal system at t′ and x̃(t′), and let the

actual system continue to evolve with input u(−) until x(t) is about to leave the robustness

ball BM (x̃(t′), α); at the time we “unfreeze” the nominal system and switch to input u(+).

Since the new scheduling algorithm requires monitoring the state of the system, i.e., state

feedback, to detect the event ‖x(t)− x̃(t′)‖M = α, we will call it an event-triggered feedback
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x̃(t′)

x(t)

BM (x̃(t), α)

x(t′)

with u(−)

(a) At time t′, the nominal robust peri-
odic schedule switches from u(−) ∈ U
to u(+) ∈ U . The nominal system
(x̃(·)) is “frozen” at time t′ while the
original system (x(·)) continues.

x̃(t′) ≡ x̃(t′′)

x(t′′)

BM (x̃(t), α)

x(t′)

with u(−)

with u(+)

(b) When x(t) hits the boundary of BM (x̃(t′), α) (gray-filled)
at time t′′ ≥ t′, the nominal system is resumed and the control
input for both systems is switched to u(+).

Figure 4.2: Event-triggered feedback scheduling based on robust periodic scheduling. The trajectory x̃(·)
of the nominal system is drawn in dash-dotted lines, while the trajectory x(·) of the original system is
drawn in solid lines.

scheduling algorithm. Figures 4.2a and 4.2b on the current page illustrate the new scheduling

algorithm. In Figure 4.2a, both trajectories x̃(·) (dash-dotted line) and x(·) (solid line) evolve

with control vector u(−). However, while x̃(·) is “frozen” at time instant t′, x(·) continues for

t ≥ t′ as long as x(t) is inside BM (x̃(t′), α). In Figure 4.2b, when x(t) hits the boundary of

the robustness ball at time instant t′′ ≥ t′, the evolution of the nominal system is resumed at

state x̃(t′′) ≡ x̃(t′) and the control input (for both systems) is switched to u(+). It is obvious

that the nominal trajectory x̃(·) does not change in shape but only in time. That is if we

remove all the time intervals during which the nominal system is “frozen” we will recover

the original nominal trajectory. Therefore x̃(·) is still robustly safe with robustness radius α.

Because x(t) is always maintained within distance α from x̃(t), x(·) must be safe.

Let us formulate mathematically the resulted schedule. Any nominal δ-periodic schedule

ũ(·) of the form in Equation (3.1) can be represented by an infinite sequence of pairs

(u(0), τ0), (u(1), τ1), . . . that satisfy the following conditions:

• For all i = 0, 1, . . . , u(i) is a valid control vector in U and τi > 0 is the time duration

that u(i) is applied;
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• For all i = 0, 1, . . . , u(i) 6= u(i+1);

• There exists s > 1 such that u(i) = u(i+s) and τi = τi+s for all i = 0, 1, . . . , and∑s−1
i=0 τi = δ.

At any time t ≥ 0, ũ(t) is determined by

ũ(t) =


u(0) if 0 ≤ t < τ0

u(i) if
∑i−1

j=0 τj ≤ t <
∑i

j=0 τj , i ≥ 1.

With the event-triggered feedback scheduling strategy, the resulted schedule u(·) goes through

the same sequence of control vectors as the nominal periodic schedule ũ(·) but with extended

time durations. In particular, it is represented by a sequence (u(0), τ ′0), (u(1), τ ′1), . . . with

τ ′i ≥ τi for all i = 0, 1, . . . Note that u(·) is no longer periodic in time as ũ(·) but is still

periodic in the sequence of control vectors (i.e., u(i) = u(i+s) for all i).

The flowcharts in Figure 4.3 on page 96 compare the algorithms for periodic scheduling and

event-triggered feedback scheduling based on robust periodic scheduling. On the far left,

the basic periodic scheduling algorithm has a main loop which simply applies each control

vector u(i) for a fixed duration τi in the correct sequence. In the middle, the event-triggered

scheduling algorithm adds two new steps (gray-filled blocks) to the basic algorithm:

• The first block calculates the state of the nominal system after the delay τi, based on

Equation (4.10);

• The second block monitors the state of the actual system and detects the event when

‖x(t)− x̃(t′)‖M = α.

We note that there is a possibility that the event-triggered scheduling algorithm will result

in an unsafe schedule u(·). Suppose at time t′, x̃(t′) 6∈ CM (Safe, α) and the nominal system

is “frozen.” Also, the disturbances on the system are such that x(t) never reaches the

boundary of the robustness ball around x̃(t′), hence the event ‖x(t)− x̃(t′)‖M = α never
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Algorithm 4.1 Event-triggered Feedback Scheduling Based on Robust Periodic Scheduling

Input: the sequence (u(0), τ0), (u(1), τ1), . . . of the nominal periodic schedule, the nominal
dynamics (4.10), M , λ, maximal waiting time τmax

1: i← 0
2: x̃← x(0)
3: while true do . main loop repeats indefinitely
4: Apply u(i)

5: Delay for τi
6: x̃← eAτi x̃+

(
eAτi − I

)
A−1(B̃0 +Bu(i)) . update x̃

7: t′ ← t . mark the current time
8: repeat . monitor state and detect event
9: Measure (monitor) x(t)

10: until (‖x(t)− x̃‖M = α) ∨ ((x̃ 6∈ CM (Safe, α)) ∧ (t− t′ ≥ τmax))
11: i← i+ 1
12: end while

occurs. Consequently, the nominal system is stuck at time t′ and state x̃(t′) indefinitely and

therefore the system is not safe. This situation can be avoided by restricting the waiting

time for the event to a finite maximal value, denoted by τmax. A detailed algorithm of the

event-triggered scheduling strategy is listed in Algorithm 4.1 on the current page, in which

the symbol t denotes the current time when the corresponding statement is executed. An

illustrative example will be given in Section 4.2.4.

4.2.3. Self-triggered Feedback Scheduling

Although the proposed event-triggered feedback scheduling strategy is able to reduce the

switching frequency of the control inputs, it requires continuously monitoring the state of

the system to ascertain the time instant at which it switches to the next control vector. As a

consequence, it necessitates the use of dedicated hardware to track the system’s state. To

avoid this requirement we develop in this subsection a self-triggered scheduling strategy4

based on robust periodic scheduling.

We have shown that in event-triggered scheduling, after the nominal delay τi of the nominal

periodic schedule, we can delay switching the control input as long as x(t) is inside the

4In Section 4.5 we will discuss related work on self-triggered control.
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begin

i ← 0

apply u(i)

i ← i + 1 wait for τi

begin

i ← 0
x̃ ← x(0)

apply u(i)

wait for τi

i ← i + 1 update x̃

monitor x(t) until
‖x(t)− x̃‖M = α

begin

i ← 0
x̃ ← x(0)

apply u(i)

wait for τi

i ← i + 1 update x̃

measure x(t),
calculate delay τ ′

wait for τ ′

τ ′ ≥ τ ′min?no

yes

Figure 4.3: Flowcharts comparing the basic periodic scheduling algorithm (left), the event-triggered
feedback scheduling algorithm based on robust periodic scheduling (middle), and the self-triggered feedback
scheduling algorithm based on robust periodic scheduling (right).

robustness ball. The fundamental idea of self-triggering is to obtain a lower bound estimate

of this time delay, and only measure x(t) and decide whether to switch the control input after

that minimal time delay. Indeed, let us again use Figure 4.2 on page 93 to explain. Using

Theorem 4.1 on page 84, we can attain an upper bound of the distance ‖x(t)− x̃(t′)‖M as a

function of time t ≥ t′

∥∥x(t)− x̃(t′)
∥∥
M
≤ (
∥∥x(t′)− x̃(t′)

∥∥
M
− α′)e−λt + α′, ∀t ≥ t′

where

α′ =
1

λ
sup
d∈D

∥∥Ax̃(t′) +B0 +Bu(−) +Wd
∥∥
M
. (4.12)

Note that α′ depends on u(−) and the state x̃(t′) of the nominal system at time t′, and it

is not the same as the robustness radius α of the nominal robust periodic schedule. This
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bound allows us to determine a time interval [t′, t′ + τ ′] during which x(t) is guaranteed to

be in the robustness ball, where τ ′ ≥ 0 is calculated by

τ ′ =


1
λ(log(α′ − ‖x(t′)− x̃(t′)‖M )− log(α′ − α)) if α < α′

∞ otherwise
(4.13)

Similar to event-triggered scheduling, if x̃(t′) 6∈ CM (Safe, α) and the delay τ ′ exceeds the

maximal delay time τmax, we only delay for τmax then switch to the next control vector. On

the other hand, for practical purposes, if it is shorter than a predefined minimal time delay

τ ′min > 0 then we switch the control input immediately. Otherwise, we delay for τ ′, after

which a new time delay is computed by replacing x(t′) with x(t′ + τ ′) in Equation (4.13).

The self-triggered scheduling algorithm is detailed in Algorithm 4.2 on the following page,

where the symbol t denotes the current time when the corresponding statement is executed.

The flowchart on the far right in Figure 4.3 describes a simplified version of the algorithm

with some technical details omitted. It is similar to the event-triggered algorithm in the

middle flowchart except the event-triggering mechanism (middle flowchart, bottom block)

being replaced by the self-triggering mechanism (right flowchart, gray-filled blocks).

4.2.4. An Illustrative Example

Consider the room-heater running example with 6 rooms/heaters and with disturbances

(cf. Section 1.2.1 on page 5). The ambient air temperature Ta, which corresponds to the

disturbance variable da, varies between Ta,min = 5 ◦C and Ta,max = 6 ◦C. For each room

i = 1, . . . , 6, the internal heat gain Qg,i (corresponding to disturbance variable dg,i) can take

any value in [0, 0.05] (kW). Therefore the disturbance set is

D =

d ∈ R7 :


0
0
0
0
0
0
5

 � d �


0.05
0.05
0.05
0.05
0.05
0.05

6


 .

The desired temperature bounds are the same for all rooms: li = 20 ◦C and hi = 24 ◦C,

∀i = 1, . . . , 6. Solving the GEVP in Equations (4.2a) and (4.2b) yields λ = 8.9126× 10−5
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Algorithm 4.2 Self-triggered Feedback Scheduling Based on Robust Periodic Scheduling

Input: the sequence (u(0), τ0), (u(1), τ1), . . . of the nominal periodic schedule, the nominal
dynamics (4.10), M , λ, maximal waiting time τmax, minimal waiting time τ ′min

1: i← 0
2: x̃← x(0)
3: while true do . main loop repeats indefinitely
4: Apply u(i)

5: Delay for τi
6: x̃← eAτi x̃+

(
eAτi − I

)
A−1(B̃0 +Bu(i)) . update x̃

7: α′ (Equation (4.12))
8: t′ ← t . mark the current time
9: repeat . self-triggered switching

10: Measure x(t)
11: Calculate τ ′ (Equation (4.13))
12: switch← (τ ′ < τ ′min) ∨ ((x̃ 6∈ CM (Safe, α)) ∧ (t′ + τmax − t < τ ′min))
13: if not switch then
14: if x̃ ∈ CM (Safe, α) then
15: Delay for τ ′

16: else
17: Delay for min(τ ′, t′ + τmax − t)
18: end if
19: end if
20: until switch
21: i← i+ 1
22: end while

and

M =


1.206 0.1404 0.007843 0.009916 −0.00688 0.04046
0.1404 1.096 0.005356 0.006772 −0.004699 0.02763

0.007843 0.005356 1 0.0003783 −0.0002625 0.001544
0.009916 0.006772 0.0003783 1 −0.0003319 0.001952
−0.00688 −0.004699 −0.0002625 −0.0003319 1 −0.001354
0.04046 0.02763 0.001544 0.001952 −0.001354 1.008

 .

We first synthesize a robust periodic schedule for the heaters, following the procedure in

Section 4.2.1 on page 91. To find the affine vector B̃0 for the nominal system (4.10), we observe

that D is symmetric about dc = [0.025, . . . , 0.025, 5.5]T . Thus, we choose B̃0 = wc +B0 =

where wc = Wdc, i.e.,

B̃0 = 10−4 ×

 5.0348
4.9877
5.2917
5.1797
5.0746
4.5676

 .

The robustness radius α is calculated by solving the QP in Equation (4.11) on page 88:

98



0 2 4 6
18

20

22

24

Time (h)

T
1

(◦
C

)

(a) Temperature of room 1.

0 2 4 6
0

10

20

30

Time (h)

T
ot

al
D

em
an

d
(k

W
)

(b) Total energy demand of all heaters is capped at
27 kW.

Figure 4.4: Simulation results of the robust periodic schedule for the room-heater example in Section 4.2.4

α = 1.6184. Then, the α-contraction of Safe is obtained by computing the Pontryagin

difference

CM (Safe, α) = Safe	BM (0, α) =

x ∈ R6 :

 21.4860
21.5581
21.6182
21.6181
21.6182
21.6135

 � x �
 22.5140

22.4419
22.3818
22.3819
22.3818
22.3865

 .

Because CM (Safe, α) is non-empty, we can now synthesize a robust periodic schedule

for the heaters by constructing a periodic schedule for the nominal system with the

contracted safe set. Using Algorithm 3.4 on page 77, we obtain the utilization vector

η = [0.5401, 0.5584, 0.5321, 0.5194, 0.4936, 0.4919]T . Since
∑6

i=1 ηi = 3.1355, we choose a

peak constraint k = 4. The simple subinterval sequencing method in Algorithm 3.2 on page 69

is used to compute the initial delays of the heaters as r1 = 0, r2 = 0.5401, r3 = 0.0985,

r4 = 0.6306, r5 = 0.1500, r6 = 0.6436. A maximal time period δmax = 1012.5 s is found

by Algorithm 3.3 on page 77 with a tolerance of 30 s. Thus we can choose a time period

δ = 1005 s = 16.75min. A simulation of the room-heater system for 6 hours with the

constructed robust periodic schedule and with randomly generated disturbances was carried

out. In Figure 4.4a on the current page, the temperature trajectory of room 1 is plotted;

while in Figure 4.4b, the total energy demand of all heaters is shown.

Based on the robust periodic schedule, event- and self-triggered feedback scheduling strategies

are derived using Algorithm 4.1 and Algorithm 4.2 respectively. The temperature of room
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Figure 4.5: Simulation results of the event-triggered feedback scheduling strategy for the room-heater
example in Section 4.2.4
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Figure 4.6: Simulation results of the self-triggered feedback scheduling strategy for the room-heater
example in Section 4.2.4

1 and the total energy demand of all heaters for both cases are displayed in Figures 4.5

and 4.6 on this page respectively. For comparison, we also simulated the system with the

uncoordinated scheduling strategy (cf. Section 1.2.1 on page 5). Its results are plotted in

Figure 4.7. The energy demand curves for uncoordinated scheduling and for self-triggered

scheduling are compared in Figure 4.8.

It is clear that in all cases, the temperature of room 1 was driven to and maintained inside

the range 20 ◦C to 24 ◦C, although the uncoordinated scheduling strategy takes shorter time

to bring T1 to the desired range. As can be seen in the total energy demand plots, the

demand curve for uncoordinated scheduling fluctuates between high peaks (39 kW) and low
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Figure 4.7: Simulation results of the uncoordinated scheduling strategy for the room-heater example in
Section 4.2.4. The demand curve fluctuates from 0 kW to 39 kW and incurs a high peak demand.
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Figure 4.8: Comparison of the energy demand curves of uncoordinated scheduling and of self-triggered
scheduling for the room-heater example in Section 4.2.4: the curve for uncoordinated scheduling (dashed
line) fluctuates between 0 kW and 39 kW, while that for self-triggered scheduling (solid line) only varies
from 19 kW to 27 kW.

valleys (0 kW), while those for the green scheduling strategies are more flat and only vary

from 19 kW to 27 kW. This observation is confirmed in Table 4.1 on the following page,

where the peak demand and total energy consumption for each scheduling strategy are

listed. All green scheduling strategies reduce the peak demand by 30.77% compared to the

uncoordinated strategy (from 39 kW down to 27 kW). There are also decreases in the total

energy consumption, between 12.78% and 15.17%, since the green schedulers tend to operate

at lower mean temperatures than the uncoordinated scheduler.

Although the green scheduling strategies lowered the peak demand as well as the total energy
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Table 4.1: Peak demands and total energy consumption for the example in Section 4.2.4. The percentage
numbers in parentheses are reductions in peak demands and total energy consumption compared to the
uncoordinated scheduling strategy.

Peak power demand (kW) Total energy consumption (kWh)

Uncoordinated 39 140.2
Robust 27 (−30.77%) 122.3 (−12.78%)
Event-triggered 27 (−30.77%) 118.9 (−15.17%)
Self-triggered 27 (−30.77%) 121.3 (−13.45%)

Table 4.2: Switching frequency results for the example in Section 4.2.4.

Total No. Interval between switching of u1 (min)

of switching Max Min Average

Uncoordinated 20 122.00 98.01 106.16
Robust 127 16.75 16.75 16.75
Event-triggered 92 46.23 19.65 22.99
Self-triggered 95 40.28 19.43 22.65

consumption, they caused frequent switching of the heaters as it is obvious from Figures 4.4a

to 4.7a. The total numbers of switching (from off state to on state) of all six heaters for

the four scheduling strategies are reported in the second column of Table 4.2 on the current

page. The last three columns of this table list the maximal, minimal and averaged time

intervals between consecutive switching of heater 1 (i.e., u1) for the corresponding cases.

Evidently, the event-triggered and self-triggered scheduling strategies improved upon the

basic robust periodic schedule as they reduced the total number of switching (from 127 to

92 and 95 respectively) and extended the time intervals between consecutive switching of

the heaters. However, compared to the uncoordinated schedule, all the green scheduling

strategies resulted in significantly higher switching frequencies.

4.2.5. Discussion

Although periodic scheduling and its variants (e.g., robust periodic scheduling, event-triggered

and self-triggered feedback scheduling based on periodic scheduling) are scalable and simple

to implement, they have several drawbacks. As we have seen in the previous example,

they usually induce high switching frequencies of the control inputs. This drawback can
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be explained by the periodic nature and the worst-case robustness characteristics (i.e., the

robustness radius α) of these schedules as they must maintain the nominal trajectory inside

a small contracted safe set. Furthermore, these scheduling strategies can only handle small

disturbance sets because the robustness radius α increases, usually quickly, with the size of

D. For instance, if the ambient air temperature in the previous example could rise to 7 ◦C

instead of just 6 ◦C then α would exceed the size of Safe, resulting in an empty CM (Safe, α),

hence a robust periodic schedule would not be available. In the next section, we will take a

different approach and develop green scheduling strategies based on attracting sets, which

can overcome these issues.

4.3. Feedback Scheduling Based on Attracting Sets

This section presents feedback scheduling strategies based on the notion of attracting sets of

control systems. As in Section 4.2, we consider an affine system with constrained disturbances:

ẋ(t) = Ax(t) + (B0 +Bu(t)) +Wd(t). (4.14)

Variables x, u, d and parameters A, B0, B and W have the usual interpretations. We also

assume that the state matrix A is Hurwitz, the safe set Safe is compact and convex, and

the disturbances d are constrained in a known compact and convex set D ⊂ Rq. However,

we will not restrict the control inputs u to the n-choose-k case, so the valid control set U can

be any subset of the finite, discrete set {0, 1}m.

4.3.1. Robust Attracting Sets of Feedback Control Systems

In Definition 2.5 on page 48, we defined a (finite-time) attracting set A of control system (4.14)

as a subset of the state space such that there exists an admissible feedback control law

u(t) = κ(x(t)) that, from any initial state x(0) and for any admissible disturbance signal d(·),

can drive x(t) to A in finite time and maintains it inside A indefinitely. Our aim is to design

the feedback law κ(·). To this end, consider Theorem 2.9 on page 48 which characterizes
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the attracting sets by sublevel sets of a robust control Lyapunov function V : Rn → R+. In

Section 2.5.3 on page 50, we showed that for affine systems (4.14), V could have a quadratic

form V (x) := (x− xc)TM(x− xc) where xc ∈ X and M � 0. The following result allows us

to determine an attracting set of affine control system (4.14) and the associated feedback

control law. Its proof is given in Appendix A.2.3 on page 191.

Theorem 4.2 Consider the control system in Equation (4.14). Given any xc ∈ X . If there

exist M ∈ Rn×n, λ > 0 and α > 0 such that

M � 0, (4.15a)

ATM +MA � −2λM , (4.15b)

α >
1

λ
max

zTMz=1

(
min
u∈U

max
d∈D

zTM (Axc +B0 +Bu+Wd)

)
(4.15c)

then A := {x ∈ Rn : (x− xc)T M (x− xc) ≤ α2} is an attracting set with state feedback

control law κ(·) given by

κ(x) = arg min
u∈U

(x− xc)TMBu, ∀x ∈ X . (4.16)

Because A is Hurwitz, M , λ and α always exist, as verified in the following result.

Proposition 4.1 If the state matrix A is Hurwitz then there exist M ∈ Rn×n, λ > 0 and

α > 0 that satisfy the conditions in Theorem 4.2. 2

Proof See Appendix A.2.4 on page 192. �

Matrix M and number λ > 0 satisfying Equations (4.15a) and (4.15b) can be computed by

solving the GEVP

maximize
λ,M

λ (4.17)

subject to M � 0

ATM +MA � −2λM
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with scientific computation software such as MATLAB™. To calculate α, we need to solve

the optimization in Equation (4.15c). Obviously, this optimization is multilevel, non-convex

(due to the constraint zTMz = 1), bilinear (due to zTMBu and zTMWd) and combinatorial

(because U is finite), hence it is difficult. In the next subsection, we will discuss how it can

be relaxed and α can be computed more efficiently.

Computing α

First, observe that the optimization variables u and d in Equation (4.15c) are separable.

Furthermore, as shown in Section 2.5.3 on page 50, under the assumptions of the Green

Scheduling problem, we can equivalently replace U with its convex hull co(U). Therefore the

optimization can be rewritten as

max
zTMz=1

(
zTM (Axc +B0) + min

u∈co(U)
zTMBu+ max

d∈D
zTMWd

)
(4.18)

which is non-convex, bilevel and bilinear, hence still difficult. However, if xc is such that

for all d ∈ D, there exists u ∈ co(U) satisfying Axc +B0 +Bu+Wd = 0, or equivalently if

−WD ⊆ (Axc +B0) +B co(U), then we have (see also Lemma 2.6 on page 53)

zTM (Axc +B0) + min
u∈co(U)

zTMBu+ max
d∈D

zTMWd ≤ 0

for all z ∈ Rn. Therefore

max
zTMz=1

(
zTM (Axc +B0) + min

u∈co(U)
zTMBu+ max

d∈D
zTMWd

)
≤ 0

and any α > 0 will suffice the inequality (4.15c) without solving the optimization problem.

If −WD 6⊆ (Axc +B0) +B co(U) then we will have to solve Equation (4.18). Consider the

optimization

max
zTMz≤1

(
zTM (Axc +B0) + min

u∈co(U)
zTMBu+ max

d∈D
zTMWd

)
(4.19)
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which is similar to Equation (4.18) but the constraint zTMz = 1 is relaxed to zTMz ≤

1. Obviously the optimal value of Equation (4.18) does not exceed the optimal value

of Equation (4.19). Let (z?, u?, d?) be an optimal solution of Equation (4.19). Then

u? = arg minu∈co(U) z
?TMBu and d? = arg maxd∈D z

?TMWd. Let J? = z?TM (Axc +B0) +

z?TMBu? + z?TMWd? be the optimal value. Evidently J? ≥ 0 because with z = 0 the

value is 0. There are only two cases:

1. ‖z?‖M > 0: Define ẑ = z?

‖z?‖M
which satisfies the constraint ẑTMẑ = 1.

Since z? is scaled by the positive number 1/ ‖z?‖M to obtain ẑ, we have u? =

arg minu∈co(U) ẑ
TMBu and d? = arg maxd∈D ẑ

TMWd. We also have

ẑTM (Axc +B0) + ẑTMBu? + ẑTMWd? =
1

‖z?‖M
J? ≥ J?

where the inequality follows from ‖z?‖M ≤ 1 and J? ≥ 0. Therefore (ẑ, u?, d?) is

optimal for both optimizations (4.18) and (4.19). Hence their optimal values are equal.

2. ‖z?‖M = 0: in this case J? = 0 and the optimal value of Equation (4.18) is non-positive.

Since we are only interested in positive values of α, any α > 0 = J? will satisfy the

condition (4.15c).

It follows that, for the purpose of calculating α > 0, we can solve the relaxed problem (4.19).

Note that the relaxed constraint zTMz ≤ 1 is convex.

Let us fix the outer variable z of the bilevel problem (4.19) and consider the convex inner-

level optimization minu∈co(U) z
TMBu. We then obtain the Karush-Kuhn-Tucker (KKT)

optimality conditions (see Boyd and Vandenberghe, 2006, sec. 5.5.3) for this problem, which

are sufficient because the optimization is convex. Similarly, the KKT conditions are obtained

for the convex inner-level problem maxd∈D zTMWd. These conditions are then collected and

incorporated into the constraints of the outer-level problem. In addition, the optimal values

of the inner-level problems, in terms of their dual variables, are included in the objective

function of the outer-level problem. Eventually, we attain an optimization problem which is
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equivalent to Equation (4.19) but is no longer bilevel. As an example, suppose co(U) and D

are compact polytopes represented by {u ∈ Rm : Huu � Ku} and {d ∈ Rq : Hdd � Kd}

respectively. Then the final optimization problem is

maximize
z,u,d,νu,νd

zTM(Axc +B0)−KT
u νu +KT

d νd (4.20)

subject to νu � 0, νd � 0, zTMz ≤ 1

Huu � Ku

νTu (Huu−Ku) = 0

BTMz +HT
u νu = 0


KKT conditions of min

u∈co(U)
zTMBu

Hdd � Kd

νTd (Hdu−Kd) = 0

−W TMz +HT
d νd = 0


KKT conditions of max

d∈D
zTMWd

where νu and νd are the dual variables of u and d respectively. We remark that the final

optimization (4.20) is still difficult due to the bilinear constraints in the KKT conditions.

However, solving this problem is easier than the original problem in Equation (4.15c)

because it is no longer multilevel and combinatorial, and because the constraint zTMz = 1

has been relaxed to zTMz ≤ 1. This type of optimization problems is readily solved by

nonlinear programming solvers such as IPOPT (Wächter and Biegler, 2006) and fmincon

(of MATLAB™), or by global programming solvers such as BMIBNB in YALMIP (Löfberg,

2012).

In summary, α is computed as follows:

1. if −WD ⊆ (Axc +B0) +B co(U) then choose any α > 0;

2. otherwise, obtain the KKT conditions for inner-level problems minu∈co(U) z
TMBu and

maxd∈D zTMWd, then construct the final optimization problem (e.g., Equation (4.20))

and solve it with a nonlinear programming solver or a global programming solver.
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4.3.2. Basic Feedback Scheduling

Theorem 4.2 immediately gives us a feedback scheduling strategy for the system in Equa-

tion (4.14). Suppose that A = BM (xc, α) ⊆ Safe. Then by the definition of attracting

sets, the feedback control law in Equation (4.16) will drive the state to A in finite time and

maintain it inside A indefinitely. Because A is a subset of Safe, the system will be safe. Note

that we only need to re-compute the control inputs u when x is not inside the attracting

ball A. Once x is inside A, we can simply keep the current control vector u until x hits the

boundary of A. Therefore, the basic feedback scheduling strategy is given by

u(t) = κ(x(t)) =


arg minu∈U (x(t)− xc)TMBu if ‖x(t)− xc‖M ≥ α

u(t−) otherwise
(4.21)

in which u(t−) denotes the currently used control vector. The minimization in the feedback

law can be solved offline. Indeed, let the finite control input set be U = {u(1), . . . , u(N)}

where each u(i) ∈ {0, 1}q is a valid control vector. Then we partition the state space into

P1, . . . ,PN where each partition Pi ⊂ X is defined as

Pi := {x ∈ Rn : (x− xc)TMB(u(i) − u(j)) ≤ 0 ∀j 6= i}.

It is simple to verify that for each i = 1, . . . , N , if x ∈ Pi then u(i) is an optimal solution of

Equation (4.21). By pre-computing and storing the partitions P1, . . . ,PN , the feedback law

κ(x) can be calculated by checking the set membership of x.

Although the basic feedback scheduling strategy is straightforward, it has several limitations:

1. It requires continuous monitoring of the state.

2. It requires solving the minimization (4.21) in continuous time, which is impractical.

3. It usually results in a sliding mode control signal (Edwards and Spurgeon, 1998):
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when x is on a common surface between two partitions Pi and Pj , i 6= j, the control

signal will switch rapidly and repeatedly between u(i) and u(j), causing the state x to

slide along the common surface. Therefore, the switching frequency is very high, as

illustrated in the next example. This effect is often undesirable in practice.

In the next subsections, we will develop event- and self-triggered feedback scheduling strategies

to overcome these limitations of the basic strategy.

Example 4.1 Consider again the mass-spring-damper example in Section 1.2.2 on page 8.

The disturbance forces d1 and d2 have the maximal magnitude dmax = 0.1, i.e., |d1| ≤ 0.1

and |d2| ≤ 0.1, or D = [−0.1, 0.1] × [−0.1, 0.1]. The desired safe set of positions y1 and

y2 is Safe = [0.75, 0.85] × [1.15, 1.25], that is we want to maintain 0.75 ≤ y1 ≤ 0.85 and

1.15 ≤ y2 ≤ 1.25. Using the sufficient schedulability condition in Theorem 2.12 on page 57,

we verified that the mass-spring-damper system is schedulable with peak constraint k = 1.

In this example, we will apply the basic feedback scheduling strategy in Equation (4.21) to

safely control the masses.

Recall that the state vector is defined as x = [y1, v1, y2, v2] where v1 = ẏ1 and v2 = ẏ2 are

the velocities of the masses. Choose xc = [0.8, 0, 1.2, 0]T . Solving the GEVP (4.17) yields

λ = 0.3621 and

M =

[
1.2933 0.6137 0.0651 0.5326
0.6137 1.4109 0.1477 0.9040
0.0651 0.1477 1.3931 0.5938
0.5326 0.9040 0.5938 1.9657

]
.

We can verify that −WD ⊆ (Axc + B0) + B co(U), hence we do not need to solve the

optimization (4.15c) and can choose any α > 0. Let us select α such that BM (xc, α) is the

largest ball satisfying CBM (xc, α) ⊆ Safe. Using MATLAB™ α is computed to be 0.0424.

The basic feedback law is implemented and simulated in MATLAB™ for 10 s with randomly

generated disturbances and with initial state x(0) = [2
3 , 0,

4
3 , 0]T . The disturbance signals

d1(·) and d2(·) are plotted in Figure 4.9 on the next page. In Figure 4.10a on the following

page, the position trajectories y1(·) and y2(·) are depicted. The resulted control signal u1(·)

is plotted in Figure 4.10b, which shows a very fast switching frequency during the first 4.3 s.
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Figure 4.9: Disturbance signals for Example 4.1: both d1(·) (solid line) and d2(·) (dashed line) have
maximal magnitude dmax = 0.1.
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(b) The binary control signal u1(·).

Figure 4.10: Simulation results of Example 4.1 with the basic feedback scheduling strategy: the sliding
mode control effect is clearly visible during the first 4.3 s where u1 switches very fast.

This is explained by the sliding mode control effect as discussed above in limitation number

3 on page 108. Figure 4.11 on the following page illustrates the phase plot of the system,

projected to the output space (y1, y2). The gray-filled square is the safe set Safe and the

ellipsoid inside it is the attracting ball BM (xc, α). Clearly, the system is safe. 2

4.3.3. Event-triggered Feedback Scheduling

As illustrated in the previous example, the basic feedback scheduling strategy usually causes

very fast switching frequencies due to the sliding mode control effect. Similar to robust

periodic scheduling (which also usually induces frequent switching), an event-triggered

scheduling algorithm can be used to alleviate this problem. Furthermore, it also improves

upon the basic strategy as it does not require solving the control law in Equation (4.21) in

continuous time.
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Figure 4.11: Phase plot for Example 4.1: projected to the output space (y1, y2), the trajectory (solid line)
slides to the attracting ball (ellipsoid drawn in dashed line) inside the safe set Safe (gray-filled square).

Consider Theorem 4.2 on page 104 – the main theorem behind the basic scheduling strategy.

Essentially, the conditions in Equations (4.15a) to (4.15c) ensure that whenever x(t) is

outside the attracting set A, there exists a control such that the function V (x(t)) =

(x(t)−xc)TM(x(t)−xc) always decays, along the flow of the system, with a rate at least −γ,

where γ > 0 is the minimal decaying rate. The feedback law in Equation (4.21) simply finds

a control that always reduces V (x(t)) at the fastest rate possible. However, it is certainly

sufficient to use a control that reduces V (x(t)) at a rate not slower than γ. That is, as long

as the currently used control, denoted u?, satisfies

sup
d∈D

V̇ (x(t)) = max
d∈D

2(x(t)− xc)TM(Ax(t) +B0 +Bu? +Wd) ≤ −γ (4.22)

then we do not need to compute and switch to a new control. This observation leads

to an event-triggered scheme where we only switch the control when it does not satisfy

inequality (4.22) at the current state. Let t be the current time and x? = x(t) be the current

state. Instead of solving the optimization (4.22) in continuous time, we find a ball BM (x?, r)

with radius r > 0 around the current state so that for all x ∈ BM (x?, r),

max
d∈D

2(x− xc)TM(Ax+B0 +Bu? +Wd) ≤ −γ. (4.23)
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x? = x(t)

BM (x?, r)

x(t′)

with u?

BM (x(t′), r′)with u′

Figure 4.12: Illustration of the event-triggered scheduling strategy based on attracting sets. The solid lines
represent the system’s trajectory. At time t, the ball BM (x?, r) is constructed and the current control u?

is used until time t′ ≥ t when the event ‖x(t′)− x?‖M = r is detected. At this time, a new control u′ is
determined and a new ball BM (x(t′), r′) is constructed. The event-triggered scheme is then repeated.

Once r is determined, we can keep the current control u(t′) = u? for t′ ≥ t as long as

x(t′) ∈ BM (x?, r) and only compute a new control when the event ‖x(t′)− x?‖M = r is

detected. This event-triggered scheme is illustrated in Figure 4.12 on this page. The only

remaining step is to calculate the radius r. In the rest of this subsection, we will present two

methods to estimate r.

First Method to Estimate Radius r

The inequality (4.23) is equivalent to

2(x− xc)TMA(x− xc) + max
d∈D

2(x− xc)TM(Axc +B0 +Bu? +Wd) ≤ −γ,∀x ∈ BM (x?, r).

It follows from Equation (4.15b) that the inequality, for all x ∈ BM (x?, r),

−2λ(x− xc)TM(x− xc) + 2 max
d∈D

(x− xc)TM(Axc +B0 +Bu? +Wd) ≤ −γ (4.24)

implies the inequality (4.23). Recall that x? is the current state as well as the center of the ball

BM (x?, r) we are looking for. Let β := ‖x? − xc‖M be the distance from x? to xc. Because

our goal is to drive the state towards an attracting ball centered at xc, we are only interested

in r ≤ β. Since ‖x− x?‖M ≤ r, we have (x− xc)TM(x− xc) = ‖x− xc‖2M ≥ (β − r)2.
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By writing x− xc = (x− x?)− (x? − xc) in the maximization in Equation (4.24), we obtain

max
d∈D

(x− xc)TM(Axc +B0 +Bu? +Wd) ≤ max
d∈D

(x− x?)TM(Axc +B0 +Bu? +Wd)

+ max
d∈D

(x? − xc)TM(Axc +B0 +Bu? +Wd).

Denote θ = maxd∈D(x?− xc)TM(Axc +B0 +Bu? +Wd) which can be computed by solving

a linear program (LP). We then have

− 2λ(x− xc)TM(x− xc) + 2 max
d∈D

(x− xc)TM(Axc +B0 +Bu? +Wd)

≤− 2λ(β − r)2 + 2θ + 2 max
d∈D

(x− x?)TM(Axc +B0 +Bu? +Wd).

It follows that if r satisfies

max
d∈D

(x− x?)TM(Axc +B0 +Bu? +Wd) ≤ λ(β − r)2 − θ − γ

2
(4.25)

then the inequality (4.24) is justified. Define

ξ =
1

λ
max
‖z‖M=1

max
d∈D

zTM(Axc +B0 +Bu? +Wd) =
1

λ
max
d∈D
‖Axc +B0 +Bu? +Wd‖M

which can be calculated by solving a QP. We then have that for all x ∈ Rn

max
d∈D

(x− x?)TM(Axc +B0 +Bu? +Wd) ≤ λξ ‖x− x?‖M ≤ λξr.

Using the obtained inequality in Equation (4.25), we deduce that the inequality (4.24) is

implied by the inequality λξr ≤ λ(β−r)2−θ− γ
2 , or equivalently r

2−(2β+ξ)r+(β2− θ
λ−

γ
2λ) ≥

0. By calculating the roots of the quadratic equation in r, it is straightforward to verify that

r =
1

2

(
2β + ξ −

√
ξ2 + 4βξ +

4θ

λ
+

2γ

λ

)
= β +

1

2

(
ξ −

√
ξ2 + 4βξ +

4θ

λ
+

2γ

λ

)
(4.26)
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satisfies the previous inequality, hence it satisfies the main inequality (4.23). Note that

obviously r ≤ β.

Second Method to Estimate Radius r

The left hand side of Equation (4.23) can be written as

max
d∈D

2(x− xc)TM(Ax+B0 +Bu? +Wd)

=2 max
d∈D

((x− x?) + (x? − xc))TM(A(x− x?) +Ax? +B0 +Bu? +Wd)

≤− 2λ(x− x?)TM(x− x?) + 2(x? − xc)TMA(x− x?) (4.27)

+ 2 max
d∈D

(x? − xc)TM(Ax? +B0 +Bu? +Wd)

+ 2 max
d∈D

(x− x?)TM(Ax? +B0 +Bu? +Wd).

We have that λ(x− x?)TM(x− x?) ≥ 0 and

(x? − xc)TMA(x− x?) ≤
∥∥(R−1)TATM(x? − xc)

∥∥
2
‖R(x− x?)‖2

≤ r
∥∥(R−1)TATM(x? − xc)

∥∥
2

in which non-singular matrix R satisfying RTR = M is determined by the Cholesky decom-

position of M (see Strang, 2006). Define ζ = maxd∈D(x? − xc)TM(Ax? +B0 +Bu? +Wd)

and

χ = max
‖z‖M=1

max
d∈D

zTM(Ax? +B0 +Bu? +Wd) = max
d∈D
‖Ax? +B0 +Bu? +Wd‖M (4.28)

which can be computed by solving a LP and a QP respectively. We can bound

max
d∈D

(x− x?)TM(Ax? +B0 +Bu? +Wd) ≤ χ ‖x− x?‖M ≤ χr.
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Using these inequalities in Equation (4.27), it follows that if r is such that

r
∥∥(R−1)TATM(x? − xc)

∥∥
2

+ χr + ζ ≤ −γ
2

then the inequality (4.23) holds. Therefore we can estimate r as

r = −
γ
2 + ζ

‖(R−1)TATM(x? − xc)‖2 + χ
. (4.29)

Note that although the expression of r has a negation sign, it is usually that ζ < −γ
2 , hence

r is usually positive.

The Event-triggered Scheduling Algorithm

Having calculated the radius r of the event ‖x(t′)− x?‖M = r, we can now present the

event-triggered scheduling algorithm, which is given in Algorithm 4.3 on the next page. The

main loop of the algorithm determines the control u? only when the state x(t) is outside the

attracting set A. Inside the loop, a new control is computed if the current control does not

robustly reduce V (x(t)), i.e., u? does not satisfy the inequality in Equation (4.22); otherwise

the current control is re-used. Then the radius r is calculated, either by Equation (4.26)

or Equation (4.29), or by taking the maximum of them. For practical purposes, we use

a lower bound rmin > 0 for r, which can be chosen very small. If the calculated r is less

than rmin, we set r to rmin. Finally, the state x(t) is monitored continuously until the event

‖x(t)− x?‖M = r is detected, after which the steps are repeated.

4.3.4. Self-triggered Feedback Scheduling

Similar to the feedback scheduling strategies based on periodic scheduling (Section 4.2), we

can derive a self-triggered scheduling scheme from the event-triggered scheduling algorithm

in Section 4.3.3 to avoid continuously monitoring the state. As we discussed in Section 4.2.3

on page 95, dedicated hardware is required to track the system’s state so that the event

detection can be carried out. A self-triggered scheduling implementation does not require
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Algorithm 4.3 Event-triggered Feedback Scheduling Based on Attracting Sets
1: Obtain x(0)
2: u? ← arg minu∈U (x(0)− xc)TMBu
3: while ‖x(t)− xc‖M ≥ α do . when outside A
4: if u? does not satisfy Equation (4.22) then
5: u? ← arg minu∈U (x(t)− xc)TMBu . new control
6: end if
7: x? ← x(t) . center of event ball BM (x?, r)
8: Calculate r (by Equations (4.26) or (4.29) or max of them)
9: if r < rmin then

10: r ← rmin

11: end if
12: repeat . monitor state and detect event
13: Monitor x(t)
14: until ‖x(t)− x?‖M = r
15: end while

such hardware and is therefore more attractive in practice.

Recall that we denoted the current time by t and the current state by x? = x(t). The

fundamental idea is the same as in Section 4.2.3: we obtain a lower bound estimate of the

time delay until the event ‖x(t′)− x?‖M = r might happen, and only measure x(t′) and

decide whether to re-compute the control after that minimal time delay. From Theorem 4.1,

we can bound the distance ‖x(t′)− x?‖M for all t′ ≥ t, under the current control u?, as

∥∥x(t′)− x?
∥∥
M
≤ χ

λ

(
1− e−λt

)

where χ is defined in Equation (4.28). It follows that during the time interval t′ ∈ [t, t+ τ ],

where τ = − 1
λ log

(
1− rλ

χ

)
, the system’s state x(t′) is guaranteed to stay inside the ball

BM (x?, r). For practical purposes, if τ is shorter than a predefined minimal delay τmin (e.g.,

the timing resolution of the implementation platform) then we delay for τmin instead of τ .

Putting everything together, the self-triggered scheduling algorithm is detailed in Algo-

rithm 4.4 on the next page. It is similar to Algorithm 4.3, except that the event detection

mechanism is replaced by the calculation of τ and the time delay.
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Algorithm 4.4 Self-triggered Feedback Scheduling Based on Attracting Sets
1: Obtain x(0)
2: u? ← arg minu∈U (x(0)− xc)TMBu
3: while ‖x(t)− xc‖M ≥ α do . when outside A
4: if u? does not satisfy Equation (4.22) then
5: u? ← arg minu∈U (x(t)− xc)TMBu . new control
6: end if
7: x? ← x(t) . center of event ball BM (x?, r)
8: Calculate r (by Equations (4.26) or (4.29) or max of them)
9: if r < rmin then

10: r ← rmin

11: end if
12: τ ← max

(
− 1
λ log

(
1− rλ

χ

)
, τmin

)
. time delay for self-triggered mechanism

13: Delay for τ time units
14: end while

4.3.5. Illustrative Examples

Example 4.2 In this example, we continue Example 4.1 on page 109 and implement the

event-triggered and self-triggered scheduling strategies for the mass-spring-damper system.

The position trajectories y1(·) and y2(·) of the two masses are plotted in Figure 4.13a on

the next page, while the control signal u1(·) is plotted in Figure 4.13b. It is clear that with

the event-triggered scheduling scheme, the switching frequency of u1 is reduced significantly

compared to the basic scheduling strategy (cf. Figure 4.10 on page 110). In Figure 4.14 on the

next page are the position trajectories and the control signal u1(·) resulted from simulation of

the self-triggered scheduling algorithm. They are comparable to those of the event-triggered

scheduling strategy because the main difference between the two schemes is the replacement

of the event detection mechanism by the time delay mechanism. Figure 4.15 on page 119

displays the time delay values τ calculated by the self-triggered scheduling algorithm over

time. As can be seen in the graph, the time delay is as long as approximately 350ms and is

over 20ms for the most part. Considering that on average the scheduling computation took

about 2.5ms to complete5, it is reasonably practicable. 2

Example 4.3 Consider the room-heater example with 6 rooms and 6 heaters (cf. Sec-

5On MATLAB™ with YALMIP for solving optimizations.
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(b) The binary control signal u1(·).

Figure 4.13: Simulation results for the mass-spring-damper system in Example 4.2 with event-triggered
feedback scheduling. Compared to the basic feedback scheduling strategy (cf. Figure 4.10 on page 110),
it significantly reduces the switching frequencies of the control inputs.
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(b) The binary control signal u1(·).

Figure 4.14: Simulation results for the mass-spring-damper system in Example 4.2 with self-triggered
feedback scheduling. Similar to the event-triggered scheduling strategy, it significantly reduces the
switching frequencies of the control inputs compared to the basic strategy.

tion 1.2.1). Unlike the example in Section 4.2.4 for feedback scheduling based on periodic

scheduling, in this example we allow the disturbances to vary in much larger ranges. Specifi-

cally, the ambient air temperature Ta can vary between Ta,min = 2 ◦C and Ta,max = 12 ◦C

(compared to 5 ◦C to 6 ◦C in Section 4.2.4). For each room i = 1, . . . , 6, the room’s heat gain

Qg,i can take any value in 0 kW to 0.5 kW (compared to 0 kW to 0.05 kW in Section 4.2.4).

The desired temperature bounds are li = 20 ◦C and hi = 24 ◦C for all i = 1, . . . , 6.

In this example, we implemented the self-triggered scheduling strategy for the heaters. The

ambient air temperature profile used for simulation is depicted in Figure 4.16 on page 120.

Similar to the example in Section 4.2.4, the rooms’ heat gains are generated randomly. The

resulted temperature of room 1 (T1) and the schedule of heater 1 (u1) are displayed in
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Figure 4.15: Time delays calculated by the self-triggered scheduling algorithm for the mass-spring-damper
system in Example 4.2. They could be as long as about 350 ms.

Figures 4.17a and 4.17b on the following page. Evidently T1 was safe.

For comparison, we also simulated the system with the uncoordinated scheduling strategy

(see Section 1.2.1). Figures 4.18a and 4.18b on page 121 plot the temperature of room 1 and

the schedule of heater 1 from the simulation. The switching frequencies of the two scheduling

strategies are summarized and compared in Table 4.3 on the following page. The second

column reports the total numbers of switching of all six heaters. The last three columns

list the maximal, minimal and averaged time intervals between consecutive switching of

heater 1. Observe that heater 1 was switched less frequently by the uncoordinated scheduler

than by the self-triggered scheduler. This is because the self-triggered scheduler had to

maintain the peak constraint k = 4 as well as the robustness of the system (with respect to

disturbances) while it did not continuously monitor the system’s state. The peak constraint

is reflected clearly in Figure 4.19 on page 121, which compares the energy demand curves of

both scheduling strategies. The peak power demand of the self-triggered scheduler is capped

at 27 kW while it is 39 kW for the uncoordinated case. Their total energy consumption are

almost the same: 94.03 kW for uncoordinated scheduling and 93.01 kW for self-triggered

scheduling. 2

Example 4.4 To demonstrate the scalability of the scheduling algorithms developed in this

section, we consider the room-heater system as in Example 4.3 but scale it to 50 rooms and

50 heaters. We simulated the system with self-triggered scheduling and with uncoordinated

scheduling. Their energy demand curves are plotted in Figure 4.20 on page 122. Compared
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Figure 4.16: Ambient air temperature profile for Example 4.3
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(b) Schedule u1(·) of heater 1.

Figure 4.17: Simulation results of the self-triggered feedback scheduling strategy for the room-heater
system in Example 4.3. The temperature of room 1 (left) is driven to and maintained inside the desired
range [20, 24]◦C. The schedule of heater 1 (right) does not switch too frequently.

to uncoordinated scheduling, self-triggered scheduling reduced the peak power demand by

17.66%, from 351 kW down to 289 kW. The computation of the self-triggered scheduling

algorithm took only 29.24ms on average to complete. Therefore, we can conclude that it is

scalable, at least for medium-scale systems. 2

Table 4.3: Switching frequency results for the room-heater system in Example 4.3.

Total No. Interval between switching of u1 (min)

of switching Max Min Average

Uncoordinated 17 136.46 106.95 119.83
Self-triggered 60 68.49 10.43 33.37
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(b) Schedule u1(·) of heater 1.

Figure 4.18: Simulation results of uncoordinated scheduling for the room-heater system in Example 4.3.
Compared to the self-triggered scheduling strategy (Figure 4.17), heater 1 (b) was switched less frequently.
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Figure 4.19: Comparison of the energy demand curves of uncoordinated scheduling and self-triggered
scheduling for Example 4.3: the curve for uncoordinated scheduling (dashed line) fluctuates between 0 kW
and 39 kW, while that for self-triggered scheduling (solid line) is curbed at 27 kW.

4.3.6. Improve Feedback Scheduling with Disturbance Prediction

Let us examine Example 4.3 on page 117 of the room-heater system more closely. From

Figure 4.16 on the preceding page, we observe that after about 1.5 h, the ambient air

temperature Ta rises significantly to about 9 ◦C from 2 ◦C at the beginning, and then only

varies between 9 ◦C and 12 ◦C for more than 6 hours. Hence, heat loss from the rooms

to the ambient environment decreases, which reduces the heating requirement from the

heaters. This change in Ta, as a disturbance to the system, has two consequences: (a) the

peak constraint k can be reduced for the duration when Ta is high; and (b) the event-

and self-triggered scheduling algorithms can result in longer delays (hence fewer switching)

considering a smaller constraint set of Ta for the last 6 hours. The first consequence can
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Figure 4.20: Comparison of the energy demand curves of uncoordinated scheduling and self-triggered
scheduling for the large-scale room-heater example in Example 4.4: the peak for uncoordinated scheduling
(dashed line) is 351 kW, while the peak for self-triggered scheduling (solid line) is 289 kW.

be seen clearly in the demand curve plot in Figure 4.19 on the previous page: during the

last 6 hours, the power demand of self-triggered scheduling fluctuated between 0 kW and

27 kW. If the peak constraint k were reduced, e.g., k = 3, then the peak demand during

these hours would have been reduced and the demand curve would have not fluctuated too

much. The same observation can be made of Figure 4.20 for the large-scale room-heater

system in Example 4.4.

It follows from the above observations that if short-term predictions of the disturbances

are available, they can be incorporated into the scheduling algorithms to improve Green

Scheduling. Specifically, suppose that at any time t ≥ 0, a prediction of the disturbance

constraint set can be obtained for a finite time horizon h > 0, that is d(τ) ∈ D[t,t+h] ⊆ Rq

∀τ ∈ [t, t+ h], where D[t,t+h] is known. Then it is straightforward to modify the scheduling

algorithms (Algorithms 4.3 and 4.4) to exploit this new information as follows:

• Replace D by D[t,t+h] in all calculations; and

• Recompute the peak constraint k at regular intervals which are shorter than the

prediction horizon h, for instance every half hour in the room-heater example.

Example 4.5 We continue Example 4.3 but use the above scheme with disturbance pre-

diction. We assume that a one-hour prediction (i.e., h = 1 h) is available at any time t.

Furthermore, every 30 minutes, the peak constraint k is recalculated, taking into account the
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Figure 4.21: Comparison of the energy demand curves of self-triggered scheduling with and without
disturbance prediction for Example 4.5: the improved scheduling algorithm with disturbance prediction
achieved lower peak demand after 1.5 h.

disturbance prediction. It turned out that the peak constraint k is 4 between 0 h and 1.5 h,

3 between 1.5 h and 3.5h, 2 between 3.5 h and 5 h, and 3 between 5 h and 6 h. A MATLAB™

simulation was carried out with the same ambient air temperature profile (Figure 4.16) and

the same heat gain profile for each room. The demand curves of self-triggered scheduling

with and without disturbance prediction are plotted in Figure 4.21 on this page, where the

time-varying peak constraint for the case with prediction is illustrated by the gray-filled

region in the background. Evidently, with disturbance prediction, the peak energy demand

was reduced after 1.5 h and the demand curve became less fluctuating. In Table 4.4 on

the next page we report the resulted switching frequencies of the two cases. The second

column reports the total numbers of switching of all six heaters. The last three columns list

the maximal, minimal and averaged time intervals between consecutive switching of heater

1. It can clearly be seen that actuation switching of the improved scheduling algorithm

with disturbance prediction was less frequent as the delays between consecutive switching

increased. 2

4.4. Feedback Scheduling Based on Backward Reachability

In Chapter 3 and Sections 4.2 and 4.3, we studied scheduling strategies which are based on

the techniques used for the schedulability analysis in Chapter 2, namely periodic schedul-

ing and attracting sets. In this section, we will take a different approach and develop
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Table 4.4: Switching frequency results for the room-heater system in Example 4.5 where disturbance
prediction is utilized.

Total No. Interval between switching of u1 (min)

of switching Max Min Average

Without prediction 60 68.49 10.43 33.37
With prediction 50 91.50 15.25 36.90

a feedback scheduling strategy for discrete-time systems based on backward reachability

analysis. Reachability analysis is extensively used in the literature for safety verification

and control synthesis for dynamical systems, especially for switched and hybrid systems (for

introductions on this subject see (Maler, 2008; Mitchell, 2007)). In the next subsection, we

redefine the green scheduling problem for discrete-time systems and introduce the notion

of backward reachability. We will sketch our method for synthesizing discrete-time green

scheduling strategies in Section 4.4.2. Section 4.4.3 studies robust periodic invariant sets – an

important tool in our synthesis. The green scheduling synthesis is presented in Section 4.4.4

and an illustrative example is given in Section 4.4.5. Finally, we discuss the advantages and

limitations of this synthesis method in Section 4.4.6.

4.4.1. Discrete-time Green Scheduling and Backward Reachability

System’s Dynamics and Green Scheduling Problem

In this section, we will work with discrete time, hence the time variable t can only receive

integer values, i.e., t ∈ N = {0, 1, 2, . . . }. Consider a discrete-time control system with

disturbances

x(t+ 1) = f(x(t), u(t), d(t)) = Ax(t) +B0 +Bu(t) +Wd(t), ∀t ∈ N (4.30)

where variables x, u, d and parameters A, B0, B, W have the usual interpretations (cf. Chap-

ter 1 on page 1) For example, the discrete-time dynamics (4.30) can be the result of

discretization of the continuous-time control system in Equation (1.9) on page 12.
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We generalize the constraints of the Green Scheduling problem by assuming that at any

time step t ∈ N, the disturbances d belong to a time-varying bounded set Dt ⊂ Rq and the

control inputs u are constrained to a time-varying set Ut ⊂ {0, 1}m (which is finite because

u is binary). This generalization allows us to consider disturbance prediction (e.g., forecast

of time-varying ambient air temperature) and time-varying peak constraint on the control

inputs. We assume that these constraints are periodic with time period δ ∈ {1, 2, . . . },

meaning that Dt+δ = Dt and Ut+δ = Ut for all t. Similarly, instead of a constant desired safe

set Safe, we also allow it to be time-varying and periodic: the desired safe set at time t ∈ N

is Safet ⊂ Rn and Safet+δ = Safet, ∀t. Obviously, the case with fixed disturbance set D,

fixed valid control set U and fixed safe set Safe is a special case with δ = 1.

Because we are now working in discrete time, all the involved signals are discrete-time. An

admissible disturbance signal d(·) is a sequence of values d(0), d(1), . . . where d(t) ∈ Dt for

t = 0, 1, . . . . An admissible control signal (or schedule) u(·) is a sequence u(0), u(1), . . . where

u(t) ∈ Ut for t ∈ N. The resulted state trajectory x(·) is a sequence of states x(0), x(1), . . .

that satisfy the difference equation (4.30).

Analogously to continuous-time systems (see Chapter 1), we define the notions of safe

trajectories and safe feedback scheduling strategies for discrete-time dynamics. A state

trajectory is safe if after some finite time steps, it is driven to and maintained inside the

(time-varying) desired safe set. Specifically, there exists a finite value τ ∈ N such that

x(t) ∈ Safet for all t ≥ τ . A feedback scheduling strategy u(t) = κ(t, x(t)), where function

κ : N× Rn → {0, 1}m specifies the feedback law, is safe (and valid) if the closed-loop system

x(t+ 1) = f(x(t), κ(t, x(t)), d(t), ∀t ∈ N

satisfies, for every initial state x(0) ∈ X0,

• the resulted state trajectory x(·) is safe; and

• u(t) = κ(t, x(t)) ∈ Ut for all t ∈ N.
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Our objective is to synthesize safe feedback scheduling strategies for the system (4.30).

Backward Reachability

Backward reachability refers to the type of analysis of a dynamical system in which, starting

from a set of states, we follow all possible trajectories of the system backwards in time.

Although it seems that reachability is similar to and can be performed by simulation of

the system’s dynamics, here we are interested in the set of all possible trajectories of the

system, not an individual trajectory. Backward reachability will play an important role in

the scheduling synthesis presented later, when we determine a set of states from which the

system can reach a given set of states (the desired safe set in our case) under an admissible

control signal.

Because the system (4.30) is subject to unknown but constrained disturbances d, it must

be able to robustly reach the desired set of states, i.e., regardless of the disturbances. To

this end, we define the one-step robust backward reachability operator for time step

t ∈ N from a set X ⊂ Rn as

R−1
t (X) := {x ∈ Rn : ∃u ∈ Ut, f(x, u, d) ∈ X ∀d ∈ Dt} . (4.31)

Essentially, R−1
t (X) is the set of all states at time step t from which the system can reach X

by a valid control input regardless of the disturbances. We can extend this definition for an

interval [t, t′] of time steps, t′ ≥ t, as the composition of the operators for each individual

time step from t to t′

R−1
[t,t′](X) :=

(
R−1
t ◦ · · · ◦ R−1

t′
)

(X) (4.32)

where the symbol ◦ denotes the composition of two operators or functions: (g◦h)(x) = g(h(x)).

The operator R−1
t is obviously a special case: R−1

t ≡ R−1
[t,t]. It is straightforward to verify

that we can compose these operators as

R−1
[t,t′] ≡ R

−1
[t,t′′] ◦ R

−1
[t′′+1,t′] (4.33)
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where t, t′, t′′ are integers and t ≤ t′′ < t′. Furthermore, because of the periodicity of the

control input set Ut and the disturbance set Dt, robust backward reachability operators are

also periodic, meaning that R−1
t ≡ R−1

t+δ and R−1
[t,t′] ≡ R

−1
[t+δ,t′+δ] for all time steps t ≤ t′.

For wide classes of system dynamics (both discrete-time and continuous-time) and common

types of sets, robust backward reachability operators can be computed or approximated.

Computational methods for reachability analysis were developed for polytopic sets in (Chuti-

nan and Krogh, 1999, 2003), for ellipsoids in (Kurzhanskiy and Varaiya, 2007), and for

zonotopes in (Girard, 2005). Other computational techniques were also proposed, for example

using support functions (Guernic and Girard, 2010) and level set methods (Mitchell and

Tomlin, 2000; Mitchell et al., 2005). For affine systems being considered in green scheduling,

robust backward reachability operators can be computed by

R−1
t (X) = A−1 (((X 	WDt)⊕ (−BUt))−B0)

in which the symbol 	 denotes the Pontryagin difference of two sets and the symbol ⊕

denotes the Minkowski sum of two sets (cf. page 55). For sets represented by polytopes,

these geometric operations can be computed efficiently using available scientific software,

e.g., the Multi-Parametric Toolbox in MATLAB™ (Kvasnica et al., 2004) and the Parma

Polyhedra Library (BUGSENG, 2012).

4.4.2. Overview of the Scheduling Synthesis

According to the definitions of safety in Section 4.4.1, a safe trajectory typically has two

phases:

1. Convergence: From the initial state x(0), after a finite number τ ∈ N of time steps,

x(t) converges to a set Cτ ⊆ Safeτ , where the set Cτ will be determined in the

second phase. Not all safe trajectories go through this phase, in which case τ = 0 and

x(0) ∈ C0. For practical purposes, we assume that a maximal number T ∈ N of time

steps for this phase is given, and we only consider safe trajectories that complete the
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convergence phase in at most T time steps. In scheduling synthesis, robust backward

reachability is used for this phase to compute the set of initial states that can reach

Cτ , τ ≤ T , as well as the feedback control law to achieve that convergence.

2. Invariance: After the state is driven to a desired subset Cτ ⊂ Safeτ in the convergence

phase, it is maintained in a sequence of sets {Ct}∞t=τ where Ct ⊂ Safet, ∀t ≥ τ . Because

Ut, Dt and Safet are δ-periodic, we will look for a sequence of sets that is also δ-periodic,

i.e., Ct+δ = Ct for all t ≥ τ . Therefore any subsequence of length δ of this sequence is

invariant, hence the name of this phase. In scheduling synthesis, for this phase we aim

to find the maximal periodic invariant sequence of sets for the system, and derive a

feedback control law that maintains the state inside these sets.

In Section 4.4.3 we will study in details the invariance phase, then the convergence phase

and the overall scheduling synthesis will be presented in Section 4.4.4.

4.4.3. Robust Periodic Invariance

The idea of periodically invariant sets for finding a control strategy for a periodic linear

discrete-time system was proposed by Blanchin and Ukovich (1993). Recently, there has

been research work on applying this idea to controlling periodic linear systems (Gondhalekar,

2011; Gondhalekar and Jones, 2011; Zhou et al., 2011), especially Model Predictive Control

(MPC) for building systems due to the periodic nature of the disturbances (Ma et al., 2009;

Gondhalekar et al., 2010; Ma et al., 2012). In this subsection, we will employ this notion and

its computation to determine the sequence {Ct}∞t=τ as well as a safe feedback control law

for the invariance phase as discussed above. To emphasize the robustness of the control law

with respect to disturbances, we will use the term robust periodic invariant6.

We first review the basic definitions and results for robust periodic invariant sequence of sets

for constrained systems.

Definition 4.2 A finite sequence S = {C0, . . . ,Cδ−1} of sets Ct ⊆ Safet, ∀t = 0, . . . , δ − 1,

6The terms periodically invariant and periodic controlled invariant are also used by other authors.
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is a robust periodic invariant sequence of sets for constrained system (4.30) if for every

t = 0, . . . , δ − 1,

∀x ∈ Ct ∃u ∈ Ut : f(x, u, d) ∈ C(t+1) mod δ ∀d ∈ Dt.

A sequence S? = {C?0, . . . ,C?δ−1} is said to be the maximal robust periodic invariant

sequence if it is robust periodic invariant and contains all robust periodic invariant sequences

{C0, . . . ,Cδ−1} for the system, meaning that Ct ⊆ C?t ∀t = 0, . . . , δ − 1. 2

Using the robust backward reachability operator R−1 defined in Equation (4.31), the maxi-

mal robust periodic invariant sequence, if it exists, can be computed by the procedure in

Algorithm 4.5 on the following page (cf. Procedure 4.1 in Blanchin and Ukovich, 1993).

Starting from the desired safe sets {Safet}δ−1
t=0 for one period, the algorithm essentially

compute the one-step backward reachable sets repeatedly until it detects one of the two

terminating conditions: (1) a fixed point is found (line 5) in which case the obtained sequence

{Ω0, . . . ,Ωδ−1} is maximal; or (2) an empty backward reachable set is found (line 8) in which

case the maximal robust periodic invariant sequence does not exist.

One important question regarding Algorithm 4.5 is its termination, that is whether the

algorithm will terminate after a finite number of iterations. In general, there is no guarantee

that Algorithm 4.5 will terminate. However, it is shown in (Bertsekas, 1972) and in (Blanchin

and Ukovich, 1993) that under certain compactness and continuity conditions, convergence

of the sequence {Ω0, . . . ,Ωδ−1} to the maximal one can be guaranteed. Specifically, for the

affine dynamics in Equation (4.30) and assuming that the sets Ut, Dt, Safet are convex and

compact polytopes, we can guarantee that (Blanchin and Ukovich, 1993)

• If S? does not exist then Algorithm 4.5 will terminate (by the condition in line 8);

• If S? exists then the sequence {Ω0, . . . ,Ωδ−1} will converge to it, thus we can obtain an

arbitrarily close over-approximation of S? by executing the algorithm for a sufficiently

large number of iterations.
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Algorithm 4.5 Computation of Maximal Robust Periodic Invariant Sequence
1: Initialize a sequence Ωt ← Safet, t = 0, . . . , δ − 1
2: t← 0
3: while true do . main iteration
4: Compute R← R−1

(t−1) mod δ(Ωt mod δ)
⋂
Safe(t−1) mod δ

5: if t ≤ −δ and Ω(t−1) mod δ = R then

6: return Found S? = {Ω0, . . . ,Ωδ−1}
7: end if
8: if R = ∅ then
9: return “Maximal robust periodic invariant sequence does not exist”

10: end if
11: Ω(t−1) mod δ ← R
12: t← t− 1
13: end while

Suppose that S? exists and we can compute it. Then for any initial state x(0) ∈ C?0 a feedback

control law u(t) = κ(t, x(t)) that can maintain the system safe indefinitely (i.e., x(t) ∈ Safet

for all t ∈ N) must keep x(t) in S?, as verified by the following result.

Proposition 4.2 (adapted from Blanchin and Ukovich, 1993, Corollary 3.1) A control

strategy u(t) = κ(t, x(t)) maintains the system (4.30) safe indefinitely with the initial set C?0

if and only if, for x(t) ∈ C?t mod δ, it satisfies the conditions

f(x(t), κ(t, x(t)), d) ∈ C?(t+1) mod δ, ∀d ∈ Dt

κ(t, x(t)) ∈ Ut

for all t ≥ 0. 2

A proof of the result can be found in (Blanchin and Ukovich, 1993).

Once S? is obtained, it is straightforward to derive a control law that satisfies Proposition 4.2

as, for any t ∈ N and x(t) ∈ C?t mod δ,

κ(t, x(t)) = any u ∈ Ut such that f(x(t), u, d) ∈ C?(t+1) mod δ ∀d ∈ Dt. (4.34)

In practice, the control at each time step is usually chosen so as to optimize some objective
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function as suggested by Blanchin and Ukovich (1993), e.g., to reduce the total energy

consumption. An MPC strategy can also be formulated for determining the control as

minimize
u(t),...,u(t+N−1)

t+N−1∑
i=t

ci(x(i), u(i)) + cf (x(t+N))

subject to u(i) ∈ Ui

x(i+ 1) = f(x(i), u(i), d(i))

f(x(i), u(i), d) ∈ C?i mod δ, ∀d ∈ Di

in which the constraints are satisfied for all i = t, . . . , t+N − 1 and

• t ∈ N is the current time step;

• N ∈ N is a given finite horizon, N ≥ 1;

• di ∈ Di is the nominal disturbance at time i, i = t, . . . , t+N − 1;

• ci(x(i), u(i)) is the (scalar) cost at time i with respect to state x(i) and control u(i),

i = t, . . . , t+N − 1;

• cf (x(t+N)) is the (scalar) terminal cost depending on x(t+N).

The optimization is solved for an optimal sequence of controls u(t), . . . , u(t + N − 1) but

only u(t) is applied. At the next time step, t+ 1, the optimization is re-formulated and the

process is repeated.

Recall that in the invariance phase of safe green scheduling (cf. Section 4.4.2), we aim to

maintain the system’s state in a periodic sequence of subsets of Safet, ∀t ≥ τ . Obviously S?

is the sequence of sets that we are looking for. Once the state x has been driven to C?τ mod δ

at time step τ (in the convergence phase), the control law derived above is used to guarantee

infinite-horizon safety of the system.

131



4.4.4. Feedback Scheduling Strategy

In the previous subsection, we have presented a method to determine the desired sequence

of sets S? = {C?0, . . . ,C?δ−1} for the invariance phase. In the convergence phase, we control

the system to drive its state to one of the sets in the sequence. Suppose that at time τ ≤ T ,

where T ≥ 1 is a given maximal number of time steps for the convergence phase, x(τ) is

guaranteed to be in C?τ mod δ by an admissible control sequence u(0), . . . , u(τ−1) regardless of

the disturbances. Evidently, to achieve this guarantee, we must have x(t) ∈ R−1
[t,τ−1](C

?
τ mod δ)

for every t = 0, . . . , τ − 1. Specifically, the initial state must satisfy x(0) ∈ R−1
[0,τ−1](C

?
τ mod δ).

Then, similarly to Section 4.4.3, a control law u(t) = κ(t, x(t)) can be obtained to ensure

that x converges to C?τ mod δ at time τ .

Let us define the sets, for all τ = 1, . . . , T and all t = 0, . . . , τ ,

Λτt :=


C?τ mod δ if t = τ

R−1
[t,τ−1](C

?
τ mod δ) if t < τ

(4.35)

If x(0) ∈ Λτ
0 for some τ then the system can be controlled to converge to S? in at most τ

time steps by following the sequence of sets Λτ0 , . . . ,Λ
τ
τ−1,C?τ mod δ. Furthermore, if the set

X0 of initial states satisfies X0 ⊆
(⋃T

τ=1 Λτ0

)
∪ C?0 then for any x(0) ∈ X0, the convergence

phase will take at most T time steps. The scheduling strategy for the convergence phase is

summarized in Algorithm 4.6 on the next page. It is guaranteed to terminate after at most T

time steps as long as the initial state satisfies the above condition. In line 3, we try to reduce

the length of the convergence phase by always looking for the smallest τ such that x(t) ∈ Λτt .

As a consequence, the closed-loop system may start by following the path {Λτt }t
′
t=0 but switch

to a shorter path {Λτ ′t }τ
′−1
t=t′ , τ

′ < τ , at time step t′ where x(t′) ∈ Λτt′ ∩ Λτ
′
t′ .

The overall feedback scheduling algorithm consists of the algorithms for the two phases and

is presented in Algorithm 4.7 on page 134. Note that in lines 6 to 16 we find the smallest

number of time steps for the convergence phase.

132



Algorithm 4.6 Scheduling Algorithm for the Convergence Phase

Require: x(0) ∈
(⋃T

τ=1 Λτ0

)
∪ C?0

1: t← 0
2: while x(t) 6∈ C?t mod δ do
3: Find minimal τ such that x(t) ∈ Λτt

4: Determine a control u(t) ∈ Ut satisfying f(x(t), u(t), d) ∈ Λτt+1, ∀d ∈ Dt
5: Apply u(t)
6: t← t+ 1
7: end while

4.4.5. An Illustrative Example

We illustrate the presented feedback scheduling algorithm through the room-heater running

example. Consider the room-heater system in Section 1.2.1 on page 5. However, due to the

expensive computational requirement of the synthesis method (about which we will discuss

in Section 4.4.6), we downscale the system to 3 rooms and 3 heaters. The parameters of the

system are (see Section 1.2.1 for their descriptions):

C1 = 2984, C2 = 2023, C3 = 2801, Q1 = 8, Q2 = 6, Q3 = 8

K =


0.2447 0.1380 0.2550

0.1380 0.1861 0.1140

0.2550 0.1140 0.2521


The continuous-time dynamics is discretized with a sampling time of 15min to obtain a

discrete-time system, ∀t ∈ N,

x(t+1) =
[

0.8287 0.0355 0.0642
0.0524 0.8248 0.0437
0.0684 0.0315 0.8225

]
x(t)+

[
2.1981 0.0500 0.0877
0.0667 2.4270 0.0590
0.0877 0.0443 2.3333

]
u(t)+

[
0.2748 0.0083 0.0110 0.0715
0.0083 0.4045 0.0074 0.0792
0.0110 0.0074 0.2917 0.0776

]
d(t).

The desired temperature bounds are li = 20 ◦C and hi = 24 ◦C for all rooms and at all time.

We assume that the constraints of the disturbances (ambient air temperature Ta and heat

gains Qg,i) are time-varying and periodic every 24 hours (1 day). The varying range of Ta for

24 hours is provided in Figure 4.22a on the following page. The range of Qg,i, for every room
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Algorithm 4.7 Feedback Scheduling Algorithm Based on Backward Reachability
1: Call Algorithm 4.5 to compute S?
2: if S? does not exist then
3: Stop
4: end if
5: if x(0) 6∈ C?0 then . convergence phase
6: τ ← 1

7: while τ < T do
8: Compute Λτt , ∀t = 0, . . . , τ , by Equation (4.35)
9: if x(0) ∈ Λτ0 then

10: Break
11: end if
12: τ ← τ + 1
13: end while
14: if τ = T then
15: return “Cannot converge in at most T time steps”
16: end if
17: Call Algorithm 4.6
18: end if
19: Call scheduling algorithm in the sequence S?

i = 1, 2, 3, is varied by the level of activity inside the room: Qg,i ∈ [0, 0.5] (kW) between

6 a.m. and 6 p.m., and Qg,i ∈ [0, 0.1] (kW) otherwise (see Figure 4.22b for an illustration).

The peak constraint on the control inputs is chosen to be k = 2 at all time. Because

the sampling time is 15min, there are 96 time steps in a 24-hour period (δ = 96). The

procedure in Algorithm 4.5 to compute the maximal robust periodic invariant sequence S?

was implemented in MATLAB™. It took almost 534 s (8min 54 s) to complete 97 iterations,
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Figure 4.22: Time-varying and 24-hour-periodic ranges of the disturbances in the example in Section 4.4.5.
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Figure 4.23: The first invariant set C?0 in the maximal robust periodic invariant sequence S? for the
example in Section 4.4.5.

at which it successfully computed S?. Figure 4.23 on the current page plots the first invariant

set C?0 in S?.

A simulation was carried out for 24 hours with randomly generated ambient air temperature

Ta and heat gains Qg,i at each time step. In the scheduling algorithm, at each time step

t ∈ N, a control vector u(t) is selected according to three criteria (in the order of priority):

(1) It must satisfy the conditions in Proposition 4.2 on page 130;

(2) Among all control vectors that satisfy (1), select those that induce the minimal number

of switching from the previous time step, i.e., ‖u(t)− u(t− 1)‖1 is minimized;

(3) Finally, if there are multiple control vectors that meet criteria (1) and (2), select one

that demands the least energy, i.e., [Q1, Q2, Q3] · u(t) is minimized.

The resulted temperature trajectory of room 1 (T1) and the control signal of heater 1 (u1)

are displayed in Figure 4.24 on the next page. Evidently T1 is driven to and maintained in

the desired range [20, 24]◦C. The number of activated heaters at each time step (i.e., ‖u(t)‖1)

is reported in Figure 4.25a on the following page, while their total energy demand is plotted

in Figure 4.25b. It can be seen that at any time step, the number of activated heaters is

capped at k = 2. The peak energy demand is 16 kW and the total energy consumption is

204 kWh. If the criteria (2) and (3) above are switched, i.e., we prioritize reducing energy

demand more important than reducing switching rates, then the number of switching will be
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Figure 4.24: Simulation results of the discrete-time scheduling strategy based on backward reachability
for the room-heater example in Section 4.4.5. The temperature of room 1 (left) is maintained inside the
desired range [20, 24]◦C.
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Figure 4.25: Energy demand results of the discrete-time scheduling strategy based on backward reachability
for the room-heater example in Section 4.4.5. At any time step, the number of activated heaters (left) is
capped at k = 2.

almost doubled (from 18 to 33 for u1) while the peak demand will be the same and the total

energy consumption will be reduced by only 5.15% (from 204 kWh to 193.5 kWh).

4.4.6. Discussion

As we have shown in the above room-heater example, the feedback scheduling strategy based

on backward reachability can take into account time-varying disturbance constraints instead

of large ultimate bounds of the disturbances for the entire day. Furthermore, time-varying

safe set Safet and time-varying control input set Ut can also be specified to achieve better

performance, for example:

• During the on-peak hours, when energy price can be significantly higher than during
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the off-peak hours, we can change the safe set Safet to allow for more discomfort but

less energy demand; we can also change Ut by reducing the peak constraint k;

• When the rooms are unoccupied at night, we can turn off the system by setting k = 0

and changing the safe set Safet accordingly, so that the total energy consumption will

be reduced.

More sophisticated optimization, for example MPC, can also be implemented on top of

this scheduling strategy as discussed at the end of Section 4.4.3. Finally, although we only

presented the method for an affine dynamical system in Equation (4.30), it can readily be

applied to more complex dynamical systems, e.g., nonlinear systems, as long as the robust

backward reachability operator R−1
t in Equation (4.31) can be computed or approximated

(Maler, 2008; Mitchell, 2007).

On the other hand, the previous example also highlights a major drawback of the scheduling

approach, namely its highly expensive computational requirement. It can be explained by

two factors, assuming Ut = U ∀t ∈ N,

• Since the control input set U is finite, we must enumerate all the valid control vectors in

U in calculating the one-step backward reachability operator R−1
t and in each iteration

of the scheduling algorithms (Equation (4.34) and Algorithm 4.6). Therefore, the

computational complexity of these operations increases exponentially with the size

of the system, as the cardinality of U increases exponentially with the number m of

control variables.

• More adversely, the discrete nature of U also causes high complexity in the representation

of sets. Consider for example the operator R−1
t being applied on a set X at time step

t ∈ N. Assume that X is a single convex and compact polytope. Since R−1
t (X) =⋃

u∈U {x ∈ Rn : f(x, u, d) ∈ X ∀d ∈ Dt}, it is a (generally non-convex) union of up to

|U| individual polytopes, where |U| denotes the number of elements (the cardinality)

of U . Then R−1
[t−1,t](X) may contain up to |U|2 individual polytopes. Although it
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is possible to merge7 the individual polytopes to reduce the size of the non-convex

unions, they are still blown up in size quickly. This effect makes set operations, e.g.,

the Pontryagin difference, significantly more expensive in terms of computation and

memory. More details on set operations for computation of reachable and invariant

sets and their complexity can be found in (Kerrigan, 2000).

As reported in the room-heater example, the computation of S? took almost 9min to complete.

When we increased the number of rooms and heaters to 6, it did not finish in reasonable

time and had to be terminated. Although good programming techniques and libraries may

alleviate this issue, e.g., using the C/C++ languages and the Parma Polyhedra Library

(BUGSENG, 2012) instead of MATLAB™, the approach is still only applicable to small-scale

systems.

4.5. Conclusions

In this chapter, we have developed three state feedback Green Scheduling strategies.

First, the feedforward periodic scheduling strategy studied in Chapter 3 was improved in

Section 4.2 to be robust to small disturbances. Event- and self-triggered techniques were

then employed to alleviate an issue of robust periodic scheduling, namely the fast switching

of actuation. Robust periodic scheduling relies on the existence of a robust tube around the

nominal trajectory that bounds the system’s trajectory under disturbances (see Figure 4.1

on page 89). This idea is closely related to the notions of approximate simulation and

bisimulation relations of dynamical systems, which were proposed and developed in depth by

Girard and Pappas (2005, 2007a,b). These notions have been used extensively in verification

of control systems and safe controller synthesis (Girard and Pappas, 2006; Fainekos et al.,

2006; Julius et al., 2007; Girard, 2012). For an excellent review of approximate bisimulation

and its applications in computer science and control theory, we refer the reader to (Girard

and Pappas, 2011).

7Merging polytopes is a computationally expensive operation.
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Robust periodic scheduling strategies can only handle significantly small disturbances, as we

showed in the room-heater example in Section 4.2.4. To avoid this drawback, we took another

approach in Section 4.3 and developed feedback scheduling strategies based on attracting

sets of the control system. Similarly, event- and self-triggered techniques were utilized to

reduce the actuation switching rate. As we have mentioned, the results on attracting sets of

control systems developed in Section 2.5.2 on page 47 and later in Section 4.3.1 on page 103

are based on the notion of robust control Lyapunov functions, an important analysis tool

in control theory (Artstein, 1983; Freeman and Kokotovic, 1996; Liberzon et al., 2002). In

addition, the conditions on matrix M and numbers λ and α in Theorem 4.2 on page 104 were

inspired by a similar result in Theorem 3 in (Girard and Pappas, 2007a) for approximate

bisimulation for constrained linear systems.

In the first two feedback scheduling strategies, event- and self-triggered techniques were used

to reduce the rate of switching of the control inputs. Event-triggering has been used in

control theory since the end of the nineties for efficient implementations of control laws in

situations where limited resources, such as actuation and network communication, are shared

among several subsystems (Åström and Bernhardsson, 1999; Otanez et al., 2002; Tabuada,

2007; Heemels et al., 2008; Lunze and Lehmann, 2010). Similar to our results, Lyapunov

functions were usually used in the literature for deriving the event-triggering conditions (e.g.,

Tabuada, 2007; Seuret and Prieur, 2011). However, event-triggered control often requires

dedicated hardware to continuously monitor the system’s state for event detection. To reduce

resource utilization even further, Velasco et al. (2003) proposed self-triggered control in which

the controller decides its next execution time based on the current state of the system. Since

then, considerable development has been done in the analysis and synthesis of self-triggered

control (Lemmon et al., 2007; Mazo et al., 2009; Anta and Tabuada, 2010; Postoyan et al.,

2011) and its applications (Dimarogonas et al., 2010; Camacho et al., 2010; Nowzari and

Cortés, 2011). Unlike Green Scheduling, most of these work focused on stability of the

control system instead of safety.
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The third feedback scheduling strategy was developed in Section 4.4 where we considered

the Green Scheduling problem in discrete time and investigated a discrete-time scheduling

strategy based on backward reachability analysis. This scheduling strategy is capable of

handling a large class of system’s dynamics as well as time-varying system’s specifications

such as time-varying disturbance constraint Dt and time-varying safe set Safet. In addition,

more sophisticated control methods such as MPC can be implemented on top of this strategy.

Despite these advantages, it has scalability issue because of its high computational requirement

and is thus only applicable to small-scale systems.

This section ends the presentation of all theoretical results developed in this dissertation.

We have provided answers to the two important questions raised in Section 1.3.3 on page 16:

1. Schedulability analysis: Does there exist a safe schedule or a safe scheduling strategy

for a Green Scheduling system?

2. Scheduling synthesis: If there does, then how to synthesize a safe schedule or a safe

scheduling strategy for the system?

In the next chapter, an application of these theoretical results will be presented for radiant

heating and cooling systems in buildings.
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Chapter 5

Application in

Radiant Heating and Cooling Systems

In Chapters 2 to 4 we have studied the schedulability analysis and scheduling synthesis

for the Green Scheduling problem. In this chapter, the theoretical results developed in

those chapters will be applied to radiant heating and cooling systems in buildings for peak

demand reduction. We first give a brief overview and a model of the radiant heating and

cooling systems in Section 5.1, followed by a discussion on the control techniques for these

systems in Section 5.2. Application of the Green Scheduling theory to radiant heating and

cooling systems will be presented in Section 5.3. Two case studies, one for a hydronic radiant

cooling system model in MATLAB™ and one for an electric radiant heating system model in

EnergyPlus, will be described in Sections 5.4 and 5.5 respectively. We conclude the chapter

with a discussion in Section 5.6.

5.1. Radiant Heating and Cooling Systems

A conventional forced-air heating, ventilating and air conditioning (HVAC) system uses

the flow of air to provide thermal comfort within a conditioned space. HVAC systems rely

on ductwork, vents, etc. as means of air distribution and use air handlers, filters, blowers,

heat exchangers, and various controls to regulate the temperature and flow of air entering a

space (ASHRAE, 2009). Radiant heating and cooling systems, henceforward called radiants

or radiant systems for short, serve as an alternative to the conventional forced-air HVAC

systems for buildings. In radiants, heat is supplied to or removed from building elements

such as floors, ceilings and walls by circulating water, air or electric current through a circuit

embedded in or attached to the structure (Olesen, 2002; Watson and Chapman, 2002). When

141



the radiant heating system is located underneath the floor, it is often called underfloor

heating or simply floor heating. Although radiants depend largely on radiant heat transfer

between the thermally controlled building elements and the conditioned space, hence their

name, they also depend on convection. For instance, in a floor heating application, the

natural circulation of heat within a room is caused by heat rising.

The benefits of radiants over forced-air HVAC systems for residential and commercial buildings

has been studied well in the literature of energy and buildings (Stetiu, 1999; Watson and

Chapman, 2002; Lehmann et al., 2007; Saelens et al., 2011). Essentially, there are three major

benefits: human comfort, reduced heat loss, and peak energy demand reduction. Consider

the radiant heating system for example.

• Human comfort. Human thermal comfort is affected by a number of parameters, as

described in the ASHRAE/ANSI Standard 55-2004 (ASHRAE, 2004). An important

factor affecting thermal comfort is thermal stratification. It refers to the vertical air

temperature difference that results due to the tendency of warm air rising to the ceiling

and cool air settling down near the floor. In radiant heating systems, the air mass in

the conditioned space is heated to a lower temperature than with a convection heating

system as long as the occupants are radiantly heated. Thus, stratification is normally

less with radiant systems than convection systems. As illustrated in Figure 5.1 on

the following page, in some situations the difference in the air temperature from floor

to ceiling can exceed 20◦F for a forced-air HVAC system, while it is much less in

a radiant system. Furthermore, radiants also minimize drafts and dust movements,

thereby providing a clean, odorless and quiet operation (Siegenthaler, 2011). Therefore,

human comfort is much improved with radiant systems than with conventional HVAC

systems.

• Reduced heat loss. Stratification also greatly affects building energy use. A high

degree of temperature stratification leads to significantly higher air temperatures near

the ceiling. This in turn increases the heat loss through the ceiling and hence increases

142



Figure 5.1: Comparison of air temperatures from floor to ceiling for forced-air heating (left) and radiant
floor heating (right). Source: National Association of Home Builders.

the heating load of the space. As a consequence, radiant systems have much less heat

loss than convection systems (Watson and Chapman, 2002).

• Reduced peak energy demand. Because the building elements used in radiant

systems have high thermal mass, they serve as an energy storage whose slow thermal

behaviour is exploited to provide cooling or heating. Hence, the building’s thermal

mass can be utilized to flatten out peaks in energy demand.

Nowadays, radiant systems are widely used in both commercial and residential buildings in

Korea, Germany, Austria, Denmark (Olesen, 2002) and in some parts of the United States

(Doebber et al., 2010).

5.1.1. Simple Thermal Model for Radiant Systems

Modern radiant systems use either electrical resistance elements (electric radiant systems)

or fluid flowing in pipes (hydronic radiant systems) to heat or cool the building elements

(ASHRAE, 2008; Siegenthaler, 2011). In hydronic radiant systems, hot or cold supply water

is pumped through a system of tubes laid in a pattern inside the radiant building elements.

Electric radiants typically consist of electric cables built into the slab. Whether electric

cables or hydronic tubing, the operation of electric and hydronic radiant systems is similar.

In this subsection, we describe a simple thermal model for a hydronic radiant system. The
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Figure 5.2: Diagram of a hydronic radiant system for two zones.

model will then be used for designing control methods for the radiant system.

Consider a building of two zones1 equipped with a hydronic radiant system (Figure 5.2).

Embedded in a slab under the floor or above the ceiling of each zone is a piping system that

carries water from a supply source, such as a boiler system for heating or a chiller system for

cooling. The radiant piping systems for the zones are separate, meaning that their water

distribution pipes are separate from each other. As illustrated in Figure 5.2, each zone has

its own supply and return pipes as well as a circulation pump. This hydronic circuit topology

is similar to that used in (Gwerder et al., 2009) and is one of the topologies proposed in

(Lehmann et al., 2011).

Koschenz and Dorer (1999) developed a mathematical model for the thermal dynamics of

hydronic radiant systems as in Figure 5.2. It is assumed that the slab is uniformly heated

and there is no lateral temperature difference or heat transfer. As proposed in (Seem, 1987)

and shown in Gwerder et al. (2008), the 3-dimensional heat transfer model in the slab can

be reduced to a 1-dimensional model by establishing a correlation between supply water

temperature, core temperature (i.e., mean slab temperature in the plane of the piping system)

and zone air temperature. For each zone, the thermal dynamics from the supply water

temperature to the zone temperature is then modeled using a Resistance–Capacitance (RC)

1A zone is defined as a conditioned space controlled by a thermostat.
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Figure 5.3: RC network model of a hydronic radiant system for two zones.

network model as shown in Figure 5.3 on the current page. The model for each zone i, i = 1, 2,

has 4 nodes: Ta is the (common) ambient air temperature, Ti is the zone temperature, Tc,i is

the core temperature of the slab, and Tw,i is the supply water temperature. The parameters

and variables of the RC network model are summarized in Table 5.1 on the following page.

Given the RC network model, we can write the differential equations for the dynamic thermal

model of the zones and their radiant systems. When the pump of zone i is circulating

water in the piping system of zone i, the first-order differential equation for the slab’s core

temperature node Tc,i is:

Cr,i
dTc,i
dt

= Kr,i(Ti−Tc,i)+Kw,i(Tw,i−Tc,i) = −(Kr,i+Kw,i)Tc,i+Kr,iTi+Kw,iTw,i. (5.1)

When the pump is not running, equivalently the supply water temperature node Tw,i is

removed, the differential equation for Tc,i becomes:

Cr,i
dTc,i
dt

= −Kr,iTc,i +Kr,iTi. (5.2)
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Table 5.1: List of parameters of the RC network model in Figure 5.3 for a hydronic radiant system.

Ta ambient air temperature (◦C)
Ti air temperature of zone i, i = 1, 2 (◦C)
Tc,i core temperature of the slab of zone i, i = 1, 2 (◦C)
Tw,i supply water temperature for zone i, i = 1, 2 (◦C)
qg,i internal heat gain of zone i, i = 1, 2 (W/m2)
qs,i heat gain due to solar radiation of zone i, i = 1, 2 (W/m2)
Ki thermal conductance between zone i, i = 1, 2, and outside air

(W/(Km2))
Kr,i thermal conductance between core and air temperatures of zone

i, i = 1, 2 (W/(Km2))
Kw,i thermal conductance of the piping system of zone i, i = 1, 2

(W/(Km2))
Kij thermal conductance between zone i and zone j (W/(Km2))
Ci thermal capacitance of zone i, i = 1, 2 (J/K)
Cr,i thermal capacitance of the slab of zone i, i = 1, 2 (J/K)

The first-order differential equation for the zone air temperature node Ti can be written as:

Ci
dTi
dt

= Kr,i(Tc,i − Ti) +Ki(Ta − Ti) +
∑
j 6=i

Kij(Tj − Ti) + qg,i + qs,i

= −(Kr,i +Ki +
∑
j 6=i

Kij)Ti +Kr,iTc,i +
∑
j 6=i

KijTj + qg,i + qs,i. (5.3)

The model for each zone i has two state variables Ti and Tc,i. It also has three disturbance

variables Ta, qg,i and qs,i. The supply water temperature Tw,i can be regulated (controlled)

or fixed, depending on the control method for the radiant system.

Let us consider n > 1 zones instead of two zones and suppose that Tw,i are constant for

all i. Define the state vector x = [T1, Tc,1, . . . , Tn, Tc,n]T ∈ R2n and the disturbance vector

d = [qg,1, qs,1, . . . , qg,n, qs,n, Ta]
T ∈ R2n+1. Let binary variable ui ∈ {0, 1} denote the running

status of the pump of zone i: ui = 1 if the pump is running and ui = 0 otherwise. Define the

binary vector u = [u1, . . . , un] ∈ {0, 1}n. Then the differential equations (5.1) to (5.3) for all

zones can be combined to give a state-space model of the entire system:

ẋ(t) = (A0 +

n∑
i=1

Aiui(t))x(t) +Bu(t) +Wd(t). (5.4)
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We note that:

• The state matrix of the model depends on u (i.e., switching state matrix) because the

differential equation of the core temperature Tc,i changes with respect to the pump’s

status ui (Equations (5.1) and (5.2)).

• For every value of u, the state matrix is strictly diagonally dominant with negative

diagonal entries, hence it is Hurwitz (Horn and Johnson, 1990).

5.2. Control of Radiant Heating and Cooling Systems

For a hydronic radiant system as in Figure 5.2, the supply water temperature Tw,i and the

mass flow rate (by the pump) are the two manipulatable variables for low level control. The

water temperature can be regulated by using mixing valves, while the mass flow rate can be

changed by variable speed control of the circulation pump. In practice, typically one of these

two controllable variables is fixed, or only changed infrequently, and the other is manipulated.

That is, either the supply water temperature is fixed and variable speed control is used for

the pump, or the pump runs at constant speed and the supply water temperature is varied.

However, both options require continuous operation of the circulation pump, which can result

in high operating cost of the radiant system (i.e., electricity cost of the pump).

5.2.1. Intermittent Operation of Radiant Systems

Intermittent operation of the circulation pump was studied in (Gwerder et al., 2009) for

reducing the energy consumption of radiant systems. Essentially, the supply water tempera-

ture Tw,i is fixed and the circulation pump is either switched off or operated at a constant

speed. Because of the high thermal inertia of the radiant systems, this simple control method

is appropriate for regulating the zone temperature. Furthermore, as the pump no longer runs

continuously, the electricity consumption and electricity cost of the system can be reduced.

In the rest of this chapter, we will use this intermittent control method of the circulation

pump for the radiant system.
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5.2.2. Other Control Methods for Radiant Systems

We briefly review other control methods studied in the literature for radiant systems.

Two-position control is the simplest type of control for radiant systems, in which the system

is switched on or off when the zone temperature reaches certain thresholds. Outdoor reset

control (ORC) is a feedforward control strategy which sets the supply water temperature

accordingly to the ambient air temperature by a predetermined rule (called heating curves).

PID control can be used to set the supply water temperature based on the zone temperature

error and its history.

More advanced control methods have been proposed to control radiant systems to achieve

better performance. Model predictive control was studied in (Lee et al., 2002; Chen, 2002;

Sakellariou, 2011) and was shown to improve the comfort and the energy consumption of

radiant systems. In Beghi et al. (2011), a controller called comforstat was developed to

improve the energy performance of a hydronic radiant heating/cooling system by regulating

the water temperature. A two-parameter switching control strategy was described in Cho

and Zaheer-Uddin (1999) and was shown to achieve better temperature regulation than

simple on-off control.

5.3. Green Scheduling for Peak Demand Reduction in Radiant

Heating and Cooling Systems

As we mentioned in Section 5.1, one benefit of radiant systems is their capability to flatten out

peaks in energy demand. However, intermittent operation of the radiant system causes the

electricity demand of the pump to fluctuate when it is switched on and off. Therefore, the peak

demand reduction benefit of radiant systems is neutralized for a single zone. Furthermore,

in a system of multiple zones, temporally correlated spikes in the energy demand of the

system can occur when multiple circulation pumps are activated simultaneously, as we will

demonstrate in a case study in Section 5.4. This type of situations is exactly the motivation
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of Green Scheduling, about which we discussed back in Section 1.1 in Chapter 1. Therefore,

the Green Scheduling strategies we have developed in this dissertation can be applied to

coordinate the intermittent operation of the pumps so as to reduce the peak energy demand

of a radiant system for multiple zones.

We will present two case studies of Green Scheduling being applied to radiant systems.

In the first case study in Section 5.4, Green Scheduling is implemented for a hydronic

radiant cooling system similar to that described in Section 5.1.1 and illustrated in Figure 5.2.

Simulation results in MATLAB™ will be presented to demonstrate the effective peak demand

reduction achieved by Green Scheduling. Section 5.5 investigates a more realistic case study

of an electric radiant heating system, whose simulation was performed by the high-fidelity

building simulator EnergyPlus. Again, the Green Scheduling approach helped reduce the

peak electricity demand of the radiant system.

5.4. Case Study 1: Hydronic Radiant Cooling System

5.4.1. Description of the Building and Radiant System

In this case study, we consider a building which consists of 10 zones of equal size as illustrated

in Figure 5.4. Five of the zones face north while the other five face south. A hydronic radiant

cooling system is used to satisfy the cooling need of the building. The radiant system has

the same configuration as described in Section 5.1.1 and illustrated in Figure 5.2. That is

each zone is served by a separate piping circuit with its own circulation pump. The supply

water temperature is the same for all zones and is fixed at a predetermined value Tw. Each

pump is operated intermittently, i.e., it can only be either switched off, when the mass flow

rate is 0, or switched on, when the mass flow rate is constant.

For each zone, we used the parameter values from (Gwerder et al., 2008), which are sum-

marized in Table 5.2 on page 151. These are the characteristics of a zone in a typical office

building. Because the parameters in (Gwerder et al., 2008) are for a single zone, while the
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Figure 5.4: Layout of the building considered in the case study in Section 5.4. There are 10 zones: five of
them face north, the other five face south.

considered building has 10 zones, we varied several parameter values for each zone randomly

around the nominal values given in the reference. The range for each of these parameters is

also reported in Table 5.2. For the four corner zones that have two external walls (zones 1, 5,

6 and 10), we increased the thermal conductance Ki accordingly. For thermal comfort of the

occupants, the zone temperatures should stay in the desired range from 22 ◦C to 26 ◦C.

5.4.2. Disturbances

As we presented in Section 5.1.1, there are three disturbance variables affecting each zone,

namely the ambient air temperature Ta, the internal heat gain qg,i (e.g., from occupants,

lights and equipment) and the heat gain qs,i due to solar radiation into the zone. These

disturbances are constrained and their time-varying constraint sets are assumed to be known.

In particular, weather forecast and historical data can give us the range of Ta and the range

of qs,i for each zone i at any given time during the day. The constraint of qg,i for each zone i

can be calculated based on the power rates of the equipment and lights in the zone as well

as its occupants’ schedules. In this case study, we assume the time-varying constraints of Ta,

qg,i and qs,i, for every i ∈ {1, . . . , 10}, as given in Figure 5.5 on page 152. Note that between

the north zones (zones 1 to 5) and the south zones (zones 6 to 10), their solar radiation heat

gain profiles are different, as clearly displayed in Figure 5.5c. In the simulations that follow,

each disturbance signal was generated randomly within its given time-varying constraint.
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Table 5.2: Parameter values for a zone in the case study in Section 5.4.

Space length, width, height 6m× 6m× 3m
Façade area 18m2

Internal-wall area 36m2

Thickness of concrete slab 250mm
Pipe spacing 200mm
External/internal pipe diameter 20/15mm
Mass flow rate (per slab area) 15 kg/(hm2)

Tw,i 18 ◦C
1/Ki [2.1, 2.2] (Km2/W)
1/Kr,i [0.124, 0.130] (Km2/W)
1/Kw,i [0.05, 0.07] (Km2/W)
1/Kij (only for adjacent zones) [0.16, 0.20] (Km2/W)
Ci [1900, 2100] (kJ/K)
Cr,i [3000, 4000] (kJ/K)

Desired zone temperature range [22, 26] (◦C)

5.4.3. Uncoordinated Intermittent Operation

As the baseline control of the radiant system, we considered the uncoordinated intermittent

operation of the pumps. For each zone i, its pump is switched on and off independently of

the other zones and with hysteresis so that its zone temperature is maintained in the desired

range [22, 26]◦C. Whenever the zone temperature Ti is above 26 ◦C, its pump is switched

on so that supply water flows through its piping circuit to cool the slab, hence the zone’s

air. Whenever the zone temperature Ti is below 22 ◦C, its pump is switched off. This simple

control strategy was simulated in MATLAB™ for 24 hours (1 day). The initial temperatures

for all zones were set to 27 ◦C. The resulted air temperature T1 and core temperature Tc,1 of

zone 1 are plotted in Figure 5.6 on page 153.

As obviously seen in Figure 5.6, an issue with the simulation result is that the zone temperature

T1 dropped below the lower threshold 22 ◦C, to as low as about 21 ◦C, twice during the

day. For example, between point A and point B in the figure, T1 was below 22 ◦C for more

than 5 hours. This phenomenon can be explained by the high thermal inertia of the radiant
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Figure 5.5: Time-varying constraints of the disturbances affecting each zone in the case study in Section 5.4.

system. When the circulation pump was switched off (point A), the slab stopped being

cooled; however the core temperature was still significantly below the zone temperature,

causing the air to continue being cooled. Therefore the zone temperature dropped below

the lower threshold and only started rising up after several hours, when the zone and core

temperatures were sufficiently close.

To avoid the above problem, we increased the lower threshold for control, at which the pump

will be switched off, by 1 ◦C to 23 ◦C. The new simulation results are reported in Figure 5.7

on the following page. Clearly the zone temperature T1 was driven to and maintained within

the desired range (the gray-filled area in the figure), hence it was safe.

We now report the peak power demand and the total energy consumption of this control

strategy. Because we did not have the power rating information of the pumps used in

(Gwerder et al., 2008), we assumed a normalized power demand of 1 power unit for each
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Figure 5.6: Air and core temperatures of zone 1 for the simulation of the uncoordinated intermittent
operation in the case study in Section 5.4. The safety requirement was not satisfied as the zone temperature
T1 dropped below 22 ◦C between points A and B.
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Figure 5.7: Simulation results for the safe uncoordinated intermittent operation in the case study in
Section 5.4. The zone temperature T1 was driven to and maintained within the desired range (gray-filled
area), hence it was safe.

pump. The pumps were also assumed to be identical. The actual power results can be

obtained by scaling the normalized results by the actual power rate of the pumps. Figure 5.8

on the next page shows the normalized total power demand of all the pumps. Evidently, the

demand fluctuated significantly during the day. It attained a very high peak of 9 during the

on-peak hours between around 3:30 PM and around 5:45 PM. Thus, under a demand-based

electricity pricing policy (cf. Section 1.1), it would incur a high demand cost. The total

energy consumption of the pumps was 62.5 (power unit × hour).
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Figure 5.8: Total power demand of the pumps for the simulation of the uncoordinated intermittent
operation in the case study in Section 5.4. The demand fluctuated significantly and attained a high peak
of 9 during the on-peak hours.

5.4.4. Green Scheduling Implementation

To flatten out the high peak demand incurred by the uncoordinated intermittent operation

of pumps, we applied the Green Scheduling approach developed in the previous chapters.

A state-space model of the radiant system and the zones can be obtained as presented

in Section 5.1.1. The model has 20 state variables, 10 binary control inputs (the pumps’

operation status), and 21 disturbance variables (internal and solar heat gains, and ambient

air temperature). In addition, the state matrix of the model depends affinely on the pumps’

control inputs u. Therefore the model is a switched affine system (cf. Equation (1.10)).

Because the disturbances were significant and their constraints were time-varying, we did

not use the periodic scheduling approach but the feedback scheduling approach based on

attracting sets (Section 4.3). Furthermore, we assumed that at any time, one-hour predictions

of the disturbances’ constraints were available to the scheduler. Therefore, we applied the

improved feedback scheduling strategy with disturbance prediction, presented in Section 4.3.6.

Following the schedulability analysis in Section 2.5, the peak constraint on the control inputs u

was calculated to be k = 2 at all time. The self-triggered scheduling algorithm (Algorithm 4.4

on page 117) was then implemented for the radiant system. A MATLAB™ simulation was

performed for 24 hours with the same disturbance profiles and the same initial temperatures
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Figure 5.9: Simulation results for the self-triggered Green Scheduling algorithm with one-hour disturbance
predictions in the case study in Section 5.4. The zone temperature T1 was driven to and maintained
within the desired range (gray-filled area), hence it was safe.

as in Section 5.4.3. We note that in each iteration of the self-triggered scheduling algorithm,

the delay time was always computed to be over 1 hour but was shortened to 1 hour due to

the one-hour-horizon of the disturbance predictions.

Figure 5.9 on the current page plots the simulation results for Green Scheduling. It is clear

that the temperature of zone 1 (Figure 5.9a) was safe as it was driven to and maintained

inside the desired range (the gray-filled area in the figure). Compared to the uncoordinated

scheduling, the pump of zone 1 was switched on and off twice as often, however its switching

frequency was still slow (less than once every 3 hours).

The total power demand of the pumps is plotted in Figure 5.10 on the following page in

comparison with that for the uncoordinated intermittent operation in Section 5.4.3. Evidently,

the peak demand incurred by Green Scheduling was flattened out and was significantly smaller

than that of uncoordinated scheduling. In fact, the demand of Green Scheduling was constant

at 2 for most of the day, until 9 PM after which it was reduced to 1 and then 0. The peak

demand and total energy consumption of both scheduling strategies are compared in Table 5.3

on the next page. By applying Green Scheduling to the radiant system, we saved 80% in

peak demand and 31.2% in total energy consumption. Under a demand-based electricity

tariff, this would amount to a large saving in electricity cost.
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Figure 5.10: Total power demand of the pumps for the simulation of the Green Scheduling strategy in the
case study in Section 5.4. The Green Scheduling’s demand curve was flattened out and was constant for
most of the day. The peak demand was reduced significantly compared to the uncoordinated scheduling
strategy, from 10 down to 2.

Table 5.3: Comparison of the peak demand and total energy consumption of the Green Scheduling strategy
and the uncoordinated scheduling strategy. Green Scheduling helped reduce the peak demand by 80%
and the total energy consumption by 31.2%.

Normalized peak demand Normalized energy consumption

Uncoordinated control 10 62.5
Green Scheduling 2 (-80%) 43 (-31.2%)

5.5. Case Study 2: Electric Radiant Heating System in Energy-

Plus

Much of the content of this section is adapted from our previous work (Nghiem et al., 2012b).

5.5.1. Description of the Building and Radiant System

In this case study, we considered a single floor, L-shaped building divided into 3 interior

conditioned zones as shown in Figure 5.11 on the following page. There is a single window in

the West zone South wall. An electric low temperature radiant system is used for heating the

floor of each zone, with power ratings of 12kW, 8kW and 8kW for the North, West and East

zones respectively. The floor of each zone consists of a slab of high thermal capacity below

which the radiant heat source is embedded. The actuation is on-off, i.e., the radiant system

in each zone can be either switched on, when it provides its maximal heating power rate, or
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Figure 5.11: 3-D building model for the case study in Section 5.5.

switched off, when it provides no heating power. The temperature of each zone was desired

to be between 22 ◦C and 24 ◦C. The ambient air temperature profile was of Chicago, IL,

USA. The disturbances due to internal heat gain and solar radiation heat gain were different

for every zone and time-varying.

An EnergyPlus model of the building was modified from an example distributed with

EnergyPlus version 7.0. EnergyPlus is a standard energy analysis and thermal load simulation

program, developed by the U.S. Department of Energy. It is designed for modelling building

heating, cooling, lighting, ventilating, and other energy flows. EnergyPlus uses complex

and detailed models for realistic building simulations. Therefore it can achieve high-fidelity

simulations of building energy systems.

In this case study, we used the EnergyPlus model as the ground truth for the building, i.e.,

it was considered as the “real” building. System identification of the building model and

implementation of controllers for the building’s radiant heating system were carried out in

MATLAB™, while thermal simulation of the building was performed in EnergyPlus. We

used an in-house developed tool called MLE+ (Nghiem, 2011) to interface MATLAB™ with

EnergyPlus for co-simulation.
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5.5.2. Model Identification

Since the internal thermal model of the EnergyPlus model is not accessible from outside

EnergyPlus, our first step was to identify a linear model for the building. The disturbances

were considered to be the ambient air temperature, the internal heat gains for each zone, and

the solar radiation for the West zone (the only zone with a window). Instead of identifying

the physical parameters of the state-space model described in Section 5.1.1, we used the

black-box system identification approach. The model obtained by this approach does not

base on first principles or physical laws of the thermal process, therefore its parameters might

not have a physical interpretation.

In particular, randomly generated binary control signals were used to excite the Energy-

Plus model of the building via MLE+ and the resulted zone temperatures were recorded

and imported into MATLAB™ as time series. Several such controlled experiments on the

EnergyPlus building model were carried out for 5 days in January. The System Identification

Toolbox (The MathWorks, 2009) of MATLAB™ was used to estimate a building model from

the experiment data.

The identified model was then validated on January 14, which was not one of the experiment

days. Figure 5.12 on the next page plots the measured (in EnergyPlus) and simulated

(in MATLAB™) mean air temperatures of the zones on the validation day. The simulated

outputs fit the measured outputs with accuracies of 84.24%, 76.89% and 84.26% for the West,

East, and North zones respectively.

5.5.3. Green Scheduling Implementation

We applied the Green Scheduling approach developed in previous chapters to the case study

on the validation day. The heating schedule of the EnergyPlus model specifies that the

heating system is switched off during the night from 6 PM to 6 AM, then is switched on to

pre-heat the building from 6 AM to 8 AM, and is in normal operation mode from 8 AM to 6

PM (the working hours of the building). Therefore, we used green scheduling for controlling
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Figure 5.12: Validation of the identified model for the case study in Section 5.5. Plotted are the measured
(in EnergyPlus) and simulated (in MATLAB™) mean air temperatures of the West zone (top left), the
East zone (top right) and the North zone (bottom).

the radiant heating systems of the building from 8 AM to 6 PM.

Similarly to the previous case study, we first tried the feedback scheduling approach based

on attracting sets. However, we failed to derive a safe scheduling strategy for the system

using this approach. This failure could be attributed to the identified black-box model,

on which the scheduling algorithm heavily relies. Firstly, the accuracy of the identified

model was inadequate for the scheduling algorithm. Secondly, the scheduling algorithm uses

state feedback but, in our experiments, the state variables of the black-box model were not

accurately estimated from the mean air temperatures of the zones by a Kalman filter2. For

this reason, we used instead the periodic Green Scheduling approach for this case study.

As the periodic Green Scheduling approach developed in Chapter 3 does not directly handle

time-varying disturbances, we used nominal values of the disturbances to derive periodic

schedules. In this case study, disturbance prediction was used to derive these nominal values.

2Based on the identified model, we designed a Kalman filter in MATLAB™ to estimate the state of the
system from its outputs.
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Figure 5.13: Disturbance profiles for the case study in Section 5.5.

According to the weather profile (Figure 5.13a on this page), the ambient air temperature

varied around −5 ◦C between 8 AM and 6 PM, thus we used −5 ◦C as the nominal value for

Ta. Based on the occupancy and equipment schedules, the internal heat gain of each zone

can be predicted, and we chose its nominal value to be 600W, 700W, and 800W for the

West, East, and North zones respectively. For the predicted solar radiation gain to the West

zone (the only zone with a window), we noticed a significant increase at around 1 PM due

to the window’s direction, from under 200W to over 1000W (Figure 5.13b on the current

page). Therefore, we chose two different nominal solar radiation gains: 100W before 1 PM

and 600W after 1 PM (both were averaged values for the respective intervals).

On inspecting the predicted disturbances, we decided to synthesize two periodic schedules:

one to be used before 1 PM and one after 1 PM. Their parameters are reported in Table 5.4 on

the following page. Notice that the time period δ were both 60 minutes, which were reasonably

large. Total computation time was less than 1 s for each case. Because the computation

is fast, instead of using disturbance prediction, we could monitor the environment (e.g.,

ambient air temperature and occupancy) and regenerate the schedule on the fly whenever

there is a significant change in the disturbances.

5.5.4. Simulation Results

The periodic schedules were implemented in MATLAB™ and interfaced with the building

energy simulation in EnergyPlus via MLE+. For comparison, we also implemented the
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Table 5.4: Two periodic schedules for the case study in Section 5.5.

Schedule k η δ (min) Nominal disturbances

Before 1 PM 2 [0.35, 0.42, 0.45] 60 T a = −5 ◦C, qg,west = 600W,
qg,east = 700W, qg,north = 800W,
qs,west = 100W

After 1 PM 1 [0.05, 0.19, 0.31] 60 T a = −5 ◦C, qg,west = 600W,
qg,east = 700W, qg,north = 800W,
qs,west = 600W
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Figure 5.14: Simulation results of the case study in Section 5.5: zone temperatures for periodic green
scheduling (left) and for uncoordinated on-off scheduling (right).

uncoordinated on-off scheduling strategy, where the radiant system in each zone was controlled

by an individual two-position thermostat. The thermostats worked independently of each

other. Zone temperatures from the simulations are plotted in Figure 5.14 on the current

page. In both cases, zone temperatures were kept in the desired range between 22 ◦C and

24 ◦C. We observed that the curve of electricity demand for the uncoordinated scheduling

strategy had several high spikes while that for the green scheduling strategy was flatten out

(Figure 5.15 on the following page). For green scheduling, the effect of switching from the

first schedule (peak constraint k = 2) to the second schedule (peak constraint k = 1) at 1

PM can be seen clearly in Figure 5.14 and Figure 5.15. In total, green scheduling helped

save 8% in electricity consumption and reduce peak demand by 42.9% (Table 5.5 on the next

page). There was a decrease in the total energy consumption since the periodic schedule

tended to operate at a lower mean temperature than uncoordinated scheduling, as can be

observed in Figure 5.14.
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Figure 5.15: Electricity demands of the periodic green scheduling and the uncoordinated on-off scheduling
for the case study in Section 5.5.

Table 5.5: Peak demand and total energy consumption of the periodic green scheduling and the uncoordi-
nated on-off scheduling for the case study in Section 5.5.

Uncoordinated Green scheduling (% saved)

Consumption (kWh) 93.2 85.7 (8.0%)
Peak demand (kW) 28.0 16.0 (42.9%)

5.6. Conclusions

In this chapter, we applied the theory of Green Scheduling developed in the earlier chapters

to the intermittent operation of radiant heating and cooling systems in buildings. As the

pumps (for hydronic radiant systems) or the electric resistance wires (for electric radiant

systems) are only switched on and off, a building of multiple such systems can incur high

peaks in its energy demand if the systems are operated independently of each other. The

Green Scheduling approach were shown to be effective to reduce the total peak demand of

the radiant systems while ensuring thermal comfort in the zones is always maintained.

We considered two case studies. In the first case study of a hydronic radiant cooling system

modeled in MATLAB™, the self-triggered feedback scheduling approach based on attracting

sets (Section 4.3) was used to derive a safe scheduling strategy for the system. The peak

demand and the total energy consumption were reduced significantly. However, this feedback

scheduling algorithm relies on an accurate model of the system, both for computing the

control actuation and for estimating the system’s state (if the state cannot be measured
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directly). Failure to satisfy this requirement causes failure to apply the feedback scheduling

algorithm, as we showed in the second case study. In contrast, while the periodic Green

Scheduling approach is not as flexible as the feedback scheduling approach, it does not require

an accurate model of the system. Periodic scheduling was implemented successfully for the

second case study to reduce peaks in the electricity demand of the system. In addition, the

light computation of the periodic scheduling algorithm allows it to be adjusted quickly on

the fly when the environment changes significantly.
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Chapter 6

Conclusions

6.1. Summary of Contributions

We proposed an approach to the peak demand reduction problem by scheduling multiple

interacting control systems within a constrained peak demand envelope while ensuring that

safety and operational conditions are facilitated. The peak demand envelope was formulated

as a constraint on the number of binary control inputs that can be activated simultaneously.

We called this approach Green Scheduling.

Using two different approaches, namely periodic scheduling and feedback scheduling based on

attracting sets, we established a spectrum of sufficient and necessary schedulability conditions

for various classes of affine dynamical systems in Chapter 2. Depending on whether the

systems are decoupled or coupled and whether disturbances are present, an appropriate

method can be selected. We showed by numerical examples that these schedulability analysis

methods were scalable for large-scale systems with 1000 control inputs or even more.

Once the schedulability of the Green Scheduling system has been established, it is desirable

to synthesize scheduling algorithms that can safely control the system within the given

peak demand envelope. To this end, we first developed in Chapter 3 a periodic scheduling

synthesis method for Green Scheduling systems without disturbances. Through numerical

simulations, the method was shown to be effective and scalable for large-scale systems.

However, it does not directly take into account the influence of disturbances on the system.

We then improved the periodic scheduling algorithm to make it robust to disturbances

while preserving the simplicity and scalability of periodic scheduling. This improvement was

discussed in Section 4.2, together with the development of event-triggered and self-triggered

algorithms for reducing the frequent switching of control inputs. Taking another approach
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based on attracting sets and robust control Lyapunov functions, we developed in Section 4.3

event-triggered and self-triggered scheduling algorithms that could handle large disturbances

affecting the Green Scheduling system. Through simulations, these new algorithms were

demonstrated to be scalable and flexible as they could exploit prediction of the disturbances

to improve their performance. Finally, backward reachability analysis was used in Section 4.4

to develop a scheduling method for discrete-time Green Scheduling systems. This discrete-

time scheduling algorithm can handle more sophisticated system’s dynamics and safety

specifications. However, it also has very high computational requirements and is thus only

applicable to small-scale systems.

In the last chapter, Chapter 5, we applied the results developed in previous chapters to

scheduling of radiant heating and cooling systems for peak demand reduction. Through two

case studies, one in MATLAB™ and one in co-simulation with EnergyPlus, we demonstrated

the effectiveness of the Green Scheduling approach in reducing the peak demand and the

total energy consumption of the radiant systems while maintaining thermal comfort for

occupants. These case studies also showed the advantages and limitations of the established

scheduling methods. While the state feedback scheduling algorithms are more robust and

more flexible, they require an accurate model of the system. On the other hand, the periodic

scheduling algorithm is applicable even when we do not have a very good system’s model,

but it is less robust to disturbances and less flexible.

6.2. Future Work

In this work, we have established the foundational theory for Green Scheduling: the schedu-

lability analysis and several centralized Green Scheduling algorithms. Although several

developed scheduling algorithms are scalable, there are limitations to how large a system

a centralized algorithm can handle. Moreover, in many practical large-scale systems, the

subsystems are distributed either physically or logically, or both. Therefore, an important

future extension of Green Scheduling is the development of distributed and hierarchical

scheduling algorithms. Extension of the theoretical results for Green Scheduling to other
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classes of systems, e.g., multi-mode systems and nonlinear systems, will be addressed.

While we developed the theoretical results in this dissertation, the main focus was on the

peak constraint and the safety specifications. We have largely ignored the performance aspect

of the system, for example the optimality with respect to some cost function. This cost

function can represent the actual cost of operating the system. For future work, we will

investigate the performance assessment of Green Scheduling systems and Green Scheduling

algorithms. We will also explore other approaches to the Green Scheduling problem, for

instance using Game Theory and Mechanism Design, or a multi-agent-based approach.
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Appendix A

Proofs

A.1. Proofs of Chapter 2

A.1.1. Proof of Theorem 2.1

Proof The proof is by contradiction. Assume that the system is schedulable. Let x(0) ∈ X0

be any initial state. Then, by Definition 2.1, there exists a schedule u(·) or a scheduling

strategy κ(x) and a finite time τ ≥ 0 such that x(t) ∈ Safe ∀t ≥ τ . By condition (2.3a) we

have that

g(x(t)) ≥ 0 ∀t ≥ τ . (A.1)

By condition (2.3b), at any time t ≥ τ , there exists an admissible disturbance input d(t) ∈ D

such that d
dt g(x(t)) = ∇g(x(t))·f(x(t), u(t), d(t)) ≤ −ε. Therefore, there exists an admissible

disturbance signal d(·) such that along the flow of the system1, g(x(t)) always decays at a

rate at least −ε after time instant τ . Since g is differentiable, it is continuous. Furthermore,

Safe is compact, thus g is bounded on Safe, that is there exists a finite number M such that

|g(x)| ≤ M ∀x ∈ Safe. It follows that for all t > M
ε + τ , g(x(t)) ≤ g(x(τ))− ε (t− τ) < 0,

which contradicts inequality A.1. Therefore the system must be non-schedulable. �

A.1.2. Proof of Lemma 2.1

Proof For the sake of clarity, we drop the subscript i in this proof; all variables and

parameters herein implicitly refer to those with the subscript i. First, note that 0 < η < η < 1

due to Equation (2.6) on page 25, thus η satisfying η < η < η always exists. Define

y(j) := x(jδ) and z(j) := x((j+ η)δ) for j ∈ N, corresponding to the state values at the time

1For a more detailed proof, see (Girard and Pappas, 2007a, Theorem 2) or the proof of Theorem 2.9 in
Appendix A.1.9 on page 182.
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instants when u switches either from 0 to 1 or from 1 to 0. It follows from the monotonicity

of the dynamics in Assumption 2.1 that x(t) is bounded between the sequences {y(j)}j∈N
and {z(j)}j∈N. We will show that these sequences are convergent and their limits depend on

the values of η and δ.

From the dynamics in Equation (2.4), the sequence {y(j)}j∈N is given by

y(0) = x(0) and y(j + 1) = A(δ)y(j) +By(δ), ∀j ∈ N (A.2)

where

A(δ) = e−δ(aoff(1−η)+aonη)

By(δ) = e−aoff(1−η)δ

(
bon

aon

(
1− e−aonηδ

)
− boff

aoff

)
+
boff

aoff

in which A and By depend only on δ since η is given. Observe that Equation (A.2)

characterizes a discrete-time linear system. Because δ > 0, aoff > 0, aon > 0 and 0 < η < 1,

we have 0 < A(δ) < 1. From linear system theory (Rugh, 1996), the sequence {y(j)}j∈N is

monotonic and asymptotically converges to α(δ) = By(δ)/(1−A(δ)). Similarly, the sequence

{z(j)}j∈N is monotonic and asymptotically converges to β(δ) = Bz(δ)/(1−A(δ)) where

Bz(δ) = e−aonηδ

(
boff

aoff

(
1− e−aoff(1−η)δ

)
− bon

aon

)
+
bon

aon
.

By simple calculations, we can verify that

Bz(δ)−By(δ) =

(
bon

aon
− boff

aoff

)(
1− e−aoff(1−η)δ

)(
1− e−aonηδ

)
> 0

in which the inequality (2.6) is used. Hence, β(δ) > α(δ). Furthermore, in the limit, x(t) is

bounded in the interval [α(δ), β(δ)] (cf. Figure 2.3 on page 27). Therefore, we only need to

find δ so that [α(δ), β(δ)] ⊂ [l, h], i.e., α(δ) > l and β(δ) < h.
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The limit α(δ): Function α(δ) on the domain {δ > 0} is continuous and, by L’Hôpital’s

rule, has

lim
δ→0+

α(δ) = lim
δ→0+

By(δ)

1−A(δ)
= lim

δ→0+

By(δ)

(1−A(δ))′
=
bonη + boff(1− η)

aonη + aoff(1− η)

From η > η and the definition of η (Equation (2.8) on page 28), we have

aoff l − boff

(aoff l − boff)− (aonl − bon)
= η < η ⇔ aoff l − boff < ((aoff l − boff)− (aonl − bon)) η

⇔ (aonη + aoff(1− η)) l < bonη + boff(1− η)

⇔ l <
bonη + boff(1− η)

aonη + aoff(1− η)
.

Thus limδ→0+ α(δ) > l. Therefore, there exists δy > 0 such that 0 < δ < δy implies α(δ) > l.

The limit β(δ): Similarly, there exists δz > 0 such that 0 < δ < δz implies β(δ) < h.

Let δ? = min{δy, δz} > 0. We will prove that with any 0 < δ < δ?, there exists a finite τ ≥ 0

such that x(t) ∈ [l, h] ∀t ≥ τ . Evidently, l < α(δ) < β(δ) < h. Select any ε > 0 satisfying

ε ≤ min{α(δ)− l, h− β(δ)}. Then the convergence of {y(j)}j∈N and {z(j)}j∈N guarantees

that there exists a finite time τ > 0 such that for all j ≥ τ
δ , y(j) and z(j) are in the interval

[α(δ)− ε, β(δ) + ε] ⊆ [l, h]. This implies that x(t) ∈ [l, h] ∀t ≥ τ . �

A.1.3. Proof of Theorem 2.2

Proof We prove this Theorem by constructing a safe δ-periodic schedule u(·) that satisfies

the peak constraint. By Lemma 2.1, for each i, there exists δ?i > 0 such that for any

0 < δ < δ?i , the δ-periodic schedule ui(·) specified in Equation (2.7) on page 27 will realize

the state variable xi safe. The time period δ is chosen so that 0 < δ < min{δ?1 , . . . , δ?n}.

Because
∑n

i=1 ηi < k we can always select utilization values ηi so that η
i
< ηi < ηi for each

i and that
∑n

i=1 ηi ≤ k. We then distribute n non-overlapping right-open intervals, each of

length ηi respectively, into the interval [0, k] on the real line (Figure A.1a on the current
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(a) Distribution of n non-overlapping intervals into [0, k].
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(b) Timing diagram of the constructed schedules ui(·) from the interval
distribution: r1 = s1, r2 = s2, r3 = s3−1. At any time t, ‖u(t)‖1 ≤ k = 2.

Figure A.1: Illustration of the construction of safe periodic schedules for n = 3 and k = 2.

page). Let interval i be [si, si + ηi) ⊆ [0, k]. Since
∑n

i=1 ηi ≤ k, such a distribution is always

possible. Each control input ui(·) is then constructed as

ui(t) =


1 if (ri + j) δ ≤ t < (ri + j + ηi) δ, j ∈ N

0 otherwise

in which ri := si−bsic ∈ [0, 1). That is, ui(·) is δ-periodic of the form in Equation (2.7) after

some initial delay riδ which does not exceed one time period δ. Because the delay is finite,

the safety of the resulted trajectory is not affected. Figure A.1b on this page illustrates this

construction for n = 3 and k = 2.

We will show that the constructed schedules satisfy the peak constraint ‖u(t)‖1 ≤ k for all

t ≥ 0. Consider any time t = (j+ τ)δ where j ∈ N and 0 ≤ τ < 1. By construction, ui(t) = 1

if and only if the interval [si, si + ηi) contains one of the points {τ, 1 + τ, . . . , k − 1 + τ},

and only one point since ηi < 1. Because these intervals are non-overlapping in [0, k], the

number of control inputs ui(t) that are 1, i.e., ‖u(t)‖1, is equal to the number of points

{τ, 1 + τ, . . . , k − 1 + τ} that lie in those intervals. Since there are at most k of these points,

‖u(t)‖1 ≤ k. �
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A.1.4. Proof of Theorem 2.3

Proof Define a differentiable function g : X → R of state as

g(x) =
n∑
i=1

η
i

aoff,ili − boff,i
(xi − li)

Because η
i
> 0 and aoff,ili − boff,i > 0 for each i (cf. Equation (2.6) on page 25), it is

straightforward to see that g(x) ≥ 0 for all x ∈ Safe = [l1, h1]× · · · × [ln, hn].

Consider the time derivative of g along the flow of the dynamics (cf. Equation (2.3b) on

page 24)

∇g(x) · f(x, u) =
n∑
i=1

η
i

aoff,ili − boff,i
fi(xi, ui)

for x ∈ Safe and u ∈ U , in which fi(xi, ui) is the right-hand side of the differential

equation (2.4) on page 25. When ui = 0, we have

η
i

aoff,ili − boff,i
fi(xi, ui) = η

i

−aoff,ixi + boff,i

aoff,ili − boff,i
≤ η

i

−aoff,ili + boff,i

aoff,ili − boff,i
= −η

i

while when ui = 1 we have

η
i

aoff,ili − boff,i
fi(xi, ui) = η

i

−aon,ixi + bon,i

aoff,ili − boff,i
≤ η

i

−aon,ili + bon,i

aoff,ili − boff,i
= 1− η

i

In the above calculations, we used the definition of η
i
in Equation (2.8) on page 28. It

follows that for all u ∈ U (i.e., ‖u‖1 ≤ k) ∇g(x) · f(x, u) ≤ k−∑n
i=1 ηi. If

∑n
i=1 ηi < k then

∇g(x) · f(x, u) ≤ −ε where ε =
∑n

i=1 ηi − k > 0. By Theorem 2.1 on page 24, the system is

not k-schedulable.

In the special case when
∑n

i=1 ηi = k, the time derivative of g(x(t)) is zero if and only if all

of the above inequalities are equalities, that is

• ‖u‖1 = k, i.e., exactly k of ui are 1; and

171



• xi = li for all i.

Because each xi always either increases or decreases at li (Equation (2.5)), the above equalities

do not hold most of the time. Therefore, g(x(t)) will almost always decrease as long as

x(t) ∈ Safe, regardless of u(t). By the proof of Theorem 2.1, we can conclude that if∑n
i=1 ηi = k then the system is not k-schedulable. �

A.1.5. Proof of Lemma 2.3

Proof Because state matrix A is Hurwitz, there exist positive constants α, β such that∥∥eAt
∥∥ ≤ βe−αt for all t ≥ 0. It follows from the state error solution in Equation (2.14) on

page 38 that for any t ≥ 0,

‖ξ(t)‖ =

∥∥∥∥∥
(
σ−1∑
i=0

eA(t−(i+1)δ)

)
ξδ + ξ(t− σδ)

∥∥∥∥∥
≤
(
σ−1∑
i=0

∥∥∥eA(t−(i+1)δ)
∥∥∥) ‖ξδ‖+ ‖ξ(t− σδ)‖ . (A.3)

The matrix norm inside the sum is bounded by
∥∥eA(t−(i+1)δ)

∥∥ ≤ βe−α(t−(i+1)δ). Therefore,

σ−1∑
i=0

∥∥∥eA(t−(i+1)δ)
∥∥∥ ≤ β σ−1∑

i=0

e−α(t−(i+1)δ) = βe−α(t−σδ)
σ−1∑
i=0

e−iαδ

where e−α(t−σδ) ≤ 1 because σ = bt/δc ≤ t/δ, hence

σ−1∑
i=0

∥∥∥eA(t−(i+1)δ)
∥∥∥ ≤ β 1− e−σαδ

1− e−αδ
≤ β 1

1− e−αδ
. (A.4)

From Equation (2.12) on page 37 we have

ξ(t− σδ) =

∫ t−σδ

0
eA((t−σδ)−s)B (u(s)− η) ds.

Consider the term B (u(s)− η). Because u(s) is a binary vector of length m, there are
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only a finite number of possible values of u(s). It follows that ‖B (u(s)− η)‖ is bounded

above by some finite constant γ, that is ‖B (u(s)− η)‖ ≤ γ for all s ≥ 0. The last term in

Equation (A.3) can then be bounded by:

‖ξ(t− σδ)‖ ≤
∫ t−σδ

0

∥∥∥eA((t−σδ)−s)
∥∥∥ ‖B (u(s)− η)‖ ds

≤ γβ
∫ t−σδ

0
e−α((t−σδ)−s) ds

=
γβ

α

(
1− e−α(t−σδ)

)
≤ γβ

α
α (t− σδ)

≤ γβδ (A.5)

in which we use the inequality 1− e−x ≤ x for all x ≥ 0, and the fact that 0 ≤ t− σδ < δ.

The same bound could have been used for ‖ξδ‖, however it would make the bound in

Equation (A.3) not go to 0 as δ → 0, which is undesirable. A better bound for ‖ξδ‖ can be

achieved by rewriting ξδ as:

ξδ =

∫ δ

0
eA(δ−s)B (u(s)− η) ds

=

∫ δ

0

(
eA(δ−s) − I

)
B (u(s)− η) ds+B

∫ δ

0
(u(s)− η) ds

and noting that
∫ δ

0 (u(s)− η) ds = 0 by definition of the utilization vector, and that eA(δ−s)−

I =
(∫ δ−s

0 eAv dv
)
A, hence

=

∫ δ

0

(∫ δ−s

0
eAv dv

)
AB (u(s)− η) ds.

The inner integral is bounded by

∥∥∥∥∫ δ−s

0
eAv dv

∥∥∥∥ ≤ ∫ δ−s

0

∥∥eAv
∥∥ dv ≤ β ∫ δ−s

0
e−αv dv =

β

α

(
1− e−α(δ−s)

)
≤ β(δ − s).
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Therefore,

‖ξδ‖ ≤
∫ δ

0

∥∥∥∥∫ δ−s

0
eAv dv

∥∥∥∥ ‖A‖ ‖B (u(s)− η)‖ ds

≤ ‖A‖ γβ
∫ δ

0
(δ − s) ds

=
1

2
‖A‖ γβδ2. (A.6)

Combining bounds (A.3) to (A.6) gives us the upper-bound in Lemma 2.3. �

A.1.6. Proof of Theorem 2.6

Proof Condition 2 implies that there exists ε > 0 such that B(x?, ε) ⊆ Safe where

x? = −A−1 (B0 +Bη) is the equilibrium of the average system (2.10). Because the average

system is uniformly exponentially stable, for any initial state x0 = x0, there exists a finite

Tε,x0 ≥ 0 such that ‖x(t)− x?‖ < ε
2 for all t ≥ Tε,x0 . Also, by Lemma 2.4, there exists

δε > 0 such that for any δ-periodic control signal u(·) with 0 < δ ≤ δε and with utilization

η, ‖x(t)− x(t)‖ < ε
2 for all t ≥ 0. Therefore ‖x(t)− x?‖ < ε, hence x(t) ∈ Safe, for all

t ≥ Tε,x0 . Condition 1 implies that there exist δ-periodic control signals u(·) satisfying

‖u(t)‖1 ≤ k for all t ≥ 0 (cf. Appendix A.1.3). This concludes the proof. �

A.1.7. Proof of Theorem 2.7

Proof Define P ⊂ X to be the set of all equilibrium points of the average system for all

values of η

P := {−A−1 (B0 +Bη) : η ∈ [0, 1]m, ‖η‖1 ≤ k}.

It is straightforward to verify that the set {η : η ∈ [0, 1]m, ‖η‖1 ≤ k} is convex and

compact, hence P as an affine image of this set is also convex and compact (Boyd and

Vandenberghe, 2006; Kreyszig, 1989). The safe set Safe is convex and compact by assumption

(cf. Section 2.4.1).
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Suppose there is no utilization vector η satisfying −A−1 (B0 +Bη) ∈ Safe. Then P and

Safe are disjoint. The separating hyperplane theorem (see Boyd and Vandenberghe, 2006,

sec. 2.5) states that for any two disjoint non-empty convex sets, one of which is compact

and the other is closed, there exists a hyperplane that strictly separates them. Therefore,

there exist a vector a 6= 0 and numbers b and ε > 0 such that aTx ≤ b− ε ∀x ∈ Safe and

aTx ≥ b ∀x ∈ P. Define the differentiable function g : X → R of state as g(x) := αTx− β

where αT = aTA−1 6= 0 and β = infx∈Safe αTx is finite as Safe is bounded. It is obvious

that g(x) ≥ 0 for all x ∈ Safe. Its time derivative along the flow of the dynamics (2.9) is

ġ(x(t)) = αT (Ax(t) +B0 +Bu(t))

= aT
(
x(t) +A−1(B0 +Bu(t))

)
= aTx(t)− aT

(
−A−1(B0 +Bu(t))

)
which satisfies the inequality ġ(x(t)) ≤ b− ε− b = −ε, ∀x(t) ∈ Safe ∧ ∀u(t) ∈ U , due to the

property of the strictly separating hyperplane. By Theorem 2.1 on page 24, the system is

not k-schedulable. �

A.1.8. Proof of Lemma 2.5

To prove Lemma 2.5, we will need the following preliminary result about the integral of the

product of a continuous, exponentially bounded function and a zero-mean periodic function

under fast switching.

Lemma A.1 Let fδ : R+ → R and gδ : R+ → R be two families of functions parameterized

by δ > 0. Let δ? > 0 be such that for all δ ≤ δ?,

1. fδ is continuous.

2. fδ is piecewise differentiable and its derivative is globally bounded by γ > 0, i.e.,

|f ′δ(t)| ≤ γ for all t ≥ 0 where f ′δ(t) exists.

3. fδ(t) ≤ βe−αt ∀t ≥ 0 where α and β are two positive numbers independent of δ.
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4. gδ is piecewise continuous and globally bounded by χ > 0, i.e., |gδ(t)| ≤ χ ∀t ≥ 0.

5. gδ has zero mean on every interval [iδ, (i+1)δ], i.e.,
∫ (i+1)δ
iδ gδ(σ) dσ = 0 for all integers

i ≥ 0. 2

Then for any ε > 0, there exists δε > 0 such that for all 0 < δ ≤ δε,

∣∣∣∣∫ t

0
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ ε ∀t ≥ 0. (A.7)

Proof Given any ε > 0. Let

θ =
ε

2χ

1− e−αδ
?

δ?
> 0

and

tθ =
1

α
log

2β

θ
.

Without loss of generality, assume ε is small enough so that θ < 2β and thus tθ > 0. It is

obvious that tθ satisfies |fδ(t)| ≤ βe−αt ≤ θ/2 for all t ≥ tθ and all δ ≤ δ?. Let

ζ =
γ

2

(√
t2θ +

ε

γχ
− tθ

)
> 0

and

δε = min

{
ζ

γ
,
ε

4βχ
, δ?
}
> 0.

We will show that for all δ ≤ δε, inequality (A.7) is satisfied.

Consider any δ ≤ δε and any t ≥ 0. Because δ ≤ δε ≤ δ?, all the hypotheses of the lemma

hold. Let s = bt/δc ≥ 0 that verifies t − sδ < δ ≤ δε ≤ ε
4βχ . The integral in (A.7) can be

written as

∫ t

0
fδ(σ)gδ(σ) dσ =

s−1∑
i=0

∫ (i+1)δ

iδ
fδ(σ)gδ(σ) dσ +

∫ t

sδ
fδ(σ)gδ(σ) dσ

in which the sum of integrals vanishes if s = 0. Hypotheses 3 and 4 implies that the second
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integral is bounded

∣∣∣∣∫ t

sδ
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ ∫ t

sδ
|fδ(σ)| |gδ(σ)| dσ ≤ βχ(t− sδ) ≤ βχ ε

4βχ
=
ε

4
. (A.8)

If s = 0 then (A.8) implies (A.7).

When s > 0, within the compact interval [iδ, (i+ 1)δ], where 0 ≤ i < s, we have

∫ (i+1)δ

iδ
fδ(σ)gδ(σ) dσ =

∫ (i+1)δ

iδ
(fδ(σ)− fδ(iδ)) gδ(σ) dσ +

∫ (i+1)δ

iδ
fδ(iδ)gδ(σ) dσ

=

∫ (i+1)δ

iδ
(fδ(σ)− fδ(iδ)) gδ(σ) dσ

in which the second integral vanishes due to the zero-mean property of gδ (hypothesis 5). From

hypotheses 1, 2 and that δ ≤ ζ/γ, we have |fδ(t)− fδ(iδ)| ≤ δγ ≤ ζ for all t ∈ [iδ, (i+ 1)δ].

Furthermore, since the bound on |fδ(t)| is decreasing with t (hypothesis 3), we also have

|fδ(t)− fδ(iδ)| ≤ 2βe−αiδ. It follows that

∣∣∣∣∣
∫ (i+1)δ

iδ
fδ(σ)gδ(σ) dσ

∣∣∣∣∣ ≤
∫ (i+1)δ

iδ
|fδ(σ)− fδ(iδ)| |gδ(σ)| dσ ≤ δχmin{ζ, 2βe−αiδ} (A.9)

for every i < s. Therefore,

∣∣∣∣∫ t

0
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ s−1∑
i=0

∣∣∣∣∣
∫ (i+1)δ

iδ
fδ(σ)gδ(σ) dσ

∣∣∣∣∣+

∣∣∣∣∫ t

sδ
fδ(σ)gδ(σ) dσ

∣∣∣∣
≤ δχ

s−1∑
i=0

min{ζ, 2βe−αiδ}+
ε

4
.

Because the right-hand side is increasing with s, the left-hand side is bounded by the limit

of the right-hand side as s→∞. In particular,

∣∣∣∣∫ t

0
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ ε

4
+ δχ

∞∑
i=0

min{ζ, 2βe−αiδ}

for any t ≥ 0. Let s = dtθ/δe ≥ 1 which satisfies tθ ≤ sδ < tθ + δ ≤ tθ + δε. For all i ≥ s we
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have

βe−αiδ = βe−αsδe−α(i−s)δ ≤ βe−αtθe−α(i−s)δ =
θ

2
e−α(i−s)δ

where the last equality comes from the definition of tθ. Consequently,

∣∣∣∣∫ t

0
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ ε

4
+ δχ

s−1∑
i=0

ζ + δχ
∞∑
i=s

2βe−αiδ

≤ ε

4
+ sδχζ + δχθ

∞∑
i=0

e−αiδ

≤ ε

4
+ (tθ + δε)χζ + χθ

δ

1− e−αδ

≤ ε

4
+ (tθ + δε)χζ + χθ

δ?

1− e−αδ?

in which the last inequality follows from the monotonicity of δ
1−e−αδ in δ. Recall that δε ≤ ζ

γ

and plug in the definitions of ζ and θ, we have for any t ≥ 0

∣∣∣∣∫ t

0
fδ(σ)gδ(σ) dσ

∣∣∣∣ ≤ ε

4
+
γχ

4

(√
t2θ +

ε

γχ
+ tθ

)(√
t2θ +

ε

γχ
− tθ

)
+
ε

2

=
3ε

4
+
γχ

4

(
t2θ +

ε

γχ
− t2θ

)
= ε

Therefore, inequality (A.7) holds for all δ ≤ δε. �

Because u belongs to a finite set U of binary vectors, the periodic control signal u(·) is

piecewise constant of the form

u(t) =



u1 if t mod δ ∈ [0, w1δ)

u2 if t mod δ ∈ [w1δ, (w1 + w2)δ)

...

uq if t mod δ ∈ [(w1 + w2 + . . . wq−1)δ, δ)

(A.10)
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where uj ∈ U for all 1 ≤ j ≤ q, uj 6= uj+1 for all 1 ≤ j ≤ q − 1, and wj are positive real

numbers such that
∑q

j=1wj = 1. It is straightforward to verify that ηi =
∑q

j=1wju
j
i for

every 1 ≤ i ≤ m and therefore Aη =
∑q

j=1wj

(
A0 +

∑m
i=1Aiu

j
i

)
. Define the δ-periodic

time-varying matrix A(t) := (A0 +
∑m

i=1Aiui(t)). We have that Aη = 1
δ

∫ t+δ
t A(t) dσ for all

t ≥ 0.

From linear system theory (Rugh, 1996), the solution of the system (2.16) with switching

state matrix is given by

x(t) = Φ(t, 0)x0 +

∫ t

0
Φ(t, σ) (B0 +Bu(σ)) dσ

where Φ(t, σ) is the state transition matrix of A(t). Note that Φ(·, ·) is not periodic. The

following Lemma (adapted from Lemmas 3.22 and 2.11 in Sun and Ge, 2005) provides an

estimation for the state transition matrix under fast switching.

Lemma A.2 If Aη is Hurwitz then there exist positive numbers δ?, α and β such that the

transition matrix Φ(t, σ) with period δ ≤ δ? is exponentially convergent by

‖Φ(t, σ)‖2 ≤ βe−α(t−σ) ∀t ≥ σ. 2

Proof Since Aη is Hurwitz, there exist positive numbers κ and γ such that for all t ≥ σ,

‖Ψ(t, σ)‖2 ≤ κe−γ(t−σ)

where Ψ(t, σ) is the state transition matrix of the average system. Let α be any number such

that 0 < α < γ. Then the result follows from Lemma 2.11 in (Sun and Ge, 2005) by letting

ε = γ − α. �

A consequence of Lemma A.2 is that each element φij(t, σ) of the state transition matrix, for

1 ≤ i, j ≤ n, is also exponentially convergent by |φij(t, σ)| ≤ βe−α(t−σ), ∀t ≥ σ.

We now prove Lemma 2.5.
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Proof (Lemma 2.5) Define the error between the trajectories of the switched system and

its average system as ξ(t) = x(t)− x(t) ∀t ≥ 0 and differentiate it, we have

ξ̇(t) =

(
A0 +

m∑
i=1

Aiui(t)

)
x(t) +B0 +Bu(t)−Aηx(t)−Bη

= A(t)ξ(t) + ∆A(t)x(t) + ∆B(t)

(A.11)

where

∆A(t) := A(t)−Aη, ∆B(t) := Bu(t)−Bη

and with initial error ξ(0) = x(0) − x(0) = 0. System (A.11) is a switched affine system

similar to (2.16), however it depends on x(t). Matrix ∆A(t) and vector ∆B(t) are both

δ-periodic, while the state transition matrix Φ(t, σ) of A(t) is not. The solution to (A.11) is

ξ(t) =

∫ t

0
Φ(t, σ) (∆A(u(σ))x(σ) + ∆B(u(σ))) dσ, ∀t ≥ 0. (A.12)

We note that except for x and the independent variables, all elements in (A.12) are dependent

on the period δ although this is not explicitly indicated for brevity.

Let φij , ∆aij , ∆bj , ξi, and xj represent the elements of Φ, ∆A, ∆B, ξ, and x. Then from

Equation (A.12) we can write each ξi(t) as

ξi(t) =
n∑
j=1

n∑
k=1

∫ t

0
φij(t, σ)∆ajk(σ)xk(σ) dσ +

n∑
j=1

∫ t

0
φij(t, σ)∆bj(σ) dσ. (A.13)

Because Aη is Hurwitz, by Lemma A.2, there exist δ? > 0, α > 0, and β > 0 such that with

any time period δ ≤ δ?, |φij(t, σ)| ≤ βe−α(t−σ) ∀t ≥ σ. We wish to bound each integral in

(A.13) by ε̃ = ε
n2+n

> 0 by applying Lemma A.1, so that |ξi(t)| ≤ ε for all t ≥ 0.

Consider the first integral in (A.13), which can be written as
∫ t

0 φij(t, σ)∆ajk(σ)xk(σ) dσ =∫ t
0 fδ(σ)gδ(σ) dσ where fδ(σ) = φij(t, t−σ)xk(t−σ) and gδ(σ) = ∆ajk(t−σ). Note that the

dependence of these functions on δ is explicitly indicated. We will verify that all hypotheses
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of Lemma A.1 are satisfied for all 0 < δ ≤ δ?:

1. Since φij(t, ·) and xk(·) are continuous, fδ(·) is continuous.

2. Because φij(t, ·) is piecewise differentiable and xk(·) is differentiable, fδ(·) is piecewise

differentiable. Moreover, its derivative is given by

f ′δ(σ) = −φ′ij(t, t− σ)xk(t− σ) + φij(t, t− σ)x′k(t− σ)

= −xk(t− σ)

n∑
l=1

φil(t, t− σ)Alj(t− σ)

+ φij(t, t− σ)

n∑
l=1

(
[Aη]klxl(t− σ) + [Bη]k

)

in which we use Equation (2.17) and the equality ∂Φ(t,σ)
∂σ = −Φ(t, σ)A(σ) (Rugh,

1996). Since Aη is Hurwitz, |xk(t− σ)| is globally bounded by ‖x(·)‖∞ which is

finite. Also, |φil(t, t− σ)| is bounded by β and |Alj(t− σ)| is finitely bounded by

maxu∈U ‖A0 +
∑m

i=1Aiui‖max. Thus, |f ′δ(σ)| ≤ γ ∀σ ≥ 0, for some finite constant γ.

3. For all σ ≥ 0, |fδ(σ)| ≤ ‖x(·)‖∞ βe−ασ.

4. gδ(σ) = ∆ajk(t − σ) is piecewise constant (thus piecewise continuous) and globally

bounded by χ = maxu∈U
∥∥A0 +

∑m
i=1Aiui −Aη

∥∥
max

.

5. On every interval [iδ, (i+ 1)δ], i ≥ 0, we have

∫ (i+1)δ

iδ
gδ(σ) dσ =

∫ (i+1)δ

iδ
∆ajk(t− σ) dσ =

∫ (i+1)δ

iδ
Ajk(t− σ) dσ − δ[Aη]jk = 0.

By Lemma A.1, there exists δε̃ > 0 such that for all 0 < δ ≤ δε̃,

∣∣∣∣∫ t

0
φij(t, σ)∆ajk(σ)xk(σ) dσ

∣∣∣∣ ≤ ε̃.
Similarly, Lemma A.1 can be applied to all integrals in Equation (A.13) for all elements in
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Equation (A.12). By selecting the minimum of these δε̃, we obtain δε > 0 such that for all

0 < δ ≤ δε,

|ξi(t)| ≤ n2ε̃+ nε̃ = ε

and thus ‖ξ(t)‖∞ = ‖x(t)− x(t)‖∞ ≤ ε for all t ≥ 0. �

A.1.9. Proof of Theorem 2.9

The proof of Theorem 2.9 is adapted from that of Theorem 2 in (Girard and Pappas, 2007a)

and requires several preliminary results. In the following, we will consider the control

system (2.20) and its solution. We also assume all the hypotheses of Theorem 2.9.

Lemma A.3 Let x(0) ∈ Rn be any initial state. Then for all disturbance signals d(·) and

all control inputs u(·), the trajectory x(·) satisfies for all 0 ≤ t ≤ t′

∥∥x(t′)− x(t)
∥∥ ≤ sup

(u,d)∈U×D
‖f(x(t), u, d)‖ eλ(t′−t) − 1

λ
,

where λ is the Lipschitz constant of f . 2

The proof of this Lemma can be found in (Girard and Pappas, 2007a, Lemma 2). Note that

because U and D are compact, sup(u,d)∈U×D ‖f(x(t), u, d)‖ is finite.

Lemma A.4 Let x(0) ∈ Rn be any initial state and T > 0. Then for any ε > 0, there exists

h > 0 such that for all disturbance signals d(·) and all control inputs u(·), the trajectory x(·)

satisfies for all d ∈ D, all u ∈ U , and all t, t′ ∈ [0, T ] with 0 ≤ t ≤ t′ ≤ t+ h,

∣∣∇V (x(t′)) · f(x(t′), u, d)−∇V (x(t)) · f(x(t), u, d)
∣∣ ≤ ε. 2

Proof (cf. Lemma 3 in (Girard and Pappas, 2007a)) Consider any ε > 0. By Lemma A.3,

we have for all t ∈ [0, T ], x(t) ∈ C := B(x(0), r) where r = sup(u,d)∈U×D ‖f(x(0), u, d)‖ eλT−1
λ .

Since r is finite, C is compact. Because∇V (x)·f(x, u, d) is continuous, by the HeineâĂŞCantor

theorem, it is uniformly continuous on the compact set C × U × D. Thus, there exists ζ > 0
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such that for all d ∈ D, all u ∈ U and all x, x′ ∈ C with ‖x′ − x‖ ≤ ζ, the following inequality

holds ∣∣∇V (x′) · f(x′, u, d)−∇V (x) · f(x, u, d)
∣∣ ≤ ε. (A.14)

Again, from Lemma A.3, there exists h > 0 such that for all t, t′ ∈ [0, T ] with t ≤ t′ ≤

t + h, ‖x(t′)− x(t)‖ ≤ ζ. Clearly, x(t), x(t′) ∈ C. Therefore, the conclusion follows from

Equation (A.14) applied to x(t) and x(t′). �

Lemma A.5 Let x(0) ∈ Rn satisfying V (x(0)) ≤ α2 and T > 0. Then for all disturbance

signals d(·), there exists a control input u(·) such that the trajectory x(·) satisfies for all

t ∈ [0, T ],

V (x(t)) ≤ α2.
2

Proof Choose any 0 < ε ≤ γ. Let h > 0 be given as in Lemma A.4. Without loss of

generality, assume that T
h = N ∈ N. Consider any i ∈ {0, 1, . . . , N − 1} and suppose that

V (x(ih)) ≤ α2. Let v(·) be any control input for the sub-interval [ih, (i+ 1)h] which results

in a trajectory z(·). If for all t ∈ [ih, (i + 1)h], V (z(t)) ≤ α2 then we can simply choose

u(t) = v(t) for all t ∈ [ih, (i+ 1)h]. Otherwise, let t? ∈ [ih, (i+ 1)h) be the first time instant

when V (z(t?)) = α2 and let x? = z(t?). From Equation (2.21) on page 49, we can choose

control input u(·) for the sub-interval [ih, (i+ 1)h] such that u(t) = v(t) ∀t ∈ [ih, t?) and for

all t ∈ [t?, (i+ 1)h], ∇V (x?) · f(x?, u(t), d(t)) ≤ −γ. We have for all t ∈ [t?, (i+ 1)h],

V (x(t))− V (x?) =

∫ t

t?
∇V (x(s)) · f(x(s), u(s), d(s)) ds

≤
∫ t

t?
(∇V (x?) · f(x?, u(s), d(s)) + ε) ds

≤ (ε− γ) (t− t?) ≤ 0

in which the first inequality follows from Lemma A.4 and the last inequality comes from

ε ≤ γ. Hence, for all t ∈ [ih, (i + 1)h], V (x(t)) ≤ α2; in particular V (x((i + 1)h)) ≤ α2.

Because x(0) satisfies V (x(0)) ≤ α, we can conclude the Lemma. �

Lemma A.6 Let x(0) ∈ Rn satisfying V (x(0)) > α2 and T > 0. Then for all ε > 0, ε ≤ γ,
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and for all disturbance signals d(·), there exists a control input u(·) such that the trajectory

x(·) satisfies for all t ∈ [0, T ]

V (x(t)) ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.

2

Proof (cf. Lemma 4 in (Girard and Pappas, 2007a)) Consider any ε > 0. Let h > 0 be

given as in Lemma A.4. We then discretize the interval [0, T ] by time step h and assume

without loss of generality that T = Nh for some N ∈ N. We will inductively construct

control inputs u(·) for each sub-interval [ih, (i+ 1)h] and concatenate them.

Consider the first sub-interval [0, h]. By Equation (2.21) on page 49, there exists a control

input u(t) for t ∈ [0, h] such that for all t ∈ [0, h], ∇V (x(0)) · f(x(0), u(t), d(t)) ≤ −γ. We

have for all t ∈ [0, h],

V (x(t))− V (x(0)) =

∫ t

0
∇V (x(s)) · f(x(s), u(s), d(s)) ds

≤
∫ t

0
(∇V (x(0)) · f(x(0), u(s), d(s)) + ε) ds

≤ (ε− γ)t

in which the first inequality comes from Lemma A.4. Hence, for all t ∈ [0, h],

V (x(t))− V (x(0)) ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.

Suppose that for some i ∈ {1, 2, . . . , N − 1} we have a control input u(·) for t ∈ [0, ih] such

that for all t ∈ [0, ih]

V (x(t)) ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
. (A.15)

This holds for i = 1 as we have shown above. We will construct a control input for the

sub-interval [ih, (i+ 1)h]. There are two cases:

• If V (x(ih)) > α2 then similar to the derivation for the first sub-interval, we can choose
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a control input u(·) for sub-interval [ih, (i+ 1)h] such that for all t ∈ [ih, (i+ 1)h],

V (x(t))− V (x(ih)) ≤ (ε− γ)(t− ih).

Note that since V (x(ih)) > α2, V (x(0)) + (ε − γ)ih > α2 and thus V (x(ih)) ≤

V (x(0)) + (ε − γ)ih. Therefore, together with Equation (A.15), we have for all

t ∈ [ih, (i+ 1)h]

V (x(t)) ≤ V (x(0)) + (ε− γ)t ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.

• If V (x(ih)) ≤ α2 then from Lemma A.5, there exists a control input u(·) for the

sub-interval [ih, (i+ 1)h] such that for all t ∈ [ih, (i+ 1)h],

V (x(t)) ≤ α2 ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.

By the principle of induction, Equation (A.15) holds for i = N . Therefore, there exists a

control input u(·) such that for all t ∈ [0, T ],

V (x(t)) ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.

�

We can now prove Theorem 2.9. Let x(0) ∈ B := Rn be any initial state. If V (x(0)) ≤ α2

then it is straightforward from Lemma A.5 that there exists a control input u(·) such that

for all t ≥ 0, V (x(t)) ≤ α2, i.e., x(t) ∈ A.

Consider the case when V (x(0)) > α2. Choose any 0 < ε < γ and let T = V (x(0))−α2

γ−ε > 0

which is finite. From Lemma A.6, there exists a control input u(·) such that for all t ∈ [0, T ],

V (x(t)) ≤ max
(
V (x(0)) + (ε− γ)t, α2

)
.
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At t = T we have V (x(T )) ≤ α2 because V (x(0)) + (ε− γ)T = α2. For t ≥ T , we can again

apply Lemma A.5 to obtain a control input that keeps x(t) ∈ A. Therefore x(t) ∈ A for all

t ≥ T . This concludes the proof.

A.1.10. Proof of Lemma 2.6

Proof We have that for all x ∈ Rn and for all d ∈ D, there exists u ∈ co(U) such that

Axc +B0 +Bu+Wd = 0, hence (x− xc)T M (Axc +B0 +Bu+Wd) = 0. It follows that

minu∈co(U) (x− xc)T M (Axc +B0 +Bu+Wd) ≤ 0, ∀x ∈ Rn and ∀d ∈ D, which implies

supd∈Dminu∈co(U) (x− xc)T M (Axc +B0 +Bu+Wd) ≤ 0 ∀x ∈ Rn. Thus, for all x ∈ Rn

such that V (x) = (x− cc)T M (x− cc) ≥ α2,

−2λ (x− cc)T M (x− cc) + 2 sup
d∈D

min
u∈co(U)

(x− cc)T M (Axc +B0 +Bu+Wd) ≤ −2λα2.

Therefore inequality (2.22) holds with γ = 2λα2 > 0. Then Theorem 2.9 allows us to

conclude. �

A.1.11. Proof of Proposition 2.1

Proof Equation (2.25b) is equivalent to ATλM + MAλ � 0 where Aλ = A + λI. The

eigenvalues of Aλ are (λi + λ) where λi are the corresponding eigenvalues of A. Because A is

Hurwitz, all its eigenvalues have strictly negative real parts, hence there always exists λ > 0

small enough such that Aλ is also Hurwitz. It then follows from linear system theory (Rugh,

1996) that there exists M � 0 satisfying the Lyapunov inequality ATλM +MAλ � 0. �

A.1.12. Proof of Theorem 2.10

Proof We will show that the condition in Proposition 2.2 is equivalent to the condition in

this Theorem. Indeed,

∃xc ∈ int(Safe) : ∀d ∈ D, ∃u ∈ co(U) : Axc +B0 +Bu+Wd = 0

⇔ ∃xc ∈ int(Safe) : ∀d ∈ D, ∃u ∈ co(U) : xc +A−1(B0 +Wd) = −A−1Bu
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⇔ ∃xc ∈ int(Safe) : ∀d ∈ D, xc +A−1(B0 +Wd) ∈ −A−1B co(U)

then using the definition of Pontryagin difference

⇔ ∃xc ∈ int(Safe) : xc ∈ −A−1B co(U)	A−1(B0 +WD) = Q

⇔ int(Safe) ∩Q 6= ∅.

The result then follows directly from Proposition 2.2. �

A.1.13. Proof of Theorem 2.11

Proof First part: Let the disturbances be constant: d(t) = d? for all t ≥ 0. Define

P := B0 + B co(U) +Wd?. It is straightforward to verify that P and −ASafe are convex

and compact. Because they are disjoint (P ∩ (−ASafe) = ∅), by the separating hyperplane

theorem (see Boyd and Vandenberghe, 2006, sec. 2.5), there exists a hyperplane that strictly

separates them. Hence, there exist a vector a 6= 0 and numbers b and ε > 0 such that

aTx ≥ b ∀x ∈ −ASafe and aTx ≤ b− ε ∀x ∈ P . Define the differentiable function g : X → R

of state as g(x) := aTx−β where β = infx∈Safe aTx is finite as Safe is bounded. It is obvious

that g(x) ≥ 0 for all x ∈ Safe. We have that, ∀x ∈ Safe,∀u ∈ U ⊂ co(U),

∇g(x) · f(x, u, d) = aT (Ax+B0 +Bu+Wd?)

= aTAx+ aT (B0 +Bu+Wd?)

≤ −b+ b− ε = −ε.

Therefore, by Theorem 2.1 on page 24, the system is not schedulable.

Second part: There exists d? ∈ D such that −Wd? 6∈ (ASafe ⊕ B co(U)) + B0, hence

0 6∈ (ASafe ⊕ B co(U)) + B0 + Wd?. Therefore, for all x ∈ Safe and all u ∈ co(U),

B0 +Bu+Wd? 6= −Ax. It follows that B0 +B co(U) +Wd? and −ASafe are disjoint. The

non-schedulability comes from the first part. �
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A.1.14. Proof of Theorem 2.13

Proof Define P := − (B0 +B co(U) +Wd?) and Q := {Ax ∈ Rp : x ∈ Rn, Cx ∈ Safe}.

Obviously, because co(U) is convex and compact, P is convex and compact. We will show

that Q is convex and closed.

• Q is convex: for any z1, z2 ∈ Q and any α ∈ [0, 1] we have

αz1 + (1− α)z2 = αAx1 + (1− α)Ax2 = A(αx1 + (1− α)x2)

for some x1, x2 ∈ Rn such that Cx1 ∈ Safe and Cx2 ∈ Safe. Since Safe is convex,

αCx1 + (1 − α)Cx2 = C(αx1 + (1 − α)x2) ∈ Safe, thus A(αx1 + (1 − α)x2) ∈ Q.

Therefore Q is convex.

• Q is closed: let R := {x ∈ Rn : Cx ∈ Safe} be the pre-image of Safe under linear

map x 7→ Cx. We can decompose R as R = R0 + ker(C) where R0 := {x ∈ ker(C)⊥ :

Cx ∈ Safe}. The notation ker(A) denotes the kernel (or nullspace) of a matrix A

and S⊥ is the orthogonal complement of a subspace S of an inner product space (for

definitions of these notions, see e.g., (Strang, 2006)). The set R0 is compact because

Safe is compact. Hence Q = AR0 +A ker(C), where AR0 is compact and A ker(C) is

a linear subspace. It follows that Q is the pre-image of a closed set under projection.

Therefore, Q is closed.

Because P and Q are disjoint non-empty convex sets, P is compact while Q is closed, by

the separating hyperplane theorem (see Boyd and Vandenberghe, 2006, sec. 2.5), there

exists a hyperplane that strictly separates them. The rest of this proof is similar to that of

Theorem 2.11 (Appendix A.1.13). �

A.1.15. Proof of Theorem 2.15

Proof There exists d? ∈ D such that −Wd? 6∈ co({A(u)Safe +Bu+B0 : u ∈ U), hence

0 6∈ co({A(u)Safe +B0 +Bu+Wd? : u ∈ U). Because the convex hull is non-empty and
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closed, by the separating hyperplane theorem, there exists a hyperplane that strictly

separates this set and the origin 0. Hence, there exist a vector a 6= 0 and ε > 0

such that aTx ≤ −ε for all x ∈ co({A(u)Safe +B0 +Bu+Wd? : u ∈ U). Consider

the function g(x) := aTx − β where β = infx∈Safe aTx is finite as Safe is bounded.

Obviously, g(x) ≥ 0 for all x ∈ Safe. We have that, for all x ∈ Safe and all

u ∈ U , A(u)x + B0 + Bu + Wd? ∈ co({A(u)Safe +B0 +Bu+Wd? : u ∈ U). Therefore

∇g(x) · f(x, u, d) = aT (A(u)x+B0 +Bu+Wd?) ≤ −ε. By Theorem 2.1 on page 24, the

system is not schedulable. �

A.2. Proofs of Chapter 4

A.2.1. Proof of Theorem 4.1

Proof Define function V (x) := xTMx = ‖x‖2M . The time derivative of V (x) along the flow

x(t) of the system is

d

dt
V (x(t)) = ∇V (x) · ẋ(t)

= 2x(t)TM (Ax(t) +B0 +Wd(t))

= 2x(t)TMAx(t) + 2x(t)TM (B0 +Wd(t))

≤ −2λx(t)TMx(t) + 2x(t)TM (B0 +Wd(t))

in which we use the inequality (4.2b). Equation (4.3) implies that for all x ∈ Rn and all

d ∈ D

xTM (B0 +Wd) ≤ sup
d∈D

xTM (B0 +Wd) = αλ
√
xTMx.

It follows that

V̇ (t) ≤ −2λx(t)TMx(t) + 2αλ
√
x(t)TMx(t) = 2λ

√
V (t)

(
α−

√
V (t)

)

in which we write V (x(t)) as a function of time t.
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Let p : R+ → R+ be a differentiable function of time t that satisfies the differential equation

ṗ(t) = 2λ
√
p(t)(α−

√
p(t)) with initial condition p(0) = V (0) = x(0)TMx(0). Observe that

if at any time t ≥ 0, p(t) = V (t) then ṗ(t) = 2λ
√
V (t)

(
α−

√
V (t)

)
≥ V̇ (t). From the

Müller’s existence theorem, i.e., the comparison theorem for differential inequalities (Müller,

1926; Walter, 1997; Kieffer et al., 2006), p(t) is an upper bound of V (t), that is V (t) ≤ p(t)

for all t ≥ 0. It is straightforward to verify that p(t) = α2e−2λt
(
K + eλt

)2, where K is

calculated from the initial condition as K =

√
p(0)

α − 1 =
‖x(0)‖M

α − 1. Therefore, for all t ≥ 0

‖x(t)‖M =
√
V (t) ≤

√
p(t) = αe−λt

(
K + eλt

)
= (‖x(0)‖M − α)e−λt + α. �

A.2.2. Comparison of state trajectory bounds in Equations (4.5) and (4.8)

We will show that the bound in Equation (4.5) is as tight as, and usually tighter than, the

bound in Equation (4.8).

If λ > 0 (hence α ≥ 0), we have that

α(1− e−λt) ≤ αλt, ∀t ≥ 0

and
µ

‖A‖M

(
e‖A‖M t − 1

)
≥ µ

‖A‖M
‖A‖M t = µt = αλt, ∀t ≥ 0

where we used the inequalities 1 − e−x ≤ x and ex − 1 ≥ x for all x ≥ 0. Therefore

α(1− e−λt) ≤ µ
‖A‖M

(
e‖A‖M t − 1

)
for all t ≥ 0. Furthermore, the equality occurs if and only

if t = 0; thus for t > 0, the inequality is strict.

Suppose λ < 0, hence α ≤ 0. It follows from the proof of Proposition 2.1 (see Appendix A.1.11

on page 186) that any λ < −maxi Reλi will suffice the conditions of Theorem 4.1, where λi

are the eigenvalues of A and Re c denotes the real part of a complex number c. On the other

hand, Proposition 3.10 in (Dullerud and Paganini, 2000) verifies that ρ(A) ≤ ‖A‖M where

190



ρ(A) = maxi |λi| is the spectral radius of A. Thus, for almost all matrices A, we can choose

λ such that −λ ≤ ‖A‖M . Consider

µ

‖A‖M

(
e‖A‖M t − 1

)
− α(1− e−λt) = α

(
λ

‖A‖M

(
e‖A‖M t − 1

)
−
(

1− e−λt
))

.

Its derivative with respect to t is

αλ
(

e‖A‖M t − e−λt
)
≥ 0, ∀t ≥ 0.

Therefore,
µ

‖A‖M

(
e‖A‖M t − 1

)
− α(1− e−λt) ≥ 0, ∀t ≥ 0.

A.2.3. Proof of Theorem 4.2

Proof Since λ > 0, Equation (4.15c) implies that

min
u∈U

max
d∈D

zTM (Axc +B0 +Bu+Wd) ≤ λ(α− ε)
√
zTMz, ∀z ∈ Rn

for some ε > 0. Together with Equations (4.15a) and (4.15b), we have that for all x ∈ Rn

such that V (x) = (x− xc)T M (x− xc) ≥ α2,

inf
u∈U

sup
d∈D
∇V (x) · f(x, u, d)

= 2 (x− xc)T MA (x− xc) + 2 min
u∈U

max
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd)

≤ − 2λ (x− xc)T M (x− xc) + 2 min
u∈U

max
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd)

≤ − 2λ (x− xc)T M (x− xc) + 2λ(α− ε)
√

(x− xc)T M (x− xc)

= 2λ

√
(x− xc)T M (x− xc)

(
α− ε−

√
(x− xc)T M (x− xc)

)
≤ − 2λαε.
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Hence Equation (2.21) holds with γ = 2λαε. It follows from Theorem 2.9 that A is an

attracting set of control system (4.14). Furthermore, a state feedback control law u = κ(x)

associated with A must satisfy

max
d∈D
∇V (x) · f(x, κ(x), d) ≤ −γ

for all x ∈ X such that V (x) ≥ α2. Obviously the control law

κ(x) = arg min
u∈U

max
d∈D

(x− xc)T M (Axc +B0 +Bu+Wd)

= arg min
u∈U

(x− xc)TMBu

for all x ∈ X satisfies that condition. �

A.2.4. Proof of Proposition 4.1

Proof The existence of M and λ > 0 is verified by Proposition 2.1 on page 53. Now we

only need to show the existence of finite α > 0 that satisfies Equation (4.15c). The right

hand side of this inequality reads

max
zTMz=1

(
min
u∈U

max
d∈D

zTM (Axc +B0 +Bu+Wd)

)
≤ max
zTMz=1

zTM (Axc +B0) + max
u∈U

max
d∈D

max
zTMz=1

zTM (Bu+Wd)

≤
√

(Axc +B0)T M (Axc +B0) + max
u∈U

max
d∈D

√
(Bu+Wd)T M (Bu+Wd).

Because U and D are compact sets, the upper-bound above is finite. Therefore, there exists

finite α > 0 such that Equation (4.15c) holds. �
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NOMENCLATURE

Systems

R−1
t (X) Robust backward reachability operator at time step t from set X

R−1
[t,t′](X) Robust backward reachability operator for interval [t, t′] of time steps

from set X, t′ ≥ t

δ The time period of periodic schedules, page 27

X The state space, i.e., the set of all valid values of state x, page 12

η The utilization vector of periodic control signal u(·), page 27

ηi The utilization of periodic control input i, page 27

Functions and Signals

‖s(·)‖∞ L∞-norm of the signal s(·); ‖s(·)‖∞ = supt ‖s(t)‖

F(X,Y ) The set of all measurable functions from set X to set Y , page 13

∇f Gradient of function f : Rn → R

Df Derivative (Jacobian) matrix of function f : Rn → Rm

Vectors and Matrices

ei The ith standard basis vector, with 1 in the ith position and 0 everywhere

else

I Identity matrix

1n Vector in Rn with all components one (dimension omitted if clear from

context)
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0n Vector in Rn with all components zero (dimension omitted if clear from

context)

‖·‖ A vector norm or an induced matrix norm

‖x‖1 `1-norm of vector x

‖x‖2 Euclidean (or `2-) norm of vector x

‖x‖∞ `∞-norm (or maximum norm) of vector x

‖x‖M M -norm of vector x, ‖x‖M :=
√
xTMx, where M � 0

‖A‖2 Induced `2-norm (or spectral norm) of matrix A

‖A‖max Maximum norm of matrix A, i.e., maxi,j |Aij |

‖A‖M Induced M -norm of matrix A, i.e., supx
‖Ax‖M
‖x‖M

, where M � 0

diag(x) Diagonal matrix with diagonal entries in vector x

diag(x1, x2, . . .) Diagonal matrix with diagonal entries x1, x2, . . .

X � Y Strict matrix inequality between symmetric matrices X and Y

X � Y Matrix inequality between symmetric matrices X and Y

x � y Strict component-wise inequality between vectors x and y

x � y Component-wise inequality between vectors x and y

Sets

|X| Cardinality of set X

B(c, r) The ball with center c and radius r, page 37

Bd(c, r) The ball in metric d with center c and radius r
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co(X) The convex hull of set X

dist(x, S) The distance between a point x and a set S

int(X) The interior of set X

ker(A) The kernel (or nullspace) of a matrix A, page 188

S⊥ The orthogonal complement of a subspace S of an inner product space,

page 188

X 	 Y Pontryagin difference of two sets X,Y

X ⊕ Y Minkowski sum of two sets X,Y

N The set of natural numbers, i.e., N = {0, 1, 2, . . . }

R The set of real numbers

R+ The set of non-negative real numbers, i.e., R+ = {x ∈ R : x ≥ 0}

Other Symbols

dce The smallest integer not less than c

bcc The largest integer not exceeding c

Re c The real part of a complex number c, page 190

f ◦ g Composition of two functions/operators: (f ◦ g)(x) = f(g(x))
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