61,247 research outputs found

    A Reconstruction Procedure for Microwave Nondestructive Evaluation based on a Numerically Computed Green's Function

    Get PDF
    This paper describes a new microwave diagnostic tool for nondestructive evaluation. The approach, developed in the spatial domain, is based on the numerical computation of the inhomogeneous Green’s function in order to fully exploit all the available a-priori information of the domain under test. The heavy reduction of the computational complexity of the proposed procedure (with respect to standard procedures based on the free-space Green’s function) is also achieved by means of a customized hybrid-coded genetic algorithm. In order to assess the effectiveness of the method, the results of several simulations are presented and discussed

    A variation equation for the wave forcing of floating thin plates

    Get PDF
    A variational equation is derived for a floating thin plate subject to wave forcing. This variational equation is derived from the thin plate equations of motion by including the forcing due to the wave through the integral equation derived using the free surface Green’s function. This equation combines the optimum method forsolving the motion of a thin plate (the variational equation) with the optimum method for solving the wave forcing of a floating body (the Green’s function method). Solutions of the variational equation are presented for some simple thin plate geometries using polynomial basis functions. The variational equation is extended to the case of plates of variable properties and to multiple plates and example solutions are presented

    Propagating the Kadanoff-Baym equations for atoms and molecules

    Get PDF
    While the use of Green’s function techniques has a long tradition in quantum chemistry, the possibility of propagating the Kadanoff-Baym equations has remained largely unexplored. We have implemented the time-propagation for atoms and diatomic molecules, starting from a system in the groundstate. The initial stage of the calculation requires solving the Dyson equation self-consistently for the equilibrium Green’s function. This Green’s function contains a huge amount of information, and we have found it particularly interesting to compare the self-consistent total energies to the results of variational energy functionals of the Green’s function. We also use time-propagation for calculating linear response functions, as a means for obtaining the excitation energies of the system. We have presently implemented the propagation for the second Born approximation, while the GW approximation has now been implemented for the ground state calculations

    The Green’s Function of the Sturm-Liouville operator acting on graphs

    Get PDF
    Given the Green’s function of a Sturm-Liouville operator defined on a graph. Form a new graph by identifying vertices. The Green’s function of the Sturm-Liouville operator defined on the new graph is derived. A few basic examples are constructed

    Dynamical ansatz for path integrals and nonperturbative trace formulas

    Get PDF
    It is shown that a recently discovered representation of the Green’s function is equivalent to a certain “dynamical ansatz” for the corresponding path integral, which brings about a convenient method of nonperturbative approximations. Based on this observation, a set of nonperturbative approximations to the trace of the Green’s function is established

    Modelling and simulation of advanced semiconductor devices

    Get PDF
    This paper presents a modelling and simulation study of advanced semiconductor devices. Different Technology Computer Aided Design approaches and models, used in nowadays research are described here. Our discussions are based on numerous theoretical approaches starting from first principle methods and continuing with discussions based on more well stablished methods such as Drift-Diffusion, Monte Carlo and Non-Equilibrium Green’s Function formalism
    • …
    corecore