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Abstract: This paper presents a modelling and simulation study of 

advanced semiconductor devices. Different Technology Computer 

Aided Design approaches and models, used in nowadays research 

are described here. Our discussions are based on numerous 

theoretical approaches starting from first principle methods and 

continuing with discussions based on more well stablished methods 

such as Drift-Diffusion, Monte Carlo and Non-Equilibrium Green’s 

Function formalism.   

I. Introduction  

Modelling and simulation of semiconductor devices has been driving the 

development of the semiconductor technology and contributed significantly to 

comprehensive understanding of their operation. Moreover, it is estimated that the 

Technology Computer Aided Design (TCAD) can reduce the cost of the technology, circuit 

and system development and hence reducing the time-to-market. Analysis using state-of-

the-art device modelling helped the process of miniaturization of MOSFETs through the 

past decades in characterizing their parameters and predicting their behaviour in system 

level. Moreover, modelling and simulation provide a deeper understanding of the critical 

issues surrounding the device scaling and its impact on circuit system level, including 

functionality and reliability of its operation. This helps to deliver better device/design 

solutions [1]. To illustrate the complexity and the importance of the modern TCAD 

technology, we present in this paper numerous simulations techniques based on various 

theoretical approaches and models. As test cases, we have used nowadays devices 

architectures such as nanowires, FinFETs and Bulk transistors.  

II. Model description 

The state-of-the-art in semiconductor modelling and simulation covers a wide range 

of specialist areas related to the entire process of integrated semiconductor device 

manufacturing. The main areas of modelling and simulation [2] that are typically covered 

by state of the art TCAD simulation tools are the following. The first is process modelling: 

this is so called front-end process modelling that is used to characterizes the essential steps 

during the device manufacturing such as deposition, etching and other manufacturing 

processes. Secondly, there is a device modelling section of the TCAD which the main aim 

is to understand how the devices operate by studying their electrical characteristics and 

intrinsic physical properties. And lastly there is the compact modelling which is used to 

perform circuit level device simulation that characterize the behaviour of the integrated 

circuit component as a module. However, a detailed discussion of all these physical models 

and simulation methodologies is not the aim of this paper. Therefore, the emphasis has 

been limited to cover only device modelling and simulation of advanced semiconductor 

devices. 



The modelling of semiconductor devices involves numerical solutions of 

mathematical equation that describe their fundamental physical properties and electrical 

characteristics. In general, there are three methods that have been used in the TCAD world 

to perform device modelling. By far the most popular and traditionally well-established 

way of modelling the carriers’ transport and electrical behaviour in transistors, is the Drift 

Diffusion (DD) method. This method can be combined with density-gradient correction 

which is designed to consider the quantum mechanical effects which are playing important 

role in the modern semiconductor devices. The second approach of modelling 

semiconductor devices is based on Monte Carlo (MC) method. MC is more 

computationally demanding in comparison to DD because it solves Boltzmann transport 

equation for each electrical carrier such as holes and electrons. Finally, the most recent and 

the most computationally intensive method is based on the Non-Equilibrium Green 

Function formalism in combination with first principle methods such as Density Functional 

Theory (DFT).  In the section, we will provide a brief of all three methods – DD, MC and 

NEGF applied to current transistor’s architecture.  

A. Drift Diffusion Model  

Historically, the working horse of semiconductor modelling and simulation, is the 

Drift Diffusion (DD) method. It is based on the drift and diffusion properties of carrier 

transport phenomena [3,4]. In the presence of electric field in the semiconductor, the drift 

velocity is proportional to the created electric field expressed as 𝜐𝑑 = 𝜇𝐸  where  

[cm2/V*s] is the proportionality termed as mobility. This relation is true for systems at low 

electric field. Moreover, carrier mobility is affected by various carrier scattering 

mechanisms like phonon, ionized impurity, and temperature.  At high electric field the 

dependence of drift velocity of carriers is no more linear and it behaves independent of the 

electric field and converges to a saturation point of ~107 V/cm for silicon as the field 

increases. The carrier drift current is then described using 𝐽𝑛 = 𝑞𝜇𝑛𝑛𝐸 for electrons.  

On the other hand, the introduction of extra dopant into the silicon, will create uneven 

carrier distribution [4]. Unevenness in the carrier concentration leads to the migration of 

electrons/holes from high concentration region to the lower hence the flow of carriers 

creates the diffusion current. Diffusion current is proportional to gradient of the carrier 

concentration as 𝐽𝑛 = 𝑞𝐷𝑛 (𝑑𝑛 𝑑𝑥⁄ ), where 𝐷𝑛 is the diffusion coefficient.  Combining the 

drift and diffusion mechanisms of carrier transport one can model the flow of current in 

semiconductors using the drift-diffusion method, which is the combination of the two 

currents described in the previous paragraph. DD equations can describe the transport 

properties of carriers by solving the current continuity equation which is coupled to the 

Poisson equation (∇2𝜙 = −𝜌 𝜀⁄ ) self consistently.   

The DD engine, which is used to simulate the devices in this paper, is a three-

dimensional, quantum corrected, statistical device simulator which self-consistently solves 

the carrier concentration and potential distribution coupled with current continuity 

throughout the simulation domain to characterize the electrical properties of the device. A 

simplified version of the simulation flow of our numerical solver with transport modules 

based on DD, MC and NEGF methods is presented in Fig. 1 below. 

 



 

 

Fig. 1 An example of flow chart of showing an integrated device simulator with Drift 

Diffusion engine coupled with Non-Equilibrium Green Function and Monte Carlo 

simulator.  

B. Monte Carlo Method  

Monte Carlo (MC) carrier transport modelling is a particle approach that combines 

the period of deterministic free-flight times with stochastic scattering process implemented 

to estimate carrier dynamics (transport) in advanced semiconductor devices. It uses the 

random process to calculate the stochastic motions of the particles and their scattering 

mechanisms. The bigger the statistical sampling of the particle motion the better MC 

simulation approximates the distribution function. There are different types of MC 

simulation methods (single particle, ensemble, and self-consistent MC). For device 

simulations, the self-consistent MC approach is suitable, since it solves the Poisson 

equation self consistently to determine electrostatic potential distribution in the 

semiconductor device. MC simulation does not make any assumption about the distribution 

function to approximate the carrier transport [5-8] and the carriers are considered as a 

particle rather than as a fluid, which makes the MC approach more general and accurate in 

approximating the carrier transport than the DD methods. 

The MC simulator is integrated in to the hierarchical device simulation tool as shown 

in Fig. 1. In our simulator, a MC simulation takes as input a solution from the DD engine 

or, optionally, the solution from a prior MC simulation. The input to the MC engine 

completely specifies the simulation domain, it’s boundary conditions and the initial state. 

Default material models are defined equivalently for DD and MC engines and are inputs 

to both. The solution from Monte Carlo simulation is provided through the collection of 

statistical data taken directly, or indirectly, from particle distributions representing the 

electron/hole carrier distributions within the simulation domain. The particle distribution 

evolves over the course of the simulation via the repeated application of periods of 

deterministic free flight and instantaneous stochastic scattering events. Carriers move 

through the real-space simulation domain during the free flight and, given a local field, 

accelerate, while scattering, given a list of mechanisms, instantaneously affects the 

carrier’s momentum [8]. 



C. Non-Equilibrum Green Function Method 

The Non-Equilibrium Green Functions (NEGF) formalism is the most suitable 

approach, which can capture accurately important quantum effects in charge and transport 

for present-day nano-scale devices. For example, due to ultra-small cross-section in current 

transistors the charge distribution shows strong quantum confinement behavior.  

Additionally, the gate length for future technological nodes will be comparable to the mean 

free path of electrons in silicon at room temperature. Thus, the electrons will exhibit a 

strong wave-like behavior in these ultra-short devices.  

As a result, the source-to-drain tunneling resulting from this wave-like behavior has 

important consequences on the device operation in terms of 𝐼𝑜𝑛 𝐼𝑜𝑓𝑓⁄  ratio, threshold 

voltage, sub-threshold swing. Therefore, such quantum mechanical effects are mandatory 

to be considered in the simulation process to accurately capture the observed physical 

processes and estimate their electrical properties. Consequently, it is of prime importance 

to develop simulators based on a quantum mechanical formalism such as NEGF [8,9] to 

capture the tunneling effects related to the wave-like behavior of the carriers. Like the MC 

approach described above, in our simulator, a NEGF simulation takes as input a solution 

from the DD engine or, optionally, the solution from a prior NEGF simulation. This is 

coupled in self-consistent loop with Poisson equation (Fig.1).  

D. First Principle method 

First principle methods are used to describe the electrical and optical material 

properties of solids and molecules. Currently, the most common and widely used approach 

is based on Density Functional Theory (DFT) [10,11]. Coupling DFT with NEGF 

formalism could provide more accurate description of the quantum confinement in current 

electronic devices. Also, DFT could provide understanding of the carrier’s transport in 

devices, energy levels in isolated molecules and electronic structure of various materials 

such as semiconductors and oxides. In our case, we primarily use DFT to compute effective 

mass of electrons and holes, which are extracted from the band structure. Those effective 

mases are used as input parameters in all other models illustrated in Fig. 1 and discussed 

above.   

III. Results and discussions 

Nowadays advanced devices such as FinFET, Silicon Nano Wire transistors, SOI 

MOSFETs and others non-conventional semiconductor devices were born out of the 

necessity of continuing the scaling beyond the conventional MOSFET architecture. In this 

section, we present simulation and analysis on some of the most recent and important 

devices structures.  

A. FinFET 

FinFET technology is massively adopted as the advanced logic node technology since 
22nm generation. Modelling and simulation of FinFETs and accurate predictions can 
significantly speed up the next technology node development. 7nm technology node is a 
critical point due to its extremely complicated physics and technical difficulty in fabrication. 
Employing advanced quantum corrected drift diffusion model we present the simulations 
results for 7nm FinFET featured by the extremely scaled fin width of 5nm and height of 25 
nm as shown in the Figure 2(a). Accurate capturing of the charge distribution in the 
nanoscale channel is mandatory since the quantum effect plays a determined role with 
regards to the performance. Garand [12] is used to simulate the full 3D device structure. 
Also we activated the 2D Poisson-Schrodinger solution which accurately captures the 



quantum confinement in the cross-section of the device. The wave-functions in the 
corresponding sub-bands of each valley is calculated and the charge distribution is obtained 
for different gate biases. This charge distribution serves as the calibration target in the 
TCAD calibration tool Enigma for calibrating density-gradient masses which are used in 
the DD simulation. The calibration results are shown in Fig. 2(b). Calibrating the DG 
effective masses to the 2D PS solution provides an accurate charge distribution based on 
quantum mechanics for the DD method. The calibrated simulation deck then will be used 
for the further DD simulations and MC simulations and analysis of the electrical 
characteristics. 

 (a)         (b) 

Fig.2 The bulk FinFET structure (a), and Poisson-Schrodinger simulation of fin cross-
section and corresponding density gradient calibration (b).  

B.  Z2FET 

Z2FET has very complex structures, and is one of the most promising devices to be 

used for application in memory cell, without connecting to extremal charge storage 

component (i.e. 1T-DRAM). Significant progress has been made in characterizing its 

memory behaviour and analyzing its physical properties. These qualities can be exploited 

in the implementation of Z2FET in embedded 1T-DRAM application. To understand the 

complexity of this promising device, TCAD model is invaluable asset. Although 

experimental method can help the characterization process, the use of numerical modelling 

is equally important in understanding the dynamics of carriers, e.g., how the DC operation 

of this device can be characterized in the different sections of the device. In this paper, we 

investigate the DC operation of Z2FET in conjunction with its memory behaviour and how 

it can be used in 1-T DRAM memory. 

                

Fig. 3 Z2FET device stricture (left) showing a typical Id-Vd characteristics when operating 

as a memory device (right) [13]. 
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Fig. 4 Z2FET memory operation. When data ‘0’ is programmed, followed read out is ‘0’. 

Similarly, data ‘1’ is read out when ‘1’ is programmed. 

C.  Silicon Nano Wire Transistors  (SNWT) 

Figure 5 below shows a plot the LDOS in the two first delta valleys obtained in Off-

state (Fig.5a-b) and On-state (Fig.5c-d) for a square NWT oriented along <100> direction. 

Top figures show the results in Off-state for (a) the first delta valley and (b) the second one. 

Bottom figures are obtained in On-State for (c) the first delta valley and (d) the second one. 

The results for the third valley are identical to the ones of the second valley (for symmetry 

reasons). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5 Local density of states obtained by NGEF after a self-consistency with Poisson 

equation is achieved.  

 



 The local density of states and the tunneling from the source to the drain have been 

computed thanks to our quantum simulator based on NEGF formalism. Also, the SNWT 

described in Fig.5 are with ultra-scaled dimension such as 2nm x 2nm cross section and 10 

nm gate length. In such nanowires, without capturing the quantum mechanical effects the 

device simulations will be simply wrong.  

D. Vertically stacked multiple SNWT  

As an example, we present a simulation result of vertically stacked NWTs. Fig. 6 

(right-hand side) compares the ID-VG curves for NWT with a single, double, and triple 

channel configuration. The three-channel device has higher ION current when compared the 

other structures with one and two channels transistors. However, the current in the three-

channel transistor does not provide a triple current value in respect of the single channel as 

we may expect is the case. 

The reason for this is clearly visible on the left hand-side of Fig. 6, which shows that 

the 3D view of the current density for NWTs with single, double, and triple channels devices. 

The transistor with two channels has almost identical current density in top and bottom 

channels. However, the device with three-channels show significant difference between the 

current density of the top nanowire and the bottom two channels. The main reason for this 

is that the contacts are on the top of the source and drain region which makes it easier for 

the current to flow through the closest nanowire channel in relation to the contacts. The 

performance results obtained from the preliminary analysis of multi-vertically stack laterals 

NWTs in Fig. 6 could exceeds the scaling targets set by the industry.   

 

 

 

Fig. 6 Shows a 3D view of the current density for vertically stacked NWTs with single, 

duple, and triple channels with LG=12nm (left). The ID-VG curves of single, double, triple 

NWTs where with four different gate lengths LG=8nm, 12nm, 16nm and 20nm. The dashed 

lines are at VD=700 mV and the solid lines are at VD=50mV. 

E. First Principle Simulation  

As the device size has continued to shrink to a nanoscale regime, the quantum 

confinement causes the important physical material parameters such as band gap and 

effective masses to change. For this reason, we need to estimate them precisely through the 

first principle calculation for example DFT. Fig. 7 (a) shows the cross-section of the atomic 

structure of SNW with 2.2 × 2.2 nm2. Dangling bonds at the surface were passivated with 

hydrogen atoms. All atoms are relaxed until the maximum force of atoms becomes less 

than 0.01 eV/Ang [15]. Fig. 7 (b) and (c) show the band structures of SNWs with 2.2×2.2 

nm^2 and 3.9×3.9 nm^2, respectively. To calibrate the band gap with experiment (1.12 

eV), we have used the Meta-Generalized Gradient Approximation (MGGA) with a 



parameter of 1.072. We have found that the SNWs with 2.2×2.2 nm^2 and 3.9×3.9 nm^2 

have larger band gap (1.71 and 1.30 eV) and heavier transport effective masses (0.617 and 

0.285 m_e, m_e is the electron rest mass) than bulk Si. These new effective masses are 

used to replace the default bulk Si effective masses in our DD and NEGF simulator. 

 

Fig.7 (a) Atomic structure of H-passivated Si nanowire (Width = Height = 2.2 nm). The 

band structure of (b) 2.2 × 2.2 nm2 and (c) 3.9 × 3.9 nm2. 0.0 eV is set to Fermi-level.  

F. Statistical Variability  

As device dimension is getting in the region below 20-30nm statistical variability 

will affect main figures of merit of devices significantly. Random discrete dopants (RDD) 

[15,16], Line Edge Roughness (LER) [17] and Metal Grain Granularity (MGG) [18,19] are 

the main sources of statistical variability. Presenting detailed examples of simulation 

results is beyond the scope of this paper. For completeness, we briefly discuss RDD, MGG 

and LER.  

Even if the fluctuations associated with lithographic dimensions and layer 

thicknesses are well controlled, random fluctuation of the relatively small number of 

dopants and their discrete microscopic arrangement in the channel of sub-0.02 𝜇 m 

MOSFET’s will lead to significant variations in the threshold voltage and the drive current. 

Similarly, the line edge roughness (LER) caused by tolerances inherent to materials and 

tools used in the lithography processes is yet another source of intrinsic parameter 

fluctuations. Although the introduction of metal as a gate material to replace polysilicon, 

the metal grains (MGG) with different crystallographic orientations have different work 

functions leading to a threshold voltage variation. Fig. 8 shows the 3D potential distribution 

in the channel given all sources of statistical variability.   

 



 

Fig. 8 3-D 25 nm MOSFET structure showing the potential distribution in the channel 

(top) and the electron density in the active area (bottom) at threshold when including all 

three sources of statistical variability. 

 

IV. Conclusions 

In this paper, we have described the current state of the art of modeling and 

simulation of advanced semiconductor devices. We have discussed the three most widely 

used models and methods in the TCAD area such as DD, MC and NEGF. The DD methods 

with quantum corrections is still the main simulation tool in the field. However, more 

advanced transport modules such as MC methods and the NEGF approach becomes 

compellingly attractive for nanoscale transistors research and development. Although that 

they are computationally more expensive than the DD, MC and NEGF are mandatory to 

accurately capture the complex physical picture in modern ultra-scaled devices such as 

FinFET and nanowires. Moreover, first principle methods such as DFT are required for 

more precise description of the material properties in the novel electronic devices. In 

conclusion, due to nanoscale dimension of the nowadays transistors, the current TCAD 

state of the art approach is based on combination of numerous models and theoretical 

approaches.    
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