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Propagating the Kadanoff-Baym equations for atoms

and molecules

Nils Erik Dahlen, Robert van Leeuwen and Adrian Stan
Theoretical Chemistry, Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands

E-mail: n.e.dahlen@rug.nl

Abstract. While the use of Green’s function techniques has a long tradition in quantum
chemistry, the possibility of propagating the Kadanoff-Baym equations has remained largely
unexplored. We have implemented the time-propagation for atoms and diatomic molecules,
starting from a system in the groundstate. The initial stage of the calculation requires solving
the Dyson equation self-consistently for the equilibrium Green’s function. This Green’s function
contains a huge amount of information, and we have found it particularly interesting to compare
the self-consistent total energies to the results of variational energy functionals of the Green’s
function. We also use time-propagation for calculating linear response functions, as a means for
obtaining the excitation energies of the system. We have presently implemented the propagation
for the second Born approximation, while the GW approximation has now been implemented
for the ground state calculations.

1. Introduction
The use of Green’s functions has a long history in quantum chemistry as a method for calculating
total energies, ionization potentials, and excitation energies, and a number of other properties
[1, 2]. The concept of conserving approximations [3, 4] has, however, not been given much
attention, and the Keldysh formalism [5, 6] for treating non-equilibrium systems has remained
largely unexplored. The interest in using non-equilibrium Green’s function techniques has
lately been stimulated by the arrival of molecular electronics, and the need for first-principles
calculations on non-equilibrium systems. Green’s function techniques are in this context highly
interesting as a complementary method to time-dependent density functional theory (TDDFT)
[7], which is the method of choice for a realistic treatment of large systems. TDDFT employs
an auxiliary system of non-interacting electrons moving in an effective potential vs[n](r, t).
This potential is a functional of the time-dependent density. The existing functionals are,
however, not sufficient for a good description even of steady-state transport. The most important
flaw is that the commonly used functionals are local functionals of the density, in the sense
that vs[n](r, t) = vs[n(r, t)]. Improved functionals should take into account also the history
of the system. Non-equilibrium Green’s function techniques are in this respect useful for
two main reasons: Firstly, solving the Kadanoff-Baym equations we can provide benchmark
results for testing new TDDFT functionals. Secondly, diagrammatic techniques can be used to
systematically derive improved density functionals [8].

In this paper, we study atoms and small diatomic molecules in the ground state and in
an applied electric field. The systems are initially in the ground state, which means that the
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Figure 1. At t = 0, the system is in thermal equilibrium. The first step is therefore to calculate
the Green’s function for imaginary times from 0 to −iβ. Describing the system for times t > 0
implies calculating Gij(t1, t2) on an extending time-contour.

initial correlations are conveniently accounted for by extending the time-contour, as illustrated
in Fig. 1, with an imaginary branch going from t = 0 to −iβ, where β = 1/kBT . As we are here
concerned with very small systems, we are obviously only interested in the limit T → 0. The
calculations thus consists of two steps: 1) First, we solve the Dyson equation tot self-consistency
for the equilibrium system. This implies calculating the Green’s function for time-arguments
on the imaginary axis from t = 0 to t = −iβ. At this stage, the Green’s function only depends
on the difference between its imaginary time-coordinates. 2) We then propagate the Green’s
function in order to find the Green’s function for one or two coordinates on the real time-axis.
The contribution from the functions with one argument on the imaginary axis accounts for the
initial correlations.

2. Reference state and basis functions
The calculations are carried out using a set of basis function, such that

G(xt,x′t′) =
∑
ij

φi(x)Gij(t, t′)φ∗j (x
′), (1)

where the space- and spin variables are denoted by x = (r, σ). Introducing a finite basis reduces
the Kadanoff-Baym equations to a set of coupled matrix equations. The basis functions φi(x)
are chosen to be molecular orbitals obtained from either Hartree-Fock or DFT calculations.
These molecular orbitals are themselves represented as linear combinations of Slater functions,
φi(x) =

∑
j ψj(x)U †

ji, where the Slater functions ψi(x) = χi(σ)rni−1e−λirY mi
li

(Ω) are centered
on the nuclei of the molecule. The observables calculated from the Green’s function will not
depend on whether the molecular orbitals are obtained from HF or DFT calculations, but they
will depend essentially on the Slater basis ψj(x). The Slater basis should not only be sufficient
for representing the electron charge, but should also approximate a complete basis set in the
region where the charge is located. They should in this sense also account for the continuum
states, and the set of molecular orbitals φj(x) will for this reason include orbitals with rather
high orbital energies. We have chosen the basis by checking convergence of the ground state
value for the total energy and ionization potentials.

The molecular orbitals by construction diagonalize the matrix [h + Σ0]ij = δijεi, where the
noninteracting Hamiltonian matrix

hij =
∫
dxφ∗i (x)[−∇2/2 + w(r)]φj(x) − δijμ (2)

contains the potential due to the nuclei w(r), and the chemical potential μ. The self-energy Σ0

can be either the HF potential, vH + Σx, or vH + vxc if the orbitals are obtained from a DFT
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calculation. Due to the inclusion of the chemical potential in the definition of h, negative values
of the orbital eigenvalues εi correspond to occupied states, and positive values to unoccupied
states. We stress that the value of the chemical potential can be chosen arbitrarily. As long
as it is located in the gap between the highest occupied and the lowest unoccupied level, the
observables calculated from the Green’s function will not depend its value.

The orbital eigenvalues can also be used to define an equilibrium Green’s function for the HF
or DFT system. Defined for complex time-arguments, −iτ , where −β ≤ τ ≤ β, the Matsubara
Green’s function takes the well-known form

G0,ij(τ) = δijθ(τ)[f(εi) − 1]e−τεi + δijθ(−τ)f(εi)e−τεi , (3)

where f(ε) is the Fermi distribution. This Green’s function is diagonal in the molecular orbital
basis, and solves the Dyson equation

[−∂τ − h− Σ0]G0(iτ) = δ(τ). (4)

Importantly, G0 is anti-periodic, G0(τ) = −G0(τ − β), and is for this reason highly useful
as a reference Green’s function when finding the interacting ground state Green’s function, as
discussed below. In Eq. (4), as well as in the remainder of this paper, all the quantities are now
time-dependent matrices, where the indices refer to the molecular orbital basis.

3. Initial state
The first stage of the calculation involves finding the ground state Green’s function, which has
both time-arguments on the imaginary branch of the contour and only depends on the difference
between the time-coordinates. Defining GM (τ − τ ′) = −iG(−iτ,−iτ ′), and ΣM (τ − τ ′) =
−iΣ(−iτ,−iτ ′), we can solve the Dyson equation [−∂τ−h]GM (τ) = δ(τ)+

∫
dτ̄ ΣM (τ−τ̄)GM (τ̄).

By using the reference Green’s function G0, we can write the Dyson equation on the integral
form,

GM (τ) = G0(τ) +
∫ β

0
dτ ′

∫ β

0
dτ ′′ G̃0(τ − iτ ′)Σ̃(τ ′ − τ ′′)GM (τ ′′), (5)

where Σ̃[GM ](τ) = ΣM [GM ](τ) − δ(τ)Σ0. Employing G0 has the advantage that the resulting
GM will now automatically also be anti-periodic, GM (τ − β) = −GM (τ). The self-energy is a
functional of the Green’s function, and the Dyson equation should for this reason be solved to
self-consistency. The equation is solved by an iterative algorithm analogous to the biconjugate
gradient method from linear algebra. It is important to note that the physical observables
calculated from the Green’s function will be independent of the choice of a reference Green’s
funtion, as long as G0 satisfies the correct boundary conditions.

It is inconvenient to represent the Green’s function and the self-energy on an even-spaced
time-grid, as they are both strongly peaked around the points τ = 0 and τ = ±β. This is
easily seen from the definition of the non-interacting Green’s function in Eq. (3, which contains
the exponential terms e−εiτ . If the system has large negative eigenvalues, we need a rather fine
time-mesh to account for the terms rapidly decaying away from these endpoints. For this reason,
we calculate GM (τ) on a uniform power mesh, which is dense around the endpoints 0 and ±β
[9, 10]. As we are interested in the T → 0 limit, the parameter β must be large enough so that
changing it with a small amount does not influence the results.

We have carried out the ground-state calculations within two different self-energy
approximations; the second-order approximation and the GW approximation. For a given GM

matrix, the second-order self-energy matrix (for a spin-unpolarized system) is

ΣM
ij (τ) = −

∑
klmnpq

GM
kl (τ)G

M
mnG

M
pq (−τ)viqmk(2vlnpj − vnlpj), (6)
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a) Σ(2)
c = � + �

b) ΣGW
c = � + � + . . .

Figure 2. We have considered two conservative approximations: The second Born
approximation illustrated in (a), and the GW approximation illustrated in (b).

where the two-electron integrals are defined according to

vijkl =
∫ ∫

dxdx′ φ∗i (x)φ∗j (x
′)v(r − r′)φk(x′)φl(x). (7)

Both these self-energy functionals are examples of conserving approximations [3, 4], which can
be derived from an underlying functional Φ, according to Σ[G] = δΦ/δG. The correlation
part of the self-energy diagrams are shown in Fig. 2. The use of conserving approximations
is essential not only for time-propagation, where e.g. the momentum and total energy should
evolve in agreement with macroscopic conservation laws. For ground state calculations, they
give physically consistent an unambiguous values for the resulting observables [10].

The ground state Green’s function provides a wealth of information about the system. The
total energy is calculated from

E = Tr
{
hGM (0−)

}
+

1
2

∫ β

0
dτ Tr

{
ΣM (−τ)GM (τ)

}
+ μN. (8)

There are many other ways to calculate the total energy from the Green’s function, but only
when it is a self-consistent solution obtained from a conserving self-energy approximation do
they all yield the same result. We have found it highly interesting to compare our self-consistent
total energies to those obtained from the Luttinger-Ward (LW) functional [11] evaluated on an
approximate non-interacting Green’s function. This energy functional is variational in the sense
that δELW[G]/δG = 0 when G is a self-consistent solution. Evaluating the functional at an
approximate Green’s function G̃ will then give an error only to second order in ΔG = G̃ − G.
Due to the stability of the LW functional, it produces a value very close to the self-consistent
result when evaluated on, e.g. a Hartree-Fock Green’s function [10, 12].

There are several possibilities for calculating ionization potentials from the ground state
Green’s function. One obvious method would be to Fourier transformGM (τ), producingGM (ωn)
on the Matsubara frequencies ωn = i(2n + 1)π/β. The Green’s function on the real frequency
axis can then be obtained by a Pade approximation, and the ionization potentials are then found
as the poles of this quantity [9]. This procedure is rather cumbersome, and we have preferred to
calculate the ionization potentials from the Extended Koopmans’ Theorem [13]. The method is
based on defining the N − 1-particle states |ξN−1

i 〉 =
∫
dxu∗i (x)ψ̂(x)|ΨN

0 〉, and then optimizing

the coefficients ui(x) according to δ
[
〈ξN−1

i |Ĥ|ξN−1
m 〉 − λi〈ξN−1

i |ξN−1
i 〉

]
/δu∗i (x) = 0. This results

in the eigenvalue equation
Δu = uρλ̃, (9)
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Figure 3. The Green’s function G≶(t, t′) is represented for time-arguments within an expanding
square defined by t, t′ ≤ T .

where the density matrix ρij = GM
ij (0−) and Δij = −∂τG

M
ij (τ)|τ=0− are both given by the

equilibrium Green’s function, and the eigenvalues are λ̃i = EN−1
m − EN

0 + μ. It can be shown
[14] that the EKT is exact for the first ionization potential Ip = λ1 − μ. If the Green’s function
used in this scheme is the Hartree-Fock Green’s function, the eigenvalue problem (9) reduces to
the Hartree-Fock equations.

4. Propagation
Once the ground state Green’s function has been calculated, it can propagated according to
the Kadanoff-Baym equations [6]. Time-propagation means that the contour which initially
goes along the imaginary axis from t = 0 to t = −iβ is extended along the real axis, as
illustrated in Fig. 1. The Green’s function with both arguments on the real time-axis are
represented by the functions G≶(t, t′), related by the symmetry

[
G

≶
ij(t, t

′)
]∗

= −G≶
ji(t

′, t) and

the boundary condition G>
ij(t, t) − G<

ij(t, t) = −iδij . We also need to calculate the functions

G�(t, iτ) and G�
ij(iτ, t) with one real and one imaginary time-argument. The implementation of

the propagation is similar to the scheme described by Köhler et. al. in Ref. [15].
Compared to the propagation scheme described in Ref. [15], there are two main differences.

Firstly, these equations are propagated for an inhomogenous system, i.e. the Green’s functions
and hHF are time-dependent matrices rather than vectors. This significantly increases the size
of the objects to be calculated. Furthermore, the complicated structure of the Green’s function
matrix can make time-propagation unstable. This is particularly true if the basis includes
orbitals with very large eigen energies. The matrix elements then oscillate with on a time-scale
given by the eigenvalue differences εi−εj . While the equilibrium Green’s function matrix GM

ij (τ)
is dominated by the diagonal terms, the rapidly oscillating off-diagonal terms play an important
role during the time-propagation. The effects are not that apparent when considering time-
dependent observables such as the dipole-moment. The total energy is on the other hand much
more sensitive to the size of the time-steps. One should also keep in mind that the systems
considered here only have discrete energy levels. The continuous part of the energy spectrum is
represented by a set of orbitals which can have rather large eigenvalues, but they will not cause
damping effects similar to what is observed in systems with a continuous spectrum [16].
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The other main difference is found in the initial correlations, which in our case is specified by
the equilibrium Green’s function. At the start of the propagation, the initial conditions are given
by G<(0, 0) = iGM (0−), G>(0, 0) = iGM (0+), G�(t, iτ) = iGM (−τ), and G�(iτ, t) = iGM (τ).
Due to the anti-periodicity of GM (τ), the resulting non-equilibrium Green’s function will
automatically satisfy the Kubo-Martin-Schwinger boundary condition G(ti, t) = −G(tf , t),
where ti is the initial point of the Keldysh contour (at t = 0) and tf is the end-point at t = −iβ.

By using the symmetry of the Green’s functions, we only calculate G>(t, t′) for t > t′ and
G<(t, t′) for t ≤ t′. This means that we have to solve the Kadanoff-Baym equations on the form

i∂tG
>(t, t′) = h(t)G>(t, t′) + I>

1 (t, t′) − i∂t′G
<(t, t′) = G<(t, t′)h(t′) + I<

2 (t, t′) (10)

and
i∂tG

�(t, τ) = h(t)G�(t, τ) + I�(t, τ). − i∂tG
�(τ, t) = G�(τ, t)h(t) + I�(τ, t). (11)

The collision integrals are

I>
1 (t, t′) =

∫ t

0
dt̄

[
ΣR(t, t̄)G>(t̄, t′) + Σ>(t, t̄)GA(t̄, t′)

]
+

1
i

∫ β

0
dτ̄ Σ�(t,−iτ̄)G�(−iτ̄ , t′)(12)

I<
2 (t, t′) =

∫ t′

0
dt̄

[
GR(t, t̄)Σ<(t̄, t′) +G>(t, t̄)ΣA(t̄, t′)

]
+

1
i

∫ β

0
dτ̄ G�(t,−iτ̄)Σ�(−iτ̄ , t′)(13)

I�(t, iτ) =
∫ t

0
dt̄ΣR(t, t̄)G�(t̄, iτ) +

∫ β

0
dτ̄ Σ�(t,−iτ̄)GM (τ̄ − τ) (14)

and I�(−iτ, t) =
[
I�(t,−i(β − τ))

]†
. The last terms in each of the Eqs. (12–14) account for the

initial correlations of the systems. Time-stepping is simplified by writing the Green’s function
on the form G≶(t, t′) = U(t)g≶(t, t′)U †(t′) where the matrix U(t) satisfies i∂tU(t) = hHF(t)U(t),
and we have defined1 hHF(t) = h(t) + ΣHF(t). Consequently, g>(T + Δ, t′) = g>(T, t′) −
iU †(T )

∫ Δ
0 t̄ U †(t̄)I>(t̄+ T, t′). Assuming hHF to be constant, h̄HF and I>

1 (t, t′) ≈ Ī>
1 (t′) in this

time-interval, we find

G>(T + Δ, t′) = e−ih̄HFΔG>(T, t′) − 1
h̄HF

[1 − e−ih̄HFΔ]Ī>
1 (t′), (15)

and similar expressions for G<, G�,�. Only the expression for G<(T + Δ, T + Δ) becomes
somewhat more complicated.

We have been able to propagate the Green function for a number of closed-shell atoms
and diatomic molecules. The time-propagation has so far been implemented for the second-
order self-energy (Fig. 2a), while the GW approximation is currently implemented only for the
ground-state calculations. We can include a time-dependent electric field in the direction of the
molecular axis, so that the system preserves a cylindrical symmetry. Generalizing these scheme
to systems of lower symmetry does not lead to other complications than increasing the size of
the calculations.

5. Applications
One of the many interesting quantities that can be calculated from the Green’s function is the
spectral function A(T, ω), defined according to

A(T, ω) = i

∫
dt eiωt

[
G>(T + t/2, T − t/2) −G<(T + t/2, T − t/2)

]
. (16)

1 We have here extracted the HF self-energy from the collision terms I.
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Figure 4. The left figure shows the spectral function of an H2 molecule in its ground state.
The full line shows the determinant of the matrix A(ω), while the dashed line shows the matrix-
element A1σg ,1σg(ω). The amplitudes have been scaled to facilitate the comparison. The figure
on the right shows ImG<

1σg ,1σg
(t, t′).

We have here introduced the time-coordinates T = (t1 + t2)/2 and t = t1− t2. If we do not add a
time-dependent potential to the ground-state Hamiltonian after t = 0, the Green’s function will
only depend on the relative time t, and the spectral function A(T, ω) will thus be independent
of T . This is illustrated in Fig. 4. The figure shows the imaginary part of the Green’s function
matrix element G<

1σg ,1σg
(t1, t2), where the index 1σg refers to the occupied HF orbital of the

molecule. Along the t1 = t2 diagonal, this matrix element is purely imaginary, and the amplitude
is practically equal to the natural orbital occupation number. The frequency of the oscillation
in the t1 − t2 direction corresponds to the peak in the spectral function matrix element A1σg ,1σg

as plotted in Fig. 4. The figure also shows the absolute square of the determinant of the matrix
A(ω), which has a sharp peak at a frequency which agrees closely with the eigenvalue λ1 = Ip+μ
calculated from the EKT. The plotted spectral function gives the correct position of this peak,
but has additional, unphysical structure due to the fact that the Fourier transform in Eq. (16)
is calculated over a finite time-interval.

The same set of functions are plotted in Fig. 5, but the Green’s function is now calculated
with an additional electric field switched on at t = 0. For t > 0, the field is constant, directed
along the molecular axis, and has an amplitude of E0 = 0.1 a.u.. The Green’s function has
oscillations also along the time-diagonal, reflecting oscillations in the occupation number. The
spectral function A(T, ω) shown in Fig. 5 is calculated at T = 15.2. While the shape of the
spectral function is similar to that of the ground state system, the peaks are shifted due to the
applied electric field. The smaller peaks in Figs. 4 and 5 do not have any physical significance.

Time-propagation is also useful as a direct method for calculating linear response and
excitation energies [17]. The excitation energies of the system can be obtained from the poles of
the density response function χ(ω), defined by δn(ω) = χ(ω)δv(ω). Perturbing the system with
a “kick” of the form

H ′(t) = V δ(t) = V

∫
dω

2π
, (17)

therefore excites all states compatible with the symmetry of the perturbing potential V . After
propagating the Green’s function for some time, the imaginary part of the Fourier transformed
dipole moment d(t) features peaks at the frequencies corresponding to the excitation energies
of the system. Time-propagation is in this way an interesting, and far more direct alternative
to solving the Bethe-Salpeter equation. In Fig. 6, we have plotted the polarizability, defined
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Figure 5. The left figure shows the spectral function A(T, ω), at T = 15.2, of an H2 molecule in
an electric field, E(t) = θ(t)E0. The figure on the right shows the imaginary part of the matrix
element ImG<

1σg ,1σg
(t, t′).
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Figure 6. The imaginary part of the polarizability α(ω) of a beryllium atom calculated from
the Green’s function propagated up to a time t.

according to α(ω) = −1/E0

∫
dt eiωtd(t), of a beryllium atom for various durations of the time-

propagation. The polarizability develops a main peak at ω = 0.4 a.u. (compared to the
experimental value of 0.39), which becomes increasingly sharper as the propagation time is
extended. As the system consists only of discrete energy levels, there is no significant damping
in the time-dependent dipole moment d(t) as a function of time. Since the Fourier transform is
taken only over a finite time-interval (i.e. the duration of the propagation), the imaginary part
of the polarizability α(ω) will not always be positive, as is evident in Fig. 6. One can, somewhat
artificially, remedy this by introducing an artificial damping, which will not shift the position of
the excitation peak.

6. Future development
We are now able to propagate the Kadanoff-Baym equations for atoms and diatomic molecules.
For these small systems, the second Born approximation is clearly a well-suited approximation,
and the non-equilibrium Green’s function is easily computed when expressed in a finite basis
set. For these small systems, one can aim at quantitative agreement with experimental results,
but this depends on whether the basis set is small enough for the calculations to be feasible, but
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large enough to describe the details of the electron dynamics. Including molecular orbitals with
large eigenenergies is important in order to account for the continuous part of the spectrum,
but the rapidly oscillating terms introduced by these orbitals cause the time-propagation to be
considerably less stable. The problems become more serious the larger the nuclear charge of the
atoms becomes, and we are currently investigating how large systems we can do quantitatively
accurate calculations for. An important goal for these calculations is to provide benchmark
results for testing exchange-correlation functionals in time-dependent density functional theory.
For extended systems, such as molecular chains, it becomes essential to cut down the long
range of the Coulomb interaction. This is done effectively within the GW approximation,
which we have currently implemented for the ground state. Time-propagation within the GW
approximation does not appear to be significantly more complicated than for the second-order
self-energy.

References
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