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Dynamical ansatz for path integrals and nonperturbative trace formulas

Yu. A. Dabaghian
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
(Received 17 December 1998

It is shown that a recently discovered representation of the Green’s function is equivalent to a certain
“dynamical ansatz” for the corresponding path integral, which brings about a convenient method of nonper-
turbative approximations. Based on this observation, a set of nonperturbative approximations to the trace of the
Green’s function is establishef51063-651X99)06805-1]

PACS numbg(s): 05.45.Mt, 11.15.Tk, 03.65.Db

. INTRODUCTION o 2 e
GA(x,y)=if dse's Nf Dyeli//g,(s)ds
In order to determine the energy spectrum of a quantum 0

system one considers the trace of its Green’s function
X

) e
M—iy,| P.— EA”

G(E)=J G(x,x|E)dx,

X e 11585 v, (8)A(y= 5 )

which, in terms of a Feynman path integral formalism, is X 4 x—erfS v).

given by a sum over all the closed paths in the configura- 0

tional space. In the semiclassical linfit—0, this sum re-

duces to the one over all the closethssical trajectories Here N i§ the normalizing  coefficient N~*

[5-7): = [Doel®/w,(Y9'  One can use theé(x—y+[3v) to
write the previous formula in terms of the path integral:

eiSCI+iV
. . * . . T
per%bits \/de(l—Mp) GA(X,y):| fo dse |sm2Nf DXMe('M”?XMdS

Here S, is the classical action functional evaluated on an
orbit y andM, is the stability matrix of that orbit.

Inasmuch as the basic tool of the analysis of the semiclas-
sical behavior, the semiclassical trag.(E), is built from  where a pathy connects the initialX,(0) and the final
a set of classical objects, one would expect to be able to trageﬂ(s) points of the evolution.
the correspondence of certain quantum properties to the dy- The representation in terms of a functional path integral is
namical features of the corresponding classical system.  given by

However, this correspondence and the above formula are
valid only in the limit #—0. An interesting question is % o

fo dse'™ SJ DX,

GqcI(E) =

« e—igfgdxﬂAlAX), 1)

) e
M—iy,| P~ EA“

whether it is possible to go beyond this limit and to obtain Gc(P.p") =i
somef # 0 approximations to the exact quantum trace with-

out using perturbative techniques; whether it is possible to . .
: . - / d /
extend the sum from the set of classical orbits to some larger X J D&, Xt 0%, du/2X,(9X,(0)
set of paths to produce a consistent approximation to the
exact trace outside the limit—0. X (e” WP 5(X,,~ 5,(X,AE,))
) 1. d,
Il. THE GREEN'S FUNCTION Xym=ly,| 5X,+ 5+, 2

The starting point of the following discussion is a repre- ) ) - ]
sentation of the causal Green’s function, obtained recently ifl€re£. = £,(s) is a certain auxiliary function, and the argu-
publications[1], and presented here using the example offent of theé functional is deﬁ_ned by the formal dynamical
Dirac’s equation. The derivation of this representatiofplih flow generated by the dynamical system,
was based on the Schwinger-Fradkin representation of

Green'’s functionf2,3]. For a particle of a mass and charge dX, /
i i ! . R . P + — _
g moving in the external field with vector potential, such ds PuTPu 26u(8) = 29A4(X), ©
a Green’s function can be written in terms of a functional
integral over the velocity ,(s) of the particle as the time integral of these equations,
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X, (8)=X,(0)+(p,+ pl’L)s—ZJO gﬂds’—ZgJOAM(X)ds’
=f,(X,A€).

The connection between the representatigh and the

standard one can be easily established. Using the fact that the

argument of thes functional,

8(X,(8) = FL(X,A€)), (4)

is linear in¢,,, one can immediately perform the functional

integration over ¢,. The determinant ded(x,
—f.(x,§,A))/6¢,]=1, and hence, inserting
p,+p 1.
£u=— 5 OAUX) 5K, (5

into the phasd,(X,/4+£,)dX,, one gets

S:L

X +p!
:f (__”+M_9AM(X))dXM
¥

XM+DM+DL

4 2

1.
—gA.(X)— EX") dXx,

4 2
X Put P,
:—Jy T’W—gAM(X))dX#—F X,

Combining the last term-i(p,+p,/2)AX,, with the similar
phaseiq [ X,(s)+X,(0)2], one gets
P.—P,

(X, (8) = X,(0))+ == (Xu(8) + X,(0))

PutPy
2

= p,U,X,u(O) - p;LX,U,(S)i

which brings us to
— ” —im2s
Gc—lfO dsf DX,e
5 @i Y XA+ GAL(XNAX, 0= 1P, X 1 (5) =P X, (0)

X {M=i7,(p,—gA,(X)}(e UFX) . (5)

The exponentiale™!®.Xu(9 P Xu(0) s essentially a re-
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The constraint4) actually provides another possible way
to represent the Green’s function, since one can consider the
phase of the exponential in E¢R) modulo this constraint.
Proceeding as before, one gets, using Gy.

Gc=ifmdsf DX,uf Dgﬂe—imzseify(X#/4+gAM(X))dX#
0

X @7 PXu(OPXUOD 5(X , — £5(X,A, £))

X{m=iy,(p,—gA (X))} (e oFX) (78)

Although the latter expression still contains thdéunctional
and the integral oveg, was not taken yet, it bears a very
close resemblance to the standard representafipnand,
therefore, it will be convenient for various purposes to con-
sider the representatidiib) along with the original:

Gc=if:dsf Dxﬂf D¢,

@ iM2sg=if 5 (X, A+ £,)dX,6(i0,/2)(X,,(5) + X, (0))
X (e”9FX)  5(X,,—f5(X,A,a))
1dX, g, dR,

% m"’ﬂ(iE’L 2 " ds

] . (70)

The expressioli7a) could be obtained from the originél)
by inserting a “unity decomposition,”

- j DE,8(X,(9)~ f L(GA,8),

into the integrand. A representation equivalent to @ywas
rigorously derived if1]. However, one can think of it as of

a certain ansatz, or an analytical trick that allows one to bring
to light certain remarkable properties and physically inter-
pretable structures of the functional integral. Due to the
5(XM(S)—fL(X,A,§)) constraint, one enjoys a very special
feature of the representation, namely, that every path
y:{X,(s"),0=s'<s} in Eq. (2) is a solutionto a certain set

of dynamical equationé3). This circumstance allows one to
consider every path on the configurational space from a cer-
tain dynamical point of view. It should be emphasized here
that although this statement might seem restrictive, every
path in configurational space contributes to the integi@ls
and(6). Indeed, for every patly: X, (s),0<s’'<T, the ex-

minder of the fact that Green’s function is in the momentumpression

representation.=G.(p,p’). In coordinate representation

one would obviously have the standard expresgibnfor
Ge(x,y):

G =i f “ds J DX e~ M sgl /X4 + A, (00X,
0

X{M=iy, (P~ gALXN} (e U FX) . (7)

where y(s) is a path connecting=X,(0) andy=X(s).

dX,(s") o Pt ,
1o TIALXE)= T £ X(S)

defines a certain functiog,(s’) of s’ on the interval 0
<s'<s, which corresponds to that particular path.

Although Eq.(7a) is seemingly very similar to the stan-
dard representation, it in fact allows one to establish a new
perspective on the question of evaluating the functional inte-

As one can see, the equivalency of the representation to thgral via an uncommon sequence of nonperturbative approxi-

standard one is quite straightforward.

mations.
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1. APPROXIMATIONS able possibility of dropping thé,, dependence in Eq7a)
[and consequently in E¢7b)] for anyn’s, without changing
the overall structure of these formulas. Such “structural in-
variance” is very convenient. For instance, it implies the
possibility to apprOX|mate the functiaf),(7) by it's Fourier

If it turns out to be impossible to explicitly evaluate the
functional integral(1), one starts to apply various approxi-
mation techniques. The only approach that the original func-
tional integral(1) naturally suggests is to look for the pos-
sible perturbative expansions near the saddle point of th onnom|aI§ (7) of the degreeN by dropping all the coef-
phase. The saddle point itself, which corresponds to the zdICi€Nts Py in Eq.(7) for |n[>N:
roth order of perturbative expansion, describes the semiclas- 1
sical regime[4]. All the higher orders of the perturbation Ne v ;
series allow one to consider the vicinity of the saddle point. €u(7) JT nzo (PynCOL@n7) +Q p SIN(@n7)).
Physically speaking, a perturbative expansion represents a
certain way to introduce quantum fluctuations into the sysConsequently, the exact phase of the integrand of(Ea).
tem. would be replaced by a certain “Fourier-type” approxima-

On the other hand, when facing the need to apply a certaition,
perturbation technique, one has to chose the approach that is
appropriate in a given physical situation. It is the character of X
the dynamicdclassical or quantuimof the system in ques- S=f TMﬁLS#(S) dXMHSNEf
tion that justifies the means of approximation. The perturba- Y 4

tion t.echniques that are based on approximating the' aCtiand thus one would obtain a nontrivial sequence of approxi-
functional near the saddle point might not be appropriate iMaations to the Green’s function. The indexenumerating

some cases. By applying “perturbative” methods where thpihe variablesP,, is not a perturbative index, and so these

\rl]vgrc])lliié':f[gfé:gr(iﬁrg#:t;ﬁggg zbii?geigéhaesh;ghg;g:ggr approximations are nonperturbative. Omitting the variables
P n in the argument of thé constraint implies that the path

ion, one s o sseume some Kind of esiaty f the itgraton  Ea(7a or n E6.(7 i resticied o th s
q y that are the solutions to the system,

ferent parts of interaction. However, in some cases, such a
the ones of the chaotic systems, one cannot make this as- D, +p’
sumption. All of the terms are essential in determining the  “"£  ga (x)= 221 — N (p  coqw,7)
global dynamical characteristics of the system. By using the ~ d7 2 a
perturbative methods one can unwillingly average off or de- _
stroy the evidence of some effects. +QpnSiN(@n7)). ©)
There exist methods, such as Gutzwiller’s trace formula,
that allow one to consider the saddle point in all its complex-
ity, but they do not extend beyond the=0 point—unless
the same old perturbative techniques are used. It is difficul
to go further than the semiclassical description of the
Green's function if one would need is to use some nonper-
turbative techniques. As it turns out, the representati@n
suggests a simple set of nonperturbative approximations,

X
7“+§ﬁ<s>)dxﬂ,

Hence, by approximating the *“action” function& one
gets certain approximationSy(x,y) to the exact Green's
unction. These approximations converge to the exact

reen’s functior[1] in the limit N—co,

Ge(x,y) = lim Gy(X,y),

N— o0

which are described below. as soon ag"\ converges ta,, .
The Fourier series expansion of the auxiliary function |t 51 the F’n'S are droppegl in expressiof®) and(7), one
£u(7), gets a semiclassical approximation for which the path inte-

gration goes over the solutions to the classical “map,” Egs.

N 1 .
Z un €O, 7) +Q,,  SiN(w, 7)), (4) and(3) with ¢,=0:

-

dx,
mF— P.—9ALX)=0,

2
wp=0(n+12), w=—, tS)

T . : : .
where 7=2ms is the proper time of the particle. Assuming
that the particle is on its mass shell, one can also writerthe
derivative of the last equation in terms of the electromagnetic

field tensorF ,, as

defines a set of the coefficien®, ,. The frequency seb,
=(27/T)(n+1/2) emerged in the regrows derivatigh. In
terms of the expansiofB), the functional integration over
the ¢, in Egs. (7a and (7b) should be understood as an

: : - - ] d?x dx,
integration over all the expansion coefficieitg L _gF,,—~=0
d27' MV dT ’
D 1,004 dP’“‘ ”dQ““
Eu= 2 In general, the possibility of sequentially dropping tRg

dependence in Ed@4), that is to say, of introducing the quan-
As is easy to see from Eq7a), if one uses this measure tum fluctuations gradually, allows one to make some close
of the functional integration ovef, , there exists a remark- observations of the corresponding quantum dynamics.
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Another way to look at the possibility of approximating ever, is that one naturally obtains an ordering of the paths
the Green’s function by using a certain Fourier polynomialaccording to their complexity.
of £,(7) is to say that the approximating procedure induces Remarkably, the functio, was introduced in such a
an ordering among the configurational space paths. Accordvay that it does not contain any particular characteristics of
ing to the amount of contribution th@gs make to the integral the underlying classical system; so it is a universal system,
(2), one can introduce a partition of the total path Eé€M) an independent way to introduce quantum fluctuations.
as the following: a pathy:{X,(7),0<7<T} in the configu-  Physically one can visualize the effect of the “quasipoten-
rational space will belong to a s&CI'(M) if it satisfies  tial” ¢, (P,'s andQ,’'s) by imagining that the particle is
the constraint moving in a field of many infinitely uniform waveéra),
added to the background potential. Since one can consider a
dX, Put pl’L simplified dynamics by leaving only a finite number®f’s
a4y TIAX)=——5—+ Nii 20 (P,ncogwy7) andQ,’s in Eq. (4), it is possible to introduce the quantum
fluctuations “gradually” into a system.

N

+ Q,u,n Sm(wnT))
IV. APPLICATIONS: THE TRACE FORMULAS
for somefinite numberN of harmonics and arbitrary values i
of the coefficientsP,,. Obviously, the sel,, obtained by One of the most important features of a quantum system

is the distribution of the energy levels. The distribution of

keeping onlyPy=p,,+ pL/Z, while P,=0 for n>0, corre- . ) .
sponds to the totality of the classical trajectories of the systhese Ievel; IS expec_ted to be d|fferent de_pend_mg on whether
the underlying classical system is chaotic or integrable. To

tem. The corresponding eikonal approximation is just the K with th level distribution. it i ent t
semiclassical Green'’s function. The next approximation sef/ork Wi € energy level distribution, 1T1S convenient to

will correspond toP,=0,n>1, in which case, in order to introduce the quantity
evaluate theG,(x,y) one should consider all the paths that

_ 1
satisfy G(E):TrH E=TrG(x,y|E)=f G(x,x|E)dx
dX,, Put Py
b = il 1
1 TIAX) == +ﬁ(PM,1c05(w17) > == 1D
n n_
+Qu18IN(w17)),

In most of the cases, especially in the nonintegrable ones,
for all possible values-=<P;,Q,<w. The next approxi- the explicit dependence of the energy levels on quantum
mation G, requires two harmonics Ry,Q;,P,,Q,)#0, numbers is unknown. In such cases the latter expression pro-
with the previous case corresponding to the particular parantides an(essentially uniquemethod of finding the eigenval-
eter value subset R,=Q,=0) and so on. Obviously ues ofH as the poles of the functioG(E), if one manages
Iycr'yCry---CcI'yc---Ccl'.=I'(M). to evaluate it in some other way.

It is important to mention that from the point of view of ~ There exist several methods of finding the tr&E) in
the dynamics of the effective syste(fa), adding the terms the#—0 limit [6]. The most acknowledged among them is,
perhaps, Gutzwiller’s trace formula, which states that in the

1 EN: : quasiclassical limitG(E) is given by
g,u:_ P,uvne “n”
2T 1 iSi+i
1 N qu(E):per;bns We el (12
= &, Puncosoan) +Qnsinw,m) °

whereM is the stability matrix of the dynamical flow of the
assical equationsdS;=0) andv is the Maslov index5].

There exists an alternative approach discussed by Cvi-
anovicand otherg7], who proposed to consider the trace of
the classical transfer operator

+p; i
pusz, (10 Lt= |At(X)|e_'St(X)/h+”5(y—ft(X)),

to the right-hand sides of the classical dynamical equationgI
certainly changes their dynamical behavior. For example, i{
can destroy the integrability of the classical equations,

OIX”+A X)=
ar gAL(X)=

i i ) wherey=f(x) is the dynamical flow of the system corre-
and in general, the geometry of the trajectories .of aq) sponding to the actior®!(x) and A'(x) is the expanding
can be completely different from that of the solutions t0 Eq.gjgenvalue of the Jacobian transverse to the flow. Due to the

(9). In the first approximation, along with classical solgtionsg functional, the trace of the operatbt contains
to EqQ. (9), (P,=0) one also considers more complicated

paths that correspond to the solutions to HE) for 1/det1—M,) (13
(P,,Qp) #0,n>1. The more harmonics that are kept in Eq.

(9), the more geometrically complicated paths can occuinstead of 14/det(1-M,) as in Gutzwiller's formula[7],
among the solutions to E¢9), and in the limitN—« all the  which affects the convergence rate of the sum over the clas-
paths ye I',.=I"(M) contribute. What is important, how- sical orbits. An expression containiii$3) was introduced in
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[7] as a regularization fo the sufi2), where the power of and in general, one gets
the pre-exponential factor was changed to improve the con-
vergence properties dfl2) and the analyticity of the trace

G(E). L o
Conveniently, the possibility of dropping certain coeffi- M= > —(me"s"”N, 17
cientsP,,,Q, in the formulas(2), (7a or (7b) while keeping P.O<Iy de(1-My")

the é-functional constraint, allows one to derive the trace
formulas for the successive approximatiddg(x,y|E),
WhereME,N) is the stability matrix evaluated along the peri-
GN(E)=TrGy(x,y|E) odic orbits of the systen9).

to approximate the exact trace G(x,y|E).

For the Oth approximatioR,=Q,=0, one gets from Eq.
(7hy): PP "= g a V. SUMMARY

. The representation@a and(7b) are quite remarkable in
dre”'™ % Dxﬂeigs(mxn’“g%(x))dx# many respects. First, due to the “effective dynamical system
constraint” (3), the path integration always goes along the
X 8(X,— 17(X,A,£=0)) solutions to a certain dynamical system. Although for the
” exact representation this constraint is merely formal, since it
X{m—iy,(gA,(X)+p,)}H(e ¥rwFmX) does not actually narrow the set of paths used to evaluate the
) ) ) path integralg7a) and (7b), it is very essential for the ap-
Here all the paths satisf{,(0)=X,(T). S'”Ce_‘ffv 'S qua- proximationsGy . There it becomes quite tangible, because
dratic in Dirac matricesy,, , the expansion 08”97« v in  yno st of paths satisfying the conditio®) for N< is a
the previous expression, combined with the factorsma” subset of the total sét of the configurational space

g#(gAﬂ(X)JrpM),[[))roducer;?nly odd Ipc;}wers r?f » Which o ths. SinceGy's converge rapidly to the exact Green's
ave zero trace. Due to thefunctional the path integration ¢ n.fion  this observation allows one to group the paths in

g|c¢’)i issi:;eéqtgsﬂzglsug?r:oi%;he equations equivalent to thgubsetsl“N according to the significance of the contribution
' they make to the integral§a and(7b). As can be seen from
dx the representatiofi7a), the approximation$,, are nonper-
d—;+pﬂ—gA#(x):0. (14 turbative and, therefore, they can be quite valuable tools for
dealing with specific physical problems, such as those of
quantum chaos. The usual tools for such analysis, the trace
formulas, can be derived easily for every approximat&.

TrGg=i TrJ
0

Integrating over the classical periodic orbijte I', one gets

o A Lo It should be emphasized that the semiclassical trace formula
TrGo=i TTJ dre '™ é DX, e'#(MmX./2+ gA,)dX, (15) as well as itsh#0 generalization16) and (17) were
0 obtained using strictly nonperturbative techniques. Although
X 8(X,,— f;(gzo))(e—gsﬁUWFm)Jr there exist certain WKB-type approximations to the Green’s
function for 2 #0 case[8], they all come in the form of
1 Cis—iy perturbation series in the powersfof A common shortcom-

ing of such perturbative approximations are poor conver-
gence properties and the lack of a clear geometrical interpre-
1 tation of the expansion terms—except for the zeroth order
= — e iSTiy (15)  term, the pure semiclassical case. Also, as was pointed out in
P.OcrIy def(1— Mf)o)) [1], from a physical point of view such methods might not be
adequate to describe certain features of quantum systems.
where Perturbative approaches, based on expansions of the func-
o 2 tional integral near the saddle point, can destroy the evidence
_ - 13 - of certain dynamical effects, such &guantum chaos. On
S= 3& 2 * 2 TOALIX, TG0, Fuu(X) 7 the other hand, a completely different approximation prin-
ciple obtained in publication§l] allows one to get a se-
is the action, andM ELOV) is the stability matrix given by the quence of approximations to the Green’s function, without
flux of the equationg14), evaluated along each periodic or- losing a geometrical perspective on the problem.
bit yeI'y. The pre-exponential determinant appeared natu-
rally after integration over the pabX, .
This result formally resembles the trace formula of APPENDIX A: A DERIVATION
Cvitanovicand other$7]. The next approximation fag, (p) OF THE REPRESENTATION (1)
will produce in the same way

B clos.P.O. de(l— M E)O))

Here we present the derivation of the expressi@a),
1 o following the notations of1] and[3].
TIGlH= > ————e S, (16) One writes the expression for Green’s function in the mo-
P.Oery def(1— M;J ) mentum representation:
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Gc(p,p’|A)=i JO dSJ d4ze—ism2—iqz+(isq2/4)1-[n

4p 44
f f d*p d Qn (I/Z)(P +Q)
(2m)*

X @~ 9/gds’ (9192,)A,(£(s) - 2f5ds’ Q)

X{m—iy,[p,—Q,]}

X (e~ 9/ oFE(s)~2/gds' Q) (A1)
where() ,(s) satisfies the constrairt4)
mm,A)EQM(s')—gA,L( i(sh-2 fos'dm(s")) -
The ,(s") andR,(s’) are defined as

{u(8)=2,+8" (P, *tP,)—2Ru(S"), Qu=P,— P,

©=0,1,23

Js

R,(S)==— >, P 2ms’ 1/2
W80 = 5 & Tnv iy | Pty s (M2

+ Q0 Sin

S/
(n+1/2)”.

It will be more convenient, however, to work with the de-

rivative of R, (s),

dR,(s")
ds’

- g/.t( )

2 (Quncogw,S )~ P, 1 SiN(w,s')).

2]

The exponent
efgJ‘(Sst’((7/(72#)AM(§(3)72H(S)ds’ﬂ(s’))
can be written symbolically as

@~ 9J5ds (919z,)A,(5(s)—2f3ds Q(s")) — gitr (36 ,(s")/ 5%,(s"))

- det( 9Pu(s) )) .
ox,(s")

One has

DYNAMICAL ANSATZ FOR PATH INTEGRALS AND ... 329

G.=i J'O dsf d4ze ism —iqz+(isq /4)1-[n

|J'0(p 0)2ds’

4p g4
dePdQn i12(P2+QP)
(2m)*

Spu(sH|, .
xde{ &V(S,,)){m ivlp—Q(9)]}

—afc —2(Sq<’! ’
X (@~ 9 oFU(s9)=2/¢ds'Q(sT)))

Note, that one can obtain the determinant
det(d¢,(s")/6x,(s")) by inserting formally thes func-
tional,

5( fosnﬂ(s’)— g LSA#( (s — 2josrdg'n(s")) ) ,

(A2)

and integrating over th& ,(s’):

G.=i fmdsJ’ d4zf DQMe—ist—iqu(iquM)Hn
0

of J e

X{m—iy[p—Q]}ﬁ( f:Q,L(s’)—gLSA

P2+Q )e i[3p—Q)2ds’

X g(S’)_ZJS’ds"Q> ) (e79f<":(§(5)*2f8ds’ﬂ))+
0

Now it is natural to call the whole argument Af, a new
of variableX, :

X#(s’)zz#—s’q#—ZRM(s’)—ZJOS/ (Q,(8")~p,d.
(A3)

It follows from the previous line that

E dX,(s") N q_fur dR,(s")
2 ds’ 2 4

== (Qu(s)=pL). (Ad4)

Squaring both sides of E§A4), one gets
2een B me i L g B (o
Xu(S)+ 7 TRL(S)+ 50, X,u(8) +a,Ru(ST)
+R,(8)X,(8") = (Q,(s) — L)%,
which yields, after integrating ovels’ from 0 tos[the same

interval 0<s’ <s over which the expansion & ,,(s) is de-
fined),
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1 S'2 qM s, . So
0= ZJOXMd3'+7(AX#(S))+q#(ARM(s))+JORMdes

) AR,(s)=R,(s)—R,(0)=—2R,(0).

s , 21 qu S. 2
— JO (Q,(s")—p,)*ds —T—fo R.ds/|, (A5)  On the other hand,

where AX,(s)=X,(s)—X,(0) and AR,(s)=R,(s) X.(0)=z,-2R,(0),
-R,(0).
F‘;om the definition of théfunctiona) variableR,, one s , ,
has XM(S)=zM—sqﬂ+2RM(0)—2J0 (Q,(s")—p,)ds’,
S: 2 1 2 2
fo R, ds= E(P”+ Qn): (A6)  so

since theP,cog(2n+1)ms'/s] andQ,sin((2n+1)7s'/s] terms AXu=Xu(8)=X,(0)= —50, T4R,(0)

are orthogonal on the intervakgs’ <s for the differentn’s. s
Now one can see that all the three terms in parentheses in - ZJ (Q,(s")—pLds’,
the second line of the expressioA4) appear in the argu- 0
ments of the exponents in the expressidd), which allows
one to rewrite the Green’s function as and, therefore,

e iem2_i e .
Ge=i | “as|[ dtze e[ po, ~i 20X, ~ig,AR, —|—+qu ()~ p,)ds'.
(A7)
XJdR,ue—(i/4)f5(ids’e—i(q/Z)AX—iqAR—ifX#Rﬂds’

On the other hand, again usimg,(s)=—R,(0), one can
dX q dr write
_§fS —j Lo R o

X 6(X,, fﬁ(x,A,R)){m I'y'u( 2ds+ > + ds” .

—gfo X (s8)=2z,—sq,— X, (0)—-2 [ (Q,(s")—p,)ds
N (9)=22,-50,-X,(0-2 [ (©,5)-p,)

One can collect the two integrals in the arguments of th nd
exponents in the previous expression into a single phase:

S
GCZif dsf d4zeﬁimzsf DQ, XM(S)JFXM(O):ZZM_S%_ZL(QM(S')—pM)ds’,
0
><de 87if)‘xu/“*Rﬂ)dxue*i(q/2)AX7iqAR7iqz Therefore,
yi3
X, (s)+X,(0)
dX, g, dR g |2 AW
[ i o L q z
><5(Xﬂ—fi(X7AvR)){m_W“(ﬁ+7+E)] W2 W

w (@~ 9/ oF(X) qZs s

(e )+ =|T+qMJO(QM(s’)—pM)dS’. (A8)
where the integration iff (X ,,/4+R,)dX, goes over a path

connecting theX,(0) and X ,(s)—the initial and the final Comparing the right-hand sides of E¢47) and (A8), one
points of the evolution. To clarify the geometrical meaningcan see that

of the phase of the exponeat (#24X~14AR~I4z gne con-

siders the explicit definitions of the functioixs, andR, : X, (s)+X,(0
P " g —iq—”AxM—iqﬂARf— M—”( ARaTI] ;
\/— 2 2 oM
s
R,(0)=2, ———P_ .,
w(0) ; m(2n+1) " so finally,
Vs q X, (S)+X,(0)
2n+1) . . .
Ru(s)= Z 2n+1)( 1)@t Pun I?MAXM+IqMARIL+qM w=Uu % '
=-> Vs P .=—R,(0) As one can see, the argument of the third expormgyz,

m(2n+1) #" we appeared in the last expression. Thus,
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N

i " 4 oim?s 1 (2n+1)ms’
Gc—lfO dsf d*ze jDQM S R"_Zﬁﬁ ppﬂnco{—
S XA+ R, A, 0l (0,,/2)(X () + X, (0) 2n+1)7s’
xdeMe AXW A+ R, )AX, 61, (X, " +Q,u,n5in(( ) ) ), (A10)
s : d u , Yu dR,u
X O(X = X AR M=iy,| 5o+ 5+ 4o in the integral forG.. This & functional allows one to drop
the coefficientsP, and Q,,n>N, in the expression for the
X (e”9oF0) Green’s function while formally keeping the functional inte-

gration overR,,. If N=c, then Eq.(A10) is not necessary.
One can also simplify the measure of integration in theln the case if some of the,'s andQ,’'s are omitted, then the
last expression in terms of the variabkég andR,,. As it is constraint(A10) can be important. However, the determi-
easy to see, the variable, is a combination of two func-  nants, which it will produce afteR,, (or £,) integration, are
tionally independent parts: always equal to 1, which means that the form(#®), as
well as its prototype, also allows one to drop certBjpand
. s , , Q,, dependencies.
XM(s)=<zM—sqﬂ—2j0 (Q,(s")—p,ds" | —(2R,)
_ APPENDIX B: THE CASE OF THE RELATIVISTIC FREE
=Z,-2R,, PARTICLE

where To illustrate the “integration over the effective trajecto-
ries” method, it is appropriate to present here a simple ex-
ample of how Egs(7a) and(7b) work in some simple cases.

MIO, with Z,(0)=z,, and R,(0)=>, P,. The simplest example would be the Green’s function of a
SR,(s) # . # n free particle,A,,(x)=0. For this case one has
The total set of the integration variables in E41) consists _'_Jm j f .
of (d*z,,DQ,,DR,). The integration oveD ) andd*z,, in Ce=2om 0 dr | DX, | DEAM=i7,p,u}
formula (Al) can be treated as an integration over the func-
tional variableZ,, : Xe—(i/z)fgmdﬁ(im/z)jXidre—i(p;x#(s)—p#x#(O)).
Y
4 _

On the other hand, the functionals depend on the variableghe functionalSin the exponent must be evaluated along the
X,=Z,—2R, andR,. In order to integrate over these vari- orbits of the system of equations,
ables, one considers the following linear transformation at

every momens': dXu &_25
dr 2m ®
R, 0 1/\R,
. . o . P, 2 :
Since this Fransformatlon is unimodular at every paht x#:ﬁ—g —=[Q,nCOSw, 7= P, Sinw,7],
one can write AT

O=7<T,

i T qeeim
Gc—lf0 dse '™ fDX#

> f d Rﬂe—iuxﬂlﬂ R,)AX, 0l (0,,/2) (X, () +X,,(0))

wherew,=w(n+3), ©=27/T, andP,=p,+p, . The so-
lutions to this system of equations are given by

P 1 2T
_ L2
X (€79 7F00) | 5(X,— 15(X,A,R)) N T R CLES
. dX, g, dR X[P, hC0Sw,7+Q, SiNw,7]
— P L AT o “,n n m,n nTl
XM 2ds+ > * ds)}' (A9)

wherez,, is the integration constant, integration over which

In order to maintain the possibility of dropping certty IS @ssumed DX, . Hence,

and Q,, dependencies in EqA9) as in the original expres- /T
sion (A1), one has to make explicit the definition of tRe, X, (0)=z,— E 2 ip
by inserting an additiona® functional, H om S (2n+1) AT
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Y (T1eg TPM+ 1 E 2T 5 Using the relatiorw,T=(2n+ 1), one has for the phase
D=2t 5+ 7 2 nrp) Pen
m(T. 1(T i
0 EL X2dr— Efomdr=—§mT+m; (P2 +Q%0)
P, TP
P Xu(T) = PuXu(0)=2,0,,+ 2’;]" L PulT s Pun TP
w n n+% 8m
\/— p, 2
n (n+ 1/2) and the Green'’s function

P,d*Qy
(2m)*

cogefom. oo [ 22

: : 2
(|/2)mT+|m2n(Pﬂ’n+

Qi‘n>+(ﬁpﬂ/w)zn Pn/(n+ 1/2)+TPi/8m+izﬂq#

X{m—iy p }efi(TPMpI'LIZer(V‘TP#/w)EnPH'n/(n+1/2))
uu '

The linearP, , terms cancel out, and so

oy ot 0| [ SE

v e—(i/z)mﬂimz (P2 +Q2 )+ TP/em+iz,q,
n

P,d*Q,
(2m)*

><{m— i ,yluplu}efiTPMpMIZm_
The Gaussian integral over the variabls, ,Q,,  is trivial,

and thez, integration produces function (q,), due to
which one gets],=0, soP,=2p,. Hence,

i [ ) L2, 2
— —(1/2) mT i —iTp”/m+iTp?/2m
GC_ZmJ’o dTe {m—ivy,p,le ""Pu Pu

= T (Rt p2 {m—iy.p.}
—i o i —i(me+po)T/2m_ L~ "HTMI
Ifo dZm{m lyuPute " m+p2
B 1
YuP,+m’

which is the Dirac equation Green’s function.

APPENDIX C: MOTION IN A CONSTANT MAGNETIC
FIELD

egUlSF31: et igoH )

It will be convenient to use the representatitre), and
evaluate the quantity

Gc(x,x’)zif dsf DX,
0

nge |ms II%X 14+ A )dX
—gfoF
X 8(X,,—f5(A) (e 97F) .,
which produces the total Green’s function through
Ge(x,x")=(m=7y,D ) Gc(x,X").
Using theé constraint, it is easy to integrate formally over
the X,(s). In this particular case it is possible to find the

stability matrixM explicitly and evaluate the pre-exponential
determinant det(+ M). For the equations

XMZ PM—2§M—29AM= PM—2§M—gFMXM
the solution is

" — F,s -1
X,.(s') = (69Fx5 )X ,(0) + P, F ]

Another example provides a particle that moves in a con-

stant electromagnetic fiel& ,

tential A, is given byA ,= —3F X,

,=const, in which case the
ordered exponente®’/ ), is Just e97wFus, The vector po-
. Consider for simplic-

—2e9F s’ f £,(s")esFws'ds"

ity the case of the constant magnetlc field in which case thénd

vector potential in the symmetric gauge is

H H
A,==X,

AX:_Ey! Yy 2

A,=Ay,=0.

The only nonzero component &f,, is F3;=—Fi13=H, so
(T/_“,FVMZO'JBH:

X (s’)) )
H — F,.s
el ———~ | =de(1—e%"w*).

( 6X,(0)
After the X, integration is carried through, one has to inte-
grate over the solutions to the equatidi33, which in this
case are
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Do _Pi e ghx
ds 2 1T ghXy,
dxX, P,
2= 2 2&,—gHX,,
ds 2 §2—gHX;
(C1)
dX; Pj
ds' 2 >
dX, Py
_—=—-2
4s 2 £o

The last two equations faX; and X, are separated and
coincide with the free particle case. The first two equations

yield
. (1)0P2 .
X1+ wiX,= 5 2817 2woé2,
. 2 wOPl .
XZ+(1)OX2:_ 2 _2§2+2(1)051,

wherewg=gH. By definition (7),

1 .
£,=—= > [QunC0sw,S' —P,  sinw,s'], (C2)
Vs 7

wherew,= w(n+1/2),0=2m/s, and, therefore,

-- woPy 2 ,
Kot wpXy=—5—— 7 > (@0Qzn— wnP1p)COSwyS
2 . ’
+ ﬁ ; (wOPZ,n+ anl,n)Sm wpS,
. woP 2
Ko+ 02Xp= — —= =

——+ TS En, (00Q1n+ ©nP2,)COSW,S'

2 H !
+ TS ; (0,Q2n— woPyp)sinw,s’.

The solutionsX ,(s) to the equations above are given by
. P2
Xi1=Vsin(wes' + @)+ —
Wo

"-’nPl,n_ wOQZ,n

2 2
wWo— Wy

cosw,s’

wOPZ,n+ anl,n

> sinw,s’ |,
Wy~ Wy

DYNAMICAL ANSATZ FOR PATH INTEGRALS AND ...

333

Py
X,=V cod wgs' + ¢)— P
0

2 onl +w P2
+—=> {$ coSw,s'

\/g n 2 2

CUO_ (CV
0 Qon—woP1p ,
+————— " sinwys’ |.
a)o_ (O

It is convenient to introduce new coefficieritae new vari-
ables of integrationC4,,,C5,Sin,S, @s

. P2
X1:V S|n(w()sl + QD) + —
Wo
2 .
+ N > (Cyyc0sw,S’ + Sy, sinw,s'),  (CI
s n
Py
Xo=Vcodwes' +¢)——
wo

2 .
+ = > (ConCOSw,S' + SypsSinw,s'),
s

where
Qin= wOCZ,n_ wnsl,na Pin=— wosz,n_ wncl,n )
(CH

Qon=— wocl,n_ wnsz,n- Pon= wosl,n_ wnCZ,n .

The Jacobian of the transformatioPq(,,P2,,Q1,,Q2n)
—(C1n,C2n,S1n,S2n) I8 J= (wg_ wﬁ)z-

It is easy to observe that Eq€1) and their solutions are
equivalent to the ones that would correspond to the action,

X2 wiX?
— | =~ 0™
o [ %, B,

of a simple harmonic oscillator. The above expression and
the one in the exponent of E¢C1) are equal up to the total
derivative. Therefore, the dynamical properties of these sys-

tems are the same. The derivation of the funci@&n

& Jw ds gHs
© Jo (4ws)? singHs

X @~ 1(t=t") /s +i(x3—xg)?l4s

< ei[(gH/4)((xl—xi)2+(x2—xg)z)cotgHs+(gH/Z)(lerxi)(xz—xé)],

follows the standard procedurg8], and produces the spec-
trum,

E?—m?c?—p2=gH(2n+1)—eHo,

of the Dirac equation energy spectrum of a chaggeoving
in a constant magnetic field.
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