110 research outputs found

    Exploiting low-rank approximations of kernel matrics in denoising applicationS

    Get PDF
    The eigendecomposition of a kernel matrix can present a computational burden in many kernel methods. Nevertheless only the largest eigenvalues and corresponding eigenvectors need to be computed. In this work we discuss the Nystrom low-rank approximations of the kernel matrix and its applications in KPCA denoising tasks. Furthermore, the low-rank approximations have the advantage of being related with a smaller subset of the training data which constitute then a basis of a subspace. In a common algebraic framework we discuss the different approaches to compute the basis. Numerical simulations concerning the denoising are presented to compare the discussed approaches.info:eu-repo/semantics/publishedVersio

    Técnicas baseadas em subespaços e aplicações

    Get PDF
    Doutoramento em Engenharia ElectrónicaEste trabalho focou-se no estudo de técnicas de sub-espaço tendo em vista as aplicações seguintes: eliminação de ruído em séries temporais e extracção de características para problemas de classificação supervisionada. Foram estudadas as vertentes lineares e não-lineares das referidas técnicas tendo como ponto de partida os algoritmos SSA e KPCA. No trabalho apresentam-se propostas para optimizar os algoritmos, bem como uma descrição dos mesmos numa abordagem diferente daquela que é feita na literatura. Em qualquer das vertentes, linear ou não-linear, os métodos são apresentados utilizando uma formulação algébrica consistente. O modelo de subespaço é obtido calculando a decomposição em valores e vectores próprios das matrizes de kernel ou de correlação/covariância calculadas com um conjunto de dados multidimensional. A complexidade das técnicas não lineares de subespaço é discutida, nomeadamente, o problema da pre-imagem e a decomposição em valores e vectores próprios de matrizes de dimensão elevada. Diferentes algoritmos de préimagem são apresentados bem como propostas alternativas para a sua optimização. A decomposição em vectores próprios da matriz de kernel baseada em aproximações low-rank da matriz conduz a um algoritmo mais eficiente- o Greedy KPCA. Os algoritmos são aplicados a sinais artificiais de modo a estudar a influência dos vários parâmetros na sua performance. Para além disso, a exploração destas técnicas é extendida à eliminação de artefactos em séries temporais biomédicas univariáveis, nomeadamente, sinais EEG.This work focuses on the study of linear and non-linear subspace projective techniques with two intents: noise elimination and feature extraction. The conducted study is based on the SSA, and Kernel PCA algorithms. Several approaches to optimize the algorithms are addressed along with a description of those algorithms in a distinct approach from the one made in the literature. All methods presented here follow a consistent algebraic formulation to manipulate the data. The subspace model is formed using the elements from the eigendecomposition of kernel or correlation/covariance matrices computed on multidimensional data sets. The complexity of non-linear subspace techniques is exploited, namely the preimage problem and the kernel matrix dimensionality. Different pre-image algorithms are presented together with alternative proposals to optimize them. In this work some approximations to the kernel matrix based on its low rank approximation are discussed and the Greedy KPCA algorithm is introduced. Throughout this thesis, the algorithms are applied to artificial signals in order to study the influence of the several parameters in their performance. Furthermore, the exploitation of these techniques is extended to artefact removal in univariate biomedical time series, namely, EEG signals.FCT - SFRH/BD/28404/200

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Efficient Nonlinear Dimensionality Reduction for Pixel-wise Classification of Hyperspectral Imagery

    Get PDF
    Classification, target detection, and compression are all important tasks in analyzing hyperspectral imagery (HSI). Because of the high dimensionality of HSI, it is often useful to identify low-dimensional representations of HSI data that can be used to make analysis tasks tractable. Traditional linear dimensionality reduction (DR) methods are not adequate due to the nonlinear distribution of HSI data. Many nonlinear DR methods, which are successful in the general data processing domain, such as Local Linear Embedding (LLE) [1], Isometric Feature Mapping (ISOMAP) [2] and Kernel Principal Components Analysis (KPCA) [3], run very slowly and require large amounts of memory when applied to HSI. For example, applying KPCA to the 512×217 pixel, 204-band Salinas image using a modern desktop computer (AMD FX-6300 Six-Core Processor, 32 GB memory) requires more than 5 days of computing time and 28GB memory! In this thesis, we propose two different algorithms for significantly improving the computational efficiency of nonlinear DR without adversely affecting the performance of classification task: Simple Linear Iterative Clustering (SLIC) superpixels and semi-supervised deep autoencoder networks (SSDAN). SLIC is a very popular algorithm developed for computing superpixels in RGB images that can easily be extended to HSI. Each superpixel includes hundreds or thousands of pixels based on spatial and spectral similarities and is represented by the mean spectrum and spatial position of all of its component pixels. Since the number of superpixels is much smaller than the number of pixels in the image, they can be used as input for nonlinearDR, which significantly reduces the required computation time and memory versus providing all of the original pixels as input. After nonlinear DR is performed using superpixels as input, an interpolation step can be used to obtain the embedding of each original image pixel in the low dimensional space. To illustrate the power of using superpixels in an HSI classification pipeline,we conduct experiments on three widely used and publicly available hyperspectral images: Indian Pines, Salinas and Pavia. The experimental results for all three images demonstrate that for moderately sized superpixels, the overall accuracy of classification using superpixel-based nonlinear DR matches and sometimes exceeds the overall accuracy of classification using pixel-based nonlinear DR, with a computational speed that is two-three orders of magnitude faster. Even though superpixel-based nonlinear DR shows promise for HSI classification, it does have disadvantages. First, it is costly to perform out-of-sample extensions. Second, it does not generalize to handle other types of data that might not have spatial information. Third, the original input pixels cannot approximately be recovered, as is possible in many DR algorithms.In order to overcome these difficulties, a new autoencoder network - SSDAN is proposed. It is a fully-connected semi-supervised autoencoder network that performs nonlinear DR in a manner that enables class information to be integrated. Features learned from SSDAN will be similar to those computed via traditional nonlinear DR, and features from the same class will be close to each other. Once the network is trained well with training data, test data can be easily mapped to the low dimensional embedding. Any kind of data can be used to train a SSDAN,and the decoder portion of the SSDAN can easily recover the initial input with reasonable loss.Experimental results on pixel-based classification in the Indian Pines, Salinas and Pavia images show that SSDANs can approximate the overall accuracy of nonlinear DR while significantly improving computational efficiency. We also show that transfer learning can be use to finetune features of a trained SSDAN for a new HSI dataset. Finally, experimental results on HSI compression show a trade-off between Overall Accuracy (OA) of extracted features and PeakSignal to Noise Ratio (PSNR) of the reconstructed image

    Sleep Apnea Detection Using Multi-Error-Reduction Classification System with Multiple Bio-Signals.

    Full text link
    INTRODUCTION: Obstructive sleep apnea (OSA) can cause serious health problems such as hypertension or cardiovascular disease. The manual detection of apnea is a time-consuming task, and automatic diagnosis is much more desirable. The contribution of this work is to detect OSA using a multi-error-reduction (MER) classification system with multi-domain features from bio-signals. METHODS: Time-domain, frequency-domain, and non-linear analysis features are extracted from oxygen saturation (SaO2), ECG, airflow, thoracic, and abdominal signals. To analyse the significance of each feature, we design a two-stage feature selection. Stage 1 is the statistical analysis stage, and Stage 2 is the final feature subset selection stage using machine learning methods. In Stage 1, two statistical analyses (the one-way analysis of variance (ANOVA) and the rank-sum test) provide a list of the significance level of each kind of feature. Then, in Stage 2, the support vector machine (SVM) algorithm is used to select a final feature subset based on the significance list. Next, an MER classification system is constructed, which applies a stacking with a structure that consists of base learners and an artificial neural network (ANN) meta-learner. RESULTS: The Sleep Heart Health Study (SHHS) database is used to provide bio-signals. A total of 66 features are extracted. In the experiment that involves a duration parameter, 19 features are selected as the final feature subset because they provide a better and more stable performance. The SVM model shows good performance (accuracy = 81.68%, sensitivity = 97.05%, and specificity = 66.54%). It is also found that classifiers have poor performance when they predict normal events in less than 60 s. In the next experiment stage, the time-window segmentation method with a length of 60s is used. After the above two-stage feature selection procedure, 48 features are selected as the final feature subset that give good performance (accuracy = 90.80%, sensitivity = 93.95%, and specificity = 83.82%). To conduct the classification, Gradient Boosting, CatBoost, Light GBM, and XGBoost are used as base learners, and the ANN is used as the meta-learner. The performance of this MER classification system has the accuracy of 94.66%, the sensitivity of 96.37%, and the specificity of 90.83%

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases
    corecore