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ABSTRACT
The eigendecomposition of a kernel matrix can present a
computational burden in many kernel methods. Neverthe-
less only the largest eigenvalues and corresponding eigen-
vectors need to be computed. In this work we discuss the
Nystrom low-rank approximations of the kernel matrix and
its applications in KPCA denoising tasks. Furthermore, the
low-rank approximations have the advantage of being re-
lated with a smaller subset of the training data which con-
stitute then a basis of a subspace. In a common algebraic
framework we discuss the different approaches to compute
the basis. Numerical simulations concerning the denoising
are presented to compare the discussed approaches.

1. INTRODUCTION

Kernel Principal Component Analysis (KPCA) relies on a
non-linear mapping of given data to a higher dimensional
space, called feature space. Then KPCA can simultaneously
retain the non-linear structure of the data while denoising is
achieved with better performance because the projections
are accomplished in the higher-dimensional feature space.
The KPCA method represents a projective subspace tech-
nique applied in feature space and created by a non-linear
transformation of the original data. In the feature space a
linear principal component analysis is performed. The de-
noising is achieved by considering the projections related
to the largest eigenvalues of the covariance/scatter matrix.
The mapping in the feature space is avoided by using ker-
nel functions which implicitly define a dot product in the
feature space computed using the data in input space [1].
The kernel matrix (a dot product matrix) ofthe mapped data
is easily achieved and naturally its dimension depends on
the size of the data set. The entries (i, j) of the matrix de-
pend on the corresponding data points and are computed
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according to the defined kernel function. The kernel ma-
trix dimension represents a computational burden once its
eigendecomposition must be achieved. In practice, the goal
of projective subspace techniques is to describe the data
with reduced dimensionality by extracting meaningful com-
ponents while still retaining the structure of the raw data.
Then only the projections on the directions corresponding to
the most significant eigenvalues ofthe kernel (or covariance
matrix) need to be computed. The exploitation of methods
like Nystrom to achieve the low rank eigendecomposition
is a strategy that has been considered [2],[3]. Furthermore
those techniques can also achieve a solution without the
manipulation of the full matrix. We show how Nystrom's
method can be applied to KPCA leading to what is usu-
ally known as greedy KPCA. In this work we compare the
different Nystrom approaches to greedy KPCA under the
same algebraic formulation. The main differences are the
complexity ofthe different approaches and the properties of
the computed projections. An experimental study will show
the performance of the methods in what concerns denoising
applications.

2. DENOISING USING GREEDY APPROACH

Kernel Principal Component Analysis (KPCA) relies on a
non-linear mapping of given data to a higher dimensional
space, called feature space. Without loosing generality, let's
assume that the data set is centered and split into two parts
yielding the mapped data set

4) = [¢)(Xl)¢)(X2) .** (Xr),q (Xr+ ) .**(XK)]
= I 4R bS] (1)

In denoising applications, the first step of KPCA is to
compute the projections of a mapped data set onto a feature
subspace. Considering L eigenvectors (columns of U) of
a covariance matrix (a correlation matrix if the data is cen-
tered) corresponding to the L largest eigenvalues, the pro-
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jections of the K vectors of the mapped data set b are

Z = UTb (2)

The columns ofthe matrix U form the basis in feature space
onto which to project the data set. This basis can be written
as a linear combination of the mapped data

U = bBA

2.1. Computing the Basis

The projections Z of the training set are also related with
the eigenvectors V of a matrix computed using only dot
products (K), the kernel matrix. Naturally the entries of
the matrix can be easily achieved using the kernel tricky.
Considering the singular value decomposition of the train-
ing data set using R non-zero singular values we can write

(3)

The matrix A is a matrix of coefficients and either &JB = )

(KPCA) or &JB = JR (greedy KPCA), representing a sub-
set ofthe data set only. Note that the column j of Z depends
on the dot products B4)'(xj). However to avoid an ex-
plicit mapping into feature space, all data manipulations are
achieved by dot products [1] and the kernel trick is applied.
For instance, using RBF kernel, the dot product between a
vector i, belonging to B subset, and q(xj) is computed with
a kernel function that only depends on the input data

k(xi, xj) = expp( Xi - x(4)2or2

Finally, to recover the noise-reduced signal after denois-
ing in feature space, the non-linear mapping must be re-
verted, i.e. the pre-image in input space of every signal,
denoised and reconstructed in feature space, must be esti-
mated. Denoising using KPCA thus comprises two steps
after the computation ofthe projections in the feature space:
a) the reconstruction in feature space and b) the estimation
of the pre-image of the reconstructed point q(xj) = Uzj,
where zj represents the projections of a noisy point q(xj).
These two steps can be joined together by minimizing the
Euclidian distance of the image q(p) of a yet unknown
point p from ~$(xi)

d(2) = IlO(P)( _$(Xj)||2
= M()P) - g)(xj ))T ¢)P) - (xj )) (5)

The central idea of the fixed-point method [1] consists in
computing the unknown pre-image of a reconstructed point
in the projected feature subspace by finding a p which min-
imizes the distance (see eqn. 5). If an RBF kernel is consid-
ered, the iterative procedure is described by the following
equation

4, = UD1/2VT (7)
where D is a diagonal matrix with ordered eigenvalues (A1 >
A2 > ... > AL... > AR) of kernel matrix (or of the scatter
matrix); and V and U are the R eigenvectors of the ker-
nel and scatter matrices, respectively. Considering an SVD
approximation with L most significant singular values and
substituting it in equation (2), the L projections are

Z = D1/2VT (8)

where each column j of Z, an L x K matrix, is related with
a corresponding row ofV and correspond to the projections
of q(xj). The two approaches, KPCA and greedy KPCA,
respectively, arise from two distinct strategies to deal with
the eigendecomposition ofthe kernel matrix (K) ofthe data
set. In KPCA the whole data set is used to compute the ker-
nel matrix, then A is computed using the largest eigenval-
ues (D) and corresponding eigenvectors. The combination
of equations (2) and (8) leads to UTb = D1/2VT. Multi-
plying both sides ofthe previous equation by VD-1/2, and
considering the columns of eigenvector matrices orthogo-
nal, the basis vector matrix is

U = bVD-1/2 (9)

In greedy KPCA a low-rank approximation of the kernel
matrix is considered. This leads to the eigendecomposition
of matrices with reduced size. Considering that the training
set is divided into two subsets, the K x K kernel matrix can
be written in block notation [3],[2]

K= Kr Krs (10)

where the Kr is the kernel matrix within subset BR, Ks is
the kernel matrix within the subset &J.s and Krs is the kernel
matrix between subset &JR and J?S. The approximation is
written using the upper blocks ofthe original matrix [3], [2]

XB (g<Okpt )
Pt+i = gTkpt (6)

where Kt represents a Hadamard product, g = Azj. The
components of the vector kpt = k(XB, Pt) are given by
the dot products between q(pt) and the images &JB of the
training subset XB. The algorithm must be initialized and
po xi is a valid choice [10]. The points Pk then form the
columns of X, the noise-reduced multidimensional signal.

K= Kr1 [ Kr Krs (1 1)

It can be verified that the lower block is approximated by
Ks5 KrTKr- Krs The R eigenvectors V corresponding
to the R largest eigenvalues are then computed as

VT = HT[ Kr Krs ] HT T [ 4)R 4.S ] (12)
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There are different approaches to compute H conduct-
ing to an orthogonal or to a non-ortoghonal solution to V.
Then the projections in the feature space of the data set, Z,
can be non-correlated or correlated as can be easily verified
by the manipulation of eqn. (8).

2.1.1. Non-orthogonalApproach

In this case a non-orthogonal matrix V is computed using
the eigendecomposition of Kr = VrDrVT [3]. Consider-
ing that the eigenvalues of K and Kr are related by a com-
mon scale factor (K/R), the matrix H is

?q? 95q 9 5 i # q; :$ii;$^
(a) (b)

Fig. 1. Set of digits (a) Original, (b) with Gaussian noise
((72 = 0.25)

The matrix of eigenvectors V is orthogonal as can easily be
verified. By the manipulation of the equations (12), (8),(2)
the basis vector matrix is

U = 4)RL-'Vq
Then manipulating the equations (12), (8) and (2) the basis
vector matrix is

U = bRVrD / (14)

The number of columns of U is L by considering the L
largest eigenvalues and corresponding eigenvectors of the
matrix Kr

2.1.2. OrthogonalApproach

The alternative approaches consider the kernel matrix de-
composed as K = CTC, where C has dimension R x K
and is computed as follows

C= [ L L-TKrs (15)

where L can be computed using the Cholesky decomposi-
tion [4], [5] or the square root [2] of Kr

* Kr = LTL, where L is a triangular matrix. Note that
ifthe matrix is symmetric positive definite there exists
an unique R x R triangular matrix that accomplishes
the decomposition without any pivoting scheme. Al-
ternatively, an incomplete Cholesky decomposition of
the full matrix K can be performed [4]. In this case

the matrix C is the output of the algorithm and the
indices of the pivoting can identify the subset R.

*L =KV

matrix.

VrDr 2Vr, which is a symmetric

The low rank approximation of K = VDVT is based
on the eigendecomposition of an R x R matrix defined by

Q =CCT= VqDVT (16)

The result of this eigendecomposition as well as the decom-
position of Kr leads to

H = L-1VqD- 1/2 (17)

The number ofcolumns ofU is L by forming the matrix Vq
with the eigenvectors corresponding to the L largest eigen-
values.

2.2. Splitting the data set

In the last section the training set is considered split into two
groups. In what concerns the Nystrom approach it is said
that the first R rows should represent the linear indepen-
dent rows of the kernel matrix. Usually, R rows randomly
chosen are used to organize the upper block of the kernel
matrix. This strategy is also suggested by most ofpublished
works [3],[6], [2] for huge data sets considering that there
is an high probability of the random chosen subset still rep-

resent the training set distribution. However, the quality of
the approximation is ruled by the norm of Schur's comple-
ment. And some works consider practical criteria derived
from the Schur's complement to iteratively update the sub-
set R. The methodology is based on the minimization ofthe
trace tr(K K-SKr-Krs). By identifying the maximal
value of the trace operator (the pivot), an element of subset
S is moved to the subset R and the matrix Kr increases its
size while the others decrease. The process stops when the
trace of the matrix corresponding to the actual approxima-
tion is less than a threshold or even when the matrix Kr is
not well conditioned. In [7] the criterion is defined as the
minimization of a square error, in [8] and in [9] as relative
error. The stop conditions are thresholds [7] or the rank of
matrix Kr [9].

3. NUMERICAL SIMULATIONS

The goal ofthe numerical simulations is to study the impact
of the projection method and its relation with the choice of
subset bR. For convenience of the exposition we point out
the following schemes to deal with the computation of the
parameters of the model:

* Chol- Incomplete Cholesky decomposition using sym-
metric pivoting. The subset &JR is chosen according
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the set ofpivoting indices and the matrix ofbasis vec-
tors is computed using eqn. (18).

* Cholr- Random selection of the subset &JR followed
by the Cholesky decomposition of Kr. The matrix
C and the matrix of basis vectors are computed using
eqn. (15) and eqn. (18), respectively.

* Nort- random selection of &JR using the eigendecom-
position of Kr to compute the matrix of basis vector
as described by eqn. (14).

3#5% >R30%

77771~~mfLm7m A a77 ML77M

*., r.#.t- .S,;I .. #,Tl.| 1.,7 r_.f .,,

Fig. 2. Set of denoised digits:
Cholr,third line -Nort

first line -Chol, second line-

The kernel matrix was computed using the RBF ker-
nel with or ma=T (xi xi-Xmean ),i 1,...,K, where
Xmean is the mean ofthe data set. The matrix ofbasis vector
U with L columns is computed according to the described
methods and the data is projected. Finally, to yield a de-
noised version xk of the noisy xk, the pre-image xk of the
reconstructed Jb(xk) = UZk was estimated applying the
fixed point iteration as described by eqn. (6).

3. 0.1. USPS data set

The data set consists of 16 x 16 handwritten digits. Then the
input data vector, xk has dimension 256 and is formed by
row concatenation of the original image after adding white
Gaussian noise (zero mean and variance of 0.25). Figure 1
shows a set of digits and its noisy versions. The kernel ma-
trix for each type of digit, computed with the total number
of elements, is a full rank matrix (the smallest eigenvalues
are 0.17). The data set for each digit type has a different
number of elements (in the range 568 -1005) so we con-
sider to constitute the subset &JR with a fixed percentage of
the available data and present results for 5% and 30%. No-
tice that adding to each digit a noise with fixed variance the
signal-to-noise ratio (SNR) is different (see second column
of table 1). The denoising was achieved by projecting the
data onto the leading L < R eigenvectors founded accord-
ing to leveling off of the eigenspectrum of the respective
kernel matrix (in the range of 5 -15).

The orthogonal approaches (Chol and Cholr) have bet-
ter performance than the nonorthogonal approach (Nort).
Fig. 2 illustrates the performance ofthe methods for the two
subsets and we can verify that the differences between the
orthogonal approaches might not be visually detected. The
table 1 presents the mean values of SNR of the denoised
images for all the digits of the data set. And can also be
verified that all methods perform better if the subset "JR iS
larger. However the differences in performance for the two
subsets are less accentuated with Chol, it does not exceed
the 0.8dB for all the digits. It has to be noticed that Cholr
presents a similar level ofperformance for the larger subset,
the difference with Chol is less than 0.4dB. This difference
in performance might not justify an increase in the com-
plexity of the algorithm mainly because is not easy to find

a threshold to stop the decomposition and we have to deal
with the whole data set to implement the pivoting scheme
[4].

Table 1. SNR of the original and denoised images
SNR

Digit Image R Chol Cholr J Nort
x = 0.162 5 O 2.879 2.298 1.580

1 72 2.177 300o 3.471 3.084 2.016

2 zx 2.729 5 O 4.196 2.547 2.346
272 2.834 30 o 4.927 4.897 4.06

3x 2.890 5 O 4.843 3.031 2.8928
3 (72 2.077 300o 5.235 5.108 4.372

4x 1.532 5 o 3.788 1.865 1.678
U2 2.780 300o 4.085 3.985 3.450
x = 2.967 5Oo 4.498 3.086 3.018
U2 2.202 300o 5.269 5.118 4.859

6x 2.317 5Oo 4.343 3.016 2.897
6 U2 2.35 300o 5.030 5.149 4.247

7x 1.436 5Oo 4.126 2.081 1.999
7 72 2.774 300o 4.671 4.453 3.836

8z = 2.771 5O 3.891 2.255 2.615
8 2 2.235 300o 4.698 4.613 4.431

x
(J

1.753
2.591

5 0

30 o
4.425
4.877

3.012
4.7229

2.767
4.215

3.0.2. Time series Denoising

Considering a signal embedded in its time-delayed coordi-
nates. Embedding can be regarded as a mapping that trans-
forms a one-dimensional time series x[n], n = 0...N -1,
to a multidimensional sequence ofK N -M + 1 lagged
vectors

Xkc = [x[k-1I +M -1], . .., x[k 1]]T: k= I1...K
The lagged vectors form a point in a space with dimen-
sion M.The multidimensional signal can be denoised us-
ing KPCA. The points Pk then form the columns of X,
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increase to assure that the subset covers the distribution of
the input data set. And in fact, the pivoting scheme of
Cholesky assures the coverage of the input data distribution
in a systematic way.

(b) SNR=OdB

Fig. 3. Embedded signals in 2D space. Sinusoid (+) and
sinusoid+gaussian noise(*)

(a) Orthogonal - OdB

the noise-reduced multidimensional signal matrix in input
space. The one-dimensional signal, [n], is then obtained
by reverting the embedding, i.e. by forming the signal with
the mean of the values along each descendent diagonal of
X [10].

Denoising a sinusoid
Fig. 3 shows the original sinusoid and noisy sinusoid em-

bedded in 2D space. The kernel matrix of the noisy 2D
signal has a dimension ofK = 498 but the rank is 141 and
327 for SNR = 20dB and SNR = OdB, respectively.
In the feature space, the subspace dimension to recover the
embedded sinusoid was L = 2. The three strategies to com-
pute the basis vector U in the feature space were imple-
mented varying the size of subset &JR between 10 and the
rank of the kernel matrix. Table 2 shows the mean square

errors between the original sinusoid and denoised versions
for two of the total set of experiments. Fig.4 illustrates in
2D input space the results when subset &JR has R = 10 el-
ements. The figure shows that the ellipse trajectory of the
embedded sinusoid is recovered with mean-square error of
MSE 0.16. The table also shows that the orthogonal ap-

proaches (non-correlated projections) are always better than
the corresponding non-orthogonal approach. The difference
is lower when the size of subset &JR increases. However,

Table 2. Mean square error (MSE) between original and
denoised versions. Note that Cholr and Nort the entries are

mean of the result of 1000 random subset selections

SNR

Co

Chol
Cholr
Nort

Chol
Cholr
Nort

I

T
R=10 R=50
0.152 0.141
0.368 0.168
0.671 0.386

0.004 0.004
0.162 0.004
0.415 0.006

this toy example shows that if the SNR decreases the subset
size (in the random strategies like Cholr and Nort) should

-1

(c) Non-orthogonal - OdB

(b) Orthogonal - 20dB

Ix -

(d) Non-orthogonal - 20dB

Fig. 4. Denoising the embedded sinusoid considering dif-
ferent levels of noise, R=10 with Cholr and Nort.

Removing high-amplitude artifact
We apply the method to extract prominent artifacts like

electro-oculograms (EOG) in electro-encephalograms (EEG).
Note that in this example, the artifact-related contributions
to the recorded EEG signals are considered "the signal" and
the actual EEG signal is considered a "sort of a broadband
noise". Consequently, we can use the projective subspace
techniques referred to above to separate the dominating arti-
facts from the "pure" EEG signals. Then if [n] corresponds
to the high amplitude artifact, then the corrected signal is
computed as y[n] = x[n] -[n]. A segment of a frontal
EEG channel with 6s is shown in Fig. 5 (first plot). The
signal was embedded with M = 11 and the matrix K, cor-

responding to the multidimensional signal, is full rank. The
three proposed variants ofthe greedy approach were applied
considering the subset R with 5% and 30% of whole mul-
tidimensional data set. The matrix of vector basis U has
L = 6 columns.

The results with the EEG signal confirm the results ob-
tained with other data sets. The orthogonal approaches to
compute the basis have always the best performance for the
smallest subset R. But the difference between Chol and
Cholr was not visually detected, in fact the correlation co-

efficients between the corrected signals by the two methods
is always > 0.91. While with Nort are very clear, mainly
if the subset R is small (see Fig. 6 ). The correlation coef-
ficient between the corrected signals shown in the figure is
around 0.70. As before ifthe training subset R increases the
differences are less visible but even in that case the corre-
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0 2 3 4 5 6
Time (sec)

Fig. 5. Using 30 of the data. (a)- Original EEG; (b) -

Extracted EEG by Chol; (c) - Corrected EEG by Chol; (d)
- Extracted EEG by Nort; (e) - Corrected EEG by Nort

lation coefficient between the signals corrected EEG of the
figure (see Fig. 5) is 0.79. KPCA was also applied in previ-
ous work [10] computing the kernel matrix in segments of
3s, i.e, dividing the segment of figure into two subsegments
and compute the basis vector in each. Comparing the cor-

rected EEGs obtained with KPCA and this greedy approach
no visual difference can be found and the correlation coef-
ficient is around 0.94. Our goal is to develop the technique
using segments of 10s (typical window size on displays)
without having to divide the signal into subsegments.

4. CONCLUDING REMARKS

These simulations discussed show that greedy KPCA per-

forms better with orthogonal approaches both for rank or

non-rank defficient kernel matrices. The best results (in
what concerns the size of subset R) were always achieved
with incomplete Cholesky with symmetric pivoting (Chol).
But Cholesky decomposition (Cholr) after a random choice
can achieve very similar results at expenses of increasing
the size of subset R. The tradeoff between increasing the
complexity of the algorithm by adding the pivoting scheme
versus increasing the size of the subset should be further
studied. Mainly because the optimum thresholds (of the
value ofthe pivots or the value ofthe norm of Schur) to stop
the algorithm are dependent on the problem and/or the level
of noise. The artifact extraction in EEG recording, with the
orthogonal approach schemes will be further studied in or-

der to provide a tool to remove artifacts of critical segments
like the onset of epileptic seizures in long term recording
sessions.
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