240 research outputs found

    Graphs with bounded tree-width and large odd-girth are almost bipartite

    Get PDF
    We prove that for every kk and every ε>0\varepsilon>0, there exists gg such that every graph with tree-width at most kk and odd-girth at least gg has circular chromatic number at most 2+ε2+\varepsilon

    Approximately Counting Embeddings into Random Graphs

    Get PDF
    Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.Comment: Earlier version appeared in Random 2008. Fixed an typo in Definition 3.

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    Open problems on graph coloring for special graph classes.

    Get PDF
    For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring

    The Cops and Robber game on graphs with forbidden (induced) subgraphs

    Full text link
    The two-player, complete information game of Cops and Robber is played on undirected finite graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if, after a move, a cop and the robber are on the same vertex. The minimum number of cops needed to catch the robber on a graph is called the cop number of that graph. In this paper, we study the cop number in the classes of graphs defined by forbidding one or more graphs as either subgraphs or induced subgraphs. In the case of a single forbidden graph we completely characterize (for both relations) the graphs which force bounded cop number. En passant, we bound the cop number in terms of tree-width
    • …
    corecore