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Graphs with bounded tree-width and large

odd-girth are almost bipartite

Alexandr V. Kostochka∗ Daniel Král’†

Jean-Sébastien Sereni‡ Michael Stiebitz§

Abstract

We prove that for every k and every ε > 0, there exists g such that
every graph with tree-width at most k and odd-girth at least g has
circular chromatic number at most 2 + ε.

1 Introduction

It has been a challenging problem to prove the existence of graphs of arbi-
trarily high girth and chromatic number [2]. On the other hand, graphs with
large girth that avoid a fixed minor are known to have low chromatic num-
ber (in particular, this applies to graphs embedded on a fixed surface). More
precisely, as Thomassen observed [8], a graph that avoids a fixed minor and
has large girth is 2-degenerate, and hence 3-colorable. Further, Galluccio,
Goddyn and Hell [3] proved the following theorem, which essentially states
that graphs with large girth that avoid a fixed minor are almost bipartite.
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‡CNRS (LIAFA, Université Denis Diderot), Paris, France, and Department of Applied
Mathematics (KAM), Faculty of Mathematics and Physics, Charles University, Prague,
Czech Republic. E-mail: sereni@kam.mff.cuni.cz.

§Technische Universität Ilmenau, Institute of Mathematics, P.O.B. 100 565, D-98684
Ilmenau, Germany. E-mail: Michael.Stiebitz@tu-ilmenau.de.

1



Theorem 1 (Galluccio, Goddyn and Hell, 2001). For every graph H and
every ε > 0, there exists an integer g such that the circular chromatic number
of every H-minor free graph of girth at least g is at most 2 + ε.

A natural way to weaken the girth-condition is to require the graphs to
have high odd-girth (the odd-girth is the length of a shortest odd cycle).
However, Young [9] constructed 4-chromatic projective graphs with arbitrar-
ily high odd-girth. Thus, the high odd-girth requirement is not sufficient to
ensure 3-colorability, even for graphs embedded on a fixed surface. Kloster-
meyer and Zhang [4], though, proved that the circular chromatic number of
every planar graph of sufficiently high odd-girth is arbitrarily close to 2. In
particular, the same is true for K4-minor free graphs, i.e. graphs with tree-
width at most 2. We prove that the conclusion is still true for any class of
graphs with bounded tree-width, which answers a question of Pan and Zhu [6,
Question 6.2] also appearing as Question 8.12 in the survey by Zhu [10].

Theorem 2. For every k and every ε > 0, there exists g such that every
graph with tree-width at most k and odd-girth at least g has circular chromatic
number at most 2 + ε.

Motivated by tree-width duality, Nešetřil and Zhu [5] proved the following
theorem.

Theorem 3 (Nešetřil and Zhu, 1996). For every k and every ε > 0, there
exists g such that every graph G with tree-width at most k and homomorphic
to a graph H with girth at least g has circular chromatic number at most
2 + ε.

To see that Theorem 2 implies Theorem 3, observe that if G has an odd
cycle of length g, then H has an odd cycle of length at most g.

2 Notation

A (p, q)-coloring of a graph is a coloring c of the vertices with colors from
the set {0, . . . , p− 1} such that the colors of any two adjacent vertices u and
v satisfy q ≤ |c(u) − c(v)| ≤ p − q. The circular chromatic number χc(G)
of a graph G is the infimum (and it can be shown to be the minimum) of
the ratios p/q such that G has a (p, q)-coloring. For every finite graph G, it
holds that χ(G) = ⌈χc(G)⌉ and there is a (p, q)-coloring of G for every p and
q with p/q ≥ χc(G). In particular, the circular chromatic number of G is at
most 2 + 1/k if and only if G is homomorphic to a cycle of length 2k + 1.
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The reader is referred to the surveys by Zhu [10, 11] for more information
about circular colorings.

A p-precoloring is a coloring ϕ of a subset A of vertices of a graph G
with colors from {0, . . . , p − 1}, and its extension is a coloring of the whole
graph G that coincides with ϕ on A. The following lemma can be seen as a
corollary of a theorem of Albertson and West [1, Theorem 1], and it is the
only tool we use from this area.

Lemma 4. For every p and q with 2 < p/q, there exists d such that any
p-precoloring of vertices with mutual distances at least d of a bipartite graph
H extends to a (p, q)-coloring of H.

A k-tree is a graph obtained from a complete graph of order k + 1 by
successively adding vertices joined to exactly k pairwise adjacent vertices.
The tree-width of a graph G is the smallest k such that G is a subgraph of a
k-tree. Graphs with tree-width at most k are also called partial k-trees.

A rooted partial k-tree is a partial k-tree G with k+1 distinguished vertices
v1, . . . , vk+1 such that there exists a k-tree G′ that is a supergraph of G and
the vertices v1, . . . , vk+1 form a clique in G′. We also say that the partial k-
tree is rooted at v1, . . . , vk+1. If G is a partial k-tree rooted at v1, . . . , vk+1 and
G′ is a partial k-tree rooted at v′

1, . . . , v
′

k+1, then the graph G ⊕ G′ obtained
by identifying vi and v′

i is again a rooted partial k-tree (identify the cliques
in the corresponding k-trees).

Fix p and q. If G is a rooted partial k-tree, then F(G) is the set of all
p-precolorings of the k + 1 distinguished vertices of G that can be extended
to a (p, q)-coloring of G.

The next lemma is a standard application of results in the area of graphs
of bounded tree-width [7].

Lemma 5. Let k and N be positive integers such that N ≥ k + 1. If G is a
partial k-tree with at least 3N vertices, then there exist partial rooted k-trees
G1 and G2 such that G is isomorphic to G1 ⊕ G2 and G1 has at least N + 1
and at most 2N vertices.

If G is a partial k-tree rooted at v1, . . . , vk+1, then its type is a (k + 1) ×
(k+1) matrix M such that Mij is the length of the shortest path between the
vertices vi and vj. If there is no such path, Mij is equal to ∞. Any matrix
M that is a type of a partial rooted k-tree satisfies the triangle inequality
(setting ∞+x = ∞ for any x). A symmetric matrix M whose entries are non-
negative integers and ∞ (and zeroes only on the main diagonal) that satisfies
the triangle inequality is a type. A type is bipartite if Mij + Mjk + Mik ≡ 0
mod 2 for any three finite entries Mij, Mjk and Mik. Two bipartite types M
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and M ′ are compatible if Mij and M ′

ij have the same parity whenever both
of them are finite. We define a binary relation on bipartite types as follows:
M � M ′ if and only if M and M ′ are compatible and Mij ≤ M ′

ij for every i
and j. Note that the relation � is a partial order.

We finish this section with the following lemma. Its straightforward proof
is included to help us in familiarizing with the just introduced notation.

Lemma 6. Let G1 and G2 be two bipartite rooted partial k-trees with types
M1 and M2 such that there exists a bipartite type M0 with M0 � M1 and
M0 � M2. Then the types M1 and M2 are compatible, G1⊕G2 is a bipartite
rooted partial k-tree and its type M satisfies M0 � M .

Proof. The types M1 and M2 are compatible: if both M1
ij and M2

ij are finite,
then M0

ij is finite and has the same parity as M1
ij and M2

ij. Hence, the entries
M1

ij and M2
ij have the same parity.

Let M be the type of G1 ⊕G2. Note that it does not hold in general that
Mij = min{M1

ij, M
2
ij}. We show that M0 � M which will also imply that

G1 ⊕G2 is bipartite since M0 is a bipartite type. Consider a shortest path P
between two distinguished vertices vt and vt′ and split P into paths P1, . . . , Pℓ

delimited by distinguished vertices on P . Note that ℓ ≤ k since P is a path.
Let j0 = t and let ji be the index of the end-vertex of Pi for i ∈ {1, . . . , ℓ}.
In particular, jℓ = t′. Each of the paths P1, . . . , Pℓ is fully contained in G1 or
in G2 (possibly in both if it is a single edge). Since M0 � M1 and M0 � M2,
the length of Pi is at least M0

ji−1ji
, and it has the same parity as M0

ji−1ji
. Since

M0 is a bipartite type (among others, it satisfies the triangle inequality), the
length of P , which is Mtt′ , has the same parity as M0

j0jℓ
= M0

tt′ and is at least
M0

tt′ . This implies that M0 � M .

3 The Main Lemma

In this section, we prove a lemma which forms the core of our argument. To
this end, we first prove another lemma that asserts that for every k, p and q,
the set of types of all bipartite rooted partial k-trees forbidding a fixed set
of p-precolorings from extending (and maybe some other precolorings, too)
has always a maximal element. We state the lemma slightly differently to
facilitate its application.

Lemma 7. For every k, p and q, there exists a finite number of (bipartite)
types M1, . . . ,Mm such that for any bipartite rooted partial k-tree G with
type M , there exists a bipartite rooted partial k-tree G′ with type M i for
some i ∈ {1, . . . ,m} such that F(G′) ⊆ F(G) and M � M i.
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Proof. Let d ≥ 2 be the constant from Lemma 4 applied for p and q. Let
M1, . . . ,Mm be all bipartite types with entries from the set {1, . . . , D(k+1)2}∪
{∞} where D = 4d. Thus, m is finite and does not exceed (D(k+1)2 +
1)k(k+1)/2.

Let G be a bipartite rooted partial k-tree with type M . If M is one of the
types M1, . . . ,Mm, then there is nothing to prove (just choose i such that
M = M i). Otherwise, one of its entries is finite and exceeds D(k+1)2 .

For i ∈ {1, . . . , (k + 1)2}, let J i be the set of all positive integers between
Di−1 and Di − 1 (inclusively). Let i0 be the smallest integer such that no
entry of M is contained in J i0 . Since M has at most k(k + 1)/2 different
entries, such an index i0 exists. Note that if i0 = 1, then Lemma 4 implies
that F(G) contains all possible p-precolorings, and the sought graph G′ is
the bipartite rooted partial k-tree composed of k + 1 isolated vertices, with
the all-∞ type.

Two vertices vi and vj at which G is rooted are close if Mij is less than
Di0−1. The relation ≈ of being close is an equivalence relation on v1, . . . , vk+1.
Indeed, it is reflexive and symmetric by the definition, and we now show that
it is transitive. Suppose that Mij and Mjt are both less than Di0−1. Then,
the distance between vi and vt is at most Mij + Mjt ≤ 2Di0−1 − 2 ≤ Di0 − 1
since D ≥ 2. Consequently, by the choice of i0, the distance between vi and
vt is at most Di0−1 − 1 and thus vi ≈ vt.

Let C1, . . . , Cℓ be the equivalence classes of the relation ≈. Note that
C1, . . . , Cℓ is a finer partition than that given by the equivalence relation of
being connected.

Since G is bipartite, we can partition its vertices into two color classes,
say red and blue. For every i ∈ {1, . . . , ℓ}, contract the closed neighborhood
of a vertex v if v is a blue vertex and its distance from any vertex of Ci is at
least Di0−1 and keep doing so as long as such a vertex exists. Observe that
the resulting graph is uniquely defined. After discarding the components
that do not contain the vertices of Ci, we obtain a bipartite partial k-tree
Gi rooted at the vertices of Ci: it is bipartite as we have always contracted
closed neighborhoods of vertices of the same color (blue) to a single (red)
vertex, and its tree-width is at most k since the tree-width is preserved by
contractions. Moreover, the distance between any two vertices of Ci has not
decreased since any path between them through any of the newly arising
vertices has length at least 2Di0−1 − 2 ≥ Di0−1.

Now, let G′ be the bipartite rooted partial k-tree obtained by taking the
disjoint union of G1, . . . , Gℓ. The type M ′ of G′ can be obtained from the type
of G: set M ′

ij to be Mij if the vertices vi and vj are close, and ∞ otherwise.
Thus, M ′ is one of the types M1, . . . ,Mm and M � M ′. It remains to show
that F(G′) ⊆ F(G).
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Let c ∈ F(G′) be a p-precoloring that extends to G′, and recall that
D ≥ 4. For i ∈ {1, . . . , ℓ}, let Ai be the set of all red vertices at distance
at most Di0−1 and all blue vertices at distance at most Di0−1 − 1 from Ci,
and let Ri be the set of all red vertices at distance Di0−1 − 1 or Di0−1 from
Ci. Set Bi = Ai \Ri (Bi is the “interior” of Ai and Ri its “boundary”). The
extension of c to Gi naturally defines a coloring of all vertices of Ai: Gi is
the subgraph of G induced by Ai with some red vertices of Ri identified (two
vertices of Ri are identified if and only if they are in the same component of
the graph G − Bi).

Let H be the following auxiliary graph obtained from G: remove the
vertices of B = B1 ∪ · · · ∪ Bℓ and, for i ∈ {1, . . . , ℓ}, identify every pair of
vertices of Ri that are in the same component of G−B. Let R be the set of
vertices of H corresponding to some vertices of R1 ∪ · · · ∪ Rℓ. Precolor the
vertices of R with the colors given by the colorings of the graphs Gi (note
that two vertices of Ri in the same component of G−Bi are also in the same
component of G−B, so this is well-defined). The graph H is bipartite as only
red vertices have been identified. The distance between any two precolored
vertices is at least d: consider two precolored vertices r and r′ at distance at
most d−1. Let i and i′ be such that r ∈ Ri and r′ ∈ Ri′ . If i = i′, then r and
r′ are in the same component of G−B and thus r = r′. If i 6= i′ then by the
definition of Ri and Ri′ , the vertex r is in G at distance at most Di0−1 from
some vertex v of Ci and r′ is at distance at most Di0−1 from some vertex v′

of Ci′ . So, the distance between v and v′ is at most 2Di0−1 +d−1 ≤ Di0 −1.
Since M has no entry from J i0 , the vertices v and v′ must be close and thus
i = i′, a contradiction.

Since the distance between any two precolored vertices is at least d, the
precoloring extends to H by Lemma 4 and in a natural way it defines a
coloring of G. We conclude that every p-precoloring that extends to G′ also
extends to G and thus F(G′) ⊆ F(G).

We now prove our main lemma, which basically states that there is only a
finite number of bipartite rooted partial k-trees that can appear in a minimal
non-(p, q)-colorable graph with tree-width k and a given odd girth.

Lemma 8. For every k, p and q, there exist a finite number m and bipartite
rooted partial k-trees G1, . . . , Gm with types M1, . . . ,Mm such that for any
bipartite rooted partial k-tree G with type M there exists i such that F(Gi) ⊆
F(G) and M � M i.

Proof. Let M1, . . . ,Mm be the types from Lemma 7. We define the graph
Gi as follows: for every p-precoloring c that does not extend to a bipartite
partial rooted k-tree with type M i, fix a partial rooted k-tree Gi

c with type
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M i such that c does not extend to Gi
c. Set Gi =

⊕

c Gi
c, where c runs over

all such p-precolorings. If the above sum of partial k-trees is non-empty,
then the type M of Gi is M i. Indeed, M � M i by the definition of Gi, and
Lemma 6 implies that M i � M . If all the p-precolorings of the k +1 vertices
in the root extend to each partial k-tree of type M i, then let Gi be the graph
consisting of k +1 isolated vertices. This happens in particular for the all-∞
type.

Let us verify the statement of the lemma. Let G be a bipartite rooted
partial k-tree and let M be the type of G. If F(G) is composed of all p-
precolorings, the sought graph Gi is the one composed of k + 1 isolated
vertices. Hence, we assume that F(G) does not contain all p-precolorings, i.e.,
there are p-precolorings that do not extend to G. By Lemma 7, there exists a
bipartite rooted partial k-tree G′ with type M ′ such that M � M ′ = M i for
some i and F(G′) ⊆ F(G). For every p-precoloring c that does not extend
to G′ (and there exists at least one such p-precoloring c), some graph Gi

c has
been glued into Gi. Hence, F(Gi) ⊆ F(G′) ⊆ F(G). Since the type of Gi is
M i, the conclusion of the lemma follows.

4 Proof of Theorem 2

We are now ready to prove Theorem 2, which is recalled below.

Theorem 2. For every k and every ε > 0, there exists g such that every
graph with tree-width at most k and odd-girth at least g has circular chromatic
number at most 2 + ε.

Proof. Fix p and q such that 2 < p/q ≤ 2+ε. Let G1, . . . , Gm be the bipartite
partial k-trees from Lemma 8 applied for k, p and q. Set N to be the largest
order of the graphs Gi and set g to be 3N . We assert that each partial k-tree
with odd-girth g has circular chromatic number at most p/q. Assume that
this is not the case and let G be a counterexample with the fewest vertices.

The graph G has at least 3N vertices (otherwise, it has no odd cycles and
thus is bipartite). By Lemma 5, G is isomorphic to G1 ⊕ G2, where G1 and
G2 are rooted partial k-trees and the number of vertices of G1 is between
N + 1 and 2N . By the choice of g, the graph G1 has no odd cycle and thus
it is a bipartite rooted partial k-tree. By Lemma 8, there exists i such that
F(Gi) ⊆ F(G1) and M1 � M i where M1 is the type of G1 and M i is the
type of Gi. Let G′ be the partial k-tree Gi ⊕ G2.

First, G′ has fewer vertices than G since the number of vertices of Gi is
at most N and the number of vertices of G1 is at least N + 1. Second, G′
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has no (p, q)-coloring: if it had a (p, q)-coloring, then the corresponding p-
precoloring of the k+1 vertices shared by Gi and G2 would extend to G1 since
F(Gi) ⊆ F(G1) and thus G would have a (p, q)-coloring, too. Finally, G′ has
no odd cycle of length less than g: if it had such a cycle, replace any path
between vertices vj and vj′ of the root of Gi with a path of at most the same
length between them in G1 (recall that M1 � M i). If such paths for different
pairs of vj and vj′ on the considered odd cycle intersect, take their symmetric
difference. In this way, we obtain an Eulerian subgraph of G = G1⊕G2 with
an odd number of edges such that the number of its edges is less than g.
Consequently, this Eulerian subgraph has an odd cycle of length less than g,
which violates the assumption on the odd-girth of G. We conclude that G′

is a counterexample with fewer vertices than G, a contradiction.

We end by pointing out that the approach used yields an upper bound

of 3(k + 1) · 22pk+1
((4d)(k+1)2+1)k2

for the smallest g such that all graphs with
tree-width at most k and odd-girth at least g have circular chromatic number
at most p/q, whenever p/q > 2. More precisely, the value of N cannot exceed

(k + 1) · 22pk+1
((4d)(k+1)2+1)k2

. To see this, we consider all pairs P = (C, M)
where C is a set of p-precolorings of the root and M is a type such that
there is a bipartite rooted partial k-tree of type M to which no coloring of
C extends. Let nP be the size of a smallest such partial k-tree. We obtain

a sequence of at most 2pk+1
×

(

(4d)(k+1)2 + 1
)k2

integers. The announced

bound follows from the following fact: if the sequence is sorted in increasing
order, then each term is at most twice the previous one.

Indeed, consider the tree-decomposition of the partial k-tree GP chosen
for the pair P . If the bag containing the root has a single child, then we
delete a vertex of the root, and set a vertex in the single child to be part
of the root. We obtain a partial k-tree to which some p-precolorings of C
do not extend. Thus, nP ≤ 1 + nP ′ for some pair P ′ and nP ′ < nP . If the
bag containing the root has more than one child, then GP can be obtained
by identifying the roots of two smaller partial k-trees G and G′. By the
minimality of GP , the orders of G and G′ are nP1 and nP2 for two pairs P1

and P2 such that nPi
< nP for i ∈ {1, 2}. This yields the stated fact, which

in turn implies the given bound, since the smallest element of the sequence
is k + 1.

Acknowledgment. This work was done while the first three authors were
visiting the fourth at Technische Universität Ilmenau. They thank their host
for providing a perfect working environment.

8



References

[1] M. O. Albertson, D. B. West: Extending precolorings to circular color-
ings, J. Combin. Theory Ser. B 96 (2006), 472–481.
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