363 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationDriven by a myriad of potential applications such as communications, medical imaging, security, spectroscopy, and so on, terahertz (THz) technology has emerged as a rapidly growing technological field during the last three decades. However, since conventional materials typically used in microwave and optical frequencies are lossy or do not effectively respond at these frequencies, it is essential to find or develop novel materials that are suitable for device applications in the THz range. Therefore, there is wide interest in the community in employing novel naturally-occurring materials, such as 2D materials, as well as in designing artificial metamaterial structures for THz applications. Here, we combined both of these approaches so to develop reconfigurable THz devices capable of providing amplitude modulation, phase modulation, and resonance frequency tuning. First, graphene is employed as the reconfigurable element in metamaterial phase modulators. For this purpose, we propose the use of unit cells with deep-subwavelength dimensions, which can have multiple advantaged for beam shaping applications. The analyzed metamaterials have one of the smallest unit cell to wavelength ratios reported or proposed todate at THz frequencies. By systematic analysis of the geometrical tradeoffs in these devices it is found that there is an optimal unit cell dimension, corresponding roughly to ~λ/20, which can deliver the best performance. In addition to this, we explored other applications of graphene in metamaterial devices, including amplitude modulation and resonance-shifting. These studies motivated us to analyze what is the most suitable role of graphene from a THz device perspective: is graphene a good plasmonic material? Or it is better suited as a reconfigurable material providing tunability to otherwise passive metallic structures? Our studies show that the Drude scattering time in graphene is an important parameter in this regard. In order to attain strong plasmonic resonances graphene samples with τ >> 1ps are required, which is challenging in large area CVD samples. But graphene is just one example of a wider class of 2D materials. In this work we also studied for the first time the application of 2D materials beyond graphene as reconfigurable elements in THz devices. For this purpose, Molybdenum Disulfide (MoS2) was employed as the reconfigurable element in cross-slot metamaterial amplitude modulators. Our results evidence that smaller insertion loss is possible when employing 2D materials with a bandgap, such as MoS2, rather than a zero-gap material such as graphene. Furthermore, because of a stronger optical absorption active control of the metamaterial properties is possible by altering the intensity of an optical pump. We later investigate and discuss transparent conductive oxides (TCOs), which constitute an interesting choice for developing visible-transparent THz-functional metamaterial devices for THz applications. These materials show a metallic THz response and thus can substitute the metal patterns in metamaterial devices. In our particular studies we analyzed samples consisting of: (i) two-dimensional electron gases at the interface between polar/nonpolar complex oxides having record-high electron density, and (ii) thin-films of La-doped BaSnO3 having record-high conductivity in a TCO. These materials exhibit a flat THz conductivity across a broad terahertz frequency window. As a result of their metal-like broadband THz response, we demonstrate a visible-transparent THz-functional electromagnetic structure consisting of a wire-grid polarizer

    2D WS2 liquid crystals: tunable functionality enabling diverse applications

    Get PDF
    This is the final version. Available on open access from Royal Society of Chemistry via the DOI in this recordThe first observation of liquid crystalline dispersions of liquid phase-exfoliated tungsten disulfide flakes is reported in a range of organic solvents. The liquid crystals demonstrate significant birefringence as observed in the linear and circular dichroism measurements respectively. In particular, linear dichroism is observed throughout the visible range while broad-band circular dichroism can be observed in the range from 500-800 nm. Under an applied magnetic field of ±1.5 T the circular dichroism can be switched ON/OFF, while the wavelength range for switching can be tuned from large to narrow range by the proper selection of the host solvent. In combination with photoluminescence capabilities of WS2, this opens a pathway to a wide variety of applications, such as deposition of highly uniform films over large areas for photovoltaic and terahertz devices.Engineering and Physical Sciences Research Council (EPSRC)Royal Societ

    Simulation and optimization of tuneable microstrip patch antenna for fifth-generation applications based on graphene

    Get PDF
    Microstrip patch antennas (MPAs) are known largely for their versatility in terms of feasible geometries, making them applicable in many distinct circumstances. In this paper, a graphene-based tuneable single/array rectangular microstrip patch antenna (MPA) utilizing an inset feed technique designed to function in multiple frequency bands are used in a fifth-generation (5G) wireless communications system. The tuneable antenna is used to eliminate the difficulties caused by the narrow bandwidths typically associated with MPAs. The graphene material has a reconfigurable surface conductivity that can be adjusted to function at the required value, thus allowing the required resonance frequency to be selected. The simulated tuneable antenna comprises a copper radiating patch with four graphene strips used for tuning purposes and is designed to cover a wide frequency band. The proposed antenna can be tuned directly by applying a direct current (DC) voltage to the graphene strips, resulting in a variation in the surface impedance of the graphene strips and leading to shifts in the resonance frequency

    UWB THz plasmonic microstrip antenna based on graphene

    Get PDF
    This paper proposes design and investigate of graphene based plasmonic microstrip antenna for terahertz high speed communication and application systems (0.1-20) THz. The proposed antenna structure composed of graphene-based rectangular patch and transmission line mounted on a grounded silicone dioxide substrate. SPP (Surface Plasmon Polariton) waves that appear in graphene at THz band is analyzed. The proposed antenna simulation was done by using numerical method CST program. The simulation results show the scattering parameter S11 less than -10 dB at frequency band (0.1-20) THz. Also, the presented antenna system has a good gain along the frequency band
    corecore