93,768 research outputs found

    A multi-objective genetic graph-based clustering algorithm with memory optimization

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. H. D. Menéndez, D. F. Barrero, and D. Camacho, "A multi-objective genetic graph-based clustering algorithm with memory optimization", in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp. 3174 - 3181Clustering is one of the most versatile tools for data analysis. Over the last few years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the Spectral Clustering algorithm, which is based on graph cut: it initially generates a Similarity Graph using a distance measure and then uses its Graph Spectrum to find the best cut. Memory consuption is a serious limitation in that algorithm: The Similarity Graph representation usually requires a very large matrix with a high memory cost. This work proposes a new algorithm, based on a previous implementation named Genetic Graph-based Clustering (GGC), that improves the memory usage while maintaining the quality of the solution. The new algorithm, called Multi-Objective Genetic Graph-based Clustering (MOGGC), uses an evolutionary approach introducing a Multi-Objective Genetic Algorithm to manage a reduced version of the Similarity Graph. The experimental validation shows that MOGGC increases the memory efficiency, maintaining and improving the GGC results in the synthetic and real datasets used in the experiments. An experimental comparison with several classical clustering methods (EM, SC and K-means) has been included to show the efficiency of the proposed algorithm.This work has been partly supported by: Spanish Ministry of Science and Education under project TIN2010-19872

    A genetic graph-based approach for partitional clustering

    Get PDF
    Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments

    Evolving Graphs by Graph Programming

    Get PDF
    Graphs are a ubiquitous data structure in computer science and can be used to represent solutions to difficult problems in many distinct domains. This motivates the use of Evolutionary Algorithms to search over graphs and efficiently find approximate solutions. However, existing techniques often represent and manipulate graphs in an ad-hoc manner. In contrast, rule-based graph programming offers a formal mechanism for describing relations over graphs. This thesis proposes the use of rule-based graph programming for representing and implementing genetic operators over graphs. We present the Evolutionary Algorithm Evolving Graphs by Graph Programming and a number of its extensions which are capable of learning stateful and stateless digital circuits, symbolic expressions and Artificial Neural Networks. We demonstrate that rule-based graph programming may be used to implement new and effective constraint-respecting mutation operators and show that these operators may strictly generalise others found in the literature. Through our proposal of Semantic Neutral Drift, we accelerate the search process by building plateaus into the fitness landscape using domain knowledge of equivalence. We also present Horizontal Gene Transfer, a mechanism whereby graphs may be passively recombined without disrupting their fitness. Through rigorous evaluation and analysis of over 20,000 independent executions of Evolutionary Algorithms, we establish numerous benefits of our approach. We find that on many problems, Evolving Graphs by Graph Programming and its variants may significantly outperform other approaches from the literature. Additionally, our empirical results provide further evidence that neutral drift aids the efficiency of evolutionary search

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm

    An Evolutionary Approach for Learning Attack Specifications in Network Graphs

    Get PDF
    This paper presents an evolutionary algorithm that learns attack scenarios, called attack specifications, from a network graph. This learning process aims to find attack specifications that minimise cost and maximise the value that an attacker gets from a successful attack. The attack specifications that the algorithm learns are represented using an approach based on Hoare's CSP (Communicating Sequential Processes). This new approach is able to represent several elements found in attacks, for example synchronisation. These attack specifications can be used by network administrators to find vulnerable scenarios, composed from the basic constructs Sequence, Parallel and Choice, that lead to valuable assets in the network
    • …
    corecore