9,529 research outputs found

    Three Dimensional Software Modelling

    Get PDF
    Traditionally, diagrams used in software systems modelling have been two dimensional (2D). This is probably because graphical notations, such as those used in object-oriented and structured systems modelling, draw upon the topological graph metaphor, which, at its basic form, receives little benefit from three dimensional (3D) rendering. This paper presents a series of 3D graphical notations demonstrating effective use of the third dimension in modelling. This is done by e.g., connecting several graphs together, or in using the Z co-ordinate to show special kinds of edges. Each notation combines several familiar 2D diagrams, which can be reproduced from 2D projections of the 3D model. 3D models are useful even in the absence of a powerful graphical workstation: even 2D stereoscopic projections can expose more information than a plain planar diagram

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    Bluefish: A Relational Framework for Graphic Representations

    Full text link
    Complex graphic representations -- such as annotated visualizations, molecular structure diagrams, or Euclidean geometry -- convey information through overlapping perceptual relations. To author such representations, users are forced to use rigid, purpose-built tools with limited flexibility and expressiveness. User interface (UI) frameworks provide only limited relief as their tree-based models are a poor fit for expressing overlaps. We present Bluefish, a diagramming framework that extends UI architectures to support overlapping perceptual relations. Bluefish graphics are instantiated as relational scenegraphs: hierarchical data structures augmented with adjacency relations. Authors specify these relations with scoped references to components found elsewhere in the scenegraph. For layout, Bluefish lazily materializes necessary coordinate transformations. We demonstrate that Bluefish enables authoring graphic representations across a diverse range of domains while preserving the compositional and abstractional affordances of traditional UI frameworks. Moreover, we show how relational scenegraphs capture previously latent semantics that can later be retargeted (e.g., for screen reader accessibility).Comment: 27 pages, 14 figure

    NetPanorama: A Declarative Grammar for Network Construction, Transformation, and Visualization

    Full text link
    This paper introduces NetPanorama, a domain-specific language and declarative grammar for interactive network visualizations. Exploring complex networks with multivariate, geographical, or temporal information often require bespoke visualization designs, such as adjacency matrices, arc-diagrams, small multiples, timelines, or geographic map visualizations. However, creating these requires implementing data loading, data transformations, visualization, and interactivity, which is time-consuming and slows down the iterative exploration of this huge design space. With NetPanorama, a developer specifies a network visualization design as a pipeline of parameterizable steps. Our specification and reference implementation aims to facilitate visualization development and reuse; allow for easy design exploration and iteration; and make data transformation and visual mapping decisions transparent. Documentation, source code, examples, and an interactive online editor can be found online: https://netpanorama.netlify.app

    Semantics-driven dataflow diagram processing.

    Get PDF
    Dataflow diagram is a commonly used tool of structured analysis and design techniques in specifications and design of a software system, and in analysis of an existing system as well. While automatic generating dataflow diagram saves system designers from tedious drawing and help them develop a new system, simulating dataflow diagrams provides system analysts with a dynamic graph and help them understand an existing system. CASE tools for dataflow diagrams play an important role in software engineering. Methodologies applied to the tools are dominant issues extensively evaluated by tools designers. Executable specifications with dataflow diagrams turn out an opportunity to execute graphic dataflow diagrams for systems analysts to simulate the behavior of a system. In this thesis, a syntax representation of dataflow diagram was developed, and a formal specification for dataflow diagram was established. A parser of this developed CASE tool translates the syntax representation of DFDs into their semantic representation. An interpreter of this tool then analyzes the DFDs semantic notations and builds a set of services of a system represented by the DFDs. This CASE tool can be used to simulate system behavior, check equivalence of two systems and detect deadlock. Based on its features, this tool can be used in every phase through entire software life cycle. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1998 .Z46. Source: Masters Abstracts International, Volume: 39-02, page: 0535. Adviser: Indra A. Tjandra. Thesis (M.Sc.)--University of Windsor (Canada), 1998

    User support for software development technologies

    Get PDF
    The adoption of software development technologies is very closely related to the topic of user support. This is especially true in early phases, when the users are not familiar with the modification or the build processes of the software that has to be developed nor with the technology used for software development. This work introduces an approach to improve the usability of software development technologies represented by the Combinatory Logic Synthesizer (CL)S Framework. (CL)S is based on a type inhabitation algorithm for the combinatory logic with intersection types and aims to automatically create software components from a domain-specified repository. The framework yields a complete enumeration of all inhabitants. The inhabitation results are computed in the form of tree grammars. Unfortunately, the underlying type system allows limited application of domain-specific knowledge. To compensate for this limit, this work provides a framework for debugging intersection type specifications and filtering inhabitation results using domain-specific constraints as main aspects. The aim of the debugger is to make potentially incomplete or erroneous input specifications and decisions of the inhabitation algorithm understandable for those who are not experts in the field of type theory. The combination of tree grammars and graph theory forms the foundation of a clear representation of the computed results that informs users about the search process of the algorithm. The graphical representations are based on hypergraphs that illustrate the inhabitation in a step-wise fashion. Within the scope of this work, three filtering algorithms were implemented and investigated. The filtering algorithm integrated into the framework for user support and used for the restriction of inhabitation results is practically feasible and represents a clear improvement compared to existing approaches. It is based on modifying the tree grammars resulting from the (CL)S Framework. Additionally, the usability of the (CL)S Framework is supported by eight perspectives included in a web-based integrated development environment (IDE) that provides detailed graphical and textual information about the synthesis
    • …
    corecore