7,563 research outputs found

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Building Occupancy Simulation and Data Assimilation Using a Graph Based Agent Oriented Model

    Get PDF
    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates the real time spatial distribution of occupants in a building. It can benefit various applications like conserving energy, smart assist, building construction, crowd management, and emergency evacuation. Building occupancy simulation and estimation needs a simulation model and a data assimilation algorithm that assimilates real-time sensor data into the simulation model. Existing build occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating a large number occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of the existing models, in this dissertation, we combine the benefits of agent and graph based modeling and develop a new graph based agent oriented model which can efficiently simulate a large number of occupants in various building structures. To support real-time occupancy dynamics estimation, we developed a data assimilation framework based on Sequential Monte Carol Methods, and apply it to the graph-based agent oriented model to assimilate real time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this dissertation work include 1) it provides an efficient model for building occupancy simulation which can accommodate thousands of occupants; 2) it provides an effective data assimilation framework for real-time estimation of building occupancy

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    Motion planning for geometric models in data visualization

    Get PDF
    Interaktivní geometrické modely pro simulaci přírodních jevů (LH11006)Pokročilé grafické a počítačové systémy (SGS-2016-013)A finding of path is an important task in many research areas and it is a common problem solved in a wide range of applications. New problems of finding path appear and complex problems persist, such as a real-time plan- ning of paths for huge crowds in dynamic environments, where the properties according to which the cost of a path is evaluated as well as the topology of paths may change. The task of finding a path can be divided into path planning and motion planning, which implicitly respects the collision with surroundings in the environment. Within the first group this thesis focuses on path planning on graphs for crowds. The main idea is to group members of the crowd by their common initial and target positions and then plan the path for one representative member of each group. These representative members can be navigated by classic approaches and the rest of the group will follow them. If the crowd can be divided into a few groups this way, the proposed approach will save a huge amount of computational and memory demands in dynamic environments. In the second area, motion planning, we are dealing with another problem. The task is to navigate the ligand through the protein or into the protein, which turns out to be a challenging problem because it needs to be solved in 3D with the collision detection

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network

    Get PDF
    Success or failure of future information and communication services in general and mobile communications in particular is greatly dependent on the level of personalisations they can offer. While the provision of anytime, anywhere, anyhow services has been the focus of wireless telecommunications in recent years, personalisation however has gained more and more attention as the unique selling point of mobile devices. Smart phones should be intelligent enough to match user’s unique needs and preferences to provide a truly personalised service tailored for the individual user. In the first part of this thesis, the importance and role of personalisation in future mobile networks is studied. This is followed, by an agent based futuristic user scenario that addresses the provision of rich data services independent of location. Scenario analysis identifies the requirements and challenges to be solved for the realisation of a personalised service. An architecture based on IP Multimedia Subsystem is proposed for mobility and to provide service continuity whilst roaming between two different access standards. Another aspect of personalisation, which is user preference modelling, is investigated in the context of service selection in a multi 3rd party service provider environment. A model is proposed for the automatic acquisition of user preferences to assist in service selection decision-making. User preferences are modelled based on a two-level Bayesian Metanetwork. Personal agents incorporating the proposed model provide answers to preference related queries such as cost, QoS and service provider reputation. This allows users to have their preferences considered automatically

    Investigation of Pre-evacuation and Wayfinding Behaviors Impacts using Agent-Based Simulation for Smart Evacuation Technology.

    Get PDF
    Despite significant safety improvements, the mining industry remains one of the most hazardous occupations globally and the evacuation of Miners, when an uncontrollable incident occurs in the mine, is the best bet to saving lives. However, Human factors/behaviors during an emergency are likely to influence the evacuation performance. Other industries have made a significant effort to determine these human factors that can impede evacuation performance, however, the current state-of-the-art in mine evacuation or self-rescue is that the evacuation route is predetermined, and a static sign is used to direct miners to the predetermined safe location. This method is limited in representing actual conditions that arise in a real emergency, neglecting the different behaviors displayed by humans. As optimization of the evacuation of a mine plays a fundamental role in emergencies and modelling evacuation behavior and movement of miners is a complex task, this research utilized Agent-Based simulations to simulate the evacuation behavior and performance. It was observed that people with the smart evacuation device made evacuated faster than the passive signage scenario and chaotic scenario. It is imperative to consider the impact of pre-evacuation and wayfinding behavior of people when designing the evacuation protocols
    • …
    corecore